WorldWideScience

Sample records for low-amplitude long-duration tremor

  1. Experimental study of low amplitude, long-duration mechanical loading of reactive materials

    International Nuclear Information System (INIS)

    Urtiew, P A; Forbes, J W

    2000-01-01

    Studies of the low amplitude, long-duration mechanical loading of reactive materials rely very heavily on the experimental data in general and in particular on the data obtained from gauges placed within the experimental test sample to measure accurately the local changes of parameters of the investigated material. For a complete description of these changes taking place in a dynamically loaded material one would like to know both the spatial and the temporal resolution of pressure, temperature, volume, wave and mass velocity. However, temperature and volume are not easily attainable. Therefore, most of the in-situ work is limited to measurements of pressure and both wave and mass velocities. Various types of these gauges will be discussed and their records will be illustrated. Some of these gauges have limitations but are better suited for particular applications than others. These aspects will also be discussed. Main limitation of most in-situ gauges is that they are built for one-dimensional application. However, some work is being done to develop two-dimensional gauges. This work will also be briefly discussed. While these experiments are necessary to validate theoretical models of the phenomenon, they can also provide sufficient amount of data to yield complete information on material characteristics such as its equation of state (EOS), its phase change under certain loads and its sensitivity to shock loading. Processing of these data to get important information on the behavior of both reactive and non-reactive materials will also be demonstrated

  2. Exploring Low-Amplitude, Long-Duration Deformational Transients on the Cascadia Subduction Zone

    Science.gov (United States)

    Nuyen, C.; Schmidt, D. A.

    2017-12-01

    The absence of long-term slow slip events (SSEs) in Cascadia is enigmatic on account of the diverse group of subduction zone systems that do experience long-term SSEs. In particular, southwest Japan, Alaska, New Zealand and Mexico have observed long-term SSEs, with some of the larger events exhibiting centimeter-scale surface displacements over the course of multiple years. The conditions that encourage long-term slow slip are not well established due to the variability in thermal parameter and plate dip amongst subduction zones that host long-term events. The Cascadia Subduction Zone likely has the capacity to host long-term SSEs, and the lack of such events motivates further exploration of the observational data. In order to search for the existence of long-duration transients in surface displacements, we examine Cascadia GPS time series from PANGA and PBO to determine whether or not Cascadia has hosted a long-term slow slip event in the past 20 years. A careful review of the time series does not reveal any large-scale multi-year transients. In order to more clearly recognize possible small amplitude long-term SSEs in Cascadia, the GPS time series are reduced with two separate methods. The first method involves manually removing (1) continental water loading terms, (2) transient displacements of known short-term SSEs, and (3) common mode signals that span the network. The second method utilizes a seasonal-trend decomposition procedure (STL) to extract a long-term trend from the GPS time-series. Manual inspection of both of these products reveals intriguing long-term changes in the longitudinal component of several GPS stations in central Cascadia. To determine whether these shifts could be due to long-term slow slip, we invert the reduced surface displacement time series for fault slip using a principle component analysis-based inversion method. We also utilize forward fault models of various synthetic long-term SSEs to better understand how these events may

  3. Detecting Micro-seismicity and Long-duration Tremor-like Events from the Oklahoma Wavefield Experiment

    Science.gov (United States)

    Li, C.; Li, Z.; Peng, Z.; Zhang, C.; Nakata, N.

    2017-12-01

    Oklahoma has experienced abrupt increase of induced seismicity in the last decade. An important way to fully understand seismic activities in Oklahoma is to obtain more complete earthquake catalogs and detect different types of seismic events. The IRIS Community Wavefield Demonstration Experiment was deployed near Enid, Oklahoma in Summer of 2016. The dataset from this ultra-dense array provides an excellent opportunity for detecting microseismicity in that region with wavefield approaches. Here we examine continuous waveforms recorded by 3 seismic lines using local coherence for ultra-dense arrays (Li et al., 2017), which is a measure of cross-correlation of waveform at each station with its nearby stations. So far we have detected more than 5,000 events from 06/22/2016 to 07/20/2016, and majority of them are not listed on the regional catalog of Oklahoma or global catalogs, indicating that they are local events. We also identify 15-20 long-period long-duration events, some of them lasting for more than 500 s. Such events have been found at major plate-boundary faults (also known as deep tectonic tremor), as well as during hydraulic fracturing, slow-moving landslides and glaciers. Our next step is to locate these possible tremor-like events with their relative arrival times across the array and compare their occurrence times with solid-earth tides and injection histories to better understand their driving mechanisms.

  4. Tremor

    Science.gov (United States)

    Tremors are unintentional trembling or shaking movements in one or more parts of your body. Most tremors occur in the hands. You can also have arm, head, face, vocal cord, trunk, and leg tremors. Tremors are most common in middle-aged and ...

  5. Tremor: Tremor:

    OpenAIRE

    Georgiev, Dejan; Kragelj, Veronika; Pirtošek, Zvezdan; Ribarič, Samo

    2012-01-01

    Tremor is one of the most common disorders in the population of patients diagnosed with movement disorders. In the literature we find several classifications and different types of tremors. Each tremor type has its own characteristics. The most frequently used and widely accepted tremor classification divides tremors according to clinical appearance. First, they are roughly divided into resting tremor and action tremor. Action tremor is then subdivided into postural, kinetic, intention, task ...

  6. Tremor

    Science.gov (United States)

    ... and down or closing and opening the eyes. Intention tremor is produced with purposeful movement toward a ... by any movement such as holding a heavy book or a dumbbell in the same position. top ...

  7. Tremor

    Science.gov (United States)

    ... clothes with Velcro fasteners or using button hooks Cooking or eating with utensils that have a larger handle Using a sippy cup to drink Wearing slip-on shoes and using shoehorns When to Contact a Medical Professional Call your provider if your tremor: Is worse ...

  8. Median Filtering Methods for Non-volcanic Tremor Detection

    Science.gov (United States)

    Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.

    2016-12-01

    Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.

  9. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    Burnett, T.; Iwai, J.; Lord, J.J.; Strausz, S.; Wilkes, R.J.; Dake, S.; Oda, H.; Miyamura, O.; Fuki, M.; Jones, W.V.; Gregory, J.; Hayashi, T.; Takahashi, U.; Tominaga, Y.; Wefel, J.P.; Fountain, W.; Derrickson, J.; Parnell, T.A.; Roberts, E.; Tabuki, T.; Watts, J.W.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  10. Tectonic tremor

    Science.gov (United States)

    Shelly, David R.

    2016-01-01

    Tectonic, non-volcanic tremor is a weak vibration of ground, which cannot be felt by humans but can be detected by sensitive seismometers. It is defined empirically as a low-amplitude, extended duration seismic signal associated with the deep portion (∼20–40 km depth) of some major faults. It is typically observed most clearly in the frequency range of 2–8 Hz and is depleted in energy at higher frequencies relative to regular earthquakes.

  11. Global search of triggered non-volcanic tremor

    Science.gov (United States)

    Chao, Tzu-Kai Kevin

    Deep non-volcanic tremor is a newly discovered seismic phenomenon with low amplitude, long duration, and no clear P- and S-waves as compared with regular earthquake. Tremor has been observed at many major plate-boundary faults, providing new information about fault slip behaviors below the seismogenic zone. While tremor mostly occurs spontaneously (ambient tremor) or during episodic slow-slip events (SSEs), sometimes tremor can also be triggered during teleseismic waves of distance earthquakes, which is known as "triggered tremor". The primary focus of my Ph.D. work is to understand the physical mechanisms and necessary conditions of triggered tremor by systematic investigations in different tectonic regions. In the first chapter of my dissertation, I conduct a systematic survey of triggered tremor beneath the Central Range (CR) in Taiwan for 45 teleseismic earthquakes from 1998 to 2009 with Mw ≥ 7.5. Triggered tremors are visually identified as bursts of high-frequency (2-8 Hz), non-impulsive, and long-duration seismic energy that are coherent among many seismic stations and modulated by the teleseismic surface waves. A total of 9 teleseismic earthquakes has triggered clear tremor in Taiwan. The peak ground velocity (PGV) of teleseismic surface waves is the most important factor in determining tremor triggering potential, with an apparent threshold of ˜0.1 cm/s, or 7-8 kPa. However, such threshold is partially controlled by the background noise level, preventing triggered tremor with weaker amplitude from being observed. In addition, I find a positive correlation between the PGV and the triggered tremor amplitude, which is consistent with the prediction of the 'clock-advance' model. This suggests that triggered tremor can be considered as a sped-up occurrence of ambient tremor under fast loading from the passing surface waves. Finally, the incident angles of surface waves also play an important rule in controlling the tremor triggering potential. The next

  12. Long Duration Space Shelter Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed fiber reinforced ceramic composites for radiation shielding that can be used for external walls in long duration manned...

  13. Particle Distribution Modification by Low Amplitude Modes

    International Nuclear Information System (INIS)

    White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.

    2009-01-01

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  14. Training Concept for Long Duration Space Mission

    Science.gov (United States)

    O'Keefe, William

    2008-01-01

    There has been papers about maintenance and psychological training for Long Duration Space Mission (LDSM). There are papers on the technology needed for LDSMs. Few are looking at how groundbased pre-mission training and on-board in-transit training must be melded into one training concept that leverages this technology. Even more importantly, fewer are looking at how we can certify crews pre-mission. This certification must ensure, before the crew launches, that they can handle any problem using on-board assets without a large ground support team.

  15. Essential Tremor

    Science.gov (United States)

    ... Treatment There is no definitive cure for essential tremor. Symptomatic drug therapy may include propranolol or other beta blockers and primidone, an anticonvulsant drug. Eliminating tremor "triggers" ...

  16. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  17. Long duration mild temperature hyperthermia and brachytherapy.

    Science.gov (United States)

    Armour, E P; Raaphorst, G P

    2004-03-01

    Combining long duration mild temperature hyperthermia (LDMH) and low dose-rate (LDR) brachytherapy to enhance therapeutic killing of cancer cells was proposed many years ago. The cellular and tumour research that supports this hypothesis is presented in this review. Research describing LDMH interaction with pulsed brachytherapy and high dose-rate brachytherapy using clinically relevant parameters are compared with LDMH/LDR brachytherapy. The mechanism by which LDMH sensitizes LDR has been established as the inhibition of sublethal damage repair. The molecular mechanisms have been shown to involve DNA repair enzymes, but the exact nature of these processes is still under investigation. The relative differences between LDMH interactions with human and rodent cells are presented to help in the understanding of possible roles of LDMH in clinical application. The role of LDMH in modifying tumour blood flow and its possible role in LDR sensitization of tumours is also presented. The positive aspects of LDMH-brachytherapy for clinical application are sixfold; (1) the thermal goals (temperature, time and volume) are achievable with currently available technology, (2) the hyperthermia by itself has no detectable toxic effects, (3) thermotolerance appears to play a minor if any role in radiation sensitization, (4) TER of around 2 can be expected, (5) hypoxic fraction may be decreased due to blood flow modification and (6) simultaneous chemotherapy may also be sensitized. Combined LDMH and brachytherapy is a cancer therapy that has established biological rationale and sufficient technical and clinical advancements to be appropriately applied. This modality is ripe for clinical testing.

  18. Personal growth following long-duration spaceflight

    Science.gov (United States)

    Suedfeld, Peter; Brcic, Jelena; Johnson, Phyllis J.; Gushin, Vadim

    2012-10-01

    that cosmonauts do experience various aspects of positive personal growth following their space flights. As long-duration missions are (and will remain) the norm, it is important for the space agencies and the voyagers themselves to develop a better understanding and possible enhancement of this phenomenon.

  19. Microcontroller uses in Long-Duration Ballooning

    Science.gov (United States)

    Jones, Joseph

    This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required

  20. Essential tremor

    Science.gov (United States)

    ... such as: Smoking and smokeless tobacco Overactive thyroid ( hyperthyroidism ) Suddenly stopping alcohol after drinking a lot for ... from the medicines used to treat your tremor Prevention Alcoholic beverages in small quantities may decrease tremors. ...

  1. Atmosphere Resource Recovery & Environmental Monitoring for Long Duration Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Atmosphere Resource Recovery & Environmental Monitoring (ARREM) for Long Duration Exploration Project project is maturing Atmosphere Revitalization...

  2. Functional tremor.

    Science.gov (United States)

    Schwingenschuh, P; Deuschl, G

    2016-01-01

    Functional tremor is the commonest reported functional movement disorder. A confident clinical diagnosis of functional tremor is often possible based on the following "positive" criteria: a sudden tremor onset, unusual disease course, often with fluctuations or remissions, distractibility of the tremor if attention is removed from the affected body part, tremor entrainment, tremor variability, and a coactivation sign. Many patients show excessive exhaustion during examination. Other somatizations may be revealed in the medical history and patients may show additional functional neurologic symptoms and signs. In cases where the clinical diagnosis remains challenging, providing a "laboratory-supported" level of certainty aids an early positive diagnosis. In rare cases, in which the distinction from Parkinson's disease is difficult, dopamine transporter single-photon emission computed tomography (DAT-SPECT) can be indicated. © 2016 Elsevier B.V. All rights reserved.

  3. Defining Dystonic Tremor

    OpenAIRE

    Elble, Rodger J

    2013-01-01

    A strong association between dystonia and tremor has been known for more than a century. Two forms of tremor in dystonia are currently recognized: 1) dystonic tremor, which is tremor produced by dystonic muscle contraction and 2) tremor associated with dystonia, which is tremor in a body part that is not dystonic, but there is dystonia elsewhere. Both forms of tremor in dystonia frequently resemble essential tremor or another pure tremor syndrome (e.g., isolated head and voice tremors and tas...

  4. Particle Astrophysics in NASA's Long Duration Balloon Program

    International Nuclear Information System (INIS)

    Gorham, Peter W.

    2013-01-01

    A century after Viktor Hess' discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons

  5. Building a Shared Definitional Model of Long Duration Human Spaceflight

    Science.gov (United States)

    Orr, M.; Whitmire, A.; Sandoval, L.; Leveton, L.; Arias, D.

    2011-01-01

    In 1956, on the eve of human space travel Strughold first proposed a simple classification of the present and future stages of manned flight that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to optimize the potential of the ISS as a gateway to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Initial search of formal and grey literature augmented by liaison with subject matter experts. Search strategy focused on both the use of term long duration mission and long duration spaceflight, and also broader related current and historical definitions and classification models of spaceflight. The related sea and air travel literature was also subsequently explored with a view to identifying analogous models or classification systems. There are multiple different definitions and classification systems for spaceflight including phase and type of mission, craft and payload and related risk management models. However the frequently used concepts of long duration mission and long duration spaceflight are infrequently operationally defined by authors, and no commonly referenced classical or gold standard definition or model of these terms emerged from the search. The categorization (Cat) system for sailing was found to be of potential analogous utility, with its focus on understanding the need for crew and craft autonomy at various levels of potential adversity and inability to gain outside support or return to a safe location, due to factors of time, distance and location.

  6. Cognitive Assessment in Long-Duration Space Flight

    Science.gov (United States)

    Kane, Robert; Seaton, Kimberly; Sipes, Walter

    2011-01-01

    This slide presentation reviews the development and use of a tool for assessing spaceflight cognitive ability in astronauts. This tool. the Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) has been used to provide ISS flight surgeons with an objective clinical tool to monitor the astronauts cognitive status during long-duration space flight and allow immediate feedback to the astronaut. Its use is medically required for all long-duration missions and it contains a battery of five cognitive assessment subtests that are scheduled monthly and compared against the individual preflight baseline.

  7. Essential Tremor Is More Than a Tremor

    Science.gov (United States)

    ... Giving Options Donate Prev Next IETF > About Essential Tremor > Video Video Click to share on Facebook (Opens ... Click to print (Opens in new window) Essential Tremor is More Than a Tremor Providing a voice ...

  8. Essential Tremor Is More Than a Tremor

    Medline Plus

    Full Text Available ... Giving Options Donate Prev Next IETF > About Essential Tremor > Video Video Click to share on Facebook (Opens ... Click to print (Opens in new window) Essential Tremor is More Than a Tremor Providing a voice ...

  9. Habitability and Performance Issues for Long Duration Space Flights

    Science.gov (United States)

    Whitmore, Mihriban; McQuilkin, Meredith L.; Woolford, Barbara J.

    1997-01-01

    Advancing technology, coupled with the desire to explore space has resulted in increasingly longer manned space missions. Although the Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on human ability to function in extreme environments, findings indicate long duration missions take a toll on the individual, both physiologically and psychologically. These physiological and psychological issues manifest themselves in performance decrements; and could lead to serious errors endangering the mission, spacecraft and crew. The purpose of this paper is to document existing knowledge of the effects of LDSF on performance, habitability, and workload and to identify and assess potential tools designed to address these decrements as well as propose an implementation plan to address the habitability, performance and workload issues.

  10. Long duration performance of high temperature irradiation resistant thermocouples

    International Nuclear Information System (INIS)

    Rempe, J.; Knudson, D.; Condie, K.; Cole, J.; Wilkins, S.C.

    2007-01-01

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature in-pile degrade at temperatures above 1100 C degrees. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INL's recommended thermocouple design, a series of high temperature (from 1200 to 1800 C) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 C that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests. (authors)

  11. Cultural and Gender Issues in Long-Duration Flights

    Science.gov (United States)

    1997-01-01

    Session TA5 includes short reports concerning: (1) Psychological Issues During Long-Duration International Space Missions; (2) Psychosocial Issues in Crew Selection: Finding the Right Mix of the Right Stuff; (3) Culture, Gender and Mission Accomplishment: Operational Experience; (4) Interpersonal Tension in Multicultural Crews; (5) Personality and Coping in Extreme Environments; and (6) Application of Expedition and Polar Work Group Findings for Enhancing Performance in Space.

  12. Production and utilization of high level and long duration shocks

    International Nuclear Information System (INIS)

    Labrot, R.

    1978-01-01

    In order to verify the behaviour of equipments under extreme environmental conditions (propulsion, falls, impacts...), it is necessary to create 'high level and long duration shocks'. For these shocks, the velocity variation ΔV, which is equal to the area under the accelerogram γ (t), can reach several hundred meters per second. These velocity variations cannot be performed via classical free fall shock machine (ΔV [fr

  13. Physiology, medicine, long-duration space flight and the NSBRI

    Science.gov (United States)

    McPhee, J. C.; White, R. J.

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  14. Unusual Forehead Tremor in Four Patients with Essential Tremor

    OpenAIRE

    Gascón-Bayarri, Jordi; Campdelacreu, Jaume; Calopa, Màtil; Jaumà, Serge; Bau, Laura; Povedano, Mònica; Montero, Jordi

    2012-01-01

    Forehead tremor has only been reported in two patients with essential tremor, one with rhythmic tremor and the other with dystonic tremor. We report 4 new patients with essential tremor who present a 4–6 Hz frontal tremor registered by electromyography and unusual features like frontal tremor preceding limb tremor or unilateral involvement. Frontal tremor is present in some patients with essential tremor, sometimes preceding limb tremor. Treatment with botulinum toxin may be useful.

  15. Unusual Forehead Tremor in Four Patients with Essential Tremor

    Directory of Open Access Journals (Sweden)

    Jordi Gascón-Bayarri

    2012-01-01

    Full Text Available Forehead tremor has only been reported in two patients with essential tremor, one with rhythmic tremor and the other with dystonic tremor. We report 4 new patients with essential tremor who present a 4–6 Hz frontal tremor registered by electromyography and unusual features like frontal tremor preceding limb tremor or unilateral involvement. Frontal tremor is present in some patients with essential tremor, sometimes preceding limb tremor. Treatment with botulinum toxin may be useful.

  16. An unorthodox X-Class Long-Duration Confined Flare

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Gou, Tingyu; Wang, Yuming; Liu, Kai [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Titov, Viacheslav S. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Wang, Haimin, E-mail: rliu@ustc.edu.cn [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, NJIT, Newark, NJ 07102 (United States)

    2014-07-20

    We report the observation of an X-class long-duration flare which is clearly confined. It appears as a compact-loop flare in the traditional EUV passbands (171 and 195 Å), but in the passbands sensitive to flare plasmas (94 and 131 Å), it exhibits a cusp-shaped structure above an arcade of loops like other long-duration events. Inspecting images in a running difference approach, we find that the seemingly diffuse, quasi-static cusp-shaped structure consists of multiple nested loops that repeatedly rise upward and disappear approaching the cusp edge. Over the gradual phase, we detect numerous episodes of loop rising, each lasting minutes. A differential emission measure analysis reveals that the temperature is highest at the top of the arcade and becomes cooler at higher altitudes within the cusp-shaped structure, contrary to typical long-duration flares. With a nonlinear force-free model, our analysis shows that the event mainly involves two adjacent sheared arcades separated by a T-type hyperbolic flux tube (HFT). One of the arcades harbors a magnetic flux rope, which is identified with a filament that survives the flare owing to the strong confining field. We conclude that a new emergence of magnetic flux in the other arcade triggers the flare, while the preexisting HFT and flux rope dictate the structure and dynamics of the flare loops and ribbons during the long-lasting decay phase, and that a quasi-separatrix layer high above the HFT could account for the cusp-shaped structure.

  17. Effects of Long-Duration Ground Motions on Liquefaction Hazards

    Science.gov (United States)

    Greenfield, Michael W.

    Soil liquefaction during past earthquakes has caused extensive damage to buildings, bridges, dam, pipelines and other elements of infrastructure. Geotechnical engineers use empirical observations from earthquake case histories in conjunction with soil mechanics to predict the behavior of liquefiable soils. However, current empirical databases are insufficient to evaluate the behavior of soils subject to long-duration earthquakes, such as a possible Mw = 9.0 Cascadia Subduction Zone earthquake. The objective of this research is to develop insight into the triggering and effects of liquefaction due to long-duration ground motions and to provide recommendations for analysis and design. Recorded ground motions from 21 case histories with surficial evidence of liquefaction showed marked differences in soil behavior before and after liquefaction was triggered. In some cases, strong shaking continued for several minutes after the soil liquefied, and a variety of behaviors were observed including dilation pulses, continued softening due to soil fabric degradation, and soil stiffening due to pore pressure dissipation and drainage. Supplemental field and laboratory investigations were performed at three sites that liquefied during the 2011 Mw = 9.0 Tohoku earthquake. The recorded ground motions and field investigation data were used in conjunction with laboratory observations, analytical models, and numerical models to evaluate the behavior of liquefiable soils subjected to long-duration ground motions. Observations from the case histories inspired a framework to predict ground deformations based on the differences in soil behavior before and after liquefaction has triggered. This framework decouples the intensity of shaking necessary to trigger liquefaction from the intensity of shaking that drives deformation by identifying the time when liquefaction triggers. The timing-based framework promises to dramatically reduce the uncertainty in deformation estimates compared to

  18. Psychology and culture during long-duration space missions

    Science.gov (United States)

    Kanas, N.; Sandal, G.; Boyd, J. E.; Gushin, V. I.; Manzey, D.; North, R.; Leon, G. R.; Suedfeld, P.; Bishop, S.; Fiedler, E. R.; Inoue, N.; Johannes, B.; Kealey, D. J.; Kraft, N.; Matsuzaki, I.; Musson, D.; Palinkas, L. A.; Salnitskiy, V. P.; Sipes, W.; Stuster, J.; Wang, J.

    2009-04-01

    The objective of this paper is twofold: (a) to review the current knowledge of cultural, psychological, psychiatric, cognitive, interpersonal, and organizational issues that are relevant to the behavior and performance of astronaut crews and ground support personnel and (b) to make recommendations for future human space missions, including both transit and planetary surface operations involving the Moon or Mars. The focus will be on long-duration missions lasting at least six weeks, when important psychological and interpersonal factors begin to take their toll on crewmembers. This information is designed to provide guidelines for astronaut selection and training, in-flight monitoring and support, and post-flight recovery and re-adaptation.

  19. Tremor in dystonia.

    Science.gov (United States)

    Pandey, Sanjay; Sarma, Neelav

    2016-08-01

    Tremor has been recognized as an important clinical feature in dystonia. Tremor in dystonia may occur in the body part affected by dystonia known as dystonic tremor or unaffected body regions known as tremor associated with dystonia. The most common type of tremor seen in dystonia patients is postural and kinetic which may be mistaken for familial essential tremor. Similarly familial essential tremor patients may have associated dystonia leading to diagnostic uncertainties. The pathogenesis of tremor in dystonia remains speculative, but its neurophysiological features are similar to dystonia which helps in differentiating it from essential tremor patients. Treatment of tremor in dystonia depends upon the site of involvement. Dystonic hand tremor is treated with oral pharmacological therapy and dystonic head, jaw and voice tremor is treated with injection botulinum toxin. Neurosurgical interventions such as deep brain stimulation and lesion surgery should be an option in patients not responding to the pharmacological treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A cubesat centrifuge for long duration milligravity research.

    Science.gov (United States)

    Asphaug, Erik; Thangavelautham, Jekan; Klesh, Andrew; Chandra, Aman; Nallapu, Ravi; Raura, Laksh; Herreras-Martinez, Mercedes; Schwartz, Stephen

    2017-01-01

    We advocate a low-cost strategy for long-duration research into the 'milligravity' environment of asteroids, comets and small moons, where surface gravity is a vector field typically less than 1/1000 the gravity of Earth. Unlike the microgravity environment of space, there is a directionality that gives rise, over time, to strangely familiar geologic textures and landforms. In addition to advancing planetary science, and furthering technologies for hazardous asteroid mitigation and in situ resource utilization, simplified access to long-duration milligravity offers significant potential for advancing human spaceflight, biomedicine and manufacturing. We show that a commodity 3U (10 × 10 × 34 cm 3 ) cubesat containing a laboratory of loose materials can be spun to 1 r.p.m. = 2 π /60 s -1 on its long axis, creating a centrifugal force equivalent to the surface gravity of a kilometer-sized asteroid. We describe the first flight demonstration, where small meteorite fragments will pile up to create a patch of real regolith under realistic asteroid conditions, paving the way for subsequent missions where landing and mobility technology can be flight-proven in the operational environment, in low-Earth orbit. The 3U design can be adapted for use onboard the International Space Station to allow for variable gravity experiments under ambient temperature and pressure for a broader range of experiments.

  1. Intercultural crew issues in long-duration spaceflight

    Science.gov (United States)

    Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi

    2003-01-01

    Before long-duration flights with international crews can be safely undertaken, potential interpersonal difficulties will need to be addressed. Crew performance breakdown has been recognized by the American Institute of Medicine, in scientific literature, and in popular culture. However, few studies of human interaction and performance in confined, isolated environments exist, and the data pertaining to those studies are mostly anecdotal. Many incidents involving crew interpersonal dynamics, those among flight crews, as well as between flight crews and ground controllers, are reported only in non-peer reviewed books and newspapers. Consequently, due to this lack of concrete knowledge, the selection of astronauts and cosmonauts has focused on individual rather than group selection. Additional selection criteria such as interpersonal and communication competence, along with intercultural training, will have a decisive impact on future mission success. Furthermore, industrial psychological research has demonstrated the ability to select a group based on compatibility. With all this in mind, it is essential to conduct further research on heterogeneous, multi-national crews including selection and training for long-duration space missions.

  2. Intraocular Lens Use in an Astronaut During Long Duration Spaceflight.

    Science.gov (United States)

    Mader, Thomas H; Gibson, C Robert; Schmid, Josef F; Lipsky, William; Sargsyan, Ashot E; Garcia, Kathleen; Williams, Jeffrey N

    2018-01-01

    The purpose of this paper is to report the first use of an intraocular lens (IOL) in an astronaut during long duration spaceflight (LDSF). An astronaut developed a unilateral cataract and underwent phacoemulsification with insertion of an acrylic IOL. Approximately 15 mo later he flew on a Soyuz spacecraft to the International Space Station (ISS), where he successfully completed a 6-mo mission. Ocular examination, including ultrasound (US), was performed before, during, and after his mission and he was questioned regarding visual changes during each portion of his flight. We documented no change in IOL position during his space mission. This astronaut reported excellent and stable vision during liftoff, entry into microgravity (MG), 6 mo on the ISS, descent, and landing. Our results suggest that modern IOLs are stable, effective, and well tolerated during LDSF.Mader TH, Gibson CR, Schmid JF, Lipsky W, Sargsyan AE, Garcia K, Williams JN. Intraocular lens use in an astronaut during long duration spaceflight. Aerosp Med Hum Perform. 2018; 89(1):63-65.

  3. Essential Tremor Is More Than a Tremor

    Medline Plus

    Full Text Available Home About the IETF Volunteer For Healthcare Providers Giving Options Donate Prev Next IETF > About Essential Tremor > ... Mild Hereditary Tremor No Big Deal Raving Fan Home About the IETF Volunteer For Healthcare Providers Giving ...

  4. Essential Tremor Is More Than a Tremor

    Medline Plus

    Full Text Available ... More Than a Tremor Providing a voice for people with essential tremor means also reaching out to ... six-minute video tells the stories of six people living with ET. It goes beyond diagnosis and ...

  5. Essential Tremor Is More Than a Tremor

    Medline Plus

    Full Text Available Home About the IETF Volunteer For Healthcare Providers Giving Options Donate Prev Next IETF > About Essential Tremor > ... for Grants Relevant to Essential Tremor IETF Champion Home About the IETF Volunteer For Healthcare Providers Giving ...

  6. New synchrotron powder diffraction facility for long-duration experiments.

    Science.gov (United States)

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  7. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    International Nuclear Information System (INIS)

    Funk, J.G.; Strickland, J.W.; Davis, J.M.

    1992-10-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included

  8. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1992-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  9. Altered Venous Function during Long-Duration Spaceflights

    Directory of Open Access Journals (Sweden)

    Jacques-Olivier Fortrat

    2017-09-01

    Full Text Available Aims: Venous adaptation to microgravity, associated with cardiovascular deconditioning, may contribute to orthostatic intolerance following spaceflight. The aim of this study was to analyze the main parameters of venous hemodynamics with long-duration spaceflight.Methods: Venous plethysmography was performed on 24 cosmonauts before, during, and after spaceflights aboard the International Space Station. Venous plethysmography assessed venous filling and emptying functions as well as microvascular filtration, in response to different levels of venous occlusion pressure. Calf volume was assessed using calf circumference measurements.Results: Calf volume decreased during spaceflight from 2.3 ± 0.3 to 1.7 ± 0.2 L (p < 0.001, and recovered after it (2.3 ± 0.3 L. Venous compliance, determined as the relationship between occlusion pressure and the change in venous volume, increased during spaceflight from 0.090 ± 0.005 to 0.120 ± 0.007 (p < 0.01 and recovered 8 days after landing (0.071 ± 0.005, arbitrary units. The index of venous emptying rate decreased during spaceflight from −0.004 ± 0.022 to −0.212 ± 0.033 (p < 0.001, arbitrary units. The index of vascular microfiltration increased during spaceflight from 6.1 ± 1.8 to 10.6 ± 7.9 (p < 0.05, arbitrary units.Conclusion: This study demonstrated that overall venous function is changed during spaceflight. In future, venous function should be considered when developing countermeasures to prevent cardiovascular deconditioning and orthostatic intolerance with long-duration spaceflight.

  10. Incidence of clinical symptoms during long-duration orbital spaceflight.

    Science.gov (United States)

    Crucian, Brian; Babiak-Vazquez, Adriana; Johnston, Smith; Pierson, Duane L; Ott, C Mark; Sams, Clarence

    2016-01-01

    The environment of spaceflight may elevate an astronaut's clinical risk for specific diseases. The purpose of this study was to derive, as accurately as currently possible, an assessment of in-flight clinical "incidence" data, based on observed clinical symptoms in astronauts on board the International Space Station (ISS). Electronic medical records were examined from 46 long-duration ISS crew members, each serving approximately a 6-month mission on board the ISS, constituting 20.57 total flight years. Incidence for immunological-related adverse health events or relevant clinical symptoms was tabulated in a non-identifiable fashion. Event categories included infectious diseases, allergies, and rashes/hypersensitivities. A subsequent re-evaluation of more notable events, either of prolonged duration or unresponsive to treatment, was performed. For the disease/symptom categories used in this evaluation, the ISS incidence rate was 3.40 events per flight year. Skin rashes were the most reported event (1.12/flight year) followed by upper respiratory symptoms (0.97/flight year) and various other (non-respiratory) infectious processes. During flight, 46% of crew members reported an event deemed "notable". Among the notable events, 40% were classified as rashes/hypersensitivities. Characterization of on-orbit rashes manifested as redness with irritation, and could present on a variety of body locations. Based on reported symptoms, astronauts experience adverse medical events of varying severity during long-duration spaceflights. The data suggests caution, from both a vehicle design and biomedical countermeasures perspective, as space agencies plan for prolonged deep space exploration missions.

  11. Alterations in adaptive immunity persist during long-duration spaceflight

    Science.gov (United States)

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716

  12. A Psychiatric Formulary for Long-Duration Spaceflight.

    Science.gov (United States)

    Friedman, Eric; Bui, Brian

    2017-11-01

    Behavioral health is essential for the safety, well-being, and performance of crewmembers in both human spaceflight and Antarctic exploration. Over the past five decades, psychiatric issues have been documented in orbital spaceflight. In Antarctica, literature suggests up to 5% of wintering crewmembers could meet criteria for a psychiatric illness, including mood disorders, stressor-related disorders, sleep-wake disorders, and substance-related disorders. Experience from these settings indicates that psychiatric disorders on deep space missions must be anticipated. An important part of planning for the psychological health of crewmembers is the onboard provision of psychotropic drugs. These medications have been available on orbital missions. A greater variety and supply of these drugs exist at Antarctic facilities. The size and diversity of a deep space psychiatric formulary will be greater than that provided on orbital missions. Drugs to be provisioned include anxiolytics, antidepressants, mood stabilizers, antipsychotics, and hypnotics. Each drug category should include different medications, providing diverse pharmacokinetic, pharmacodynamic, and side effect profiles. The formulary itself should be rigorously controlled, given the abuse potential of some medications. In-flight treatment strategies could include psychological monitoring of well-being and early intervention for significant symptoms. Psychiatric emergencies would be treated aggressively with behavioral and pharmacological interventions to de-escalate potentially hazardous situations. On long-duration space missions, a robust psychiatric formulary could provide crewmembers autonomy and flexibility in treating a range of behavioral issues from depression to acute psychosis. This will contribute to the safety, health, and performance of crewmembers, and to mission success.Friedman E, Bui B. A psychiatric formulary for long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(11):1024-1033.

  13. Determinants of long-duration commuting and long-duration commuters' perceptions and attitudes toward commuting time: Evidence from Kunming, China

    Directory of Open Access Journals (Sweden)

    Mingwei He

    2017-04-01

    Full Text Available Understanding the commuting patterns of long-duration commuters and the possible changes in these patterns can help policymakers adopt the more reasonable land use and transportation policies. With Kunming in China as a case study, the determinants of long-duration commuting trips were identified based on logistic regression model. The results indicated that age, education level, number of workers, presence of retirees, and residential location have a significant impact on the occurrence of long-duration commuting trips. The ideal commuting times and tolerance thresholds of commuting time of long-duration commuters were also investigated. The statistical results revealed the distributions of ideal commuting times and tolerance thresholds of commuting time of both short- and long-duration commuters. The average tolerance threshold of commuting time and the average ideal commuting time of long-duration commuters were greater than those of short-duration commuters. For 97.2% of the long-duration commuters, their actual commuting time was longer than the ideal commuting time; this finding indicates that most long-duration commuters are dissatisfied with their commuting time. The actual commuting time of 40.1% long-duration commuters exceeded their tolerance thresholds; these commuters are eager to reduce their commuting time.

  14. Unusual Wrist Tremor: Unilateral Isometric Tremor?

    Directory of Open Access Journals (Sweden)

    Theresa A. Zesiewicz

    2014-01-01

    Full Text Available Background: Tremors may be difficult to classify.Case Report: An 83‐year‐old male presented with an unusual left wrist tremor. The tremor could be reproducibly elicited by making a fist or carrying a weighted object (e.g., a shopping bag, bottle of water of approximately 1 lb or more, and it intensified with heavier weights. The tremor was difficult to classify, although it shared features with isometric tremor.Discussion: This specific presentation of tremor has not been reported previously. We hope that the detailed description we provide will aid other neurologists who encounter this or similar tremors in their clinics.

  15. Incidence of clinical symptoms during long-duration orbital spaceflight

    Directory of Open Access Journals (Sweden)

    Crucian B

    2016-11-01

    Full Text Available Brian Crucian,1 Adriana Babiak-Vazquez,2 Smith Johnston,1 Duane L Pierson,1 C Mark Ott,1 Clarence Sams1 1Biomedical Research and Environmental Sciences Division, NASA-Johnson Space Center, 2Epidemiology/Lifetime Surveillance of Astronaut Health, KBR-Wyle, Houston, TX, USA Background: The environment of spaceflight may elevate an astronaut’s clinical risk for specific diseases. The purpose of this study was to derive, as accurately as currently possible, an assessment of in-flight clinical “incidence” data, based on observed clinical symptoms in astronauts on board the International Space Station (ISS.Methods: Electronic medical records were examined from 46 long-duration ISS crew members, each serving approximately a 6-month mission on board the ISS, constituting 20.57 total flight years. Incidence for immunological-related adverse health events or relevant clinical symptoms was tabulated in a non-identifiable fashion. Event categories included infectious diseases, allergies, and rashes/hypersensitivities. A subsequent re-evaluation of more notable events, either of prolonged duration or unresponsive to treatment, was performed.Results: For the disease/symptom categories used in this evaluation, the ISS incidence rate was 3.40 events per flight year. Skin rashes were the most reported event (1.12/flight year followed by upper respiratory symptoms (0.97/flight year and various other (non-respiratory infectious processes. During flight, 46% of crew members reported an event deemed “notable”. Among the notable events, 40% were classified as rashes/hypersensitivities. Characterization of on-orbit rashes manifested as redness with irritation, and could present on a variety of body locations.Conclusion: Based on reported symptoms, astronauts experience adverse medical events of varying severity during long-duration spaceflights. The data suggests caution, from both a vehicle design and biomedical countermeasures perspective, as space

  16. Experimental approach to high power long duration neutral beams

    International Nuclear Information System (INIS)

    Horiike, Hiroshi

    1981-12-01

    Experimental studies of ion sources and beam dumps for the development of a high power long duration neutral beam injector for JT-60 are presented. Long pulse operation of high power beams requires a high degree of reliability. To develop a reliable ion source with large extraction area, a new duoPIGatron ion source with a coaxially shaped intermediate electrode is proposed and tested. Magnetic configuration is examined numerically to obtain high current arc discharge and source plasma with small density variation. Experimental results show that primary electrons were fed widely from the cathode plasma region to the source plasma region and that dense uniform source plasma could be obtained easily. Source plasma characteristics are studied and comparison of these with other sources are also described. To develop extraction electrode of high power ion source, experimental studies were made on the cooling of the electrode. Long Pulse beams were extracted safely under the condition of high heat loading on the electrode. Finally, burnout study for the development of high power beam dumps is presented. Burnout data were obtained from subcooled forced-convective boiling of water in a copper finned tube irradiated by high power ion beams. The results yield simple burnout correlations which can be used for the prediction of burnout heat flux of the beam dump. (author)

  17. LONG DURATION FLARE EMISSION: IMPULSIVE HEATING OR GRADUAL HEATING?

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman MT 59717-3840 (United States)

    2016-03-20

    Flare emissions in X-ray and EUV wavelengths have previously been modeled as the plasma response to impulsive heating from magnetic reconnection. Some flares exhibit gradually evolving X-ray and EUV light curves, which are believed to result from superposition of an extended sequence of impulsive heating events occurring in different adjacent loops or even unresolved threads within each loop. In this paper, we apply this approach to a long duration two-ribbon flare SOL2011-09-13T22 observed by the Atmosphere Imaging Assembly (AIA). We find that to reconcile with observed signatures of flare emission in multiple EUV wavelengths, each thread should be heated in two phases, an intense impulsive heating followed by a gradual, low-rate heating tail that is attenuated over 20–30 minutes. Each AIA resolved single loop may be composed of several such threads. The two-phase heating scenario is supported by modeling with both a zero-dimensional and a 1D hydrodynamic code. We discuss viable physical mechanisms for the two-phase heating in a post-reconnection thread.

  18. Developing the NASA food system for long-duration missions.

    Science.gov (United States)

    Cooper, Maya; Douglas, Grace; Perchonok, Michele

    2011-03-01

    Even though significant development has transformed the space food system over the last 5 decades to attain more appealing dietary fare for low-orbit space crews, the advances do not meet the need for crews that might travel to Mars and beyond. It is estimated that a food system for a long-duration mission must maintain organoleptic acceptability, nutritional efficacy, and safety for a 3- to 5-y period to be viable. In addition, the current mass and subsequent waste of the food system must decrease significantly to accord with the allowable volume and payload limits of the proposed future space vehicles. Failure to provide the appropriate food or to optimize resource utilization introduces the risk that an inadequate food system will hamper mission success and/or threaten crew performance. Investigators for the National Aeronautics and Space Administration (NASA) Advanced Food Technology (AFT) consider identified concerns and work to mitigate the risks to ensure that any new food system is adequate for the mission. Yet, even with carefully planned research, some technological gaps remain. NASA needs research advances to develop food that is nutrient-dense and long-lasting at ambient conditions, partial gravity cooking processes, methods to deliver prescribed nutrients over time, and food packaging that meets the mass, barrier, and processing requirements of NASA. This article provides a brief review of research in each area, details the past AFT research efforts, and describes the remaining gaps that present barriers to achieving a food system for long exploration missions.

  19. Enhancing Team Performance for Long-Duration Space Missions

    Science.gov (United States)

    Orasanu, Judith M.

    2009-01-01

    Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.

  20. Teamwork Training Needs Analysis for Long-Duration Exploration Missions

    Science.gov (United States)

    Smith-Jentsch, Kimberly A.; Sierra, Mary Jane

    2016-01-01

    The success of future long-duration exploration missions (LDEMs) will be determined largely by the extent to which mission-critical personnel possess and effectively exercise essential teamwork competencies throughout the entire mission lifecycle (e.g., Galarza & Holland, 1999; Hysong, Galarza, & Holland, 2007; Noe, Dachner, Saxton, & Keeton, 2011). To ensure that such personnel develop and exercise these necessary teamwork competencies prior to and over the full course of future LDEMs, it is essential that a teamwork training curriculum be developed and put into place at NASA that is both 1) comprehensive, in that it targets all teamwork competencies critical for mission success and 2) structured around empirically-based best practices for enhancing teamwork training effectiveness. In response to this demand, the current teamwork-oriented training needs analysis (TNA) was initiated to 1) identify the teamwork training needs (i.e., essential teamwork-related competencies) of future LDEM crews, 2) identify critical gaps within NASA’s current and future teamwork training curriculum (i.e., gaps in the competencies targeted and in the training practices utilized) that threaten to impact the success of future LDEMs, and to 3) identify a broad set of practical nonprescriptive recommendations for enhancing the effectiveness of NASA’s teamwork training curriculum in order to increase the probability of future LDEM success.

  1. Adaptation of the Skeletal System during Long-duration Spaceflight

    Science.gov (United States)

    Sibonga, Jean D.; Cavanagh, Peter R.; Lang, Thomas F.; LeBlanc, Adrian D.; Schneider, Victor S.; Shackelford, Linda C.; Smith, Scott M.; Vico, Laurence

    2008-01-01

    This review will highlight evidence from crew members flown on space missions greater than 90 days to suggest that the adaptations of the skeletal system to mechanical unloading may predispose crew members to an accelerated onset of osteoporosis after return to Earth. By definition, osteoporosis is a skeletal disorder - characterized by low bone mineral density and structural deterioration - that reduces the ability of bones to resist fracture under the loading of normal daily activities. Involutional or agerelated osteoporosis is readily recognized as a syndrome afflicting the elderly population because of the insipid and asymptomatic nature of bone loss that does not typically manifest as fractures until after age approximately 60. It is not the thesis of this review to suggest that spaceflight-induced bone loss is similar to bone loss induced by metabolic bone disease; rather this review draws parallels between the rapid and earlier loss in females that occurs with menopause and the rapid bone loss in middle-aged crew members that occurs with spaceflight unloading and how the cumulative effects of spaceflight and ageing could be detrimental, particularly if skeletal effects are totally or partially irreversible. In brief, this report will provide detailed evidence that long-duration crew members, exposed to the weightlessness of space for the typical long-duration (4-6 months) mission on Mir or the International Space Station -- 1. Display bone resorption that is aggressive, that targets normally weight-bearing skeletal sites, that is uncoupled to bone formation and that results in areal BMD deficits that can range between 6-20% of preflight BMD; 2. Display compartment-specific declines in volumetric BMD in the proximal femur (a skeletal site of clinical interest) that significantly reduces its compressive and bending strength and which may account for the loss in hip bone strength (i.e., force to failure); 3. Recover BMD over a post-flight time period that

  2. Tremors and Klinefelter's Syndrome

    Directory of Open Access Journals (Sweden)

    Marcie L. Rabin

    2015-06-01

    Full Text Available Background: Klinefelter’s syndrome (KS has been associated with tremor, but reports on tremor phenomenology and treatment are limited. Case Reports: Patient 1 is a 17‐year‐old male with a dystonic tremor treated with deep brain stimulation (DBS. Patient 2 is a 57‐year‐old male with a predominant left hand resting tremor and dystonic features. Discussion: Our cases suggest that the tremor in patients with KS may be dystonic in nature. Patient 1 is also the third reported case of successful treatment with DBS. These cases have implications for elucidating the underlying neurobiological mechanism of tremor and identifying treatment options.

  3. Tremor in the elderly

    DEFF Research Database (Denmark)

    Deuschl, Günther; Petersen, Inge; Lorenz, Delia

    2015-01-01

    Isolated tremor in the elderly is commonly diagnosed as essential tremor (ET). The prevalence of tremor increases steeply with increasing age, whereas hereditary tremor is becoming less common. Moreover, late-manifesting tremor seems to be associated with dementia and earlier mortality. We...... hypothesize that different entities underlie tremor in the elderly. Two thousand four hundred forty-eight subjects from the Longitudinal Study of Aging Danish Twins older than 70 y answered screening questions for ET in 2001. Two thousan fifty-six (84%) participants drew Archimedes spirals to measure...

  4. The phenomenology of parkinsonian tremor.

    Science.gov (United States)

    Deuschl, Günther; Papengut, Frank; Hellriegel, Helge

    2012-01-01

    The definition of Parkinsonian tremor covers all different forms occurring in Parkinson's disease. The most common form is rest tremor, labelled as typical Parkinsonian tremor. Other variants cover also postural and action tremors. Data support the notion that suppression of rest tremor may be more specific for PD tremors. Several differential diagnoses like rest tremor in ET, dystonic tremor, psychogenic tremor and Holmes' tremor may be misinterpreted as PD-tremor. Tests and clinical clues to separate them are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Activity enhances dopaminergic long-duration response in Parkinson disease

    Science.gov (United States)

    Auinger, Peggy; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Mendis, Tilak

    2012-01-01

    Objective: We tested the hypothesis that dopamine-dependent motor learning mechanism underlies the long-duration response to levodopa in Parkinson disease (PD) based on our studies in a mouse model. By data-mining the motor task performance in dominant and nondominant hands of the subjects in a double-blind randomized trial of levodopa therapy, the effects of activity and dopamine therapy were examined. Methods: We data-mined the Earlier versus Later Levodopa Therapy in Parkinson's Disease (ELLDOPA) study published in 2005 and performed statistical analysis comparing the effects of levodopa and dominance of handedness over 42 weeks. Results: The mean change in finger-tapping counts from baseline before the initiation of therapy to predose at 9 weeks and 40 weeks increased more in the dominant compared to nondominant hand in levodopa-treated subjects in a dose-dependent fashion. There was no significant difference in dominant vs nondominant hands in the placebo group. The short-duration response assessed by the difference of postdose performance compared to predose performance at the same visit did not show any significant difference between dominant vs nondominant hands. Conclusions: Active use of the dominant hand and dopamine replacement therapy produces synergistic effect on long-lasting motor task performance during “off” medication state. Such effect was confined to dopamine-responsive symptoms and not seen in dopamine-resistant symptoms such as gait and balance. We propose that long-lasting motor learning facilitated by activity and dopamine is a form of disease modification that is often seen in trials of medications that have symptomatic effects. PMID:22459675

  6. Cognitive Assessment During Long-Duration Space Flight

    Science.gov (United States)

    Seaton, Kimberly; Kane, R. L.; Sipes, Walter

    2010-01-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a computer-based, self-administered battery of five cognitive assessment tests developed for medical operations at NASA's Johnson Space Center in Houston, Texas. WinSCAT is a medical requirement for U.S. long-duration astronauts and has been implemented with U.S. astronauts from one NASA/Mir mission (NASA-7 mission) and all expeditions to date on the International Space Station (ISS). Its purpose is to provide ISS crew surgeons with an objective clinical tool after an unexpected traumatic event, a medical condition, or the cumulative effects of space flight that could negatively affect an astronaut's cognitive status and threaten mission success. WinSCAT was recently updated to add network capability to support a 6-person crew on the station support computers. Additionally, WinSCAT Version 2.0.28 has increased difficulty of items in Mathematics, increased number of items in Match-to-Sample, incorporates a moving rather than a fixed baseline, and implements stricter interpretation rules. ISS performance data were assessed to compare initial to modified interpretation rules for detecting potential changes in cognitive functioning during space flight. WinSCAT tests are routinely taken monthly during an ISS mission. Performance data from these ISS missions do not indicate significant cognitive decrements due to microgravity/space flight alone but have shown decrements. Applying the newly derived rules to ISS data results in a number of off-nominal performances at various times during and after flight.. Correlation to actual events is needed, but possible explanations for off-nominal performances could include actual physical factors such as toxic exposure, medication effects, or fatigue; emotional factors including stress from the mission or life events; or failure to exert adequate effort on the tests.

  7. An Alternative Water Processor for Long Duration Space Missions

    Science.gov (United States)

    Barta, Daniel J.; Pickering, Karen D.; Meyer, Caitlin; Pennsinger, Stuart; Vega, Leticia; Flynn, Michael; Jackson, Andrew; Wheeler, Raymond

    2014-01-01

    A new wastewater recovery system has been developed that combines novel biological and physicochemical components for recycling wastewater on long duration human space missions. Functionally, this Alternative Water Processor (AWP) would replace the Urine Processing Assembly on the International Space Station and reduce or eliminate the need for the multi-filtration beds of the Water Processing Assembly (WPA). At its center are two unique game changing technologies: 1) a biological water processor (BWP) to mineralize organic forms of carbon and nitrogen and 2) an advanced membrane processor (Forward Osmosis Secondary Treatment) for removal of solids and inorganic ions. The AWP is designed for recycling larger quantities of wastewater from multiple sources expected during future exploration missions, including urine, hygiene (hand wash, shower, oral and shave) and laundry. The BWP utilizes a single-stage membrane-aerated biological reactor for simultaneous nitrification and denitrification. The Forward Osmosis Secondary Treatment (FOST) system uses a combination of forward osmosis (FO) and reverse osmosis (RO), is resistant to biofouling and can easily tolerate wastewaters high in non-volatile organics and solids associated with shower and/or hand washing. The BWP has been operated continuously for over 300 days. After startup, the mature biological system averaged 85% organic carbon removal and 44% nitrogen removal, close to stoichiometric maximum based on available carbon. To date, the FOST has averaged 93% water recovery, with a maximum of 98%. If the wastewater is slighty acidified, ammonia rejection is optimal. This paper will provide a description of the technology and summarize results from ground-based testing using real wastewater

  8. Nonvolcanic tremors deep beneath the San Andreas Fault.

    Science.gov (United States)

    Nadeau, Robert M; Dolenc, David

    2005-01-21

    We have discovered nonvolcanic tremor activity (i.e., long-duration seismic signals with no clear P or S waves) within a transform plate boundary zone along the San Andreas Fault near Cholame, California, the inferred epicentral region of the 1857 Fort Tejon earthquake (moment magnitude approximately 7.8). The tremors occur between 20 to 40 kilometers' depth, below the seismogenic zone (the upper approximately 15 kilometers of Earth's crust where earthquakes occur), and their activity rates may correlate with variations in local earthquake activity.

  9. Treatment of Essential Tremor

    Science.gov (United States)

    ... for PATIENTS and their FAMILIES TREATMENT OF ESSENTIAL TREMOR This fact sheet is provided to help you understand which therapies help treat essential tremor. Neurologists from the American Academy of Neurology are ...

