WorldWideScience

Sample records for low-activity waste performance

  1. Hanford immobilized low-activity tank waste performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1998-01-01

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  2. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  3. Performance objectives for the Hanford Immobilized Low-Activity Waste (ILAW) performance assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    1999-01-01

    Performance objectives for the disposal of low activity waste from Hanford Waste Tanks have been developed. These objectives have been based on DOE requirements, programmatic requirements, and public involvement. The DOE requirements include regulations that direct the performance assessment and are cited within the Radioactive Waste Management Order (DOE Order 435.1). Performance objectives for other DOE complex performance assessments have been included

  4. Scenarios for the Hanford Immobilized Low-Activity Waste (ILAW) performance assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    1999-01-01

    Scenarios describing representative exposure cases associated with the disposal of low activity waste from the Hanford Waste Tanks have been defined. These scenarios are based on guidance from the Department of Energy, the U.S. Nuclear Regulatory Commission, and previous Hanford waste disposal performance assessments

  5. Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    2000-01-01

    The plan for maintaining the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (PA) is described. The plan includes expected work on PA reviews and revisions, waste reports, monitoring, other operational activities, etc

  6. Data Packages for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment: 2001 Version

    International Nuclear Information System (INIS)

    MANN, F.M.

    2000-01-01

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided

  7. Low-Activity Radioactive Wastes

    Science.gov (United States)

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  8. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  9. Permitting plan for the immobilized low-activity waste project

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ''the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.'' It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site's low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste

  10. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  11. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    International Nuclear Information System (INIS)

    Hamel, W. F.; Gerdes, K.; Holton, L. K.; Pegg, I.L.; Bowan, B.W.

    2006-01-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  12. Aube very low activity waste storage Centre. Annual report 2009

    International Nuclear Information System (INIS)

    2010-01-01

    After a presentation of the ANDRA (the French national agency for radioactive waste management), its role and missions, its sites, its strategy with respect to a sustainable development, this report contains a description of waste storage installations and key figures of the activity in 2009 (origin and nature of very low activity wastes, brief description of the Aube centre installations, stored volumes, performed works). It describes arrangements related to security, safety and radioprotection, presents results of the radiological survey activity performed in the environment and on wastes, and activities related to public information

  13. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.

  14. Data Packages for the Hanford Immobilized Low Activity Tank Waste Performance Assessment 2001 Version [SEC 1 THRU 5

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-03-02

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.

  15. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  16. Performance objectives for the Hanford immobilized low-activity waste (ILAW) performance assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    1999-01-01

    Before low-level waste may be disposed of, a performance assessment must be written and then approved by the DOE (DOE 1988a, DOE 1999a). The performance assessment is to determine whether ''reasonable assurance'' exists that the performance objectives of the disposal facility will be met. The DOE requirements for waste disposal (DOE 1988a, DOE 1999a) require (see Appendix B): The protection of public health and safety; and The protection of the environment. Although quantitative limits are sometimes stated (for example, the all-pathways exposure limit is 25 mredyear), usually the requirements are stated in a general nature. Quantitative limits were established by: investigating all potentially applicable regulations as well as interpretations of the review panels which DOE has established to review performance assessments; interacting with program management to establish the additional requirements of the program; and interacting with the public (i.e., the Hanford Advisory Board members; as well as affected Tribal Governments) to understand the values of residents in the Pacific Northwest. Because of space considerations, not all radionuclides and dangerous chemicals are listed in this document. The radionuclides listed here are those which were explicitly treated in the ILAW PA (Mann 1998). The dangerous chemicals listed here are those most often detected in Hanford tank waste as documented in the Regulatory Data Quality Objectives Supporting Tank Waste Remediation System Privatization Project (Wiemers 1998)

  17. Statement of Work (SOW) for FY 2001 to 2006 for the Hanford Low-Activity Tank Waste Performance Assessment Program

    International Nuclear Information System (INIS)

    PUIGH, R.J.

    2000-01-01

    This document describes the tasks included in the Hanford Low-Activity Tank Waste Performance Assessment activity though the close of the project in 2028. Near-term (2001-2006) tasks are described in detail, while tasks further in the future are simply grouped by year. The major tasks are displayed in the table provided. The major goals of the performance assessment activity are to provide the technical basis for the Department of Energy to continue to authorize the construction of disposal facilities, the onsite disposal of immobilized low-activity Hanford tank waste in those facilities, and the closure of the disposal facilities. Other significant goals are to provide the technical basis for the setting of the specifications of the immobilized waste and to support permitting of the disposal facilities

  18. Characterization plan for the immobilized low-activity waste borehole

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy's (DOE's) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment

  19. Design requirements document for project W-520, immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity

  20. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  1. Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    International Nuclear Information System (INIS)

    PD Meyer; RJ Serne

    1999-01-01

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package

  2. The very-low activity waste storage facility. A new waste management system

    International Nuclear Information System (INIS)

    2006-01-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  3. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    International Nuclear Information System (INIS)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-01

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and

  4. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-18

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and

  5. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  6. Hanford low-level tank waste interim performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1997-01-01

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives

  7. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E

    2008-03-31

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest

  8. Treatment of uncertainty in low-level waste performance assessment

    International Nuclear Information System (INIS)

    Kozak, M.W.; Olague, N.E.; Gallegos, D.P.; Rao, R.R.

    1991-01-01

    Uncertainties arise from a number of different sources in low-level waste performance assessment. In this paper the types of uncertainty are reviewed, and existing methods for quantifying and reducing each type of uncertainty are discussed. These approaches are examined in the context of the current low-level radioactive waste regulatory performance objectives, which are deterministic. The types of uncertainty discussed in this paper are model uncertainty, uncertainty about future conditions, and parameter uncertainty. The advantages and disadvantages of available methods for addressing uncertainty in low-level waste performance assessment are presented. 25 refs

  9. US DOE Initiated Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant (WTP) Low-activity Waste Vitrification (LAW) System

    International Nuclear Information System (INIS)

    Hamel, William F.; Gerdes, Kurt D.; Holton, Langdon K.; Pegg, Ian L.; Bowen, Brad W.

    2006-01-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate (1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and (2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the capacity of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing both processing time and cost

  10. Status of activities: Low-level radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Ozaki, C.B.; Shilkett, R.C.; Kirkpatrick, T.D.

    1989-01-01

    A primary objective of low-level radioactive waste management in the United States is to protect the health and safety of the public and the quality of the environment. In support of this objective is the development of waste treatment and disposal technologies designed to provide stabilization and long-term institutional control of low-level radioactive wastes. Presented herein is a technical review of specific low-level radioactive waste management activities in the United States. Waste treatment and disposal technologies are discussed along with the performance objectives of the technologies aimed at protecting the health and safety of the public and the quality of the environment. 13 refs., 4 figs

  11. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminants of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).

  12. Dissolution test for low-activity waste product acceptance

    International Nuclear Information System (INIS)

    Ebert, W. L.

    1998-01-01

    We have measured the mean and standard deviation of the solution concentrations of B, Na, and Si attained in replicate dissolution tests conducted at temperatures of 20, 40, and 70 C, for durations of 3 and 7 days, and at glass/water mass ratios of 1:10 and 1:1. These and other tests were conducted to evaluate the adequacy of the test methods specified in privatization contracts and to develop a data base that can be used to evaluate the reliability of reported results for tests performed on the waste products. Tests were conducted with a glass that we formulated to be similar to low-activity waste products that will be produced during the remediation of Hanford tank wastes. Statistical analyses indicated that, while the mean concentrations of B, Na, and Si were affected by the values of test parameters, the standard deviation of replicate tests was not. The precision of the tests was determined primarily by uncertainties in the analysis of the test solutions. Replicate measurements of other glass properties that must be reported for Hanford low-activity waste products were measured to evaluate the possible adoption of the glass used in these tests as a standard test material for the product acceptance process

  13. Geologic Data Package for 2001 Immobilized Low-Activity Waste Performance Assessment

    International Nuclear Information System (INIS)

    SP Reidel; DG Horton

    1999-01-01

    This database is a compilation of existing geologic data from both the existing and new immobilized low-activity waste disposal sites for use in the 2001 Performance Assessment. Data were compiled from both surface and subsurface geologic sources. Large-scale surface geologic maps, previously published, cover the entire 200-East Area and the disposal sites. Subsurface information consists of drilling and geophysical logs from nearby boreholes and stored sediment samples. Numerous published geological reports are available that describe the subsurface geology of the area. Site-specific subsurface data are summarized in tables and profiles in this document. Uncertainty in data is mainly restricted to borehole information. Variations in sampling and drilling techniques present some correlation uncertainties across the sites. A greater degree of uncertainty exists on the new site because of restricted borehole coverage. There is some uncertainty to the location and orientation of elastic dikes across the sites

  14. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    International Nuclear Information System (INIS)

    DI Kaplan; RJ Serne

    2000-01-01

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K d ) and the thermodynamic solubility product (K sp ), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the

  15. State and Federal activities on low-level waste

    International Nuclear Information System (INIS)

    1983-01-01

    With the passage of the Low-Level Waste Policy Act in December 1980, the states have assumed the management responsibility and the federal government has become a facilitator. State and Federal roles in regulation have not altered. This paper reviews the developments over the last two years to point out the progress made and critical steps that lie ahead. Both technological and political aspects are covered, and a conclusion is presented with a look to the future. Since compact development in the tool chosen by the politicans for low-level waste management, the author reviews the present status starting with the northwest compact which has been introduced into the House and Senate and is subject to hearings. The past two years have seen real progress in technology in the broadest sense. An information development and dissemination system was established in 1978 wih the state-by-state assessment of low-level waste disposal. Annual examinations have been made through 1981 which enables one to understand the generation of low-level wastes. Policy level planning by states can be supported by the base level of information available. Incineration of dry active waste and other non-fuel cycle waste is ready to be fully accepted. Much work has been done on volume reduction of liquids. The increased understanding of the ways to make a disposal site work represents a major technolological improvement. Within the DOE system, there is beginning to be a real understanding of the critical parameters in disposal site performance in the East

  16. High-Temperature Corrosion Study for the RPP Low Activity Waste Melter

    International Nuclear Information System (INIS)

    Marshall, K.M.

    2003-01-01

    The River Protection Program (RPP) low activity waste (LAW) melter design incorporates a series of bubblers used to increase convection in the molten glass. Through runs of a pilot melter at Duratek, Inc. in Columbia, Maryland, the bubblers have been identified as the major component limiting LAW melter availability, requiring frequent replacement due to corrosive degradation, primarily at the melt line. Laboratory experiments were performed to evaluate the performance of several alloys and coatings in simulated RPP low activity waste melter vapor space and molten glass environments. The performance of the alloys and coatings was studied in order to advance our understanding of how these materials react at the melt/air interface inside the melter. The ultimate goal was to identify a material with superior performance compared to that of Inconel 693, and to deliver a bubbler sub-assembly made of that material to the RPP LAW melter pilot facility for further testing

  17. Performance of engineered barriers for low-level waste

    International Nuclear Information System (INIS)

    Taplin, D.; Claridge, F.B.

    1987-09-01

    Geotechnical Resources Ltd., in association with Komex Consultants Ltd., was retained to collect, synthesize and evaluate the available information on the long term performance of engineered barriers for low-level radioactive wastes disposed in Canada. Literature was researched from Canadian, United States and European sources. A variety of barrier materials were assessed in the study and included natural clays, concrete and cement, metals, bentonite-sand admixes, bitumen and bituminous admixes, soil cement and polymeric membranes. The generalized geological and geotechnical conditions encountered within the soil and rock host media currently under consideration for disposal sites in southern Ontario were also summarized. Both internal barriers, or buffers, to immobilize the waste material and reduce radionuclide mobility, as well as external barriers to limit the migration of contaminants were examined. Microbial activities within the waste forms were analyzed, including cellulose degradation, methanogenesis and bicarbonate and organic reactions. Microbial interactions with the various engineered barrier materials under consideration were also assessed. Finally, the anticipated long term performances of the respective barrier materials under consideration were evaluated, along with the general suitability of the geological host media being proposed for disposal sites

  18. Radioprotection and physical surveillance during activities of liquid wastes of high and low activity in italian ITREC plant

    International Nuclear Information System (INIS)

    Petagna, Edoardo; Tortorelli, Pietro

    1997-03-01

    Many studies were made in ITREC Plant, located in ENEA - Trisaia Research Center, in the field of the nuclear fuel reprocessing, in the past years. During these activities liquid wastes of high and low activity were yielded and stored in the special area of tanks named Waste-1. In order to condition the low activity liquid wastes, essentially fission products, beta and gamma emitters, was built the SIRTE Plant (Integrate System for the Raise and Effluents Treatment) based on cementation process. In the present work, the radiological monitoring performed within the plant during the first campaign of cementation, is showed

  19. Development for low-activation concrete design reducing radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Ken-ichi; Kinno, Masaharu; Hasegawa, Akira

    2008-01-01

    activation cross section library and accurate estimation of major target elements in various raw materials for the concrete with width of uncertainty are necessary. So, development for low-activation concrete design reducing radioactive waste have been conducted in the project mentioned above. Detail survey of the selected aggregates and cements for the low-activation concrete are carried out and uncertain of the materials are obtained. Tons of execution experimental works for several types of low-activation concrete are conducted to categorize as conventional, high performance and boron added, with reduction rate of radioactivity to the ordinary concrete from 1/10 to 10000. Low-activation material development system and activation mapping system could calculate required quantities of target elements in certain area and boundary of the radioactivity level for shielding wall in decommissioning. These results contribute to optimize the design of low-activation concrete for reducing radioactive waste. This work is supported by a grant-in-aid of Innovative and Viable Nuclear Technology (IVNET) development project of Ministry of Economy, Trade and Industry, Japan. (author)

  20. Trends and R and D in France to improve the performance of activity measurements systems for the reprocessing low level wastes

    International Nuclear Information System (INIS)

    Martin Deidier, L.; Silie, Ph.; Huver, M.

    1995-01-01

    In the frame of COGEMA actins to reduce the volume of the reprocessing waste, a new strategy of drumming and incinerating is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this global, closer links between COGEMA, SGN, CEA and EURYSIS MESURE have taken place to define a program in order to obtain up to three years the required performances, using active methods with neutron generator. These developments and tests are carried out on the PROMETHEE R and D facility at CEA-CADARACHE. (authors)

  1. Development and Performance Evaluation of a Low Cost Waste ...

    African Journals Online (AJOL)

    The design, development and performance evaluation of a low cost waste-water treatment plant had been carried out. The aim was to harness the usefulness of waste-waters from residential, institutional and commercial sources. The facultative lagoon method of waste-water treatment was adopted. Biological analysis of ...

  2. Vitrification of Three Low-Activity Radioactive Waste Streams from Hanford

    International Nuclear Information System (INIS)

    Ferrara, D.M.; Crawford, C.L.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    As part of a demonstration for British Nuclear Fuels Limited, Incorporated (BNFL), the Immobilization Technology Section (ITS) of the Savannah River Technology Center (SRTC) has produced and characterized three low-activity waste (LAW) glasses from Hanford radioactive waste samples. The three LAW glasses were produced from radioactive supernate samples that had been treated by the Waste Processing Technology Section (WPTS) at SRTC to remove most of the radionuclides. These three glasses were produced by mixing the waste streams with between four and nine glass-forming chemicals in platinum/gold crucibles and heating the mixture to between 1120 and 1150 degrees C. Compositions of the resulting glass waste forms were close to the target compositions. Low concentrations of radionuclides in the LAW feed streams and, therefore, in the glass waste forms supported WPTS conclusions that pretreatment had been successful. No crystals were detected in the LAW glasses. In addition, all glass waste forms passed the leach tests that were performed. These included a 20 degrees C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP)

  3. International Symposium on Disposal of Low Activity Radioactive Waste, Cordoba, Spain, 13-17 December 2004

    CERN Document Server

    2004-01-01

    The topical issues addressed by the symposium were: policies and strategies for low activity radioactive waste; very low activity radioactive waste; low activity radioactive waste from decommissioning; long lived low activity radioactive waste and other materials; and unique low activity radioactive waste.

  4. Radioactive Waste Management Complex low-level waste radiological performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  5. Radioactive Waste Management Complex low-level waste radiological performance assessment

    International Nuclear Information System (INIS)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected

  6. Performance assessment for future low-level waste disposal facilities at ORNL

    International Nuclear Information System (INIS)

    Lee, D.W.; Kocher, D.C.

    1989-01-01

    This paper discusses the strategy for waste management on the Oak Ridge Reservation (ORR) and the approach to preparing future performance assessments that has evolved from previous performance assessment studies of low-level radioactive waste disposal on the ORR. The strategy for waste management is based on the concept that waste classification should be determined by performance assessment other than the sources of waste. This dose-based strategy for waste classification and management places special importance on the preparation and interpretation of waste disposal performance assessments for selecting appropriate disposal technologies and developing waste acceptance criteria. Additionally, the challenges to be overcome in the preparation of performance assessments are discussed. 7 refs

  7. Performance assessment methodology (PAM) for low level radioactive waste (LLRW) disposal facilities

    International Nuclear Information System (INIS)

    Selander, W.N.

    1992-01-01

    An overview is given for Performance Assessment Methodology (PAM) for Low Level Radioactive Waste (LLRW) disposal technologies, as required for licensing and safety studies. This is a multi-disciplinary activity, emphasizing applied mathematics, mass transfer, geohydrology and radiotoxicity effects on humans. (author). 2 refs

  8. Trends and R and D in France to improve the performance of activity measurements systems for the reprocessing low level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Martin Deidier, L. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Reacteurs; Masson, H.; Coryn, P. [Cogema, 78 - Velizy-Villacoublay (France); Silie, Ph. [SGN Reseau Eurisys, 78 - Saint Quentin (France); Huver, M. [Eurysis Mesure, 78 - Saint-Quentin-en Yvelines (France)

    1995-12-31

    In the frame of COGEMA actins to reduce the volume of the reprocessing waste, a new strategy of drumming and incinerating is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this global, closer links between COGEMA, SGN, CEA and EURYSIS MESURE have taken place to define a program in order to obtain up to three years the required performances, using active methods with neutron generator. These developments and tests are carried out on the PROMETHEE R and D facility at CEA-CADARACHE. (authors) 3 refs.

  9. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  10. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    DEFFENBAUGH, M.L.

    2000-01-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  11. Segregation of low-level dry active waste

    International Nuclear Information System (INIS)

    Kornblith, L. Jr.; Naughton, M.D.; Welsh, L.

    1984-01-01

    A program has been carried out to characterize the Dry Active Waste (DAW) stream from a typical PWR power plant in order to determine the usefulness of large-volume DAW monitors for segregating such waste in order to dispose of it in appropriate facilities. A waste monitor using plastic scintillation counters was used for measuring the waste. The monitor had a volume of about 300 liters and an overall efficiency of about 12% for a typical fission product mixture. It provides automatic compensation for background radioactivity and can measure a bag of waste in less than a minute, including background measurements. Six hundred consecutively generated bags of DAW were measured. These had a total activity of about one millicurie and an average specific activity of about 540 nanocuries per kilogram. About half of the bags contained less than 1000 nanocuries and had specific activities of less than 100 nanocuries per kilogram. Based on simplified preliminary calculations, it appears that an evaluation of the risks of disposal of bags such as these in a landfill other than a low-level waste disposal facility could be carried out that would demonstrate that such disposal of half or more of these bags would not result in any substantial hazard, either short or long term

  12. Low and medium activity solid wastes processing and encapsulation

    International Nuclear Information System (INIS)

    Taillard, D.; Claes, J.; Hennart, D.