  10. Lessons from (triggered) tremor

    Science.gov (United States)

    Gomberg, Joan

    2010-01-01

    I test a “clock-advance” model that implies triggered tremor is ambient tremor that occurs at a sped-up rate as a result of loading from passing seismic waves. This proposed model predicts that triggering probability is proportional to the product of the ambient tremor rate and a function describing the efficacy of the triggering wave to initiate a tremor event. Using data mostly from Cascadia, I have compared qualitatively a suite of teleseismic waves that did and did not trigger tremor with ambient tremor rates. Many of the observations are consistent with the model if the efficacy of the triggering wave depends on wave amplitude. One triggered tremor observation clearly violates the clock-advance model. The model prediction that larger triggering waves result in larger triggered tremor signals also appears inconsistent with the measurements. I conclude that the tremor source process is a more complex system than that described by the clock-advance model predictions tested. Results of this and previous studies also demonstrate that (1) conditions suitable for tremor generation exist in many tectonic environments, but, within each, only occur at particular spots whose locations change with time; (2) any fluid flow must be restricted to less than a meter; (3) the degree to which delayed failure and secondary triggering occurs is likely insignificant; and 4) both shear and dilatational deformations may trigger tremor. Triggered and ambient tremor rates correlate more strongly with stress than stressing rate, suggesting tremor sources result from time-dependent weakening processes rather than simple Coulomb failure.

  11. Essential Tremor Is More Than a Tremor

    Medline Plus

    Full Text Available ... About the IETF Volunteer For Healthcare Providers Giving Options Donate Prev Next IETF > About Essential Tremor > Video ... About the IETF Volunteer For Healthcare Providers Giving Options Donate Privacy Policy Contact Us Send to Email ...

  12. Essential Tremor Is More Than a Tremor

    Medline Plus

    Full Text Available ... living with ET. It goes beyond diagnosis and treatments, to explore the emotional and psychosocial aspects of ... FDA Clearance for Cala ONE Wrist Device Neuromodulation Therapy Gives Relief From Hand Tremor IETF Accepting Proposals ...

  13. Essential Tremor Is More Than a Tremor

    Medline Plus

    Full Text Available ... Tremor > Video Video Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Google+ (Opens in new window) Click to email this to ...

  14. Essential Tremor Is More Than a Tremor

    Medline Plus

    Full Text Available ... Essential Tremor > Video Video Click to share on Facebook (Opens in new window) Click to share on ... IETF Volunteer For Healthcare Providers Giving Options Donate Privacy Policy Contact Us Send to Email Address Your ...

  15. Essential Tremor Is More Than a Tremor

    Medline Plus

    Full Text Available Home About the IETF Volunteer For Healthcare Providers Giving Options Donate Prev Next IETF > About Essential Tremor > Video Video Click to share on Facebook (Opens in new window) Click ...

  16. Dystonia and Tremor: The Clinical Syndromes with Isolated Tremor

    OpenAIRE

    Albanese, Alberto; Sorbo, Francesca Del

    2016-01-01

    Background: Dystonia and tremor share many commonalities. Isolated tremor is part of the phenomenological spectrum of isolated dystonia and of essential tremor. The occurrence of subtle features of dystonia may allow one to differentiate dystonic tremor from essential tremor. Diagnostic uncertainty is enhanced when no features of dystonia are found in patients with a tremor syndrome, raising the question whether the observed phenomenology is an incomplete form of dystonia. Methods: Known form...

  17. Genetics Home Reference: essential tremor

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Essential tremor Essential tremor Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Essential tremor is a movement disorder that causes involuntary, rhythmic ...

  18. The nature of tremor circuits in parkinsonian and essential tremor

    Science.gov (United States)

    Cagnan, Hayriye; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Cheeran, Binith; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2014-01-01

    Tremor is a cardinal feature of Parkinson’s disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient’s own tremor frequency should interact with neural activity responsible for tremor, and that the effect of stimulation on tremor should reveal the role of different deep brain stimulation targets in tremor generation. Moreover, tremor responses to stimulation might reveal pathophysiological differences between parkinsonian and essential tremor circuits. Accordingly, we stimulated 15 patients with Parkinson’s disease with either thalamic or subthalamic electrodes (13 male and two female patients, age: 50–77 years) and 10 patients with essential tremor with thalamic electrodes (nine male and one female patients, age: 34–74 years). Stimulation at near-to tremor frequency entrained tremor in all three patient groups (ventrolateral thalamic stimulation in Parkinson’s disease, P = 0.0078, subthalamic stimulation in Parkinson’s disease, P = 0.0312; ventrolateral thalamic stimulation in essential tremor, P = 0.0137; two-tailed paired Wilcoxon signed-rank tests). However, only ventrolateral thalamic stimulation in essential tremor modulated postural tremor amplitude according to the timing of stimulation pulses with respect to the tremor cycle (e.g. P = 0.0002 for tremor amplification, two-tailed Wilcoxon rank sum test). Parkinsonian rest and essential postural tremor severity (i.e. tremor amplitude) differed in their relative tolerance to spontaneous changes in tremor frequency when stimulation was not applied. Specifically, the amplitude of parkinsonian rest tremor remained unchanged despite spontaneous changes in tremor frequency, whereas that of essential postural tremor reduced when tremor frequency departed from median values. Based on these results we conclude that

  19. A Virtual Social Support System for Long-Duration Space Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our overall goal is to enhance the overall behavior health and performance of personnel on (future potential) long-duration missions. We propose to use a local...

  20. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    Science.gov (United States)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  1. Stereotactic neurosurgery for tremor

    NARCIS (Netherlands)

    Speelman, Johannes D.; Schuurman, Richard; de Bie, Rob M. A.; Esselink, Rianne A. J.; Bosch, D. Andries

    2002-01-01

    The role of the motor thalamus as surgical target in stereotactic neurosurgery for different kinds of tremor is discussed. For tremor in Parkinson's disease. the subthalamic nucleus becomes more and more often the surgical target, because this target also gives relief of other and more

  2. Approach to a tremor patient

    Science.gov (United States)

    Sharma, Soumya; Pandey, Sanjay

    2016-01-01

    Tremors are commonly encountered in clinical practice and are the most common movement disorders seen. It is defined as a rhythmic, involuntary oscillatory movement of a body part around one or more joints. In the majority of the population, tremor tends to be mild. They have varying etiology; hence, classifying them appropriately helps in identifying the underlying cause. Clinically, tremor is classified as occurring at rest or action. They can also be classified based on their frequency, amplitude, and body part involved. Parkinsonian tremor is the most common cause of rest tremor. Essential tremor (ET) and enhanced physiological tremor are the most common causes of action tremor. Isolated head tremor is more likely to be dystonic rather than ET. Isolated voice tremor could be considered to be a spectrum of ET. Psychogenic tremor is not a diagnosis of exclusion; rather, demonstration of various clinical signs is needed to establish the diagnosis. Severity of tremor and response to treatment can be assessed using clinical rating scales as well as using electrophysiological measurements. The treatment of tremor is symptomatic. Medications are effective in half the cases of essential hand tremor and in refractory patients; deep brain stimulation is an alternative therapy. Midline tremors benefit from botulinum toxin injections. It is also the treatment of choice in dystonic tremor and primary writing tremor. PMID:27994349

  3. Backprojection of volcanic tremor

    Science.gov (United States)

    Haney, Matthew M.

    2014-01-01

    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  4. Dystonia and Tremor: The Clinical Syndromes with Isolated Tremor

    Directory of Open Access Journals (Sweden)

    Alberto Albanese

    2016-04-01

    Full Text Available Background: Dystonia and tremor share many commonalities. Isolated tremor is part of the phenomenological spectrum of isolated dystonia and of essential tremor. The occurrence of subtle features of dystonia may allow one to differentiate dystonic tremor from essential tremor. Diagnostic uncertainty is enhanced when no features of dystonia are found in patients with a tremor syndrome, raising the question whether the observed phenomenology is an incomplete form of dystonia. Methods: Known forms of syndromes with isolated tremor are reviewed. Diagnostic uncertainties between tremor and dystonia are put into perspective. Results: The following isolated tremor syndromes are reviewed: essential tremor, head tremor, voice tremor, jaw tremor, and upper-limb tremor. Their varied phenomenology is analyzed and appraised in the light of a possible relationship with dystonia. Discussion: Clinicians making a diagnosis of isolated tremor should remain vigilant for the detection of features of dystonia. This is in keeping with the recent view that isolated tremor may be an incomplete phenomenology of dystonia.

  5. Dystonia and Tremor: The Clinical Syndromes with Isolated Tremor

    Science.gov (United States)

    Albanese, Alberto; Sorbo, Francesca Del

    2016-01-01

    Background Dystonia and tremor share many commonalities. Isolated tremor is part of the phenomenological spectrum of isolated dystonia and of essential tremor. The occurrence of subtle features of dystonia may allow one to differentiate dystonic tremor from essential tremor. Diagnostic uncertainty is enhanced when no features of dystonia are found in patients with a tremor syndrome, raising the question whether the observed phenomenology is an incomplete form of dystonia. Methods Known forms of syndromes with isolated tremor are reviewed. Diagnostic uncertainties between tremor and dystonia are put into perspective. Results The following isolated tremor syndromes are reviewed: essential tremor, head tremor, voice tremor, jaw tremor, and upper-limb tremor. Their varied phenomenology is analyzed and appraised in the light of a possible relationship with dystonia. Discussion Clinicians making a diagnosis of isolated tremor should remain vigilant for the detection of features of dystonia. This is in keeping with the recent view that isolated tremor may be an incomplete phenomenology of dystonia. PMID:27152246

  6. Streaking tremor in Cascadia

    Science.gov (United States)

    Vidale, J. E.; Ghosh, A.; Sweet, J. R.; Creager, K. C.; Wech, A.; Houston, H.

    2009-12-01

    Details of tremor deep in subduction zones is damnably difficult to glimpse because of the lack of crisp initial arrivals, low waveform coherence, uncertain focal mechanisms, and the probability of simultaneous activity across extended regions. Yet such details hold out the best hope to illuminate the unknown mechanisms underlying episodic tremor and slip. Attacking this problem with brute force, we pointed a small, very dense seismic array down at the migration path of a good-sized episodic tremor and slip (ETS) event. In detail, it was an 84-element, 1300-m-aperture temporary seismic array in northern Washington, and the migration path of the May 2008 ETS event was 30-40 km directly underneath. Our beamforming technique tracked the time, incident angle, and azimuth of tremor radiation in unprecedented detail. We located the tremor by assuming it occurs on the subduction interface, estimated relative tremor moment released by each detected tremor window, and mapped it on the interface [Ghosh et al., GRL, 2009]. Fortunately for our ability to image it, the tremor generally appears to emanate from small regions, and we were surprised by how steadily the regions migrated with time. For the first time in Cascadia, we found convergence-parallel transient streaks of tremor migrating at velocities of several tens of km/hr, with movement in both up- and down-dip directions. Similar patterns have been seen in Japan [Shelly, G3, 2007]. This is in contrast to the long-term along-strike marching of tremor at 10 km/day. These streaks tend to propagate steadily and often repeat the same track on the interface multiple times. They light up persistent moment patches on the interface by a combination of increased amplitude and longer residence time within the patches. The up- and down-dip migration dominates the 2 days of tremor most clearly imaged by our array. The tendency of the streaks to fill in bands is the subject of the presentation of Ghosh et al. here. The physical

  7. Tremor - self-care

    Science.gov (United States)

    ... in your day-to-day: Buy clothes with Velcro fasteners instead of buttons or hooks. Cook or ... your tremor. Some of these medicines have side effects. Tell your provider if you have these symptoms ...

  8. How to treat tremor.

    Science.gov (United States)

    Rektor, Ivan; Rektorová, Irena; Suchý, Václav

    2004-05-01

    This paper presents an example of 18(th) century medical thinking. The author, Dr Georg Ernst Stahl (1659-1734) was the founder of the phlogiston theory in the field of chemistry, a medical professor, and a court physician in Saxony and Prussia. His description includes a definition of tremor, the internal and external causes of tremor, the types of tremor, the diagnostic and prognostic signs, and the treatment. From a present (contemporary) point of view, some compounds that were then used in treatment may have had a limited therapeutic effect on some kinds of tremor. Protopin has an anticholinergic and GABA-ergic effect, and rhoeadin (tetrahydrobenzazepin) may have had an effect similar to that of neuroleptics. Nevertheless, it is not clear whether the recommended quantity of these compounds was sufficient for a clinical effect. Most of the prescribed drugs could only have had a placebo effect.

  9. Exercise countermeasures for long-duration spaceflight: muscle- and intensity-specific considerations

    Science.gov (United States)

    Trappe, Todd

    2012-07-01

    On-orbit and ground-based microgravity simulation studies have provided a wealth of information regarding the efficacy of exercise countermeasures for protecting skeletal muscle and cardiovascular function during long-duration spaceflights. While it appears that exercise will be the central component to maintaining skeletal muscle and cardiovascular health of astronauts, the current exercise prescription is not completely effective and is time consuming. This lecture will focus on recent exercise physiology studies examining high intensity, low volume exercise in relation to muscle specific and cardiovascular health. These studies provide the basis of the next generation exercise prescription currently being implemented during long-duration space missions on the International Space Station.

  10. Preliminary project definition for long duration. Tests of coal fired MHD generators

    International Nuclear Information System (INIS)

    Van der Laken, R.A.

    1992-01-01

    In its final report the Faraday Working Group recommended the CEC amongst others to explore the possibility of a long duration test of a 'state-of-the-art', MHD-generator in order to remove uncertainties concerning the lifetime and availability of such a generator design. The duration of the test should be several thousands of hours, considerably more than the duration tests carried out until now. The scope of the present study is to prepare a project definition document for a long duration test of a coal fired, state-of-the-art MHD-generator

  11. Study of High and Low Amplitude Wave Trains of Cosmic Ray ...

    Indian Academy of Sciences (India)

    1Physics Department, Government T.R.S. College, Rewa (M.P.) 486 001, India. 2Physics Department, A.P.S. University, Rewa (M.P.) 486 003, India. ∗ e-mail: ambika.physics@gmail. .... stations are running parallel to each other. In Fig. 3, we show the frequency distribution of the occurrence of high and low amplitude wave ...

  12. No supernovae detected in two long-duration gamma-ray bursts.

    Science.gov (United States)

    Watson, D; Fynbo, J P U; Thöne, C C; Sollerman, J

    2007-05-15

    There is strong evidence that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. In the standard version of the collapsar model, a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies the GRB. This association has been confirmed in observations of several nearby GRBs. Recent observations show that some long-duration GRBs are different. No SN emission accompanied the long-duration GRBs 060505 and 060614 down to limits fainter than any known Type Ic SN and hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration. Furthermore, the bursts originated in star-forming galaxies, and in the case of GRB 060505, the burst was localized to a compact star-forming knot in a spiral arm of its host galaxy. We find that the properties of the host galaxies, the long duration of the bursts and, in the case of GRB 060505, the location of the burst within its host, all imply a massive stellar origin. The absence of an SN to such deep limits therefore suggests a new phenomenological type of massive stellar death.

  13. Game-based versus storyboard-based evaluations of crew support prototypes for long duration missions

    NARCIS (Netherlands)

    Smets, N.J.J.M.; Abbing, M.S.; Neerincx, M.A.; Lindenberg, J.; Oostendorp, H. van

    2010-01-01

    The Mission Execution Crew Assistant (MECA) is developing a distributed system of electronic partners (ePartners) to support astronauts performing nominal and off- nominal actions in long duration missions. The ePartners' support should adequately deal with the dynamics of the context, operations,

  14. The mission execution crew assistant : Improving human-machine team resilience for long duration missions

    NARCIS (Netherlands)

    Neerincx, M.A.; Lindenberg, J.; Smets, N.J.J.M.; Bos, A.; Breebaart, L.; Grant, T.; Olmedo-Soler, A.; Brauer, U.; Wolff, M.

    2008-01-01

    Manned long-duration missions to the Moon and Mars set high operational, human factors and technical demands for a distributed support system, which enhances human-machine teams' capabilities to cope autonomously with unexpected, complex and potentially hazardous situations. Based on a situated

  15. Cognitive Abilities Explaining Age-Related Changes in Time Perception of Short and Long Durations

    Science.gov (United States)

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2011-01-01

    The current study investigated how the development of cognitive abilities explains the age-related changes in temporal judgment over short and long duration ranges from 0.5 to 30 s. Children (5- and 9-year-olds) as well as adults were given a temporal bisection task with four different duration ranges: a duration range shorter than 1 s, two…

  16. Detecting long-duration cloud contamination in hyper-temporal NDVI imagery

    NARCIS (Netherlands)

    Ali, A.; de Bie, C.A.J.M.; Skidmore, A.K.

    2013-01-01

    Cloud contamination impacts on the quality of hyper-temporal NDVI imagery and its subsequent interpretation. Short-duration cloud impacts are easily removed by using quality flags and an upper envelope filter, but long-duration cloud contamination of NDVI imagery remains. In this paper, an approach

  17. Game-based evaluation of personalized support for astronauts in long duration missions

    NARCIS (Netherlands)

    Smets, N.J.J.M.; Abbing, M.S.; Neerincx, M.A.; Lindenberg, J.; Oostendorp, H. van

    2008-01-01

    Long duration missions set high requirements for personalized astronaut support that takes into account the social, cognitive and affective state of the astronaut. Such support should be tested as thoroughly as possible before deployment into space. The in-orbit influences of the astronaut's state

  18. Developing and Evaluating Computer-Based Teamwork Skills Training for Long-Duration Spaceflight Crews

    Science.gov (United States)

    Hixson, Katharine

    2013-01-01

    Due to the long-duration and long distance nature of future exploration missions, coupled with significant communication delays from ground-based personnel, NASA astronauts will be living and working within confined, isolated environments for significant periods of time. This extreme environment poses concerns for the flight crews' ability to…

  19. All-sky search for long-duration gravitational wave transients with initial LIGO

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, C. D.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunwald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Namjun; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.R.; Williamson, R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and

  20. Two Types of Long-duration Quasi-static Evolution of Solar Filaments

    Science.gov (United States)

    Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.

    2018-04-01

    In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.

  1. Long-Duration Space Flight and Bed Rest Effects on Testosterone and Other Steroids

    Science.gov (United States)

    Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L.; Zwart, Sara R.

    2012-01-01

    Context: Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. Objective: The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Design: Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Setting: Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. Participants: All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Main Outcome Measures: Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Results: Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. Conclusions: There was no evidence for decrements in testosterone during long-duration space flight or bed rest. PMID:22049169

  2. Coherence analysis differentiates between cortical myoclonic tremor and essential tremor

    NARCIS (Netherlands)

    van Rootselaar, AF; Maurits, NM; Koelman, JHTM; van der Hoeven, JH; Bour, LJ; Leenders, KL; Brown, P; Tijssen, MAJ

    Familial cortical myoclonic tremor with epilepsy (FCMTE) is characterized by a distal kinetic tremor, infrequent epileptic attacks, and autosomal dominant inheritance. The tremor is thought to originate from the motor cortex. In our patient group, a premovement cortical spike Could not be

  3. Low amplitude impact of PBX 9501: Modified Steven spigot gun tests

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W. [and others

    1998-12-01

    Low-velocity mechanical impact and subsequent high explosive (HE) reaction are of concern in credible accident scenarios involving the handling, transport, and storage of nuclear weapons. Using modified Steven spigot gun tests, the authors have investigated the high-explosive violent-reaction (HEVR) potential of PBX 9501 to low-amplitude insult. Reliable modeling predictions require that one identify the relevant parameters and behavioral responses that are key to the reaction mechanism(s) in PBX 9501. Additional efforts have been targeted at identifying relevant differences in the response between baseline and stockpile-aged PBX 9501 to low-velocity impacts.

  4. MONTE CARLO RADIATION TRANSFER SIMULATIONS OF PHOTOSPHERIC EMISSION IN LONG-DURATION GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Lazzati, Davide [Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331 (United States)

    2016-10-01

    We present MCRaT, a Monte Carlo Radiation Transfer code for self-consistently computing the light curves and spectra of the photospheric emission from relativistic, unmagnetized jets. We apply MCRaT to a relativistic hydrodynamic simulation of a long-duration gamma-ray burst jet, and present the resulting light curves and time-dependent spectra for observers at various angles from the jet axis. We compare our results to observational results and find that photospheric emission is a viable model to explain the prompt phase of long-duration gamma-ray bursts at the peak frequency and above, but faces challenges when reproducing the flat spectrum below the peak frequency. We finally discuss possible limitations of these results both in terms of the hydrodynamics and the radiation transfer and how these limitations could affect the conclusions that we present.

  5. In situ measurements of erosion and redeposition during long duration discharges on TRIAM-1M

    International Nuclear Information System (INIS)

    Sakamoto, M.; Ogawa, M.; Zushi, H.; Higashijima, A.; Nakashima, H.; Kawasaki, S.; Hasegawa, M.; Idei, H.; Hanada, K.; Nakamura, K.; Sato, K.N.

    2007-01-01

    An in situ and real time measurement system of erosion and deposition has been developed, which is based on interference of light on a thin semi-transparent layer of redeposited material on substrate. It has been applied to long duration discharges in TRIAM-1M. The sapphire window is used as substrate. The deposition pattern on the window indicates up down and toroidal asymmetry. In the 5 h 16 min discharge, the thickness of the deposited layer increased monotonically with time and its deposition rate is ∼1.5 x 10 16 Mo m -2 s -1 . In the low density and long duration discharge, the Mo deposition rate on the window depends on the ratio of Mo flux to hydrogen flux

  6. Identification of long-duration noise transients in LIGO and Virgo

    International Nuclear Information System (INIS)

    Coughlin, Michael W

    2011-01-01

    The LIGO and Virgo detectors are sensitive to a variety of noise sources, such as instrumental artifacts and environmental disturbances. The Stochastic Transient Analysis Multi-detector Pipeline has been developed to search for long-duration (t ≥ 1 s) gravitational-wave (GW) signals. This pipeline can also be used to identify environmental noise transients. Here, we present an algorithm to determine when long-duration noise sources couple into the interferometers, as well as identify what these noise sources are. We analyze the cross-power between a GW strain channel and an environmental sensor, using pattern recognition tools to identify statistically significant structure in cross-power time-frequency maps. We identify interferometer noise from airplanes, helicopters, thunderstorms and other sources. Examples from LIGO's sixth science run, S6, and Virgo's third scientific run, VSR3, are presented. (paper)

  7. Psychosocial issues affecting crews during long-duration international space missions

    Science.gov (United States)

    Kanas, N.

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  8. Habitability during long-duration space missions - Key issues associated with a mission to Mars

    Science.gov (United States)

    Stuster, Jack

    1989-01-01

    Isolation and confinement conditions similar to those of a long-duration mission to Mars are examined, focusing on 14 behavioral issues with design implications. Consideration is given to sleep, clothing, exercise, medical support, personal hygiene, food preparation, group interaction, habitat aesthetics, outside communications, recreational opportunities, privacy, waste disposal, onboard training, and the microgravity environment. The results are used to develop operational requirements and habitability design guidelines for interplanetary spacecraft.

  9. The mission execution crew assistant : Improving human-machine team resilience for long duration missions

    OpenAIRE

    Neerincx, M.A.; Lindenberg, J.; Smets, N.J.J.M.; Bos, A.; Breebaart, L.; Grant, T.; Olmedo-Soler, A.; Brauer, U.; Wolff, M.

    2008-01-01

    Manned long-duration missions to the Moon and Mars set high operational, human factors and technical demands for a distributed support system, which enhances human-machine teams' capabilities to cope autonomously with unexpected, complex and potentially hazardous situations. Based on a situated Cognitive Engineering (sCE) method, we specified a theoretical and empirical founded Requirements Baseline (RB) for such a system (called Mission Execution Crew Assistant; MECA), and its rational consi...

  10. Post-Test Inspection of Nasa's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    Science.gov (United States)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASAs Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. This presentation will present the post-test inspection results to date for the thrusters ion optics.

  11. Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.

    Science.gov (United States)

    Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice

    2017-08-01

    Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.

  12. Effects of Short- and Long-Duration Space Flight on Neuromuscular Function

    Science.gov (United States)

    Buxton, Roxanne E.; Spiering, Barry A.; Ryder, Jeffrey W.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    The Functional Task Tests (FTT) is an interdisciplinary study designed to correlate the changes in functional tasks (such as emergency egress, ladder climbing, and hatch opening) with changes in neuromuscular, cardiovascular, and sensorimotor function. One aspect of the FTT, the neuromuscular function test, is used to investigate the neuromuscular component underlying changes in the ability of astronauts to perform functional tasks (representative of critical mission tasks) safely and quickly after flight. PURPOSE: To describe neuromuscular function after short- and long-duration space flight. METHODS: To date, 5 crewmembers on short-duration (10- to 15-day) missions and 3 on long-duration missions have participated. Crewmembers were assessed 30 days before flight, on landing day (short-duration subjects only) and 1, 6, and 30 days after landing. The interpolated twitch technique, which utilizes a combination of maximal voluntary contractions and electrically evoked contractions, was used to assess the maximal voluntary isometric force (MIF) and central activation capacity of the knee extensors. Leg-press and bench-press devices were used to assess MIF and maximal dynamic power of the lower and upper body respectively. Specifically, power was measured during concentric-only ballistic throws of the leg-press sled and bench-press bar loaded to 40% and 30% of MIF respectively. RESULTS: Data are currently being collected from both Shuttle and ISS crewmembers. Emerging data indicate that measures of knee extensor muscle function are decreased with long-duration flight. DISCUSSION: The relationships between flight duration, neural drive, and muscle performance are of particular interest. Ongoing research will add to the current sample size and will focus on defining changes in muscle performance measures after long-duration space flight.

  13. Strategies for improving performance during long duration Olympic events : the example of Olympic distance Triathlon

    OpenAIRE

    Hausswirth , Christophe; Brisswalter , Jeanick

    2008-01-01

    International audience; This review focuses on strategic aspects which may affect performance during a long duration Olympic event: the Olympic distance Triathlon. Given the variety of races during Olympic games, Strategic aspects include as well improving technological features as energetical factors affecting the overall triathlon performance.. During the last decade, a lot of studies have attempted to identify factors reducing the metabolic load associated or not with the development of fa...

  14. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    International Nuclear Information System (INIS)

    Smith, A.R.; Hurley, D.L.

    1991-08-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite have been studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Bakground Facilities, in a multi-laboratory collaboration coordinated by Dr. Thomas Parnell's team at the Marshall Spacecraft Center, Huntsville, Alabama

  15. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    International Nuclear Information System (INIS)

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H

    2017-01-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  16. Advanced biosensors for monitoring astronauts' health during long-duration space missions.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Guardigli, Massimo; Zangheri, Martina; Caliceti, Cristiana; Calabria, Donato; Simoni, Patrizia

    2018-07-15

    Long-duration space missions pose important health concerns for astronauts, especially regarding the adverse effects of microgravity and exposure to high-energy cosmic rays. The long-term maintenance of crew health and performance mainly relies on prevention, early diagnoses, condition management, and medical interventions in situ. In-flight biosensor diagnostic devices and medical procedures must use few resources and operate in a microgravity environment, which complicates the collection and management of biological samples. Moreover, the biosensors must be certified for in-flight operation according to strict design and safety regulations. Herein, we report on the state of the art and recent advances in biosensing diagnostic instrumentation for monitoring astronauts' health during long-duration space missions, including portable and wearable biosensors. We discuss perspectives on new-format biosensors in autonomous space clinics. We also describe our own work in developing biosensing devices for non-invasively diagnosing space-related diseases, and how they are used in long-duration missions. Finally, we discuss the benefits of space exploration for Earth-based medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Ocular Counter Rolling in Astronauts After Short- and Long-Duration Spaceflight.

    Science.gov (United States)

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-05-17

    Ocular counter-rolling (OCR) is a reflex generated by the activation of the gravity sensors in the inner ear that stabilizes gaze and posture during head tilt. We compared the OCR measures that were obtained in 6 astronauts before, during, and after a spaceflight lasting 4-6 days with the OCR measures obtained from 6 astronauts before and after a spaceflight lasting 4-9 months. OCR in the short-duration fliers was measured using the afterimage method during head tilt at 15°, 30°, and 45°. OCR in the long-duration fliers was measured using video-oculography during whole body tilt at 25°. A control group of 7 subjects was used to compare OCR measures during head tilt and whole body tilt. No OCR occurred during head tilt in microgravity, and the response returned to normal within 2 hours of return from short-duration spaceflight. However, the amplitude of OCR was reduced for several days after return from long-duration spaceflight. This decrease in amplitude was not accompanied by changes in the asymmetry of OCR between right and left head tilt. These results indicate that the adaptation  of otolith-driven reflexes to microgravity is a long-duration process.

  18. Tremor entities and their classification: an update.

    Science.gov (United States)

    Gövert, Felix; Deuschl, Günther

    2015-08-01

    This review focuses on important new findings in the field of tremor and illustrates the consequences for the current definition and classification of tremor. Since 1998 when the consensus criteria for tremor were proposed, new variants of tremors and new diagnostic methods were discovered that have changed particularly the concepts of essential tremor and dystonic tremor. Accumulating evidence exists that essential tremor is not a single entity rather different conditions that share the common symptom action tremor without other major abnormalities. Tremor is a common feature in patients with adult-onset focal dystonia and may involve several different body parts and forms of tremor. Recent advances, in particular, in the field of genetics, suggest that dystonic tremor may even be present without overt dystonia. Monosymptomatic asymmetric rest and postural tremor has been further delineated, and apart from tremor-dominant Parkinson's disease, there are several rare conditions including rest and action tremor with normal dopamine transporter imaging (scans without evidence of dopaminergic deficit) and essential tremor with tremor at rest. Increasing knowledge in the last decades changed the view on tremors and highlights several caveats in the current tremor classification. Given the ambiguous assignment between tremor phenomenology and tremor etiology, a more cautious definition of tremors on the basis of clinical assessment data is needed.

  19. How typical are 'typical' tremor characteristics? : Sensitivity and specificity of five tremor phenomena

    NARCIS (Netherlands)

    van der Stouwe, A. M. M.; Elting, J. W.; van der Hoeven, J. H.; van Laar, T.; Leenders, K. L.; Maurits, N. M.; Tijssen, M. Aj.

    Introduction: Distinguishing between different tremor disorders can be challenging. Some tremor disorders are thought to have typical tremor characteristics: the current study aims to provide sensitivity and specificity for five 'typical' tremor phenomena. Methods: Retrospectively, we examined 210

  20. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    Science.gov (United States)

    Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  1. The many roads to tremor.

    Science.gov (United States)

    Brittain, John-Stuart; Brown, Peter

    2013-12-01

    Tremor represents one of the most prominent examples of aberrant synchronisation within the human motor system, and Essential Tremor (ET) is by far the most common tremor disorder. Yet, even within ET there is considerable variation, and patients may have contrasting amounts of postural and intention tremor. Recently, Pedrosa et al. (2013) challenged tremor circuits in a cohort of patients presenting with ET, by applying low-frequency deep brain stimulation within thalamus. This interventional approach provided strong evidence that distinct (yet possibly overlapping) neural substrates are responsible for postural and intention tremor in ET. Intention tremor, and not postural tremor, was exacerbated by low frequency stimulation, and the effect was localised in the region of the ventrolateral thalamus in such a way as to implicate cerebello-thalamic pathways. These results, taken in conjunction with the contemporary literature, reveal that pathological changes exaggerate oscillatory synchrony in selective components of an extensive and distributed motor network, and that synchronisation within these networks is further regulated according to motor state. Through a combination of pathological and more dynamic physiological factors, activity then spills out into the periphery in the form of tremor. The findings of Pedrosa et al. (2013) are timely as they coincide with an emerging notion that tremor may result through selective dysregulation within a broader tremorgenic network. © 2013.

  2. Low amplitude rhythmic contraction frequency in human detrusor strips correlates with phasic intravesical pressure waves.

    Science.gov (United States)

    Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P

    2017-08-01

    Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.

  3. Pilot Test of a Novel Method for Assessing Community Response to Low-Amplitude Sonic Booms

    Science.gov (United States)

    Fidell, Sanford; Horonjeff, Richard D.; Harris, Michael

    2012-01-01

    A pilot test of a novel method for assessing residents annoyance to sonic booms was performed. During a two-week period, residents of the base housing area at Edwards Air Force Base provided data on their reactions to sonic booms using Smartphone-based interviews. Noise measurements were conducted at the same time. The report presents information about data collection methods and about test participants reactions to low-amplitude sonic booms. The latter information should not be viewed as definitive for several reasons. It may not be reliably generalized to the wider U.S. residential population (because it was not derived from a representative random sample) and the sample itself was not large.

  4. Long-duration transcutaneous electric acupoint stimulation alters small-world brain functional networks.

    Science.gov (United States)

    Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing

    2013-09-01

    Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Workplace Social Support and Behavioral Health Prior to Long-Duration Spaceflight.

    Science.gov (United States)

    Deming, Charlene A; Vasterling, Jennifer J

    2017-06-01

    Preparation and training for long-duration spaceflight bring with them psychosocial stressors potentially affecting the well-being and performance of astronauts, before and during spaceflight. Social support from within the workplace may mitigate behavioral health concerns arising during the preflight period and enhance resiliency before and during extended missions. The purpose of this review was to evaluate evidence addressing the viability of workplace social support as a pre-mission countermeasure, specifically addressing: 1) the observed relationships between workplace social support and behavioral health; 2) perceived need, acceptability, and format preference for workplace social support among high-achievers; 3) potential barriers to delivery/receipt of workplace social support; 4) workplace social support interventions; and 5) delivery timeframe and anticipated duration of workplace social support countermeasure benefits. We conducted an evidence review examining workplace social support in professional contexts sharing one or more characteristics with astronauts and spaceflight. Terms included populations of interest, social support constructs, and behavioral health outcomes. Abstracts of matches were subsequently reviewed for relevance and quality. Research findings demonstrate clear associations between workplace social support and behavioral health, especially following exposure to stress. Further, studies indicate strong need for support and acceptability of support countermeasures, despite barriers. Our review revealed two general formats for providing support (i.e., direct provision of support and training to optimize skills in provision and receipt of support) with potential differentiation of expected duration of benefits, according to format. Workplace social support countermeasures hold promise for effective application during pre-mission phases of long-duration spaceflight. Specific recommendations are provided.Deming CA, Vasterling JJ

  6. Assessment of Proficiency During Simulated Rover Operations Following Long-Duration Spaceflight

    Science.gov (United States)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; MacDougall, H. G.; Moore, S. T.

    2011-01-01

    Following long-duration space travel, pressurized rovers will enhance crew mobility to explore Mars and other planetary surfaces. Adaptive changes in sensorimotor function may limit the crew s proficiency when performing some rover operations shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify postflight decrements in operational proficiency in a motion-based rover simulation after International Space Station (ISS) expeditions. Given that postflight performance will also be influenced by the level of preflight proficiency attained, a ground-based normative study was conducted to characterize the acquisition of skills over multiple sessions.

  7. Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    Science.gov (United States)

    Crucian, B. E.; Mehta, S.; Stowe, R. P.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.

    2011-01-01

    This poster presentation reviews a study that is designed to address immune system dysregulation and the risk to crewmembers in long duration exploration class missions. This study will address these objectives: (1) Determine the status of adaptive immunity physiological stress, viral immunity, latent herpesvirus reactivation in astronauts during 6 month missions to the International Space Station; (2) determine the clinical risk related to immune dysregulation for exploration class spaceflight; and (3) determine an appropriate monitoring strategy for spaceflight-associated immune dysfunction that could be used for the evaluation of countermeasures. The study anticipates 17 subjects, and for this presentation, (midpoint study data) 10 subjects are reviewed.

  8. The Effects of Long-Duration Spaceflight on Training Retention and Transfer

    Science.gov (United States)

    Barshi, Immanuel; Healy, Alice; Dempsey, Donna L.; McGuire, Kerry M.; Landon, Lauren B.

    2018-01-01

    Training our crew members for long duration, exploration-class missions will have to maximize long-term retention and transfer of the trained skills. The expected duration of the missions, our inability to predict all the possible tasks the crew will be called upon to perform, and the low training-to-mission time ratio require that the training be maximally effective such that the skills acquired during training will be retained and will be transferrable across a wide range of specific tasks that are different from the particular tasks used during training. However, to be able to design training that can achieve these ambitious goals, we must first understand the ways in which long-duration spaceflight affects training retention and transfer. Current theories of training retention and transfer are largely based on experimental studies conducted at university laboratories using undergraduate students as participants. Furthermore, all such studies have been conducted on Earth. We do not know how well the results of these studies predict the performance of crew members. More specifically, we do not know how well the results of these studies predict the performance of crew members in space and especially during long-duration missions. To address this gap in our knowledge, the current on-going study seeks to test the null hypothesis that performance of university undergraduate students on Earth on training retention and transfer tests do in fact predict accurately the performance of crew members during long-duration spaceflights. To test this hypothesis, the study employs a single 16-month long experimental protocol with 3 different participant groups: undergraduate university students, crew members on the ground, and crew members in space. Results from this study will be presented upon its completion. This poster presents results of study trials of the two tasks used in this study: a data entry task and a mapping task. By researching established training principles, by

  9. Use of the Long Duration Exposure Facility's thermal measurement system for the verification of thermal models

    Science.gov (United States)

    Berrios, William M.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) postflight thermal model predicted temperatures were matched to flight temperature data recorded by the Thermal Measurement System (THERM), LDEF experiment P0003. Flight temperatures, recorded at intervals of approximately 112 minutes for the first 390 days of LDEF's 2105 day mission were compared with predictions using the thermal mathematical model (TMM). This model was unverified prior to flight. The postflight analysis has reduced the thermal model uncertainty at the temperature sensor locations from +/- 40 F to +/- 18 F. The improved temperature predictions will be used by the LDEF's principal investigators to calculate improved flight temperatures experienced by 57 experiments located on 86 trays of the facility.

  10. Long Duration Gamma-Ray Flares & Solar Energetic Particles — Is there a Connection?

    Science.gov (United States)

    de Nolfo, G. A.; Boezio, M.; Bruno, A.; Christian, E. R.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Ryan, J. M.; Share, G.; Stochaj, S.

    2017-12-01

    Little is known still about the origin of the high-energy and sustained emission from Long Duration Gamma-Ray Flares (LDGRFs), identified with Compton Gamma-Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/LAT has identified dozens of flares with LDGRF emission, the nature of this emission has been a challenge to explain both due to the extreme energies and long durations. The highest energy emission has generally been attributed to pion production from the interaction of high-energy protons with the ambient matter, suggesting that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from CME-driven shocks. It is possible to test these models by making direct comparisons between the accelerated ion population at the flare derived from the observations of Fermi/LAT with PAMELA measurements of solar energetic particles in the energy range corresponding to the pion-related emission observed with Fermi. For nearly a dozen SEP events, we compare the two populations (SEPs in space and the interacting population at the Sun) and discuss the implications in terms of particle acceleration and transport models.

  11. Bipolar High-Voltage, Long-Duration Pulsed Radiofrequency Improves Pain Relief in Postherpetic Neuralgia.

    Science.gov (United States)

    Wan, Cheng-Fu; Liu, Yan; Dong, Dao-Song; Zhao, Lin; Xi, Qi; Yu, Xue; Cui, Wen-Yao; Wang, Qiu-Shi; Song, Tao

    2016-07-01

    Postherpetic neuralgia (PHN) is often refractory to existing treatments. Treatment of the dorsal root ganglion (DRG) using monopolar pulsed radiofrequency (PRF), which is a non- or minimally neurodestructive technique, is not efficacious in all patients. This study aimed to determine the safety and clinical efficacy of bipolar high-voltage, long-duration PRF on the DRG in PHN patients. Self before-after controlled clinical trial. Department of Pain Medicine, the First Affiliated Hospital of China Medical University. Ninety patients diagnosed with PHN for > 3months were included. Bipolar high-voltage, long-duration PRF at 42°C for 900 seconds was applied after the induction of paresthesias covered the regions of hyperalgesic skin. The therapeutic effects were evaluated using a visual analog scale (VAS) and the 36-item Short Form health survey (SF-36) before treatment and one, 4, 8, and 12 weeks after PRF. The VAS scores at one, 4, 8, and 12 weeks after PRF treatment were significantly lower than before treatment (P DRG is an effective and safe therapeutic alternative for PHN patients. This treatment could improve the quality of life of PHN patients. NO ChiCTR-OCS-14005461.

  12. The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions

    International Nuclear Information System (INIS)

    Voorhies, Alexander A.; Lorenzi, Hernan A.

    2016-01-01

    Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.

  13. The Challenge of Maintaining a Healthy Microbiome During Long-Duration Space Missions.

    Directory of Open Access Journals (Sweden)

    Alexander Arnot Voorhies

    2016-07-01

    Full Text Available Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.

  14. The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions

    Energy Technology Data Exchange (ETDEWEB)

    Voorhies, Alexander A.; Lorenzi, Hernan A., E-mail: hlorenzi@jcvi.org [Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD (United States)

    2016-07-22

    Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.

  15. Dystonia Associated with Idiopathic Slow Orthostatic Tremor

    Directory of Open Access Journals (Sweden)

    Christopher Kobylecki

    2016-02-01

    Full Text Available Background: We aimed to characterize the clinical and electrophysiological features of patients with slow orthostatic tremor.Case Report: The clinical and neurophysiological data of patients referred for lower limb tremor on standing were reviewed. Patients with symptomatic or primary orthostatic tremor were excluded. Eight patients were identified with idiopathic slow 4–8 Hz orthostatic tremor, which was associated with tremor and dystonia in cervical and upper limb musculature. Coherence analysis in two patients showed findings different to those seen in primary orthostatic tremor.Discussion: Slow orthostatic tremor may be associated with dystonia and dystonic tremor.

  16. Thalamic physiology of intentional essential tremor is more like cerebellar tremor than postural essential tremor

    OpenAIRE

    Zakaria, R; Lenz, FA; Hua, S; Avin, BH; Liu, CC; Mari, Z

    2013-01-01

    The neuronal physiological correlates of clinical heterogeneity in human essential tremor are unknown. We now test the hypothesis that thalamic neuronal and EMG activities during intention essential tremor are similar to those of the intention tremor which is characteristic of cerebellar lesions. Thalamic neuronal firing was studied in a cerebellar relay nucleus (ventral intermediate, Vim) and in a pallidal relay nucleus (ventral oral posterior, Vop) during stereotactic surgery for the treatm...

  17. Tracing tremor: Neural correlates of essential tremor and its treatment

    NARCIS (Netherlands)

    Buijink, A.W.G.

    2016-01-01

    This thesis focusses on the neural correlates and treatment of the neurological movement disorder essential tremor (ET). ET, one of the most common movement disorders in clinical neurology, is characterized by an action and intention tremor of mainly the hands, hampering daily life activities.

  18. Tremor in the Elderly: Essential and Aging-Related Tremor

    Science.gov (United States)

    Deuschl, Günthe; Petersen, Inge; Lorenz, Delia; Christensen, Kaare

    2016-01-01

    Isolated tremor in the elderly is commonly diagnosed as essential tremor (ET). The prevalence of tremor increases steeply with increasing age, whereas hereditary tremor is becoming less common. Moreover, late-manifesting tremor seems to be associated with dementia and earlier mortality. We hypothesize that different entities underlie tremor in the elderly. Two thousand four hundred forty-eight subjects from the Longitudinal Study of Aging Danish Twins older than 70 y answered screening questions for ET in 2001. Two thousan fifty-six (84%) participants drew Archimedes spirals to measure their tremor severity, and classical aging phenotypes were assessed. A subgroup of 276 individuals fulfilling either screening criteria for ET or being controls were personally assessed. Medications and mortality data are available. The spiral score increased with age. The spiral score correlated with tremor severity. For the whole cohort, mortality was significantly correlated with the spiral score, and higher spiral scores were associated with lower physical and cognitive functioning. Multivariate analysis identified higher spiral scores as an independent risk factor for mortality. In contrast, the ET patients did not show an increased but rather a lower mortality rate although it was not statistically significant. Consistent with a slower than normal aging, they were also physically and cognitively better functioning than controls. Because incident tremors beyond 70 y of age show worse aging parameters and mortality than controls and ET, we propose to label it ‘aging-related tremor’ (ART). This tremor starts later in life and is accompanied by subtle signs of aging both cognitively and physically. More detailed clinical features and pathogenesis warrant further assessment. PMID:26095699

  19. Joint Manipulation: Toward a General Theory of High-Velocity, Low-Amplitude Thrust Techniques.

    Science.gov (United States)

    Harwich, Andrew S

    2017-12-01

    The objective of this study was to describe the initial stage of a generalized theory of high-velocity, low-amplitude thrust (HVLAT) techniques for joint manipulation. This study examined the movements described by authors from the fields of osteopathy, chiropractic, and physical therapy to produce joint cavitation in both the metacarpophalangeal (MCP) joint and the cervical spine apophysial joint. This study qualitatively compared the kinetics, the similarities, and the differences between MCP cavitation and cervical facet joint cavitation. A qualitative vector analysis of forces and movements was undertaken by constructing computer-generated, simplified graphical models of the MCP joint and a typical cervical apophysial joint and imposing the motions dictated by the clinical technique. Comparing the path to cavitation of 2 modes of HVLAT for the MCP joint, namely, distraction and hyperflexion, it was found that the hyperflexion method requires an axis of rotation, the hinge axis, which is also required for cervical HVLAT. These results show that there is an analogue of cervical HVLAT in one of the MCP joint HVLATs. The study demonstrated that in a theoretical model, the path to joint cavitation is the same for asymmetric separation of the joint surfaces in the cervical spine and the MCP joints.

  20. High-velocity low-amplitude manipulation (thrust and athletic performance: a systematic review

    Directory of Open Access Journals (Sweden)

    Mikhail Santos Cerqueira

    Full Text Available Abstract Introduction: The high demand level in sports has encouraged the search for strategies to increase the yield. In this context, manual therapy through high-velocity low-amplitude (thrust has been employed in many sports. Despite the adhesion of manual therapists in clinical practice, there were no systematic reviews on this topic. Objective: To evaluate the effects of thrust on the performance of athletes in relation to the outcomes hand-grip strength, jump height and running speed. Methods: The databases used in the search were MEDLINE / PUBMED, LILACS, CINAHL, PEDro, WEB OF SCIENCE, CENTRAL and SCOPUS, and Randomized controlled trials were included, whose participants were professionals or recreational athletes and had thrust as intervention. The methodological quality of the studies was assessed using the PEDro scale of 10 points. Intervention effects were determined by the mean difference and confidence interval. The data analysis was done in the descriptive form due to the heterogeneity found among studies. Results: Five trials were included with a total of 95 individuals. The methodological quality of studies was low, with an average value of 5.6 on the PEDro scale. It was found two articles for each outcome, but in none of them was presented differences between the experimental and control groups considering the confidence interval. Conclusion: The current evidence is insufficient to determine the use or nonuse the MAVBA in sports in order to improve performance.

  1. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland [Institute of Materials Physics, Graz University of Technology, A-8010 Graz (Austria)

    2016-07-15

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  2. Comparison of low-amplitude oscillatory shear in experimental and computational studies of model foams.

    Science.gov (United States)

    Lundberg, Micah; Krishan, Kapilanjan; Xu, Ning; O'Hern, Corey S; Dennin, Michael

    2009-04-01

    A fundamental difference between fluids and solids is their response to applied shear. Solids possess static shear moduli, while fluids do not. Complex fluids such as foams display an intermediate response to shear with nontrivial frequency-dependent shear moduli. In this paper, we conduct coordinated experiments and numerical simulations of model foams subjected to boundary-driven oscillatory planar shear. Our studies are performed on bubble rafts (experiments) and the bubble model (simulations) in two dimensions. We focus on the low-amplitude flow regime in which T1 events, i.e., bubble rearrangement events where originally touching bubbles switch nearest neighbors, do not occur, yet the system transitions from solid- to liquidlike behavior as the driving frequency is increased. In both simulations and experiments, we observe two distinct flow regimes. At low frequencies omega, the velocity profile of the bubbles increases linearly with distance from the stationary wall, and there is a nonzero total phase shift between the moving boundary and interior bubbles. In this frequency regime, the total phase shift scales as a power law Delta approximately omegan with n approximately 3. In contrast, for frequencies above a crossover frequency omega>omegap, the total phase shift Delta scales linearly with the driving frequency. At even higher frequencies above a characteristic frequency omeganl>omegap, the velocity profile changes from linear to nonlinear. We fully characterize this transition from solid- to liquidlike flow behavior in both the simulations and experiments and find qualitative and quantitative agreements for the characteristic frequencies.

  3. Golden Gate Bridge response: a study with low-amplitude data from three earthquakes

    Science.gov (United States)

    Çelebi, Mehmet

    2012-01-01

    The dynamic response of the Golden Gate Bridge, located north of San Francisco, CA, has been studied previously using ambient vibration data and finite element models. Since permanent seismic instrumentation was installed in 1993, only small earthquakes that originated at distances varying between ~11 to 122 km have been recorded. Nonetheless, these records prompted this study of the response of the bridge to low amplitude shaking caused by three earthquakes. Compared to previous ambient vibration studies, the earthquake response data reveal a slightly higher fundamental frequency (shorter-period) for vertical vibration of the bridge deck center span (~7.7–8.3 s versus 8.2–10.6 s), and a much higher fundamental frequency (shorter period) for the transverse direction of the deck (~11.24–16.3 s versus ~18.2 s). In this study, it is also shown that these two periods are dominant apparent periods representing interaction between tower, cable, and deck.

  4. Low-Weight, Durable, and Low-Cost Metal Rubber Sensor System for Ultra Long Duration Scientific Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, low-cost, ultra low mass density, and non-intrusive sensor system for ultra long duration balloons (ULDB) that will...

  5. Novel Ultralow-Weight Metal Rubber Sensor System for Ultra Long-Duration Scientific Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, ultralow mass density, and non-intrusive sensor system for ultra long duration balloons that will operate in the most...

  6. Vacuum-Compatible Multi-Axis Manipulator/Machining Center for Long-Duration Space Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has many needs for maintenance and repair technologies for long-duration human space missions. We propose to continue developing a compact, portable,...

  7. Vacuum-Compatible Multi-Axis Manipulator/Machining Center for Long-Duration Space Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has many needs for maintenance and repair technologies for long-duration human space missions. We propose to develop a compact, portable, vacuum-compatible,...

  8. Surgery for Dystonia and Tremor.

    Science.gov (United States)

    Crowell, Jason L; Shah, Binit B

    2016-03-01

    Surgical procedures for dystonia and tremor have evolved over the past few decades, and our understanding of risk, benefit, and predictive factors has increased substantially in that time. Deep brain stimulation (DBS) is the most utilized surgical treatment for dystonia and tremor, though lesioning remains an effective option in appropriate patients. Dystonic syndromes that have shown a substantial reduction in severity secondary to DBS are isolated dystonia, including generalized, cervical, and segmental, as well as acquired dystonia such as tardive dystonia. Essential tremor is quite amenable to DBS, though the response of other forms of postural and kinetic tremor is not nearly as robust or consistent based on available evidence. Regarding targeting, DBS lead placement in the globus pallidus internus has shown marked efficacy in dystonia reduction. The subthalamic nucleus is an emerging target, and increasing evidence suggests that this may be a viable target in dystonia as well. The ventralis intermedius nucleus of the thalamus is the preferred target for essential tremor, though targeting the subthalamic zone/caudal zona incerta has shown promise and may emerge as another option in essential tremor and possibly other tremor disorders. In the carefully selected patient, DBS and lesioning procedures are relatively safe and effective for the management of dystonia and tremor.

  9. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; hide

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural

  10. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.

    2015-01-01

    The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion

  11. Gardening for Therapeutic People-Plant Interactions during Long-Duration Space Missions

    Directory of Open Access Journals (Sweden)

    Odeh Raymond

    2017-02-01

    Full Text Available Plants provide people with vital resources necessary to sustain life. Nutrition, vitamins, calories, oxygen, fuel, and medicinal phytochemicals are just a few of the life-supporting plant products, but does our relationship with plants transcend these physical and biochemical products? This review synthesizes some of the extant literature on people-plant interactions, and relates key findings relevant to space exploration and the psychosocial and neurocognitive benefits of plants and nature in daily life. Here, a case is made in support of utilizing plant-mediated therapeutic benefits to mitigate potential psychosocial and neurocognitive decrements associated with long-duration space missions, especially for missions that seek to explore increasingly distant places where ground-based support is limited.

  12. Joint US-USSR Long duration Antarctic Mars calibration Balloon (LAMB) mission

    Science.gov (United States)

    Floyd, S. R.; Trombka, J. I.; Evans, L. G.; Starr, R.; Squyres, S. W.; Surkov, Iu. A.; Moskaleva, L. P.; Shcheglov, O.; Mitugov, A. G.; Rester, A. C.