    1983-01-01

    This work, carried out under contract with the European Atomic Energy Community, describes the techniques in use for waste management. The activity of low and medium activity solid wastes is from few curies to few tens of curies per cubic meter, they are produced by nuclear facilities and are often complex mixtures. Radioactive wastes are characterized and processing and conditioning are described. Leaching, stability, mechanical resistance and radiolysis of encapsulated wastes are examined. Handling, storage and disposal are treated

  13. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  14. Final Report for Crucible -Scale Radioactive Vitrification and Product Test of Waste Envelope B (AZ-102) Low-Activity Waste Glass

    International Nuclear Information System (INIS)

    CRAWFORD, CHARLES

    2004-01-01

    A proof-of-technology demonstration for the Hanford River Protection Project (RPP) Waste treatment and Immobilization Plant (WTP) was performed by the Savannah River Technology Center (SRTC). As part of this demonstration, treated AZ-102 Low-Activity Waste supernate was vitrified using a crucible-scale furnace. Initial glass samples were quench-cooled and characterized for metals and radionuclides. The glass was also durability tested using the American Society for Testing and Materials (ASTM) Product Consistency Test (PCT) protocol. These tests used the AZ-102 glass formulation Low Activity Waste (LAW) B88 that targeted AZ-102 waste loading at 5 wt% Na2O. After these initial results were obtained with the quench-cooled LAWB88 glass, a prototypical container centerline cooling (CCC) program was supplied to SRTC by WTP. A portion of the quench-cooled LAWB88 glass was remelted and centerline cooled. Samples from the CCC low-activity AZ-102 glass waste form were durability tested using the PCT and characterized for crystalline phase identification.This final report documents the characterization and durability of this AZ-102 glass

  15. Near-field performance assessment for a low-activity waste glass disposal system: laboratory testing to modeling results

    International Nuclear Information System (INIS)

    McGrail, B.P.; Bacon, D.H.; Icenhower, J.P.; Mann, F.M.; Puigh, R.J.; Schaef, H.T.; Mattigod, S.V.

    2001-01-01

    Reactive chemical transport simulations of glass corrosion and radionuclide release from a low-activity waste (LAW) disposal system were conducted out to times in excess of 20 000 yr with the subsurface transport over reactive multiphases (STORM) code. Time and spatial dependence of glass corrosion rate, secondary phase formation, pH, and radionuclide concentration were evaluated. The results show low release rates overall for the LAW glasses such that performance objectives for the site will be met by a factor of 20 or more. Parameterization of the computer model was accomplished by combining direct laboratory measurements, literature data (principally thermodynamic data), and parameter estimation methods

  16. Design requirements document for Project W-465, immobilized low-activity waste interim storage

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1998-01-01

    The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project

  17. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    International Nuclear Information System (INIS)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.; Vienna, J. D.; Piepel, G. F.; Schweiger, M. J.

    2015-01-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.

  18. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peeler, D. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, D. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, G. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, M. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.

  19. Performance assessment handbook for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Seitz, R.R.; Garcia, R.S.; Kostelnik, K.M.; Starmer, R.J.

    1992-02-01

    Performance assessments of proposed low-level radioactive waste disposal facilities must be conducted to support licensing. This handbook provides a reference document that can be used as a resource by management and staff responsible for performance assessments. Brief discussions describe the performance assessment process and emphasize selected critical aspects of the process. References are also provided for additional information on many aspects of the performance assessment process. The user's manual for the National Low-Level Waste Management Program's Performance Assessment Center (PAC) on the Idaho National Engineering Laboratory Cray computer is included as Appendix A. The PAC provides users an opportunity to experiment with a number of performance assessment computer codes on a Cray computer. Appendix B describes input data required for 22 performance assessment codes

  20. Low-activity waste feed delivery -- Minimum duration between successive batches

    International Nuclear Information System (INIS)

    Peters, B.B.

    1998-01-01

    The purpose of this study is to develop a defensible basis for establishing what ''minimum duration'' will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates

  1. Low-activity waste feed delivery -- Minimum duration between successive batches

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.

    1998-08-25

    The purpose of this study is to develop a defensible basis for establishing what ``minimum duration`` will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates.

  2. Issues in performance assessments for disposal of US Department of Energy low-level waste

    International Nuclear Information System (INIS)

    Wood, D.E.; Wilhite, E.L.; Duggan, G.J.

    1994-12-01

    The US Department of Energy (DOE) and its contractors have long been pioneers in the field of radiological performance assessment (PA). Much effort has been expended in developing technology and acquiring data to facilitate the assessment process. This is reflected in DOE Order 5820.2A, Radioactive Waste Management Chapter III of the Order lists policy and requirements to manage the DOEs low-level waste; performance objectives for low-level waste management are stated to ensure the protection of public health and the environment. A radiological PA is also required to demonstrate compliance with the performance objectives. DOE Order 5820.2A further requires that an Oversight and Peer Review Panel be established to ensure consistency and technical quality around the DOE complex in the development and application of PA models that include site-specific geohydrology and waste composition. The DOE has also established a Performance Assessment Task Team (PATT) to integrate the activities of sites that are preparing PAs. The PATT's purpose is to recommend policy and guidance to DOE on issues that impact PAs so that the approaches taken are as consistent as possible across the DOE complex

  3. National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997

    International Nuclear Information System (INIS)

    Rittenberg, R.B.

    1998-03-01

    The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP's activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states' and compacts' siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997

  4. Low activation material design methodology for reduction of radio-active wastes of nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, A.; Satou, M.; Nogami, S.; Kakinuma, N.; Kinno, M.; Hayashi, K.

    2007-01-01

    Most of the concrete shielding walls and pipes around a reactor pressure vessel of a light water reactor become low level radioactive waste at decommission phase because they contain radioactive nuclides by thermal-neutron irradiation during its operation. The radioactivity of some low level radioactive wastes is close to the clearance level. It is very desirable in terms of life cycle cost reduction that the radioactivity of those low level radioactive wastes is decreased below clearance level. In case of light water reactors, however, methodology of low activation design of a nuclear plant has not been established yet because the reactor is a large-scale facility and has various structural materials. The Objectives of this work are to develop low activation material design methodology and material fabrication for reduction of radio-active wastes of nuclear power plant such as reinforced concrete. To realize fabrication of reduced radioactive concrete, it is necessary to develop (1) the database of the chemical composition of raw materials to select low activation materials, (2) the tool for calculation of the neutron flux and the spectrum distribution of nuclear plants to evaluate radioactivity of reactor components, (3) optimization of material process conditions to produce the low activation cement and the low activation steels. Results of the data base development, calculation tools and trial production of low activation cements will be presented. (authors)

  5. Analysis of alternatives for immobilized low activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  6. Analysis of alternatives for immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1997-01-01

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program

  7. Potential low-level waste disposal limits for activation products from fusion

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Peloquin, R.A.

    1983-09-01

    Hanford Engineering Development Laboratory (HEDL) scientists are involved in studies considering alternative construction materials for the first wall of commercial fusion reactors. To permit a comparison of radioactivity levels, both the level of activation and an acceptable limit for the radionuclides present must be known. Generic material composition guidelines can be developed using the US Nuclear Regulatory Commission (NRC) regulations governing the near-surface disposal of low-level radioactive wastes. These regulations consider wastes defined as containing source, special nuclear, or by-product materials arising from research, industrial, medical, and nuclear fuel-cycle activities. However, not all of the activation products produced in low-level wastes from fusion reactors are considered by the NRC in their regulations. The purpose of this report is to present potential low-level waste-disposal limits for ten radionuclides resulting from fusion reactor operations that are not considered in the NRC low-level waste regulations. These potential limits will be used by HEDL scientists to complete their generic material composition guidelines for the first wall of commercial fusion reactors

  8. Immobilized low-activity waste site borehole 299-E17-21

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area

  9. Technical baseline description of high-level waste and low-activity waste feed mobilization and delivery

    International Nuclear Information System (INIS)

    Papp, I.G.

    1997-01-01

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces

  10. Development of acceptance specifications for low-activity waste from the Hanford tanks

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Kier, P.H.; Brown, N.R.

    1997-01-01

    Low-activity products will be in the form of soldified waste and optional matrix and filler materials enclosed in sealed metal boxes. Acceptance specifications limit the physical characteristics of the containers, the chemical and physical characteristics of the waste form and other materials that may be in the container, the waste loading, and the radionuclide leaching characteristics of the waste form. The specifications are designed to ensure that low-activity waste products will be compatible with the driving regulatory and operational requirements and with existing production technologies

  11. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail.

  12. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    International Nuclear Information System (INIS)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail

  13. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action'' to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ''musts'' and ''wants.'' Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program

  14. ''Cold crucible'' vitrification projects for low and high active waste

    International Nuclear Information System (INIS)

    Roux, P.; Jouan, A.

    1998-01-01

    In continuity of the CEA HLW vitrification process experienced for more than 20 years in industrial operations in Cogema reprocessing plants (Marcoule and La Hague), CEA has developed an advanced extended performance cold crucible glass melter to address a wider range of waste like LLW, ILW and in particular waste with very corrosive species or requiring glass with higher elaboration temperature. In the cold crucible melter the bath of molten glass is directly heated by induction while the walls are cooled in order to freeze a protective glass layer. This technology subsequently allows high glass throughput while keeping the flexibility, the maintainability and low secondary waste generation related to a small metallic melter. Its recent use in the glass industry and the thousands of hours of pilot tests performed on inactive surrogates have demonstrated the maturity of this technology and its flexibility of use for processing most of the waste generated at nuclear facilities. SGN has therefore proposed this technology in Italy and Korea and in USA in the frame of the Hanford Privatization phase 1 A feasibility study. Main features of this study but also tests results with Hanford surrogates and active samples are discussed. (author)

  15. Incineration plant for low active waste at Inshass, LAWI

    International Nuclear Information System (INIS)

    Krug, W.; Thoene, L.; Schmitz, H.J.; Abdelrazek, I.D.

    1993-10-01

    The LAWI (Low Active Waste Incinerator) prototype incinerating plant was devised and constructed according to the principle of the Juelich thermoprocess and installed at the Egyptian research centre Inshass. In parallel, AEA Cairo devised and constructed their own operations building for this plant with all the features, infrastructural installations and rooms required for operating the plant and handling and treating low-level radioactive wastes. The dimensions of this incinerator were selected so as to be sufficient for the disposal of solid, weakly radioactive combustible wastes from the Inshass Research Centre and the environment (e.g. Cairo hospitals). (orig./DG) [de

  16. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    International Nuclear Information System (INIS)

    Peeler, D.

    1999-01-01

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  17. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.

    1999-06-22

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  18. Incineration of low level and mixed wastes: 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The University of California at Irvine, in cooperation with the Department of Energy, American Society of Mechanical Engineers, and chapters of the Health Physics Society, coordinated this conference on the Incineration of Low-Level Radioactive and Mixed Wastes, with the guidance of professionals active in the waste management community. The conference was held in April 22-25, 1986 at Sheraton airport hotel Charlotte, North Carolina. Some of the papers' titles were: Protection and safety of different off-gas treatment systems in radioactive waste incineration; performance assessment of refractory samples in the Los Alamos controlled-Air incinerator; incineration systems for low-level and mixed wastes; incineration of low-level radioactive waste in Switzerland-operational experience and future activities

  19. Lawrence Livermore National Laboratory low-level waste systems performance assessment

    International Nuclear Information System (INIS)

    1990-11-01

    This Low-Level Radioactive Waste (LLW) Systems Performance Assessment (PA) presents a systematic analysis of the potential risks posed by the Lawrence Livermore National Laboratory (LLNL) waste management system. Potential risks to the public and environment are compared to established performance objectives as required by DOE Order 5820.2A. The report determines the associated maximum individual committed effective dose equivalent (CEDE) to a member of the public from LLW and mixed waste. A maximum annual CEDE of 0.01 mrem could result from routine radioactive liquid effluents. A maximum annual CEDE of 0.003 mrem could result from routine radioactive gaseous effluents. No other pathways for radiation exposure of the public indicated detectable levels of exposure. The dose rate, monitoring, and waste acceptance performance objectives were found to be adequately addressed by the LLNL Program. 88 refs., 3 figs., 17 tabs

  20. Fluidized Bed Steam Reforming For Treatment And Immobilization Of Low-Activity Waste

    International Nuclear Information System (INIS)

    Hewitt, W.M.

    2011-01-01

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  1. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1997-01-01

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  2. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  3. Volume reduction through incineration of low-activity radioactive wastes

    International Nuclear Information System (INIS)

    Eymeri, J.; Gauthey, J.C.; Chaise, D.; Lafite, G.

    1993-01-01

    The aim of the waste treatment plant, designed by Technicatome (CEA) for an Indonesian Nuclear Research Center, is to reduce through incineration the volume of low-activity radioactive wastes such as technological solids (cotton, PVC, paper board), biological solids (animal bones) and liquids (cutting fluids...). The complete combustion is realized with a total air multi-fuel burner (liquid wastes) and flash pyrolysis-complete combustion (solid wastes). A two stage flue gas filtration system, a flue gas washing system, and an ash recovery system are used. A test platform has been built. 3 figs

  4. Bulk Vitrification Technology For The Treatment And Immobilization Of Low-Activity Waste

    International Nuclear Information System (INIS)

    Ard, K.E.

    2011-01-01

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  5. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HEWITT WM

    2011-04-08

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  6. Development of a working set of waste package performance criteria for deepsea disposal of low-level radioactive waste. Final report

    International Nuclear Information System (INIS)

    Columbo, P.; Fuhrmann, M.; Neilson, R.M. Jr; Sailor, V.L.

    1982-11-01

    The United States ocean dumping regulations developed pursuant to PL92-532, the Marine Protection, Research, and Sanctuaries Act of 1972, as amended, provide for a general policy of isolation and containment of low-level radioactive waste after disposal into the ocean. In order to determine whether any particular waste packaging system is adequate to meet this general requirement, it is necessary to establish a set of performance criteria against which to evaluate a particular packaging system. These performance criteria must present requirements for the behavior of the waste in combination with its immobilization agent and outer container in a deepsea environment. This report presents a working set of waste package performance criteria, and includes a glossary of terms, characteristics of low-level radioactive waste, radioisotopes of importance in low-level radioactive waste, and a summary of domestic and international regulations which control the ocean disposal of these wastes

  7. The management of low activity radioactive waste: IAEA guidance and perspectives

    International Nuclear Information System (INIS)

    Louvat, D.; Rowat, J.H.; Potier, J.M.

    2005-01-01

    This paper describes the safety standards and reports of the International Atomic Energy Agency (IAEA) applicable to the management and disposal of low activity radioactive waste and provides some historical perspective on their development. Some of the most important current issues in the area of low activity radioactive waste management are discussed in the context of related ongoing IAEA activities. At the end of the paper, a number of issues and questions are raised for consideration and discussion at this symposium. (author)

  8. Uncertainty characteristics of EPA's ground-water transport model for low-level waste performance assessment

    International Nuclear Information System (INIS)

    Yim, Man-Sung

    1995-01-01

    Performance assessment is an essential step either in design or in licensing processes to ensure the safety of any proposed radioactive waste disposal facilities. Since performance assessment requires the use of computer codes, understanding the characteristics of computer models used and the uncertainties of the estimated results is important. The PRESTO-EPA code, which was the basis of the Environmental Protection Agency's analysis for low-level-waste rulemaking, is widely used for various performance assessment activities in the country with no adequate information available for the uncertainty characteristics of the results. In this study, the groundwater transport model PRESTO-EPA was examined based on the analysis of 14 C transport along with the investigation of uncertainty characteristics

  9. Seventh annual DOE LLWMP participants' information meeting. DOE Low-Level Waste Management Program. Abstracts

    International Nuclear Information System (INIS)

    1985-08-01

    The following sessions were held: International Low-Level Waste Management Activities; Low-Level Waste Disposal; Characteristics and Treatment of Low-Level Waste; Environmental Monitoring and Performance; Greater Confinement and Alternative Disposal Methods; Low-Level Waste Management; Corrective Measures; Performance Prediction and Assessment; and Siting New Defense and Commercial Low-Level Waste Disposal Facilities

  10. Volumetric activity of SRS mixed waste and comparison with SRS performance and commercial facility limits

    International Nuclear Information System (INIS)

    Ades, M.J.; Daugherty, B.A.; Cook, J.R.

    1996-01-01

    This paper discusses the comparative analysis performed to estimate the after-treatment volumetric activity of the radionuclides included in the Savannah River site (SRS) mixed-waste streams and its comparison with the following: (1) The performance evaluation (PE) limits established for each radionuclide for on-site disposal: These limits correspond to the permissible waste disposal limits that are the lowest limits evaluated for the most restrictive release scenarios that include the groundwater pathway, the atmospheric pathway, and the intruder scenarios. (2) The radiological performance assessment (PA) limits established for each radionuclide for disposal in the SRS disposal vaults that meet the requirements of Chap. III of the U.S. Department of Energy Order 5820.2A: The vaults considered are the low-activity waste (LAW) vaults, the intermediate-level non-tritium (ILNT) vaults. and the intermediate-level tritium (ILT) vaults. (3) The radioactive limits of a commercial mixed waste disposal facility

  11. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  12. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  13. EPA's approach to the commercial low-activity mixed waste problem

    International Nuclear Information System (INIS)

    Foutes, C.; Schultheisz, D.; Gruhlke, J.

    1999-01-01

    The US Environmental Protection Agency is proposing an environmental standard for the disposal of commercial low-activity mixed waste (LAMW), waste characterized by the presence of both hazardous chemicals and very low-level radioactive materials. LAMW is and will be generated in large amounts by environmental restoration efforts, nuclear power production and, in smaller amounts, by medical and educational facilities, industrial activities, and the process of research and development. The dual regulatory nature of this waste (covered by two very different statutes) is currently an impediment to its permanent disposal. The proposed standard addresses this issue by creating a voluntary regulatory option under which LAMW that meets the proposed radionuclide concentration limits may be disposed of via disposal technology based upon the Resource Conservation and Recovery Act (RCRA) hazardous waste disposal requirements. Such a facility would also have to be licensed by the NRC. EPA will explore the attributes of this disposal technology to develop concentration limits that are protective of the public health for LAMW. (author)

  14. Desactivation of liquid radioactive wastes of low and medium activity

    International Nuclear Information System (INIS)

    Golinski, M.; Charomska, K.

    1978-01-01

    The results of research made according to the prodranm of scientific and technical cooperation of the CMEA countries are discussed. The main direction of these research works is on future improvement of installations for purification of liquid radioactive wastes by chemical methods of coprecipitation and coagulation, ion exchange, sorption, distillation and electrolysis. It was shown that methods of coprecipitation and coagulation have low efficiency and the activity reduction factor seldom was more than 10. In sorption processes different sorbents, both organic and nonorganic were used. The modified bentonite used as a sorbent agent has shown high selectivity towards zesium ions. Waste concentration by means of distillation is an universal but rather expensive method and is applied mainly in the cases of high salts concentration and high specific activity of liquid wastes. Electrolysis, as a method of the liquid wastes purification is used in the USSR and has high efficiency with low energy consumption. (I.T.) [ru

  15. Low-level dry active waste management planning for Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Butler, C.N.; Feizollani, F.; Jarboe, Th.B.

    1984-01-01

    To offset the rising cost of low-level radioactive waste disposal and to provide contingency measures for disposal space unavailability after January 1, 1986, Baltimore Gas and Electric (BG and E) has undertake efforts to establish a long-term waste management program. This plan, which was developed after detailed study of a number of options, consists of four elements: management of dry active wastes; implementation of 10CFR61 requirements; storage of process wastes; and enhancement of liquid/solid waste systems and equipment performance. Each element was scheduled for implementation in accordance with an established set of priorities. Accordingly, detailed engineering for implementation of the first two elements was initiated in December of 1982. This paper focuses on BGandE's experience in implementation of the first element o the program, i.e., the management of dry active waste (DAW). DAW is managed by providing a new buildin dedicated to its handling, processing, volume-reduction, and storage. This building, which is equipped with state-of-the-art decontamination and processing techniques, allows for implementation of waste minimization and for interim storage of DAW in a safe and cost effective manner

  16. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  17. Performance assessment for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Cook, J.R.; Hsu, R.H.; Wilhite, E.L.; Yu, A.D.