    1991-01-01

    The Long duration Antarctic Mars calibration Balloon (LAMB) project has been established at Goddard Space Flight Center for the evaluation and cross calibration of U.S. and USSR remote sensing gamma-ray and neutron detectors. These detectors are analogs of those flown on the Soviet Phobos mission around Mars and those to be flown on the upcoming U.S. Mars Observer mission. Cosmic rays, which are normally filtered out by the atmosphere, and the earth's magnetic field, will induce gamma-ray and neutron emissions from about a half ton of simulated Mars soil aboard the gondola. The cross calibration of these instruments should greatly facilitate the data analysis from both missions and play a role in U.S.-USSR cooperation in space.

  13. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight

    Directory of Open Access Journals (Sweden)

    Xiaorui Wu

    2017-05-01

    Full Text Available Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE, which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS, alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.

  14. Preliminary study about the necessary concepts and nomenclatures for long duration energy studies

    International Nuclear Information System (INIS)

    1999-12-01

    Long duration prospect studies about the worldwide energy demand requires to refer to other, non-economical, disciplines which have different representations of the socio-economic reality and of the evolution dynamics of societies. This study is a multi-disciplinary bibliographic research which aims to identify the categories considered in these disciplines and to show the main elements allowing to answer the questions about energy uses. The bibliographic research is based on a set of key-words which are crossed between each others like: 'categories', 'social behaviour', 'life style', 'energy', 'consumption', 'need', 'development', 'time' etc. The content of each cited bibliographic references is described in a file attached in the appendix of this study. (J.S.)

  15. A study of a long duration B9 flare-CME event and associated shock

    Science.gov (United States)

    Chandra, R.; Chen, P. F.; Fulara, A.; Srivastava, A. K.; Uddin, W.

    2018-01-01

    We present and discuss here the observations of a small long duration GOES B-class flare associated with a quiescent filament eruption, a global EUV wave and a CME on 2011 May 11. The event was well observed by the Solar Dynamics Observatory (SDO), GONG H α , STEREO and Culgoora spectrograph. As the filament erupted, ahead of the filament we observed the propagation of EIT wave fronts, as well as two flare ribbons on both sides of the polarity inversion line (PIL) on the solar surface. The observations show the co-existence of two types of EUV waves, i.e., a fast and a slow one. A type II radio burst with up to the third harmonic component was also associated with this event. The evolution of photospheric magnetic field showed flux emergence and cancellation at the filament site before its eruption.

  16. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    Science.gov (United States)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  17. Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: An emerging understanding

    Science.gov (United States)

    Marshall-Bowman, Karina; Barratt, Michael R.; Gibson, C. Robert

    2013-06-01

    For many years, there have been anecdotal reports of vision changes by astronauts following short and long-duration spaceflight. Much of this was attributed to hyperopic shifts related to the age of the flying population. However, it has recently been recognized that vision changes are actually quite common in astronauts and are associated with a constellation of findings including elevated intracranial pressure, optic disc edema, globe flattening, optic nerve sheath thickening, hyperopic shifts and retinal changes. With advanced imaging modalities available on the ground along with the fidelity of in-flight diagnostic capabilities previously unavailable, information on this newly recognized syndrome is accumulating. As of this writing, 11 cases of visual impairment experienced by astronauts during missions on-board the International Space Station (ISS) have been documented and studied. Although the exact mechanisms of the vision changes are unknown, it is hypothesized that increased intracranial pressure (ICP) is a contributing factor. Microgravity is the dominant cause of many physiological changes during spaceflight and is thought to contribute significantly to the observed ophthalmic changes. However, several secondary factors that could contribute to increased ICP and vision changes in spaceflight have been proposed. Possible contributors include microgravity-induced cephalad fluid shift, venous obstruction due to microgravity-induced anatomical shifts, high levels of spacecraft cabin carbon dioxide, heavy resistive exercise, and high sodium diet. Individual susceptibility to visual impairment is not fully understood, though a demographic of affected astronauts is emerging. This paper describes the current understanding of this newly recognized syndrome, presents data from 11 individual cases, and discusses details of potential contributing factors. The occurrence of visual changes in long duration missions in microgravity is one of the most significant

  18. Ultrahigh energy neutrino afterglows of nearby long duration gamma-ray bursts

    Science.gov (United States)

    Thomas, Jessymol K.; Moharana, Reetanjali; Razzaque, Soebur

    2017-11-01

    Detection of ultrahigh energy (UHE, ≳1 PeV ) neutrinos from astrophysical sources will be a major advancement in identifying and understanding the sources of UHE cosmic rays (CRs) in nature. Long duration gamma-ray burst (GRB) blast waves have been considered as potential acceleration sites of UHECRs. These CRs are expected to interact with GRB afterglow photons, which are synchrotron radiation from relativistic electrons coaccelerated with CRs in the blast wave, and naturally produce UHE neutrinos. Fluxes of these neutrinos are uncertain, however, and crucially depend on the observed afterglow modeling. We have selected a sample of 23 long duration GRBs within redshift 0.5 for which adequate electromagnetic afterglow data are available and which could produce high flux of UHE afterglow neutrinos, being nearby. We fit optical, x-ray, and γ -ray afterglow data with an adiabatic blast wave model in a constant density interstellar medium and in a wind environment where the density of the wind decreases as the inverse square of the radius from the center of the GRB. The blast wave model parameters extracted from these fits are then used for calculating UHECR acceleration and p γ interactions to produce UHE neutrino fluxes from these GRBs. We have also explored the detectability of these neutrinos by currently running and upcoming large area neutrino detectors, such as the Pierre Auger Observatory, IceCube Gen-2, and KM3NeT observatories. We find that our realistic flux models from nearby GRBs will be unconstrained in the foreseeable future.

  19. Carotid and Femoral Arterial Wall Distensibility During Long-Duration Spaceflight.

    Science.gov (United States)

    Arbeille, Philippe; Provost, Romain; Zuj, Kathryn

    2017-10-01

    This study aimed to assess changes in common carotid (CA) and superficial femoral (FA) arterial stiffness during long-duration spaceflight. Ultrasound imaging was used to investigate the CA and FA of 10 astronauts preflight (PRE), on flight day 15 (FD15), after 4-5 mo (FD4-5m), and 4 d after return to Earth (R+4). Arterial wall properties were assessed through the calculation of strain, stiffness (β), pressure-strain elastic modulus (Ep), and distensibility (DI). Stiffness indices were assessed for potential correlations to measurements of intima-media thickness (IMT). Significant effects of spaceflight were found for all CA stiffness indices, indicating an increase in arterial stiffness. CA strain was reduced by 34 ± 31% on FD15 and 50 ± 16% on FD4-5m and remained reduced by 42 ± 14% on R+4 with respect to PRE values. On FD4-5m, with respect to PRE values, DI was reduced by 46 ± 25% and β and Ep were increased by 124 ± 95% and 118 ± 92%, respectively. FA arterial stiffness indices appeared to show similar changes; however, a main effect of spaceflight was only found for strain. Correlation analysis showed weak but significant relationships between measurements of CA IMT and arterial stiffness indices, but no relationships were found for FA measurements. The observed change in CA and FA stiffness indices suggest that spaceflight results in an increase in arterial stiffness. That these changes were not strongly related to measurements of IMT suggests the possibility of different mechanisms contributing to the observed results.Arbeille P, Provost R, Zuj K. Carotid and femoral arterial wall distensibility during long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(10):924-930.

  20. Numerical study of the thermal behaviour of two types of packages exposed to long duration fires

    International Nuclear Information System (INIS)

    Doare, O.; Armingaud, F.; Sert, G.; Issard, H.

    2004-01-01

    The thermal behaviour of two types of package exposed to long duration fires is studied. The TN trademark 12/2A and TN trademark 28VT packages, respectively used for spent fuel and vitrified waste transports, are modelled. Three-dimensional meshes are used. Attention was paid to the model of the thermal protective resin of the packages because of its complex thermal behaviour. During heating several endothermic reactions occur: water vapour is produced and a part of it diffuses though the resin and condensates on the cold parts of resin, increasing the global heat transfer within the material. The other part of the water vapour exits the package by fusible holes. The thermal characteristics of these reactions have been established thanks to specific tests performed in a laboratory. A model taking into account all these phenomena was developed and integrated to the global thermal model of the packages in order to simulate the thermal behaviour of the packages exposed to long duration fires. Four fire temperatures were considered and, for each of them, the maximum fire duration that packages can withstand without activity release was calculated. The results show safety margins regarding the IAEA regulatory thermal test (800 C-30 min). The use of the complex model of resin led to calculate safety margins about 40% greater than those calculated with a model of resin taking only conduction into account. The results were used to prepare a guideline for safety assessment in emergency situations involving fire. This emergency tool provides safety limits for containment according to fire duration, fire temperature, package heat power and ambient temperature

  1. Overview of historical recurring low-amplitude floods in Lower Provence, Southeastern France (1700-1950)

    Science.gov (United States)

    Maughan, Nicolas

    2015-04-01

    In the Mediterranean world, water plays a prominent role as a « prime mover » in the development of urban and rural spaces. But, the specificities of the typical climate require a management of a natural resource that varies permanently between scarcity and abundance. Since Antiquity, the chronic lack of freshwater could be limited thanks to large hydraulic infrastructures while the flood risk management has always been a recurring problem for rural and urban communities. Because of brief, intense and irregularly distributed rain, amplified by a mountainous topography, stream floods often are heavy and flash with catastrophic consequences. However, often only past extremefloods were studied because both their consequences and available archival materials they have left while many recurring low-amplitude floodshave resulted in severe damagesto hydraulic and road infrastructures, in loss of agricultural soils and inconflicts between citizens and administration. Indeed, these ones were a central problem for rural and urban settlements and for the managementof water bodies.It seems interesting to present adetailed overview of historical recurring low-amplitude floods and consider how local societies have chosen to manage these questions and how these small hydrological events have contributed to shape existing current hydrological and geomorphologicalstructure of hydrosystems. In this context, the Lower Provence area (especially the Bouches-du-Rhône district, southeastern France), subject to recurring floods for centuries, appears to be a perfect place to explore and understand these questions. The decision to start the study at the dawn of the Eighteenth Century is especially interesting because it's a turning point for economic, scientific and engineering development in many European countries during whichdisasters and environmental health risks, including flooding, begin to become a real social and technical problem for authorities and citizens. Moreover, from

  2. Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.

    Science.gov (United States)

    Duryea, Alexander P; Cain, Charles A; Tamaddoni, Hedieh A; Roberts, William W; Hall, Timothy L

    2014-10-01

    Microscopic residual bubble nuclei can persist on the order of 1 s following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, because they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low-amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high-speed photography. In each case, a 2-MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500-kHz transducer, which we term the bubble removal pulse. Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 to 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy.

  3. Is tremor related to celiac disease?

    Science.gov (United States)

    Ameghino, Lucia; Rossi, Malco Damian; Cerquetti, Daniel; Merello, Marcelo

    2017-06-14

    Neurological features in celiac disease (CD) are not rare (5%-36%), but tremor is scarcely described. Subjects with CD and healthy controls completed an online survey using WHIGET tremor rating scale. One thousand five hundred and twelve subjects completed the survey, finally 674 CD patients and 290 healthy subjects were included. A higher prevalence of tremor in CD patients was observed in comparison to controls (28% vs 14%, P tremor in CD patients with and without tremor was 25% and 20% ( P = 0.2), while in the control group it was 41% and 10% ( P tremor showed a higher frequency of family history of tremor when compared to CD patients with tremor (41.5% vs 24.6%, P = 0.03). The results suggested that tremor in CD might be more frequent and possibly related to the disease itself and not due to associated essential tremor.

  4. Low-amplitude instability as a premise for the spontaneous symmetry breaking in the new integrable semidiscrete nonlinear system

    International Nuclear Information System (INIS)

    Vakhnenko, Oleksiy O.; Vakhnenko, Vyacheslav O.

    2014-01-01

    The new integrable semidiscrete multicomponent nonlinear system characterized by two coupling parameters is presented. Relying upon the lowest local conservation laws the concise form of the system is given and its selfconsistent symmetric parametrization in terms of four independent field variables is found. The comprehensive analysis of quartic dispersion equation for the system low-amplitude excitations is made. The criteria distinguishing the domains of stability and instability of low-amplitude excitations are formulated and a collection of qualitatively distinct realizations of a dispersion law are graphically presented. The loop-like structure of a low-amplitude dispersion law of reduced system emerging within certain windows of adjustable coupling parameter turns out to resemble the loop-like structure of a dispersion law typical of beam-plasma oscillations. Basing on the peculiarities of low-amplitude dispersion law as the function of adjustable coupling parameter it is possible to predict the windows of spontaneous symmetry breaking even without an explicit knowledge of the system Lagrangian function. Having been rewritten in terms of properly chosen modified field variables the reduced four wave integrable system can be qualified as consisting of two coupled nonlinear lattice subsystems, namely the self-dual ladder network and the vibrational ones

  5. Treatment of essential tremor with arotinolol.

    Science.gov (United States)

    Kuroda, Y; Kakigi, R; Shibasaki, H

    1988-04-01

    We investigated the effect of arotinolol, a new peripherally acting beta-adrenergic blocker, in 15 patients with essential tremor. The patients received 30 mg per day of arotinolol for 8 weeks. Accelerometer readings showed a significant reduction in amplitude of postural tremor after treatment. Action tremor also improved to essentially the same degree as postural tremor. The present findings support the view that the therapeutic effect of beta-blockers in essential tremor is mediated by peripheral beta-adrenergic receptors.

  6. Intermittent cortical involvement in the preservation of tremor in essential tremor

    NARCIS (Netherlands)

    Sharifi, Sarvi; Luft, Frauke; Verhagen, Rens; Heida, Tjitske; Speelman, Johannes D.; Bour, Lo J.; van Rootselaar, Anne-Fleur

    2017-01-01

    Cortical involvement in essential tremor, an involuntary action tremor supposedly of subcortical origin, is uncertain. Conflicting results of corticomuscular coherence studies in essential tremor suggest an intermittent corticomuscular coupling. On the basis of the literature, we hypothesized that

  7. Increased Intracranial Pressure and Visual Impairment Associated with Long-Duration Spaceflight

    Science.gov (United States)

    Marshall-Bowman, Karina

    2011-01-01

    Although humans have been flying in space since the 1960s, more recent missions have revealed a new suite of physiological adaptations and consequences of space flight. Notably, 60% of long-duration crewmembers (ISS/MIR) and >25% of short-duration (Shuttle) crewmembers have reported subjective degradation in vision (based on debrief comments) (Gibson 2011). Decreased near-visual acuity was demonstrated in 46% of ISS/Mir and 21% of Shuttle crewmembers, resulting in a shift of up to 1-2 diopters in their refractive correction. It is likely that the recently revealed ophthalmic changes have been present since the first days of human space flight, but have been overlooked or attributed to other causations. The reported changes in vision have occurred at various time points throughout missions, with ranging degrees of visual degradation. Although some cases resolved upon return to Earth, several astronauts have not regained preflight visual acuity, indicating that the damage may be permanent. While observing these changes over the years, without other overt symptomology and with the given age range of the flying population, this has largely been attributed to an expected hyperopic shift due to aging. However, the availability of onboard analysis techniques, including visual acuity assessments, retinal imagery, and ultrasounds of the eye and optic nerve tracts, along with more detailed post-flight techniques, has led to the recent recognition of a wider syndrome. Along with vision changes, findings include flattening of the globe, swelling of the optic disc (papilledema), choroidal folds in the retina, swelling of the optic nerve sheath, and visual field defects. It is widely hypothesized that this constellation of findings may be explained by an elevation of intracranial pressure (ICP). Out of the 60% of long-duration astronauts that have reported a subjective degradation in vision, a subset (currently 10 astronauts) have developed this syndrome. The National

  8. Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest

    Science.gov (United States)

    Koppelmans, V.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Koppelmans, V.

    2014-01-01

    Long duration spaceflight (i.e., > or = 22 days) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, experimental studies revealed changes in the gray matter (GM) of the brain after simulated microgravity. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning and motor behavior. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on the brain. VBM analysis revealed a progressive decrease from pre- to in- bed rest in GM volume in bilateral areas including the frontal medial cortex, the insular cortex and the caudate. Over the same time period, there was a progressive increase in GM volume in the cerebellum, occipital-, and parietal cortex, including the precuneus. The majority of these changes did not fully recover during the post-bed rest period. Analysis of lobular GM volumes obtained with BRAINS showed significantly increased volume from pre-bed rest to in-bed rest in GM of the parietal lobe and the third ventricle. Temporal GM volume at 70 days in bed rest was smaller than that at the first pre-bed rest measurement. Trend analysis showed significant positive linear and negative quadratic relationships between parietal GM and time, a positive linear relationship between third ventricle volume and time, and a negative linear

  9. Re-Emergent Tremor of Parkinson's Disease Masquerading as Essential Tremor

    Directory of Open Access Journals (Sweden)

    Sarah Morgan

    2016-03-01

    Full Text Available Background: The re-emergent tremor of Parkinson’s disease (PD is generally recognized as a postural tremor. Phenomenology Shown: A PD patient with a re-emergent tremor occurring during a task (spiral drawing, which on the surface produced a tremor that resembled that of essential tremor (ET. Educational Value: Researchers and clinicians should be aware of features of this re-emergent tremor to help distinguish it from that of ET.

  10. An ecological approach to prospective and retrospective timing of long durations: a study involving gamers.

    Directory of Open Access Journals (Sweden)

    Simon Tobin

    Full Text Available To date, most studies comparing prospective and retrospective timing have failed to use long durations and tasks with a certain degree of ecological validity. The present study assessed the effect of the timing paradigm on playing video games in a "naturalistic environment" (gaming centers. In addition, as it involved gamers, it provided an opportunity to examine the effect of gaming profile on time estimation. A total of 116 participants were asked to estimate prospectively or retrospectively a video game session lasting 12, 35 or 58 minutes. The results indicate that time is perceived as longer in the prospective paradigm than in the retrospective one, although the variability of estimates is the same. Moreover, the 12-minute session was perceived as longer, proportionally, than the 35- and 58-minute sessions. The study also revealed that the number of hours participants spent playing video games per week was a significant predictor of time estimates. To account for the main findings, the differences between prospective and retrospective timing are discussed in quantitative terms using a proposed theoretical framework, which states that both paradigms use the same cognitive processes, but in different proportions. Finally, the hypothesis that gamers play more because they underestimate time is also discussed.

  11. Acute effects of short and long duration dynamic stretching protocols on muscle strength

    Directory of Open Access Journals (Sweden)

    Christiano Francisco dos Santos

    Full Text Available Objective Compare the acute effects of dynamic stretching protocols on the isokinetic performance of the quadriceps and hamstring muscles at two velocities in adult males.Methodology Included the participation of 14 males (21 ± 2.6 years; 178 ± 0.4 cm; 73.2 ± 20.9 kg were assessed using an isokinetic dynamometer before and after following a short or long-duration dynamic stretching protocol or a control protocol. The results were assessed by a two-way ANOVA and a Scheffé’s post hoc test at a 5% significance level.Results No difference was found in the variables assessed at 180°/s after LDDS. At 60°/s, LDDS reduced the power of the knee flexors. The control protocol reduced the power of the knee flexors and increased the power of the extensors. At 60°/s, the work of the knee flexors exhibited a reduction after LDDS. The control protocol resulted in a reduction in the work of the flexors. The peak torque angle exhibited a reduction in the extensors and flexors after LDDS and SDDS.Conclusion Dynamic stretching did not cause any change in the peak torque, which points to its possible use in activities involving velocity and muscle strength. The executing dynamic stretching before physical activities such as running and high-intensity sports might be beneficial by promoting increases in heart rate and in body temperature.

  12. Game-based versus storyboard-based evaluations of crew support prototypes for long duration missions

    Science.gov (United States)

    Smets, N. J. J. M.; Abbing, M. S.; Neerincx, M. A.; Lindenberg, J.; van Oostendorp, H.

    2010-03-01

    The Mission Execution Crew Assistant (MECA) is developing a distributed system of electronic partners (ePartners) to support astronauts performing nominal and off- nominal actions in long duration missions. The ePartners' support should adequately deal with the dynamics of the context, operations, team and personal conditions, which will change over time substantially. Such support—with the concerning context effects—should be thoroughly tested in all stages of the development process. A major question is how to address the context effects of in-space operations for evaluations of crew support prototypes. Via game-technology, the prototype can be tested with astronauts or their representatives, immersed in the envisioned, simulated context. We investigated if a game-based evaluation better addresses the context effects by producing a more elaborate, in-depth and realistic user experience than a "classical" storyboard-based evaluation. In the game-based evaluation, the participants showed higher arousal levels where expected, a more intense feeling of spatial presence, better situation awareness, and faster performance where needed. Such an evaluation can be used as an alternative or complement of field or micro-world tests when context dynamics cannot be simulated in these last tests cost-efficiently.

  13. Efficient block processing of long duration biotelemetric brain data for health care monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Soumya, I. [Department of E.I.E, GITAM University, Visakhapatnam (India); Zia Ur Rahman, M., E-mail: mdzr-5@ieee.org [Department of E.C.E, K.L. University, Vaddeswaram, Green Fields, Guntur, Andhra Pradesh (India); Rama Koti Reddy, D. V. [Department of Instrumentation Engineering, College of Engineering, Andhra University, Visakhapatnam (India); Lay-Ekuakille, A. [Department of Innovation Engineering, University of Salento, Lecce (Italy)

    2015-03-15

    In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.

  14. Long Duration Exposure Facility experiment M0003 deintegration observation data base

    Science.gov (United States)

    Gyetvay, S. R.; Coggi, J. M.; Meshishnek, M. J.

    1993-01-01

    The four trays (2 leading edge and 2 trailing edge) of the M0003 materials experiment on the Long Duration Exposure Facility (LDEF) contained 1274 samples from 20 subexperiments. The complete sample complement represented a broad range of materials, including thin film optical coatings, paints, polymer sheets and tapes, adhesives, and composites, for use in various spacecraft applications, including thermal control, structures, optics, and solar power. Most subexperiments contained sets of samples exposed on both the leading and trailing edge trays of LDEF. Each individual sample was examined by high resolution optical microscope during the deintegration of the subexperiments from the M0003 trays. Observations of the post-flight condition of the samples made during this examination were recorded in a computer data base. The deintegration observation data base is available to requesters on floppy disk in 4th Dimension for the Macintosh format. Over 3,000 color macrographs and photomicrographs were shot to complement the observation records and to document the condition of the individual samples and of the M0003 trays. The photographs provide a visual comparison of the response of materials in leading and trailing edge LDEF environments. The Aerospace Corporate Archives is distributing photographs of the samples and hard copies of the database records to the general public upon request. Information on obtaining copies of the data base disks and for ordering photographs and records of specific samples or materials are given.

  15. Elimination of Drifts in Long-Duration Monitoring for Apnea-Hypopnea of Human Respiration

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-10-01

    Full Text Available This paper reports a methodology to eliminate an uncertain baseline drift in respiratory monitoring using a thermal airflow sensor exposed in a high humidity environment. Human respiratory airflow usually contains a large amount of moisture (relative humidity, RH > 85%. Water vapors in breathing air condense gradually on the surface of the sensor so as to form a thin water film that leads to a significant sensor drift in long-duration respiratory monitoring. The water film is formed by a combination of condensation and evaporation, and therefore the behavior of the humidity drift is complicated. Fortunately, the exhale and inhale responses of the sensor exhibit distinguishing features that are different from the humidity drift. Using a wavelet analysis method, we removed the baseline drift of the sensor and successfully recovered the respiratory waveform. Finally, we extracted apnea-hypopnea events from the respiratory signals monitored in whole-night sleeps of patients and compared them with golden standard polysomnography (PSG results.

  16. Stressors, stress and stress consequences during long-duration manned space missions: a descriptive model

    Science.gov (United States)

    Geuna, Stefano; Brunelli, Francesco; Perino, Maria A.

    Keeping crew members in good health is a major factor in the success or failure of long-duration manned space missions. Among the many possible agents that can affect the crew's general well-being, stress is certainly one of the most critical because of its implications on human health and performance, both physical and mental. Nevertheless, very few studies have been performed on this fundamental issue and none of them has addressed it in its entirity, considering its diverse physical and psychological aspects. In this work, a descriptive model is proposed to expound the mechanism and sequence of events which mediate stress. A critical analysis of the information provided by past manned spaceflights and by dedicated research performed in analogous environments is presented, and an extrapolation of the available data on human stress in such extreme conditions is proposed. Both internal and external stressors have been identified, at physical and psychosocial levels, thus providing the basis for their early detection and preventive reduction. The possible negative consequences of stress that may lead to disease in crewmembers are described. Finally, the most effective instruments which may be of help in reducing space-related human stress and treating its negative consequences are suggested.

  17. Development of an Indexing Media Filtration System for Long Duration Space Missions

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles derived from multiple biological and material sources. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reduce-gravity flight tests data will be presented. The features of the new filter system may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical.

  18. The application of liquid air energy storage for large scale long duration solutions to grid balancing

    Science.gov (United States)

    Brett, Gareth; Barnett, Matthew

    2014-12-01

    Liquid Air Energy Storage (LAES) provides large scale, long duration energy storage at the point of demand in the 5 MW/20 MWh to 100 MW/1,000 MWh range. LAES combines mature components from the industrial gas and electricity industries assembled in a novel process and is one of the few storage technologies that can be delivered at large scale, with no geographical constraints. The system uses no exotic materials or scarce resources and all major components have a proven lifetime of 25+ years. The system can also integrate low grade waste heat to increase power output. Founded in 2005, Highview Power Storage, is a UK based developer of LAES. The company has taken the concept from academic analysis, through laboratory testing, and in 2011 commissioned the world's first fully integrated system at pilot plant scale (300 kW/2.5 MWh) hosted at SSE's (Scottish & Southern Energy) 80 MW Biomass Plant in Greater London which was partly funded by a Department of Energy and Climate Change (DECC) grant. Highview is now working with commercial customers to deploy multi MW commercial reference plants in the UK and abroad.

  19. Long-duration space exploration and emotional health: Recommendations for conceptualizing and evaluating risk

    Science.gov (United States)

    Alfano, Candice A.; Bower, Joanne L.; Cowie, Jennifer; Lau, Simon; Simpson, Richard J.

    2018-01-01

    Spaceflight to Mars will by far exceed the duration of any previous mission. Although behavioral health risks are routinely highlighted among the most serious threats to crew safety, understanding of specific emotional responses most likely to occur and interfere with mission success has lagged in comparison to other risk domains. Even within the domain of behavioral health, emotional constructs remain to be 'unpacked' to the same extent as other factors such as attention and fatigue. The current paper provides a review of previous studies that have examined emotional responses in isolated, confined, extreme environments (ICE) toward informing a needed research agenda. We include research conducted during space flight, long-duration space simulation analogs, and polar environments and utilize a well-established model of emotion and emotion regulation to conceptualize specific findings. Lastly, we propose four specific directions for future research: (1) use of a guiding theoretical framework for evaluating emotion responses in ICE environments; (2) leveraging multi-method approaches to improve the reliability of subjective reports of emotional health; (3) a priori selection of precise emotional constructs to guide measure selection; and (4) focusing on positive in addition to negative emotion in order to provide a more complete understanding of individual risk and resilience.

  20. Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle

    Science.gov (United States)

    Linne, Diane L.; Palaszewski, Bryan A.; Gokoglu, Suleyman; Gallo, Christopher A.; Balasubramaniam, Ramaswamy; Hegde, Uday G.

    2014-01-01

    The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.

  1. Efficient block processing of long duration biotelemetric brain data for health care monitoring

    International Nuclear Information System (INIS)

    Soumya, I.; Zia Ur Rahman, M.; Rama Koti Reddy, D. V.; Lay-Ekuakille, A.

    2015-01-01

    In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence

  2. Aerobic Capacity Following Long Duration International Spaces Station (ISS) Missions: Preliminary Results

    Science.gov (United States)

    Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.

    2010-01-01

    Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.

  3. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    Science.gov (United States)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  4. Skin temperature increase mediated by wearable, long duration, low-intensity therapeutic ultrasound

    Science.gov (United States)

    Langer, Matthew D.; Huang, Wenyi; Ghanem, Angi; Guo, Yuan; Lewis, George K.

    2017-03-01

    One of the safety concerns with the delivery of therapeutic ultrasound is overheating of the transducer-skin interface due to poor or improper coupling. The objective of this research was to define a model that could be used to calculate the heating in the skin as a result of a novel, wearable long-duration ultrasound device. This model was used to determine that the maximum heating in the skin remained below the minimum threshold necessary to cause thermal injury over multiple hours of use. In addition to this model data, a human clinical study used wire thermocouples on the skin surface to measure heating characteristics during treatment with the sustained ultrasound system. Parametric analysis of the model determined that the maximum temperature increase is at the surface of the skin ranged from 40-41.8° C when perfusion was taken into account. The clinical data agreed well with the model predictions. The average steady state temperature observed across all 44 subjects was 40°C. The maximum temperature observed was less than 44° C, which is clinically safe for over 5 hours of human skin contact. The resultant clinical temperature data paired well with the model data suggesting the model can be used for future transducer and ultrasound system design simulation. As a result, the device was validated for thermal safety for typical users and use conditions.

  5. Behavioral Issues Associated With Long Duration Space Expeditions: Review and Analysis of Astronaut Journals

    Science.gov (United States)

    Struster, Jack

    2010-01-01

    Personal journals maintained by NASA astronauts during six-month expeditions onboard the International Space Station were analyzed to obtain information concerning a wide range of behavioral and human factors issues. Astronauts wrote most about their work, followed by outside communications (with mission control, family, and friends), adjustment to the conditions, interactions with crew mates, recreation/leisure, equipment (installation, maintenance), events (launches, docking, hurricanes, etc.), organization/management, sleep, and food. The study found evidence of a decline in morale during the third quarters of the missions and identified key factors that contribute to sustained adjustment and optimal performance during long-duration space expeditions. Astronauts reported that they benefited personally from writing in their journals because it helped maintain perspective on their work and relations with others. Responses to questions asked before, during, and after the expeditions show that living and working onboard the ISS is not as difficult as the astronauts anticipate before starting their six-month tours of duty. Recommendations include application of study results and continuation of the experiment to obtain additional data as crew size increases and operations evolve.

  6. Long-duration planar direct-drive hydrodynamics experiments on the NIF

    Science.gov (United States)

    Casner, A.; Mailliet, C.; Khan, S. F.; Martinez, D.; Izumi, N.; Kalantar, D.; Di Nicola, P.; Di Nicola, J. M.; Le Bel, E.; Igumenshchev, I.; Tikhonchuk, V. T.; Remington, B. A.; Masse, L.; Smalyuk, V. A.

    2018-01-01

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF) and the laser megajoule provide unique platforms to study the physics of turbulent mixing flows in high energy density plasmas. We report here on the commissioning of a novel planar direct-drive platform on the NIF, which allows the acceleration of targets during 30 ns. Planar plastic samples were directly irradiated by 300-450 kJ of UV laser light (351 nm) and a very good planarity of the laser drive is demonstrated. No detrimental effect of imprint is observed in the case of these thick plastic targets (300 μm), which is beneficial for future academic experiments requesting similar irradiation conditions. The long-duration direct-drive (DD) platform is thereafter harnessed to study the ablative Rayleigh-Taylor instability (RTI) in DD. The growth of two-dimensional pre-imposed perturbations is quantified through time-resolved face-on x-ray radiography and used as a benchmark for radiative hydrocode simulations. The ablative RTI is then quantified in its highly nonlinear stage starting from intentionally large 3D imprinted broadband modulations. Two generations of bubble mergers is observed for the first time in DD, as a result of the unprecedented long laser acceleration.

  7. Strategies for improving performance in long duration events: Olympic distance triathlon.

    Science.gov (United States)

    Hausswirth, Christophe; Brisswalter, Jeanick

    2008-01-01

    This review focuses on strategic aspects that may affect performance in a long-duration Olympic event, the Olympic distance triathlon. Given the variety of races during the Olympic Games triathlon, strategic aspects include improving technological features as well as energetics factors affecting overall triathlon performance. During the last decade, many studies have attempted to identify factors reducing the metabolic load associated (or not) with the development of fatigue process by analysing the relationship between metabolic and biomechanical factors with exercise duration. To date, a consensus exists about the benefit of adopting a drafting position during the swimming or the cycling part of the triathlon. Other potential strategic factors, such as the production of power output or the selection of cadence during the cycling or the running leg, are likely to affect the overall triathlon performance. Within this approach, pacing strategies are observed by elite athletes who swim or cycle in a sheltered position, inducing several changes of pace, intensity or stochastic shifts in the amplitude of the physiological responses. The analysis of these parameters appears to arouse some experimental and practical interest from researchers and coachers, especially for long-distance Olympic events.

  8. Behavior and Performance on Long-Duration Spaceflights: Evidence from Analogue Environments

    Science.gov (United States)

    Palinkas, Lawrence A.; Gunderson, E. K. Eric; Johnson, Jeffrey C.; Holland, Albert W.

    1999-01-01

    Analyses of data collected in Antarctica since 1963 were conducted to identify features of behavior and performance likely to occur during long-duration missions in space.The influence of mission duration and station latitude on POMS mood scores was examined in 450 American men and women who overwintered in Antarctica between 1991 and 1998. The influence of crewmember social characteristics, personality traits, interpersonal needs, and station environments on measures of behavior and performance at the end of the austral winter was examined in 657 American men who overwintered between 1963 and 1974. Both data sets were used to examine the influence of crew social structure on individual performance. Results: Seasonal variations in mood appear to be associated with the altered diurnal cycle and psychological segmentation of the mission. Concurrent measures of personality, interpersonal needs, and coping styles are better predictors of depressed mood and peer-supervisor performance evaluations than baseline measures because of the unique features of the station social and physical environments and the absence of resources typically used to cope with stress elsewhere. Individuals in crews with a clique structure report significantly more depression, anxiety, anger, fatigue and confusion than individuals in crews with a core-periphery structure. Depressed mood is inversely associated with severity of station physical environment, supporting the existence of a positive or "salutogenic" effect for individuals seeking challenging experiences in extreme environments.

  9. Special considerations for qualifying thin films for super pressure pumpkin ultra long duration balloon missions

    Science.gov (United States)

    Said, Magdi A.

    2004-01-01

    The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.

  10. Search method for long-duration gravitational-wave transients from neutron stars

    International Nuclear Information System (INIS)

    Prix, R.; Giampanis, S.; Messenger, C.

    2011-01-01

    We introduce a search method for a new class of gravitational-wave signals, namely, long-duration O(hours-weeks) transients from spinning neutron stars. We discuss the astrophysical motivation from glitch relaxation models and we derive a rough estimate for the maximal expected signal strength based on the superfluid excess rotational energy. The transient signal model considered here extends the traditional class of infinite-duration continuous-wave signals by a finite start-time and duration. We derive a multidetector Bayes factor for these signals in Gaussian noise using F-statistic amplitude priors, which simplifies the detection statistic and allows for an efficient implementation. We consider both a fully coherent statistic, which is computationally limited to directed searches for known pulsars, and a cheaper semicoherent variant, suitable for wide parameter-space searches for transients from unknown neutron stars. We have tested our method by Monte-Carlo simulation, and we find that it outperforms orthodox maximum-likelihood approaches both in sensitivity and in parameter-estimation quality.

  11. Leak Mitigation in Mechanically Pumped Fluid Loops for Long Duration Space Missions

    Science.gov (United States)

    Miller, Jennifer R.; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Bhandari, Pradeep; Lee, Darlene; Karlmann, Paul; Liu, Yuanming

    2013-01-01

    Mechanically pumped fluid loops (MPFLs) are increasingly considered for spacecraft thermal control. A concern for long duration space missions is the leak of fluid leading to performance degradation or potential loop failure. An understanding of leak rate through analysis, as well as destructive and non-destructive testing, provides a verifiable means to quantify leak rates. The system can be appropriately designed to maintain safe operating pressures and temperatures throughout the mission. Two MPFLs on the Mars Science Laboratory Spacecraft, launched November 26, 2011, maintain the temperature of sensitive electronics and science instruments within a -40 deg C to 50 deg C range during launch, cruise, and Mars surface operations. With over 100 meters of complex tubing, fittings, joints, flex lines, and pumps, the system must maintain a minimum pressure through all phases of the mission to provide appropriate performance. This paper describes the process of design, qualification, test, verification, and validation of the components and assemblies employed to minimize risks associated with excessive fluid leaks from pumped fluid loop systems.

  12. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    Science.gov (United States)

    Bohnhoff-Hlavacek, Gail

    1992-09-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  13. Slip rate and tremor genesis in Cascadia

    Science.gov (United States)

    Wech, Aaron G.; Bartlow, Noel M.

    2014-01-01

    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  14. Countermeasures to Mitigate the Negative Impact of Sensory Deprivation and Social Isolation in Long-Duration Space Flight

    Science.gov (United States)

    Bachman, Katharine Ridgeway OBrien; Otto, Christian; Leveton, Lauren

    2012-01-01

    Long-duration space flight presents several challenges to the behavioral health of crew members. The environment that they are likely to experience will be isolated, confined, and extreme (ICE) and, as such, crew members will experience extreme sensory deprivation and social isolation. The current paper briefly notes the behavioral, cognitive, and affective consequences of psychological stress induced by ICE environments and proposes nine countermeasures aimed at mitigating the negative effects of sensory deprivation and social isolation. Implementation of countermeasures aims to maintain successful crew performance and psychological well-being in a long-duration space flight mission.

  15. Characterizing Orthostatic Tremor Using a Smartphone Application.

    Science.gov (United States)

    Balachandar, Arjun; Fasano, Alfonso

    2017-01-01

    Orthostatic tremor is one of the few tremor conditions requiring an electromyogram for definitive diagnosis since leg tremor might not be visible to the naked eye. An iOS application (iSeismometer, ObjectGraph LLC, New York) using an Apple iPhone 5 (Cupertino, CA, USA) inserted into the patient's sock detected a tremor with a frequency of 16.4 Hz on both legs. The rapid and straightforward accelerometer-based recordings accomplished in this patient demonstrate the ease with which quantitative analysis of orthostatic tremor can be conducted and, importantly, demonstrates the potential application of this approach in the assessment of any lower limb tremor.

  16. Improving Sensorimotor Adaptation Following Long Duration Space Flight by Enhancing Vestibular Information Transfer

    Science.gov (United States)

    Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.; hide

    2014-01-01

    Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after gravitational transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" - immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance to enhance information transfer by improving the brain's ability to detect vestibular signals (Vestibular Stochastic Resonance, VSR) especially when combined with balance training exercises such as sensorimotor adaptability (SA) training for rapid improvement in functional skill, for standing and mobility. This countermeasure to improve detection of vestibular signals is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation). To determine efficacy of vestibular stimulation on physiological and perceptual responses during otolith-canal conflicts and dynamic perturbations we have conducted a series of studies: We have shown that imperceptible binaural bipolar electrical stimulation of the vestibular system across the mastoids enhances balance performance in the mediolateral (ML) plane while standing on an unstable surface. We have followed up on the previous study showing VSR stimulation improved balance

  17. Focal Gray Matter Plasticity as a Function of Long Duration Bedrest: Preliminary Results

    Science.gov (United States)

    Koppelmans, V.; Erdeniz, B.; De Dios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. It is unknown whether and how spaceflight impacts sensorimotor brain structure and function, and whether such changes may potentially underlie behavioral effects. Long duration head down tilt bed rest has been used repeatedly as an exclusionary analog to study microgravity effects on the sensorimotor system [1]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. We are currently testing sensorimotor function, brain structure, and brain function pre and post a 70-day bed rest period. We will acquire the same measures on NASA crewmembers starting in 2014. Here we present the results of the first eight bed rest subjects. Subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility, UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM. Focal changes in white matter microstructural integrity were assessed using tract based spatial statistics (TBSS) as part of the FMRIB software library (FSL). TBSS registers all DTI scans to standard space. It subsequently creates a study specific white matter skeleton of the major white matter tracts. Non-parametric permutation based t-tests and ANOVA's were used for voxel-wise comparison of the skeletons. For both VBM and TBSS, comparison of the two pre bed rest measurements did not show significant differences. VBM analysis revealed decreased gray matter density in bilateral areas including the frontal medial cortex, the insular cortex and the caudate nucleus

  18. Continuity and Change in Family's Role in Long-Duration Space Missions

    Science.gov (United States)

    Johnson, Phyllis

    As long-duration missions become commonplace, it will be important to consider the effect of the astronaut's career on his/her family, and the role of family in supporting that career. In the short history of the space program, archival information about three long-duration programs- Skylab, Shuttle-Mir, and the International Space Station—-provides valuable information about the astronauts' adjustment to increasingly longer times in space. These sources potentially include the astronaut's views about the role of family in that adjustment. The purpose of this paper is to present a qualitative analysis of the astronauts' views about the role family played in his/her career, as well as the effect of the astronaut career on his/her family. Specifically, what roles did family play, e.g., being there at important events, accepting the importance of the astronaut career? How did astronauts view the effects of separation, risks, and publicity on their family? How much did astronauts emphasize dealing with separation through communication with family? How consistent have astronauts' views remained over the three types of missions which have spanned from 1973 to today? The data base for this qualitative study is the Johnson Space Center oral histories for astronauts who participated in Skylab or Shuttle-Mir, and the Johnson Space Center archives of ISS mission journals and logs, and pre-flight interviews with ISS astronauts. Male astronauts are the main focus of the change-over-time information as only one woman participated in Shuttle- Mir and no women were in the Skylab program. However, qualitative data will be presented about female astronauts on ISS and on Shuttle-Mir for some comparative information by sex for those programs. Skylab preliminary findings: Having a wife and parents who were supportive made all of the difference in the astronaut career. It would not have been possible to maintain some semblance of family life without the wife's managing it. Private

  19. Development of an Integrated Countermeasure Device for Long Duration Space Flight and Exploration Missions

    Science.gov (United States)

    Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.

    2010-01-01

    Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can

  20. A new population of ultra-long duration gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J.; Brown, G. C.; Tunnicliffe, R. L. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R.; Starling, R. L. C.; Wiersema, K.; Page, K. L.; Wynn, G. A.; O' Brien, P. T. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Schulze, S. [Pontificia Universidad Católica de Chile, Departamento de Astronomía y Astrofísica, Casilla 306, Santiago 22 (Chile); Chornock, R.; Malesani, D.; Watson, D.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hjorth, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Københaven Ø (Denmark); Cenko, S. B. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fruchter, A. S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD21218 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavk (Iceland); Bersier, D., E-mail: a.j.levan@warwick.ac.uk [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); and others

    2014-01-20

    We present comprehensive multiwavelength observations of three gamma-ray bursts (GRBs) with durations of several thousand seconds. We demonstrate that these events are extragalactic transients; in particular, we resolve the long-standing conundrum of the distance of GRB 101225A (the 'Christmas-day burst'), finding it to have a redshift z = 0.847 and showing that two apparently similar events (GRB 111209A and GRB 121027A) lie at z = 0.677 and z = 1.773, respectively. The systems show extremely unusual X-ray and optical light curves, very different from classical GRBs, with long-lasting, highly variable X-ray emission and optical light curves that exhibit little correlation with the behavior seen in the X-ray. Their host galaxies are faint, compact, and highly star-forming dwarf galaxies, typical of 'blue compact galaxies'. We propose that these bursts are the prototypes of a hitherto largely unrecognized population of ultra-long GRBs, which while observationally difficult to detect may be astrophysically relatively common. The long durations may naturally be explained by the engine-driven explosions of stars of much larger radii than normally considered for GRB progenitors, which are thought to have compact Wolf-Rayet progenitor stars. However, we cannot unambiguously identify supernova signatures within their light curves or spectra. We also consider the alternative possibility that they arise from the tidal disruption of stars by massive black holes and conclude that the associated timescales are only consistent with the disruption of compact stars (e.g., white dwarfs) by black holes of relatively low mass (<10{sup 5} M {sub ☉}).

  1. Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae

    Science.gov (United States)

    Aguilera-Dena, David R.; Langer, Norbert; Moriya, Takashi J.; Schootemeijer, Abel

    2018-05-01

    We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M ⊙…100 M ⊙). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to {10}-2 {M}ȯ {yr}}-1 in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M ⊙ as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M ⊙. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.

  2. OUTPACE long duration stations: physical variability, context of biogeochemical sampling, and evaluation of sampling strategy

    Directory of Open Access Journals (Sweden)

    A. de Verneil

    2018-04-01

    Full Text Available Research cruises to quantify biogeochemical fluxes in the ocean require taking measurements at stations lasting at least several days. A popular experimental design is the quasi-Lagrangian drifter, often mounted with in situ incubations or sediment traps that follow the flow of water over time. After initial drifter deployment, the ship tracks the drifter for continuing measurements that are supposed to represent the same water environment. An outstanding question is how to best determine whether this is true. During the Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE cruise, from 18 February to 3 April 2015 in the western tropical South Pacific, three separate stations of long duration (five days over the upper 500 m were conducted in this quasi-Lagrangian sampling scheme. Here we present physical data to provide context for these three stations and to assess whether the sampling strategy worked, i.e., that a single body of water was sampled. After analyzing tracer variability and local water circulation at each station, we identify water layers and times where the drifter risks encountering another body of water. While almost no realization of this sampling scheme will be truly Lagrangian, due to the presence of vertical shear, the depth-resolved observations during the three stations show most layers sampled sufficiently homogeneous physical environments during OUTPACE. By directly addressing the concerns raised by these quasi-Lagrangian sampling platforms, a protocol of best practices can begin to be formulated so that future research campaigns include the complementary datasets and analyses presented here to verify the appropriate use of the drifter platform.

  3. Evaluation of the long duration efficiency of the ECC storage facility of Cogema La Hague plant

    International Nuclear Information System (INIS)

    Baganz, C.; Bouland, P.; Breton, E.

    2004-01-01

    The ECC facility of Cogema La Hague has been designed in view of the storage of 24000 CSD-C type containers produced by the ACC facility. It comprises a reception and unloading unit, and a modular storage unit (alveoles). The safety of the facility is based on: a controlled ventilation (low pressurization rooms, controlled atmosphere, heat and toxic gases evacuation), a construction ensuring the static confinement, the sub-criticality and the radiological protection, and the possibility of natural ventilation of the alveoles (earthquake-dimensioned equipments). On the basis of these safety functions, the conformability of the facility with respect to long duration has been analyzed considering three aspects of the facility: the infrastructure, the waste packages and the ventilation system. In normal operation, a foreseeable service life of at least 100 years is established: simpleness and accessibility of ventilation systems, no significant corrosion of packages, durability of the reinforced concrete structure. The demonstration of a service life greater than 100 years would require the improvement of our knowledge about concretes in terms of experience feedback. The behaviour of the facility in terms of loss of technical mastery has been considered too. The scenario retained for this situation is the prolonged stoppage (several months or years) of the nuclear ventilation after a 100 years of disposal. After this period of time, both the thermal power and the hydrogen generation from waste packages will have significantly diminished, allowing a loss of technical mastery era of several years with no impact on concretes integrity. However, during long situations of non-controlled atmosphere, the corrosion behaviour of stainless steels is not predictable. (J.S.)

  4. Artificial Gravity: Will it Preserve Bone Health on Long-Duration Missions?

    Science.gov (United States)

    Davis-Street, Janis; Paloski, William H.

    2005-01-01

    Prolonged microgravity exposure disrupts bone, muscle, and cardiovascular homeostasis, sensory-motor coordination, immune function, and behavioral performance. Bone loss, in particular, remains a serious impediment to the success of exploration-class missions by increasing the risks of bone fracture and renal stone formation for crew members. Current countermeasures, consisting primarily of resistive and aerobic exercise, have not yet proven fully successful for preventing bone loss during long-duration spaceflight. While other bone-specific countermeasures, such as pharmacological therapy and dietary modifications, are under consideration, countermeasure approaches that simultaneously address multiple physiologic systems may be more desirable for exploration-class missions, particularly if they can provide effective protection at reduced mission resource requirements (up-mass, power, crew time, etc). The most robust of the multi-system approaches under consideration, artificial gravity (AG), could prevent all of the microgravity-related physiological changes from occurring. The potential methods for realizing an artificial gravity countermeasure are reviewed, as well as selected animal and human studies evaluating the effects of artificial gravity on bone function. Future plans for the study of the multi-system effects of artificial gravity include a joint, cooperative international effort that will systematically seek an optimal prescription for intermittent AG to preserve bone, muscle, and cardiovascular function in human subjects deconditioned by 6 degree head-down-tilt-bed rest. It is concluded that AG has great promise as a multi-system countermeasure, but that further research is required to determine the appropriate parameters for implementation of such a countermeasure for exploration-class missions.

  5. A new TDRSS Compatible Transceiver for Long Duration HIgh Altitude Scientific Balloon Missions

    Science.gov (United States)

    Stilwell, B.; Siemon, M.

    High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to several weeks. Longer missions with durations of up to 100 days (Ultra-Long) are on the drawing board. An enabling technology for the growth of the scientific balloon missions is the use of the NASA Tracking and Data Relay Satellite System (TDRSS) for telemetering the health, status, position and payload science data to mission operations personnel. The TDRSS system provides global coverage by relaying the data through geostationary relay satellites to a single ground station in White Sands New Mexico. Data passes from the White Sands station to the user via commercial telecommunications services including the Internet. A forward command link can also be established to the balloon for real- time command and control. Early TDRSS communications equipment used by the National Scientific Balloon Facility was either unreliable or too expensive. The equipment must be a le tob endure the rigors of space flight including radiation exposure, high temperature extremes and the shock of landing and recovery. Since a payload may occasionally be lost, the cost of the TDRSS communications gear is a limiting factor in the number of missions that can be supported. Under sponsorship of the NSBF, General Dynamics Decision Systems has developed a new TDRSS compatible transceiver that reduces the size, weight and cost to approximately one half that of the prior generation of hardware. This paper describes the long and ultra-long balloon missions and the role that TDRSS communications plays in mission success. The new transceiver design is described, along with its interfaces, performance characteristics, qualification and production status. The transceiver can also be used in other space, avionics or

  6. Habitability and Human Factors: Lessons Learned in Long Duration Space Flight

    Science.gov (United States)

    Baggerman, Susan D.; Rando, Cynthia M.; Duvall, Laura E.

    2006-01-01

    This study documents the investigation of qualitative habitability and human factors feedback provided by scientists, engineers, and crewmembers on lessons learned from the ISS Program. A thorough review and understanding of this data is critical in charting NASA's future path in space exploration. NASA has been involved in ensuring that the needs of crewmembers to live and work safely and effectively in space have been met throughout the ISS Program. Human factors and habitability data has been collected from every U.S. crewmember that has resided on the ISS. The knowledge gained from both the developers and inhabitants of the ISS have provided a significant resource of information for NASA and will be used in future space exploration. The recurring issues have been tracked and documented; the top 5 most critical issues have been identified from this data. The top 5 identified problems were: excessive onsrbit stowage; environment; communication; procedures; and inadequate design of systems and equipment. Lessons learned from these issues will be used to aid in future improvements and developments to the space program. Full analysis of the habitability and human factors data has led to the following recommendations. It is critical for human factors to be involved early in the design of space vehicles and hardware. Human factors requirements need to be readdressed and redefined given the knowledge gained during previous ISS and long-duration space flight programs. These requirements must be integrated into vehicle and hardware technical documentation and consistently enforced. Lastly, space vehicles and hardware must be designed with primary focus on the user/operator to successfully complete missions and maintain a safe working environment. Implementation of these lessons learned will significantly improve NASA's likelihood of success in future space endeavors.

  7. Long Duration Head-Down Tilt Bed Rest Studies: Safety Considerations Regarding Vision Health

    Science.gov (United States)

    Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, Robert; Taibbi, G.; Vizzeri, G.