    1996-01-01

    In October 1994 the Savannah River Site became the first US DOE complex to use concrete vaults to dispose of low-level radioactive solid waste and better prevent soil and groundwater contamination. This article describes the design and gives a performance assessment of the vaults. Topics include the following: Performance objectives; scope; the performance assessment process-assemble a multidisciplinary working group; collect available data; define credible pathways/scenarios; develop conceptual models; conduct screening and detailed model calculations; assess sensitivity/uncertainty; integrate and interpret results; report. 9 figs., 3 tabs

  18. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lindberg, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heasler, Patrick G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mercier, Theresa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, William E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Eibling, Russell E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reigel, Marissa M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Swanberg, David J. [Washington River Protection Solutions (WRPS), Aiken, SC (United States)

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF

  19. A performance assessment methodology for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Derring, L.R.

    1990-01-01

    To demonstrate compliance with the performance objectives governing protection of the general population in 10 CFR 61.41, applicants for land disposal of low-level radioactive waste are required to conduct a pathways analysis, or quantitative evaluation of radionuclide release, transport through environmental media, and dose to man. The Nuclear Regulatory Commission staff defined a strategy and initiated a project at Sandia National Laboratories to develop a methodology for independently evaluating an applicant's analysis of postclosure performance. This performance assessment methodology was developed in five stages: identification of environmental pathways, ranking the significance of the pathways, identification and integration of models for pathway analyses, identification and selection of computer codes and techniques for the methodology, and implementation of the codes and documentation of the methodology. This paper summarizes the NRC approach for conducting evaluations of license applications for low-level radioactive waste facilities. 23 refs

  20. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  1. Low-Activity Waste Feed Data Quality Objectives

    Energy Technology Data Exchange (ETDEWEB)

    MJ Truex; KD Wiemers

    1998-12-11

    This document describes characterization requirements for the Tank Waste Remediation System (TWRS) Waste Disposal Program's privatization efforts in support of low-activity waste (LAW) treatment and immobilization, This revised Data Quality Objective (DQO) replaces earlier documents (PNNL 1997; DOE-W 1998zq Wiemers 1996). Revision O of this DQO was completed to meet Tri-Party Agreement (TPA) target milestone M-60-14-TO1. Revision 1 updates the data requirements based on the contract issued `August 1998 (DOE-RL 1998b). In addition, sections of Revision O pertaining to "environmental planning" were not acceptable to the Washington State Department of Ecology (Ecology) and have been removed. Regulatory compliance for TWRS Privatization is being addressed in a separate DQO (Wiemers et al. 1998). The Project Hanford Management Contract (PHMC) Contractors and the private contractor may elect to complete issue-specific DQOS to accommodate their individual work scope.

  2. The status of siting activities for a low level waste repository in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Visitacion, M.; Palattao, B.; Marcelo, E.A.; Venida, L.L.

    2001-01-01

    The process of site selection for a low level waste repository was initiated in 1976 when the Philippine Government decided to go nuclear and constructed the first Philippine Nuclear Power Plant in the Bataan Peninsula. However, all siting activities were suspended when the nuclear power plant was mothballed and the final decision was made to convert the plant into a combined cycle power plant. In 1995, an inter-agency committee was created under the Nuclear Power Steering Committee and mandated to conduct studies on siting of radioactive waste disposal facilities, and at the same time, perform R and D activities in support of the project. This paper describes the various siting activities carried out to date. (author)

  3. USDOE activities in low-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Vath, J.E.

    1981-01-01

    This paper describes current research, development and demonstration (R, D and D) programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment. During the twelve month period ending September 30, 1981, 14 prime US Department of Energy contractors were involved with over 40 low-level radioactive waste disposal technology projects. Three specific projects or task areas have been selected for discussion to illustrate new and evolving technologies, and application of technology developed in other waste management areas to low-level waste treatment. The areas to be discussed include a microwave plasma torch incinerator, application of waste vitrification, and decontamination of metal waste by melting

  4. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

    International Nuclear Information System (INIS)

    Herbst, A.K.; McCray, J.A.; Rogers, A.Z.; Simmons, R.F.; Palethrope, S.J.

    1999-01-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels

  5. Improving radioactive waste management: an overview of the Environmental Protection Agency's low-activity waste effort.

    Science.gov (United States)

    Schultheisz, Daniel J; Czyscinski, Kenneth S; Klinger, Adam D

    2006-11-01

    Radioactive waste disposal in the United States is marked by a fragmented regulatory system, with requirements that often focus on the origin or statutory definition of the waste, rather than the hazard of the material in question. It may be possible to enhance public protection by moving toward a system that provides disposal options appropriate for the hazard presented by the waste in question. This paper summarizes aspects of an approach focusing on the potential use, with appropriate conditions, of Resource Conservation and Recovery Act Subtitle-C hazardous waste landfills for disposal of "low-activity" wastes and public comments on the suggested approach.

  6. The United States Department of Energy process for performance assessment for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Wood, D.E.; Owens, K.W.; Wilhite, E.L.; Duggan, G.J.

    1993-02-01

    The US Department of Energy (DOE) manages disposal of low-level radioactive waste through the requirements of DOE Order 5820.2A on Radioactive Waste Management. The order specifies long-term performance objectives for permanent disposal, requires a performance assessment to determine compliance with those objectives, and establishes a Peer Review Panel to review those assessments for technical quality and completeness. A Performance Assessment Task Team has been established to provide guidance and recommend policy for implementation and interpretation of the requirements to those preparing the assessments. This paper describes the requirements, the Peer Review Panel, the Performance Assessment Task Team, and their activities to date

  7. Performance objectives of the tank waste remediation system low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-01-01

    Before low-level waste may be disposed of, a performance assessment must be written and then approved by the U.S. Department of Energy. The performance assessment is to determine whether open-quotes reasonable assuranceclose quotes exists that the performance objectives of the disposal facility will be met. The DOE requirements for waste disposal require: the protection of public health and safety; and the protection of the environment. Although quantitative limits are sometimes stated (for example, the all exposure pathways exposure limit is 25 mrem/year), usually the requirements are stated in a general nature. Quantitative limits were established by: investigating all potentially applicable regulations as well as interpretations of the Peer Review Panel which DOE has established to review performance assessments, interacting with program management to establish their needs, and interacting with the public (i.e., the Hanford Advisory Board members; as well as affected Indian tribes) to understand the values of residents in the Pacific Northwest

  8. A Joule-Heated Melter Technology For The Treatment And Immobilization Of Low-Activity Waste

    International Nuclear Information System (INIS)

    Kelly, S.E.

    2011-01-01

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  9. Meeting performance objectives for Low-Level Radioactive Disposal Waste Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Taylor, G.E.

    1992-01-01

    A new Low-Level Radioactive Waste (LLW) disposal facility at the Savannah River Site is presently being constructed. The facility was designed to meet specific performance objectives (derived from DOE Order 5820.2A and proposed EPA Regulation 40CFR 193) in the disposal of containerized Class A and B wastes. The disposal units have been designed as below-grade concrete vaults. These vaults will be constructed using uniquely designed blast furnace slag + fly as concrete mix, surrounded by a highly permeable drainage layer, and covered with an engineered clay cap to provide the necessary environmental isolation of the waste form to meet the stated performance objectives. The concrete mix used in this facility, is the first such application in the United States. These vaults become operational in September 1992 and will become the first active facility of its kind, several years ahead of those planned in the commercial theater. This paper will discuss the selection of the performance objectives and conceptual design

  10. Long-term management of wastes resulting from dismantling operations. Storing the very low-level activity wastes at Morvilliers

    International Nuclear Information System (INIS)

    Duret, F.; Dutzer, M.; Beranger, V.; Lecoq, P.

    2003-01-01

    Extension of dismantling operations in France in the years to come poses the question of availability of long-term waste facility. Large amount of such wastes will be produced after progressive shutdown of the 58 pressurized water reactors now in operation, not before 2010. However, France is already confronted with dismantling of 9 power reactors (6 of which of gas cooled graphite type), the first reprocessing plant at Marcoule, as well as, dismantling of other installations, for instance the CEA reactors or laboratories. The systems of processing the dismantling waste are not different from those used for wastes resulting from nuclear operations. For the high-level or long-term intermediate level activity disposal the debates must start by 2006, as based on the results of the research conducted according to different provisions of the December 30, 1991 law. These wastes represent however small amounts from the dismantling (around 2000 t for the 9 reactors at shutdown) and they will be stored until a decision will be made. A specific storing system should be implemented by 2008-2010 for the graphite wastes (around 23,000 t) which contain significant amount of long-lived radioelements, although their gross activity is low. But the most significant amount will come from low-level or intermediate-level of short lifetime or from wastes of very low activity. The first category is stored at Storage Center at Aube (CSA), its capacity being of 1,000,000 m 3 of drums. The total volume stored by the end of 2002 amounted 136,500 m 3 with an annual delivering of 12-15,000 m 3 at design rate of 30,000 m 3 /y. This center will be able to absorb the flux increase resulting from dismantling of the decommissioned nuclear installations (around 50,000 t from the dismantling of the 9 power reactor). The Center at Aube can be also adapted for storing wastes of large sizes as for instance the lid of the reactor vessel. According to the French regulation, the wastes produced within a

  11. Overview of the geochemical code MINTEQ: applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Graham, M.J.; Peterson, S.R.

    1985-09-01

    The MINTEQ geochemical computer code, developed at Pacific Northwest Laboratory, integrates many of the capabilities of its two immediate predecessors, WATEQ3 and MINEQL. MINTEQ can be used to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments or the interaction of ground water with solidified low-level wastes. The code is capable of performing calculations of ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial solidified low-level wastes. The wastes being evaluated include power reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code is being upgraded before the geochemical modeling is performed. Thermodynamic data for cobalt, antimony, cerium, and cesium solid phases and aqueous species are being added to the database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the wastes predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partical field validation of the geochemical model. 28 refs

  12. Phase 1 immobilized low-activity waste operational source term

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1998-01-01

    This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study

  13. DOE's performance evaluation project for mixed low-level waste disposal

    International Nuclear Information System (INIS)

    Waters, R.D.; Chu, M.S.Y.; Gruebel, M.M.; Lee, D.W.

    1995-01-01

    A performance evaluation (PE) is an analysis that estimates radionuclide concentration limits for 16 potential Department of Energy (DOE) mixed low-level waste (ULLW) disposal sites based on the analysis of two environmental exposure pathways (air and water) to an off-site individual and an inadvertent-intruder exposure pathway. Sites are analyzed for their ability to attenuate concentrations of specific radionuclides that could be released from wastes in a hypothetical ULLW disposal facility. Site-specific data and knowledge are used within a generic framework that is consistent across all sites being evaluated. After estimates of waste concentrations for the three pathways are calculated, the minimum of the waste concentration values is selected as the permissible waste concentration for each radionuclide. The PE results will be used as input to the process for DOE's ULLW disposal configuration. Preliminary comparisons of results from the PE and site-specific performance assessments indicate that the simple PE results generally agree with results of the performance assessments, even when site conditions are complex. This agreement with performance-assessment results increases confidence that similar results can be obtained at other sites that have good characterization data. In addition, the simple analyses contained in the PE illustrate a potential method to satisfy the needs of many regulators and the general public for a simple, conservative, defensible, and easily understandable analysis that provides results similar to those of more complex analyses

  14. PROMETHEE: An Alpha Low Level Waste Assay System Using Passive and Active Neutron Measurement Methods

    International Nuclear Information System (INIS)

    Passard, Christian; Mariani, Alain; Jallu, Fanny; Romeyer-Dherbey, Jacques; Recroix, Herve; Rodriguez, Michel; Loridon, Joel; Denis, Caroline; Toubon, Herve

    2002-01-01

    The development of a passive-active neutron assay system for alpha low level waste characterization at the French Atomic Energy Commission is discussed. Less than 50 Bq[α] (about 50 μg Pu) per gram of crude waste must be measured in 118-l 'European' drums in order to reach the requirements for incinerating wastes. Detection limits of about 0.12 mg of effective 239 Pu in total active neutron counting, and 0.08 mg of effective 239 Pu coincident active neutron counting, may currently be detected (empty cavity, measurement time of 15 min, neutron generator emission of 1.6 x 10 8 s -1 [4π]). The most limiting parameters in terms of performances are the matrix of the drum - its composition (H, Cl...), its density, and its heterogeneity degree - and the localization and self-shielding properties of the contaminant

  15. Effect of Technetium-99 sources on its retention in low activity waste glass

    Science.gov (United States)

    Luksic, Steven A.; Kim, Dong-Sang; Um, Wooyong; Wang, Guohui; Schweiger, Michael J.; Soderquist, Chuck Z.; Lukens, Wayne; Kruger, Albert A.

    2018-05-01

    Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO2•2H2O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with heptavalent Tc was used. We postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generally accepted idea. Additional studies are needed to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from the glass melt.

  16. Effect of Technetium-99 Sources on Its Retention in Low Activity Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, Steven A.; Kim, Dong-Sang; Um, Wooyong; Wang, Guohui; Schweiger, Michael J.; Soderquist, Chuck Z.; Lukens, Wayne W.; Kruger, Albert A.

    2018-05-01

    Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO2∙2H2O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with hexavalent Tc was used. We postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generally accepted idea. Additional studies are needed to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from glass melt.

  17. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE

    2011-04-07

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  18. Testing and Performance Validation of a Shielded Waste Segregation and Clearance Monitor Designed for the Measurement of Low Level Waste-13043

    International Nuclear Information System (INIS)

    Mason, John A.; Burke, Kevin J.; Towner, Antony C.N.; Beaven, Graham; Spence, Robert

    2013-01-01

    source placed in the centre of the measurement chamber. Small sources have also been used to determine the spatial variation of the detection efficiency for various positions within the measurement chamber. The data have been used to establish sentencing limits and different 'fingerprints' for specific waste streams including waste streams containing fission products and others based on other radionuclides including Am-241. Some of the test data that are presented have been used to validate the instrument performance. The monitor is currently in routine use at a nuclear facility for the measurement and sentencing of low-density low activity radioactive waste. (authors)

  19. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Waste Burial Grounds

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    2000-01-01

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  20. Statements of work for FY 1996 to 2001 for the Hanford Low-Level Tank Waste Performance Assessment Project

    International Nuclear Information System (INIS)

    Mann, F.M.

    1995-01-01

    The statements of work for each activity and task of the Hanford Low-Level Tank Waste Performance Assessment project are given for the fiscal years 1996 through 2001. The end product of this program is approval of a final performance assessment by the Department of Energy in the year 2000

  1. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    Science.gov (United States)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  2. Characterization of silicoaluminates for low and medium activity wastes packaging

    International Nuclear Information System (INIS)

    Rivoallan, A.; Berson, X.

    1996-01-01

    Studies are done in order to demonstrate many advantages (as an important volume reduction and a greater chemical stability) of packaging low and medium activity wastes in crystal structures compared with concrete and bitumen. In order to understand the consequences of hazardous chemical composition (especially anions) in the waste on the characteristics of the mineral packaging, a simulation study is developed with inactive concentrates. It leads to well crystallized structures which have not the same major crystallized phase. (authors)

  3. Performance assessment for a hypothetical low-level waste disposal facility

    International Nuclear Information System (INIS)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D.

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study

  4. Performance assessment for a hypothetical low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  5. Radioactivity evaluation method for pre-packed concrete packages of low-level dry active wastes

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Funahashi, Tetsuo; Watabe, Kiyomi; Ozawa, Yukitoshi; Kashiwagi, Makoto

    1998-01-01

    Low-level dry active wastes of nuclear power plants are grouted with cement mortal in a container and planned to disposed into the shallow land disposal site. The characteristics of radionuclides contained in dry active wastes are same as homogeneous solidified wastes. In the previous report, we reported the applicability of the radioactivity evaluation methods established for homogeneous solidified wastes to pre-packed concrete packages. This report outlines the developed radioactivity evaluation methods for pre-packed concrete packages based upon recent data. Since the characteristics of dry active wastes depend upon the plant system in which dry active wastes originate and the types of contamination, sampling of wastes and activity measurement were executed to derive scaling factors. The radioactivity measurement methods were also verified. The applicability of non-destructive methods to measure radioactivity concentration of pre-packed concrete packages was examined by computer simulation. It is concluded that those methods are accurate enough to measure actual waste packages. (author)

  6. Waste reduction by re-use of low activated material - 16035

    International Nuclear Information System (INIS)

    Ehrlicher, Ulrich; Pauli, Heinz

    2009-01-01

    A multidisciplinary institute, equipped with research reactors and accelerator-driven research installations produces and, in the case of PSI, collects radioactive waste on one hand and requires material, especially for shielding purpose, on the other hand. The legislative framework for radiation protection, financial reasons and limited storage capacity strongly force Paul Scherrer Institute and comparable facilities to minimize radioactive waste. Besides free release of inactive components, recycling and re-use of low-level radioactive material in controlled areas are the best means for waste minimization. The re-use of slightly activated steel plates as a shielding material and the recycling of irradiated reactor graphite as a filling material embedded in mortar may give examples and encouragement for similar activities. Besides the advantages for radiation protection, the financial benefit can be measured in millions of dollars. (authors)

  7. Low-level radioactive waste performance assessments: Source term modeling

    International Nuclear Information System (INIS)

    Icenhour, A.S.; Godbee, H.W.; Miller, L.F.

    1995-01-01

    Low-level radioactive wastes (LLW) generated by government and commercial operations need to be isolated from the environment for at least 300 to 500 yr. Most existing sites for the storage or disposal of LLW employ the shallow-land burial approach. However, the U.S. Department of Energy currently emphasizes the use of engineered systems (e.g., packaging, concrete and metal barriers, and water collection systems). Future commercial LLW disposal sites may include such systems to mitigate radionuclide transport through the biosphere. Performance assessments must be conducted for LUW disposal facilities. These studies include comprehensive evaluations of radionuclide migration from the waste package, through the vadose zone, and within the water table. Atmospheric transport mechanisms are also studied. Figure I illustrates the performance assessment process. Estimates of the release of radionuclides from the waste packages (i.e., source terms) are used for subsequent hydrogeologic calculations required by a performance assessment. Computer models are typically used to describe the complex interactions of water with LLW and to determine the transport of radionuclides. Several commonly used computer programs for evaluating source terms include GWSCREEN, BLT (Breach-Leach-Transport), DUST (Disposal Unit Source Term), BARRIER (Ref. 5), as well as SOURCE1 and SOURCE2 (which are used in this study). The SOURCE1 and SOURCE2 codes were prepared by Rogers and Associates Engineering Corporation for the Oak Ridge National Laboratory (ORNL). SOURCE1 is designed for tumulus-type facilities, and SOURCE2 is tailored for silo, well-in-silo, and trench-type disposal facilities. This paper focuses on the source term for ORNL disposal facilities, and it describes improved computational methods for determining radionuclide transport from waste packages

  8. Low-level waste disposal site performance assessment with the RQ/PQ methodology. Final report

    International Nuclear Information System (INIS)

    Rogers, V.C.; Grant, M.W.; Sutherland, A.A.

    1982-12-01

    A methodology called RQ/PQ (retention quotient/performance quotient) has been developed for relating the potential hazard of radioactive waste to the natural and man-made barriers provided by a disposal facility. The methodology utilizes a systems approach to quantify the safety of low-level waste disposed in a near-surface facility. The main advantages of the RQ/PQ methodology are its simplicity of analysis and clarity of presentation while still allowing a comprehensive set of nuclides and pathways to be treated. Site performance and facility designs for low-level waste disposal can be easily investigated with relatively few parameters needed to define the problem. Application of the methodology has revealed that the key factor affecting the safety of low-level waste disposal in near surface facilities is the potential for intrusion events. Food, inhalation and well water pathways dominate in the analysis of such events. While the food and inhalation pathways are not strongly site-dependent, the well water pathway is. Finally, burial at depths of 5 m or more was shown to reduce the impacts from intrusion events

  9. A mobile system for treating low-salinity low-activity liquid wastes

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Timofeev, E.M.; Panteleev, V.I.; Karlin Yu.V.; Kropotov, V.N.; Slastennikov, Yu.T.; Chuikov, V.Yu.; Demkin, V.I.; Rozhkov, V.T.