    2012-01-01

    Visual symptoms reported in astronauts returning from long duration missions in low Earth orbit, including hyperopic shift, choroidal folds, globe flattening and papilledema, are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, safety considerations have been raised regarding the ocular health of head-down tilt (HDT) bed rest subjects. HDT is a widely used ground ]based analog that simulates physiological changes of spaceflight, including fluid shifts. Thus, vision monitoring has been performed in bed rest subjects in order to evaluate the safety of HDT with respect to vision health. Here we report ocular outcomes in 9 healthy subjects (age range: 27-48 years; Male/Female ratio: 8/1) completing bed rest Campaign 11, an integrated, multidisciplinary 70-day 6 degrees HDT bed rest study. Vision examinations were performed on a weekly basis, and consisted of office-based (2 pre- and 2 post-bed rest) and in-bed testing. The experimental design was a repeated measures design, with measurements for both eyes taken for each subject at each planned time point. Findings for the following tests were all reported as normal in each testing session for every subject: modified Amsler grid, red dot test, confrontational visual fields, color vision and fundus photography. Overall, no statistically significant differences were observed for any of the measures, except for both near and far visual acuity, which increased during the course of the study. This difference is not considered clinically relevant as may result from the effect of learning. Intraocular pressure results suggest a small increase at the beginning of the bed rest phase (p=0.059) and lesser increase at post-bed rest with respect to baseline (p=0.046). These preliminary results provide the basis for further analyses that will include correlations between intraocular pressure change pre- and post-bed rest, and optical coherence

  8. Virtual reality based surgical assistance and training system for long duration space missions.

    Science.gov (United States)

    Montgomery, K; Thonier, G; Stephanides, M; Schendel, S

    2001-01-01

    Access to medical care during long duration space missions is extremely important. Numerous unanticipated medical problems will need to be addressed promptly and efficiently. Although telemedicine provides a convenient tool for remote diagnosis and treatment, it is impractical due to the long delay between data transmission and reception to Earth. While a well-trained surgeon-internist-astronaut would be an essential addition to the crew, the vast number of potential medical problems necessitate instant access to computerized, skill-enhancing and diagnostic tools. A functional prototype of a virtual reality based surgical training and assistance tool was created at our center, using low-power, small, lightweight components that would be easy to transport on a space mission. The system consists of a tracked, head-mounted display, a computer system, and a number of tracked surgical instruments. The software provides a real-time surgical simulation system with integrated monitoring and information retrieval and a voice input/output subsystem. Initial medical content for the system has been created, comprising craniofacial, hand, inner ear, and general anatomy, as well as information on a number of surgical procedures and techniques. One surgical specialty in particular, microsurgery, was provided as a full simulation due to its long training requirements, significant impact on result due to experience, and likelihood for need. However, the system is easily adapted to realistically simulate a large number of other surgical procedures. By providing a general system for surgical simulation and assistance, the astronaut-surgeon can maintain their skills, acquire new specialty skills, and use tools for computer-based surgical planning and assistance to minimize overall crew and mission risk.

  9. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  10. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    Science.gov (United States)

    Parnell, T. A.

    1992-01-01

    The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently

  11. Development and Provision of Functional Foods to Promote Health on Long-Duration Space Missions

    Science.gov (United States)

    Bermudez-Aguirre, D.; Cooper, M. R.; Douglas, G.; Smith, S.

    2016-01-01

    During long-duration NASA space missions, such as proposed missions to Mars, astronauts may experience negative physiological effects such as bone loss. Functional foods such as high-lycopene, high-flavonoids and high-omega-3 products and fruits and vegetables may mitigate the negative effects of spaceflight on physiological factors including the bone health of crewmembers. Previous studies showed that current ISS provisions provide high-lycopene and high-omega-3 food items but the variety is limited, which could promote menu fatigue. Bioactive compounds can degrade like other chemical compounds and lose functionality. The native concentrations and stability of bioactive compounds have never been determined in spaceflight foods, and adequate information is not available for commercial products for the storage durations required for space exploration (5 years). The purpose of this task is to develop new spaceflight foods that are high in omega-3 fatty acids, lycopene, or flavonoids, identify commercial products with these bioactive compounds that meet spaceflight requirements, and define the stability of these nutrients in storage to enable purposeful functional food incorporation into the space food system. The impact of storage temperature on the stability of lutein, lycopene, beta-carotene, omega-3 fatty acids, phenolics, anthocyanins and sterols is being studied in 12 ISS menu items stored at three different temperatures (4, 21, 35 degree C) over 2 years. Additionally, nutrient and quality stability are being assessed on a larger food set stored at 21 degree C over 2 years that contains twelve newly developed foods, 10 commercial products repackaged to spaceflight requirements, and another 5 current ISS menu items expected to be good sources of omega-3 fatty acids, lycopene, or flavonoids. All items were shipped overnight to the Linus Pauling Institute at Oregon State University (Corvalis, OR) after processing and 1-year of storage and analyzed for bioactive

  12. Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight

    Science.gov (United States)

    Rosenberg, M. J. F.; Reschke, M. F.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; May-Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.; hide

    2016-01-01

    BACKGROUND: Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel, we must prepare for unassisted landings, where crewmembers may need to perform mission critical tasks within minutes of landing. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment (FT) will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. METHODS: FT is an ongoing study of 30 long-duration ISS crewmembers. Thus far, 9 have completed the full FT (5 U.S. Orbital Segment [USOS] astronauts and 4 Russian cosmonauts) and 4 more consented and launching within the next year. This is in addition to the eighteen crewmembers that participated in the pilot FT (11 USOS and 7 Russian crewmembers). The FT is conducted three times preflight and three times during the first 24 hours after landing. All crewmembers were tested in Kazakhstan in either the medical tent at the Soyuz landing site (one hour post-landing), or at the airport (four hours post-landing). The USOS crewmembers were also tested at the refueling stop (12 hours post-landing) and at the NASA Johnson Space Center (24 hours post-landing) and a final session 7 days post-landing. Crewmembers are instrumented with 9 inertial measurement unit sensors that measure acceleration and angular displacement (APDM's Emerald Sensors) and foot pressure-sensing insoles that measure force, acceleration, and center of pressure (Moticon GmbH, Munich, Germany) along with heart rate and blood pressure recording instrumentation. The FT consists of 12 tasks, but here we will focus on the most challenging task, the Tandem Walk, which was also

  13. Infrasonic harmonic tremor and degassing bursts from Halema'uma'u Crater, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Fee, David; Garcés, Milton; Patrick, Matt; Chouet, Bernard; Dawson, Phil; Swanson, Donald A.

    2010-01-01

    The formation, evolution, collapse, and subsequent resurrection of a vent within Halema'uma'u Crater, Kilauea Volcano, produced energetic and varied degassing signals recorded by a nearby infrasound array between 2008 and early 2009. After 25 years of quiescence, a vent-clearing explosive burst on 19 March 2008 produced a clear, complex acoustic signal. Near-continuous harmonic infrasonic tremor followed this burst until 4 December 2008, when a period of decreased degassing occurred. The tremor spectra suggest volume oscillation and reverberation of a shallow gas-filled cavity beneath the vent. The dominant tremor peak can be sustained through Helmholtz oscillations of the cavity, while the secondary tremor peak and overtones are interpreted assuming acoustic resonance. The dominant tremor frequency matches the oscillation frequency of the gas emanating from the vent observed by video. Tremor spectra and power are also correlated with cavity geometry and dynamics, with the cavity depth estimated at ~219 m and volume ~3 x 106 m3 in November 2008. Over 21 varied degassing bursts were observed with extended burst durations and frequency content consistent with a transient release of gas exciting the cavity into resonance. Correlation of infrasound with seismicity suggests an open system connecting the atmosphere to the seismic excitation process at depth. Numerous degassing bursts produced very long period (0.03-0.1 Hz) infrasound, the first recorded at Kilauea, indicative of long-duration atmospheric accelerations. Kilauea infrasound appears controlled by the exsolution of gas from the magma, and the interaction of this gas with the conduits and cavities confining it.

  14. Cosmic ray nucleonic intensity in low-amplitude days during the passage of high-speed solar wind streams

    International Nuclear Information System (INIS)

    Agarwal, R.; Mishra, R.K.; Tiwari, S.; or rm_jbp@yahoo.co.in

    2008-01-01

    One of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically. (Authors)

  15. Analyses of Magnetic Resonance Imaging of Cerebrospinal Fluid Dynamics Pre and Post Short and Long-Duration Space Flights

    Science.gov (United States)

    Alperin, Noam; Barr, Yael; Lee, Sang H.; Mason,Sara; Bagci, Ahmet M.

    2015-01-01

    Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to post-flight changes in total cerebral blood flow (CBF) and craniospinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. Median CPG scores of the short and long-duration cohorts were similar, 2. Mean preflight total CBF for the short and long-duration cohorts were similar, 863+/-144 and 747+/-119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to post-flight changes in the craniospinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 4. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5. Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed

  16. Modified ECC ozone sonde for long-duration flights aboard isopicnic drifting balloons

    Science.gov (United States)

    Gheusi, Francois; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clénet, Antoine; Fontaine, Alain; Jambert, Corinne; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2015-04-01

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPB) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electrochemical concentration cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (owing to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPB. The mechanical elements (Teflon pump and motor) and the electrochemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, a strategy has been adopted of short measurement sequences (typically 2-3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Consequently, the measurement sequence is typically composed of a one-minute spin-up period after the pump has been turned on, followed by a one- to two-minute acquisition period. All time intervals can be adjusted before and during the flight. Results of a preliminary ground-based test in spring 2012 are first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then we illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during summer field campaings in 2012 and 2013 (TRAQA and ChArMEx programmes). BLPB drifting

  17. Projected changes to short- and long-duration precipitation extremes over the Canadian Prairie Provinces

    Science.gov (United States)

    Masud, M. B.; Khaliq, M. N.; Wheater, H. S.

    2017-09-01

    The effects of climate change on April-October short- and long-duration precipitation extremes over the Canadian Prairie Provinces were evaluated using a multi-Regional Climate Model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by the National Centre for Environmental Prediction (NCEP) reanalysis II product for the 1981-2000 period and those driven by four Atmosphere-Ocean General Circulation Models (AOGCMs) for the current 1971-2000 and future 2041-2070 periods (i.e. a total of 11 current-to-future period simulation pairs). A regional frequency analysis approach was used to develop 2-, 5-, 10-, 25-, and 50-year return values of precipitation extremes from NCEP and AOGCM-driven current and future period simulations that respectively were used to study the performance of RCMs and projected changes for selected return values at regional, grid-cell and local scales. Performance errors due to internal dynamics and physics of RCMs studied for the 1981-2000 period reveal considerable variation in the performance of the RCMs. However, the performance errors were found to be much smaller for RCM ensemble averages than for individual RCMs. Projected changes in future climate to selected regional return values of short-duration (e.g. 15- and 30-min) precipitation extremes and for longer return periods (e.g. 50-year) were found to be mostly larger than those to the longer duration (e.g. 24- and 48-h) extremes and short return periods (e.g. 2-year). Overall, projected changes in precipitation extremes were larger for southeastern regions followed by southern and northern regions and smaller for southwestern and western regions of the study area. The changes to return values were also found to be statistically significant for the majority of the RCM-AOGCM simulation pairs. These projections might be useful as a key input for the future planning of urban

  18. Dynamic Visual Acuity and Landing Sickness in Crewmembers Returning from Long-Duration Spaceflight

    Science.gov (United States)

    Rosenberg, M.J.F; Peters, B.T.; Reschke, M. F.

    2016-01-01

    Long-term exposure to microgravity causes sensorimotor adaptations that result in functional deficits upon returning to a gravitational environment. At landing the vestibular system and the central nervous system, responsible for coordinating head and eye movements, are adapted to microgravity and must re-adapt to the gravitational environment. This re-adaptation causes decrements in gaze control and dynamic visual acuity, with astronauts reporting oscillopsia and blurred vision. Dynamic visual acuity (DVA) is assessed using an oscillating chair developed in the Neuroscience Laboratory at JSC. This chair is lightweight and easily portable for quick deployment in the field. The base of the chair is spring-loaded and allows for manual oscillation of the subject. Using a metronome, the chair is vertically oscillated plus or minus 2 cm at 2 Hz by an operator, to simulate walking. While the subject is being oscillated, they are asked to discern the direction of Landolt-C optotypes of varying sizes and record their direction using a gamepad. The visual acuity thresholds are determined using an algorithm that alters the size of the optotype based on the previous response of the subject using a forced-choice best parameter estimation that is able to rapidly converge on the threshold value. Visual acuity thresholds were determined both for static (seated) and dynamic (oscillating) conditions. Dynamic visual acuity is defined as the difference between the dynamic and static conditions. Dynamic visual acuity measures will be taken prior to flight (typically L-180, L-90, and L-60) and up to eight times after landing, including up to 3 times on R plus 0. Follow up measurements will be taken at R plus 1 (approximately 36 hours after landing). Long-duration International Space Station crewmembers will be tested once at the refueling stop in Europe and once again upon return to Johnson Space Center. In addition to DVA, subjective ratings of motion sickness will be recorded

  19. The Reduction and Treatment of Serious Mental Illness during Long Duration Space Mission.

    Science.gov (United States)

    Mardon, Austin; Nichol, Kenneth; Mardon, Catherine; Mardon, Austin

    It is well known in the history of terrestrial naval expeditions that members of long expeditions could and did suffered from serious mental illnesses. Depression and even psychosis could inflict crew members, and in serious cases this sometimes resulted in violence directed towards others or themselves. There was little that the medical practitioners of the time could do to alleviate these illnesses. Modern psychiatry operates within a paradigm of the normalcy of the modern western standard of living. When we place humans outside these normal experiences, we place them in vulnerable positions. For the foreseeable future, spaceflight will continue to result in extremely physically, mentally and spiritually arduous expeditions. As we start our journey towards Mars and beyond, the time humans will be in the isolation of space, and subjected to these extraordinary stresses, will increase. The recent incident where an American astronaut had a mental collapse and was criminally charged is indicative of this real possibility. One solution could be to have more pre-screening but this only goes so far, especially when the rigorous training and the actual mission might cause psychological problems that were never present before hand. Eastern and Western philosophies and religious systems can provide a framework to draw upon to strengthen the mental and spiritual psyche of the astronauts on a long duration expedition. Meditative techniques and prayer techniques, if within the belief system of the astronaut, might serve to prevent or ameliorate the severity of a mental collapse should it occur during a space mission. Many of the American astronauts that went to the Moon reported having intense emotional and spiritual reactions based on the intensity of their experiences. For several of these men, the courses of their lives were changed. What astronauts will face by going back to the Moon and further a field to Mars, will be dangerous and extremely mentally taxing. At the

  20. Characterization of thermomechanical damage on tungsten surfaces during long-duration plasma transients

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, David, E-mail: david.rivera.ucla@gmail.com; Crosby, Tamer; Sheng, Andrew; Ghoniem, Nasr M.

    2014-12-15

    A new experimental facility constructed at UCLA for the simulation of high heat flux effects on plasma-facing materials is described. The High Energy Flux Test Facility (HEFTY) is equipped with a Praxair model SG-100 plasma gun, which is nominally rated at 80 kW of continuous operation, of which approximately 30 kW reaches the target due to thermal losses. The gun is used to impart high intermittent heat flux to metal samples mounted within a cylindrical chamber. The system is capable of delivering an instantaneous heat flux in the range of 30–300 MW/m{sup 2}, depending on sample proximity to the gun. The duration of the plasma heat flux is in the range of 1–1000 s, making it ideal for studies of mild plasma transients of relatively long duration. Tungsten and tungsten-copper alloy metal samples are tested in these transient heat flux conditions, and the surface is characterized for damage evaluation using optical, SEM, XRD, and micro-fabrication techniques. Results from a Finite Element (FE) thermo-elastoplasticity model indicate that during the heat-up phase of a plasma transient pulse, the majority of the sample surface is under compressive stresses leading to plastic deformation of the surface. Upon sample cooling, the recovered elastic strain of cooler parts of the sample exceeds that from parts that deformed plastically, resulting in a tensile surface self-stress (residual surface stress). The intensity of the residual tensile surface stress is experimentally correlated with the onset of complex surface fracture morphology on the tungsten surface, and extending below the surface region. Micro-compression mechanical tests of W micro-pillars show that the material has significant plasticity, failing by a “barreling” mode before plasma exposure, and by normal dislocation slip and localized shear after plasma exposure. Ongoing modeling of the complex thermo-fracture process, coupled with elasto-plasticity is based on a phase field approach for distributed

  1. Adapted ECC ozonesonde for long-duration flights aboard boundary-layer pressurised balloons

    Science.gov (United States)

    Gheusi, François; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clenet, Antoine; Derrien, Solène; Doerenbecher, Alexis; El Amraoui, Laaziz; Fontaine, Alain; Hache, Emeric; Jambert, Corinne; Jaumouillé, Elodie; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2016-12-01

    Since the 1970s, the French space agency CNES has developed boundary-layer pressurised balloons (BLPBs) with the capability to transport lightweight scientific payloads at isopycnic level and offer a quasi-Lagrangian sampling of the lower atmosphere over very long distances and durations (up to several weeks).Electrochemical concentration cell (ECC) ozonesondes are widely used under small sounding balloons. However, their autonomy is limited to a few hours owing to power consumption and electrolyte evaporation. An adaptation of the ECC sonde has been developed specifically for long-duration BLPB flights. Compared to conventional ECC sondes, the main feature is the possibility of programming periodic measurement sequences (with possible remote control during the flight). To increase the ozonesonde autonomy, the strategy has been adopted of short measurement sequences (2-3 min) regularly spaced in time (e.g. every 15 min). The rest of the time, the sonde pump is turned off. Results of preliminary ground-based tests are first presented. In particular, the sonde was able to provide correct ozone concentrations against a reference UV-absorption ozone analyser every 15 min for 4 days. Then we illustrate results from 16 BLBP flights launched over the western Mediterranean during three summer field campaigns of the ChArMEx project (http://charmex.lsce.ipsl.fr): TRAQA in 2012, and ADRIMED and SAFMED in 2013. BLPB drifting altitudes were in the range 0.25-3.2 km. The longest flight lasted more than 32 h and covered more than 1000 km. Satisfactory data were obtained when compared to independent ozone measurements close in space and time. The quasi-Lagrangian measurements allowed a first look at ozone diurnal evolution in the marine boundary layer as well as in the lower free troposphere. During some flight segments, there was indication of photochemical ozone production in the marine boundary layer or even in the free troposphere, at rates ranging from 1 to 2 ppbv h -1, which

  2. The Clinical Evaluation of Parkinson's Tremor

    NARCIS (Netherlands)

    Zach, H.; Dirkx, M.; Bloem, B.R.; Helmich, R.C.

    2015-01-01

    Parkinson's disease harbours many different tremors that differ in distribution, frequency, and context in which they occur. A good clinical tremor assessment is important for weighing up possible differential diagnoses of Parkinson's disease, but also to measure the severity of the tremor as a

  3. Women and Couples in Isolated Extreme Environments: Applications for Long-Duration Missions

    Science.gov (United States)

    Leon, G. R.; Sandal, G. M.

    Analysis of the functioning of different types of expedition teams provides a range of analogs from which to make judgments about human limitations during long-duration space exploration, and possible countermeasures for dealing with these problems. Some of the limitations identified are the tendency for participants in all-male groups to be higWy competitive and unlikely to share personal concerns with each other. Women in mixed-gender groups often experience interpersonal stress because male team members confide concerns to them, although not necessarily encouraging reciprocal sharing. Women have also been found to take the role of "peacemakers", reducing competition and tension among male participants. Three multinational polar expedition groups were studied that varied in crew composition and nature of the environmental and work conditions. Group 1 consisted of two women who skied the length of the Antarctic continent on a 97 day traverse, hauling sleds weighing up to 114 kg. The participants were highly compatible in interests and prior expedition experience, and in appreciation of the knowledge and judgment of their partner. Assessment measures were as follows: Multidimensional Personality Inventory (MPQ), Personality Characteristics Inventory (PCI), and Utrecht Coping List (UCL) completed prior to the expedition; Weekly Rating Form (WRF) examining intra/interpersonal variables, work performance, and environmental factors during the trek; semi-structured interview conducted at the end of the expedition. Roth team members scored relatively high on the MPQ personality trait of Absorption; they also were classified as "the right stuff' based on PCI findings. Bach provided emotional support to her teammate during difficult times, yet respected the others' autonomy and self -esteem. A dyadic process of shared cognition was evident in the substantial similarities in approach to solving problems, and the cooperative nature of decision making. Group 2 was composed of

  4. Locomotor Dysfunction after Long-duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    Science.gov (United States)

    Mulavara, Ajitkumar; Wood, Scott; Cohen, Helen; Bloomberg, Jacob

    2012-07-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth's gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight. Eighteen astronauts performed two tests of locomotion before and after 6 months of space flight: a treadmill walking test to examine vestibular reflexive mechanisms controlling head

  5. Challenges of archiving science data from long duration missions: the Rosetta case

    Science.gov (United States)

    Heather, David

    2016-07-01

    's planetary science data holdings), and will help to soften the impact of some of the issues that have arisen with managing missions such as Rosetta in the existing framework. Conclusions: Development and management of the Rosetta science archive has been a significant challenge, due in part to the long duration of the mission and the corresponding need for development of the archive infrastructure and of the archiving process to manage these changes. The definition of a single set of conventions to manage the diverse suite of instruments, targets and indeed archiving authorities on Rosetta over this time has been a major issue, as has the need to evolve the validation processes that allow the data to be fully ingested and released to the community. This presentation will discuss the many issues faced by the PSA in the archiving of data from Rosetta, and the approach taken to resolve them. Lessons learned will be presented along with recommendations for other archiving authorities who will in future have the need to design and operate a science archive for long duration and international missions.

  6. Foreshock search over a long duration using a method of setting appropriate criteria

    Science.gov (United States)

    Toyomoto, Y.; Kawakata, H.; Hirano, S.; Doi, I.

    2016-12-01

    Recently, small foreshocks have been detected using cross-correlation techniques (e.g., Bouchon et al., 2011) in which the foreshocks are identified when the cross-correlation coefficient (CC) exceeded a certain threshold. For some shallow intraplate earthquakes, foreshocks whose hypocenters were estimated to be adjacent to the main shock hypocenter were detected from several tens of minutes before the main shock occurrence (Doi and Kawakata, 2012; 2013). At least two problems remain in the cross-correlation techniques employed. First, previous studies on foreshocks used data whose durations are at most a month (Kato et al., 2013); this is insufficient to check if such events occurred only before the main shock occurrence or not. Second, CC is used for detection criteria without considering validity of the threshold. In this study, we search for foreshocks of an M 5.4 earthquake in central Nagano prefecture in Japan on June 30, 2011 with a vertical-component waveform at N.MWDH (Hi-net) station due to one of the cataloged foreshocks (M 1) as a template to calculate CC. We calculate CC between the template and continuous waveforms of the same component at the same station for two years before the main shock occurrence, and we try to overcome the problems mentioned above. We find that histogram of CC is well modeled with the normal distribution, which is similar to previous studies on tremors (e.g., Ohta and Ide, 2008). According to the model, the expected number of misdetection is less than 1 when CC > 0.63. Therefore, we regard that the waveform is due to a foreshock when CC > 0.63. As a result, foreshocks are detected only within thirteen hours immediately before the main shock occurrence for the two years. By setting an appropriate threshold, we conclude that foreshocks just before the main shock occurrence are not stationary events. Acknowledgments: We use continuous waveform records of NIED high sensitivity seismograph network in Japan (Hi-net) and the JMA

  7. Polypyrrole Actuators for Tremor Suppression

    DEFF Research Database (Denmark)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse

    2003-01-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers...... exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants...

  8. Internal tremor in Parkinson's disease, multiple sclerosis, and essential tremor.

    Science.gov (United States)

    Cochrane, Graham D; Rizvi, Syed; Abrantes, Ana; Crabtree, Brigid; Cahill, Jonathan; Friedman, Joseph H

    2015-10-01

    Internal tremor (IT) is a poorly recognized symptom that has been described in Parkinson's disease (PD). Described as a feeling of tremor in the extremities or trunk without actual movement, ITs are not debilitating but can be bothersome to patients. The origin of the sensation is unknown., and ITs may be prevalent in other diseases than PD. The present study sought to expand knowledge about IT by confirming their presence in PD, and determining their prevalence in Multiple Sclerosis (MS), and Essential Tremor (ET). A survey was developed in order to determine the prevalence of IT in PD, MS, and ET and to learn what associations with various disease characteristics were present. The survey was administered to 89 consecutive PD, 70 MS, and 11 ET patients. ITs were found to be a prevalent symptom in all three disorders (32.6% of PD, 35.9% of MS, and 54.5% of ET subjects reported experiencing ITs). ITs were found to be associated both with the subjects' perceived levels of anxiety and the presence of visible tremors. ITs appear to be a common symptom in all three disorders studied. These results need to be confirmed and compared to appropriate control populations. Copyright © 2015. Published by Elsevier Ltd.

  9. Effects of Long Duration Spaceflight on Venous and Arterial Compliance in Astronants

    Science.gov (United States)

    Platts, Steven; Ribeiro, L. Christine

    2014-01-01

    noninvasive measures of venous and arterial compliance are altered by long-duration spaceflight exposure in ISS astronauts and whether these changes are related to the development of the VIIP syndrome. (Flight) 2. To determine whether previous spaceflight experience predispose astronauts to lower venous compliance and/or the development of the VIIP syndrome. (Ground + Flight) 3. To use a 14-day, 6deg head-down-tilt bed rest as a model of spaceflight, to evaluate the effect of aging on vascular compliance using a subject population similar to younger (25-35 yr) and older (45-55 yr) astronaut cohorts. (Bed Rest) 4. To determine what factors contribute to lower venous compliance and/or the development of the VIIP syndrome in astronauts. (Data Mining) 3. Earth Applications This research may inform the mechanisms that regulate blood/fluid flow in and out of the brain in the head and neck. This information may help with understanding of the mechanisms behind idiopathic intracranial hypertension. 4. Link to NASA Taskbook Entry Not Yet Available

  10. Development of Countermeasures to Aid Functional Egress from the Crew Exploration Vehicle Following Long Duration Spaceflight

    Science.gov (United States)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Fisher, Elizabeth; Wood, Scott; Serrador, Jorge; Peters, Brian; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2009-01-01

    assist and hence enhance the response of neural systems to relevant, subthreshold sensory signals. Application of subthreshold stochastic resonance noise coupled to sensory input either through the proprioceptive, visual or vestibular sensory systems, has been shown to improve motor function. Crew members who have adapted to microgravity have acquired new sensorimotor strategies that take time to discard. We hypothesize that detection of time-critical subthreshold sensory signals will play a crucial role in improving strategic responses and thus the rate of skill re-acquisition will be faster, leading to faster recovery of function during their re-adaptation to Earth G. Therefore, we expect the use of stochastic resonance mechanisms will enhance the acquisition of new strategic abilities. This process should ensure rapid restoration of functional egress capabilities during the initial return to Earth G after prolonged space flight. Therefore, the overall goals of this project are to investigate performance of motor and visual tasks during varying sea state conditions and develop a countermeasure based on stochastic resonance that could be implemented to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to Earth s gravity, allowing rapid CEV egress on water in varying sea states following long-duration space flight.

  11. Medical and surgical treatment of tremors.

    Science.gov (United States)

    Schneider, Susanne A; Deuschl, Günther

    2015-02-01

    Tremor is a hyperkinetic movement disorder characterized by rhythmic oscillations of one or more body parts. Disease severity ranges from mild to severe with various degrees of impact on quality of life. Essential tremor and parkinsonian tremor are the most common etiologic subtypes. Treatment may be challenging; although several drugs are available, response may be unsatisfactory. For some tremor forms, controlled data are scarce or completely missing and treatment is often based on anecdotal evidence. In this article, we review the current literature on tremor treatment, with a focus on common forms. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Tectonic Tremor analysis with the Taiwan Chelungpu-Fault Drilling Program (TCDP) downhole seismometer array

    Science.gov (United States)

    Lin, Y.; Hillers, G.; Ma, K.; Campillo, M.

    2011-12-01

    We study tectonic tremor activity in the Taichung area, Taiwan, analyzing continuous seismic records from 6 short-period sensors of the TCDP borehole array situated around 1 km depth. The low background noise level facilitates the detection of low-amplitude tectonic tremor and low-frequency earthquake (LFE) waveforms. We apply a hierarchical analysis to first detect transient amplitude increases, and to subsequently verify its tectonic origin, i.e. to associate it with tremor signals. The frequency content of tremor usually exceeds the background noise around 2-8 Hz; hence, in the first step, we use BHS1, BHS4 and BHS7 (top, center, bottom sensor) records to detect amplitude anomalies in this frequency range. We calculate the smoothed spectra of 30 second non-overlapping windows taken daily from 5 night time hours to avoid increased day time amplitudes associated with cultural activities. Amplitude detection is then performed on frequency dependent median values of 5 minute advancing, 10 minute long time windows, yielding a series of threshold dependent increased-energy spectra-envelopes, indicating teleseismic waveforms, potential tremor records, or other transients related to anthropogenic or natural sources. To verify the transients' tectonic origin, potential tremor waveforms detected by the amplitude method are manually picked in the time domain. We apply the Brown et al. (2008) LFE matched filter technique to three-component data from the 6 available sensors. Initial few-second templates are taken from the analyst-picked, minute-long segments, and correlated component-wise with 24-h data. Significantly increased similarity between templates and matched waveform segments is detected using the array-average 7-fold MAD measure. Harvested waveforms associated with this initial `weak' detection are stacked, and the thus created master templates are used in an iterative correlation procedure to arrive at robust LFE detections. The increased similarity of waveforms

  13. Male Astronauts Have Greater Bone Loss and Risk of Hip Fracture Following Long Duration Spaceflights than Females

    Science.gov (United States)

    Ellman, Rachel; Sibonga, Jean; Bouxsein, Mary

    2010-01-01

    This slide presentation reviews bone loss in males and compares it to female bone loss during long duration spaceflight. The study indicates that males suffer greater bone loss than females and have a greater risk of hip fracture. Two possible reason for the greater male bone loss are that the pre-menopausal females have the estrogen protection and the greater strength of men max out the exercise equipment that provide a limited resistance to 135 kg.

  14. [Speech-related tremor of lips: a focal task-specific tremor].

    Science.gov (United States)

    Morita, Shuhei; Takagi, Rieko; Miwa, Hideto; Kondo, Tomoyoshi

    2002-04-01

    We report a 66-year-old Japanese woman in whom tremor of lips appeared during speech. Her past and family histories were unremarkable. On neurological examination, there was no abnormal finding except the lip tremor. Results of laboratory findings were all within normal levels. Her MRI and EEG were normal. Surface EMG studies revealed that regular grouped discharges at a frequency of about 4-5 Hz appeared in the orbicularis oris muscle only during voluntary speaking. The tremor was not observed under conditions of a purposeless phonation or a vocalization of a simple word, suggesting that the tremor was not a vocal tremor but a task-specific tremor related to speaking. Administration of a beta-blocker and consumption of small amount of alcohol could effectively improve the tremor, possibly suggesting that this type of tremor might be a clinical variant of essential tremor.

  15. Diagnosis and Treatment of Common Forms of Tremor

    Science.gov (United States)

    Puschmann, Andreas; Wszolek, Zbigniew K.

    2014-01-01

    Tremor is the most common movement disorder presenting to an outpatient neurology practice and is defined as a rhythmical, involuntary oscillatory movement of a body part. The authors review the clinical examination, classification, and diagnosis of tremor. The pathophysiology of the more common forms of tremor is outlined, and treatment options are discussed. Essential tremor is characterized primarily by postural and action tremors, may be a neurodegenerative disorder with pathologic changes in the cerebellum, and can be treated with a wide range of pharmacologic and nonpharmacologic methods. Tremor at rest is typical for Parkinson’s disease, but may arise independently of a dopaminergic deficit. Enhanced physiologic tremor, intention tremor, and dystonic tremor are discussed. Further differential diagnoses described in this review include drug- or toxin-induced tremor, neuropathic tremor, psychogenic tremor, orthostatic tremor, palatal tremor, tremor in Wilson’s disease, and tremor secondary to cerebral lesions, such as Holmes’ tremor (midbrain tremor). An individualized approach to treatment of tremor patients is important, taking into account the degree of disability, including social embarrassment, which the tremor causes in the patient’s life. PMID:21321834

  16. Harmaline Tremor: Underlying Mechanisms in a Potential Animal Model of Essential Tremor

    Directory of Open Access Journals (Sweden)

    Adrian Handforth

    2012-09-01

    Full Text Available Background: Harmaline and harmine are tremorigenic β-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor.Methods: Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these β-carbolines on mammalian tissue, animals, or humans.Results: Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel.Discussion: Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials.

  17. Using Portable Transducers to Measure Tremor Severity

    Directory of Open Access Journals (Sweden)

    Rodger Elble

    2016-05-01

    Full Text Available Background: Portable motion transducers, suitable for measuring tremor, are now available at a reasonable cost. The use of these transducers requires knowledge of their limitations and data analysis. The purpose of this review is to provide a practical overview and example software for using portable motion transducers in the quantification of tremor. Methods: Medline was searched via PubMed.gov in December 2015 using the Boolean expression “tremor AND (accelerometer OR accelerometry OR gyroscope OR inertial measurement unit OR digitizing tablet OR transducer.” Abstracts of 419 papers dating back to 1964 were reviewed for relevant portable transducers and methods of tremor analysis, and 105 papers written in English were reviewed in detail. Results: Accelerometers, gyroscopes, and digitizing tablets are used most commonly, but few are sold for the purpose of measuring tremor. Consequently, most software for tremor analysis is developed by the user. Wearable transducers are capable of recording tremor continuously, in the absence of a clinician. Tremor amplitude, frequency, and occurrence (percentage of time with tremor can be computed. Tremor amplitude and occurrence correlate strongly with clinical ratings of tremor severity. Discussion: Transducers provide measurements of tremor amplitude that are objective, precise, and valid, but the precision and accuracy of transducers are mitigated by natural variability in tremor amplitude. This variability is so great that the minimum detectable change in amplitude, exceeding random variability, is comparable for scales and transducers. Research is needed to determine the feasibility of detecting smaller change using averaged data from continuous long-term recordings with wearable transducers.

  18. Olfaction and essential tremor Olfato no tremor essencial

    Directory of Open Access Journals (Sweden)

    Lucas Barasnevicius Quagliato

    2009-03-01

    Full Text Available OBJECTIVE: To characterize the olfactory identification in 40 essential tremor (ET patients, with the University of Pennsylvania 12 Smell Identification Test (UPSIT, to correlate UPSIT scores to clinical and epidemiological data and to compare it to 89 aged matched controls. METHOD: Patients were assessed using ET Clinical Scale of Evaluation and UPSIT. RESULTS: In patients with ET, the UPSIT medium score was 9.10, similar to the control group (9.11, which was also observed in all age groups. ET severity did not correlate to UPSIT scores. CONCLUSION: This study demonstrated normality of olfactory identification on ET, qualifying UPSIT to be an important tool on tremor differential diagnosis of undetermined origin.OBJETIVO: Caracterizar a identificação olfatória em 40 pacientes com tremor essencial, através do Teste de Identificação de 12 Cheiros da Universidade de Pensilvânia (TICUP, correlacioná-la aos dados clínicos e epidemiológicos e compará-la com 89 indivíduos normais. MÉTODO: Os pacientes foram avaliados com a Escala Clínica de Avaliação do TE e com o TICUP. RESULTADOS: A média de acertos no TICUP nos pacientes com TE foi 9,10, semelhante à do grupo controle (9,11, sendo isso observado em todas as faixas etárias. A gravidade do TE não se correlacionou com o resultado do TICUP. CONCLUSÃO: Este estudo demonstrou normalidade da identificação olfatória no TE, qualificando o TICUP como ferramenta importante no diagnóstico diferencial dos tremores de causa indeterminada.

  19. Differential Diagnosis of Parkinson Disease, Essential Tremor, and Enhanced Physiological Tremor with the Tremor Analysis of EMG

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2017-01-01

    Full Text Available We investigate the differential diagnostic value of tremor analysis of EMG on Parkinson’s disease (PD, essential tremor (ET, and enhanced physiological tremor (EPT. Clinical data from 25 patients with PD, 20 patients with ET, and 20 patients with EPT were collected. The tremor frequency and muscle contraction pattern of the resting, posture, and 500 g and 1000 g overload were recorded. The frequency of PD tremor was 4–6 Hz, and the frequency of ET was also in this range; the frequency of EPT is 6–12 hz having some overlap with PD. The muscle contraction patterns of the ET and EPT group were mainly synchronous contraction, and the muscle contraction mode of the PD group was mainly alternating contraction. Having tremor latency from rest to postural position and having changes in tremor amplitude after mental concentration in PD might distinguish ET. Tremor analysis of EMG was able to distinguish PD from ET and EPT by varying the tremor frequency and muscle contraction pattern. It can also differentiate between PD and ET by the latency and concentration effect and ET and EPT by weight load effect.

  20. Low-Amplitude Topographic Features and Textures on the Moon: Initial Results from Detrended Lunar Orbiter Laser Altimeter (LOLA) Topography

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2016-01-01

    Global lunar topographic data derived from ranging measurements by the Lunar Orbiter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a median topography in a circular sliding window. We found that despite complicated distortions caused by the non-linear nature of the detrending procedure, visual inspection of these data facilitates identification of low-amplitude gently-sloping geomorphic features. We present specific examples of patterns of lava flows forming the lunar maria and revealing compound flow fields, a new class of lava flow complex on the Moon. We also highlight the identification of linear tectonic features that otherwise are obscured in the images and topographic data processed in a more traditional manner.

  1. GSC4813-0981 = V921 Mon, a new low-amplitude δ Scuti star with variable amplitude

    Science.gov (United States)

    Galeev, A.; Bikmaev, I.; Shimansky, V.; Deminova, N.

    2014-11-01

    GSC 4813-0981 = V921 Mon is a low-amplitude δ Scuti-type variable with an amplitude of 0.018^m-0.027^m in different bands and a period of 48.5 minutes. The fundamental parameters of the atmosphere and physical characteristics, determined from medium-resolution spectra, are: T_{eff}=8700 K, log g=3.95 dex, [M/H]=0, M=1.7 M_{⊙}, R=2.3 R_{⊙}. We performed a long-term analysis of the variations using a ten-year data set of CCD observations (2003-2013) acquired in BVR with the 1.5-m Russian-Turkish telescope (RTT150, TUBITAK National Observatory). A preliminary result is that the amplitude of the variability changes; it was decreasing during 2003-2008, but is now increasing.

  2. Characterizing Orthostatic Tremor Using a Smartphone Application

    Directory of Open Access Journals (Sweden)

    Arjun Balachandar

    2017-07-01

    Full Text Available Background: Orthostatic tremor is one of the few tremor conditions requiring an electromyogram for definitive diagnosis since leg tremor might not be visible to the naked eye.Phenomenology Shown: An iOS application (iSeismometer, ObjectGraph LLC, New York using an Apple iPhone 5 (Cupertino, CA, USA inserted into the patient’s sock detected a tremor with a frequency of 16.4 Hz on both legs.Educational Value: The rapid and straightforward accelerometer-based recordings accomplished in this patient demonstrate the ease with which quantitative analysis of orthostatic tremor can be conducted and, importantly, demonstrates the potential application of this approach in the assessment of any lower limb tremor

  3. Rest tremor in idiopathic adult-onset dystonia.

    Science.gov (United States)

    Gigante, A F; Berardelli, A; Defazio, G

    2016-05-01

    Tremor in dystonia has been described as a postural or kinetic abnormality. In recent series, however, patients with idiopathic adult-onset dystonia also displayed rest tremor. The frequency and distribution of rest tremor were studied in a cohort of 173 consecutive Italian patients affected by various forms of idiopathic adult-onset dystonia attending our movement disorder clinic over 8 months. Examination revealed tremor in 59/173 patients (34%): 12 patients had head tremor, 34 patients had arm tremor, whilst 13 patients presented tremor in both sites. Head tremor was postural in all patients, whereas arm tremor was postural/kinetic in 28 patients, only at rest in one and both postural/kinetic and at rest in 18 patients. Patients with tremor were more likely to have segmental/multifocal dystonia. Patients who had rest tremor (either alone or associated with action tremor) had a higher age at dystonia onset and a greater frequency of dystonic arm involvement than patients with action tremor alone or without tremor. Both action and rest tremor are part of the tremor spectrum of adult-onset dystonia and are more frequently encountered in segmental/multifocal dystonia. The higher age at dystonia onset and the greater frequency of arm dystonia in patients with rest tremor may have pathophysiological implications and may account, at least in part, for the previous lack of identification of rest tremor as one possible type of tremor present in dystonia. © 2016 EAN.

  4. Thalamic Deep Brain Stimulation for Essential Tremor Also Reduces Voice Tremor.

    Science.gov (United States)

    Kundu, Bornali; Schrock, Lauren; Davis, Tyler; House, Paul A

    2017-12-12

    Voice tremor is a common feature of essential tremor (ET) that is difficult to treat medically and significantly affects quality of life. Deep brain stimulation (DBS) of the ventral intermediate nucleus (Vim) of the thalamus is effective in improving contralateral distal limb tremor and has been shown in limited studies to affect voice tremor. Our objective was to retrospectively evaluate whether Vim-DBS used to treat patients with essential motor tremor also effectively treated underlying concurrent voice tremor and assess whether particular lead locations were favorable for treating vocal tremor. In this retrospective cohort study, patients had unilateral or bilateral lead placement and were monitored for up to 12 months. We used the Fahn-Tolosa-Marin (FTM) subscore to assess vocal tremor. Changes in vocal tremor before and after stimulation and over several sessions were assessed. Of the 77 patients who met the inclusion criteria and were treated for essential tremor, 20 (26%) patients had vocal tremor prior to stimulation. Active Vim-DBS decreased the amplitude of voice tremor by 80% (p centroid of stimulation showed that Vim thalamic stimulation that is more anterior on average yielded better voice tremor control, significantly so on the left side (p < 0.05). Additionally, there was improvement in head, tongue, and face tremor scores (p < 0.05). Unilateral and bilateral Vim-DBS targeted to treat the motor component of essential tremor also dramatically decreased the amplitude of voice tremor in this group of patients, suggesting a potential benefit of this treatment for affected patients. © 2017 International Neuromodulation Society.

  5. Epidemiologic Analyses of Risk Factors for Bone Loss and Recovery Related to Long-Duration Space Flight

    Science.gov (United States)

    Sibonga, Jean; Amin, Shreyasee

    2010-01-01

    AIM 1: To investigate the risk of microgravity exposure on long-term changes in bone health and fracture risk. compare data from crew members ("observed") with what would be "expected" from Rochester Bone Health Study. AIM 2: To provide a summary of current evidence available on potential risk factors for bone loss, recovery & fracture following long-duration space flight. integrative review of all data pre, in-, and post-flight across disciplines (cardiovascular, nutrition, muscle, etc.) and their relation to bone loss and recovery

  6. Operations planning simulation model extension study. Volume 1: Long duration exposure facility ST-01-A automated payload

    Science.gov (United States)

    Marks, D. A.; Gendiellee, R. E.; Kelly, T. M.; Giovannello, M. A.

    1974-01-01

    Ground processing and operation activities for selected automated and sortie payloads are evaluated. Functional flow activities are expanded to identify payload launch site facility and support requirements. Payload definitions are analyzed from the launch site ground processing viewpoint and then processed through the expanded functional flow activities. The requirements generated from the evaluation are compared with those contained in the data sheets. The following payloads were included in the evaluation: Long Duration Exposure Facility; Life Sciences Shuttle Laboratory; Biomedical Experiments Scientific Satellite; Dedicated Solar Sortie Mission; Magnetic Spectrometer; and Mariner Jupiter Orbiter. The expanded functional flow activities and descriptions for the automated and sortie payloads at the launch site are presented.

  7. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  8. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  9. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo

    2010-01-01

    We compare the redshifts, host galaxy metallicities, and isotropic (E γ,iso ) and beaming-corrected (E γ ) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z γ,iso , or E γ . These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  10. Control of lithium tremor with propranolol.

    Science.gov (United States)

    Lapierre, Y D

    1976-04-03

    Lithium tremor is an irregular, nonrhythmic tremor of the distal extremities, variable in both intensity and frequency. It is clinically differentiated from essential tremor and tremors due to anxiety and neuroleptics. The pathophysiologic mechanisms are hypothesized to be of perpheral origin. Five patients were successfully treated with propranolol. In general, the dosage of propranolol must be individually adjusted and is usually from 30 to 40 mg daily in divided doses. This blocker of beta-adrenergic receptors remains effective with long-term administration and increases in dosage are not required.

  11. Differences in striatal dopamine transporter density between tremor dominant and non-tremor Parkinson's disease

    International Nuclear Information System (INIS)

    Kaasinen, Valtteri; Kinos, Maija; Joutsa, Juho; Seppaenen, Marko; Noponen, Tommi

    2014-01-01

    Parkinson's disease (PD) can manifest with a tremor-dominant or a non-tremor (akinetic-rigid) phenotype. Although the tremor-dominant subtype may show a better prognosis, there is limited information on the phenotypic differences regarding the level of striatal dopamine transmission. The present study investigated striatal dopamine transporter (DAT) binding characteristics in a large sample of patients with and without tremor. [ 123 I]FP-CIT SPECT scans of 231 patients with a clinical diagnosis of PD and abnormal FP-CIT binding (157 with tremor, 74 without tremor) and 230 control patients with normal FP-CIT binding (148 with tremor, 82 without tremor) were analysed using an automated region-of-interest analysis of the scans (BRASS). Specific striatal binding ratios were compared between phenotypes and groups using age, sex, and symptom duration, predominant side of symptoms, dopaminergic medications and scanner as covariates. Patients with PD had 28.1 - 65.0 % lower binding in all striatal regions compared to controls (p < 0.001). The mean FP-CIT caudate nucleus uptake and the left caudate nucleus uptake were higher in PD patients with tremor than in PD patients without tremor (mean 9.0 % higher, left 10.5 % higher; p < 0.05), whereas there were no differences between tremor and non-tremor control patients. No significant effects of tremor on DAT binding were observed in the anterior or posterior putamen. The motor phenotype is associated with the extent of caudate dopamine terminal loss in PD, as dopamine function is relatively more preserved in tremor patients. Symptom type is related to caudate dopamine function only in association with Parkinsonian dopaminergic degeneration, not in intact dopamine systems in patients with non-PD tremor. (orig.)

  12. Remediation of Cr(VI) contaminated soil using long-duration sodium thiosulfate supported by micro–nano networks

    International Nuclear Information System (INIS)

    He, Lulu; Wang, Min; Zhang, Guilong; Qiu, Guannan; Cai, Dongqing; Wu, Zhengyan; Zhang, Xin

    2015-01-01

    Highlights: • This work aims to develop a long-duration remediation agent (LRA). • LRA was obtained using Na 2 S 2 O 3 supported by attapulgite (ATP) micro–nano networks. • ATP micro–nano networks was induced by high-energy electron beam irradiation. • LRA can effectively control the migration of Cr(VI) and reducing Cr(VI) to Cr(III). • LRA displayed high performance on the remediation of heavy metal contaminated soil. - Abstract: In this work, a long-duration remediation agent (LRA) on hexavalent chromium (Cr(VI)) was developed using sodium thiosulfate (ST) supported by attapulgite (ATP) micro–nano networks induced through high-energy electron beam (HEEB) irradiation. The ATP networks could effectively reduce the leaching amount of Cr(VI) in soil. More importantly, the ATP networks could significantly control the leaching behavior of ST, and then prolong the duration and increase the reduction efficiency of ST on Cr(VI). As a result, LRA displayed high performance on controlling the migration of Cr(VI) and reducing Cr(VI) to Cr(III). Additionally, pot experiment indicated that LRA could effectively decrease the absorbed amount of Cr(VI) in corn, and reduce the inhibition effect of Cr(VI) on the growth of corn. Therefore, this work could provide a facile approach to remediate the Cr(VI)-contaminated soil and lower the harmful effect of Cr(VI) on crop

  13. Men and Women in Space: Bone Loss and Kidney Stone Risk after Long-Duration Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.; Heer, Martina; Hudson, Edgar, K.; Shackelford, Linda; Morgan, Jennifer L. L.

    2014-01-01

    Bone loss on Earth is more prevalent in women than men, leading to the assumption that women may be at greater risk from bone loss during flight. Until recently, the number of women having flown long-duration missions was too small to allow any type of statistical analysis. We report here data from 42 astronauts on long-duration missions to the International Space Station, 33 men and 9 women. Bone mineral density (dual-energy X-ray absorptiometry), bone biochemistry (from blood and urine samples), and renal stone risk factors were evaluated before and after flight. Data were analyzed in two groups, based on available resistance exercise equipment. The response of bone mineral density to flight was the same for men and women, and the typical decrease in bone mineral density (whole body and/or regional) after flight was not observed for either sex for those using an Advanced Resistive Exercise Device. Bone biochemistry, specifically markers of formation and resorption, generally responded similarly in male and female astronauts. The response of urinary supersaturation risk to space flight was not significantly different between men and women, although risks were typically increased after flight in both groups and risks were generally greater in men than in women before and after flight. Overall, the bone and renal stone responses of men and women to space flight were not different.

  14. Revealing the ecological content of long-duration audio-recordings of the environment through clustering and visualisation.

    Science.gov (United States)

    Phillips, Yvonne F; Towsey, Michael; Roe, Paul

    2018-01-01

    Audio recordings of the environment are an increasingly important technique to monitor biodiversity and ecosystem function. While the acquisition of long-duration recordings is becoming easier and cheaper, the analysis and interpretation of that audio remains a significant research area. The issue addressed in this paper is the automated reduction of environmental audio data to facilitate ecological investigations. We describe a method that first reduces environmental audio to vectors of acoustic indices, which are then clustered. This can reduce the audio data by six to eight orders of magnitude yet retain useful ecological information. We describe techniques to visualise sequences of cluster occurrence (using for example, diel plots, rose plots) that assist interpretation of environmental audio. Colour coding acoustic clusters allows months and years of audio data to be visualised in a single image. These techniques are useful in identifying and indexing the contents of long-duration audio recordings. They could also play an important role in monitoring long-term changes in species abundance brought about by habitat degradation and/or restoration.

  15. Remediation of Cr(VI) contaminated soil using long-duration sodium thiosulfate supported by micro–nano networks

    Energy Technology Data Exchange (ETDEWEB)

    He, Lulu [School of Life Sciences, Anhui Agricultural University, Hefei 230036 (China); Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Wang, Min; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Qiu, Guannan [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Zhang, Xin, E-mail: xinzhang@ahau.edu.cn [School of Life Sciences, Anhui Agricultural University, Hefei 230036 (China)

    2015-08-30

    Highlights: • This work aims to develop a long-duration remediation agent (LRA). • LRA was obtained using Na{sub 2}S{sub 2}O{sub 3} supported by attapulgite (ATP) micro–nano networks. • ATP micro–nano networks was induced by high-energy electron beam irradiation. • LRA can effectively control the migration of Cr(VI) and reducing Cr(VI) to Cr(III). • LRA displayed high performance on the remediation of heavy metal contaminated soil. - Abstract: In this work, a long-duration remediation agent (LRA) on hexavalent chromium (Cr(VI)) was developed using sodium thiosulfate (ST) supported by attapulgite (ATP) micro–nano networks induced through high-energy electron beam (HEEB) irradiation. The ATP networks could effectively reduce the leaching amount of Cr(VI) in soil. More importantly, the ATP networks could significantly control the leaching behavior of ST, and then prolong the duration and increase the reduction efficiency of ST on Cr(VI). As a result, LRA displayed high performance on controlling the migration of Cr(VI) and reducing Cr(VI) to Cr(III). Additionally, pot experiment indicated that LRA could effectively decrease the absorbed amount of Cr(VI) in corn, and reduce the inhibition effect of Cr(VI) on the growth of corn. Therefore, this work could provide a facile approach to remediate the Cr(VI)-contaminated soil and lower the harmful effect of Cr(VI) on crop.

  16. Tremor in neurodegenerative ataxias, Huntington disease and tic disorder.

    Science.gov (United States)

    Rudzińska, M; Krawczyk, M; Wójcik-Pędziwiatr, M; Szczudlik, A; Tomaszewski, T

    2013-01-01

    Tremor is the most prevalent movement disorder, defined as rhythmic oscillations of a body part, caused by alternating or synchronic contractions of agonistic or antagonistic muscles. The aim of the study was to assess prevalence and to characterize parameters of tremor accompanying de-generative ataxias, Huntington disease (HD) and tic disorders in comparison with a control group. Forty-three patients with degenerative ataxias, 28 with HD and 26 with tic disorders together with 51 healthy controls were included in the study. For each participant, clinical and instrumental assessment (accelerometer, electromyography [EMG], graphic tablet) of hand tremor was performed. Frequency and severity of tremor were assessed in three positions: at rest (rest tremor), with hands extended (postural tremor), during the 'finger-to-nose' test and during Archimedes spiral drawing (kinetic tremor). Based on the mass load test, the type of tremor was determined as essential tremor type or enhanced physiological tremor type. The incidence of tremor in the accelerometry in patients with degenerative ataxia (50%) significantly differs from controls (10%) (p = 0.001). The dominant tremor was postural, low-intense, with 7-Hz frequency, essential tremor (23%) or other tremor type (23%), while enhanced physiological tremor was the least frequent (2%). Tremor in patients with HD and tic disorders was found in 10% and 20% of patients, respectively, similarly to the control group. Tremor was mild, postural and of essential tremor type, less frequently of enhanced physiological tremor type. No correlation between severity of tremor and severity of disease was found. The prevalence of tremor is considerably higher among patients with degenerative ataxias compared with HD, tic disorder and the control group. The most common type of tremor accompanying ataxias, HD and tic disorders is essential tremor type.