    1993-01-01

    Radioactive wastes are produced not only in radiochemical production and nuclear power stations but also in numerous research institutes and industrial organizations. The specific activities of these wastes are low, and the volumes do not exceed a few dozen cubic meters a year at each individual organization, but processing such territorially distributed wastes is complicated. This particularly applies to liquid wastes, whose transportation involves a high risk of contamination if the sealing fails. As a rule, liquid wastes are solidified before transportation to a storage site. In some cases, that simplified approach leads to an unduly large consumption of solidifying materials, and particularly to an increase in volume, while storage is an expensive technique. A considerable volume reduction in the wastes to be stored is provided by processing the liquid wastes to concentrate the radionuclides in a small volume, with the main volume of treated water discharged to the drains. Two styles are possible: a stationary plant for processing wastes at each institution or a mobile one with a centralized service base, e.g., at the storage site. Mobile systems have been reported in world practice, although there is no detailed information on them. From the economic viewpoint, the second approach is preferable because it enables one to conduct such operations with fewer plants and fewer staff. That a mobile concept that was used at the Moscow Radon Cooperative in 1985 in processing liquid wastes at regional storage locations is summarized in this article. Research and development led in 1989 to the manufacture of a prototype mobile system mounted on an MAZ articulated vehicle, which included three basic modules: ultrafiltration, electrodialysis, and filtration ones. Each module is located on a separate framework and is connected to the others by reinforced rubber hoses

  10. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  11. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    International Nuclear Information System (INIS)

    Preston, E.L.

    1986-01-01

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management

  12. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage

    International Nuclear Information System (INIS)

    2005-01-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  13. Status report on Texas Low-Level Radioactive Waste Disposal Authority activities

    International Nuclear Information System (INIS)

    Avant, R.V. Jr.

    1990-01-01

    In 1981, the Texas Low-Level Radioactive Waste Disposal Authority was created by Article 4590f-1 to site, develop, operate, decommission, and close a low-level radioactive waste disposal facility for Texas generated waste. In 1989, the Authority's act was recodified by the Texas legislature in the Health and Safety Code., Title 5. Sanitation and Environmental Quality, Subtitle D. Nuclear and Radioactive Materials, Chapter 402. The Authority is governed by a Board of Directors appointed by the Governor, composed of a certified health physicist, geologist, attorney, medical doctor, and two private citizens. Under the statute, low-level radioactive waste is defined as any radioactive material with a half-life of 35 years or less or having less than 10 nanocuries per gram of transuranics. Materials with half-lives of greater than 35 years may be classed as low-level waste if special criteria are established by the Texas Department of Health Bureau of Radiation Control. Subsequent sessions of the legislature have amended the act to revise siting criteria, require consideration of state land, create a Citizen's Advisory Committee, incorporate alternative designs, and establish a special low-level radioactive waste account in the state treasury. The Authority began its activities in 1982. The Authority has proposed a site in far West Texas near Fort Hancock, but El Paso County, the neighboring county to the west, has instituted three separate lawsuits to slow or stop the site selection process. Particular attention was paid early in the site selection process to items which could be fatal flaws from a licensing standpoint. This paper discusses the Fort Hancock site description, site evaluation studies, siting issues, waste volume projections, facility design, license application, cost and schedule

  14. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  15. An overview of the geochemical code MINTEQ: Applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Peterson, S.R.; Opitz, B.E.; Graham, M.J.; Eary, L.E.

    1987-03-01

    The MINTEQ geochemical computer code, developed at the Pacific Northwest Laboratory (PNL), integrates many of the capabilities of its two immediate predecessors, MINEQL and WATEQ3. The MINTEQ code will be used in the Special Waste Form Lysimeters-Arid program to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments of the interaction of ground water with solidified low-level wastes. The code can calculate ion speciation/solubilitya, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial, solidified low-level wastes. The wastes being evaluated include power-reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code was upgraded preparatory to performing the geochemical modeling. Thermodynamic data for solid phases and aqueous species containing Sb, Ce, Cs, or Co were added to the MINTEQ database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the waste forms predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partial field validation of the geochemical model

  16. Low-level waste research and development activities of the Department of Energy

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1986-01-01

    This paper presents an overview of the technical activities of the Department of Energy's Defense and Nuclear Energy Low-Level Radioactive Waste Management Programs (LLWPs). Although each Program was established with a different purpose, the technologies developed and demonstrated by each are transferable for use in both the commercial and DOE sectors. This paper presents an overview of the technical activities being pursued through both the Defense and Nuclear Energy LLWP's. These technologies have been placed in the following categories; Criteria and Standards, Systems Analysis, Information and Technology Transfer, Waste Treatment and Wast Form, Improved Near Surface Disposal, Greater Confinement Disposal, Corrective Measures, and Monitoring

  17. Regulatory supervision of industrial waste containing very low activities of man-made radionuclides at SevRAO facility

    International Nuclear Information System (INIS)

    Sneve, Malgorzata K.; Kochetkov, Oleg; Monastyrskaya, Svetlana; Barchukov, Valerie; Romanov, Vladimir

    2008-01-01

    Full text: Large amounts of waste and materials with very low activity level are generated during operation and especially during decommissioning of nuclear facilities. Selection of the optimum economic and ecologically safe management option of such material is complicated by its specific features: very low level radiation exposure to individuals but rather large initial amounts of waste. On the one hand, it is a poor use of limited resources to em place such low activity waste into expensive facilities for radioactive waste storage and disposal if the radiological impact would be very small even for a much less expensive option; on the other hand, there is some apprehension regarding safety both about its disposal to landfills for conventional (non-radioactive) waste disposal, and about its limited or unlimited re-use or re-cycling. To regulate such waste management, a special waste category is introduced - very low level waste (VLLW). This category includes waste containing radionuclides with specific activity levels, which are higher than clearance levels, but do not need high containment and isolation. This paper discusses experience of regulatory development for VLLW control during remediation of radiation hazardous facilities in northwest Russia. The work has promoted identification of some challenges, whose solution has affected the waste management strategy at the sites. One of the main problems resolved was the selection of criteria according to which waste is allocated to the VLLW category. These is turn were partly determined by the radiological criteria chosen for protection of the public during this waste disposal. Elaboration of safe VLLW management strategy depends upon a source of waste generation and of its radiological composition. The VLLW management strategy at an operating enterprise, e.g. a nuclear power plant is rather different from the strategy implemented at the plant under decommissioning, or at storage facilities for the legacy waste

  18. The very-low activity waste storage facility. A new waste management system; Le centre de stockage des dechets de tres faible activite. Une nouvelle filiere de gestion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  19. Method and equipment for the treatment of low-activity wastes

    International Nuclear Information System (INIS)

    White, L.E.; Anderson, R.E.; Vander Wall, E.M.

    1976-01-01

    In nuclear power plants, large amounts of waste products of low activity occur. For simplifying the final storage, it seems reasonable to reduce this volume. It is suggested, therefore, to evaporate the liquids, to compress the remaining mass by sintering or melting, and to transform it into solid monolithic bodies. The solidification is said to be promoted by additives of plastics. A remote-controlled, fully automatical device is presented, containing a fluidized bed system, in which the volume of the waste substances is reduced to 10% of the initial volume. (UWI) [de

  20. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Greater-confinement disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs

  2. Waste Form Release Data Package for the 2001 Immobilized Low-Activity Waste Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Icenhower, Jonathan P.; Martin, Paul F.; Schaef, Herbert T.; O' Hara, Matthew J.; Rodriguez, Eugenio; Steele, Jackie L.

    2001-02-01

    This data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over Reactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermodynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites. Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.

  3. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  4. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  5. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  6. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  7. Low-level-waste-disposal methodologies

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Dragonette, K.

    1981-01-01

    This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE

  8. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J.

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  9. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  10. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc throughout

  11. Radioisotope Characterization of HB Line Low Activity Waste

    International Nuclear Information System (INIS)

    Snyder, S.J.

    1999-01-01

    The purpose of this document is to provide a physical, chemical, hazardous and radiological characterization of Low-Level Waste (LLW) generated in HB-Line as required by the 1S Manual, Savannah River Site Waste Acceptance Criteria Manual

  12. Current DOE direction in low-level waste management

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Dolenc, M.R.; Shupe, M.W.; Waldo, L.C.

    1989-01-01

    The U.S. Department of Energy (DOE) is implementing revised DOE Order 5820.2A Radioactive Waste Management. Chapter III of the revised order provides prescriptive requirements for managing low-level waste and is the subject of this paper. The revised order requires that all DOE low-level radioactive and mixed waste be systematically managed, using an approach that considers the combination of waste management practices used in waste generation reduction, segregation, treatment, packaging, storage, and disposal. The Order defines performance objectives for protecting groundwater, for protecting against intrusion, and for maintaining adequate operational practices. A performance assessment will be required to ensure that waste management operations comply with these performance objectives. DOE implementation of the revised Order includes work in the areas of leach testing, waste stabilization, waste certification, facility monitoring, and management of unique waste streams. This paper summarizes the status of this work and the current direction DOE is taking in managing low-level waste under DOE 5820.2A

  13. Radioprotection and physical surveillance during activities of liquid wastes of high and low activity in italian ITREC plant; Sorveglianza fisica di radioprotezione durante la prima campagna di rifiuti liquidi radioattivi nell`Impianto SIRTE

    Energy Technology Data Exchange (ETDEWEB)

    Petagna, Edoardo; Tortorelli, Pietro [ENEA, Centro Richerche Trisaia, Rotondella, Matera (Italy). Dipt. Ambiente

    1997-03-01

    Many studies were made in ITREC Plant, located in ENEA - Trisaia Research Center, in the field of the nuclear fuel reprocessing, in the past years. During these activities liquid wastes of high and low activity were yielded and stored in the special area of tanks named Waste-1. In order to condition the low activity liquid wastes, essentially fission products, beta and gamma emitters, was built the SIRTE Plant (Integrate System for the Raise and Effluents Treatment) based on cementation process. In the present work, the radiological monitoring performed within the plant during the first campaign of cementation, is showed.

  14. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the release rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change

  15. Low-level radioactive waste form qualification testing

    International Nuclear Information System (INIS)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing

  16. Low-level radioactive waste form qualification testing

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

  17. Evaluation of the single-pass flow-through test to support a low-activity waste specification

    International Nuclear Information System (INIS)

    McGrail, B.P.; Peeler, D.K.

    1995-09-01

    A series of single-pass flow-through (SPFT) tests was performed on five reference low-activity waste glasses and a reference glass from the National Institute of Standards and Technology to support a product specification for low-activity waste (LAW) forms. The results showed that the SPFT test provides a means to quantitatively distinguish among LAW glass forms in terms of their forward reaction rate at a given temperature and solution pH. Two of the test glasses were also subjected to SPFT testing at Argonne National Laboratory (ANL). Forward reaction rate constants calculated from the ANL test data were 100 to over 1,000 times larger than the values obtained from the SPFT tests conducted at PNL. An analysis of the ANL results showed that they were inconsistent with independent measurements done on glasses of similar composition, the known pH-dependence of the forward rate, and with the results from low surface-area-to-volume, short duration product consistency tests. Because the data set obtained from the SPFT tests done at PNL was consistent with each of these same factors, a detailed examination of the test procedures used at both laboratories was performed to determine the cause(s) of the discrepancy. The omission of background subtraction in the data analysis procedure and the short-duration (on the order of hours) of the ANL tests are factors that may have significantly affected the calculated rates

  18. Low-level waste workshops. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Low-Level Radioactive Waste Policy Act of 1980 specifies that each state is responsible for the disposal of the low-level waste which is generated within its boundaries. The Act states that such wastes can be most safely and efficiently managed on a regional basis through compacts. It also defines low-level waste as waste which is not classified as high-level radioactive waste, transuranic waste, spent nuclear fuel, or by-product material as defined in the Atomic Energy Act of 1954. The Policy Act also stipulates that regional agreements or compacts shall not be applicable to the transportation, management, or disposal of low-level radioactive waste from atomic energy defense activities or federal research and development activities. It also specifies that agreements or compacts shall take affect on January 1, 1986, upon Congressional approval. In February 1983, the US Department of Energy awarded a grant to the Council of State Governments' Midwestern Office. The grant was to be used to fund workshops for legislation on low-level radioactive waste issues. The purpose of the workshops was to provide discussion specifically on the Midwest Interstate Compact on Low-Level Radioactive Waste. Legislators from the states which were eligible to join the compact were invited: Delaware, Illinois, Indiana, Iowa, Kentucky, Maryland, Michigan, Minnesota, Missouri, North Dakota, Ohio, South Dakota and Wisconsin. Virginia, Kansas and Nebraska were also eligible but had joined other compacts. Consequently, they weren't invited to the workshops. The Governor's office of West Virginia expressed interest in the compact, and its legislators were invited to attend a workshop. Two workshops were held in March. This report is a summary of the proceedings which details the concerns of the compact and expresses the reasoning behind supporting or not supporting the compact

  19. Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1

    International Nuclear Information System (INIS)

    1996-01-01

    'Low-Level Radioactive Waste Management Activities in the States and Compacts' is a supplement to 'LLW Notes' and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  20. Summary report. Low-level radioactive waste management activities in the states and compacts. Volume 4, No. 2

    International Nuclear Information System (INIS)

    1996-08-01

    'Low-Level Radioactive Waste Management Activities in the States and Compacts' is a supplement to 'LLW Notes' and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  1. Low-level radioactive waste management at the Nevada Test Site - Current status

    International Nuclear Information System (INIS)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-01-01

    The performance objectives of the Department of Energy's Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS's since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  2. Performance assessment for low-level waste disposal in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, A.B. [UK Dept. of the Environment, London (United Kingdom)

    1995-12-31

    British Nuclear Fuels plc (BNFL) operate a site for the disposal of Low Level Radioactive Waste at Drigg in West Cumbria, in North-West England. HMIP are responsible for the regulation of the site with regard to environmental discharges of radioactive materials, both operational and post-closure. This paper is concerned with post-closure matters only. Two post-closure performance assessments have been carried out for this site: one by the National Radiological Protection Board (NRPB) in 1987; and a subsequent one carried out on behalf of HMIP, completed in 1991. Currently, BNFL are preparing a Safety Case for continued operation of the Drigg site, and it expected that the core of this Case will comprise BNFL`s own analysis of post-closure performance. HMIP has developed procedures for the assessment of this Case, based upon experience of the previous Drigg assessments, and also upon the experience of similar work carried out in the assessment of Intermediate Level Waste (ILW) disposal at both deep and shallow potential sites. This paper describes the more important features of these procedures.

  3. Management of low level waste generated from ISER

    International Nuclear Information System (INIS)

    Mizushina, Tomoyuki

    1987-01-01

    Low level wastes are generated during nuclear power plant operation. In the case of ISER, low level wastes from the reactor are basically the same as of existing light water reactors. Various low level wastes, including solid, liquid and gaseous, are listed and discussed. In normal operation, high-activity wastes are not subjected to any treatment. For contaminated equipment or reactor parts, it may be desirable to transfer most of the activity to liquid phase through an appropriate decontamination procedure. Highly active solid wastes are usually fixed in a solid form through incorporation into either concrete or asphalt as containment material. Decantation and filtration treatments are usually sufficient before dilution and release of liquid wastes into the environment. Except for ordinary gas filtration, there in normally no other treatment. Under certain circumstances, however, it may be important to apply the decay storage before release to the atmosphere. In accidental circumstances, specific filtration is recommended or even sometimes needed. There are some alternatives for storage and-or disposal of low level wastes. In many cases, shallow land burial is chosen as a realistic method for storage and-or disposal of solid waste. In chosing a disposal method, the radiation dose rate from solid wastes or the specific activity should be taken into account. Boric acid is a retarder for cement setting. This effect of boric acid is inhibited by adding a complexing agent before mixing the waste with cement. (Nogami, K.)

  4. Low-level waste certification plan

    International Nuclear Information System (INIS)

    Greenhalph, W.O.

    1995-01-01

    This plan describes the organization and methodology for the certification of solid low-level waste (LLW) and mixed-waste (MW) generated at any of the facilities or major work activities of the Engineered Process Application (EPA) organization. The primary LLW and MW waste generating facility operated by EPA is the 377 Building. This plan does not cover the handling of hazardous or non-regulated waste, though they are mentioned at times for completeness

  5. Determination of scaling factors to estimate the radionuclide inventory in waste with low and intermediate-level activity from the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Taddei, Maria Helena Tirollo

    2013-01-01

    Regulations regarding transfer and final disposal of radioactive waste require that the inventory of radionuclides for each container enclosing such waste must be estimated and declared. The regulatory limits are established as a function of the annual radiation doses that members of the public could be exposed to from the radioactive waste repository, which mainly depend on the activity concentration of radionuclides, given in Bq/g, found in each waste container. Most of the radionuclides that emit gamma-rays can have their activity concentrations determined straightforwardly by measurements carried out externally to the containers. However, radionuclides that emit exclusively alpha or beta particles, as well as gamma-rays or X-rays with low energy and low absolute emission intensity, or whose activity is very low among the radioactive waste, are generically designated as Difficult to Measure Nuclides (DTMs). The activity concentrations of these DTMs are determined by means of complex radiochemical procedures that involve isolating the chemical species being studied from the interference in the waste matrix. Moreover, samples must be collected from each container in order to perform the analyses inherent to the radiochemical procedures, which exposes operators to high levels of radiation and is very costly because of the large number of radioactive waste containers that need to be characterized at a nuclear facility. An alternative methodology to approach this problem consists in obtaining empirical correlations between some radionuclides that can be measured directly – such as 60 Co and 137 Cs, therefore designated as Key Nuclides (KNs) – and the DTMs. This methodology, denominated Scaling Factor, was applied in the scope of the present work in order to obtain Scaling Factors or Correlation Functions for the most important radioactive wastes with low and intermediate-activity level from the IEA-R1 nuclear research reactor. (author)

  6. Branch technical position for performance assessment of low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Campbell, A.C.; Abramson, L.; Byrne, R.M.

    1994-01-01

    The U.S. Nuclear Regulatory Commission has developed a Draft Branch Technical Position on Performance Assessment of Low-Level Radioactive Waste Disposal Facilities. The draft technical position addresses important issues in performance assessment modeling and provides a framework and technical basis for conducting and evaluating performance assessments in a disposal facility license application. The technical position also addresses specific technical policy issues and augments existing NRC guidance pertaining to LLW performance assessment

  7. Levels for the specific activity at disposing low-level contaminated municipal wastes

    International Nuclear Information System (INIS)

    Poschner, J.; Schaller, G.