  17. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island

    Science.gov (United States)

    Rubinstein, Justin L.; Gomberg, Joan; Vidale, John E.; Wech, Aaron G.; Kao, Honn; Creager, Kenneth C.; Rogers, Garry

    2009-02-01

    We explore the physical conditions that enable triggering of nonvolcanic tremor and earthquakes by considering local seismic activity on Vancouver Island, British Columbia during and immediately after the arrival of large-amplitude seismic waves from 30 teleseismic and 17 regional or local earthquakes. We identify tremor triggered by four of the teleseismic earthquakes. The close temporal and spatial proximity of triggered tremor to ambient tremor and aseismic slip indicates that when a fault is close to or undergoing failure, it is particularly susceptible to triggering of further events. The amplitude of the triggering waves also influences the likelihood of triggering both tremor and earthquakes such that large amplitude waves triggered tremor in the absence of detectable aseismic slip or ambient tremor. Tremor and energy radiated from regional/local earthquakes share the same frequency passband so that tremor cannot be identified during these smaller, more frequent events. We confidently identify triggered local earthquakes following only one teleseism, that with the largest amplitude, and four regional or local events that generated vigorous aftershock sequences in their immediate vicinity. Earthquakes tend to be triggered in regions different from tremor and with high ambient seismicity rates. We also note an interesting possible correlation between large teleseismic events and episodic tremor and slip (ETS) episodes, whereby ETS events that are "late" and have built up more stress than normal are susceptible to triggering by the slight nudge of the shaking from a large, distant event, while ETS events that are "early" or "on time" are not.

  18. ``But I am constant as the North Star*'' - The Return of Polaris as a Low Amplitude Classical Cepheid

    Science.gov (United States)

    Davis, J. J.; Tracey, J. C.; Engle, S. G.; Guinan, E. F.

    2002-12-01

    * Julius Caesar, William Shakespeare Polaris ( ≈ +2.0 mag; B-V = +0.60; F7 Ib) is a low amplitude Classical Cepheid with a pulsation period of P = 3.97 days. Polaris is one of the nearest (dHipparcos = 132 +/- 8 pc) and brightest Cepheid. This Cepheid (Polaris A) is the luminous member of the multiple star system (ADS 1477). Over the last century amazing changing have been occurring for this famous star. The pulsation period has been increasing a rate of dP/dt = +3.2 sec/yr while the light amplitude has decreased from ~0.12 mag (1900s) to ~0.02 mag (early1990s). A recent summary and thorough discussion of Polaris's interesting properties are given by Evans et al. (2002, ApJ, 567, 1121). We have been carrying out photoelectric photometry of Polaris starting in early 2002. This photometry is a continuation of the work done on Polaris by Kamper and Fernie. Our observations were made to obtain new epochal light curves and accurate times of maximum light. We secured well defined 450 nm and 550 nm light curves from which we extracted accurate measures of light amplitudes of 0.033 +/- 0.004 mag and 0.028 +/- 0.003 mag, respectively. These light amplitudes are slightly larger than those observed during the early 1990s. So it appears that the century long decrease in the light amplitude has halted (or paused). Our time of maximum light was combined with previous timings and reaffirms the increase in period of +3.2 sec/yr. These observations lend strong support to overtone nature of Polaris's pulsations, whose transition from moderate to low amplitude pulsator will be discussed in more detail in this poster. In addition to the long-term secular increase in the Polaris's pulsation period, an analysis of the O-Cs indicates +/-0.25 day cyclic oscillations in the apparent period with time scale of 11-12 years. The nature of these period oscillations is being investigated and will be discussed. We gratefully acknowledge the support for this research from NSF/RUI Grant AST 00

  19. Statistical properties of mine tremor aftershocks

    CSIR Research Space (South Africa)

    Kgarume, TE

    2010-02-01

    Full Text Available Mine tremors and their aftershocks pose a risk to mine workers in the deep gold mines of South Africa. The statistical properties of mine-tremor aftershocks were investigated as part of an endeavour to assess the hazard and manage the risk. Data...

  20. Triggered tremor sweet spots in Alaska

    Science.gov (United States)

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  1. Treatment of lithium induced tremor with atenolol.

    Science.gov (United States)

    Davé, M

    1989-03-01

    This is the first report on the successful treatment of one patient with lithium induced tremor with hydrophilic atenolol, which is a relatively selective beta 1 adrenergic receptor blocker. Atenolol's advantages over lipophilic beta blockers in the treatment of lithium induced tremor are discussed.

  2. Multi-channel logical circuit module used for high-speed, low amplitude signals processing and QDC gate signals generation

    International Nuclear Information System (INIS)

    Su Hong; Li Xiaogang; Zhu Haidong; Ma Xiaoli; Yin Weiwei; Li Zhuyu; Jin Genming; Wu Heyu

    2001-01-01

    A new kind of logical circuit will be introduced in brief. There are 16 independent channels in the module. The module receives low amplitude signals(≥40 mV), and processes them to amplify, shape, delay, sum and etc. After the processing each channel produces 2 pairs of ECL logical signal to feed the gate of QDC as the gate signal of QDC. The module consists of high-speed preamplifier unit, high-speed discriminate unit, delaying and shaping unit, summing unit and trigger display unit. The module is developed for 64 CH. 12 BIT Multi-event QDC. The impedance of QDC is 110 Ω. Each gate signal of QDC requires a pair of differential ECL level, Min. Gate width 30 ns and Max. Gate width 1 μs. It has showed that the outputs of logical circuit module satisfy the QDC requirements in experiment. The module can be used on data acquisition system to acquire thousands of data at high-speed ,high-density and multi-parameter, in heavy particle nuclear physics experiment. It also can be used to discriminate multi-coincidence events

  3. Teaching and Assessment of High-Velocity, Low-Amplitude Techniques for the Spine in Predoctoral Medical Education.

    Science.gov (United States)

    Channell, Millicent King

    2016-09-01

    Although national didactic criteria have been set for predoctoral education and assessment in osteopathic manipulative treatment, there is no criterion standard for teaching methods and assessments of osteopathic manipulative treatment competence in colleges of osteopathic medicine. This issue is more pressing with the creation of the single graduate medical education accreditation system by the American Osteopathic Association and Accreditation Council for Graduate Medical Education, which introduced the creation of "osteopathic recognition" for residencies that want to incorporate osteopathic principles and practice into their programs. Residencies with osteopathic recognition may include both osteopathic and allopathic graduates. Increased standardization at the predoctoral level, however, is recommended as osteopathic principles and practice training applications are expanded. The objectives of this article are to review the standards for teaching osteopathic medical students high-velocity, low-amplitude (HVLA) techniques for the spine; to review and discuss the methods used to assess medical students' proficiency in using HVLA; and to propose baseline standards for teaching and assessing HVLA techniques among medical students.

  4. Afterslip, tremor, and the Denali fault earthquake

    Science.gov (United States)

    Gomberg, Joan; Prejean, Stephanie; Ruppert, Natalia

    2012-01-01

    We tested the hypothesis that afterslip should be accompanied by tremor using observations of seismic and aseismic deformation surrounding the 2002 M 7.9 Denali fault, Alaska, earthquake (DFE). Afterslip happens more frequently than spontaneous slow slip and has been observed in a wider range of tectonic environments, and thus the existence or absence of tremor accompanying afterslip may provide new clues about tremor generation. We also searched for precursory tremor, as a proxy for posited accelerating slip leading to rupture. Our search yielded no tremor during the five days prior to the DFE or in several intervals in the three months after. This negative result and an array of other observations all may be explained by rupture penetrating below the presumed locked zone into the frictional transition zone. While not unique, such an explanation corroborates previous models of megathrust and transform earthquake ruptures that extend well into the transition zone.

  5. What SWIFT has taught us about X-ray flashes and long-duration gamma-ray bursts

    CERN Document Server

    De Rújula, Alvaro

    2007-01-01

    Recent data gathered and triggered by the SWIFT satellite have greatly improved our knowledge of long-duration gamma ray bursts (GRBs) and X-ray flashes (XRFs). This is particularly the case for the X-ray data at all times, and for UV and optical data at very early times. I show that the optical and X-ray observations are in excellent agreement with the predictions of the "cannonball" model of GRBs and XRFs. Elementary physics and just two mechanisms underlie these predictions: inverse Compton scattering and synchrotron radiation, generally dominant at early and late times, respectively. I put this result in its proper context and dedicate the paper to those who planed, built and operate SWIFT, a true flying jewel.

  6. Applicability of Long Duration Exposure Facility environmental effects data to the design of Space Station Freedom electrical power system

    Science.gov (United States)

    Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene

    1992-01-01

    Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.

  7. The cause of high-intensity long-duration continuous AE activity (HILDCAAS): interplanetary Alfven wave trains

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Gonzalez, W.D.

    1987-01-01

    It is shown that high intensity (AE > 1,000 nT), long duration (T > 2 d) continuous auroral activity (HILDCAA) events are caused by outward (from the sun) propagating interplanetary Alfven wave trains. The Alfven waves are often (but not always) detected several days after major interplanetary events, such as shocks and solar wind density enhancements. Presumably magnetic reconnection between the southward components of the Alfven wave magnetic fields and magnetospheric fields is the mechanism for transfer of solar wind energy to the magnetosphere. If the stringent requirements for HILDCAA events are relaxed, there are many more AE events of this type. A brief inspection indicates that these are also related to interplanetary Alfvenic fluctuations. We therefore suggest that most auroral activity may be caused by reconnection associated with Alfven waves in the interplanetary medium. (author)

  8. Latent viral reactivation is associated with changes in plasma antimicrobial protein concentrations during long-duration spaceflight

    Science.gov (United States)

    Spielmann, G.; Laughlin, M. S.; Kunz, H.; Crucian, B. E.; Quiriarte, H. D.; Mehta, S. K.; Pierson, D. L.; Simpson, R. J.

    2018-05-01

    Long duration spaceflights are associated with profound dysregulation of the immune system and latent viral reactivations. However, little is known on the impact of long duration spaceflight on innate immunity which raises concerns on crewmembers' ability to fight infections during a mission. The aim of this study was to determine the effects of spaceflight on plasma antimicrobial proteins (AMPs) and how these changes impact latent herpesvirus reactivations. Plasma, saliva and urine samples were obtained from 23 crewmembers before, during and after a 6-month mission on the International Space Station (ISS). Plasma AMP concentrations were determined by ELISA, and saliva Epstein-Barr virus (EBV) and varicella zoster virus (VZV) and urine cytomegalovirus (CMV) DNA levels were quantified by Real-Time PCR. There was a non-significant increase in plasma HNP1-3 and LL-37 during the early and middle stages of the missions, which was significantly associated with changes in viral DNA during and after spaceflight. Plasma HNP1-3 and Lysozyme increased at the late mission stages in astronauts who had exhibited EBV and VZV reactivations during the early flight stages. Following return to Earth and during recovery, HNP1-3 and lysozyme concentrations were associated with EBV and VZV viral DNA levels, reducing the magnitude of viral reactivation. Reductions in plasma LL-37 upon return were associated with greater CMV reactivation. This study shows that biomarkers of innate immunity appeared to be partially restored after 6-months in space and suggests that following adaptation to the space environment, plasma HNP1-3 and lysozyme facilitate the control of EBV and VZV reactivation rate and magnitude in space and upon return on earth. However, the landing-associated decline in plasma LL-37 may enhance the rate of CMV reactivation in astronauts following spaceflight, potentially compromising crewmember health after landing.

  9. Data Mining Activity for Bone Discipline: Calculating a Factor of Risk for Hip Fracture in Long-Duration Astronauts

    Science.gov (United States)

    Ellman, R.; Sibonga, J. D.; Bouxsein, M. L.

    2010-01-01

    The factor-of-risk (Phi), defined as the ratio of applied load to bone strength, is a biomechanical approach to hip fracture risk assessment that may be used to identify subjects who are at increased risk for fracture. The purpose of this project was to calculate the factor of risk in long duration astronauts after return from a mission on the International Space Station (ISS), which is typically 6 months in duration. The load applied to the hip was calculated for a sideways fall from standing height based on the individual height and weight of the astronauts. The soft tissue thickness overlying the greater trochanter was measured from the DXA whole body scans and used to estimate attenuation of the impact force provided by soft tissues overlying the hip. Femoral strength was estimated from femoral areal bone mineral density (aBMD) measurements by dual-energy x-ray absorptiometry (DXA), which were performed between 5-32 days of landing. All long-duration NASA astronauts from Expedition 1 to 18 were included in this study, where repeat flyers were treated as separate subjects. Male astronauts (n=20) had a significantly higher factor of risk for hip fracture Phi than females (n=5), with preflight values of 0.83+/-0.11 and 0.36+/-0.07, respectively, but there was no significant difference between preflight and postflight Phi (Figure 1). Femoral aBMD measurements were not found to be significantly different between men and women. Three men and no women exceeded the theoretical fracture threshold of Phi=1 immediately postflight, indicating that they would likely suffer a hip fracture if they were to experience a sideways fall with impact to the greater trochanter. These data suggest that male astronauts may be at greater risk for hip fracture than women following spaceflight, primarily due to relatively less soft tissue thickness and subsequently greater impact force.

  10. Visual Performance Challenges to Low-Frequency Perturbations After Long-Duration Space Flight, and Countermeasure Development

    Science.gov (United States)

    Mulavara, Ajitkumar; Wood, Scott; Fiedler, Matthew; Kofman, Igor; Kulecz, Walter B.; Miller, Chris; Peters, Brian; Serrador, Jorge; Cohen, Helen; Reschke, Millard; hide

    2010-01-01

    Astronauts experience sensorimotor disturbances after long-duration space flight. After a water landing, crewmembers may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions. Exposure to even low-frequency motions induced by sea conditions surrounding a vessel can cause significant motor control problems affecting critical functions. The first objective of this study was to document human visual performance during simulated wave motion below 2.0 Hz. We examined the changes in accuracy and reaction time when subjects performed a visual target acquisition task in which the location of the target was offset vertically during horizontal rotation at an oscillating frequency of 0.8 Hz. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements occurring when vertical targets were acquired at perturbing frequencies of 0.8 Hz in the horizontal plane. A second objective was to develop a countermeasure, base d on stochastic resonance (SR), to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to gravitational transitions after long-duration space flight. SR is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic electrical stimulation to the vestibular system (SVS) significantly improved balance and oculomotor responses. This study examined the effectiveness of SVS on improving balance performance. Subjects performed a standard balance task while bipolar SVS was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process. The main finding of this study was that balance performance with the application of SR showed significant improvement in the range of 10%-25%. Ultimately an SR-based countermeasure might be fielded either as preflight training

  11. Electrophysiologic characteristics of tremor in Parkinson?s disease and essential tremor

    Directory of Open Access Journals (Sweden)

    Ederson Cichaczewski

    2014-04-01

    Full Text Available Tremor in essential tremor (ET and Parkinson’s disease (PD usually present specific electrophysiologic profiles, however amplitude and frequency may have wide variations. Objective: To present the electrophysiologic findings in PD and ET. Method: Patients were assessed at rest, with posture and action. Seventeen patients with ET and 62 with PD were included. PD cases were clustered into three groups: predominant rest tremor; tremor with similar intensity at rest, posture and during kinetic task; and predominant kinetic tremor. Results: Patients with PD presented tremors with average frequency of 5.29±1.18 Hz at rest, 5.79±1.39 Hz with posture and 6.48±1.34 Hz with the kinetic task. Tremor in ET presented with an average frequency of 5.97±1.1 Hz at rest, 6.18±1 Hz with posture and 6.53±1.2 Hz with kinetic task. Seven (41.2% also showed rest tremor. Conclusion: The tremor analysis alone using the methodology described here, is not sufficient to differentiate tremor in ET and PD.

  12. Essential Tremor: A Neurodegenerative Disease?

    Directory of Open Access Journals (Sweden)

    Julian Benito-Leon

    2014-07-01

    Full Text Available Background: Essential tremor (ET is one of the most common neurological disorders among adults, and is the most common of the many tremor disorders. It has classically been viewed as a benign monosymptomatic condition, yet over the past decade, a growing body of evidence indicates that ET is a progressive condition that is clinically heterogeneous, as it may be associated with a spectrum of clinical features, with both motor and non‐motor elements. In this review, I will describe the most significant emerging milestones in research which, when taken together, suggest that ET is a neurodegenerative condition.Methods: A PubMed search conducted in June 2014 crossing the terms “essential tremor” (ET and “neurodegenerative” yielded 122 entries, 20 of which included the term “neurodegenerative” in the article title. This was supplemented by articles in the author's files that pertained to this topic.Results/Discussion: There is an open and active dialogue in the medical community as to whether ET is a neurodegenerative disease, with considerable evidence in favor of this. Specifically, ET is a progressive disorder of aging associated with neuronal loss (reduction in Purkinje cells as well as other post‐mortem changes that occur in traditional neurodegenerative disorders. Along with this, advanced neuroimaging techniques are now demonstrating distinct structural changes, several of which are consistent with neuronal loss, in patients with ET. However, further longitudinal clinical and neuroimaging longitudinal studies to assess progression are required.

  13. Beta 1 versus nonselective blockade in therapy of essential tremor.

    Science.gov (United States)

    Larsen, T A; Teräväinen, H

    1983-01-01

    The beta 1-selective blocker metoprolol was compared to propranolol and a placebo in a double-blind crossover trial in 24 patients with essential tremor. Both beta blockers suppressed the essential tremor, but metoprolol, which caused a mean reduction of 32.0% in tremor intensity from the base-line value, was less effective than propranolol, which reduced mean tremor intensity by 41.3%. Subjective benefit for their tremor was found by 15 of the patients taking propranolol and by one taking metoprolol. The tremor frequency was not affected. No serious side effects were observed. Metoprolol may offer an alternative for those essential tremor patients who cannot tolerate propranolol.

  14. Bilateral Hypertrophic Olivary Degeneration and Holmes Tremor without Palatal Tremor: An Unusual Association

    Directory of Open Access Journals (Sweden)

    Carlos Cosentino

    2016-07-01

    Full Text Available Background: Lesions in the Guillain–Mollaret triangle or dentate-rubro-olivary pathway may lead to hypertrophic olivary degeneration (HOD, a secondary trans-synaptic degeneration of the inferior olivary nucleus. HOD is usually associated with palatal tremor and rarely with Holmes tremor. Bilateral HOD is a very unusual condition and very few cases are reported. Case Report: We report here two cases of bilateral HOD after two different vascular lesions located at the decussation of superior cerebellar peduncles, thus impairing both central tegmental tracts and interrupting bilaterally the dentate-rubral-olivary pathway. Interestingly, both developed bilateral Holmes tremor but not palatal tremor. Discussion: Lesions in some of the components in the Guillain–Mollaret triangle may develop Holmes tremor with HOD and without palatal tremor. Magnetic resonance imaging is an invaluable tool in these cases. Better understanding of the pathways in this loop is needed.

  15. [Disappearance of essential neck tremor after pontine base infarction].

    Science.gov (United States)

    Urushitani, M; Inoue, H; Kawamura, K; Kageyama, T; Fujisawa, M; Nishinaka, K; Udaka, F; Kameyama, M

    1996-08-01

    Mechanism of essential tremor remains unknown. Central oscillators, postulated in thalamus, inferior olive, and spinal cord are thought to be important to form rhythmicity, and finally to stimulate spinal or medullary motor cells, leading trembling muscle contraction, tremor. Among several subtypes of essential familial tremor, including hand tremor, neck tremor, and voice tremor, essential neck tremor is a common disorder, and its pathophysiology seems different from that of typical essential hand tremor, since patients with essential hand tremor are responsive to beta blocker, whereas those with neck tremor are usually not. We experienced a 41-year-old left handed woman with essential neck tremor in whom neck titubation disappeared shortly after pontine base infarct. She was our patient in the outpatient clinic with the diagnosis of essential neck tremor. The tremor developed when she was teenage, and has been localized in the neck muscles. Alcohol intake had apparently diminished it transiently. Her mother also had the tremor in her neck. She was admitted to our hospital with sudden onset of right-sided limb weakness and speech disturbance. Neurological examination showed right hemiparesis including the ipsilateral face, scanning speech, and cerebellar limb ataxia on the same side. In addition, there was no tremor in her neck. Brain MR imaging revealed a pontine base infarct at the level of middle pons, which was consistent with paramedian artery territory. The hemiparesis and speech disturbance improved almost completely after treatment, and her neck tremor has never occurred in one year follow-up. In our patient, efficacy of alcohol imply that essential neck tremor and hand tremor had same central nervous pathway including central oscillator in common, and descending cortical fibers is seemingly associated with diminishing patient's tremor. Pathophysiology of essential neck tremor was discussed with reviewing previous literature.

  16. Pilot Field Test: Use of a Compression Garment During a Stand Test After Long-Duration Space Flight

    Science.gov (United States)

    Laurie, S. S.; Stenger, M. B.; Phillips, T. R.; Lee, S. M. C.; Cerisano, J.; Kofman, I.; Reschke, M.

    2016-01-01

    Orthostatic intolerance (OI) is a concern for astronauts returning from long-duration space flight. One countermeasure that has been used to protect against OI after short-duration bed rest and space flight is the use of lower body and abdominal compression garments. However, since the end of the Space Shuttle era we have not been able to test crewmembers during the first 24 hours after landing on Earth. NASA's Pilot Field Test provided us the opportunity to test cardiovascular responses of crewmembers wearing the Russian Kentavr compression garment during a stand test at multiple time points throughout the first 24 hours after landing. HYPOTHESIS We hypothesized that the Kentavr compression garment would prevent an increase in heart rate (HR) >15 bpm during a 3.5-min stand test. METHODS: The Pilot Field Test was conducted up to 3 times during the first 24 hours after crewmembers returned to Earth: (1) either in a tent adjacent to the Soyuz landing site in Kazakhstan (approx.1 hr) or after transportation to the Karaganda airport (approx. 4 hr); (2) during a refueling stop in Scotland (approx.12 hr); and (3) upon return to NASA Johnson Space Center (JSC) (approx.24 hr). We measured HR and arterial pressure (finger photoplethysmography) for 2 min while the crewmember was prone and throughout 3.5 min of quiet standing. Eleven crewmembers consented to participate; however, 2 felt too ill to start the test and 1 stopped 30 sec into the stand portion of the test. Of the remaining 8 crewmembers, 2 did not wear the Russian Kentavr compression garment. Because of inclement weather at the landing site, 5 crewmembers were flown by helicopter to the Karaganda airport before initial testing and received intravenous saline before completing the stand test. One of these crewmembers wore only the portion of the Russian Kentavr compression garment that covered the lower leg and thus lacked thigh and abdominal compression. All crewmembers continued wearing the Russian Kentavr

  17. Examining the interplay of climate and low amplitude sea-level change on the distribution and volume of massive dolomitization: Zebbag Formation, Cretaceous, Southern Tunisia

    DEFF Research Database (Denmark)

    Newport, Richard; Hollis, Cathy; Bodin, Stéphane

    2017-01-01

    During the Cretaceous, a humid global climate, calcitic seas, high relative sea-level and low amplitude changes in relative sea-level largely prevented large-scale dolomitization in many carbonate successions. However, the well-exposed shallow-water carbonate sediments of the Upper Albian–Lower T...

  18. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    Science.gov (United States)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  19. Autosomal dominant cortical tremor, myoclonus and epilepsy.

    Science.gov (United States)

    Striano, Pasquale; Zara, Federico

    2016-09-01

    The term 'cortical tremor' was first introduced by Ikeda and colleagues to indicate a postural and action-induced shivering movement of the hands which mimics essential tremor, but presents with the electrophysiological findings of cortical reflex myoclonus. The association between autosomal dominant cortical tremor, myoclonus and epilepsy (ADCME) was first recognized in Japanese families and is now increasingly reported worldwide, although it is described using different acronyms (BAFME, FAME, FEME, FCTE and others). The disease usually takes a benign course, although drug-resistant focal seizures or slight intellectual disability occur in some cases. Moreover, a worsening of cortical tremor and myoclonus is common in advanced age. Although not yet recognized by the International League Against Epilepsy (ILAE), this is a well-delineated epilepsy syndrome with remarkable features that clearly distinguishes it from other myoclonus epilepsies. Moreover, genetic studies of these families show heterogeneity and different susceptible chromosomal loci have been identified.

  20. Cataloging tremor at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Thelen, W. A.; Wech, A.

    2013-12-01

    Tremor is a ubiquitous seismic feature on Kilauea volcano, which emanates from at least three distinct sources. At depth, intermittent tremor and earthquakes thought to be associated with the underlying plumbing system of Kilauea (Aki and Koyanagi, 1981) occurs approximately 40 km below and 40 km SW of the summit. At the summit of the volcano, nearly continuous tremor is recorded close to a persistently degassing lava lake, which has been present since 2008. Much of this tremor is correlated with spattering at the lake surface, but tremor also occurs in the absence of spattering, and was observed at the summit of the volcano prior to the appearance of the lava lake, predominately in association with inflation/deflation events. The third known source of tremor is in the area of Pu`u `O`o, a vent that has been active since 1983. The exact source location and depth is poorly constrained for each of these sources. Consistently tracking the occurrence and location of tremor in these areas through time will improve our understanding of the plumbing geometry beneath Kilauea volcano and help identify precursory patterns in tremor leading to changes in eruptive activity. The continuous and emergent nature of tremor precludes the use of traditional earthquake techniques for automatic detection and location of seismicity. We implement the method of Wech and Creager (2008) to both detect and localize tremor seismicity in the three regions described above. The technique uses an envelope cross-correlation method in 5-minute windows that maximizes tremor signal coherency among seismic stations. The catalog is currently being built in near-realtime, with plans to extend the analysis to the past as time and continuous data availability permits. This automated detection and localization method has relatively poor depth constraints due to the construction of the envelope function. Nevertheless, the epicenters distinguish activity among the different source regions and serve as

  1. What is This Thing Called Tremor?

    Science.gov (United States)

    Rubin, A. M.; Bostock, M. G.

    2017-12-01

    Tremor has many enigmatic attributes. The LFEs that comprise it have a dearth of large events, implying a characteristic scale. Bostock et al. (2015) found LFE duration beneath Vancouver Island to be nearly independent of magnitude. That duration ( 0.4 s), multiplied by a shear wave speed, defines a length scale far larger than the spatial separation between consecutive but non-colocated detections. If one LFE ruptures multiple brittle patches in a ductile matrix its propagation speed can be slowed to the extent that consecutive events don't overlap, but then why aren't there larger and smaller LFEs with larger and smaller durations? Perhaps there are. Tremor seismograms from Vancouver Island are often saturated with direct arrivals, by which we mean time lags between events shorter than typical event durations. Direct evidence of this, given the small coda amplitude of LFE stacks, is that seismograms at stations many kilometers apart often track each other wiggle for wiggle. We see this behavior over the full range tremor amplitudes, from close to the noise level on a tremor-free day to 10 times larger. If the LFE magnitude-frequency relation is time-independent, this factor of 10 implies that the LFE occurrence rate during loud tremor is 10^2=100 times that during quiet tremor (>250 LFEs per second). We investigate the implications of this by comparing observed seismograms to synthetics made from the superposition of "LFEs" that are Poissonian in time over a range of average rates. We find that provided the LFEs have a characteristic scale (whether exponential or power law), saturation completely obscures the moment-duration scaling of the contributing events; that is, the moment-duration scaling of LFEs may be identical to that of regular earthquakes. Nonetheless, there are subtle differences between our synthetics and real seismograms, remarkably independent of tremor amplitude, that remain to be explained. Foremost among these is a slightly greater affinity of

  2. Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses.

    Science.gov (United States)

    Guyot, Stéphane; Ferret, Eric; Boehm, Jean-Baptiste; Gervais, Patrick

    2007-01-25

    The effects of electric field (EF) treatments on Saccharomyces cerevisiae viability were investigated using a PG200 electroporator (Hoefer Scientific Instrument, San Fransisco, CA, USA) with specific attention to induced thermal effects on cell death. Lethal electric fields (1.5 kV cm(-1) for 5 s) were shown to cause heat variations in the cell suspension medium (water+glycerol), while corresponding classical thermal treatments at equivalent temperatures had no effect on the cells viability. Variations of the electrical conductivity of the intra- and extracellular matrix caused by ions and solutes transfer across the membrane were shown to be involved in the observed heating. The results permitted to build a theoretical model for the temperature variations induced by electric fields. Using this model and the electrical conductivity of the different media, a plausible explanation of the cell death induced by low-intensity electric fields with long-duration pulses has been proposed. Indeed, cell mortality could in part be caused by direct and indirect effects of electric fields. Direct effects are related to well known electromechanical phenomena, whereas indirect effects are related to secondary thermal stress caused by plasma membrane thermoporation. This thermoporation was attributed to electrical conductivity variations and the corresponding intracellular heating.

  3. Presentation of preliminary studies relative to the long duration disposal of medium level and long lived (MLLL) wastes

    International Nuclear Information System (INIS)

    Leroy, C.; Moreau, A.; Fayette, L.; Bellon, M.; Templier, J.C.; Macias, R.M.; Porcher, J.B.; Rey, F.; Hollender, F.; Girard, J.P.

    2002-01-01

    In the contract of objectives signed in 2001 with the government, the French atomic energy commission (CEA) committed itself to supply reports of preliminary studies about long duration disposal concepts for medium level and long lived radioactive wastes. This document makes the synthesis of the preliminary studies carried out in 2001 and 2002 by exploring simultaneously the surface and subsurface disposal concepts. The studies deal with the design of a facility with a long service life. Four hypotheses have been retained for the preliminary studies: a secular lifetime (typically 100 to 300 years), a single and new site for all waste packages (no existing facility available), two confinement barriers, an envelope-type site with specific characteristics (seismicity, climate conditions, airplane crash..). These preliminary studies show the existence of solutions for each option: with and without storage containers in both type (surface and subsurface) of facilities. They outline the necessity of studying more thoroughly some technical points. This instruction will be performed for the concepts retained after a multi-criteria analysis. (J.S.)

  4. High-intensity, long-duration, continuous AE activity events associated with Alfvénic fluctuations in 2003

    Science.gov (United States)

    Prestes, Alan; Klausner, Virginia; Ojeda-González, Arian

    2017-11-01

    The interaction between a fast-speed and a low-speed stream causes large-amplitude Alfvénic fluctuations; consequently, the intermittency and the brief intervals of southward magnetic field associated with Alfvén waves may cause high levels of AE activity, the so-called high-intensity, long-duration, continuous AE activity (HILDCAA). In this article, the 4 h windowed Pearson cross-correlation (4WPCC) between the solar wind velocity and the interplanetary magnetic field (IMF) components is performed in order to confirm that the less strict HILDCAA (HILDCAAs*) events include a larger number of Alfvén waves than the HILDCAA events, once HILDCAAs disregard part of the phenomenon. Actually, a HILDCAA event is entirely contained within a HILDCAA* event. However, the opposite is not necessarily true. This article provides a new insight, since the increase of Alfvén waves results in an increase of auroral electrojet activity; consequently, it can cause HILDCAAs* events. Another important aspect of this article is that the superposed epoch analysis (SEA) results reaffirm that the HILDCAAs* are associated with high-speed solar streams (HSSs), and also the HILDCAAs* present the same physical characteristics of the traditional HILDCAA events.

  5. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.

    Science.gov (United States)

    Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D

    2013-06-01

    Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions. Copyright © 2013 American Society for Bone and Mineral Research.

  6. The role of cross-cultural factors in long-duration international space missions: lessons from the SFINCSS-99 study.

    Science.gov (United States)

    Tomi, Leena M; Rossokha, Katherine; Hosein, Janette

    2002-01-01

    The role of cross-cultural factors in long-duration international space missions was examined during an isolation study that simulated many of the conditions aboard the International Space Station. Interactions involving two heterogeneous crews and one homogeneous crew staying in isolation from 110 to 240 days were studied. Data consisted of post-isolation interviews with crewmembers, ground support personnel and management, observational data, and public statements by crewmembers. Data was analyzed using the techniques of linguistic anthropology and ethnography. Sub-cultural (organizational and professional) differences played a larger role than national differences in causing misunderstandings in this study. Conversely, some misunderstandings and conflicts were escalated by participants falsely assuming cultural differences or similarities. Comparison between the two heterogeneous crews showed the importance of training, personality factors, and commander and language skills in preventing and alleviating cultural misunderstandings. The study revealed a number of ways that cultural differences, real as well as assumed, can play a role and interact with other, non-cultural, factors in causing and/or precipitating conflict situations. It is postulated that such difficulties can be avoided by selecting culturally adaptive crewmembers and by cross-cultural and language training. Also the crew composition and role of commander were found to be important in mitigating conflict situations. c2002 Lister Science.

  7. Hoff Mann′s syndrome with unusually long duration: Report on clinical, laboratory and muscle imaging findings in two cases

    Directory of Open Access Journals (Sweden)

    Atchayaram Nalini

    2014-01-01

    Full Text Available Two adult men presented with the rare Hoffmann′s syndrome (HS. Case 1: A 35-year-old male patient had progressive stiffness of lower limbs of 13 years and generalized muscle hypertrophy and myalgia of 3 years duration. Had periorbital edema, dry skin, generalized muscle hypertrophy and spastic dysarthria with hoarseness. Muscle power was normal. Jaw jerk and deep tendon reflexes were exaggerated. Case 2: A 24-year-old male patient presented with muscle hypertrophy from childhood, slowness in motor activities and hearing impairment. For 6 months, he had severe muscle pains, cramps and further increase in hypertrophy. He had yellow tinged, dry skin, hoarseness of voice, gross muscle hypertrophy and minimal weakness. Both had markedly elevated serum creatine kinase (CK levels and high thyroid stimulating hormone, low free triiodothyronine and free thyroxine levels. Levothyroxine treatment demonstrated remarkable reduction in muscle bulk at 2 months in both and no symptoms at 6 months. Magnetic resonance imaging of lower limbs in both cases revealed almost identical features with involvement of the muscles of posterior and adductor compartment of thighs and posterior and lateral compartments of the legs. Differential diagnosis of long duration muscle pseudohypertrophy and elevated CK levels should include HS.

  8. Optimal digital filtering for tremor suppression.

    Science.gov (United States)

    Gonzalez, J G; Heredia, E A; Rahman, T; Barner, K E; Arce, G R

    2000-05-01

    Remote manually operated tasks such as those found in teleoperation, virtual reality, or joystick-based computer access, require the generation of an intermediate electrical signal which is transmitted to the controlled subsystem (robot arm, virtual environment, or a cursor in a computer screen). When human movements are distorted, for instance, by tremor, performance can be improved by digitally filtering the intermediate signal before it reaches the controlled device. This paper introduces a novel tremor filtering framework in which digital equalizers are optimally designed through pursuit tracking task experiments. Due to inherent properties of the man-machine system, the design of tremor suppression equalizers presents two serious problems: 1) performance criteria leading to optimizations that minimize mean-squared error are not efficient for tremor elimination and 2) movement signals show ill-conditioned autocorrelation matrices, which often result in useless or unstable solutions. To address these problems, a new performance indicator in the context of tremor is introduced, and the optimal equalizer according to this new criterion is developed. Ill-conditioning of the autocorrelation matrix is overcome using a novel method which we call pulled-optimization. Experiments performed with artificially induced vibrations and a subject with Parkinson's disease show significant improvement in performance. Additional results, along with MATLAB source code of the algorithms, and a customizable demo for PC joysticks, are available on the Internet at http:¿tremor-suppression.com.

  9. Psychogenic Tremor: A Video Guide to Its Distinguishing Features

    Directory of Open Access Journals (Sweden)

    Joseph Jankovic

    2014-08-01

    Full Text Available Background: Psychogenic tremor is the most common psychogenic movement disorder. It has characteristic clinical features that can help distinguish it from other tremor disorders. There is no diagnostic gold standard and the diagnosis is based primarily on clinical history and examination. Despite proposed diagnostic criteria, the diagnosis of psychogenic tremor can be challenging. While there are numerous studies evaluating psychogenic tremor in the literature, there are no publications that provide a video/visual guide that demonstrate the clinical characteristics of psychogenic tremor. Educating clinicians about psychogenic tremor will hopefully lead to earlier diagnosis and treatment. Methods: We selected videos from the database at the Parkinson's Disease Center and Movement Disorders Clinic at Baylor College of Medicine that illustrate classic findings supporting the diagnosis of psychogenic tremor.Results: We include 10 clinical vignettes with accompanying videos that highlight characteristic clinical signs of psychogenic tremor including distractibility, variability, entrainability, suggestibility, and coherence.Discussion: Psychogenic tremor should be considered in the differential diagnosis of patients presenting with tremor, particularly if it is of abrupt onset, intermittent, variable and not congruous with organic tremor. The diagnosis of psychogenic tremor, however, should not be simply based on exclusion of organic tremor, such as essential, parkinsonian, or cerebellar tremor, but on positive criteria demonstrating characteristic features. Early recognition and management are critical for good long-term outcome.

  10. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    Science.gov (United States)

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.

  11. Tremor recording and analysis as a tool for target localisation in thalamotomy and DBS for tremor

    NARCIS (Netherlands)

    Journee, HL; Hamoen, DJ; Staal, MJ; Sclabassi, R; Haaxma, R; Elands, A; Hummel, JJJ; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    The objective of this work was to design and use a tremor and analysis system for stereotactic thalamotomy and thalamus stimulation (DBS). A notebook PC based system was developed. The tremor was measured by accelero-transducers or EMG. The method was used to confirm the definitive localization of

  12. Distinguishing the Central Drive to Tremor in Parkinson's Disease and Essential Tremor

    Science.gov (United States)

    Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R.; Saifee, Tabish A.; Edwards, Mark J.

    2015-01-01

    Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. PMID:25589772

  13. Kinetic Tremor: Differences Between Smokers and Non-smokers

    OpenAIRE

    Louis, Elan D.

    2006-01-01

    Tremor is among the acute effects of nicotine exposure. Published studies have focused on smoking-related postural (static) hand tremor rather than kinetic tremor (tremor during hand use), and gender differences in smoking-related tremor have not been examined. In a group of adults who were sampled from a population (mean ± SD = 65.7 ± 11.5 years, range = 18 - 92 years), the investigator assessed whether the severity of postural and kinetic tremors differed in smokers versus non-smokers, and ...

  14. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    Science.gov (United States)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  15. New Development in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    Science.gov (United States)

    Shirazi-Fard, Y.; Choi, S.; Harris, C.; Gong, C.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. G.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research program at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. Throughout phases of these missions, our practices, hardware and operations have evolved from tested to developed standards, and we are able to modify and customize our procedure and operations for mission specific requirements. The Rodent Research Habitat is capable of providing a living environment for animals on ISS according to standard animal welfare requirements. Using the cameras in the Habitat, the Rodent Research team has the ability to perform daily health checks on animals, and further analyze the collected videos for behavioral studies. A recent development of the Rodent Research hardware is inclusion of enrichment, to provide the animals the ability to rest and huddle. The Enrichment Hut is designed carefully for adult mice (up to 35 week old) within animal welfare, engineering, and operations constraints. The Hut is made out of the same stainless steel mesh as the cage interior, it has an ingress and an egress to allow animals move freely, and a hinge door to allow crewmembers remove the

  16. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Brian D.; Margalit, Ben [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-20

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  17. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    Science.gov (United States)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.

  18. Long-duration drought variability and impacts on ecosystem services: A case study from Glacier National Park, Montana

    Science.gov (United States)

    Pederson, Gregory T.; Gray, Stephen T.; Fagre, Daniel B.; Graumlich, Lisa J.

    2006-01-01

    Instrumental climate records suggest that summer precipitation and winter snowpack in Glacier National Park (Glacier NP), Montana, vary significantly over decadal to multidecadal time scales. Because instrumental records for the region are limited to the twentieth century, knowledge of the range of variability associated with these moisture anomalies and their impacts on ecosystems and physical processes are limited. The authors developed a reconstruction of summer (June–August) moisture variability spanning a.d. 1540–2000 from a multispecies network of tree-ring chronologies in Glacier NP. Decadal-scale drought and pluvial regimes were defined as any event lasting 10 yr or greater, and the significance of each potential regime was assessed using intervention analysis. Intervention analysis prevents single intervening years of average or opposing moisture conditions from ending what was otherwise a sustained moisture regime. The reconstruction shows numerous decadal-scale shifts between persistent drought and wet events prior to the instrumental period (before a.d. 1900). Notable wet events include a series of three long-duration, high-magnitude pluvial regimes spanning the end of the Little Ice Age (a.d. 1770–1840). Though the late-nineteenth century was marked by a series of >10 yr droughts, the single most severe dry event occurred in the early-twentieth century (a.d. 1917–41). These decadal-scale dry and wet events, in conjunction with periods of high and low snowpack, have served as a driver of ecosystem processes such as forest fires and glacial dynamics in the Glacier NP region.

  19. MiniSipper: a new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring.

    Science.gov (United States)

    Chapin, Thomas P; Todd, Andrew S

    2012-11-15

    Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7-8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R(2)>0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed. Published by Elsevier B.V.

  20. The Effects of Long Duration Head Down Tilt Bed Rest on Neurocognitive Performance: The Effects of Exercise Interventions

    Science.gov (United States)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz. B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. Our ongoing bed rest participants are also engaging in exercise studies directed by Dr. Lori Ploutz Snyder. In this presentation, I will briefly highlight the existing literature linking exercise and fitness to brain and behavioral functions. I will also overview the metrics from my study that could be investigated in relation to the exercise and control subgroups.

  1. Career Excess Mortality Risk from Diagnostic Radiological Exams Required for Crewmembers Participating in Long Duration Space Flight

    Science.gov (United States)

    Dodge, C. W.; Gonzalez, S. M.; Picco, C. E.; Johnston, S. L.; Shavers, M. R.; VanBaalen, M.

    2008-01-01

    NASA requires astronauts to undergo diagnostic x-ray examinations as a condition for their employment. The purpose of these procedures is to assess the astronaut s overall health and to diagnose conditions that could jeopardize the success of long duration space missions. These include exams for acceptance into the astronaut corps, routine periodic exams, as well as evaluations taken pre and post missions. Issues: According to NASA policy these medical examinations are considered occupational radiological exposures, and thus, are included when computing the astronaut s overall radiation dose and associated excess cancer mortality risk. As such, astronauts and administrators are concerned about the amount of radiation received from these procedures due to the possibility that these additional doses may cause astronauts to exceed NASA s administrative limits, thus disqualifying them from future flights. Methods: Radiation doses and cancer mortality risks following required medical radiation exposures are presented herein for representative male and female astronaut careers. Calculation of the excess cancer mortality risk was performed by adapting NASA s operational risk assessment model. Averages for astronaut height, weight, number of space missions and age at selection into the astronaut corps were used as inputs to the NASA risk model. Conclusion: The results show that the level of excess cancer mortality imposed by all required medical procedures over an entire astronaut s career is approximately the same as that resulting from a single short duration space flight (i.e. space shuttle mission). In short the summation of all medical procedures involving ionizing radiation should have no impact on the number of missions an astronaut can fly over their career. Learning Objectives: 1. The types of diagnostic medical exams which astronauts are subjected to will be presented. 2. The level of radiation dose and excess mortality risk to the average male and female

  2. MiniSipper: A new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring

    Science.gov (United States)

    Chapin, Thomas P.; Todd, Andrew S.

    2012-01-01

    Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7–8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R2 > 0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed.

  3. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Metzger, Brian D.; Margalit, Ben; Berger, Edo

    2017-01-01

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  4. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity

    Science.gov (United States)

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  5. Intention tremor after head injury

    International Nuclear Information System (INIS)

    Iwadate, Yasuo; Saeki, Naokatsu; Namba, Hiroki; Odaki, Masaru; Oka, Nobuo.

    1989-01-01

    Eight cases of intention tremor as a late complication of head injury were investigated. The patients ranged in age from 3 to 24 years. All received severe head injuries and lapsed into coma immediately afterward (Glasgow Coma Scale scores ≤8). Six patients exhibited decerebration or decortication. Hemiparesis was present in six cases and oculomotor nerve palsy in four. In the chronic stage, all patients displayed some degree of impairment of higher cortical function and five had dysarthria and/or ataxia. Initial computed tomography (CT) scans within 3 hours after the injury were obtained in five cases, of which four showed a hemorrhagic lesion in the midbrain or its surroundings. Other CT findings were diffuse cerebral swelling (four cases), intraventricular hemorrhage (three), and multiple hemorrhagic lesions (two). In the chronic stage, generalized cortical atrophy or ventricular enlargement was noted in five cases. These clinical features and CT findings indicate diffuse brain damage as well as midbrain damage and may reflect shearing injury. (author)

  6. Source mechanism of volcanic tremor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrick, M.G.; Qamar, A.; St. Lawrence, W.F.

    1982-10-10

    Low-frequency (<10 Hz) volcanic earthquakes originate at a wide range of depths and occur before, during, and after magmatic eruptions. The characteristics of these earthquakes suggest that they are not typical tectonic events. Physically analogous processes occur in hydraulic fracturing of rock formations, low-frequency icequakes in temperate glaciers, and autoresonance in hydroelectric power stations. We propose that unsteady fluid flow in volcanic conduits is the common source mechanism of low-frequency volcanic earthquakes (tremor). The fluid dynamic source mechanism explains low-frequency earthquakes of arbitrary duration, magnitude, and depth of origin, as unsteady flow is independent of physical properties of the fluid and conduit. Fluid transients occur in both low-viscosity gases and high-viscosity liquids. A fluid transient analysis can be formulated as generally as is warranted by knowledge of the composition and physical properties of the fluid, material properties, geometry and roughness of the conduit, and boundary conditions. To demonstrate the analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250/sup 0/C, in which significant pressure and velocity variations occur only in the longitudinal direction. Further simplification of the conservation of mass and momentum equations presents an eigenvalue problem that is solved to determine the natural frequencies and associated damping of flow and pressure oscillations.

  7. Preliminary test Results for a 25K Sorption Cryocooler Designed for the UCSB Long Duration Balloon Cosmic Microwave Background Radiation Experiment

    Science.gov (United States)

    Wade, L. A.; Levy, A. R.

    1996-01-01

    A continuous operation, vibration-free, long-life 25K sorption cryocooler has been built and is now in final integration and performance testing. This cooler wil be flown on the University of California at Santa Barbara (UCSB) Long Duration Balloon (LDB) Cosmic Microwave Background Radiation Experiment.

  8. Botulinum Toxin in Management of Limb Tremor

    Directory of Open Access Journals (Sweden)

    Elina Zakin

    2017-11-01

    Full Text Available Essential tremor is characterized by persistent, usually bilateral and symmetric, postural or kinetic activation of agonist and antagonist muscles involving either the distal or proximal upper extremity. Quality of life is often affected and one’s ability to perform daily tasks becomes impaired. Oral therapies, including propranolol and primidone, can be effective in the management of essential tremor, although adverse effects can limit their use and about 50% of individuals lack response to oral pharmacotherapy. Locally administered botulinum toxin injection has become increasingly useful in the management of essential tremor. Targeting of select muscles with botulinum toxin is an area of active research, and muscle selection has important implications for toxin dosing and functional outcomes. The use of anatomical landmarks with palpation, EMG guidance, electrical stimulation, and ultrasound has been studied as a technique for muscle localization in toxin injection. Earlier studies implemented a standard protocol for the injection of (predominantly wrist flexors and extensors using palpation and EMG guidance. Targeting of muscles by selection of specific activators of tremor (tailored to each patient using kinematic analysis might allow for improvement in efficacy, including functional outcomes. It is this individualized muscle selection and toxin dosing (requiring injection within various sites of a single muscle that has allowed for success in the management of tremors.

  9. Ground-motion prediction from tremor

    Science.gov (United States)

    Baltay, Annemarie S.; Beroza, Gregory C.

    2013-01-01

    The widespread occurrence of tremor, coupled with its frequency content and location, provides an exceptional opportunity to test and improve strong ground-motion attenuation relations for subduction zones. We characterize the amplitude of thousands of individual 5 min tremor events in Cascadia during three episodic tremor and slip events to constrain the distance decay of peak ground acceleration (PGA) and peak ground velocity (PGV). We determine the anelastic attenuation parameter for ground-motion prediction equations (GMPEs) to a distance of 150 km, which is sufficient to place important constraints on ground-motion decay. Tremor PGA and PGV show a distance decay that is similar to subduction-zone-specific GMPEs developed from both data and simulations; however, the massive amount of data present in the tremor observations should allow us to refine distance-amplitude attenuation relationships for use in hazard maps, and to search for regional variations and intrasubduction zone differences in ground-motion attenuation.

  10. Essential Tremor (ET): Coping Tips for Everyday Living

    Science.gov (United States)

    ... Request that your meat be cut in the kitchen before being served. Consider ordering finger foods to ... Tremor IETF Accepting Proposals for Grants Relevant to Essential Tremor IETF Champion Home About the IETF Volunteer ...

  11. Pallidal Dysfunction Drives a Cerebellothalamic Circuit into Parkinson Tremor

    NARCIS (Netherlands)

    Helmich, R.C.G.; Janssen, M.J.R.; Oyen, W.J.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    Objective: Parkinson disease (PD) is characterized by striatal dopamine depletion, which explains clinical symptoms such as bradykinesia and rigidity, but not resting tremor. Instead, resting tremor is associated with increased activity in a distinct cerebellothalamic circuit. To date, it remains

  12. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor

    NARCIS (Netherlands)

    Helmich, R.C.G.; Janssen, M.J.; Oyen, W.J.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    OBJECTIVE: Parkinson disease (PD) is characterized by striatal dopamine depletion, which explains clinical symptoms such as bradykinesia and rigidity, but not resting tremor. Instead, resting tremor is associated with increased activity in a distinct cerebellothalamic circuit. To date, it remains

  13. Essential Tremor vs. Parkinson's Disease: How Do They Differ?

    Science.gov (United States)

    Essential Tremor (ET) ET vs Parkinson’s disease How do they differ? The characteristics listed in the table below can help differentiate between parkinsonian and essential tremor, but a medical professional should be consulted for ...

  14. Bilateral cerebellar activation in unilaterally challenged essential tremor

    NARCIS (Netherlands)

    Broersma, Marja; van der Stouwe, Anna M. M.; Buijink, Arthur W. G.; de Jong, Bauke M.; Groot, Paul F. C.; Speelman, Johannes D.; Tijssen, Marina A. J.; van Rootselaar, Anne-Fleur; Maurits, Natasha M.

    2016-01-01

    Essential tremor (ET) is one of the most common hyperkinetic movement disorders. Previous research into the pathophysiology of ET suggested underlying cerebellar abnormalities. In this study, we added electromyography as an index of tremor intensity to functional Magnetic Resonance Imaging

  15. Peripheral beta-adrenergic blockade treatment of parkinsonian tremor.

    Science.gov (United States)

    Foster, N L; Newman, R P; LeWitt, P A; Gillespie, M M; Larsen, T A; Chase, T N

    1984-10-01

    The effect of nadolol, a peripherally acting beta-adrenergic blocker, on resting, postural, and intention tremor was examined in 8 patients with idiopathic Parkinson's disease whose motor symptoms, other than tremor, were well controlled with conventional medications. In a double-blind, placebo-controlled, crossover design, patients received 80 to 320 mg of nadolol for six weeks while continuing their previous therapeutic regimen. Accelerometer readings showed a 34% reduction (p less than 0.025) in tremor distance, but no change in tremor frequency, during nadolol therapy. Maximum benefit was achieved with a dose of 240 mg, when resting tremor improved 54%, postural tremor 32%, and intention tremor 54%. Physician ratings and patient reports supported the accelerometer results. Nadolol appears to be a safe, effective adjunct to current dopaminergic and anticholinergic therapy for severe tremor in Parkinson's disease.