    1995-01-01

    Using radioecological models, nuclide specific values were calculated for the specific activity of low contaminated radioactive waste, which is disposed in conventional waste deposits or burned in incineration plants. The calculation of these values is based on a limit of 10 μSv effective dose in one year, i.e. effective dose possibly resulting from waste disposal or burning should not exceed a 'de-minimis'-value of some 10 μSv per year. The applied radioecological models describe exposure of the public by direct radiation, inhalation and ingestion for the operational period of a deposit or an incineration plant, but also cover post-operational scenarios, collecting and sorting of waste and road accidents of the waste-truck. Referring to the dose limit of 10 μSv/a, a value for the specific activity of waste was calculated for each scenario and each radionuclide considered. The smallest of these values for a radionuclide, the 'basic value' was rounded to a 'reference value'. For about 600 radionuclides reference values were derived. About 90% of the reference values are ranging between 1 and 1 000 Bq/g. For about 90% of the radionuclides direct radiation or inhalation at the deposit proved to be the critical path of exposure. (orig.) [de

  8. Polyethylene solidification of low-level wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs

  9. Development of high performance and low radio activation concrete material for concrete cask

    International Nuclear Information System (INIS)

    Shirai, Koji; Sonobe, Ryoji

    2005-01-01

    For the realization of the long-term storage of the nuclear spent fuel with the concrete cask technology, a low radio activation high performance concrete was developed, which contains extremely small quantity of Eu and Co and assures enough heat-resistance and durability for degradation. Firstly, the activation analysis was performed to estimate the allowable content limit of their quantities according to the rules issued by Japanese government for determining the classification of the radioactive waste. Secondly, various candidate materials were sampled and irradiated to find out the activation level. As a result, as the optimum concrete mix, the combination of limestone and white fused alumina aggregates with fry-ash was chosen. Moreover, the basic characteristics of the candidate concrete (workability, strength under high temperature, heat conductivity and so on) were evaluated, and the thermal cracking test was executed with hollow cylinders. Finally, the developed concrete material seems to be suitable for the long-term use of concrete cask considering the low activation, high heat resistance and durability during storage. (author)

  10. Proposed waste form performance criteria and testing methods for low-level mixed waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Fuhrmann, M.; Bowerman, B.

    1995-01-01

    Proposed waste form performance criteria and testing methods were developed as guidance in judging the suitability of solidified waste as a physico-chemical barrier to releases of radionuclides and RCRA regulated hazardous components. The criteria follow from the assumption that release of contaminants by leaching is the single most important property for judging the effectiveness of a waste form. A two-tier regimen is proposed. The first tier consists of a leach test designed to determine the net, forward leach rate of the solidified waste and a leach test required by the Environmental Protection Agency (EPA). The second tier of tests is to determine if a set of stresses (i.e., radiation, freeze-thaw, wet-dry cycling) on the waste form adversely impacts its ability to retain contaminants and remain physically intact. In the absence of site-specific performance assessments (PA), two generic modeling exercises are described which were used to calculate proposed acceptable leachates

  11. Low-level radioactive waste management technology development

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1985-01-01

    Although reviews of disposal practices and site performance indicated that there were no releases to the environment that would affect public health and safety, it became clear that: (a) several burial grounds were not performing as expected; (b) long-term maintenance of closed trenches could be a costly problem, and (c) more cost-effective methods could be developed for the treatment, packing, and disposal of low-level waste. As a result of these reviews, the Department of Energy developed the Low-level Waste Management Program to seek improvements in existing practices, correct obvious deficiencies, and develop site closure techniques that would avoid expensive long-term maintenance and monitoring. Such technology developments provide a better understanding of the physical and technical mechanisms governing low-level waste treatment and disposal and lead to improvement in the performance of disposal sites. The primary means of disposal of low-level waste has been the accepted and regulated practice of shallow land disposal, i.e., placement of low-level waste in trenches 5 to 10 meters deep with several meters of special soil cover. Department of Energy waste is primarily disposed at six major shallow land disposal sites. Commercial waste is currently disposed of at three major sites in the nation - Barnwell, South Carolina; Richland, Washington; and Beatty, Nevada. In the late 1970's public concern arose regarding the management practices of sites operated by the civilian sector and by the Department of Energy

  12. Mixed low-level waste form evaluation

    International Nuclear Information System (INIS)

    Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

    1997-01-01

    A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance

  13. Proposed waste form performance criteria and testing methods for low-level mixed waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Fuhrmann, M.; Bowerman, B.; Bates, S.; Peters, R.

    1994-08-01

    This document describes proposed waste form performance criteria and testing method that could be used as guidance in judging viability of a waste form as a physico-chemical barrier to releases of radionuclides and RCRA regulated hazardous components. It is assumed that release of contaminants by leaching is the single most important property by which the effectiveness of a waste form is judged. A two-tier regimen is proposed. The first tier includes a leach test required by the Environmental Protection Agency and a leach test designed to determine the net forward leach rate for a variety of materials. The second tier of tests are to determine if a set of stresses (i.e., radiation, freeze-thaw, wet-dry cycling) on the waste form adversely impact its ability to retain contaminants and remain physically intact. It is recommended that the first tier tests be performed first to determine acceptability. Only on passing the given specifications for the leach tests should other tests be performed. In the absence of site-specific performance assessments (PA), two generic modeling exercises are described which were used to calculate proposed acceptable leach rates

  14. Study of scenarios of long term management of low-activity long-life wastes

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the study of scenarios for the management of different low-activity long-life radioactive wastes with reference to different French legal texts. After a presentation of the legal and technical context, the report presents different existing and projected storages (description and safety principles for the Cires and Aube centres and for the Cigeo project of deep geological storage centre). It addresses the various aspects of radiferous and graphite waste management on a long term: inventory, parcel, waste peculiarities, management scenarios, assessment of storage in SCR. It also addresses the case of other wastes such as bituminous coated wastes, those presenting a reinforced natural radioactivity or residues of uranium conversion processing. The last part presents the main orientations for the project

  15. Evaluation of the data available for estimating release rates from commercial low-level waste packages

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Cowgill, M.G.

    1991-01-01

    In this paper, an overview of our findings concerning the distribution of activity within low-level radioactive wastes will be presented. This will begin in a general fashion and consider the distribution of the total activity by each of the following: waste class, waste stream, wasteform, and waste container. A radionuclide specific breakdown by waste class and wasteform follows. The findings are reviewed in terms of performance assessment modeling needs. Finally, we present our conclusions

  16. Greater-than-Class C low-level radioactive waste characterization. Appendix A-3: Basis for greater-than-Class C low-level radioactive waste light water reactor projections

    International Nuclear Information System (INIS)

    Mancini, A.; Tuite, P.; Tuite, K.; Woodberry, S.

    1994-09-01

    This study characterizes low-level radioactive waste types that may exceed Class C limits at light water reactors, estimates the amounts of waste generated, and estimates radionuclide content and distribution within the waste. Waste types that may exceed Class C limits include metal components that become activated during operations, process wastes such as cartridge filters and decontamination resins, and activated metals from decommissioning activities. Operating parameters and current management practices at operating plants are reviewed and used to estimate the amounts of low-level waste exceeding Class C limits that is generated per fuel cycle, including amounts of routinely generated activated metal components and process waste. Radionuclide content is calculated for specific activated metals components. Empirical data from actual low-level radioactive waste are used to estimate radionuclide content for process wastes. Volumes and activities are also estimated for decommissioning activated metals that exceed Class C limits. To estimate activation levels of decommissioning waste, six typical light water reactors are modeled and analyzed. This study does not consider concentration averaging

  17. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  18. DEVELOPMENT, QUALIFICATION, AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    Sams, T.L.; Edge, J.A.; Swanberg, D.J.; Robbins, R.A.

    2011-01-01

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  19. Vitrification of low-level and mixed wastes

    International Nuclear Information System (INIS)

    Johnson, T.R.; Bates, J.K.; Feng, Xiangdong.

    1994-01-01

    The US Department of Energy (DOE) and nuclear utilities have large quantities of low-level and mixed wastes that must be treated to meet repository performance requirements, which are likely to become even more stringent. The DOE is developing cost-effective vitrification methods for producing durable waste forms. However, vitrification processes for high-level wastes are not applicable to commercial low-level wastes containing large quantities of metals and small amounts of fluxes. New vitrified waste formulations are needed that are durable when buried in surface repositories

  20. Twelfth annual US DOE low-level waste management conference

    International Nuclear Information System (INIS)

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990

  1. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  2. The use of performance assessments in Yucca Mountain repository waste package design activities

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1990-01-01

    The Yucca Mountain Project is developing performance assessment approaches as part of the evaluations of the suitability of Yucca Mountain as a repository site. Lawrence Livermore National Laboratory is developing design concepts and the scientific performance assessment methodologies and techniques used for the waste package and engineered barrier system components. This paper presents an overview of the approach under development for postclosure performance assessments that will guide the conceptual design activities and assist in the site suitability evaluations. This approach includes establishing and modeling for the long time periods required by regulations: near-field environment characteristics surrounding the emplaced wastes; container materials performance responses; and waste form properties. All technical work is being done under a fully qualified quality assurance program

  3. HANFORD MEDIUM & LOW CURIE WASTE PRETREATMENT PROJECT PHASE 1 LAB REPORT

    Energy Technology Data Exchange (ETDEWEB)

    HAMILTON, D.W.

    2006-01-30

    A fractional crystallization (FC) process is being developed to supplement tank waste pretreatment capabilities provided by the Waste Treatment and Immobilization Plant (WTP). FC can process many tank wastes, separating wastes into a low-activity fraction (LAW) and high-activity fraction (HLW). The low-activity fraction can be immobilized in a glass waste form by processing in the bulk vitrification (BV) system.

  4. TWRS retrieval and storage mission. Immobilized low-activity waste disposal plan

    International Nuclear Information System (INIS)

    Shade, J.W.

    1998-01-01

    The TWRS mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the encapsulated cesium and strontium) in a safe, environmentally sound, and cost-effective manner (TWRS JMN Justification for mission need). The mission includes retrieval, pretreatment, immobilization, interim storage and disposal, and tank closure. As part of this mission, DOE has established the TWRS Office to manage all Hanford Site tank waste activities. The TWRS program has identified the need to store, treat, immobilize, and dispose of the highly radioactive Hanford Site tank waste and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost-effective manner. To support environmental remediation and restoration at the Hanford Site a two-phase approach to using private contractors to treat and immobilize the low-activity and high-level waste currently stored in underground tanks is planned. The request for proposals (RFP) for the first phase of waste treatment and immobilization was issued in February 1996 (Wagoner 1996) and initial contracts for two private contractor teams led by British Nuclear Fuels Ltd. and Lockheed-Martin Advanced Environmental Services were signed in September 1996. Phase 1 is a proof-of-concept and commercial demonstration effort to demonstrate the technical and business feasibility of using private facilities to treat Hanford Site waste, maintain radiological, nuclear, process, and occupational safety; and maintain environmental protection and compliance while reducing lifecycle costs and waste treatment times. Phase 1 production of ILAW is planned to begin in June 2002 and could treat up to about 13 percent of the waste. Phase 1 production is expected to be completed in 2007 for minimum order quantities or 2011 for maximum order quantities. Phase 2 is a full-scale production effort that will begin after Phase 1 and treat and immobilize most of the waste. Phase 2 production is

  5. MINERALIZING, STEAM REFORMING TREATMENT OF HANFORD LOW-ACTIVITY WASTE (a.k.a. INEEL/EXT-05-02526)

    International Nuclear Information System (INIS)

    A. L. Olson; N. R. Soelberg; D. W. Marshall; G. L. Anderson

    2005-01-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization''. The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2-5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.4 hours of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved

  6. PROMETHEE: a versatile R and D measurement device for low level waste assay

    International Nuclear Information System (INIS)

    Romeyer Dherby, J.; Passard, C.; Mariani, A.

    1996-01-01

    The accurate measurement of heavy nuclide masses and activities in radioactive wastes drums is an important part of waste management. The Active/Passive non destructive assay of radioactive waste drums using a 14 MeV neutron generator is particularly interesting for alpha low level measurements or for gamma irradiating wastes. The development, optimisation, and validation of such a device for industrial use necessitate the building of a demonstrator. In 1985, the CEA decided to build at Cadarache the PROMETHEE modular system for experimenting the pulsed generator techniques, and since then, this device has led us to define several specific systems. At the present time, in the frame of COGEMA actions to reduce the volume of the reprocessing waste, a new strategy of drumming and incineration is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this goal, a developments and tests are carried out on the PROMETHEE research and development facility at CEA CADARACHE, in order to obtain the required performances

  7. PROMETHEE: a versatile R and D measurement device for low level waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer Dherby, J.; Passard, C.; Mariani, A

    1996-12-31

    The accurate measurement of heavy nuclide masses and activities in radioactive wastes drums is an important part of waste management. The Active/Passive non destructive assay of radioactive waste drums using a 14 MeV neutron generator is particularly interesting for alpha low level measurements or for gamma irradiating wastes. The development, optimisation, and validation of such a device for industrial use necessitate the building of a demonstrator. In 1985, the CEA decided to build at Cadarache the PROMETHEE modular system for experimenting the pulsed generator techniques, and since then, this device has led us to define several specific systems. At the present time, in the frame of COGEMA actions to reduce the volume of the reprocessing waste, a new strategy of drumming and incineration is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this goal, a developments and tests are carried out on the PROMETHEE research and development facility at CEA CADARACHE, in order to obtain the required performances.

  8. National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1996

    International Nuclear Information System (INIS)

    Garcia, R.S.

    1996-12-01

    To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities tat the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during Fiscal Year 1996

  9. National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1995

    International Nuclear Information System (INIS)

    Forman, S.

    1995-12-01

    To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities that the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during fiscal year 1995

  10. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1991-08-01

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW

  11. Potential impact of DOE's performance objective for protection of inadvertent intruders on low-level waste disposals at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1993-01-01

    Performance objectives for disposal of low-level radioactive waste at Department of Energy (DOE) sites include limits on radiation dose to inadvertent intruders. This paper investigates the potential impact of DOE's performance objective for protection of inadvertent intruders on the acceptability of low-level waste disposals at Oak Ridge National Laboratory (ORNL). The analysis is based on waste volumes and radionuclide inventories for recent disposals and estimated doses to an inadvertent intruder for assumed exposure scenarios. The analysis indicates that more than 99% of the total volume of waste in recent disposals meets the performance objective for inadvertent intruders, and the volume of waste found to be unacceptable for disposal is only about 16 m 3 . Therefore, DOE's performance objective for protection of inadvertent intruders probably will not have unreasonably adverse impacts on acceptable waste disposals at ORNL

  12. The performance assessment impacts of disposal of high-moisture, low-level radioactive waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    Crowe, B.M.; Hansen, W.; Hechnova, A.; Voss, C.; Waters, R.; Sully, M.; Levitt, D.

    1999-01-01

    A panel of independent scientists was convened by the Department of Energy to assess the performance impacts of disposal of low-level radioactive waste from the Fernald Environmental Management Project. This waste stream was involved in a transportation incident in December 1997. A resulting outgrowth of investigations of the transportation incident was the recognition that the waste was transported and disposed in stress-fractured metal boxes and some of the waste contained excess moisture (high volumetric water contents). The panel was charged with determining whether disposal of this waste in the Area 5 radioactive waste management site on the Nevada Test Site has impacted the conclusions of the completed performance assessment. Three questions were developed by the panel to assess performance impacts: (1) the performance impacts of reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) the performance impacts of excess moisture. No performance or subsidence impacts were noted from disposal of the Fernald waste. The impacts of excess moisture were assessed through simulation modeling of the movement of moisture in the vadose zone assuming high water contents (wet waste) for different percentages of the waste inventory. No performance impacts were noted for either the base-case scenario (ambient conditions) or a scenario involving subsidence and flooding of the waste cells. The absence of performance impacts results form the extreme conservatism used in the Area 5-performance assessment and the robust nature of the disposal site

  13. Twelfth annual US DOE low-level waste management conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  14. Silver-based getters for 129I removal from low-activity waste

    International Nuclear Information System (INIS)

    Asmussen, R. Matthew; Neeway, James J.; Lawter, Amanda R.; Wilson, Andrew; Qafoku, Nikolla P.

    2016-01-01

    A prominent radionuclide of concern in nuclear wastes, 129 I, is present in low-activity wastes (LAW) at the Hanford site. Several Ag-containing materials were tested as immobilization agents, or ''getters'', for I (as iodide, I - ) removal from deionized (DI) water and a liquid LAW simulant: Ag impregnated activate carbon (Ag-C), Ag exchanged zeolite (Ag-Z), and argentite. In anoxic batch experiments with DI water, the Ag-C and argentite were most effective, with maximum K d values of 6.2 x 10 5 mL/g for the Ag-C and 3.7 x 10 5 mL/g for the argentite after 15 days. Surface area and Ag content were found to influence the performance of the getters in DI water. In the anoxic batch experiments with LAW simulant, Ag-Z vastly outperformed the other getters with K d values of 2.2 x 10 4 mL/g at 2 h, which held steady until 15 days, compared with 1.8 x 10 3 mL/g reached at 15 days by the argentite. All getters were stable over long periods of time (i.e. 40 days) in DI water, while the Ag-Z and argentite were also stable in the LAW simulant. Ag-Z was found to have consistent I removal upon crushing to a smaller particle size and in the presence of O 2 , making it a strong candidate for the treatment of LAW containing I.

  15. Low-level waste management alternatives and analysis in DOE`s programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, J.S. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management

    1993-03-01

    The Department of Energy is preparing a Programmatic Environmental Impact Statement (PEIS) for the Environmental Restoration and Waste Management Program. The PEIS has been divided into an Environmental Restoration section and a Waste Management section. Each section has a unique set of alternatives. This paper will focus on the waste management alternatives and analysis. The set of alternatives for waste management has been divided into waste categories. These categories are: high-level waste, transuranic waste, low-level waste, low-level mixed waste, greater-than-class C and low-level waste from commercial sources, hazardous waste, and spent nuclear fuel. This paper will discuss the alternatives and analytical approach that will be used to evaluate these alternatives for the low-level waste section. Although the same alternatives will be considered for all waste types, the analysis will be performed separately for each waste type. In the sections that follow, information will be provided on waste management configurations, the analysis of waste management alternatives, waste types and locations, facility and transportation activities, the facility and transportation impacts assessment, and the compilation of impacts.

  16. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database

  17. Multiple containment for LSA [low specific activity] and SCO [surface contaminated objects] wastes

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1993-09-01

    Radioactive wastes are generally transported in the form of Low Specific Activity (LSA) materials or Surface Contaminated Objects (SCO). This report proposes that a method of acknowledging the beneficial effects of multiple containment for such wastes should be written into the 1996 Edition of the IAEA Transport Regulations. Experience used to assess risks from on-site movements of radioactive material in the UK can be applied to develop safety arguments justifying the alleviation of off-site transport risks. (UK)

  18. Performance of cement solidification with barium for high activity liquid waste including sulphate

    International Nuclear Information System (INIS)

    Waki, Toshikazu; Yamada, Motoyuki; Horikawa, Yoshihiko; Kaneko, Masaaki; Saso, Michitaka; Haruguchi, Yoshiko; Yamashita, Yu; Sakai, Hitoshi

    2009-01-01

    The target liquid waste to be solidified is generated from PWR primary loop spent resin treatment with sulphate acid, so, its main constituent is sodium sulphate and the activity of this liquid is relatively high. Waste form of this liquid waste is considered to be a candidate for the subsurface disposal. The disposed waste including sulphate is anticipated to rise a concentration of sulphate ion in the ground water around the disposal facility and it may cause degradation of materials such as cement and bentonite layer and comprise the disposal facility. There could be two approaches to avoid this problem, the strong design of the disposal facility and the minimization of sulphaste ion migration from the solidified waste. In this study, the latter approach was examined. In order to keep the low concentration of sulphate ion in the ground water, it is effective to make barium sulphate by adding barium compound into the liquid waste in solidification. However, adding equivalent amount of barium compound with sulphate ion causes difficulty of mixing, because production of barium sulphate causes high viscosity. In this study, mixing condition after and before adding cement into the liquid waste was estimated. The mixing condition was set with consideration to keep anion concentration low in the ground water and of mixing easily enough in practical operation. Long term leaching behavior of the simulated solidified waste was also analyzed by PHREEQC. And the concentration of the constitution affected to the disposal facility was estimated be low enough in the ground water. (author)

  19. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    MINWALL HJ

    2011-04-08

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  20. Cast Stone Technology For The Treatment And Immobilization Of Low-Activity Waste

    International Nuclear Information System (INIS)

    Minwall, H.J.

    2011-01-01

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  1. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  2. Waste package performance criteria for deepsea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Colombo, P.; Fuhrmann, M.