  16. Long Duration Head Down Tilt Bed Rest and Spaceflight Effects on Neurocognitive Performance: Extent, Longevity and Neural Bases

    Science.gov (United States)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Cassady, K.; Yuan, P.; Kofman, I. S.; De Dios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2017-01-01

    We have recently completed a long duration head down tilt bed rest (HDBR) study in which we performed structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations in a spaceflight analog environment. We are also collecting the same measures in crewmembers prior to and following a six month International Space Station mission. We will present data demonstrating that bed rest resulted in functional mobility and balance deterioration with recovery post-HDBR. We observed numerous changes in brain structure, function, and connectivity relative to a control group which were associated with pre to post bed rest changes in sensorimotor function. For example, gray matter volume (GMv) increased in posterior parietal areas and decreased in frontal regions. GMv increases largely overlapped with fluid decreases and vice versa. Larger increases in precentral gyrus (M1)/ postcentral gyrus (S1+2) GMv and fluid decreases were associated with smaller balance decrements. Vestibular activation in the bilateral insular cortex increased with bed rest and subsequently recovered. Larger increases in vestibular activation in multiple brain regions were associated with greater decrements in balance and mobility. We found connectivity increases between left M1 with right S1+2 and the superior parietal lobule, and right vestibular cortex with the cerebellum. Decreases were observed between right Lobule VIII with right S1+2 and the supramarginal gyrus, right posterior parietal cortex (PPC) with occipital regions, and the right superior posterior fissure with right Crus I and II. Connectivity strength between left M1 and right S1+2/superior parietal lobule increased the most in individuals that exhibited the least balance impairments. In sum, we observed HDBR-related changes in measures of brain structure, function, and network connectivity, which correlated with indices of sensorimotor

  17. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Program. Together, these validation flight findings demonstrate the capability to support long-duration RR on the ISS to achieve both basic science and biomedical objectives.

  18. Sensitization of rat 9L gliosarcoma cells to low dose rate irradiation by long duration 41 degrees C hyperthermia.

    Science.gov (United States)

    Armour, E P; Wang, Z H; Corry, P M; Martinez, A

    1991-06-15

    Modification of survival by long duration, 41 degrees C hyperthermia in combination with low dose rate radiation (0.5 Gy/h) was determined in rat 9L gliosarcoma cells. Cells were exposed to radiation in a manner that simulated continuous irradiation at a dose rate relevant to clinical brachytherapy. High dose rate X-irradiation was fractionated in 1.0-Gy fractions at 2-h intervals (FLDRI). Previous studies had demonstrated that 9L cells exposed to FLDRI with these parameters have survival characteristics that are equivalent to continuous low dose rate irradiation. Cells exposed to 41 degrees C throughout FLDRI were sensitized significantly (thermal enhancement ratio of 2.07) compared with cells irradiated at 37 degrees C. Incubation for 24 h at 41 degrees C before and/or after FLDRI at either 37 degrees C or 41 degrees C did not increase the slope of the radiation survival curves but did reduce the shoulder. Similarly, heating at 43 degrees C for 30 or 60 min before and/or after irradiation at 0.5 Gy/h also did not enhance cell sensitivity. Survival of cells after irradiation at high dose rate (60 Gy/h) was independent of the temperature during irradiation. Preheat at 41 degrees C for 24 h did not sensitize cells to high dose rate irradiation by increasing the slope of the survival curve, although a loss of shoulder was observed. Sensitization of cells heated at 43 degrees C for 30 or 60 min before high dose rate irradiation was expressed as classical slope modification. Our results demonstrate that 41 degrees C heating during FLDRI greatly sensitizes cells to radiation-induced killing for exposure durations up to 36 h. Heating 9L cells at 41 degrees C or 43 degrees C adjacent to FLDRI at 0.5 Gy/h resulted in no additional enhancement of terminal sensitivity, although shoulder modification was observed. The sensitization by simultaneous heating described above occurred even though thermotolerance developed during extended incubation at 41 degrees C. These in vitro

  19. Tremor pattern differentiates drug-induced resting tremor from Parkinson disease.

    Science.gov (United States)

    Nisticò, R; Fratto, A; Vescio, B; Arabia, G; Sciacca, G; Morelli, M; Labate, A; Salsone, M; Novellino, F; Nicoletti, A; Petralia, A; Gambardella, A; Zappia, M; Quattrone, A

    2016-04-01

    DAT-SPECT, is a well-established procedure for distinguishing drug-induced parkinsonism from Parkinson's disease (PD). We investigated the usefulness of blink reflex recovery cycle (BRrc) and of electromyographic parameters of resting tremor for the differentiation of patients with drug-induced parkinsonism with resting tremor (rDIP) from those with resting tremor due to PD. This was a cross-sectional study. In 16 patients with rDIP and 18 patients with PD we analysed electrophysiological parameters (amplitude, duration, burst and pattern) of resting tremor. BRrc at interstimulus intervals (ISI) of 100, 150, 200, 300, 400, 500 and 750 msec was also analysed in patients with rDIP, patients with PD and healthy controls. All patients and controls underwent DAT-SPECT. Rest tremor amplitude was higher in PD patients than in rDIP patients (p tremor showed a synchronous pattern in all patients with rDIP, whereas it had an alternating pattern in all PD patients (p tremor can be considered a useful investigation for differentiating rDIP from PD. Copyright © 2016. Published by Elsevier Ltd.

  20. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    Science.gov (United States)

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-03-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role

  1. Tremor Source Location at Okmok Volcano

    Science.gov (United States)

    Reyes, C. G.; McNutt, S. R.

    2007-12-01

    Initial results using an amplitude-based tremor location program have located several active tremor episodes under Cone A, a vent within Okmok volcano's 10 km caldera. Okmok is an andesite volcano occupying the north-eastern half of Umnak Island, in the Aleutian islands. Okmok is defined by a ~2000 y.b.p. caldera that contains multiple cinder cones. Cone A, the youngest of these, extruded lava in 1997 covering the caldera floor. Since April 2003, continuous seismic data have been recorded from eight vertical short-period stations (L4-C's) installed at distances from Cone A ranging from 2 km to 31 km. In 2004 four additional 3- component broadband stations were added, co-located with continuous GPS stations. InSAR and GPS measurements of post-eruption deformation show that Okmok experienced several periods of rapid inflation (Mann and Freymueller, 2002), from the center of the 10 km diameter caldera. While there are few locatable VT earthquakes, there has been nearly continuous low-level tremor with stronger amplitude bursts occurring at variable rates and durations. The character of occurrence remained relatively constant over the course of days to weeks until the signal ceased in mid 2005. Within any day, tremor behavior remains fairly consistent, with bursts closely resembling each other, suggesting a single main process or source location. The tremor is composed of irregular waves with a broad range of frequencies, though most energy resides between ~2 Hz and 6 Hz. Attempts to locate the tremor using traditional arrival time methods fail because the signal is emergent, with envelopes too ragged to correlate on time scales that hold much hope for a location. Instead, focus was shifted to the amplitude ratios at various stations. Candidates for the tremor source include the center of inflation and Cone A, 3 km to the south-west. For all dates on record, data were band pass filtered between 1 and 5 Hz, then evaluated in 20.48 second windows (N=2048, sampling rate

  2. Tremor da escrita: relato de caso

    Directory of Open Access Journals (Sweden)

    Denise Hack Nicaretta

    1994-03-01

    Full Text Available O tremor da escrita é distúrbio precipitado por atividade motora específica, geralmente a escrita. Analisamos este caso sob o ponto de vista clínico e terapêutico. O paciente apresentava tremor ao escrever tomando sua letra ilegível; sem qualquer outra alteração neurológica. Não havia antecedentes familiares, metabólicos, endócrinos, iatrogênicos, tóxicos ou traumáticos. No manuseio terapêutico não ocorreu resposta satisfatória ao propranolol, sendo discreta à primidona. A introdução de anticolinérgicos (tri-hexifenidil evidenciou certa melhora na sintomatologia, com redução do tremor no momento da escrita.

  3. San Andreas tremor cascades define deep fault zone complexity

    Science.gov (United States)

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  4. Abnormal 201Tl limb scan due to unilateral tremor

    International Nuclear Information System (INIS)

    Simons, M.; Schelstraete, K.; Bratzlavsky, M.

    1982-01-01

    A abnormal intra- and interextremity distribution pattern on 201 Tl was observed on the limb scan of a patient with a unilateral tremor. This is ascribed to the increased blood flow in the muscles responsible for the tremor. The suggestion is made that the existence of tremor should be considered as a possible explanation for unexpected abnormalities on 201 Tl limb scintigrams

  5. Focal Gray Matter Plasticity as a Function of Long Duration Head Down Tilted Bed Rest: Preliminary Results

    Science.gov (United States)

    Koppelmans, V.; Erdeniz, B.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes are solely related to peripheral changes from reduced vestibular stimulation, body unloading, body fluid shifts or that they may be related to structural and functional brain changes is yet unknown. However, a recent study reported associations between microgravity and flattening of the posterior eye globe and protrusion of the optic nerve [1] possibly as the result of increased intracranial pressure due to microgravity induced bodily fluid shifts [3]. Moreover, elevated intracranial pressure has been related to white matter microstructural damage [2]. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system [4]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure [5]. Here we present results of the first six subjects. Six subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility in UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM

  6. Unilateral rubral tremors in Wilson′s disease treated with dimercaprol

    Directory of Open Access Journals (Sweden)

    Rahul T Chakor

    2015-01-01

    Full Text Available Tremors are reported as the most frequent neurological manifestation of Wilson′s disease (WD in some series. Postural tremors, rest tremors, action tremors and wing-beating (rubral tremors are the different types of tremors seen in WD. We report a patient of WD with unilateral rubral tremors refractory to 1-year therapy with Penicillamine and anti-tremor medications. The tremors decreased considerably after adding chelation therapy with dimercaprol. Combination of Penicillamine and dimercaprol is an effective decoppering measure in rubral tremors of WD.

  7. Dramatic response to levetiracetam in post-ischaemic Holmes’ tremor

    Science.gov (United States)

    Striano, P; Elefante, Andrea; Coppola, Antonietta; Tortora, Fabio; Zara, Federico; Minetti, Carlo

    2009-01-01

    Holmes’ tremor refers to an unusual combination of rest, postural and kinetic tremor of extremities. Common causes of Holmes’ tremor include stroke, trauma, vascular malformations and multiple sclerosis, with lesions involving the thalamus, brain stem or cerebellum. Although some drugs (eg, levodopa and dopaminergic drugs, clonazepam and propranolol) have been occasionally reported to give some benefit, medical treatment of Holmes’ tremor is unsatisfactory, and many patients require thalamic surgery to achieve satisfactory control. We report a patient in whom post-ischaemic Holmes’ tremor dramatically responded to levetiracetam treatment. PMID:21686707

  8. Ambient Tremor, But No Triggered Tremor at the Northern Costa Rica Subduction Zone

    Science.gov (United States)

    Swiecki, Z.; Schwartz, S. Y.

    2010-12-01

    Non-volcanic tremor (NVT) has been found to be triggered during the passage of surface waves from various teleseismic events in locations around the world including Cascadia, Southwest Japan, Taiwan, and California. In this study we examine the northern Costa Rica subduction zone for evidence of triggered tremor. The Nicoya Peninsula segment of the northern Costa Rica margin experiences both slow-slip and tremor and is thus a prime candidate for triggered tremor observations. Eleven teleseismic events with magnitudes (Mw) greater than 8 occurring between 2006 and 2010 were examined using data from both broadband and short period sensors deployed on the Nicoya Peninsula, Costa Rica. Waveforms from several large regional events were also considered. The largest teleseismic and regional events (27 February 2010 Chile, Mw 8.8 and 28 May 2009 Honduras, Mw 7.3) induced peak ground velocities (PGV) at the NIcoya stations of ~2 and 6 mm/s, respectively; larger than PGVs in other locations that have triggered tremor. Many of the earthquakes examined occurred during small episodes of background ambient tremor. In spite of this, no triggered tremor was observed during the passage of seismic waves from any event. This is significant because other studies have demonstrated that NVT is not triggered everywhere by all events above some threshold magnitude, indicating that unique conditions are required for its occurrence. The lack of triggered tremor at the Costa Rica margin can help to better quantify the requisite conditions and triggering mechanisms. An inherent difference between the Costa Rica margin and the other subduction zones where triggered tremor exists is its erosional rather than accretionary nature. Its relatively low sediment supply likely results in a drier, lower pore fluid pressure, stronger and less compliant thrust interface that is less receptive to triggering tremor from external stresses generated by teleseismic or strong local earthquakes. Another

  9. Disorders of balance and gait in essential tremor are associated with midline tremor and age.

    Science.gov (United States)

    Hoskovcová, Martina; Ulmanová, Olga; Sprdlík, Otakar; Sieger, Tomáš; Nováková, Jana; Jech, Robert; Růžička, Evžen

    2013-02-01

    Disorders of balance and gait have been observed in patients with essential tremor (ET), but their association with tremor severity remains unclear. This study aimed to evaluate postural instability and gait changes in ET patients and to investigate their relationship to tremor characteristics with regard to cerebellar dysfunction as a possible common pathogenetic mechanism in ET. Thirty ET patients (8F, mean (SD) age 55.8 (17.8), range 19-81 years) and 25 normal controls (7F, 53.0 (17.7), 19-81) were tested with the scales of Activities-specific Balance Confidence (ABC), Fullerton Advanced Balance (FAB), and International Cooperative Ataxia Rating Scale (ICARS). Posturography and gait were assessed using a Footscan® system. Tremor was evaluated by the Fahn-Tolosa-Marin Tremor Rating Scale (TRS) and accelerometry in five upper limb positions. A mean (SD) TRS sum score of 27.0 (13.2) corresponded to mild to moderate tremor severity in most patients. In comparison with controls, ET subjects exhibited lower tandem gait velocity (0.21 vs. 0.26 m/s, P = 0.028), more missteps (0.57 vs. 0.12, P = 0.039), and increased postural sway in tandem stance (sway area 301.1 vs. 202.9 mm(2), P = 0.045). In normal gait, step width increased with the midline tremor subscore of TRS (Pearson r = 0.60, P = 0.046). Moreover, significant correlations were found between age and quantitative measures of normal and tandem gait in ET patients but not in controls. ABC, FAB, and ICARS scores did not significantly differ between patients and controls. In conclusion, gait and balance alterations in ET patients occur even without subjective complaints. Their relationship with midline tremor and dependence on age suggest a connection with cerebellar dysfunction.

  10. Multiple Resting-State Networks Are Associated With Tremors and Cognitive Features in Essential Tremor.

    Science.gov (United States)

    Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou

    2015-12-01

    The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.

  11. Differences in striatal dopamine transporter density between tremor dominant and non-tremor Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kaasinen, Valtteri; Kinos, Maija; Joutsa, Juho [University of Turku and Turku University Hospital, Division of Clinical Neurosciences, Turku (Finland); University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Seppaenen, Marko [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); University of Turku and Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku (Finland); Noponen, Tommi [University of Turku and Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku (Finland)

    2014-10-15

    Parkinson's disease (PD) can manifest with a tremor-dominant or a non-tremor (akinetic-rigid) phenotype. Although the tremor-dominant subtype may show a better prognosis, there is limited information on the phenotypic differences regarding the level of striatal dopamine transmission. The present study investigated striatal dopamine transporter (DAT) binding characteristics in a large sample of patients with and without tremor. [{sup 123}I]FP-CIT SPECT scans of 231 patients with a clinical diagnosis of PD and abnormal FP-CIT binding (157 with tremor, 74 without tremor) and 230 control patients with normal FP-CIT binding (148 with tremor, 82 without tremor) were analysed using an automated region-of-interest analysis of the scans (BRASS). Specific striatal binding ratios were compared between phenotypes and groups using age, sex, and symptom duration, predominant side of symptoms, dopaminergic medications and scanner as covariates. Patients with PD had 28.1 - 65.0 % lower binding in all striatal regions compared to controls (p < 0.001). The mean FP-CIT caudate nucleus uptake and the left caudate nucleus uptake were higher in PD patients with tremor than in PD patients without tremor (mean 9.0 % higher, left 10.5 % higher; p < 0.05), whereas there were no differences between tremor and non-tremor control patients. No significant effects of tremor on DAT binding were observed in the anterior or posterior putamen. The motor phenotype is associated with the extent of caudate dopamine terminal loss in PD, as dopamine function is relatively more preserved in tremor patients. Symptom type is related to caudate dopamine function only in association with Parkinsonian dopaminergic degeneration, not in intact dopamine systems in patients with non-PD tremor. (orig.)

  12. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    Science.gov (United States)

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Essential Tremor: What We Can Learn from Current Pharmacotherapy

    Directory of Open Access Journals (Sweden)

    William Ondo

    2016-03-01

    Full Text Available Background: The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. Methods: We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Results: Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective, has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. Discussion: To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials.

  14. Essential Tremor: What We Can Learn from Current Pharmacotherapy.

    Science.gov (United States)

    Ondo, William

    2016-01-01

    The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials.

  15. High-frequency, long-duration water sampling in acid mine drainage studies: a short review of current methods and recent advances in automated water samplers

    Science.gov (United States)

    Chapin, Thomas

    2015-01-01

    Hand-collected grab samples are the most common water sampling method but using grab sampling to monitor temporally variable aquatic processes such as diel metal cycling or episodic events is rarely feasible or cost-effective. Currently available automated samplers are a proven, widely used technology and typically collect up to 24 samples during a deployment. However, these automated samplers are not well suited for long-term sampling in remote areas or in freezing conditions. There is a critical need for low-cost, long-duration, high-frequency water sampling technology to improve our understanding of the geochemical response to temporally variable processes. This review article will examine recent developments in automated water sampler technology and utilize selected field data from acid mine drainage studies to illustrate the utility of high-frequency, long-duration water sampling.

  16. The effect of co-deposition of hydrogen and metals on wall pumping in long duration plasma in TRIAM-1M

    International Nuclear Information System (INIS)

    Miyamoto, M.; Tokitani, M.; Tokunaga, K.; Fujiwara, T.; Yoshida, N.; Sakamoto, M.; Zushi, H.; Nagata, S.; Ono, K.

    2005-01-01

    The effect of co-deposition on recycling and wall pumping during long duration plasmas in TRIAM-1M has been studied. To examine the hydrogen retention on the all metal walls, material exposure experiments were carried out using an ultra-long discharge for about 72 min. After exposure to the plasma, the surface modification and hydrogen retention of the specimens were examined quantitatively by means of ion beam analysis techniques and transmission electron microscopy (TEM). Large amount of retained hydrogen were detected in the specimen exposed to the long duration discharge in TRIAM-1M. This amount was sufficient to explain the wall pumping in TRIAM-1M. A correlation was also observed between the thicknesses of the deposits and the amount of retained hydrogen. These results mean that the metallic deposited layer can trap a large amount of hydrogen and has a strong influence on hydrogen recycling similar to a carbon deposit

  17. Treatment of resting tremor by beta-adrenergic blockade.

    Science.gov (United States)

    Foster, N L; Newman, R P; LeWitt, P A; Gillespie, M M; Chase, T N

    1984-10-01

    The effect of nadolol, a peripherally acting beta-adrenergic blocker, on resting tremor was examined in eight patients with idiopathic Parkinson's disease. With the use of a double-blind, placebo-controlled study of crossover design, patients received 80 to 320 mg of nadolol for 6 weeks while continuing their previous treatment regimen. Accelerometer readings showed a progressive reduction in tremor amplitude, but no change in tremor frequency, with increasing nadolol dosage. Maximum benefit was achieved at 240 mg, when resting tremor improved 50% (p less than 0.01). Physician ratings confirmed these findings. The results suggest that response to beta-adrenergic blockade may not be limited to postural or intention tremor and that such agents may not reliably differentiate between the tremor of Parkinson's disease and essential tremor.

  18. De fysiologische tremor van de hand

    NARCIS (Netherlands)

    Weerden, Tiemen Willem van

    1989-01-01

    Bij het innemen van een houding, zoals het willekeurig horizontaal gestrekt houden van de hand, vertoont het betrokken lichaamsdeel kleine fluctuaties in positie: de fysiologische tremor. Het doel van het proefschrift is, naast een beschrijving van het fenomeen, inzicht te geven in de oorzakelijke

  19. Differential effects of alpha-adrenoceptor blockade on essential, physiological and isoprenaline-induced tremor: evidence for a central origin of essential tremor.

    OpenAIRE

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1985-01-01

    Intravenous thymoxamine reduced the power of essential tremor but increased that of physiological and isoprenaline-induced tremor. These findings indicate that essential and physiological tremor have dissimilar pathophysiological mechanisms. They also suggest that central adrenergic mechanisms are involved in the pathophysiology of essential tremor and that isoprenaline-induced tremor is not a good model of essential tremor. Furthermore, alpha-adrenoceptor blockers may be a useful therapy for...

  20. Defining the Relationship Between Biomarkers of Oxidation and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, Stuart M. C.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis.

  1. Defining the Relationship Between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, S. M. C.; Martin, D. S.; Smith, S. M.; Zwart, S. R.; Laurie, S. S; Ribeiro, L. C.; Stenger, M. B.

    2017-01-01

    Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.

  2. Lessons Learned from Biosphere 2: When Viewed as a Ground Simulation/Analogue for Long Duration Human Space Exploration and Settlement

    Science.gov (United States)

    MacCallum, T.; Poynter, J.; Bearden, D.

    A human mission to Mars, or a base on the Moon or Mars, is a longer and more complex mission than any space endeavor undertaken to date. Ground simulations provide a relevant, analogous environment for testing technologies and learning how to manage complex, long duration missions, while addressing inherent mission risks. Multiphase human missions and settlements that may preclude a rapid return to Earth, require high fidelity, end-to-end, at least full mission duration tests in order to evaluate a system's ability to sustain the crew for the entire mission and return the crew safely to Earth. Moreover, abort scenarios are essentially precluded in many mission scenarios, though certain risks may only become evident late in the mission. Aging and compounding effects cannot be simulated through accelerated tests for all aspects of the mission. Until such high fidelity long duration simulations are available, and in order to help prepare those simulations and mission designs, it is important to extract as many lessons as possible from analogous environments. Possibly the best analogue for a long duration space mission is the two year mission of Biosphere 2. Biosphere 2 is a three-acre materially closed ecological system that supported eight crewmembers with food, air and water in a sunlight driven bioregenerative system for two years. It was designed for research applicable to environmental management on Earth and the development of human life support for space. A brief overview of the two-year Biosphere 2 mission is presented, followed by select data and lessons learned that are applicable to the design and operation of a long duration human space mission, settlement or test bed. These lessons include technical, programmatic, and psychological issues

  3. Coupled Land-Atmosphere Dynamics Govern Long Duration Floods: A Pilot Study in Missouri River Basin Using a Bayesian Hierarchical Model

    Science.gov (United States)

    Najibi, N.; Lu, M.; Devineni, N.

    2017-12-01

    Long duration floods cause substantial damages and prolonged interruptions to water resource facilities and critical infrastructure. We present a novel generalized statistical and physical based model for flood duration with a deeper understanding of dynamically coupled nexus of the land surface wetness, effective atmospheric circulation and moisture transport/release. We applied the model on large reservoirs in the Missouri River Basin. The results indicate that the flood duration is not only a function of available moisture in the air, but also the antecedent condition of the blocking system of atmospheric pressure, resulting in enhanced moisture convergence, as well as the effectiveness of moisture condensation process leading to release. Quantifying these dynamics with a two-layer climate informed Bayesian multilevel model, we explain more than 80% variations in flood duration. The model considers the complex interaction between moisture transport, synoptic-to-large-scale atmospheric circulation pattern, and the antecedent wetness condition in the basin. Our findings suggest that synergy between a large low-pressure blocking system and a higher rate of divergent wind often triggers a long duration flood, and the prerequisite for moisture supply to trigger such event is moderate, which is more associated with magnitude than duration. In turn, this condition causes an extremely long duration flood if the surface wetness rate advancing to the flood event was already increased.

  4. To what extent do long-duration high-volume dam releases influence river–aquifer interactions? A case study in New South Wales, Australia

    KAUST Repository

    Graham, Peter W.

    2014-11-20

    Long-duration high-volume dam releases are unique anthropogenic events with no naturally occurring equivalents. The impact from such dam releases on a downstream Quaternary alluvial aquifer in New South Wales, Australia, is assessed. It is observed that long-duration (>26 days), high-volume dam releases (>8,000 ML/day average) result in significant variations in river–aquifer interactions. These variations include a flux from the river to the aquifer up to 6.3 m3/day per metre of bank (at distances of up to 330 m from the river bank), increased extent and volume of recharge/bank storage, and a long-term (>100 days) reversal of river–aquifer fluxes. In contrast, during lower-volume events (<2,000 ML/day average) the flux was directed from the aquifer to the river at rates of up to 1.6 m3/day per metre of bank. A groundwater-head prediction model was constructed and river–aquifer fluxes were calculated; however, predicted fluxes from this method showed poor correlation to fluxes calculated using actual groundwater heads. Long-duration high-volume dam releases have the potential to skew estimates of long-term aquifer resources and detrimentally alter the chemical and physical properties of phreatic aquifers flanking the river. The findings have ramifications for improved integrated management of dam systems and downstream aquifers.

  5. Long-Duration Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Rosen, Micha; Mulloth, Lila; Varghese, Mini

    2005-01-01

    This paper describes the results of long-duration testing of a temperature-swing adsorption compressor that has application in the International Space Station (ISS) and future spacecraft for closing the air revitalization loop. The air revitalization system of the ISS operates in an open loop mode and relies on the resupply of oxygen and other consumables from Earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. The TSAC was developed and its operation was successfully verified in integration tests with the flight-like Carbon Dioxide Removal Assembly (CDRA) at Marshall Space Flight Center prior to the long-duration tests. Long-duration tests reveal the impacts of repeated thermal cycling on the compressor components and the adsorbent material.

  6. To what extent do long-duration high-volume dam releases influence river-aquifer interactions? A case study in New South Wales, Australia

    Science.gov (United States)

    Graham, P. W.; Andersen, M. S.; McCabe, M. F.; Ajami, H.; Baker, A.; Acworth, I.

    2015-03-01

    Long-duration high-volume dam releases are unique anthropogenic events with no naturally occurring equivalents. The impact from such dam releases on a downstream Quaternary alluvial aquifer in New South Wales, Australia, is assessed. It is observed that long-duration (>26 days), high-volume dam releases (>8,000 ML/day average) result in significant variations in river-aquifer interactions. These variations include a flux from the river to the aquifer up to 6.3 m3/day per metre of bank (at distances of up to 330 m from the river bank), increased extent and volume of recharge/bank storage, and a long-term (>100 days) reversal of river-aquifer fluxes. In contrast, during lower-volume events (bank. A groundwater-head prediction model was constructed and river-aquifer fluxes were calculated; however, predicted fluxes from this method showed poor correlation to fluxes calculated using actual groundwater heads. Long-duration high-volume dam releases have the potential to skew estimates of long-term aquifer resources and detrimentally alter the chemical and physical properties of phreatic aquifers flanking the river. The findings have ramifications for improved integrated management of dam systems and downstream aquifers.

  7. ULTRA-LOW AMPLITUDE VARIABLES IN THE LARGE MAGELLANIC CLOUD-CLASSICAL CEPHEIDS, POP. II CEPHEIDS, RV TAU STARS, AND BINARY VARIABLES

    International Nuclear Information System (INIS)

    Robert Buchler, J.; Wood, Peter R.; Soszynski, Igor

    2009-01-01

    A search for variable stars with ultra-low amplitudes (ULAs), in the millimagnitude range, has been made in the combined MACHO and OGLE databases in the broad vicinity of the Cepheid instability strip in the HR diagram. A total of 25 singly periodic and 4 multiply periodic ULA objects have been uncovered. Our analysis does not allow us to distinguish between pulsational and ellipsoidal (binary) variabilities, nor between Large Magellanic Cloud (LMC) and foreground objects. However, the objects are strongly clustered and appear to be associated with the pulsational instability strips of LMC Pop. I and II variables. When combined with the ULA variables of Buchler et al., a total of 20 objects fall close to the classical Cepheid instability strip. However, they appear to fall on parallel period-magnitude (PM) relations that are shifted to slightly higher magnitude which would confer them a different evolutionary status. Low-amplitude RV Tauri and Pop. II Cepheids have been uncovered that do not appear in the MACHO or OGLE catalogs. Interestingly, a set of binaries seem to lie on a PM relation that is essentially parallel to that of the RV Tauri/Pop. II Cepheids.

  8. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    Science.gov (United States)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-06-01

    the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multiscale mechanisms of slow earthquakes generation.

  9. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    Science.gov (United States)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-02-01

    the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multi-scale mechanisms of slow earthquakes generation.

  10. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?

    NARCIS (Netherlands)

    Helmich, R.C.G.; Hallett, M.; Deuschl, G.; Toni, I.; Bloem, B.R.

    2012-01-01

    Tremor in Parkinson's disease has several mysterious features. Clinically, tremor is seen in only three out of four patients with Parkinson's disease, and tremor-dominant patients generally follow a more benign disease course than non-tremor patients. Pathophysiologically, tremor is linked to

  11. Cerebral causes and consequences of parkinsonian resting tremor: A tale of two circuits?

    NARCIS (Netherlands)

    Helmich, R.C.G.; Hallett, M.; Deuschl, G.; Toni, I.; Bloem, B.R.

    2012-01-01

    Tremor in Parkinson's disease has several mysterious features. Clinically, tremor is seen in only three out of four patients with Parkinson's disease, and tremor-dominant patients generally follow a more benign disease course than non-tremor patients. Pathophysiologically, tremor is linked to

  12. [The use of neuromodulation for the treatment of tremor].

    Science.gov (United States)

    Bendersky, Damián; Ajler, Pablo; Yampolsky, Claudio

    2014-01-01

    Tremor may be a disabling disorder and pharmacologic treatment is the first-line therapy for these patients. Nevertheless, this treatment may lead to a satisfactory tremor reduction in only 50% of patients with essential tremor. Thalamotomy was the treatment of choice for tremor refractory to medical therapy until deep brain stimulation (DBS) of the ventral intermedius nucleus (Vim) of the thalamus has started being used. Nowadays, thalamotomy is rarely performed. This article is a non-systematic review of the indications, results, programming parameters and surgical technique of DBS of the Vim for the treatment of tremor. In spite of the fact that it is possible to achieve similar clinical results using thalamotomy or DBS of the Vim, the former causes more adverse effects than the latter. Furthermore, DBS can be used bilaterally, whereas thalamotomy has a high risk of causing disartria when it is performed in both sides. DBS of the Vim achieved an adequate tremor improvement in several series of patients with tremor caused by essential tremor, Parkinson's disease or multiple sclerosis. Besides the Vim, there are other targets, which are being used by some authors, such as the zona incerta and the prelemniscal radiations. DBS of the Vim is a useful treatment for disabling tremor refractory to medical therapy. It is essential to carry out an accurate patient selection as well as to use a proper surgical technique. The best stereotactic target for tremor is still unknown, although the Vim is the most used one.

  13. Is Slow Slip a Cause or a Result of Tremor?

    Science.gov (United States)

    Luo, Y.; Ampuero, J. P.

    2017-12-01

    While various modeling efforts have been conducted to reproduce subsets of observations of tremor and slow-slip events (SSE), a fundamental but yet unanswered question is whether slow slip is a cause or a result of tremor. Tremor is commonly regarded as driven by SSE. This view is mainly based on observations of SSE without detected tremors and on (frequency-limited) estimates of total tremor seismic moment being lower than 1% of their concomitant SSE moment. In previous studies we showed that models of heterogeneous faults, composed of seismic asperities embedded in an aseismic fault zone matrix, reproduce quantitatively the hierarchical patterns of tremor migration observed in Cascadia and Shikoku. To address the title question, we design two end-member models of a heterogeneous fault. In the SSE-driven-tremor model, slow slip events are spontaneously generated by the matrix (even in the absence of seismic asperities) and drive tremor. In the Tremor-driven-SSE model the matrix is stable (it slips steadily in the absence of asperities) and slow slip events result from the collective behavior of tremor asperities interacting via transient creep (local afterslip fronts). We study these two end-member models through 2D quasi-dynamic multi-cycle simulations of faults governed by rate-and-state friction with heterogeneous frictional properties and effective normal stress, using the earthquake simulation software QDYN (https://zenodo.org/record/322459). We find that both models reproduce first-order observations of SSE and tremor and have very low seismic to aseismic moment ratio. However, the Tremor-driven-SSE model assumes a simpler rheology than the SSE-driven-tremor model and matches key observations better and without fine tuning, including the ratio of propagation speeds of forward SSE and rapid tremor reversals and the decay of inter-event times of Low Frequency Earthquakes. These modeling results indicate that, in contrast to a common view, SSE could be a result

  14. Brittle and ductile friction and the physics of tectonic tremor

    Science.gov (United States)

    Daub, Eric G.; Shelly, David R.; Guyer, Robert A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place.

  15. A Simple Response Evaluation Method for Base-Isolation Building-Connection Hybrid Structural System under Long-Period and Long-Duration Ground Motion

    Directory of Open Access Journals (Sweden)

    Kohei Hayashi

    2018-02-01

    Full Text Available An innovative hybrid control building system of base-isolation and building-connection has been proposed in the previous study. This system has two advantages, (i to resist an impulsive earthquake input through the base-isolation system and (ii to withstand a long-duration earthquake input through the building-connection system. A simple response evaluation method without the need of non-linear time–history response analysis is proposed here for this hybrid building system under a long-period and long-duration ground motion. An analytical expression is derived in the plastic deformation of an elastic–perfectly plastic single-degree-of-freedom (SDOF model with viscous damping under the multi-impulse, which is the representative of long-period and long-duration ground motions. A transformation procedure of a base-isolation building-connection hybrid structural system into an SDOF model is proposed by introducing two steps, one is the reduction of the main base-isolated building to an SDOF system, and the other is the reduction of the connecting oil dampers supported on a free-wall to an oil damper with a newly introduced compensation factor on a rigid wall. Application of the analytical expression of the plastic deformation to the reduced SDOF model including the compensation factor on the connecting oil dampers enables the development of a simplified, but rather accurate response evaluation method. The time–history response analysis of the multi-degree-of-freedom model and the comparison with the proposed simplified formula make clear the accuracy and reliability of the proposed simplified response evaluation method.

  16. Accuracy of forecast of mine tremors location

    Energy Technology Data Exchange (ETDEWEB)

    Jan Drzewieck [Central Mining Institute, Katowice (Poland)

    2009-09-15

    The Upper Silesian Coal Basin is one of the most active mining areas in the world in respect of seismicity. Underground mining in this area takes place in a special environment with a high degree of risk of unpredictable event occurrence. Especially dangerous are phenomena that occur during the extraction of deposits at great depths in the environment of compact rocks. Deep underground mining violates the balance of these rocks and induces dynamic phenomena at the longwall life (in terms of distance) referred to as mine tremors. The sources of these tremors are located in layers characterised by high strength, especially in thick sandstone strata occurring in the roof of the mined seam. In the paper a discussion is presented about the influence of mining intensity (longwall face speed) on the location of mine tremor sources, both in the direction of longwall life (in terms of distance) and towards the surface. The presented material has been prepared based on the results of tests and measurements carried out at the Central Mining Institute. 8 refs., 5 figs.

  17. The long-term outcome of orthostatic tremor.

    Science.gov (United States)

    Ganos, Christos; Maugest, Lucie; Apartis, Emmanuelle; Gasca-Salas, Carmen; Cáceres-Redondo, María T; Erro, Roberto; Navalpotro-Gómez, Irene; Batla, Amit; Antelmi, Elena; Degos, Bertrand; Roze, Emmanuel; Welter, Marie-Laure; Mestre, Tiago; Palomar, Francisco J; Isayama, Reina; Chen, Robert; Cordivari, Carla; Mir, Pablo; Lang, Anthony E; Fox, Susan H; Bhatia, Kailash P; Vidailhet, Marie

    2016-02-01

    Orthostatic tremor is a rare condition characterised by high-frequency tremor that appears on standing. Although the essential clinical features of orthostatic tremor are well established, little is known about the natural progression of the disorder. We report the long-term outcome based on the largest multicentre cohort of patients with orthostatic tremor. Clinical information of 68 patients with clinical and electrophysiological diagnosis of orthostatic tremor and a minimum follow-up of 5 years is presented. There was a clear female preponderance (76.5%) with a mean age of onset at 54 years. Median follow-up was 6 years (range 5-25). On diagnosis, 86.8% of patients presented with isolated orthostatic tremor and 13.2% had additional neurological features. At follow-up, seven patients who initially had isolated orthostatic tremor later developed further neurological signs. A total 79.4% of patients reported worsening of orthostatic tremor symptoms. These patients had significantly longer symptom duration than those without reported worsening (median 15.5 vs 10.5 years, respectively; p=0.005). There was no change in orthostatic tremor frequency over time. Structural imaging was largely unremarkable and dopaminergic neuroimaging (DaTSCAN) was normal in 18/19 cases. Pharmacological treatments were disappointing. Two patients were treated surgically and showed improvement. Orthostatic tremor is a progressive disorder with increased disability although tremor frequency is unchanged over time. In most cases, orthostatic tremor represents an isolated syndrome. Drug treatments are unsatisfactory but surgery may hold promise. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Temporal Variation of Tectonic Tremor Activity Associated with Nearby Earthquakes

    Science.gov (United States)

    Chao, K.; Van der Lee, S.; Hsu, Y. J.; Pu, H. C.

    2017-12-01

    Tectonic tremor and slow slip events, located downdip from the seismogenic zone, hold the key to recurring patterns of typical earthquakes. Several findings of slow aseismic slip during the prenucletion processes of nearby earthquakes have provided new insight into the study of stress transform of slow earthquakes in fault zones prior to megathrust earthquakes. However, how tectonic tremor is associated with the occurrence of nearby earthquakes remains unclear. To enhance our understanding of the stress interaction between tremor and earthquakes, we developed an algorithm for the automatic detection and location of tectonic tremor in the collisional tectonic environment in Taiwan. Our analysis of a three-year data set indicates a short-term increase in the tremor rate starting at 19 days before the 2010 ML6.4 Jiashian main shock (Chao et al., JGR, 2017). Around the time when the tremor rate began to rise, one GPS station recorded a flip in its direction of motion. We hypothesize that tremor is driven by a slow-slip event that preceded the occurrence of the shallower nearby main shock, even though the inferred slip is too small to be observed by all GPS stations. To better quantify what the necessary condition for tremor to response to nearby earthquakes is, we obtained a 13-year ambient tremor catalog from 2004 to 2016 in the same region. We examine the spatiotemporal relationship between tremor and 37 ML>=5.0 (seven events with ML>=6.0) nearby earthquakes located within 0.5 degrees to the active tremor sources. The findings from this study can enhance our understanding of the interaction among tremor, slow slip, and nearby earthquakes in the high seismic hazard regions.

  19. Serotonergic modulation of nicotine-induced kinetic tremor in mice

    Directory of Open Access Journals (Sweden)

    Naofumi Kunisawa

    2017-06-01

    Full Text Available We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT, significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT1A antagonist. In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI, significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT2 antagonist. The 5-HT3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT3 antagonist or SB-258585 (5-HT6 antagonist. These results suggest that postsynaptic 5-HT1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT2 receptors have an inhibitory modulatory role in induction of nicotine tremor.

  20. LONG-DURATION X-RAY FLASH AND X-RAY-RICH GAMMA-RAY BURSTS FROM LOW-MASS POPULATION III STARS

    International Nuclear Information System (INIS)

    Nakauchi, Daisuke; Kashiyama, Kazumi; Nakamura, Takashi; Suwa, Yudai; Sakamoto, Takanori

    2012-01-01

    Recent numerical simulations suggest that Population III (Pop III) stars were born with masses not larger than ∼100 M ☉ and typically ∼40 M ☉ . By self-consistently considering the jet generation and propagation in the envelope of these low-mass Pop III stars, we find that a Pop III blue supergiant star has the possibility of giving rise to a gamma-ray burst (GRB) even though it keeps a massive hydrogen envelope. We evaluate observational characteristics of Pop III GRBs and predict that Pop III GRBs have a duration of ∼10 5 s in the observer frame and a peak luminosity of ∼5 × 10 50 erg s –1 . Assuming that the E p -L p (or E p -E γ,iso ) correlation holds for Pop III GRBs, we find that the spectrum peak energy falls at approximately a few keV (or ∼100 keV) in the observer frame. We discuss the detectability of Pop III GRBs by future satellite missions such as EXIST and Lobster. If the E p -E γ,iso correlation holds, we have the possibility to detect Pop III GRBs at z ∼ 9 as long-duration X-ray-rich GRBs by EXIST. Conversely, if the E p -L p correlation holds, we have the possibility to detect Pop III GRBs up to z ∼ 19 as long-duration X-ray flashes by Lobster.

  1. Effect of granulocyte colony-stimulating factor treatment at a low dose but for a long duration in patients with coronary heart disease. A pilot study

    International Nuclear Information System (INIS)

    Suzuki, Koji; Nagashima, Kenshi; Arai, Masazumi

    2006-01-01

    In animal models, granulocyte colony-stimulating factor (G-CSF) improves post-infarct cardiac function. However, in pilot studies involving patients with angina and acute myocardial infarction (AMI), G-CSF at a high dose frequently induced coronary occlusion or restenosis, but those at a low dose showed no significant beneficial effect. We hypothesized that a low dose but long duration of G-CSF will have a beneficial effect without serious complications to patients with coronary heart disease. Forty-six patients with angina or AMI were randomly assigned into G-CSF and non-G-CSF control groups, respectively. Recombinant G-CSF was subcutaneously injected once a day for 10 days. The leukocyte counts in the peripheral blood were controlled at approximately 30,000/μl. One month later, a Thallium-201 single photon emission computed tomography revealed the increased percentage uptake and the reduced extent and severity scores in the G-CSF angina group. In the G-CSF AMI group, the curve between the ejection fraction and peak creatine kinase shifted significantly upward, compared with that of the non-G-CSF AMI group. Serious complications were not observed during the 6 months of observation. A low dose but long duration of G-CSF treatment may have a beneficial effect without any serious complications in patients with coronary heart disease. (author)

  2. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts: Persistence of Damage After Flight and the Effects of Repeat Long Duration Missions

    Science.gov (United States)

    George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  3. Persistence of Space Radiation-Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts and the Effects of Repeat Long Duration Space Missions

    Science.gov (United States)

    George, Kerry A.; Cucinotta, Francis A.

    2009-01-01

    The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.

  4. Insights into Pathophysiology from Medication-induced Tremor

    Directory of Open Access Journals (Sweden)

    John C. Morgan

    2017-10-01

    Full Text Available Background: Medication-induced tremor (MIT is common in clinical practice and there are many medications/drugs that can cause or exacerbate tremors. MIT typically occurs by enhancement of physiological tremor (EPT, but not all drugs cause tremor in this way. In this manuscript, we review how some common examples of MIT have informed us about the pathophysiology of tremor.Methods: We performed a PubMed literature search for published articles dealing with MIT and attempted to identify articles that especially dealt with the medication’s mechanism of inducing tremor.Results: There is a paucity of literature that deals with the mechanisms of MIT, with most manuscripts only describing the frequency and clinical settings where MIT is observed. That being said, MIT emanates from multiple mechanisms depending on the drug and it often takes an individualized approach to manage MIT in a given patient.Discussion: MIT has provided some insight into the mechanisms of tremors we see in clinical practice. The exact mechanism of MIT is unknown for most medications that cause tremor, but it is assumed that in most cases physiological tremor is influenced by these medications. Some medications (epinephrine that cause EPT likely lead to tremor by peripheral mechanisms in the muscle (β-adrenergic agonists, but others may influence the central component (amitriptyline. Other drugs can cause tremor, presumably by blockade of dopamine receptors in the basal ganglia (dopamine-blocking agents, by secondary effects such as causing hyperthyroidism (amiodarone, or by other mechanisms. We will attempt to discuss what is known and unknown about the pathophysiology of the most common MITs.

  5. Scaling analysis of the effects of load on hand tremor movements in essential tremor

    Science.gov (United States)

    Blesić, S.; Stratimirović, Dj.; Milošević, S.; Marić, J.; Kostić, V.; Ljubisavljević, M.

    2011-05-01

    In this paper we have used the Wavelet Transform (WT) and the Detrended Fluctuation Analysis (DFA) methods to analyze hand tremor movements in essential tremor (ET), in two different recording conditions (before and after the addition of wrist-cuff load). We have analyzed the time series comprised of peak-to-peak (PtP) intervals, extracted from regions around the first three main frequency components of the power spectra (PwS) of the recorded tremors, in order to substantiate results related to the effects of load on ET, to distinguish between multiple sources of ET, and to separate the influence of peripheral factors on ET. Our results show that, in ET, the dynamical characteristics, that is, values of respective scaling exponents, of the main frequency component of recorded tremors change after the addition of load. Our results also show that in all the observed cases the scaling behavior of the calculated functions changes as well-the calculated WT scalegrams and DFA functions display a shift in the position of the crossover when the load is added. We conclude that the difference in behavior of the WT and DFA functions between different conditions in ET could be associated with the expected pathology in ET, or with some additional mechanism that controls movements in ET patients, and causes the observed changes in scaling behavior.

  6. Striations, duration, migration and tidal response in deep tremor.

    Science.gov (United States)

    Ide, Satoshi

    2010-07-15

    Deep tremor in subduction zones is thought to be caused by small repeating shear slip events on the plate interface with significant slow components. It occurs at a depth of about 30 kilometres and provides valuable information on deep plate motion and shallow stress accumulation on the fault plane of megathrust earthquakes. Tremor has been suggested to repeat at a regular interval, migrate at various velocities and be modulated by tidal stress. Here I show that some time-invariant interface property controls tremor behaviour, using precise location of tremor sources with event duration in western Shikoku in the Nankai subduction zone, Japan. In areas where tremor duration is short, tremor is more strongly affected by tidal stress and migration is inhibited. Where tremor lasts longer, diffusive migration occurs with a constant diffusivity of 10(4) m(2) s(-1). The control property may be the ratio of brittle to ductile areas, perhaps determined by the influence of mantle wedge serpentinization on the plate interface. The spatial variation of the controlling property seems to be characterized by striations in tremor source distribution, which follows either the current or previous plate subduction directions. This suggests that the striations and corresponding interface properties are formed through the subduction of inhomogeneous structure, such as seamounts, for periods as long as ten million years.

  7. Linear modeling of possible mechanisms for parkinson tremor generation

    NARCIS (Netherlands)

    Lohnberg, P.

    1978-01-01

    The power of Parkinson tremor is expressed in terms of possibly changed frequency response functions between relevant variables in the neuromuscular system. The derivation starts out from a linear loopless equivalent model of mechanisms for general tremor generation. Hypothetical changes in this

  8. Modulating basal ganglia and cerebellar activity to suppress parkinsonian tremor

    NARCIS (Netherlands)

    Heida, Tjitske; Zhao, Yan; van Wezel, Richard Jack Anton

    2013-01-01

    Despite extensive research, the detailed pathophysiology of the parkinsonian tremor is still unknown. It has been hypothesized that the generation of parkinsonian tremor is related to abnormal activity within the basal ganglia. The cerebello-thalamic-cortical loop has been suggested to indirectly

  9. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus

    NARCIS (Netherlands)

    Dirkx, M.F.M.; Ouden, H.E.M. den; Aarts, E.; Timmer, M.H.M.; Bloem, B.R.; Toni, I.; Helmich, R.C.G.

    2017-01-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic

  10. Phenomenology of tremor-like signals observed over hydrocarbon reservoirs

    NARCIS (Netherlands)

    Dangel, S.; Schaepman, M.E.; Stoll, E.P.; Carniel, R.; Barzandji, O.; Rode, E.D.; Singer, J.M.

    2003-01-01

    We have observed narrow-band, low-frequency (1.5-4 Hz, amplitude 0.01-10 mum/s) tremor signals on the surface over hydrocarbon reservoirs (oil, gas and water multiphase fluid systems in porous media) at currently 15 sites worldwide. These 'hydrocarbon tremors' possess remarkably similar spectral and

  11. Estimation of the phase response curve from Parkinsonian tremor.

    Science.gov (United States)

    Saifee, Tabish A; Edwards, Mark J; Kassavetis, Panagiotis; Gilbertson, Tom

    2016-01-01

    Phase response curves (PRCs), characterizing the response of an oscillator to weak external perturbation, have been estimated from a broad range of biological oscillators, including single neurons in vivo. PRC estimates, in turn, provide an intuitive insight into how oscillatory systems become entrained and how they can be desynchronized. Here, we explore the application of PRC theory to the case of Parkinsonian tremor. Initial attempts to establish a causal effect of subthreshold transcranial magnetic stimulation applied to primary motor cortex on the filtered tremor phase were unsuccessful. We explored the possible explanations of this and demonstrate that assumptions made when estimating the PRC in a traditional setting, such as a single neuron, are not arbitrary when applied to the case of tremor PRC estimation. We go on to extract the PRC of Parkinsonian tremor using an iterative method that requires varying the definition of the tremor cycle and estimating the PRC at multiple peristimulus time samples. Justification for this method is supported by estimates of PRC from simulated single neuron data. We provide an approach to estimating confidence limits for tremor PRC and discuss the interpretational caveats introduced by tremor harmonics and the intrinsic variability of the tremor's period. Copyright © 2016 the American Physiological Society.

  12. Fragile X-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Hoem, Gry; Koht, Jeanette

    2017-10-31

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a hereditary neurodegenerative disorder caused by a mutation on the X chromosome. The major signs and symptoms are tremor, ataxia and parkinsonism. Up to one in 2 000 persons over 50 years of age will develop the syndrome. There is reason to believe that too few individuals in Norway undergo testing for this condition.

  13. Sensory electrical stimulation for suppression of postural tremor in patients with essential tremor.

    Science.gov (United States)

    Heo, Jae-Hoon; Kim, Ji-Won; Kwon, Yuri; Lee, Sang-Ki; Eom, Gwang-Moon; Kwon, Do-Young; Lee, Chan-Nyeong; Park, Kun-Woo; Manto, Mario

    2015-01-01

    Essential tremor is an involuntary trembling of body limbs in people without tremor-related disease. In previous study, suppression of tremor by sensory electrical stimulation was confirmed on the index finger. This study investigates the effect of sensory stimulation on multiple segments and joints of the upper limb. It denotes the observation regarding the effect's continuity after halting the stimulation. 18 patients with essential tremor (8 men and 10 women) participated in this study. The task, "arms stretched forward", was performed and sensory electrical stimulation was applied on four muscles of the upper limb (Flexor Carpi Radialis, Extensor Carpi Radialis, Biceps Brachii, and Triceps Brachii) for 15 seconds. Three 3-D gyro sensors were used to measure the angular velocities of segments (finger, hand, and forearm) and joints (metacarpophalangeal and wrist joints) for three phases of pre-stimulation (Pre), during-stimulation (On), and 5 minute post-stimulation (P5). Three characteristic variables of root-mean-squared angular velocity, peak power, and peak power frequency were derived from the vector sum of the sensor signals. At On phase, RMS velocity was reduced from Pre in all segments and joints while peak power was reduced from Pre in all segments and joints except for forearm segment. Sensory stimulation showed no effect on peak power frequency. All variables at P5 were similar to those at On at all segments and joints. The decrease of peak power of the index finger was noted by 90% during stimulation from that of On phase, which was maintained even after 5 min. The results indicate that sensory stimulation may be an effective clinical method to treat the essential tremor.

  14. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from

  15. Tectonic tremor and LFEs on a reverse fault in Taiwan

    Science.gov (United States)

    Aguiar, Ana C.; Chao, Kevin; Beroza, Gregory C.

    2017-07-01

    We compare low-frequency earthquakes (LFEs) from triggered and ambient tremor under the southern Central Range, Taiwan. We apply the PageRank algorithm used by Aguiar and Beroza (2014) that exploits the repetitive nature of the LFEs to find repeating LFEs in both ambient and triggered tremor. We use these repeaters to create LFE templates and find that the templates created from both tremor types are very similar. To test their similarity, we use both interchangeably and find that most of both the ambient and triggered tremor match the LFE templates created from either data set, suggesting that LFEs for both events have a common origin. We locate the LFEs by using local earthquake P wave and S wave information and find that LFEs from triggered and ambient tremor locate to between 20 and 35 km on what we interpret as the deep extension of the Chaochou-Lishan Fault.

  16. Vocal Tremor: Novel Therapeutic Target for Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Vinod K. Ravikumar

    2016-10-01

    Full Text Available Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT. Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. Traditional EVT treatments have demonstrated limited success in long-term management of symptoms. However, voice tremor has been noted to decrease in patients receiving deep brain stimulation (DBS with the targeting of thalamic nuclei. In this study, we describe our multidisciplinary procedure for awake, frameless DBS with optimal stimulation targets as well as acoustic analysis and laryngoscopic assessment to quantify tremor reduction. Finally, we investigate the most recent clinical evidence regarding the procedure.

  17. Reversible Holmes' tremor due to spontaneous intracranial hypotension.

    Science.gov (United States)

    Iyer, Rajesh Shankar; Wattamwar, Pandurang; Thomas, Bejoy

    2017-07-27

    Holmes' tremor is a low-frequency hand tremor and has varying amplitude at different phases of motion. It is usually unilateral and does not respond satisfactorily to drugs and thus considered irreversible. Structural lesions in the thalamus and brainstem or cerebellum are usually responsible for Holmes' tremor. We present a 23-year-old woman who presented with unilateral Holmes' tremor. She also had hypersomnolence and headache in the sitting posture. Her brain imaging showed brain sagging and deep brain swelling due to spontaneous intracranial hypotension (SIH). She was managed conservatively and had a total clinical and radiological recovery. The brain sagging with the consequent distortion of the midbrain and diencephalon was responsible for this clinical presentation. SIH may be considered as one of the reversible causes of Holmes' tremor. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Seismic network based detection, classification and location of volcanic tremors

    Science.gov (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  19. Differences in postural tremor dynamics with age and neurological disease.

    Science.gov (United States)

    Morrison, Steven; Newell, Karl M; Kavanagh, Justin J

    2017-06-01

    The overlap of dominant tremor frequencies and similarly amplified tremor observed for Parkinson's disease (PD) and essential tremor (ET) means differentiating between these pathologies is often difficult. As tremor exhibits non-linear properties, employing both linear and non-linear analyses may help distinguish between the tremor dynamics of aging, PD and ET. This study was designed to examine postural tremor in healthy older adults, PD and ET using standard linear and non-linear metrics. Hand and finger postural tremor was recorded in 15 healthy older adults (64 ± 6 years), 15 older individuals with PD (63 ± 6 years), and 10 persons with ET (68 ± 7 years). Linear measures of amplitude, frequency, and between-limb coupling (coherence) were performed. Non-linear measures of regularity (ApEn) and coupling (Cross-ApEn) were also used. Additionally, receiver operating characteristic analyses were performed for those measures that were significantly different between all groups. The results revealed that the linear measures only showed significant differences between the healthy adults and ET/PD persons, but no differences between the two neurological groups. Coherence showed higher bilateral coupling for ET but no differences in inter-limb coupling between PD and healthy subjects. However, ApEn values for finger tremor revealed significant differences between all groups, with tremor for ET persons being more regular (lower ApEn) overall. Similarly, Cross-ApEn results also showed differences between all groups, with ET persons showing strongest inter-limb coupling followed by PD and elderly. Overall, our findings point to the diagnostic potential for non-linear measures of coupling and tremor structure as biomarkers for discriminating between ET, PD and healthy persons.

  20. An autocorrelation method to detect low frequency earthquakes within tremor

    Science.gov (United States)

    Brown, J.R.; Beroza, G.C.; Shelly, D.R.

    2008-01-01

    Recent studies have shown that deep tremor in the Nankai Trough under western Shikoku consists of a swarm of low frequency earthquakes (LFEs) that occur as slow shear slip on the down-dip extension of the primary seismogenic zone of the plate interface. The similarity of tremor in other locations suggests a similar mechanism, but the absence of cataloged low frequency earthquakes prevents a similar analysis. In this study, we develop a method for identifying LFEs within tremor. The method employs a matched-filter algorithm, similar to the technique used to infer that tremor in parts of Shikoku is comprised of LFEs; however, in this case we do not assume the origin times or locations of any LFEs a priori. We search for LFEs using the running autocorrelation of tremor waveforms for 6 Hi-Net stations in the vicinity of the tremor source. Time lags showing strong similarity in the autocorrelation represent either repeats, or near repeats, of LFEs within the tremor. We test the method on an hour of Hi-Net recordings of tremor and demonstrates that it extracts both known and previously unidentified LFEs. Once identified, we cross correlate waveforms to measure relative arrival times and locate the LFEs. The results are able to explain most of the tremor as a swarm of LFEs and the locations of newly identified events appear to fill a gap in the spatial distribution of known LFEs. This method should allow us to extend the analysis of Shelly et al. (2007a) to parts of the Nankai Trough in Shikoku that have sparse LFE coverage, and may also allow us to extend our analysis to other regions that experience deep tremor, but where LFEs have not yet been identified. Copyright 2008 by the American Geophysical Union.

  1. Volcanic tremor masks its seismogenic source: Results from a study of noneruptive tremor recorded at Mount St. Helens, Washington

    Science.gov (United States)

    Denlinger, Roger P.; Moran, Seth C.

    2014-01-01

    On 2 October 2004, a significant noneruptive tremor episode occurred during the buildup to the 2004–2008 eruption of Mount St. Helens (Washington). This episode was remarkable both because no explosion followed, and because seismicity abruptly stopped following the episode. This sequence motivated us to consider a model for volcanic tremor that does not involve energetic gas release from magma but does involve movement of conduit magma through extension on its way toward the surface. We found that the tremor signal was composed entirely of Love and Rayleigh waves and that its spectral bandwidth increased and decreased with signal amplitude, with broader bandwidth signals containing both higher and lower frequencies. Our modeling results demonstrate that the forces giving rise to this tremor were largely normal to conduit walls, generating hybrid head waves along conduit walls that are coupled to internally reflected waves. Together these form a crucial part of conduit resonance, giving tremor wavefields that are largely a function of waveguide geometry and velocity. We find that the mechanism of tremor generation fundamentally masks the nature of the seismogenic source giving rise to resonance. Thus multiple models can be invoked to explain volcanic tremor, requiring that information from other sources (such as visual observations, geodesy, geology, and gas geochemistry) be used to constrain source models. With concurrent GPS and field data supporting rapid rise of magma, we infer that tremor resulted from drag of nearly solid magma along rough conduit walls as magma was forced toward the surface.

  2. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)

    2017-10-20

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2–5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) and 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).

  3. Preliminary study about the necessary concepts and nomenclatures for long duration energy studies; Etude prealable sur les concepts et nomenclatures necessaires aux etudes energetiques sur tres longue periode

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-15

    Long duration prospect studies about the worldwide energy demand requires to refer to other, non-economical, disciplines which have different representations of the socio-economic reality and of the evolution dynamics of societies. This study is a multi-disciplinary bibliographic research which aims to identify the categories considered in these disciplines and to show the main elements allowing to answer the questions about energy uses. The bibliographic research is based on a set of key-words which are crossed between each others like: 'categories', 'social behaviour', 'life style', 'energy', 'consumption', 'need', 'development', 'time' etc. The content of each cited bibliographic references is described in a file attached in the appendix of this study. (J.S.)

  4. Effects of timolol and atenolol on benign essential tremor: placebo-controlled studies based on quantitative tremor recording.

    Science.gov (United States)

    Dietrichson, P; Espen, E

    1981-08-01

    Two different beta-adrenoreceptor antagonists, atenolol and timolol, were separately compared with a placebo in the suppression of essential tremor. In two-week single-blind placebo-controlled studies with cross-over, timolol (5 mg twice daily) and atenolol (100 mg once daily) produced an equal reduction in sitting heart rate and sitting blood pressure. Timolol was effective in reducing tremor while atenolol failed to reduce tremor amplitude. These results indicate that essential tremor can be reduced but not blocked, by the adrenergic blocker timolol with both beta 1 and beta 2 blocking properties; but not by the relatively selective beta 1 blocking drug atenolol. Possibly, the tremor reduction is medicated by a peripheral effect on beta 2 adrenoreceptors.

  5. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    Science.gov (United States)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  6. The role of mineral and bone disorders in the development and progression of cardiac and renal pathology in patients with type 1 diabetes mellitus of long duration.

    Science.gov (United States)

    Biragova, Margarita S; Gracheva, Svetlana A; Glazunova, Alexandra M; Martynov, Sergey A; Ulaynova, Irina N; Ilyin, Alexandr V; Philippov, Yury I; Musaeva, Guliya M; Shamkhalova, Minara S; Shestakova, Marina V

    2016-08-01

    The objective of our study was to evaluate the role of mineral and bone metabolism disorders associated with chronic kidney disease (MBD-CKD) in the development and progression of cardiac and renal pathology in patients with type 1 diabetes mellitus (T1DM) of long duration. We investigated 96 patients with T1DM of long duration, with CKD at different stages (0-5), including patients on hemodialysis (HD) and with kidney transplantation (KT). Along with overall clinical examination, we assessed markers of MBD (calcium, phosphorus, parathormone, vitamin D, fibroblast growth factor (FGF) 23) and levels of cardiac injury marker (atrial natriuretic peptide, NT-proBNP). Multispiral computer tomography with Agatston index calculation was also included. Decreased kidney function was associated with increased of levels phosphorus, parathormone, FGF 23, and vitamin D deficiency, with the highest deviation from the reference ranges seen in patients on HD with a very high risk of cardiovascular events. In KT patients with satisfactory graft function, these parameters were at the same levels as in patients with CKD stages 0-4. Progression of cardiovascular pathology was accompanied by elevation of NT-proBNP levels as CKD duration increased, decreased glomerular filtration rate, and were correlated with the main parameters of mineral homeostasis. The severity of coronary arteries calcification was associated with patient age and duration of T1DM and arterial hypertension. Development and progression of kidney dysfunction is accompanied by MBD, a significant factor in progression of cardiac pathology, which remains a major cause of mortality in this patient population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Multigenerational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior Health (MICEHAB): An Investigation of a Long Duration, Partial Gravity, Autonomous Rodent Colony

    Science.gov (United States)

    Rodgers, Erica M.; Simon, Matthew A.; Antol, Jeffrey; Chai, Patrick R.; Jones, Christopher A.; Klovstad, Jordan J.; Neilan, James H.; Stillwagen, Frederic H.; Williams, Phillip A.; Bednara, Michael; hide

    2015-01-01

    The path from Earth to Mars requires exploration missions to be increasingly Earth-independent as the foundation is laid for a sustained human presence in the following decades. NASA pioneering of Mars will expand the boundaries of human exploration, as a sustainable presence on the surface requires humans to successfully reproduce in a partial gravity environment independent from Earth intervention. Before significant investment is made in capabilities leading to such pioneering efforts, the challenges of multigenerational mammalian reproduction in a partial gravity environment need be investigated. The Multi-generational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior health is designed to study these challenges. The proposed concept is a conceptual, long duration, autonomous habitat designed to house rodents in a partial gravity environment with the goal of understanding the effects of partial gravity on mammalian reproduction over multiple generations and how to effectively design such a facility to operate autonomously while keeping the rodents healthy in order to achieve multiple generations. All systems are designed to feed forward directly to full-scale human missions to Mars. This paper presents the baseline design concept formulated after considering challenges in the mission and vehicle architectures such as: vehicle automation, automated crew health management/medical care, unique automated waste disposal and hygiene, handling of deceased crew members, reliable long-duration crew support systems, and radiation protection. This concept was selected from an architectural trade space considering the balance between mission science return and robotic and autonomy capabilities. The baseline design is described in detail including: transportation and facility operation constraints, artificial gravity system design, habitat design, and a full-scale mock-up demonstration of autonomous rodent care facilities. The proposed concept has

  8. Development of Storage Methods for Saccharomyces Strains to be Utilized for In situ Nutrient Production in Long-Duration Space Missions

    Science.gov (United States)

    Ball, Natalie; Kagawa, Hiromi; Hindupur, Aditya; Hogan, John

    2017-01-01

    Long-duration space missions will benefit from closed-loop life support technologies that minimize mass, volume, and power as well as decrease reliance on Earth-based resupply. A system for In situ production of essential vitamins and nutrients can address the documented problem of degradation of stored food and supplements. Research has shown that the edible yeast Saccharomyces cerevisiae can be used as an on-demand system for the production of various compounds that are beneficial to human health. A critical objective in the development of this approach for long-duration space missions is the effective storage of the selected microorganisms. This research investigates the effects of different storage methods on survival rates of the non-sporulating probiotic S. boulardii, and S. cerevisiae spores and vegetative cells. Dehydration has been shown to increase long-term yeast viability, which also allows increased shelf-life and reduction in mass and volume. The process of dehydration causes detrimental effects on vegetative cells, including oxidative damage and membrane disruption. To maximize cell viability, various dehydration methods are tested here, including lyophilization (freeze-drying), air drying, and dehydration by vacuum. As a potential solution to damage caused by lyophilization, the efficacy of various cryoprotectants was tested. Furthermore, in an attempt to maintain higher survival rates, the effect of temperature during long-term storage was investigated. Data show spores of the wild-type strain to be more resilient to dehydration-related stressors than vegetative cells of either strain, and maintain high viability rates even after one year at room temperature. In the event that engineering the organism to produce targeted nutrient compounds interferes with effective sporulation of S. cerevisiae, a more robust method for improving vegetative cell storage is being sought. Therefore, anhydrobiotic engineering of S. cerevisiae and S. boulardii is being

  9. Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society.

    Science.gov (United States)

    Bhatia, Kailash P; Bain, Peter; Bajaj, Nin; Elble, Rodger J; Hallett, Mark; Louis, Elan D; Raethjen, Jan; Stamelou, Maria; Testa, Claudia M; Deuschl, Guenther

    2018-01-01

    Consensus criteria for classifying tremor disorders were published by the International Parkinson and Movement Disorder Society in 1998. Subsequent advances with regard to essential tremor, tremor associated with dystonia, and other monosymptomatic and indeterminate tremors make a significant revision necessary. Convene an international panel of experienced investigators to review the definition and classification of tremor. Computerized MEDLINE searches in January 2013 and 2015 were conducted using a combination of text words and MeSH terms: "tremor", "tremor disorders", "essential tremor", "dystonic tremor", and "classification" limited to human studies. Agreement was obtained using consensus development methodology during four in-person meetings, two teleconferences, and numerous manuscript reviews. Tremor is defined as an involuntary, rhythmic, oscillatory movement of a body part and is classified along two axes: Axis 1-clinical characteristics, including historical features (age at onset, family history, and temporal evolution), tremor characteristics (body distribution, activation condition), associated signs (systemic, neurological), and laboratory tests (electrophysiology, imaging); and Axis 2-etiology (acquired, genetic, or idiopathic). Tremor syndromes, consisting of either isolated tremor or tremor combined with other clinical features, are defined within Axis 1. This classification scheme retains the currently accepted tremor syndromes, including essential tremor, and provides a framework for defining new syndromes. This approach should be particularly useful in elucidating isolated tremor syndromes and syndromes consisting of tremor and other signs of uncertain significance. Consistently defined Axis 1 syndromes are needed to facilitate the elucidation of specific etiologies in Axis 2. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  10. Does eye tremor provide the hyperacuity phenomenon?

    International Nuclear Information System (INIS)

    Zozor, Steeve; Amblard, Pierre-Olivier; Duchêne, Cédric

    2009-01-01

    This paper is devoted to a study of the role of the fluctuations that the eye is subject to, from the point of view of noise-enhanced processing. To this end, a basic model of the retina is considered, namely a regular sampler subject to space and time fluctuations that model the random sampling and the involuntary eye tremor respectively. The filtering that can be done by the photoreceptor is also taken into account and the study focuses on a stochastic model of a natural scene. To quantify the effect of the noise, a coefficient of correlation between the signal acquired by a given photoreceptor and a given point of the scene that the eye is looking at is considered. It is shown both for academic examples and for a more realistic case that the fluctuations which affect the retina can induce noise-enhanced processing effects. The observed effect is then interpreted as a stochastic control of the retina via the random tremor

  11. Rest and action tremor in Parkinson's disease: effects of Deep Brain Stimulation

    NARCIS (Netherlands)

    Heida, Tjitske; Wentink, E.C.

    2010-01-01

    One of the cardinal symptoms of Parkinson’s disease is rest tremor. While rest tremor generally disappears during sleep and voluntary movement, action tremor may be triggered by voluntary movement, and may even be more disabling than rest tremor. Deep brain stimulation (DBS) in the subthalamic

  12. Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor.

    Science.gov (United States)

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars

    2013-01-01

    Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life.

  13. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    Science.gov (United States)

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (pstate condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.

  14. The distributed somatotopy of tremor: a window into the motor system

    NARCIS (Netherlands)

    Helmich, R.C.G.

    2013-01-01

    The posterior ventrolateral thalamus (VLp) plays a crucial role in Parkinson's tremor and in essential tremor: deep brain stimulation (DBS) of the VLp effectively diminishes both tremor types. Previous research has shown tremor oscillations in the VLp, but the spatial extent and somatotopy of these

  15. Effects of beta-blockers and nicardipine on oxotremorine-induced tremor in common marmosets.

    Science.gov (United States)

    Mitsuda, M; Nomoto, M; Iwata, S

    1999-10-01

    Effects of beta-blockers (propranolol, arotinolol and nipradilol) and a Ca2+ channel blocker (nicardipine) on oxotremorine-induced tremor were studied in common marmosets. Generalized tremor was elicited by an intraperitoneal administration of 0.25 mg/kg oxotremorine. Intensity of the tremor was classified into 7 degrees, and it was evaluated every 10 min. The total intensity of oxotremorine-induced tremor for each drug was expressed as "points", which were the sum of tremor intensity scores evaluated every 10 min up to 190 min following the administration of oxotremorine. Beta-blockers significantly suppressed the tremor. On the other hand, the Ca2+ channel blocker exacerbated the tremor.

  16. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    Science.gov (United States)

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. Focal mechanisms and tidal modulation for tectonic tremors in Taiwan

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.

    2015-12-01

    Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.

  18. Suppression of enhanced physiological tremor via stochastic noise: initial observations.

    Directory of Open Access Journals (Sweden)

    Carlos Trenado

    Full Text Available Enhanced physiological tremor is a disabling condition that arises because of unstable interactions between central tremor generators and the biomechanics of the spinal stretch reflex. Previous work has shown that peripheral input may push the tremor-related spinal and cortical systems closer to anti-phase firing, potentially leading to a reduction in tremor through phase cancellation. The aim of the present study was to investigate whether peripherally applied mechanical stochastic noise can attenuate enhanced physiological tremor and improve motor performance. Eight subjects with enhanced physiological tremor performed a visuomotor task requiring the right index finger to compensate a static force generated by a manipulandum to which Gaussian noise (3-35 Hz was applied. The finger position was displayed on-line on a monitor as a small white dot which the subjects had to maintain in the center of a larger green circle. Electromyogram (EMG from the active hand muscles and finger position were recorded. Performance was measured by the mean absolute deviation of the white dot from the zero position. Tremor was identified by the acceleration in the frequency range 7-12 Hz. Two different conditions were compared: with and without superimposed noise at optimal amplitude (determined at the beginning of the experiment. The application of optimum noise reduced tremor (accelerometric amplitude and EMG activity and improved the motor performance (reduced mean absolute deviation from zero. These data provide the first evidence of a significant reduction of enhanced physiological tremor in the human sensorimotor system due to application of external stochastic noise.

  19. Neural correlates of dystonic tremor: A multimodal study of voice tremor in spasmodic dysphonia

    Science.gov (United States)

    Kirke, Diana N.; Battistella, Giovanni; Kumar, Veena; Rubien-Thomas, Estee; Choy, Melissa; Rumbach, Anna; Simonyan, Kristina

    2016-01-01

    Tremor, affecting a dystonic body part, is a frequent feature of adult-onset dystonia. However, our understanding of dystonic tremor pathophysiology remains ambiguous, as its interplay with the main co-occurring disorder, dystonia, is largely unknown. We used a combination of functional MRI, voxel-based morphometry and diffusion-weighted imaging to investigate similar and distinct patterns of brain functional and structural alterations in patients with dystonic tremor of voice (DTv) and isolated spasmodic dysphonia (SD). We found that, compared to controls, SD patients with and without DTv showed similarly increased activation in the sensorimotor cortex, inferior frontal (IFG) and superior temporal gyri, putamen and ventral thalamus, as well as deficient activation in the inferior parietal cortex and middle frontal gyrus (MFG). Common structural alterations were observed in the IFG and putamen, which were further coupled with functional abnormalities in both patient groups. Abnormal activation in left putamen was correlated with SD onset; SD/DTv onset was associated with right putaminal volumetric changes. DTv severity established a significant relationship with abnormal volume of the left IFG. Direct patient group comparisons showed that SD/DTv patients had additional abnormalities in MFG and cerebellar function and white matter integrity in the posterior limb of the internal capsule. Our findings suggest that dystonia and dystonic tremor, at least in the case of SD and SD/DTv, are heterogeneous disorders at different ends of the same pathophysiological spectrum, with each disorder carrying a characteristic neural signature, which may potentially help development of differential markers for these two conditions. PMID:26843004

  20. Relationship between blood harmane and harmine concentrations in familial essential tremor, sporadic essential tremor and controls.

    Science.gov (United States)

    Louis, Elan D; Jiang, Wendy; Gerbin, Marina; Mullaney, Mary M; Zheng, Wei

    2010-12-01

    Harmane, a potent tremor-producing β-carboline alkaloid, may play a role in the etiology of essential tremor (ET). Blood harmane concentrations are elevated in ET cases compared with controls yet the basis for this elevation remains unknown. Decreased metabolic conversion (harmane to harmine) is one possible explanation. Using a sample of >500 individuals, we hypothesized that defective metabolic conversion of harmane to harmine might underlie the observed elevated harmane concentration in ET, and therefore expected to find a higher harmane to harmine ratio in familial ET than in sporadic ET or controls. Blood harmane and harmine concentrations were quantified by high performance liquid chromatography. There were 78 familial ET cases, 187 sporadic ET cases, and 276 controls. Blood harmane and harmine concentrations were correlated with one another (Spearman's r=0.24, p<0.001). The mean (±SD) harmane/harmine ratio=23.4±90.9 (range=0.1-987.5). The harmane/harmine ratio was highest in familial ET (46.7±140.4), intermediate in sporadic ET (28.3±108.1), and lowest in controls (13.5±50.3) (p=0.03). In familial ET cases, there was no association between this ratio and tremor severity (Spearman's r=0.08, p=0.48) or tremor duration (Spearman's r=0.14, p=0.24). The basis for the elevated blood harmane concentration, particularly in familial ET, is not known, although the current findings (highest harmane/harmine ratio in familial ET cases) lends support to the possibility that it could be the result of a genetically-driven reduction in harmane metabolism. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Neural correlates of dystonic tremor: a multimodal study of voice tremor in spasmodic dysphonia.

    Science.gov (United States)

    Kirke, Diana N; Battistella, Giovanni; Kumar, Veena; Rubien-Thomas, Estee; Choy, Melissa; Rumbach, Anna; Simonyan, Kristina

    2017-02-01

    Tremor, affecting a dystonic body part, is a frequent feature of adult-onset dystonia. However, our understanding of dystonic tremor pathophysiology remains ambiguous as its interplay with the main co-occurring disorder, dystonia, is largely unknown. We used a combination of functional MRI, voxel-based morphometry and diffusion-weighted imaging to investigate similar and distinct patterns of brain functional and structural alterations in patients with dystonic tremor of voice (DTv) and isolated spasmodic dysphonia (SD). We found that, compared to controls, SD patients with and without DTv showed similarly increased activation in the sensorimotor cortex, inferior frontal (IFG) and superior temporal gyri, putamen and ventral thalamus, as well as deficient activation in the inferior parietal cortex and middle frontal gyrus (MFG). Common structural alterations were observed in the IFG and putamen, which were further coupled with functional abnormalities in both patient groups. Abnormal activation in left putamen was correlated with SD onset; SD/DTv onset was associated with right putaminal volumetric changes. DTv severity established a significant relationship with abnormal volume of the left IFG. Direct patient group comparisons showed that SD/DTv patients had additional abnormalities in MFG and cerebellar function and white matter integrity in the posterior limb of the internal capsule. Our findings suggest that dystonia and dystonic tremor, at least in the case of SD and SD/DTv, are heterogeneous disorders at different ends of the same pathophysiological spectrum, with each disorder carrying a characteristic neural signature, which may potentially help development of differential markers for these two conditions.

  2. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    Science.gov (United States)

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-09-01

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  3. Jaw tremor as a physiological biomarker of bruxism.

    Science.gov (United States)

    Laine, C M; Yavuz, Ş U; D'Amico, J M; Gorassini, M A; Türker, K S; Farina, D

    2015-09-01

    To determine if sleep bruxism is associated with abnormal physiological tremor of the jaw during a visually-guided bite force control task. Healthy participants and patients with sleep bruxism were given visual feedback of their bite force and asked to trace triangular target trajectories (duration=20s, peak force bruxism have abnormal jaw tremor when engaged in a visually-guided bite force task. Measurement of jaw tremor may aid in the detection/evaluation of bruxism. In light of previous literature, our results also suggest that bruxism is marked by abnormal or mishandled peripheral feedback from the teeth. Copyright © 2015. Published by Elsevier Ireland Ltd.

  4. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    Science.gov (United States)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2013-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry

  5. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    Science.gov (United States)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2012-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the Office of the Chief Technologist (OCT) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1 ). The tank geometry simulates

  6. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS)

    Science.gov (United States)

    ... Other specialists, eg in the areas of psychiatry, psychology, rehabilitation, urology, cardiology, and movement disorders neurology, may ... problems), tremors, and other symptoms, and MRI findings. History of FXTAS FXTAS was first described in five ...

  7. Iceberg Harmonic Tremor, Seismometer Data, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Seismometers were placed on a 25 km by 50 km iceberg called C16 in the Ross Sea, Antarctica, to identify the Iceberg harmonic Tremor (IHT) source mechanism and to...

  8. Palatal tremor after lithium and carbamazepine use: a case report

    Directory of Open Access Journals (Sweden)

    Kuruvilla Anju

    2010-06-01

    Full Text Available Abstract Introduction Palatal tremor, characterized by rhythmic contractions of the soft palate, can occur secondary to pathology in the dentato-rubro-olivary pathway, or in the absence of such structural lesions. Its pathogenesis is only partially understood. We describe a case of probable drug-induced palatal tremor. Case presentation A 27-year-old Indian man had taken carbamazepine and lithium for 7 years for the treatment of a manic episode. He presented with a one-year history of bilateral rhythmic oscillations of his soft palate and tremors of his tongue. There were no other abnormalities detected from his examination or after detailed investigation. Conclusion Palatal tremors may result from medication used in the treatment of psychiatric disorders.

  9. Evaluation of a screening instrument for essential tremor

    DEFF Research Database (Denmark)

    Lorenz, Delia; Papengut, Frank; Frederiksen, Henrik

    2008-01-01

    To evaluate a screening instrument for essential tremor (ET) consisting of a seven-item questionnaire and a spiral drawing. A total of 2,448 Danish twins aged 70 years or more and a second sample aged 60 years or more (n = 1,684) from a population-based northern German cross-sectional study (Pop....... Definite or probable ET was diagnosed in 104 patients, possible in 86 and other tremors in 98 patients. The sensitivity of the screening instrument was 70.5%, the positive predictive value was 64.9%, the specificity was 68.2%, and the negative predictive value was 73.5%. Tremor severity correlated...... significantly with higher spiral scores and more positive items. More patients were identified by spiral drawing in all tremor groups. The interrater and intrarater reliability for spirals ranged from 0.7 to 0.8 using intraclass coefficient. A cluster analysis revealed that the questionnaire can be reduced...

  10. Holmes' tremor as a delayed complication of thalamic stroke.

    Science.gov (United States)

    Martins, William Alves; Marrone, Luiz Carlos Porcello; Fussiger, Helena; Vedana, Viviane Maria; Cristovam, Rafael do Amaral; Taietti, Marjorye Z; Marrone, Antonio Carlos Huf

    2016-04-01

    Movement disorders are not commonly associated with stroke. Accordingly, thalamic strokes have rarely been associated with tremor, pseudo-athetosis and dystonic postures. We present a 75-year-old man who developed a disabling tremor 1 year after a posterolateral thalamic stroke. This tremor had low frequency (3-4 Hz), did not disappear on focus and was exacerbated by maintaining a static posture and on target pursuit, which made it very difficult to perform basic functions. MRI demonstrated an old ischemic lesion at the left posterolateral thalamus. Treatment with levodopa led to symptom control. Lesions in the midbrain, cerebellum and thalamus may cause Holmes' tremor. Delayed onset of symptoms is usually seen, sometimes appearing 2 years after the original injury. This may be due to maturation of a complex neuronal network, leading to slow dopaminergic denervation. Further studies are needed to improve our understanding of this unique disconnection syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Rare association of central pontine myelinolysis with infantile tremor syndrome

    Directory of Open Access Journals (Sweden)

    Kalpana Datta

    2012-01-01

    Full Text Available Central pontine myelinolysis (CPM is an acute demyelination within the central basis pontis. Though exact mechanism is not known it is seen commonly with rapid correction of hyponatremia and also with pontine ischemia or infarction, demyelinating diseases, pontine neoplasm and different metabolic diseases. We report a rare association of CPM in a patient of Infantile Tremor Syndrom (ITS. ITS is a syndrome of tremor, mental and physical retardation, pigmentary changes of hair and skin and anemia in malnourished children. Though first reported in Indian subcontinent many identical cases were reported from around the world. Our case is a 15 month old child with generalized tremor, mild hepatosplenomegaly with features of grade II malnutrition including skin and hair changes. All the signs and symtoms of tremor improved after treatment with the World Health Organization (WHO protocol for protein energy malnutrition (PEM and administration of propranolol without any side effects.

  12. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  13. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    Science.gov (United States)

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  14. Seismic tremors and magma wagging during explosive volcanism.

    Science.gov (United States)

    Jellinek, A Mark; Bercovici, David

    2011-02-24

    Volcanic tremor is a ubiquitous feature of explosive eruptions. This oscillation persists for minutes to weeks and is characterized by a remarkably narrow band of frequencies from about 0.5 Hz to 7 Hz (refs 1-4). Before major eruptions, tremor can occur in concert with increased gas flux and related ground deformation. Volcanic tremor is thus of particular value for eruption forecasting. Most models for volcanic tremor rely on specific properties of the geometry, structure and constitution of volcanic conduits as well as the gas content of the erupting magma. Because neither the initial structure nor the evolution of the magma-conduit system will be the same from one volcano to the next, it is surprising that tremor characteristics are so consistent among different volcanoes. Indeed, this universality of tremor properties remains a major enigma. Here we employ the contemporary view that silicic magma rises in the conduit as a columnar plug surrounded by a highly vesicular annulus of sheared bubbles. We demonstrate that, for most geologically relevant conditions, the magma column will oscillate or 'wag' against the restoring 'gas-spring' force of the annulus at observed tremor frequencies. In contrast to previous models, the magma-wagging oscillation is relatively insensitive to the conduit structure and geometry, which explains the narrow band of tremor frequencies observed around the world. Moreover, the model predicts that as an eruption proceeds there will be an upward drift in both the maximum frequency and the total signal frequency bandwidth, the nature of which depends on the explosivity of the eruption, as is often observed.

  15. 长期飞行载人航天器适居性设计与分析%Study on Habitability Design of Long Duration Manned Spacecraft

    Institute of Scientific and Technical Information of China (English)

    周前祥

    2012-01-01

    With the successful rendezvous and docking between Shenzhou-8 spaceship and Tiangong-1 spacecraft, habitability design and ergonomic analysis of long duration manned spacecraft will become the main technological problem. The present habitability study of ISS is described in detail, and the status of NASA's study in habitability are analyzed. The main contents of habitability ergonomic design are explored, with some views put forward for discussion.%随着神舟八号飞船与天宫一号的成功对接,长期飞行栽人航天器的适居性设计与应用将成为我国:载人航天技术发展面临的主要技术问题。首先对国际空间站上有关适居性的概况和NASA的研究现状进行了分析。在此基础上,归纳出长期载人航天器适居性设计的主要内容。最后,提出几点看法。

  16. THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Berger, Edo; Bagley, Megan M.

    2010-01-01

    We present the first observations from a large-scale survey of nearby (z < 1) long-duration gamma-ray burst (LGRB) host galaxies, which consist of eight rest-frame optical spectra obtained at Keck and Magellan. Along with two host galaxy observations from the literature, we use optical emission-line diagnostics to determine metallicities, ionization parameters, young stellar population ages, and star formation rates. We compare the LGRB host environments to a variety of local and intermediate-redshift galaxy populations, as well as the newest grid of stellar population synthesis and photoionization models generated with the Starburst99/Mappings codes. With these comparisons, we investigate whether the GRB host galaxies are consistent with the properties of the general galaxy population, and therefore whether they may be used as reliable tracers of star formation. Despite the limitations inherent in our small sample, we find strong evidence that LGRB host galaxies generally have low-metallicity interstellar medium (ISM) environments out to z ∼ 1. The ISM properties of our GRB hosts, including metallicity and ionization parameter, are significantly different from the general galaxy population and host galaxies of nearby broad-lined Type Ic supernovae. However, these properties show better agreement with a sample of nearby metal-poor galaxies.

  17. Measurements of Cosmic-Ray Proton and Helium Spectra from the BESS-Polar Long-Duration Balloon Flights Over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; hide

    2016-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.

  18. MEASUREMENTS OF COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE BESS-POLAR LONG-DURATION BALLOON FLIGHTS OVER ANTARCTICA

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Itazaki, A.; Kusumoto, A.; Matsukawa, Y.; Orito, R. [Kobe University, Kobe, Hyogo 657-8501 (Japan); Fuke, H. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Haino, S.; Hasegawa, M.; Horikoshi, A.; Kumazawa, T.; Makida, Y.; Matsuda, S.; Matsumoto, K.; Nozaki, M. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Hams, T.; Mitchell, J. W. [NASA-Goddard Space Flight Center (NASA-GSFC), Greenbelt, MD 20771 (United States); Kim, K. C.; Lee, M. H.; Myers, Z. [IPST, University of Maryland, College Park, MD 20742 (United States); Nishimura, J., E-mail: Kenichi.Sakai@nasa.gov [The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); and others

    2016-05-10

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2–160 GeV and helium nuclei in the range 0.15–80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6–160 GV for protons and 1.1–160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.

  19. Optimization of the design of X-Calibur for a long-duration balloon flight and results from a one-day test flight

    Science.gov (United States)

    Kislat, Fabian; Abarr, Quin; Beheshtipour, Banafsheh; De Geronimo, Gianluigi; Dowkontt, Paul; Tang, Jason; Krawczynski, Henric

    2018-01-01

    X-ray polarimetry promises exciting insights into the physics of compact astrophysical objects by providing two observables: the polarization fraction and angle as function of energy. X-Calibur is a balloon-borne hard x-ray scattering polarimeter for the 15- to 60-keV energy range. After the successful test flight in September 2016, the instrument is now being prepared for a long-duration balloon (LDB) flight in December 2018 through January 2019. During the LDB flight, X-Calibur will make detailed measurements of the polarization of Vela X-1 and constrain the polarization of a sample of between 4 and 9 additional sources. We describe the upgraded polarimeter design, including the use of a beryllium scattering element, lower-noise front-end electronics, and an improved fully active CsI(Na) anticoincidence shield, which will significantly increase the instrument sensitivity. We present estimates of the improved polarimeter performance based on simulations and laboratory measurements. We present some of the results from the 2016 flight and show that we solved several problems, which led to a reduced sensitivity during the 2016 flight. We end with a description of the planned Vela X-1 observations, including a Swift/BAT-guided observation strategy.

  20. Increased nutritional quality of plants for long-duration spaceflight missions through choice of plant variety and manipulation of growth conditions

    Science.gov (United States)

    Cohu, Christopher M.; Lombardi, Elizabeth; Adams, William W.; Demmig-Adams, Barbara

    2014-02-01

    Low levels of radiation during spaceflight increase the incidence of eye damage and consumption of certain carotenoids (especially zeaxanthin), via a whole-food-based diet (rather than from supplements), is recommended to protect human vision against radiation damage. Availability of fresh leafy produce has, furthermore, been identified as desirable for morale during long spaceflight missions. We report that only trace amounts of zeaxanthin are retained post-harvest in leaves grown under conditions conducive to rapid plant growth. We show that growth of plants under cool temperatures and very high light can trigger a greater retention of zeaxanthin, while, however, simultaneously retarding plant growth. We here introduce a novel growth condition—low growth light supplemented with several short daily light pulses of higher intensity—that also triggers zeaxanthin retention, but without causing any growth retardation. Moreover, two plant varieties with different hardiness exhibited a different propensity for zeaxanthin retention. These findings demonstrate that growth light environment and plant variety can be exploited to simultaneously optimize nutritional quality (with respect to zeaxanthin and two other carotenoids important for human vision, lutein and β-carotene) as well as biomass production of leafy greens suitable as bioregenerative systems for long-duration manned spaceflight missions.

  1. Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station.

    Science.gov (United States)

    Zwart, Sara R; Morgan, Jennifer L L; Smith, Scott M

    2013-07-01

    Increases in stored iron and dietary intake of iron during space flight have raised concern about the risk of excess iron and oxidative damage, particularly in bone. The objectives of this study were to perform a comprehensive assessment of iron status in men and women before, during, and after long-duration space flight and to quantify the association of iron status with oxidative damage and bone loss. Fasting blood and 24-h urine samples were collected from 23 crew members before, during, and after missions lasting 50 to 247 d to the International Space Station. Serum ferritin and body iron increased early in flight, and transferrin and transferrin receptors decreased later, which indicated that early increases in body iron stores occurred through the mobilization of iron to storage tissues. Acute phase proteins indicated no evidence of an inflammatory response during flight. Serum ferritin was positively correlated with the oxidative damage markers 8-hydroxy-2'-deoxyguanosine (r = 0.53, P < 0.001) and prostaglandin F2α (r = 0.26, P < 0.001), and the greater the area under the curve for ferritin during flight, the greater the decrease in bone mineral density in the total hip (P = 0.031), trochanter (P = 0.006), hip neck (P = 0.044), and pelvis (P = 0.049) after flight. Increased iron stores may be a risk factor for oxidative damage and bone resorption.

  2. Tremor cells in the human thalamus: differences among neurological disorders.

    Science.gov (United States)

    Brodkey, Jason A; Tasker, Ronald R; Hamani, Clement; McAndrews, Mary Pat; Dostrovsky, Jonathan O; Lozano, Andres M

    2004-07-01

    Thalamic neurons firing at frequencies synchronous with tremor are thought to play a critical role in the generation and maintenance of tremor. The authors studied the incidence and locations of neurons with tremor-related activity (TRA) in the thalamus of patients with varied pathological conditions-including Parkinson disease (PD), essential tremor (ET), multiple sclerosis (MS), and cerebellar disorders--to determine whether known differences in the effectiveness of thalamic stereotactic procedures for these tremors could be correlated to differences in the incidence or locations of TRA cells. Seventy-five operations were performed in 61 patients during which 686 TRA cells were recorded from 440 microelectrode trajectories in the thalamus. The locations of the TRA cells in relation to electrophysiologically defined thalamic nuclei and the commissural coordinates were compared among patient groups. The authors found that TRA cells are present in patients with each of these disorders and that these cells populate several nuclei in the ventral lateral tier of the thalamus. There were no large differences in the locations of TRA cells among the different diagnostic classes, although there was a difference in the incidence of TRA cells in patients with PD, who had greater than 3.8 times more cells per thalamic trajectory than patients with ET and approximately five times more cells than patients with MS or cerebellar disorders. There was an increased incidence of TRA in the thalamus of patients with PD. The location of thalamic TRA cells in patients with basal ganglia and other tremor disorders was similar.

  3. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?

    Science.gov (United States)

    Hallett, Mark; Deuschl, Günther; Toni, Ivan; Bloem, Bastiaan R.

    2012-01-01

    Tremor in Parkinson's disease has several mysterious features. Clinically, tremor is seen in only three out of four patients with Parkinson's disease, and tremor-dominant patients generally follow a more benign disease course than non-tremor patients. Pathophysiologically, tremor is linked to altered activity in not one, but two distinct circuits: the basal ganglia, which are primarily affected by dopamine depletion in Parkinson's disease, and the cerebello-thalamo-cortical circuit, which is also involved in many other tremors. The purpose of this review is to integrate these clinical and pathophysiological features of tremor in Parkinson's disease. We first describe clinical and pathological differences between tremor-dominant and non-tremor Parkinson's disease subtypes, and then summarize recent studies on the pathophysiology of tremor. We also discuss a newly proposed ‘dimmer-switch model’ that explains tremor as resulting from the combined actions of two circuits: the basal ganglia that trigger tremor episodes and the cerebello-thalamo-cortical circuit that produces the tremor. Finally, we address several important open questions: why resting tremor stops during voluntary movements, why it has a variable response to dopaminergic treatment, why it indicates a benign Parkinson's disease subtype and why its expression decreases with disease progression. PMID:22382359

  4. [Assessment of anti-tremorogenic drugs--nicotine-induced tail-tremor model].

    Science.gov (United States)

    Suemaru, K; Kawasaki, H; Gomita, Y

    1997-06-01

    The repeated administration of nicotine at small doses, which do not produce whole body tremor or convulsion, causes tremor only in the tail (tail-tremor) of rats. The tremor is accompanied by locomotor hyperactivity without rigidity and immobility of the whole body, suggesting that the nicotine-induced tail-tremor model is useful for studying the mechanism underlying tremor associated with movement. The tail-tremor induced by nicotine was suppressed by mecamylamine, a nicotinic antagonist, but not by atropine or scopolamine, muscalinic antagonists. Moreover, the tail-tremor was suppressed by the beta-blockers propranolol and pindolol, as well as the benzodiazepines diazepam and clonazepam. Tremor at rest is observed only in Parkinson's disease, which is improved with anti-muscalinic drugs. Essential tremor is one of the typical tremors connected with movement (postural and kinetic tremor) and is improved with beta-blocker. These findings and results suggest that nicotine-induced tail-tremor is useful for the study of essential tremor in animal models.

  5. Discrimination of Parkinsonian Tremor From Essential Tremor by Voting Between Different EMG Signal Processing Techniques

    Directory of Open Access Journals (Sweden)

    A Hossen

    2014-06-01

    Full Text Available Parkinson's disease (PD and essential tremor (ET are the two most common disorders that cause involuntary muscle shaking movements, or what is called "tremor”. PD is a neurodegenerative disease caused by the loss of dopamine receptors which control and adjust the movement of the body. On the other hand, ET is a neurological movement disorder which also causes tremors and shaking, but it is not related to dopamine receptor loss; it is simply a tremor. The differential diagnosis between these two disorders is sometimes difficult to make clinically because of the similarities of their symptoms; additionally, the available tests are complex and expensive. Thus, the objective of this paper is to discriminate between these two disorders with simpler, cheaper and easier ways by using electromyography (EMG signal processing techniques. EMG and accelerometer records of 39 patients with PD and 41 with ET were acquired from the Hospital of Kiel University in Germany and divided into a trial group and a test group. Three main techniques were applied: the wavelet-based soft-decision technique, statistical signal characterization (SSC of the spectrum of the signal, and SSC of the amplitude variation of the Hilbert transform. The first technique resulted in a discrimination efficiency of 80% on the trial set and 85% on the test set. The second technique resulted in an efficiency of 90% on the trial set and 82.5% on the test set. The third technique resulted in an 87.5% efficiency on the trial set and 65.5% efficiency on the test set. Lastly, a final vote was done to finalize the discrimination using these three techniques, and as a result of the vote, accuracies of 92.5%, 85.0% and 88.75% were obtained on the trial data, test data and total data, respectively.

  6. Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study.

    Science.gov (United States)

    De Jesus, Sol; Almeida, Leonardo; Shahgholi, Leili; Martinez-Ramirez, Daniel; Roper, Jaimie; Hass, Chris J; Akbar, Umer; Wagle Shukla, Aparna; Raike, Robert S; Okun, Michael S

    2018-01-01

    Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ 2  = 16.1, p = 0.006), posture (χ 2  = 15.9, p = 0.007) and with action (χ 2  = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required. Copyright © 2017. Published by Elsevier Ltd.

  7. Tremor, the curious third wheel of fault motion (Invited)

    Science.gov (United States)

    Vidale, J. E.

    2009-12-01

    The known universe of tectonic fault behavior has gained a new neighborhood in the last few years. Before, faults were considered to either conform to the reasonably well-understood earthquake cycle or else slide steadily. In the earthquake cycle, a fault stays locked for the years while stress is accumulating, then cracks and slides, releasing about 0.1-10 MPa of the stress on the fault. The crack spreads across the fault at roughly the shear wave velocity, kilometers per second. Sliding across the crack occurs at rates on the order of a meter per second. Deeper than the locked portion, faults were assumed to move stealthily and steadily. Disrupting this orderly bipartite universe has been tremor - a prolonged, noise-like, 1-10 Hz rumbling that has been spotted below the locked portion of a variety of faults. In subduction zones, often tremor is coincident with slow and low-stress-drop slip that takes many orders of magnitude longer to complete than garden-variety earthquakes, with the rupture progression estimated in km per day rather than per second. The so-called episodic tremor and slip (ETS) is seen to strike at much more regular intervals than old-fashioned quakes. Speculation and disjoint observations abound. Probably the observations represent just the most easily observed portions of a process that moves with power at all frequencies. The spectrum of tremor radiation is less “red” than that of earthquakes for periods shorter than their duration. Near-lithostatic pore pressure may play an important role in lubricating ETS activity. ETS activity appears generally restricted to only some major faults. Strong passing surface waves from distant great earthquakes trigger pulsations of tremor. Strong nearby earthquakes can cause weeks of stronger than normal tremor. The ebb and flow of diurnal tides cause a rise and fall in tremor amplitude. Tremor can contain earthquake-like short bursts of energy, even dozens of discrete pops, all with the less red spectra

  8. Symptoms of Eating Disorders and Depression in Emerging Adults with Early-Onset, Long-Duration Type 1 Diabetes and Their Association with Metabolic Control.

    Directory of Open Access Journals (Sweden)

    Christina Bächle

    Full Text Available This study analyzed the prevalence of and association between symptoms of eating disorders and depression in female and male emerging adults with early-onset, long-duration type 1 diabetes and investigated how these symptoms are associated with metabolic control.In a nationwide population-based survey, 211 type 1 diabetes patients aged 18-21 years completed standardized questionnaires, including the SCOFF questionnaire for eating disorder symptoms and the Patient Health Questionnaire (PHQ-9 for symptoms of depression and severity of depressive symptoms (PHQ-9 score. Multiple linear and logistic regression models were used to analyze the association between eating disorder and depressive symptoms and their associations with HbA1c.A total of 30.2% of the women and 9.5% of the men were screening positive for eating disorders. The mean PHQ-9 score (standard deviation was 5.3 (4.4 among women and 3.9 (3.6 among men. Screening positive for an eating disorder was associated with more severe depressive symptoms among women (βwomen 3.8, p<0.001. However, neither eating disorder symptoms nor severity of depressive symptoms were associated with HbA1c among women, while HbA1c increased with the severity of depressive symptoms among men (βmen 0.14, p=0.006.Because of the high prevalence of eating disorder and depressive symptoms, their interrelationship, and their associations with metabolic control, particularly among men, regular mental health screening is recommended for young adults with type 1 diabetes.

  9. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs.

    Science.gov (United States)

    Dosdall, Derek J; Tabereaux, Paul B; Kim, Jong J; Walcott, Gregory P; Rogers, Jack M; Killingsworth, Cheryl R; Huang, Jian; Robertson, Peter G; Smith, William M; Ideker, Raymond E

    2008-08-01

    Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 x 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 +/- 1.5 vs. 9.2 +/- 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF.

  10. Transmural recording of shock potential gradient fields, early postshock activations, and refibrillation episodes associated with external defibrillation of long-duration ventricular fibrillation in swine.

    Science.gov (United States)

    Allred, James D; Killingsworth, Cheryl R; Allison, J Scott; Dosdall, Derek J; Melnick, Sharon B; Smith, William M; Ideker, Raymond E; Walcott, Gregory P

    2008-11-01

    Knowledge of the shock potential gradient (nablaV) and postshock activation is limited to internal defibrillation of short-duration ventricular fibrillation (SDVF). The purpose of this study was to determine these variables after external defibrillation of long-duration VF (LDVF). In six pigs, 115-20 plunge needles with three to six electrodes each were inserted to record throughout both ventricles. After the chest was closed, the biphasic defibrillation threshold (DFT) was determined after 20 seconds of SDVF with external defibrillation pads. After 7 minutes of LDVF, defibrillation shocks that were less than or equal to the SDVF DFT strength were given. For DFT shocks (1632 +/- 429 V), the maximum minus minimum ventricular voltage (160 +/- 100 V) was 9.8% of the shock voltage. Maximum cardiac nablaV (28.7 +/- 17 V/cm) was 4.7 +/- 2.0 times the minimum nablaV (6.2 +/- 3.5 V/cm). Although LDVF did not increase the DFT in five of the six pigs, it significantly lengthened the time to earliest postshock activation following defibrillation (1.6 +/- 2.2 seconds for SDVF and 4.9 +/- 4.3 seconds for LDVF). After LDVF, 1.3 +/- 0.8 episodes of spontaneous refibrillation occurred per animal, but there was no refibrillation after SDVF. Compared with previous studies of internal defibrillation, during external defibrillation much less of the shock voltage appears across the heart and the shock field is much more even; however, the minimum nablaV is similar. Compared with external defibrillation of SDVF, the biphasic external DFT for LDVF is not increased; however, time to earliest postshock activation triples. Refibrillation is common after LDVF but not after SDVF in these normal hearts, indicating that LDVF by itself can cause refibrillation without requiring preexisting heart disease.

  11. Effects of intraoperative administration of carbohydrates during long-duration oral and maxillofacial surgery on the metabolism of carbohydrates, proteins, and lipids.

    Science.gov (United States)

    Yamamoto, Toru; Yoshida, Mitsuhiro; Watanabe, Seiji; Kawahara, Hiroshi

    2015-12-01

    Insulin resistance in patients undergoing invasive surgery impairs glucose and lipid metabolism and increases muscle protein catabolism, which may result in delayed recovery and prolonged hospital stay. We examined whether intraoperative administration of carbohydrates during long-duration oral and maxillofacial surgery under general anesthesia affects carbohydrate, proteins, and lipid metabolism and the length of hospital stay. We studied 16 patients with normal liver, kidney, and endocrine functions, and ASA physical status I or II, but without diabetes. Patients were randomly assigned to receive 0.1 g/kg/h of (n = 8) or lactated Ringer's solution (n = 8). Blood was collected before (T0) and 4 h after (T1) the start of surgery. We analyzed the plasma levels of glucose, ketone bodies, 3-methylhistidine (3-MH), and the length of hospital stay. At T0, no statistically significant differences were observed in the levels of glucose, ketone bodies, and 3-MH between the groups. At T1, no statistically significant difference in glucose levels was found between the groups. However, ketone bodies were significantly lower, and the changes in 3-MH levels were significantly less pronounced in the glucose-treated group compared with controls. No significant differences were observed between the groups in terms of length of hospital stay. The administration of low doses of glucose during surgery was safe, did not cause hyperglycemia or hypoglycemia, and inhibited lipid metabolism and protein catabolism. Additional experiments with larger cohorts will be necessary to investigate whether intraoperative management with glucose facilitates postoperative recovery of patients with oral cancer.

  12. Symptoms of Eating Disorders and Depression in Emerging Adults with Early-Onset, Long-Duration Type 1 Diabetes and Their Association with Metabolic Control.

    Science.gov (United States)

    Bächle, Christina; Lange, Karin; Stahl-Pehe, Anna; Castillo, Katty; Scheuing, Nicole; Holl, Reinhard W; Giani, Guido; Rosenbauer, Joachim

    2015-01-01

    This study analyzed the prevalence of and association between symptoms of eating disorders and depression in female and male emerging adults with early-onset, long-duration type 1 diabetes and investigated how these symptoms are associated with metabolic control. In a nationwide population-based survey, 211 type 1 diabetes patients aged 18-21 years completed standardized questionnaires, including the SCOFF questionnaire for eating disorder symptoms and the Patient Health Questionnaire (PHQ-9) for symptoms of depression and severity of depressive symptoms (PHQ-9 score). Multiple linear and logistic regression models were used to analyze the association between eating disorder and depressive symptoms and their associations with HbA1c. A total of 30.2% of the women and 9.5% of the men were screening positive for eating disorders. The mean PHQ-9 score (standard deviation) was 5.3 (4.4) among women and 3.9 (3.6) among men. Screening positive for an eating disorder was associated with more severe depressive symptoms among women (βwomen 3.8, peating disorder symptoms nor severity of depressive symptoms were associated with HbA1c among women, while HbA1c increased with the severity of depressive symptoms among men (βmen 0.14, p=0.006). Because of the high prevalence of eating disorder and depressive symptoms, their interrelationship, and their associations with metabolic control, particularly among men, regular mental health screening is recommended for young adults with type 1 diabetes.

  13. Time-Reversal Study of the Hemet (CA) Tremor Source

    Science.gov (United States)

    Larmat, C. S.; Johnson, P. A.; Guyer, R. A.