    1988-07-01

    Sea disposal of low-level radioactive waste began in the United States in 1946, and was placed under the licensing authority of the Atomic Energy Commission (AEC). The practice stopped completely in 1970. Most of the waste disposed of at sea was packaged in second- hand or reconditioned 55-gallon drums filled with cement so that the average package density was sufficiently greater than that of sea water to ensure sinking. It was assumed that all the contents would eventually be released since the packages were not designed or required to remain intact for sustained periods of time after descent to the ocean bottom. Recently, there has been renewed interest in ocean disposal, both in this country and abroad, as a waste management alternative to land burial. The Marine Protection, Research and Sanctuaries Act of 1972 (PL 92-532) gives EPA the regulatory responsibility for ocean dumping of all materials, including radioactive waste. This act prohibits the ocean disposal of high-level radioactive waste and requires EPA to control the ocean disposal of all other radioactive waste through the issuance of permits. In implementing its permit authorities, EPA issued on initial set of regulations and criteria in 1973 to control the disposal of material into the ocean waters. It was in these regulations that EPA initially introduced the general requirement of isolation and containment of radioactive waste as the basic operating philosophy. 37 refs

  3. Complementary installation for very low radioactive wastes in El Cabril

    International Nuclear Information System (INIS)

    Gregorio, S. de; Garcia Sierra, J.; Navarro, M.

    2006-01-01

    The Industry and Energy Commission of the Spanish Parliament in 1998, and the Economy and Treasury Commission in 2001 and 2002, approved both resolutions and demanded the govern to take the initiatives in the way to Spain will have capacity to store very low radioactive and low risk wastes, that can not be deals like conventional waste, in such a way that will not suppose a loss of the important strategic value that means the capacity of the actual vaults at El Cabril, Designed to disposed of radioactive waste in with high specific activity. The very low activity wastes are the part of waste with less activity in the whole low and intermediate level wastes. The complementary installation will form part, of the actual facility of El Cabril. The total activity to disposed of will be hold in the Reference Inventory allowed to the C. A. El Cabril, not being needed an extension of the actual inventory. (Author)

  4. Development of low-activation design method for reduction of radioactive waste (3). Various types of low-activation concrete

    International Nuclear Information System (INIS)

    Kinno, Masaharu; Kimura, Ken-ichi; Fujikura, Yusuke

    2008-01-01

    Manufacturing tests by mixing together with low-activation aggregates, low-activation cements, low-activation additives, low-activation admixtures and low-activation neutron absorbers have been performed to develop low-activation concrete. After that, we developed various types (1/10, 1/20, 1/30, 1/50, 1/100, 1/300, 1/1,000, 1/3,000 and 1/10,000) of low-activation concrete composed of low-activation raw materials as very useful shielding material in a nuclear facility. The term '1/10 of low-activation concrete' denotes that the activity reduction rate to ordinary concrete is designed to be 1/10. By adopting some suitable types of low-activation concrete, most of the shielding concrete around ABWR and APWR are classified below clearance level on decommissioning. (author)

  5. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  6. The role of performance assessment in the low-level waste management program of the Appalachian Compact

    International Nuclear Information System (INIS)

    Dornsife, W.; Jacobs, D.

    1988-01-01

    This paper presents Pennsylvania's view of the role of performance assessment in establishing and implementing a program for the development of a regional waste disposal site. Performance assessment is the set of techniques and procedures used to determine whether or not the facility will comply with the performance objectives and license requirements. The techniques and procedures used may range in formality from professional judgment to rigorously developed and documented computer codes. Pennsylvania views performance assessment as having a broad role in the decision making process for low-level waste management in all phases of the life cycle of a facility

  7. Categorisation of waste streams arising from the operation of a low active waste incinerator and justification of discharge practices

    International Nuclear Information System (INIS)

    Richards, J.M.

    1989-01-01

    Waste streams arising from the low active waste incinerator at Harwell are described, and the radiological impact of each exposure pathway discussed. The waste streams to be considered are: (i) discharge of scrubber liquors after effluent treatment to the river Thames; (ii) disposal of incinerator ash; and (iii) discharge of airborne gaseous effluents to the atmosphere. Doses to the collective population and critical groups as a result of the operation of the incinerator are assessed and an attempt made to justify the incineration practice by consideration of the radiological impact and monetary costs associated with alternative disposal methods. (author)

  8. Assessment of LANL solid low-level waste management documentation

    International Nuclear Information System (INIS)

    Klein, R.B.; Jennrich, E.A.; Lund, D.M.; Danna, J.G.; Davis, K.D.; Rutz, A.C.

    1991-04-01

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section's capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A

  9. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    Haight, C.P.; Mills, D.; Razor, J.E.

    1987-01-01

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  10. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)

  11. Laboratory performance testing of an extruded bitumen containing a surrogate, sodium nitrate-based, low-level aqueous waste

    International Nuclear Information System (INIS)

    Mattus, A.J.; Kaczmarsky, M.M.

    1986-01-01

    Laboratory results of a comprehensive, regulatory performance test program, utilizing an extruded bitumen and a surrogate, sodium nitrate-based waste, have been compiled at the Oak Ridge National Laboratory (ORNL). Using a 53 millimeter, Werner and Pfleiderer extruder, operated by personnel of WasteChem Corporation of Paramus, New Jersey, laboratory-scale, molded samples of type three, air blown bitumen were prepared for laboratory performance testing. A surrogate, low-level, mixed liquid waste, formulated to represent an actual on-site waste at ORNL, containing about 30 wt % sodium nitrate, in addition to eight heavy metals, cold cesium and strontium was utilized. Samples tested contained three levels of waste loading: that is, forty, fifty and sixty wt % salt. Performance test results include the ninety day ANS 16.1 leach test, with leach indices reported for all cations and anions, in addition to the EP Toxicity test, at all levels of waste loading. Additionally, test results presented also include the unconfined compressive strength and surface morphology utilizing scanning electron microscopy. Data presented include correlations between waste form loading and test results, in addition to their relationship to regulatory performance requirements

  12. DOE site performance assessment activities

    International Nuclear Information System (INIS)

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions

  13. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  14. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  15. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Z. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Philip D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parameters for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.

  16. Packaging design criteria (onsite) project W-520 immobilized low-activity waste transportation system

    International Nuclear Information System (INIS)

    BOEHNKE, W.M.

    2001-01-01

    A plan is currently in place to process the high-level radioactive wastes that resulted from uranium and plutonium recovery operations from Spent Nuclear Fuel at the Hanford Site, Richland, Washington. Currently, millions of gallons of high-level radioactive waste in the form of liquids, sludges, and saltcake are stored in many large underground tanks onsite. This waste will be processed and separated into high-level and low-activity fractions. Both fractions will then be vitrified (i.e., blended with molten borosilicate glass) in order to encapsulate the toxic radionuclides. The immobilized low-activity waste (ILAW) glass will be poured into LAW canisters, allowed to cool and harden to solid form, sealed by welding, and then transported to a double-lined trench in the 200 East Area for permanent disposal. This document presents the packaging design criteria (PDC) for an onsite LAW transportation system, which includes the ILAW canister, ILAW package, and transport vehicle and defines normal and accident conditions. This PDC provides the basis for the ILAW onsite transportation system design and fabrication and establishes the transportation safety criteria that the design will be evaluated against in the Package Specific Safety Document (PSSD). It provides the criteria for the ILAW canister, cask and transport vehicles and defines normal and accident conditions. The LAW transportation system is designed to transport stabilized waste from the vitrification facility to the ILAW disposal facility developed by Project W-520. All ILAW transport will take place within the 200 East Area (all within the Hanford Site)

  17. Performance assessment review guide for DOE low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Dodge, R.L.; Hansen, W.R.; Kennedy, W.E. Jr.; Layton, D.W.; Lee, D.W.; Maheras, S.T.; Neuder, S.M.; Wilhite, E.L.; Curl, R.U.; Grahn, K.F.; Heath, B.A.; Turner, K.H.

    1991-10-01

    This report was prepared under the direction of the Performance Assessment Peer Review Panel. The intent is to help Department of Energy sites prepare performance assessments that meet the Panel's expectations in terms of detail, quality, content, and consistency. Information on the Panel review process and philosophy are provided, as well as important technical issues that will be focused on during a review. This guidance is not intended to provide a detailed review plan as in NUREG-1200, Standard Review Plan for Review of a License Application for a Low-Level Radioactive Waste Disposal Facility (January 1988). The focus and intent of the Panel's reviews differ significantly from a regulatory review. The review of a performance assessment by the Panel uses the collective professional judgment of the members to ascertain that the approach taken the methodology used, the assumptions made, etc., are technically sound and adequately justified. The results of the Panel's review will be used by Department of Energy Headquarters in determining compliance with the requirements of DOE Order 5820.2A, ''Radioactive Waste Management.''

  18. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  19. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2006-05-08

    Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important

  20. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS

    International Nuclear Information System (INIS)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2006-01-01

    Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to

  1. Performance analysis of a repository for low and intermediate level reactor waste

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.; Vuori, S.; Peltonen, E.

    1987-01-01

    In Finland, utilities producing nuclear energy are responsible for the management of the radioactive waste, including final disposal. As regards low and intermediate level waste, the approach has been adopted to employ the power plant sites for locations of repositories. The repositories will be excavated at the depth of about 50 to 125 m in the bedrock of the two Finnish nuclear power plant sites, Loviisa and Olkiluoto. The performance analysis presented in this paper has been carried out for the Preliminary Safety Analysis Report (PSAR) of the Olkiluoto repository. A flexible model has been developed to estimate the release of radionuclides from waste packages and their subsequent transport through the engineered barriers in the repository. Gradual degradation of the engineered barriers is accounted for by altering parameters at fixed time points. Safety margins of the disposal concept have been evaluated by including disturbed evolution scenarios in the analysis. 13 references, 10 figures, 2 tables

  2. Low- and Intermediate Level Radioactive Waste Disposal Environmental and Safety Assessment Activities in Slovenia

    International Nuclear Information System (INIS)

    Marc, D.; Loose, A.; Urbanc, J.

    1998-01-01

    The protection of the environment is one of the main concerns in the management of radioactive waste, especially in repository planning. In different stages of repository lifetime the environmental assessment has different functions: it can be used as a decision making process and as a planning, communication and management tool. Safety assessment as a procedure for evaluating the performance of a disposal system, and its potential radiological impact on human health and environment, is also required. Following the international recommendations and Slovene legislation, a presentation is given of the role and importance of the environmental and safety assessment activities in the early stages following concept development and site selection for a low- and intermediate level radioactive waste (LILW) repository in Slovenia. As a case study, a short overview is also given of the preliminary safety assessment that has been carried out in the analysis of possibilities for long-lived LILW disposal in Slovenia. (author)

  3. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  4. Modified sulfur cement solidification of low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  5. Modified sulfur cement solidification of low-level wastes

    International Nuclear Information System (INIS)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended

  6. Initial Selection of Supplemental Treatment Technologies for Hanford's Low-Activity Tank Waste

    International Nuclear Information System (INIS)

    Raymond, Richard E.; Powell, Roger W.; Hamilton, Dennis W.; Kitchen, William A.; Mauss, Billie M.; Brouns, Thomas M.

    2004-01-01

    In 2002, the U.S. Department of Energy (DOE) documented a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years (DOE 2002). A key element of the accelerated cleanup plan was a strategic initiative for acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (ETP) and using supplemental technologies for waste treatment and immobilization''. The plan identified specific technologies to be evaluated for supplemental treatment of as much as 70% of the low-activity waste (LAW). The objective was to complete required testing and evaluation that would ''...bring an appropriate combination of the above technologies to deployment to supplement LAW treatment and immobilization in the WTP to achieve the completion of tank waste treatment by 2028''. In concert with this acceleration plan, DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology have proposed to accelerate from 2012 to 2005 the Hanford Federal Facility Compliance Agreement (Tri-Party Agreement) milestone (M-62-08) associated with a final decision on treatment of the balance of tank waste that is beyond the capacity of the currently designed WTP

  7. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  8. Institutional options for state management of low level radioactive waste

    International Nuclear Information System (INIS)

    Morris, F.A.

    1981-01-01

    This paper concerns ''institutional'' (legal, organizational, and political) aspects of low-level radioactive waste management. Its point of departure is the Low-Level Radioactive Waste Policy Act of 1980. With federal law and political consensus now behind the policy of state responsibility for low level waste, the question becomes, how is this new policy to be implemented. The questions of policy implementation are essentially institutional: What functions must a regional low level waste management system perform. What entities are capable of performing them. How well might various alternatives or combinations of alternatives work. This paper is a preliminary effort to address these questions. It discusses the basic functions that must be performed, and identifies the entities that could perform them, and discusses the workability of various alternative approaches

  9. Selection of low activation materials for fusion power plants using ACAB system: the effect of computational methods and cross section uncertainties on waste management assessment

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M.; Sanz, J.; Rodriguez, A.; Falquina, R. [Universidad Nacional de Educacion a Distancia (UNED), Dept. of Power Engineering, Madrid (Spain); Cabellos, O.; Sanz, J. [Universidad Politecnica de Madrid, Instituto de Fusion Nuclear (UPM) (Spain)

    2003-07-01

    The feasibility of nuclear fusion as a realistic option for energy generation depends on its radioactive waste management assessment. In this respect, the production of high level waste is to be avoided and the reduction of low level waste volumes is to be enhanced. Three different waste management options are commonly regarded in fusion plants: Hands-on Recycling, Remote Recycling and Shallow Land Burial (SLB). Therefore, important research work has been undertaken to find low activation structural materials. In performing this task, a major issue is to compute the concentration limits (CLs) for all natural elements, which will be used to select the intended constituent elements of a particular Low Activation Material (LAM) and assess how much the impurities can deteriorate the waste management properties. Nevertheless, the reliable computation of CLs depends on the accuracy of nuclear data (mainly activation cross-sections) and the suitability of the computational method both for inertial and magnetic fusion environments. In this paper the importance of nuclear data uncertainties and mathematical algorithms used in different activation calculations for waste management purposes will be studied. Our work is centred on the study of {sup 186}W activation under first structural wall conditions of Hylife-II inertial fusion reactor design. The importance of the dominant transmutation/decay sequence has been documented in several publications. From a practical point of view, W is used in low activation materials for fusion applications: Cr-W ferritic/martensitic steels, and the need to better compute its activation has been assessed, in particular in relation to the cross-section uncertainties for reactions leading to Ir isotopes. {sup 192n}Ir and {sup 192}Ir reach a secular equilibrium, and {sup 192n}Ir is the critical one for waste management, with a half life of 241 years. From a theoretical point of view, this is one of the most complex chains appearing in

  10. Developments in the management of low and intermediate activity solid wastes at the Cadarache Centre

    International Nuclear Information System (INIS)

    Barbreau, A.; Marcaillou, J.; Mery, J.; Pinto, D.; Rancon, D.

    1975-01-01

    The Cadarache Nuclear Studies Centre is located in a thinly populated region. Covering a total area of 1600 hectares, it has been able to accommodate numerous and important research facilities. In 1970, 11 reactors or critical assemblies were in operation. More than 164000 m 2 are devoted to laboratories, testing areas, installations for the inspection of irradiated fuel elements and plutonium technology workshops. Up to 1968 the low- and intermediate-activity solid wastes (categories 1, 2 and 30) collected at the Centre were divided into two classes for disposal purposes: (a) burnable wastes which, after sorting, were destroyed in an incinerator; (b) compressible wastes which were compacted in concrete containers after recovery of the packing, by means of a 250-ton press. The situation at Cadarache and the results obtained in hydrogeological studies have prompted the Centre to improve the processing of these wastes and reduce the cost. The treatment of solid wastes should, in effect, be regarded as a step towards their final elimination. The measure envisaged at Cadarache were thus aimed at permitting final storage on site, in order to reduce the volume of waste, contain the activity and keep the cost to a minimum. The management of solid wastes is at present based on the following methods: (a) storage in trenches with PVC packing for non-burnable solid wastes of categories 1 and 4, after monitoring of specific activities; (b) compacting and storage in leak-proof pools for solid wastes of categories 2 and 3, the most highly active undergoing a period of decay storage beforehand; (c) incineration of burnable solid wastes of categories 1 and 2 and also of contaminated oils and solvents. (author)

  11. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  12. Solidification of low-level wastes by inorganic binder

    International Nuclear Information System (INIS)

    Sasaki, M.T.; Shimojo, M.; Suzuki, K.; Kajikawa, A.; Karasawa, Y.

    1995-01-01

    The use of an alkali activated slag binder has been studied for solidification and stabilization of low-level wastes in nuclear power stations and spent fuel processing facilities. The activated slag effectively formed waste products having good physical properties with high waste loading for sodium sulfate, sodium nitrate, calcium pyrophosphate/phosphate and spent ion-exchange resins. Moreover, the results of the study suggest the slag has the ability to become a common inorganic binder for the solidification of various radioactive wastes. This paper also describes the fixation of radionuclides by the activated slag binder

  13. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although

  14. 1989 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites: National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1990-12-01

    The National Low-Level Waste Management Program has published eleven annual state-by-state assessment reports. These reports provide both national and state-specific disposal data on low-level radioactive wastes. Data in this report are divided into generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1989 and a comparison of waste volumes by state for 1985 through 1989; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1989. In this year's report, a distinction has been made between low-level radioactive waste shipped directly for disposal by generators and that handled by an intermediary. 7 refs., 4 tabs

  15. The programme of quality assurance relative to management and characterization of low activity wastes of Saclay nuclear study center

    International Nuclear Information System (INIS)

    Cordero, G.; Perotin, J.P.

    1988-05-01

    The technique for inspection and characterization of solid wastes with a low or very low α activity and medium β or γ activity allows to guarantee ANDRA, the collecting authority, an accurate, but not perfect, knowledge of the wastes and to limit the risk of non-compliance to technical prescription to an acceptable value. Choice of sampling technique limits the number of analysis and automation limits cost and personnal risks [fr

  16. Low-level waste incineration: experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bohrer, H.A.; Dalton, J.D.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) is a low level radioactive waste treatment facility being operated at the Idaho National Engineering Laboratory (INEL). A key component of the facility is a dual chambered controlled air incinerator with a dry off-gas treatment system. The incinerator began processing radioactive waste in September, 1984. Limited operations continued from that data until October, 1985, at which time all INEL generators began shipping combustible waste for incineration. The incinerator is presently processing all available INEL combustible Dry Active Waste (DAW) (approximately 1700 m 3 per year) operating about five days per month. Performance to date has demonstrated the effectiveness, viability and safety of incineration as a volume reduction method of DAW. 3 figures

  17. Low level radioactive liquid waste treatment at ORNL

    International Nuclear Information System (INIS)

    Robinson, R.A.; Lasher, L.C.

    1977-01-01

    A new Process Waste Treatment Plant has been constructed at ORNL. The wastes are processed through a precipitation-clarification step and then through an ion exchange step to remove the low-level activity in the waste before discharge into White Oak Creek

  18. Characterization of alpha low level waste in 118 litre drums by passive and active neutron measurements in the promethee assay system

    International Nuclear Information System (INIS)

    Jallu, F.; Passard, C.; Mariani, A.; Ma, J.L.; Baudry, G.; Romeyer-Dherbey, J.; Recroix, H.; Rodriguez, M.; Loridon, J.; Denis, C.; Toubon, H.

    2003-01-01

    This paper deals with the PROMETHEE (PROMpt, epithermal and THErmal interrogation experiment) waste assay system for alpha low level waste (LLW) characterization. This device, including both passive and active neutron measurement methods, is developed at the French Atomic Energy Commission (C.E.A.), Cadarache Centre, in cooperation with COGEMA. Its purpose is to reach the requirements for incinerating alpha waste (less than 50 Bq[α], i.e. about 50 μg of Pu per gram of raw waste) in 118 litre- > drums. The PROMETHEE development and progress are performed with the help of simulation based on the Monte Carlo code MCNP4 [1]. These calculations are coupled with specific experiments in order to confirm calculated results and to obtain characteristics that can not be approached by the simulation (background for example). This paper presents the PROMETHEE measurement cell, its current performances, and studies performed at the laboratory about the most limiting parameters such as the matrix of the drum - its composition (H, Cl..), its density and its heterogeneity degree -the localization and the self-shielding properties of the contaminant. (orig.)

  19. Characterization of alpha low level waste in 118 litre drums by passive and active neutron measurements in the promethee assay system

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F.; Passard, C.; Mariani, A.; Ma, J.L.; Baudry, G.; Romeyer-Dherbey, J.; Recroix, H.; Rodriguez, M.; Loridon, J.; Denis, C. [French Atomic Energy Commission (C.E.A./Cadarache), DED/SCCD/LDMN, Durance (France); Toubon, H. [COGEMA, VELIZY-VILLACOUBLAY (France)

    2003-07-01

    This paper deals with the PROMETHEE (PROMpt, epithermal and THErmal interrogation experiment) waste assay system for alpha low level waste (LLW) characterization. This device, including both passive and active neutron measurement methods, is developed at the French Atomic Energy Commission (C.E.A.), Cadarache Centre, in cooperation with COGEMA. Its purpose is to reach the requirements for incinerating alpha waste (less than 50 Bq[{alpha}], i.e. about 50 {mu}g of Pu per gram of raw waste) in 118 litre-<> drums. The PROMETHEE development and progress are performed with the help of simulation based on the Monte Carlo code MCNP4 [1]. These calculations are coupled with specific experiments in order to confirm calculated results and to obtain characteristics that can not be approached by the simulation (background for example). This paper presents the PROMETHEE measurement cell, its current performances, and studies performed at the laboratory about the most limiting parameters such as the matrix of the drum - its composition (H, Cl..), its density and its heterogeneity degree -the localization and the self-shielding properties of the contaminant. (orig.)

  20. FY2010 ANNUAL REVIEW E-AREA LOW-LEVEL WASTE FACILITY PERFORMANCE ASSESSMENT AND COMPOSITE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.; Swingle, R.; Crapse, K.; Millings, M.; Sink, D.

    2011-01-01

    The E-Area Low-Level Waste Facility (ELLWF) consists of a number of disposal units described in the Performance Assessment (PA)(WSRC, 2008b) and Composite Analysis (CA)(WSRC, 1997; WSRC, 1999): Low-Activity Waste (LAW) Vault, Intermediate Level (IL) Vault, Trenches (Slit Trenches [STs], Engineered Trenches [ETs], and Component-in-Grout [CIG] Trenches), and Naval Reactor Component Disposal Areas (NRCDAs). This annual review evaluates the adequacy of the approved 2008 ELLWF PA along with the Special Analyses (SAs) approved since the PA was issued. The review also verifies that the Fiscal Year (FY) 2010 low-level waste (LLW) disposal operations were conducted within the bounds of the PA/SA baseline, the Savannah River Site (SRS) CA, and the Department of Energy (DOE) Disposal Authorization Statement (DAS). Important factors considered in this review include waste receipts, results from monitoring and research and development (R&D) programs, and the adequacy of controls derived from the PA/SA baseline. Sections 1.0 and 2.0 of this review are a summary of the adequacy of the PA/SA and CA, respectively. An evaluation of the FY2010 waste receipts and the resultant impact on the ELLWF is summarized in Section 3.1. The results of the monitoring program, R&D program, and other relevant factors are found in Section 3.2, 3.3 and 3.4, respectively. Section 4.0 contains the CA annual determination similarly organized. SRS low-level waste management is regulated under DOE Order 435.1 (DOE, 1999a) and is authorized under a DAS as a federal permit. The original DAS was issued by the DOE-Headquarters (DOE-HQ) on September 28, 1999 (DOE, 1999b) for the operation of the ELLWF and the Saltstone Disposal Facility (SDF). The 1999 DAS remains in effect for the regulation of the SDF. Those portions of that DAS applicable to the ELLWF were superseded by revision 1 of the DAS on July 15, 2008 (DOE, 2008b). The 2008 PA and DAS were officially implemented by the facility on October 31, 2008

  1. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  2. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    International Nuclear Information System (INIS)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H.; Serne, R.J.; Cantrell, K.J.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied

  3. Low-level radioactive waste management in hospitals

    International Nuclear Information System (INIS)

    Peyrin, J.O.

    1991-01-01

    In medical establishments, radioisotopes are used in diagnostic techniques, in chemotherapy or in radioimmunology. Hospitable radioactive wastes are characterized by polymorphism and low activity levels in a great volume. These wastes are also associated with infectivity and toxicity. This paper makes a balance and describes new radioactive waste management proposals. 4 refs.; 3 tabs.; 1 fig

  4. Design and Performance Assessment of a Conceptual Cover Cap of Near Surface Repository for Short Lived Low and Intermediate Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Asaba, Ruth; Kim, Changlak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    The safety of the overall waste disposal system is determined by the performance of its individual components: waste form, waste container, engineered barrier and the host environment. The design of the cover cap helps in preventing percolation of water, and in retarding radionuclide migration from the disposal facility to the biosphere. The cover of a disposal facility is usually a combination of materials such as sand, gravel, concrete, clay and soil conditioned for vegetation growth. The cover system will be designed using models such as EPA's Hydrological Evaluation of Land fill Performance (HELP) code. This paper describes a conceptual design for a cover cap for a land fill as a preferred disposal facility for low and short lived intermediate radioactive waste in Uganda. Majority of the waste is generated from disused sealed and unsealed radioactive sources arising from medical, industrial applications, and research. Radioactive waste management has raised a lot of concern in both developed and developing countries. Each country has a responsibility to come up with a solution to prevent contamination of the environment and humans from radioactive waste. It is important to have thicker soil layers in cap designs so as to support vegetation growth since some activities such as erosion and settlements are expected. Help simulations in this study will assist to demonstrate that it is possible to design a cover cap which can contain radioactive waste packages for hundreds of years provided the proper institutional and performance monitoring schemes are implemented.

  5. Scenarios of the TWRS low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-10-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  6. Performance objectives for disposal of low-level radioactive wastes on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1986-01-01

    This paper presents a set of performance objectives for disposal of low-level radioactive wastes in a new facility on the Oak Ridge Reservation. The principal performance objectives include (1) a limit on annual committed effective dose equivalent averaged over a lifetime of 0.25 mSv (25 mrem) for any member of the general public beyond the boundary of the disposal facility, and (2) a limit on annual committed effective dose equivalent averaged over a lifetime of 1 mSv (100 mrem) and a limit on committed effective dose equivalent in any year of 5 mSv (500 mrem) for any individual who inadvertently intrudes onto the disposal site after loss of active institutional controls. The use of annual committed effective dose equivalents averaged over a lifetime departs from customary practice in environmental radiation standards in the U.S. of specifying limits on actual dose received in any year to whole body or the critical organ, but provides a set of performance objectives that are more closely related to the fundamental goal of limiting risk from chronic lifetime exposures. (Auth.)

  7. A new approach to characterize very-low-level radioactive waste produced at hadron accelerators

    International Nuclear Information System (INIS)

    Zaffora, Biagio; Magistris, Matteo; Chevalier, Jean-Pierre; Luccioni, Catherine; Saporta, Gilbert; Ulrici, Luisa

    2017-01-01

    Radioactive waste is produced as a consequence of preventive and corrective maintenance during the operation of high-energy particle accelerators or associated dismantling campaigns. Their radiological characterization must be performed to ensure an appropriate disposal in the disposal facilities. The radiological characterization of waste includes the establishment of the list of produced radionuclides, called “radionuclide inventory”, and the estimation of their activity. The present paper describes the process adopted at CERN to characterize very-low-level radioactive waste with a focus on activated metals. The characterization method consists of measuring and estimating the activity of produced radionuclides either by experimental methods or statistical and numerical approaches. We adapted the so-called Scaling Factor (SF) and Correlation Factor (CF) techniques to the needs of hadron accelerators, and applied them to very-low-level metallic waste produced at CERN. For each type of metal we calculated the radionuclide inventory and identified the radionuclides that most contribute to hazard factors. The methodology proposed is of general validity, can be extended to other activated materials and can be used for the characterization of waste produced in particle accelerators and research centres, where the activation mechanisms are comparable to the ones occurring at CERN. - Highlights: • We developed a radiological characterization process for radioactive waste produced at particle accelerators. • We used extensive numerical experimentations and statistical analysis to predict a complete list of radionuclides in activated metals. • We used the new approach to characterize and dispose of more than 420 t of very-low-level radioactive waste.

  8. Overview of a performance assessment methodology for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Kozak, M.W.; Chu, M.S.Y.

    1991-01-01

    A performance assessment methodology has been developed for use by the US Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. This paper provides a summary and an overview of the modeling approaches selected for the methodology. The overview includes discussions of the philosophy and structure of the methodology. This performance assessment methodology is designed to provide the NRC with a tool for performing confirmatory analyses in support of license reviews related to postclosure performance. The methodology allows analyses of dose to individuals from off-site releases under normal conditions as well as on-site doses to inadvertent intruders. 24 refs., 1 tab

  9. Time depending assessment of low and intermediate radioactive waste characteristics from Cernavoda NPP

    International Nuclear Information System (INIS)

    Mateescu, S.; Pantazi, D.; Stanciu, M.

    2002-01-01

    Low and intermediate radioactive gaseous, liquid and solid waste produced at Cernavoda Nuclear Power Plant must be well known from the point of view of contained radionuclide activity, during all steps of their processing, storage and transport, to ensure the nuclear safety of radioactive waste management. As in intermediate storage stage, the waste activity changes by radioactive decay and nuclear transmutation, the evolution in time of these sources is necessary to be assessed, for the purpose of biological shielding determination at any time. On the other hand, during the transport of waste package at the repository, the external dose rates must meet the national and international requirements concerning radioactive materials transportation on public roads. In this paper, a calculation methodology for waste characterization based on external exposure rate measurement and on sample analysis results is presented. The time evolution of waste activity, as well as the corresponding shielding at different moments of management process, have been performed using MICROSHIELD-5 code. The spent resins proceeded from clean-up and purification systems and solutions from decontamination have been analyzed. The proposed methodology helps us to assess radiation protection during the handling of low and intermediate - level radioactive waste drums, ensuring safety conditions for the public and environment.(author)

  10. Development of Simulants to Support Mixing Tests for High Level Waste and Low Activity Waste

    International Nuclear Information System (INIS)

    EIBLING, RUSSELLE.

    2004-01-01

    The objectives of this study were to develop two different types of simulants to support vendor agitator design studies and mixing studies. The initial simulant development task was to develop rheologically-bounding physical simulants and the final portion was to develop a nominal chemical simulant which is designed to match, as closely as possible, the actual sludge from a tank. The physical simulants to be developed included a lower and upper rheologically bounded: pretreated low activity waste (LAW) physical simulant; LAW melter feed physical simulant; pretreated high level waste (HLW) physical simulant; HLW melter feed physical simulant. The nominal chemical simulant, hereafter referred to as the HLW Precipitated Hydroxide simulant, is designed to represent the chemical/physical composition of the actual washed and leached sludge sample. The objective was to produce a simulant which matches not only the chemical composition but also the physical properties of the actual waste sample. The HLW Precipitated Hydroxide simulant could then be used for mixing tests to validate mixing, homogeneity and representative sampling and transferring issues. The HLW Precipitated Hydroxide simulant may also be used for integrated nonradioactive testing of the WTP prior to radioactive operation

  11. Microbiological treatment of low level radioactive waste

    International Nuclear Information System (INIS)

    Ashley, N.V.; Pugh, S.Y.R.; Banks, C.J.; Humphreys, P.N.

    1992-01-01

    This report summarises the work of an experimental programme investigating the anaerobic digestion of low-level radioactive wastes. The project focused on the selection of the optimum bioreactor design to achieve 95% removal or stabilisation of the biodegradable portion of low-level radioactive wastes. Performance data was obtained for the bioreactors and process scale-up factors for the construction of a full-scale reactor were considered. (author)

  12. Low-level radioactive waste disposal: radiation protection laws

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Guetat, P.; Garbay, H.

    1991-01-01

    The politics of radioactive waste management is a part of waste management and activity levels are one of the components of potential waste pollutions in order to assume man and environment safety. French regulations about personnel and public' radiation protection defines clearly the conditions of radioactive waste processing, storage, transport and disposal. But below some activity levels definite by radiation protection laws, any administrative procedures or processes can be applied for lack of legal regulations. So regulations context is not actually ready to allow a rational low-level radioactive waste management. 15 refs.; 4 tabs.; 3 figs

  13. Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model

    Science.gov (United States)

    Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

    2011-12-01

    addition modules are included for human intrusion scenarios. Inputs and parameters for the hydrogeologic model are developed from a more detailed, numerical, vadose zone model (implemented in HYDRUS 2D). The Vadose zone model calculates fluxes through the waste under various climatic and cover-degradation scenarios. Uncertainty related to model parameters and boundary/initial conditions is also incorporated in the flux distribution through sensitivity analyses in the vadose zone model. Doses are calculated for onsite and offsite receptors through ingestion, inhalation, and external exposure, for comparison with regulatory dose standards. This modeling is part of an ongoing licensing effort to demonstrate compliance with low-level waste site performance objectives.

  14. Performance analysis for disposal of mixed low-level waste. 1: Methodology

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.

    1999-01-01

    A simple methodology has been developed for evaluating the technical capabilities of potential sites for disposal of mixed low-level radioactive waste. The results of the evaluation are expressed as permissible radionuclide concentrations in disposed waste. The methodology includes an analysis of three separate pathways: (1) releases of radionuclides to groundwater; (2) releases of potentially volatile radionuclides to the atmosphere; and (3) the consequences of inadvertent intrusion into a disposal facility. For each radionuclide, its limiting permissible concentration in disposed waste is the lowest of the permissible concentrations determined from each of the three pathways. These permissible concentrations in waste at an evaluated site can be used to assess the capability of the site to dispose of waste streams containing multiple radionuclides

  15. A performance assessment methodology for low-level waste facilities

    International Nuclear Information System (INIS)

    Kozak, M.W.; Chu, M.S.Y.; Mattingly, P.A.

    1990-07-01

    A performance assessment methodology has been developed for use by the US Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. This report provides a summary of background reports on the development of the methodology and an overview of the models and codes selected for the methodology. The overview includes discussions of the philosophy and structure of the methodology and a sequential procedure for applying the methodology. Discussions are provided of models and associated assumptions that are appropriate for each phase of the methodology, the goals of each phase, data required to implement the models, significant sources of uncertainty associated with each phase, and the computer codes used to implement the appropriate models. In addition, a sample demonstration of the methodology is presented for a simple conceptual model. 64 refs., 12 figs., 15 tabs

  16. A preliminary parametric performance assessment for the disposal of alpha-contaminated mixed low-level waste stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Smith, T.H.; Anderson, G.L.; Myers, J.

    1995-01-01

    A preliminary parametric performance assessment (PA) has been performed of potential waste disposal systems for alpha-contaminated mixed low-level waste (ALLW) currently stored at the Idaho National Engineering Laboratory. The radionuclide-confinement performance of treated ALLW in various final waste forms, in various disposal locations, and under various assumptions was evaluated. Compliance with performance objectives was assessed for the undisturbed waste scenario and for intrusion scenarios. Some combinations of final waste form, disposal site, and environmental transport assumptions lead to calculated does that comply with the performance objectives, while others do not. The results will help determine the optimum degree of ALLW immobilization to satisfy the performance objectives while minimizing cost

  17. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  18. Low and intermediate radioactive waste characterization using MICROSHIELD 5 code

    International Nuclear Information System (INIS)

    Mateescu, Silvia; Pantazi, Doina; Stanciu, Marcela

    2002-01-01

    Low and intermediate radioactive gaseous, liquid and solid waste produced at Cernavoda Nuclear Power Plant must be known from the point of view of contained radionuclide activity, during all steps of their processing, storage and transport, to ensure the nuclear safety of radioactive waste management. As the waste activity changes by radioactive decay and nuclear transmutation, the evolution in time of these sources is necessary to be assess, for the purpose of biological shielding determination at any time. On the other hand, during the transport of waste package at the repository, the external dose rates must meet the national and international requirements concerning radioactive materials transportation on public roads. In this paper, a calculation methodology for waste characterization based on external exposure rate measurement and on sample analysis results is presented. The time evolution of waste activity, as well as the corresponding shielding at different moments of management process, has been performed using MICROSHIELD-5 code. The spent resins proceeded from systems for clean-up and purification of cooling water and moderator, water from spent fuel storage bays, etc. have been analyzed. In this paper an example of spent ionic resins characterization, using the MICROSHIELD 5 code, is presented. (authors)

  19. Stabilization of high and low solids Consolidated Incinerator Facility (CIF) waste with super cement

    International Nuclear Information System (INIS)

    Walker, B.W.

    2000-01-01

    This report details solidification activities using selected Mixed Waste Focus Area technologies with the High and Low Solid waste streams. Ceramicrete and Super Cement technologies were chosen as the best possible replacement solidification candidates for the waste streams generated by the SRS incinerator from a list of several suggested Mixed Waste Focus Area technologies. These technologies were tested, evaluated, and compared to the current Portland cement technology being employed. Recommendation of a technology for replacement depends on waste form performance, process flexibility, process complexity, and cost of equipment and/or raw materials

  20. Performance objectives for disposal of low-level radioactive wastes on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, D.C.

    1987-07-01

    This report presents a set of performance objectives for disposal of low-level radioactive wastes in a new facility on the Oak Ridge Reservation. The principal performance objectives include a limit on annual committed effective dose equivalent averaged over a lifetime of 0.25 mSv (25 mrem) for any member of the public beyond the boundary of the disposal facility, and a limit on annual committed effective dose equivalent averaged over a lifetime of 1 mSv (0.1 rem) and a limit on committed effective dose equivalent in any year of 5 mSv (0.5 rem) for any individual who inadvertently intrudes onto the disposal site after loss of active institutional controls. In addition, releases of radioactivity beyond the site boundary shall not result in annual dose equivalents to any number of the public from all sources of exposure that exceed limits established by Federal regulatory authorities and shall be kept as low as reasonably achievable. This report reviews generally applicable radiation protection standards for the public and environmental radiation standards for specific practices that have been developed by national and international authorities and discusses the use of limits on risk rather than dose as performance objectives and consideration of chemical toxicity rather than radiation dose in establishing limits on intakes of uranium. 63 refs., 7 figs., 2 tabs.

  1. Performance objectives for disposal of low-level radioactive wastes on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1987-07-01

    This report presents a set of performance objectives for disposal of low-level radioactive wastes in a new facility on the Oak Ridge Reservation. The principal performance objectives include a limit on annual committed effective dose equivalent averaged over a lifetime of 0.25 mSv (25 mrem) for any member of the public beyond the boundary of the disposal facility, and a limit on annual committed effective dose equivalent averaged over a lifetime of 1 mSv (0.1 rem) and a limit on committed effective dose equivalent in any year of 5 mSv (0.5 rem) for any individual who inadvertently intrudes onto the disposal site after loss of active institutional controls. In addition, releases of radioactivity beyond the site boundary shall not result in annual dose equivalents to any number of the public from all sources of exposure that exceed limits established by Federal regulatory authorities and shall be kept as low as reasonably achievable. This report reviews generally applicable radiation protection standards for the public and environmental radiation standards for specific practices that have been developed by national and international authorities and discusses the use of limits on risk rather than dose as performance objectives and consideration of chemical toxicity rather than radiation dose in establishing limits on intakes of uranium. 63 refs., 7 figs., 2 tabs

  2. Alternative containers for low-level wastes containing large amounts of tritium

    International Nuclear Information System (INIS)

    Gause, E.P.; Lee, B.S.; MacKenzie, D.R.; Wiswall, R. Jr.