    2010-12-01

    Since its first observation by Nadeau & Dolenc (2005) and Gomberg et al. (2008), tremor along the San Andreas fault system is thought to be a probe into the frictional state of the deep part of the fault (e.g. Shelly et al., 2007). Tremor is associated with slow, otherwise deep, aseismic slip events that may be triggered by faint signals such as passing waves from remote earthquakes or solid Earth tides.Well resolved tremor source location is key to constrain frictional models of the fault. However, tremor source location is challenging because of the high-frequency and highly-scattered nature of tremor signal characterized by the lack of isolated phase arrivals. Time Reversal (TR) methods are emerging as a useful tool for location. The unique requirement is a good velocity model for the different time-reversed phases to arrive coherently onto the source point. We present results of location for a tremor source near the town of Hemet, CA, which was triggered by the 2002 M 7.9 Denali Fault earthquake (Gomberg et al., 2008) and by the 2009 M 6.9 Gulf of California earthquake. We performed TR in a volume model of 88 (N-S) x 70 (W-E) x 60 km (Z) using the full-wave 3D wave-propagation package SPECFEM3D (Komatitsch et al., 2002). The results for the 2009 episode indicate a deep source (at about 22km) which is about 4km SW the fault surface scarp. We perform STA/SLA and correlation analysis in order to have independent confirmation of the Hemet tremor source. We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work.

  14. Deep brain stimulation in uncommon tremor disorders: indications, targets, and programming.

    Science.gov (United States)

    Artusi, Carlo Alberto; Farooqi, Ashar; Romagnolo, Alberto; Marsili, Luca; Balestrino, Roberta; Sokol, Leonard L; Wang, Lily L; Zibetti, Maurizio; Duker, Andrew P; Mandybur, George T; Lopiano, Leonardo; Merola, Aristide

    2018-03-06

    In uncommon tremor disorders, clinical efficacy and optimal anatomical targets for deep brain stimulation (DBS) remain inadequately studied and insufficiently quantified. We performed a systematic review of PubMed.gov and ClinicalTrials.gov. Relevant articles were identified using the following keywords: "tremor", "Holmes tremor", "orthostatic tremor", "multiple sclerosis", "multiple sclerosis tremor", "neuropathy", "neuropathic tremor", "fragile X-associated tremor/ataxia syndrome", and "fragile X." We identified a total of 263 cases treated with DBS for uncommon tremor disorders. Of these, 44 had Holmes tremor (HT), 18 orthostatic tremor (OT), 177 multiple sclerosis (MS)-associated tremor, 14 neuropathy-associated tremor, and 10 fragile X-associated tremor/ataxia syndrome (FXTAS). DBS resulted in favorable, albeit partial, clinical improvements in HT cases receiving Vim-DBS alone or in combination with additional targets. A sustained improvement was reported in OT cases treated with bilateral Vim-DBS, while the two cases treated with unilateral Vim-DBS demonstrated only a transient effect. MS-associated tremor responded to dual-target Vim-/VO-DBS, but the inability to account for the progression of MS-associated disability impeded the assessment of its long-term clinical efficacy. Neuropathy-associated tremor substantially improved with Vim-DBS. In FXTAS patients, while Vim-DBS was effective in improving tremor, equivocal results were observed in those with ataxia. DBS of select targets may represent an effective therapeutic strategy for uncommon tremor disorders, although the level of evidence is currently in its incipient form and based on single cases or limited case series. An international registry is, therefore, warranted to clarify selection criteria, long-term results, and optimal surgical targets.

  15. The occurrence of dystonia in upper-limb multiple sclerosis tremor.

    Science.gov (United States)

    Van der Walt, A; Buzzard, K; Sung, S; Spelman, T; Kolbe, S C; Marriott, M; Butzkueven, H; Evans, A

    2015-12-01

    The pathophysiology of multiple sclerosis (MS) tremor is uncertain with limited phenotypical studies available. To investigate whether dystonia contributes to MS tremor and its severity. MS patients (n = 54) with and without disabling uni- or bilateral upper limb tremor were recruited (39 limbs per group). We rated tremor severity, writing and Archimedes spiral drawing; cerebellar dysfunction (SARA score); the Global Dystonia Scale (GDS) for proximal and distal upper limbs, dystonic posturing, mirror movements, geste antagoniste, and writer's cramp. Geste antagoniste, mirror dystonia, and dystonic posturing were more frequent and severe (p tremor severity in tremor compared to non-tremor patients. A 1-unit increase in distal dystonia predicted a 0.52-Bain unit (95% confidence interval (CI) 0.08-0.97), p = 0.022) increase in tremor severity and a 1-unit (95% CI 0.48-1.6, p = 0.001) increase in drawing scores. A 1-unit increase in proximal dystonia predicted 0.93-Bain unit increase (95% CI 0.45-1.41, p tremor severity and 1.5-units (95% CI 0.62-2.41, p = 0.002) increase in the drawing score. Cerebellar function in the tremor limb and tremor severity was correlated (p tremor suggesting that MS tremor pathophysiology involves cerebello-pallido-thalamo-cortical network dysfunction. © The Author(s), 2015.

  16. Beta-blocker therapy for tremor in Parkinson's disease.

    Science.gov (United States)

    Crosby, N J; Deane, K H O; Clarke, C E

    2003-01-01

    The tremor of Parkinson's disease can cause considerable disability for the individual concerned. Traditional antiparkinsonian therapies such as levodopa have only a minor effect on tremor. Beta-blockers are used to attenuate other forms of tremor such as Essential Tremor or the tremor associated with anxiety. It is thought that beta-blockers may be of use in controlling the tremor of Parkinson's disease. To compare the efficacy and safety of adjuvant beta-blocker therapy against placebo for the treatment of tremor in patients with Parkinson's disease. Electronic searches of MEDLINE, EMBASE, SCISEARCH, BIOSIS, GEROLIT, OLDMEDLINE, LILACS, MedCarib, PASCAL, JICST-EPLUS, RUSSMED, DISSERTATION ABSTRACTS, SIGLE, ISI-ISTP, Aslib Index to Theses, The Cochrane Controlled Trials Register, Clinicaltrials.gov, metaRegister of Controlled Trials, NIDRR, NRR and CENTRAL were conducted. Grey literature was hand searched and the reference lists of identified studies and reviews examined. The manufacturers of beta-blockers were contacted. Randomised controlled trials of adjuvant beta-blocker therapy versus placebo in patients with a clinical diagnosis of idiopathic Parkinson's disease. Data was abstracted independently by two of the authors onto standardised forms and disagreements were resolved by discussion. Four randomised controlled trials were found comparing beta-blocker therapy with placebo in patients with idiopathic Parkinson's disease. These were double-blind cross-over studies involving a total of 72 patients. Three studies did not present data from the first arm, instead presenting results as combined data from both treatment arms and both placebo arms. The risk of a carry-over effect into the second arm meant that these results were not analysed. The fourth study presented data from each arm. This was in the form of a mean total score for tremor for each group. Details of the baseline scores, the numbers of patients in each group and standard deviations were not

  17. Annual modulation of non-volcanic tremor in northern Cascadia

    Science.gov (United States)

    Pollitz, Fred; Wech, Aaron G.; Kao, Honn; Burgmann, Roland

    2013-01-01

    Two catalogs of episodic tremor events in northern Cascadia, one from 2006 to 2012 and the other from 1997 to 2011, reveal two systematic patterns of tremor occurrence in southern Vancouver Island: (1) most individual events tend to occur in the third quarter of the year; (2) the number of events in prolonged episodes (i.e., episodic tremor and slip events), which generally propagate to Vancouver Island from elsewhere along the Cascadia subduction zone, is inversely correlated with the amount of precipitation that occurred in the preceding 2 months. We rationalize these patterns as the product of hydrologic loading of the crust of southern Vancouver Island and the surrounding continental region, superimposed with annual variations from oceanic tidal loading. Loading of the Vancouver Island crust in the winter (when the land surface receives ample precipitation) and unloading in the summer tends to inhibit and enhance downdip shear stress, respectively. Quantitatively, for an annually variable surface load, the predicted stress perturbation depends on mantle viscoelastic rheology. A mechanical model of downdip shear stress on the transition zone beneath Vancouver Island—driven predominantly by the annual hydrologic cycle—is consistent with the 1997–2012 tremor observations, with peak-to-peak downdip shear stress of about 0.4 kPa. This seasonal dependence of tremor occurrence appears to be restricted to southern Vancouver Island because of its unique situation as an elongated narrow-width land mass surrounded by ocean, which permits seasonal perturbations in shear stress at depth.

  18. [A Case of Psychogenic Tremor during Awake Craniotomy].

    Science.gov (United States)

    Kujirai, Kazumasa; Kamata, Kotoe; Uno, Toshihiro; Hamada, Keiko; Ozaki, Makoto

    2016-01-01

    A 31-year-old woman with a left frontal and parietal brain tumor underwent awake craniotomy. Propofol/remifentanil general anesthesia was induced. Following craniotomy, anesthetic administrations ceased. The level of consciousness was sufficient and she was not agitated. However, the patient complained of nausea 70 minutes into the awake phase. Considering the adverse effects of antiemetics and the upcoming surgical strategy, we did not give any medications. Nausea disappeared spontaneously while the operation was suspended. When surgical intervention extended to the left caudate nucleus, involuntary movement, classified as a tremor, with 5-6 Hz frequency, abruptly occurred on her left forearm. The patient showed emotional distress. Tremor appeared on her right forearm and subsequently spread to her lower extremities. Intravenous midazolam and fentanyl could not reduce her psychological stress. Since the tremor disturbed microscopic observation, general anesthesia was induced. Consequently, the tremor disappeared and did not recur. Based on the anatomical ground and the medication status, her involuntary movement was diagnosed as psychogenic tremor. Various factors can induce involuntary movements. In fact, intraoperative management of nausea and vomiting takes priority during awake craniotomy, but we should be reminded that some antiemetics potentially induce involuntary movement that could be caused by surgery around basal ganglia.

  19. Linking Essential Tremor to the Cerebellum: Clinical Evidence.

    Science.gov (United States)

    Benito-León, Julián; Labiano-Fontcuberta, Andrés

    2016-06-01

    Essential tremor (ET) might be a family of diseases unified by the presence of kinetic tremor, but also showing etiological, pathological, and clinical heterogeneity. In this review, we will describe the most significant clinical evidence, which suggests that ET is linked to the cerebellum. Data for this review were identified by searching PUBMED (January 1966 to May 2015) crossing the terms "essential tremor" (ET) and "cerebellum," which yielded 201 entries, 11 of which included the term "cerebellum" in the article title. This was supplemented by articles in the author's files that pertained to this topic. The wide spectrum of clinical features of ET that suggest that it originates as a cerebellar or cerebellar outflow problem include the presence of intentional tremor, gait and balance abnormalities, subtle features of dysarthria, and oculomotor abnormalities, as well as deficits in eye-hand coordination, motor learning deficits, incoordination during spiral drawing task, abnormalities in motor timing and visual reaction time, impairment of social abilities, improvement in tremor after cerebellar stroke, efficacy of deep brain stimulation (which blocks cerebellar outflow), and cognitive dysfunction. It is unlikely, however, that cerebellar dysfunction, per se, fully explains ET-associated dementia, because the cognitive deficits that have been described in patients with cerebellar lesions are generally mild. Overall, a variety of clinical findings suggest that in at least a sizable proportion of patients with ET, there is an underlying abnormality of the cerebellum and/or its pathways.

  20. Blood harmane, blood lead, and severity of hand tremor: evidence of additive effects.

    Science.gov (United States)

    Louis, Elan D; Factor-Litvak, Pam; Gerbin, Marina; Slavkovich, Vesna; Graziano, Joseph H; Jiang, Wendy; Zheng, Wei

    2011-03-01

    Tremor is a widespread phenomenon in human populations. Environmental factors are likely to play an etiological role. Harmane (1-methyl-9H-pyrido[3,4-β]indole) is a potent tremor-producing β-carboline alkaloid. Lead is another tremor-producing neurotoxicant. The effects of harmane and lead with respect to tremor have been studied in isolation. We tested the hypothesis that tremor would be particularly severe among individuals who had high blood concentrations of both of these toxicants. Blood concentrations of harmane and lead were each quantified in 257 individuals (106 essential tremor cases and 151 controls) enrolled in an environmental epidemiological study. Total tremor score (range = 0-36) was a clinical measure of tremor severity. The total tremor score ranged from 0 to 36, indicating that a full spectrum of tremor severities was captured in our sample. Blood harmane concentration correlated with total tremor score (p = 0.007), as did blood lead concentration (p = 0.045). The total tremor score was lowest in participants with both low blood harmane and lead concentrations (8.4 ± 8.2), intermediate in participants with high concentrations of either toxicant (10.5 ± 9.8), and highest in participants with high concentrations of both toxicants (13.7 ± 10.4) (p=0.01). Blood harmane and lead concentrations separately correlated with total tremor scores. Participants with high blood concentrations of both toxicants had the highest tremor scores, suggesting an additive effect of these toxicants on tremor severity. Given the very high population prevalence of tremor disorders, identifying environmental determinants is important for primary disease prevention. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.

    Science.gov (United States)

    Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim

    2016-01-01

    To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues

  2. Dynamic Variability of Isometric Action Tremor in Precision Pinching

    Directory of Open Access Journals (Sweden)

    Tim Eakin

    2012-01-01

    Full Text Available Evolutionary development of isometric force impulse frequencies, power, and the directional concordance of changes in oscillatory tremor during performance of a two-digit force regulation task was examined. Analyses compared a patient group having tremor confounding volitional force regulation with a control group having no neuropathological diagnosis. Dependent variables for tremor varied temporally and spatially, both within individual trials and across trials, across individuals, across groups, and between digits. Particularly striking findings were magnitude increases during approaches to cue markers and shifts in the concordance phase from pinching toward rigid sway patterns as the magnitude increased. Magnitudes were significantly different among trace line segments of the task and were characterized by differences in relative force required and by the task progress with respect to cue markers for beginning, reversing force change direction, or task termination. The main systematic differences occurred during cue marker approach and were independent of trial sequence order.

  3. Essential Palatal Tremor Managed by Cognitive Behavioral Therapy

    Directory of Open Access Journals (Sweden)

    Tomohisa Kitamura

    2015-01-01

    Full Text Available Background. Essential palatal tremor is a disorder of unknown etiology involving involuntary movement of the uvula and soft palate. Treatment attempts including drugs or surgery have been conducted to cease the rhythmical movement. Case Report. A 55-year-old female visited our department complaining of a sudden, noticeable, intermittent, and rhythmical clicking noise in her throat for five years. Oral examination revealed rhythmical contractions of the soft palate with clicking at the frequency of 120 per min. Magnetic resonance imaging (MRI examination of the brain performed after consulting with the department of neuropathic internal medicine showed no abnormalities. Thus, essential palatal tremor was diagnosed. The symptoms improved with cognitive behavioral therapy without drugs or surgical treatments. The patient is now able to stop the rhythmical movement voluntarily. Discussion. Cognitive behavioral therapy might be suitable as first-line therapy for essential palatal tremor because the therapy is noninvasive.

  4. Subglacial discharge at tidewater glaciers revealed by seismic tremor

    Science.gov (United States)

    Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.

    2015-01-01

    Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.

  5. Treatment of essential and parkinsonian tremor with nipradilol.

    Science.gov (United States)

    Yoshii, F; Shinohara, Y; Takeoka, T; Kitagawa, Y; Akiyama, K; Yazaki, K

    1996-11-01

    Nipradilol is a new type of beta-blocker which possesses nitroglycerin-like vasodilating action in addition to beta-blocking action. We investigated the efficacy and safety of nipradilol for treating tremor in 20 patients with essential tremor (ET group) and 20 patients with Parkinson's disease (PD group). All patients received nipradilol (6 mg per day) for more than 8 weeks. Improvement of tremor appeared within 2 or 4 weeks after the start of nipradilol therapy, and the efficacy rate, defined as "moderately effective" or over, was 42.5% in all 40 patients, while that defined as "slightly effective" or over was 87.5%. The efficacy rate tended to be higher in the ET group compared with the PD group. Mean blood pressure was significantly decreased from the 4th week after the start of treatment and heart rate was significantly reduced from the 2nd week of treatment. Laboratory examination showed no significant changes.

  6. Atenolol vs. propranolol in essential tremor. A controlled, quantitative study.

    Science.gov (United States)

    Larsen, T A; Teräväinen, H; Calne, D B

    1982-11-01

    The beta-1 selective, hydrophilic adrenoceptor blocking drug atenolol (100 mg daily) was compared to the non-selective, lipid-soluble beta-blocker propranolol (240 mg daily), and to placebo, in a double-blind cross-over study in 24 patients with essential tremor. Atenolol and propranolol caused a similar decrease in heart rate. Both beta-blockers also suppressed the tremor intensity; there was no significant difference between them, but both were significantly better than placebo. These drugs did not affect tremor frequency. Twelve of the patients preferred propranolol subjectively, one preferred atenolol and none preferred placebo. No marked side-effects were observed. It was concluded that atenolol and other cardio-selective blockers offer an alternative for patients unable to tolerate the non-selective drugs. The site of action and receptor sub-type involved have still to be determined.

  7. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods : A Comparison with Clinical Assessment

    NARCIS (Netherlands)

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H; Maurits, Natasha M

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a

  8. MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes.

    Science.gov (United States)

    Fasano, Alfonso; Llinas, Maheleth; Munhoz, Renato P; Hlasny, Eugen; Kucharczyk, Walter; Lozano, Andres M

    2017-08-22

    To report the 6-month single-blinded results of unilateral thalamotomy with MRI-guided focused ultrasound (MRgFUS) in patients with tremors other than essential tremor. Three patients with tremor due to Parkinson disease, 2 with dystonic tremor in the context of cervicobrachial dystonia and writer's cramp, and 1 with dystonia gene-associated tremor underwent MRgFUS targeting the ventro-intermedius nucleus (Vim) of the dominant hemisphere. The primary endpoint was the reduction of lateralized items of the Tremor Rating Scale of contralateral hemibody assessed by a blinded rater. All patients achieved a statistically significant, immediate, and sustained improvement of the contralateral tremor score by 42.2%, 52.0%, 55.9%, and 52.9% at 1 week and 1, 3, and 6 months after the procedure, respectively. All patients experienced transient side effects and 2 patients experienced persistent side effects at the time of last evaluation: hemitongue numbness and hemiparesis with hemihypoesthesia. Vim MRgFUS is a promising, incision-free, but nevertheless invasive technique to effectively treat tremors other than essential tremor. Future studies on larger samples and longer follow-up will further define its effectiveness and safety. NCT02252380. This study provides Class IV evidence that for patients with tremor not caused by essential tremor, MRgFUS of the Vim improves the tremor of the contralateral hemibody at 6 months. © 2017 American Academy of Neurology.

  9. Laryngoscopy evaluation protocol for the differentiation of essential and dystonic voice tremor.

    Science.gov (United States)

    Moraes, Bruno Teixeira de; Biase, Noemi Grigoletto de

    2016-01-01

    Although syndromes that cause voice tremor have singular characteristics, the differential diagnosis of these diseases is a challenge because of the overlap of the existing signs and symptoms. To develop a task-specific protocol to assess voice tremor by means of nasofibrolaryngoscopy and to identify those tasks that can distinguish between essential and dystonic tremor syndromes. Cross-sectional study. The transnasal fiberoptic laryngoscopy protocol, which consisted of the assessment of palate, pharynx and larynx tremor during the performance of several vocal and non-vocal tasks with distinct phenomenological characteristics, was applied to 19 patients with voice tremor. Patients were diagnosed with essential or dystonic tremor according to the phenomenological characterization of each group. Once they were classified, the tasks associated with the presence of tremor in each syndrome were identified. The tasks that significantly contributed to the differential diagnosis between essential and dystonic tremor were /s/ production, continuous whistling and reduction of tremor in falsetto. These tasks were phenomenologically different with respect to the presence of tremor in the two syndromes. The protocol of specific tasks by means of transnasal fiberoptic laryngoscopy is a viable method to differentiate between essential and dystonic voice tremor syndromes through the following tasks: /s/ production, continuous whistling and reduction of tremor in falsetto. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Intermittent bilateral coherence in physiological and essential hand tremor

    Czech Academy of Sciences Publication Activity Database

    Chakraborty, Soma; Kopecká, J.; Šprdlík, Otakar; Hoskovcová, M.; Ulmanová, O.; Růžička, E.; Zápotocký, Martin

    2017-01-01

    Roč. 128, č. 4 (2017), s. 622-634 ISSN 1388-2457 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 ; RVO:67985556 Keywords : physiological tremor * essential tremor * bilateral coupling * coherence * ballistocardiac impulse * accelerometry * wavelet analysis Subject RIV: FH - Neurology; BC - Control Systems Theory (UTIA-B) OBOR OECD: Neurosciences (including psychophysiology; Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) (UTIA-B) Impact factor: 3.866, year: 2016

  11. Clinical neurogenetics: fragile x-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Hall, Deborah A; O'Keefe, Joan A

    2013-11-01

    This article summarizes the clinical findings, genetics, pathophysiology, and treatment of fragile X-associated tremor ataxia syndrome. The disorder occurs from a CGG repeat (55-200) expansion in the fragile X mental retardation 1 gene. It manifests clinically in kinetic tremor, gait ataxia, and executive dysfunction, usually in older men who carry the genetic abnormality. The disorder has distinct radiographic and pathologic findings. Symptomatic treatment is beneficial in some patients. The inheritance is X-linked and family members may be at risk for other fragile X-associated disorders. This information is useful to neurologists, general practitioners, and geneticists. Copyright © 2013. Published by Elsevier Inc.

  12. Nadolol for lithium tremor in the presence of liver damage.

    Science.gov (United States)

    Dave, M; Langbart, M M

    1994-03-01

    Lithium-induced tremor classically responds to treatment with propranolol. Since it is metabolized in the liver, propranolol may not be the drug of choice in those patients who have compromised liver function or who are recovering from prior liver diseases. Another nonselective beta-adrenergic blocker, nadolol, has no hepatic biotransformation. We present here the first case report of successful treatment of lithium-induced tremor with nadolol, which was selected because the patient had compromised liver function. The patient's liver function tests remained stable with the therapy.

  13. Use of Minute-by-Minute Cardiovascular Measurements During Tilt Tests to Strengthen Inference on the Effect of Long-Duration Space Flight on Orthostatic Hypotension

    Science.gov (United States)

    Feiveson, Alan H.; Lee, Stuart M. C.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.

    2011-01-01

    time. Actual analysis proceeded in the opposite direction. First we identified those CPs or linear combinations that best predicted OTT survival regardless of what spaceflight conditions led to OTT completion or presyncope. From these, we calculated a summary statistic (one per OTT) that best predicted survival. We then used mixed ]model regression analysis to relate changes in the summary statistic to flight phase and duration. Inference on the effects of phase, duration, and their interaction on OH follows directly from this second analysis. Results: A linear combination (W) of diastolic blood pressure (DBP) and stroke volume (SV) was found to be the best predictor of OTT survival using the complete data set of minute-by-minute observations of CPs for each OTT. Furthermore, the log-transformed standard deviation of W (Z = log SW) was found to be a strong predictor of survival in the reduced data set consisting of one observation per OTT. In other words, this measure of variability of W during an OTT was the best indicator of whether or not the subject could complete the 10-min test, with higher variability (i.e. higher values of Z) being associated with greater probability of failure. In the mixed-model regression analysis where Z was now treated as a outcome with flight phase and duration groups (ISS and STS) as predictors, we found that there was a significantly more variability in W (higher values of Z) for both groups at R+0, but with no evidence of an interaction until R+3, when the ISS group still had inflated variability, but not the STS group. Conclusions: Variability of the cardiovascular index W recovers more slowly after long-compared to short-duration spaceflight. Since high variability of W has also been shown to be predictive of OTT failure, a primary manifestation of OH, a logical conclusion is that recovery from OH also is slower after long-duration compared to short-duration spaceflights.

  14. Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses

    Science.gov (United States)

    Hoffman, Stephen J.

    2012-01-01

    The purpose for this workshop can be summed up by the question: Are there relevant analogs to planetary (meaning the Moon and Mars) to be found in polar exploration on Earth? The answer in my opinion is yes or else there would be no reason for this workshop. However, I think some background information would be useful to provide a context for my opinion on this matter. As all of you are probably aware, NASA has been set on a path that, in its current form, will eventually lead to putting human crews on the surface of the Moon and Mars for extended (months to years) in duration. For the past 50 V 60 years, starting not long after the end of World War II, exploration of the Antarctic has accumulated a significant body of experience that is highly analogous to our anticipated activities on the Moon and Mars. This relevant experience base includes: h Long duration (1 year and 2 year) continuous deployments by single crews, h Established a substantial outpost with a single deployment event to support these crews, h Carried out long distance (100 to 1000 kilometer) traverses, with and without intermediate support h Equipment and processes evolved based on lessons learned h International cooperative missions This is not a new or original thought; many people within NASA, including the most recent two NASA Administrators, have commented on the recognizable parallels between exploration in the Antarctic and on the Moon or Mars. But given that level of recognition, relatively little has been done, that I am aware of, to encourage these two exploration communities to collaborate in a significant way. [Slide 4] I will return to NASA s plans and the parallels with Antarctic traverses in a moment, but I want to spend a moment to explain the objective of this workshop and the anticipated products. We have two full days set aside for this workshop. This first day will be taken up with a series of presentations prepared by individuals with experience that extends back as far as the

  15. Automated detection and characterization of harmonic tremor in continuous seismic data

    Science.gov (United States)

    Roman, Diana C.

    2017-06-01

    Harmonic tremor is a common feature of volcanic, hydrothermal, and ice sheet seismicity and is thus an important proxy for monitoring changes in these systems. However, no automated methods for detecting harmonic tremor currently exist. Because harmonic tremor shares characteristics with speech and music, digital signal processing techniques for analyzing these signals can be adapted. I develop a novel pitch-detection-based algorithm to automatically identify occurrences of harmonic tremor and characterize their frequency content. The algorithm is applied to seismic data from Popocatepetl Volcano, Mexico, and benchmarked against a monthlong manually detected catalog of harmonic tremor events. During a period of heightened eruptive activity from December 2014 to May 2015, the algorithm detects 1465 min of harmonic tremor, which generally precede periods of heightened explosive activity. These results demonstrate the algorithm's ability to accurately characterize harmonic tremor while highlighting the need for additional work to understand its causes and implications at restless volcanoes.

  16. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    Science.gov (United States)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  17. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  18. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar

  19. Knowledge gaps and research recommendations for essential tremor

    NARCIS (Netherlands)

    Hopfner, F.; Haubenberger, D.; Galpern, W.R.; Gwinn, K.; Veer, A. van der; White, S.; Bhatia, K.; Adler, C.H.; Eidelberg, D.; Ondo, W.; Stebbins, G.T.; Tanner, C.M.; Helmich, R.C.G.; Lenz, F.A.; Sillitoe, R.V.; Vaillancourt, D.; Vitek, J.L.; Louis, E.D.; Shill, H.A.; Frosch, M.P.; Foroud, T.; Kuhlenbaumer, G.; Singleton, A.; Testa, C.M.; Hallett, M.; Elble, R.; Deuschl, G.

    2016-01-01

    Essential tremor (ET) is a common cause of significant disability, but its etiologies and pathogenesis are poorly understood. Research has been hampered by the variable definition of ET and by non-standardized research approaches. The National Institute of Neurological Disorders and Stroke (USA)

  20. Acoustic Characteristics of Simulated Respiratory-Induced Vocal Tremor

    Science.gov (United States)

    Lester, Rosemary A.; Story, Brad H.

    2013-01-01

    Purpose: The purpose of this study was to investigate the relation of respiratory forced oscillation to the acoustic characteristics of vocal tremor. Method: Acoustical analyses were performed to determine the characteristics of the intensity and fundamental frequency (F[subscript 0]) for speech samples obtained by Farinella, Hixon, Hoit, Story,…

  1. Dementia in Fragile X-associated Tremor/Ataxia Syndrome

    Directory of Open Access Journals (Sweden)

    Ricardo Nitrini

    Full Text Available Abstract Fragile X-associated tremor/ataxia syndrome (FXTAS is a cause of movement disorders and cognitive decline which has probably been underdiagnosed, especially if its prevalence proves similar to those of progressive supranuclear palsy and amyotrophic lateral sclerosis. We report a case of a 74-year-old man who presented with action tremor, gait ataxia and forgetfulness. There was a family history of tremor and dementia, and one of the patient's grandsons was mentally deficient. Neuropsychological evaluation disclosed a frontal network syndrome. MRI showed hyperintensity of both middle cerebellar peduncles, a major diagnostic hallmark of FXTAS. Genetic testing revealed premutation of the FMR1 gene with an expanded (CGG90 repeat. The diagnosis of FXTAS is important for genetic counseling because the daughters of the affected individuals are at high risk of having offspring with fragile X syndrome. Tremors and cognitive decline should raise the diagnostic hypothesis of FXTAS, which MRI may subsequently reinforce, while the detection of the FMR1 premutation can confirm the condition.

  2. Propranolol as an adjunct therapy for hyperthyroid tremor.

    Science.gov (United States)

    Henderson, J M; Portmann, L; Van Melle, G; Haller, E; Ghika, J A

    1997-01-01

    We evaluated the use of propranolol as an adjunct to carbimazole in the treatment of hyperthyroid tremor and tachycardia in a double-blind, cross-over and placebo-controlled study. Seven patients were given carbimazole plus either placebo or propranolol (40 mg) for 1 month and then switched to the alternative adjunct treatment for a further month. All patients showed significant improvements (p tremor amplitude after 1 or 2 months from baseline. One month after the baseline, the mean improvements of heart rate were 23% for the carbimazole + placebo group and 38% for carbimazole + propranolol group. Tremor also improved during the 1st month of the study by 31% in the carbimazole + placebo group versus 59% in the carbimazole + propranolol group. Whereas further improvements were observed in both variables in those receiving propranolol as the second adjunct treatment, this was not the case in those who received placebo during the same period. These findings confirm that the beta-blocker propranolol is a useful adjunct in the early treatment of both the tremor and tachycardia of hyperthyroidism.

  3. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment

    Science.gov (United States)

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration

  4. Contribution of inter-muscular synchronization in the modulation of tremor intensity in Parkinson's disease.

    Science.gov (United States)

    He, Xin; Hao, Man-Zhao; Wei, Ming; Xiao, Qin; Lan, Ning

    2015-12-01

    Involuntary central oscillations at single and double tremor frequencies drive the peripheral neuromechanical system of muscles and joints to cause tremor in Parkinson's disease (PD). The central signal of double tremor frequency was found to correlate more directly to individual muscle EMGs (Timmermann et al. 2003). This study is aimed at investigating what central components of oscillation contribute to inter-muscular synchronization in a group of upper extremity muscles during tremor in PD patients. 11 idiopathic, tremor dominant PD subjects participated in this study. Joint kinematics during tremor in the upper extremity was recorded along with EMGs of six upper arm muscles using a novel experimental apparatus. The apparatus provided support for the upper extremity on a horizontal surface with reduced friction, so that resting tremor in the arm can be recorded with a MotionMonitor II system. In each subject, the frequencies of rhythmic firings in upper arm muscles were determined using spectral analysis. Paired and pool-averaged coherence analyses of EMGs for the group of muscles were performed to correlate the level of inter-muscular synchronization to tremor amplitudes at shoulder and elbow. The phase shift between synchronized antagonistic muscle pairs was calculated to aid coherence analysis in the muscle pool. Recorded EMG revealed that rhythmic firings were present in most recorded muscles, which were either synchronized to form phase-locked bursting cycles at a subject specific frequency, or unsynchronized with a random phase distribution. Paired coherence showed a stronger synchronization among a subset of recorded arm muscles at tremor frequency than that at double tremor frequency. Furthermore, the number of synchronized muscles in the arm was positively correlated to tremor amplitudes at elbow and shoulder. Pool-averaged coherence at tremor frequency also showed a better correlation with the amplitude of resting tremor than that of double tremor

  5. [Clinical subtypes of essential tremor and their electrophysiological and pharmacological differences].

    Science.gov (United States)

    Koguchi, Y; Nakajima, M; Kawamura, M; Hirayama, K

    1995-02-01

    We divided 19 patients with essential tremor into two subtypes according to clinical characteristics of the tremor. Ten patients had pure postural tremor distributed in the hand(s), head, and face (group A). Nine patients had tremor extending to the voice or leg(s), associated with resting tremor and/or hyperkinesie volitionnelle of the hand(s) (group B). Their ages, the age of onset, and the duration of illness were not different between the two groups. Electrophysiologically, the tremor of group A patients had higher frequencies than that of group B patients, and had synchronized activities for antagonistic muscles. Four of group B patients had reciprocal antagonistic activities of the tremor. Inactive phase of tremor induced by an electrically-evoked muscle twitch was invariably within the range of the physiological silent period for group A patients, and prolonged beyond the range for four of group B patients. Pharmacologically, 78% of group A patients responded well to beta-blocker, which was effective for 25% of group B patients. Sixty per cent of beta-blocker-resistant group B patients responded well to phenobarbital. In conclusion, a peripheral mechanism, presumably beta-adrenergic drive, is important for the tremor in group A patients, while central pathogenic mechanisms are more important for the tremor of group B patients.

  6. Sustained Medication Reduction Following Unilateral VIM Thalamic Stimulation for Essential Tremor.

    Science.gov (United States)

    Resnick, Andrew S; Okun, Michael S; Malapira, Teresita; Smith, Donald; Vale, Fernando L; Sullivan, Kelly; Miller, Amber; Jahan, Israt; Zesiewicz, Theresa

    2012-01-01

    Deep brain stimulation (DBS) is an increasingly utilized therapeutic modality for the management of medication refractory essential tremor (ET). The aim of this study was to determine whether DBS allowed for anti-tremor medication reduction within the year after the procedure was performed. We conducted a retrospective chart review and telephone interviews on 34 consecutive patients who had been diagnosed with ET, and who had undergone unilateral DBS surgery. Of the 34 patients in our cohort, 31 patients (91%) completely stopped all anti-tremor medications either before surgery (21 patients, 62%) or in the year following DBS surgery (10 patients, 29%). Patients who discontinued tremor medications before DBS surgery did so because their tremors either became refractory to anti-tremor medication, or they developed adverse events to tremor medications. Patients who stopped tremor medications after DBS surgery did so due to sufficient tremor control. Only three patients (9%) who were taking tremor medications at the time of surgery continued the use of a beta-blocker post-operatively for the purpose of hypertension management in all cases. The data from this study indicate that medication cessation is common following unilateral DBS for ET.

  7. Sustained Medication Reduction Following Unilateral VIM Thalamic Stimulation for Essential Tremor

    Directory of Open Access Journals (Sweden)

    Andrew S. Resnick

    2012-04-01

    Full Text Available Background: Deep brain stimulation (DBS is an increasingly utilized therapeutic modality for the management of medication refractory essential tremor (ET. The aim of this study was to determine whether DBS allowed for anti-tremor medication reduction within the year after the procedure was performed. Methods: We conducted a retrospective chart review and telephone interviews on 34 consecutive patients who had been diagnosed with ET, and who had undergone unilateral DBS surgery. Results: Of the 34 patients in our cohort, 31 patients (91% completely stopped all anti-tremor medications either before surgery (21 patients, 62% or in the year following DBS surgery (10 patients, 29%. Patients who discontinued tremor medications before DBS surgery did so because their tremors either became refractory to anti-tremor medication, or they developed adverse events to tremor medications. Patients who stopped tremor medications after DBS surgery did so due to sufficient tremor control. Only three patients (9% who were taking tremor medications at the time of surgery continued the use of a beta-blocker post-operatively for the purpose of hypertension management in all cases. Discussion: The data from this study indicate that medication cessation is common following unilateral DBS for ET. 

  8. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor

    Science.gov (United States)

    Dideriksen, Jakob L.; Gallego, Juan A.; Holobar, Ales; Rocon, Eduardo; Pons, Jose L.; Farina, Dario

    2015-08-01

    Objective. Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Approach. Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson’s disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. Main results. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. Signficance. The results indicate that the neural drive in pathological tremor is compatible with one central network

  9. Borehole Array Observations of Non-Volcanic Tremor at SAFOD

    Science.gov (United States)

    Ellsworth, W. L.; Luetgert, J. H.; Oppenheimer, D. H.

    2005-12-01

    We report on the observation of non-volcanic tremor made in the San Andreas Fault Observatory at Depth in May, 2005 during the deployment of a multi-level borehole seismic array in the SAFOD main hole. The seismic array consisted of 80 levels of hydraulically-clamped 3-component, 15 Hz omni-directional geophones spaced 15.24 m apart along a 1200 m section of the inclined borehole between 1538 and 2363 m below the ground surface. The array was provided by Paulsson Geophysical Services, Inc. (P/GSI), and recorded at a sample rate of 4000 sps on 24-bit Geode digital recorders provided by Geometrics, Inc. More than 2 TB of continuous data were recorded during the 2-week deployment. Selected local earthquakes and explosions recorded by the array are available at the Northern California Earthquake Data Center, and the entire unedited data set is available as assembled data at the IRIS Data Management Center. Both data sets are currently in the industry standard SEG2 format. Episodes of non-volcanic tremor are common along this reach of the San Andreas Fault according to Nadeau and Dolenc [2004, DOI: 10.1126/science.1107142], with many originating about 30 km southeast of SAFOD beneath the southern end of the Parkfield segment and northern end of the Simmler segment of the fault. We identified tremor episodes using spectrograms routinely produced by the Northern California Seismic Network (http://quake.usgs.gov/cgi-bin/sgrampark.pl) on which they appear as periods of elevated noise relative to the background. A particularly strong tremor episode occurred on May 10, 2005 between 19:39 and 20:00 UTC. In SAFOD, tremor spectral levels exceed the instrumental noise floor to at least 40 Hz. The spatially unaliased recording of the tremor wavefield on the P/GSI array reveal individual phases that can be tracked continuously across the array. The wavefield is composed of both up- and down-going shear waves that form quasi-stationary interference patterns in which areas of

  10. Gamma knife thalamotomy for Parkinson's tremor: A 5-year experience

    International Nuclear Information System (INIS)

    Duma, Christopher M.; Jacques, Deane B.; Kopyov, Oleg V.; Mark, Rufus J.; Copcutt, Brian G.

    1996-01-01

    Purpose: Elderly, high-risk surgical patients, may be unfit for radiofrequency thalamotomy for Parkinson's tremor. We have performed gamma knife radiosurgery in this select patient population, in lieu of open surgery, in an attempt at amelioration of disabling tremor. Materials and Methods: Radiosurgical nucleus ventralis intermedalis thalamotomy using gamma unit technique was performed on 38 patients (median age, 72 years; range: 50-88 years) over a period of 5 years. A median dose of 155 Gy (range: 110-160 Gy) was delivered using a single 4-mm collimator to 40 nuclei (2 patients underwent bilateral thalamotomy) using only anatomical atlas landmarks. The number of males and females were evenly divided, and their ages ranged from 50 to 88 years (median: 72 years). Two-thirds of the patients underwent left thalamotomy for right-sided trmor. Patients were followed-up for a median of 14 months (range: 6 to 43 months). Independent neurological evaluation of tremor as well as subjective patient evaluation were based on a 4-tiered scale: no improvement, mild improvement (0-33% effect), good improvement (33-66% effect), and excellent improvement (66-100%). Results: Eight thalamotomies (20%) failed, four (10%) gave mild improvement, and 28 (70%) gave good to excellent improvement of tremor (median time of onset of improvement was 3 months; range: 1-11 months). In 12 patients (32%) the tremor was eliminated completely. Concordance between independent neurologist evaluation and that of the patient was significant (p<0.001). Two patients in the failure group had an initial transient improvement. Two patients who underwent unilateral thalamotomy had bilateral improvement of their tremor. A permanent 5-6 mm lesion was seen on all follow-up MRIs and there were no radiological complications. A worsening of hand strength was seen in only patient. Conclusion: The safety and efficacy of gamma unit radiosurgical thalamotomy is on par with that of radiofrequency thalamotomy, and in a

  11. Estimating seismic moment magnitude (Mw) of tremor bursts in northern Cascadia: Implications for the “seismic efficiency” of episodic tremor and slip

    Science.gov (United States)

    Kao, Honn; Wang, Kelin; Dragert, Herb; Kao, Jason Y.; Rogers, Garry

    2010-10-01

    We develop a method to estimate the seismic moments of deep non-volcanic tremor bursts observed in northern Cascadia. For each tremor burst, the maximum amplitudes at individual stations within a time window ±5 s around the predicted arrivals of the S phase are measured and compared to the maximum S amplitudes measured from synthetic seismograms. The proposed method is thoroughly calibrated using 464 local earthquakes and the results show excellent consistency between the reported ML and the estimated Mw. We apply the method to northern Cascadia tremors and infer that most bursts have Mw˜1.0-1.7. The corresponding b value appears to be 1, consistent with that of ordinary earthquakes but over a narrower Mw range. Comparison of cumulative tremor Mw and the Mw estimated from the accompanying slow slip suggests that the “seismic efficiency” of the Episodic Tremor and Slip (ETS) is of the order of 0.1% or less.

  12. Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations.

    Science.gov (United States)

    Ramirez-Zamora, Adolfo; Smith, Heather; Kumar, Vignessh; Prusik, Julia; Phookan, Sujoy; Pilitsis, Julie G

    2016-01-01

    Although thalamic deep brain stimulation (DBS) has been established as an effective therapy for refractory tremor in Parkinson's disease and essential tremor, reports investigating the efficacy of posterior subthalamic area (PSA) DBS for severe, debilitating tremors continue to emerge. However, questions regarding the optimal anatomical target, surgical approach, programming paradigms and effectiveness compared to other targets remain. In this report, we aimed to review the current literature to assess different stereotactic techniques, anatomical considerations, adverse effects and stimulation settings in PSA DBS. A comprehensive literature review was performed searching for articles discussing tremors and PSA stimulation. We performed a quantitative analysis comparing different DBS tremor targets. Tremor improvement is consistently documented in most reports with an average reduction in tremor of 79% depending on the specific tremor syndrome. Tremor benefit in patients with multiple sclerosis (MS) tremor was significantly higher than for other stimulation targets. Transient paresthesias, imbalance, dizziness and dysarthria are the most common side effects with PSA DBS. PSA DBS is an effective and safe treatment for tremor control and should be considered in patients with refractory tremors with associated cerebellar or dystonic features, proximal tremors and MS tremor. © 2016 S. Karger AG, Basel.

  13. Thalamic Ventral Intermediate Nucleus Deep Brain Stimulation for Orthostatic Tremor

    Directory of Open Access Journals (Sweden)

    Alexander C. Lehn

    2017-07-01

    Full Text Available Background: Orthostatic tremor (OT was first described in 1977. It is characterized by rapid tremor of 13–18 Hz and can be recorded in the lower limbs and trunk muscles. OT remains difficult to treat, although some success has been reported with deep brain stimulation (DBS.Case Report: We report a 68-year-old male with OT who did not improve significantly after bilateral thalamic stimulation.Discussion: Although some patients were described who improved after DBS surgery, more information is needed about the effect of these treatment modalities on OT, ideally in the form of randomized trial data. 

  14. Botulinum Toxin for the Treatment of Tremor and Tics.

    Science.gov (United States)

    Lotia, Mitesh; Jankovic, Joseph

    2016-02-01

    The therapeutic applications of botulinum toxin (BoNT) have grown manifold since its initial approval in 1989 by the U.S. Food and Drug Administration for the treatment of strabismus, blepharospasm, and other facial spasms. Although it is the most potent biologic toxin known to man, long-term studies have established its safety in the treatment of a variety of neurologic and nonneurologic disorders. Despite a paucity of randomized controlled trials, BoNT has been found to be beneficial in treating a variety of tremors and tics when used by clinicians skilled in the administration of the drug for these hyperkinetic movement disorders. Botulinum toxin injections can provide meaningful improvement in patients with localized tremors and tics; in some cases, they may be an alternative to other treatments with more undesirable adverse effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. [Treatment of lithium tremor with the beta receptor blocker, pindolol].

    Science.gov (United States)

    Floru, L; Tegeler, J; Wolmsen, H

    1979-01-01

    In a cross-over study with Pindolol, 15 mg/day, against placebo, we studied during 4 weeks 22 patients aged between 20 and 65 years who where treated by means of lithium carbonate retard (Quilonum Retard). The tremor was measured twice a week by means of three apparative methods: an accelerometer, a 'hole-plate' and an 'aimed tapping plate', both constructed by Janke, and was also studied by means of a self-evaluation rating-scale. We obtained a positive therapeutic effect of Pindolol on lithium-induced tremor, which was statistically significant by means of the 'hole-plate' and of self-evaluation. Differences in results are discussed.

  16. Shooting performance is related to forearm temperature and hand tremor size.

    Science.gov (United States)

    Lakie, M; Villagra, F; Bowman, I; Wilby, R

    1995-08-01

    The changes in postural tremor of the hand and the subsequent effect on shooting performance produced by moderate cooling and heating of the forearm were studied in six subjects. Cooling produced a large decrease in tremor size of the ipsilateral hand, whereas warming the limb produced an increase in tremor size. Cooling or warming the forearm did not change the peak frequency of tremor significantly, which was quite stable for each subject. The improvement in shooting performance after cooling the forearm, as measured by grouping pattern of the shots, reached statistical significance and warming caused a significant worsening. This measure of performance was shown to correlate (r = 0.776) inversely with tremor size. The causes and implications of these changes are discussed. It is suggested that local cooling may be useful for people who wish temporarily to reduce tremor in order to improve dexterity for shooting and for other purposes.

  17. Task-specific kinetic finger tremor affects the performance of carrom players.

    Science.gov (United States)

    Kahathuduwa, Chanaka N; Weerasinghe, Vajira S; Dassanayake, Tharaka L; Priyadarshana, Rajeewa; Dissanayake, Arunika L; Perera, Christine

    2016-01-01

    We aimed to determine the effect of task-specific kinetic finger tremor, as indexed by surface electromyography (EMG), on the accuracy of a carrom stroke. Surface EMG of extensor digitorum communis muscle of the playing arm was recorded during rest, isometric contraction and stroke execution in 17 male carrom players with clinically observed finger tremor and 18 skill- and age-matched controls. Log-transformed power spectral densities (LogPSDs) of surface EMG activity (signifying tremor severity) at a 1-s pre-execution period correlated with angular error of the stroke. LogPSDs in 4-10 Hz range were higher in players with tremor than controls during pre-execution (P kinetic finger tremor in carrom players. This finger tremor during the immediate pre-execution phase appears to be a significant determinant of stroke accuracy.

  18. Propranolol, clonidine, urapidil and trazodone infusion in essential tremor: a double-blind crossover trial.

    Science.gov (United States)

    Caccia, M R; Osio, M; Galimberti, V; Cataldi, G; Mangoni, A

    1989-05-01

    Accelerometric tremorgrams were recorded from 25 subjects affected by essential tremor and analysed by a Berg-Fourier frequency analyser before and during venous infusion of the following drugs: propranolol (beta-blocker), clonidine (alpha-presynaptic adrenergic agonist), urapidil (alpha-postsynaptic blocker), trazodone (adrenolytic agent) and placebo. The washout interval between infusions was 3 days. Recordings and data analyses were performed in a double-blind crossover trial. Tremor was classified as: at rest; postural (arms hyperextended); and intention (finger-nose test). Analysis of the results showed that propranolol and clonidine reduced significantly (P = 0.01 and P = 0.009, respectively) the power spectrum of postural tremor, but left at rest and intention tremors unchanged. No significant effects on the tremor power spectrum were observed after placebo, urapidil or trazodone administration. None of the drugs had any effect on tremor frequency.

  19. Altered brain network measures in patients with primary writing tremor

    Energy Technology Data Exchange (ETDEWEB)

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant [National Institute of Mental Health and Neurosciences, Department of Clinical Neurosciences, Bangalore, Karnataka (India); National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neurology, Bangalore, Karnataka (India); Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn [National Institute of Mental Health and Neurosciences, Department of Neuroimaging and Interventional Radiology, Bangalore, Karnataka (India); Yadav, Ravi; Pal, Pramod Kumar [National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neurology, Bangalore, Karnataka (India)

    2017-10-15

    Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results. (orig.)

  20. Altered brain network measures in patients with primary writing tremor

    International Nuclear Information System (INIS)

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Yadav, Ravi; Pal, Pramod Kumar

    2017-01-01

    Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results. (orig.)

  1. Altered brain network measures in patients with primary writing tremor.

    Science.gov (United States)

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Yadav, Ravi; Pal, Pramod Kumar

    2017-10-01

    Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results.

  2. Is there a Premotor Phase of Essential Tremor?

    Directory of Open Access Journals (Sweden)

    Abhishek Lenka

    2017-10-01

    Full Text Available Background: Essential tremor (ET is the most common tremor disorder. In addition to its hallmark feature, kinetic tremor of the upper limbs, patients may have a number of non-motor symptoms and signs (NMS. Several lines of evidence suggest that ET is a neurodegenerative disorder and certain NMS may antedate the onset of tremor. This article comprehensively reviews the evidence for the existence of a "premotor phase" of ET, and discusses plausible biological explanations and implications.Methods: A PubMed search in May 2017 identified articles for this review.Results: The existence of a premotor phase of ET gains support primarily from longitudinal data. In individuals who develop incident ET, baseline (i.e., premotor evaluations reveal greater cognitive dysfunction, a faster rate of cognitive decline, and the presence of a protective effect of education against dementia. In addition, baseline evaluations also reveal more self-reported depression, antidepressant medication use, and shorter sleep duration in individuals who eventually develop incident ET. In cross-sectional studies, certain personality traits and NMS (e.g., olfactory dysfunction also suggest the existence of a premotor phase.Discussion: There is preliminary evidence supporting the existence of a premotor phase of ET. The mechanisms are unclear; however, the presence of Lewy bodies in some ET brains in autopsy studies and involvement of multiple neural networks in ET as evident from the neuroimaging studies, are possible contributors. Most evidence is from a longitudinal cohort (Neurological Disorders of Central Spain: NEDICES; additional longitudinal studies are warranted to gain better insights into the premotor phase of ET.

  3. Fentanyl bolus induces muscle tremors in sevoflurane-anaesthetized piglets.

    Science.gov (United States)

    Ringer, S K; Spielmann, N; Weiss, M; Mauch, J Y

    2016-08-01

    Intravenous fentanyl (10 mcg/kg) or saline (control) was randomly administered to 10 healthy sevoflurane-mono-anaesthetized piglets. Trembling was assessed by two blinded observers using a visual analogue scale (VAS) and a simple ordinal scale at baseline and 5 min (T5) after drug administration. If no trembling was observed at that time point, the opposite treatment was administered and piglets were re-evaluated after another 5 min (T10). Four out of five piglets showed trembling after fentanyl (T5), while none given saline showed any trembling. With fentanyl the VAS scores were significantly higher at T5 compared either with baseline or with the control treatment. Control animals received fentanyl after the 5 min evaluation and all piglets showed clear trembling afterwards. The median time after fentanyl administration until first muscle tremors was 51 (20-840) s. In summary, nine out of 10 sevoflurane-anaesthetized piglets showed muscle tremors after intravenous fentanyl. Tremors subsided over time and no specific treatment was necessary. © The Author(s) 2015.

  4. Electrophysiologic Assessments of Involuntary Movements: Tremor and Myoclonus

    Directory of Open Access Journals (Sweden)

    Hyun-Dong Park

    2009-05-01

    Full Text Available Tremor is defined as a rhythmical, involuntary oscillatory movement of a body part. Although neurological examination reveals information regarding its frequency, regularity, amplitude, and activation conditions, the electrophysiological investigations help in confirming the tremor, in differentiating it from other hyperkinetic disorders like myoclonus, and may provide etiological clues. Accelerometer with surface electromyogram (EMG can be used to document the dominant frequency of a tremor, which may be useful as certain frequencies are more characteristic of specific etiologies than others hyperkinetic disorders. It may show rhythmic bursts, duration and activation pattern (alternating or synchronous. Myoclonus is a quick, involuntary movement. Electrophysiological studies may helpful in the evaluation of myoclonus, not only for confirming the clinical diagnosis but also for understanding the underlying physiological mechanisms. Electroencephalogram (EEG-EMG correlates can give us important information about myoclonus. Jerk-locked back-averaging and evoked potentials with recording of the long-latency, long-loop reflexes are currently available to study the pathophysiology of myoclonus.

  5. Orthostatic Tremor: An Update on a Rare Entity

    Science.gov (United States)

    Benito-León, Julián; Domingo-Santos, Ángela

    2016-01-01

    Background Orthostatic tremor