    1984-11-01

    High-activity tritiated waste generated in the United States is mainly composed of tritium gas and tritium-contaminated organic solvents sorbed onto Speedi-Dri which are packaged in small glass bulbs. Low-activity waste consists of solidified and adsorbed liquids. In this report, current packages for high-activity gaseous and low-activity adsorbed liquid wastes are emphasized with regard to containment potential. Containers for low-level radioactive waste containing large amounts of tritium need to be developed. An integrity may be threatened by: physical degradation due to soil corrosion, gas pressure build-up (due to radiolysis and/or biodegradation), rapid permeation of tritium through the container, and corrosion from container contents. Literature available on these points is summarized in this report. 136 references, 20 figures, 40 tables

  3. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    International Nuclear Information System (INIS)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders

  4. Hospitalar radioactive waste of low activity, a daily practice

    Energy Technology Data Exchange (ETDEWEB)

    Rezio, M.T.; Vieira, M.R. [Instituto Portugues de Oncologia de Francisco Gentil - CROL, Lisboa (Portugal)

    2006-07-01

    Introduction According to the law we should have a specific area for storing and treating waste. That area should have special containers for temporary storage in order to assure the radioactive decay for all the radioactive waste, biological contaminated or non biological and in solid or liquid form. According with that law the limits established for discharge are: For solid waste, we must not discharge more than 370 MBq in a minimum volume of 0,1 m{sup 3} and is not allowed waste with activities higher than 3,7 kBq; For liquid waste discharges from the department to the public sewer, the average concentrations calculated taking into account the water flow of the sewer system that serves the installation, should be the following:The annual medium concentration must not exceed 3 times the reference concentration (C.R.) for that nuclide; The monthly medium concentration must not exceed 15 times the reference concentration (C.R.); The daily medium concentration must not exceed 60 times the reference concentration (C.R.); The reference concentration (C.R.), expressed in Bq.m{sup -3}, should be calculated taking into account the relevant incorporation per ingestion. The calculation of C.R. in liquid waste should have into account the following: For the general public the effective dose E achieved, per ingestion by an individual in the group of age g is determined according to the following formula(1):E= {sigma}{sub i} h(g){sub j,ing} X J{sub j,ing}, where h(g){sub j,ing} is the committed effective dose per unit-intake for the ingested radionuclide j (Sv/Bq) by an individual in the group of age g; J{sub j,ing} is the relevant intake via ingestion of the radionuclide j (Bq). The effective dose E achieved by an individual in the group of age g should not be higher than 0,1 mSv/year. If the average water volume ingested by an individual adult is 800 l, the value J{sub j,ing}, calculated by the formula (1) should be referred to 1000 l, in order to obtain the C.R., for the

  5. Update on the activities of the central interstate low-level radioactive waste compact commission

    International Nuclear Information System (INIS)

    Peery, R.J.

    1987-01-01

    Since its formation in 1983, the Central Interstate Low-Level Radioactive Waste Compact Commission has moved at a deliberate pace to meet the responsibilities placed on the states by federal law. In addition to the normal activities associated with an agency empowered to regulate a specific industry, the Commission has conducted a number of studies designed to help it meet its responsibilities. The Phase I Site Exclusionary Study identified those areas in each of the member states that failed to meet criteria set out in 10 CFR 61. The key elements of a Management Study are: an evaluation of the region's waste stream, development of the procedures the Commission will use to select a developer for the region's waste facility, an assessment of disposal alternatives, and the development of a plan to review the results of the management plan. The Commission is conducting a Phase II Site Exclusionary Study in which a closer analysis of each area will allow the Commission to determine if there are areas in each state that are capable of being sited. The Commission is also considering the draft Request for Proposals to Develop a Low-Level Radioactive Waste Facility within the Region

  6. Documentation of currently operating low-level radioactive waste treatment systems: Shredder/compactor report

    International Nuclear Information System (INIS)

    1987-04-01

    The report documents a volume reduction waste treatment system for dry active waste, a shredder/compactor, and includes specifics on system selection, system descriptions, and detailed system performance data from three operational nuclear power plants. Data gathered from the plants have shown the ability to increase the density (thereby reducing the volume) of dry active waste to /approximately/50 pounds per cubic foot when using shredder/compactors and/approximately/80 to 100 pounds per cubic foot for shredder/high pressure compactors depending on reactor type and plant specific waste characteristics. An economic evaluation of various alternative volume reduction systems for dry active waste is also presented. The report presents a method on calculating the associated costs and paybacks achieved using various volume reduction alternatives. A 10 year cost (operating expenses and capital outlay for equipment) for a shredder/high pressure compactor is 1.85 million dollars for a BWR as compared to /approximately/3 million for a conventional drum compactor. The resulting payback for the shredder/compactor is as low as 1.7 years. The report provides generators of low level waste additional information to understand the nuances of shredder/compactor systems to select a system which best suits their individual needs. 4 refs., 6 figs., 10 tabs

  7. Low-level radioactive waste management: federal-state cooperation or confusion

    International Nuclear Information System (INIS)

    Choi, Y.H.

    1984-01-01

    This paper describes and analyzes the legislative history of the Low-Level Radioactive Waste Policy Act of 1980 and discusses major issues and problems resulting from the implementation of the Act. Five specific issues addressed in this paper are: what radioactive waste constitutes ''low-level radioactive waste'' within the meaning of the Act; what responsibilities, if any, do the states have to dispose of federal radioactive waste; what liabilities and protections govern the disposal of waste not generated in a disposal-site state (hereafter, the ''host state''); to what standards of care should generators of low-level radioactive waste be held, and by what authority should such generators be licensed and inspected; which disposal-site activities should be considered ''disposal,'' and which activities should be considered ''management,'' within the meaning of the Act, and what authority do the states have, under the Act, to engage in each activity, respectively. The federal government and state governments must solve these problems in order to implement the Act, and thus, to establish equity among the 50 states, and the interstate regional compacts

  8. The Treatment of Low Level Radioactive Liquid Waste Containing Detergent by Biological Activated Sludge Process

    International Nuclear Information System (INIS)

    Zainus Salimin

    2002-01-01

    The treatment of low level radioactive liquid waste containing persil detergent from laundry operation of contaminated clothes by activated sludge process has been done, for alternative process replacing the existing treatment by evaporation. The detergent concentration in water solution from laundry operation is 14.96 g/l. After rinsing operation of clothes and mixing of laundry water solution with another liquid waste, the waste water solution contains about ≤ 1.496 g/l of detergent and 10 -3 Ci/m 3 of Cs-137 activity. The simulation waste having equivalent activity of Cs-137 10 -3 Ci/m 3 , detergent content (X) 1.496, 0.748, 0.374, 0.187, 0.1496 and 0.094 g/l on BOD value respectively 186, 115, 71, 48, 19, and 16 ppm was processed by activated sludge in reactor of 18.6 l capacity on ambient temperature. It is used Super Growth Bacteria (SGB) 102 and SGB 104, nitrogen and phosphor nutrition, and aeration. The result show that bacteria of SGB 102 and SGB 104 were able to degrade the persil detergent for attaining standard quality of water release category B in which BOD values 6 ppm. It was need 30 hours for X ≤ 0.187 g/l, 50 hours for 0.187 < X ≤ 0.374 g/l, 75 hours for 0.374 < X ≤ 0.748, and 100 hours for 0.748 < X ≤ 1.496 g/l. On the initial period the bacteria of SGB 104 interact most quickly to degrade the detergent comparing SGB 102. Biochemical oxidation process decontaminate the solution on the decontamination factor of 350, Cs-137 be concentrate in sludge by complexing with the bacteria wall until the activity of solution be become very low. (author)

  9. Assessment of LANL solid low-level mixed waste documentation

    International Nuclear Information System (INIS)

    Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section and the Chemical Waste Operations Section capabilities regarding preparation and maintenance of appropriate criteria, plans, and procedures. Additionally, a comparison is made which identifies areas where these documents are not presently in existence or being fully implemented. The documents being assessed in this report are: Solid Low-Level Mixed Waste Acceptance Criteria, Solid Low-Level Mixed Waste Characterization Plan, Solid Low-Level Mixed waste Certification Plan, Solid Low-Level Mixed Waste Acceptance Procedures, Solid Low-Level Mixed Waste characterization Procedures, Solid Low-Level Mixed Waste Certification Procedures, Solid Low-Level Mixed Waste Training Procedures, and Solid Low-Level Mixed Waste Recordkeeping Requirements. This report compares the current status of preparation and implementation, by the Radioactive Waste Operations Section and the Chemical Waste Operations Section, of these documents to the requirements of DOE 5820.2A,. 40 CFR 260 to 270, and to recommended practice. Chapters 2 through 9 of the report presents the results of the comparison in tabular form for each of the documents being assessed, followed by narrative discussion of all areas which are perceived to be unsatisfactory or out of compliance with respect to the availability and content of the documents. The final subpart of each of the following chapters provides recommendations where documentation practices may be improved to achieve compliance or to follow the recommended practice

  10. Potential impact of DOE's performance objective for protection of inadvertent intruders on low-level waste disposals at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1992-01-01

    The Department of Energy's Order 5820.2A, Chapter III, specifies performance objectives for disposal of low-level radioactive waste which include limits on effective dose equivalent for inadvertent intruders. This paper investigates the potential impact of the performance objective for protection of inadvertent intruders on the acceptability of waste disposals in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL). The analysis is based on radionuclide inventories and waste volumes for recent disposals in SWSA 6 and calculated doses to an inadvertent intruder per unit concentration of radionuclides in disposed waste for assumed exposure scenarios

  11. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  12. Treatability studies for polyethylene encapsulation of INEL low-level mixed wastes. Final report

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Patel, B.R.; Kalb, P.D.; Adams, J.W.

    1995-10-01

    Treatability studies for polyethylene encapsulation of Idaho National Engineering Laboratory (INEL) low-level mixed wastes were conducted at Brookhaven National Laboratory. The treatability work, which included thermal screening and/or processibility testing, was performed on priority candidate wastes identified by INEL to determine the applicability of polyethylene encapsulation for the solidification and stabilization of these mixed wastes. The candidate wastes selected for this preliminary study were Eutectic Salts, Ion Exchange Resins, Activated Carbons, Freon Contaminated Rags, TAN TURCO Decon 4502, ICPP Sodium Bearing Liquid Waste, and HTRE-3 Acid Spill Clean-up. Thermal screening was conducted for some of these wastes to determine the thermal stability of the wastes under expected pretreatment and processing conditions. Processibility testing to determine whether the wastes were amenable to extrusion processing included monitoring feed consistency, extruder output consistency, waste production homogeneity, and waste form performance. Processing parameters were not optimized within the scope of this study. However, based on the treatability results, polyethylene encapsulation does appear applicable as a primary or secondary treatment for most of these wastes

  13. Electrochemical ion-exchange for active liquid waste treatment

    International Nuclear Information System (INIS)

    Turner, A.D.; Bridger, N.J.; Jones, C.P.

    1992-10-01

    Electrochemical ion exchange (EIX) has been firmly established as an effective process for the treatment of a wide range of liquid radioactive wastes. Both organic (for low specific activity streams) and inorganic systems (for higher activity wastes) have been demonstrated. A low cost current feeder electrode has also been developed, with a projected lifetime of > 6 years. While cation EIX can be used for the treatment of low salt content streams, combination with anion EIX to control the pH can extend its range of application. At the same time, it is also able to remove activity complexed in an anionic form. AEIX has also demonstrated its ability to remove radionuclides with insoluble hydroxides (eg Co, U and Pu) from both high and low salt content streams. EIX has been successfully scaled-up form the bench-top scale by increasing electrode size by a factor of 11, and then by operating five units in parallel. An improvement in performance of by a factor 3 was observed over a simple increase in area, due to the minimization of edge effects in the larger units. The most significant advantage of EIX is its compactness -with plant sizes of 1000). (Author)

  14. Derivation of Waste Acceptance Criteria for Low and Intermediate Level Waste in Surface Disposal Facility

    International Nuclear Information System (INIS)

    Gagner, L.; Voinis, S.

    2000-01-01

    In France, low- and intermediate-level radioactive wastes are disposed in a near-surface facility, at Centre de l'Aube disposal facility. This facility, which was commissioned in 1992, has a disposal capacity of one million cubic meters, and will be operated up to about 2050. It took over the job from Centre de la Manche, which was commissioned in 1969 and shut down in 1994, after having received about 520,000 cubic meters of wastes. The Centre de l'Aube disposal facility is designed to receive a many types of waste produced by nuclear power plants, reprocessing, decommissioning, as well as by the industry, hospitals and armed forces. The limitation of radioactive transfer to man and the limitation of personnel exposure in all situations considered plausible require limiting the total activity of the waste disposed in the facility as well as the activity of each package. The paper presents how ANDRA has derived the activity-related acceptance criteria, based on the safety analysis. In the French methodology, activity is considered as end-point for deriving the concentration limits per package, whereas it is the starting point for deriving the total activity limits. For the concentration limits (called here LMA) the approach consists of five steps: the determination of radionuclides important for safety with regards to operational and long-term safety, the use of relevant safety scenarios as a tool to derive quantitative limits, the setting of dose constraint per situation associated with scenarios, the setting of contribution factor per radionuclide, and the calculation of concentration activity limits. An exhaustive survey has been performed and has shown that the totality of waste packages which should be delivered by waste generators are acceptable in terms of activity limits in the Centre de l'Aube. Examples of concentration activity limits derived from this methodology are presented. Furthermore those limits have been accepted by the French regulatory body and

  15. The conditioning of low-level waste and of hazardous waste in Austria

    International Nuclear Information System (INIS)

    Krejsa, P.

    1988-01-01

    In 1978 in Austria some 50% (total 30%) of the people voted against the use of nuclear power for the production of electricity. Nevertheless radioactive wastes are produced in Austria from hospitals, industrial and research activities. The concept of waste management was therefore not altered. This paper discusses how, due to the low amounts of wastes (some 200 m 3 /y), of high costs of the waste treatment and of the concept of a central final disposal for radwastes the research center Seibersdorf was charged with the task to act as central storage and conditioning plant for the wastes arising from Austria

  16. Methodology for assessing performance of waste management systems

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Herzenberg, C.L.; Camasta, S.F.

    1988-01-01

    The newly revised draft DOE Order 5820.2, Chapter 3, requires that DOE low-level waste shall be managed on a systematic basis using the most appropriate combination of waste generation reduction, segregation, treatment, and disposal practices so that the radioactive components are contained and the overall cost effectiveness is minimized. This order expects each site to prepare and maintain an overall waste management systems performance assessment supporting the combination of waste management practices used in generation reduction segregation, treatment, packaging, storage, and disposal. A document prepared by EG and G Idaho, Inc. for the Department of Energy called Guidance for Conduct of Waste Management Systems Performance Assessment is specifically intended to provide the approach necessary to meet the systems performance assessment requirement of DOE Order 5820.2, Chapter 3, and other applicable state regulations dealing with LLW (low-level radioactive wastes). Methods and procedures are needed for assessing the performance of a waste management system. This report addresses this need. The purpose of the methodology provided in this report is to select the optimal way to manage particular sets of waste streams from generation to disposal in a safe and cost-effective manner, and thereby assist the DOE LLW mangers in complying with the DOE Order 5820.2, Chapter 3, and the associated guidance document

  17. Preliminary parametric performance assessment of potential final waste forms for alpha low-level waste at the Idaho National Engineering Laboratory. Revision 1

    International Nuclear Information System (INIS)

    Smith, T.H.; Sussman, M.E.; Myers, J.; Djordjevic, S.M.; DeBiase, T.A.; Goodrich, M.T.; DeWitt, D.

    1995-08-01

    This report presents a preliminary parametric performance assessment (PA) of potential waste disposal systems for alpha-contaminated, mixed, low-level waste (ALLW) currently stored at the Transuranic Storage Area of INEL. The ALLW, which contains from 10 to 100 nCi/g of transuranic (TRU) radionuclides, is awaiting treatment and disposal. The purpose of this study was to examine the effects of several parameters on the radiological-confinement performance of potential disposal systems for the ALLW. The principal emphasis was on the performance of final waste forms (FWFs). Three categories of FWF (cement, glass, and ceramic) were addressed by evaluating the performance of two limiting FWFs for each category. Performance at five conceptual disposal sites was evaluated to illustrate the effects of site characteristics on the performance of the total disposal system. Other parameters investigated for effects on receptor dose included inventory assumptions, TRU radionuclide concentration, FWF fracture, disposal depth, water infiltration rates, subsurface-transport modeling assumptions, receptor well location, intrusion scenario assumptions, and the absence of waste immobilization. These and other factors were varied singly and in some combinations. The results indicate that compliance of the treated and disposed ALLW with the performance objectives depends on the assumptions made, as well as on the FWF and the disposal site. Some combinations result in compliance, while others do not. The implications of these results for decision making relative to treatment and disposal of the INEL ALLW are discussed. The report compares the degree of conservatism in this preliminary parametric PA against that in four other PAs and one risk assessment. All of the assessments addressed the same disposal site, but different wastes. The report also presents a qualitative evaluation of the uncertainties in the PA and makes recommendations for further study

  18. Centralized cement solidification technique for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuda, Masami; Nishi, Takashi; Izumida, Tatsuo; Tsuchiya, Hiroyuki.

    1996-01-01

    A centralized cement solidification system has been developed to enable a single facility to solidify such low-level radioactive wastes as liquid waste, spent ion exchange resin, incineration ash, and miscellaneous solid wastes. Since the system uses newly developed high-performance cement, waste loading is raised and deterioration of waste forms after land burial prevented. This paper describes the centralized cement solidification system and the features of the high-performance cement. Results of full-scale pilot plant tests are also shown from the viewpoint of industrial applicability. (author)

  19. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  20. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  1. Overview of the performance objectives and scenarios of TWRS Low-Level Waste Disposal Program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. Assuming the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If the disposal system is not acceptable, then the waste will be subject to possible retrieval followed by some other disposal solution. Westinghouse Hanford Company is also planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing

  2. Greater-than-Class-C low-level radioactive waste management concepts

    International Nuclear Information System (INIS)

    Knecht, M.A.

    1988-01-01

    In 1986, Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 assigned to the Federal Government responsibility for the disposal of commercial greater-than-Class-C (GTCC) low-level radioactive waste (LLW). In 1987, DOE committed to Congress to accept GTCC LLW and provide storage and other waste management as necessary until disposal capacity is available. Current estimates are that about 6,000 m 3 of unpackaged GTCC LLW will be generated to the year 2020. Generators estimate that 100 m 3 of raw GTCC LLW might exceed planned storage capacity to the year 2020. This paper reports the activities of the National Low-Level Waste Program to manage GTCC low-level radioactive waste

  3. Cancer mortality and incidence survey around the Aube's low- and medium-activity radioactive waste storage site

    International Nuclear Information System (INIS)

    2010-01-01

    This report presents the main results of a survey performed in 2010 to describe the health status of the population around the Aube's low- and medium-activity radioactive waste storage site. The aim of this survey was to determine whether the frequencies of death and hospitalization on account of cancer are different for this population (15 km around the site) with respect to two reference populations (the population of the Champagne-Ardennes region and the French metropolitan population). Results of mortality, hospitalization, and lung cancer are presented under the form of maps and tables giving global data or data for males, females, adults, or children

  4. Low-activity waste envelope definitions for the TWRS Privatization Phase I Request For Proposal

    International Nuclear Information System (INIS)

    Patello, G.K.; Lauerhass, L.; Myers, R.L.; Wiemers, K.D.

    1996-11-01

    Radioactive waste has been stored in large underground storage tanks at the Hanford Site since 1944. Approximately 212 million liters of waste containing approximately 240,000 metric tons of processed chemicals and 177 mega-curies of radionuclides are now stored in 177 tanks. These caustic wastes are in the form of liquids, slurries, saltcakes, and sludge. In 1991, the Tank Waste Remediation System (TWRS) Program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, environmentally sound, and cost-effective manner. The Department of Energy (DOE) has believes that it is feasible to privatize portions of the TWRS Program. Under the privatization strategy embodied in the Request for Proposal (RFP), DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price contract. Phase I of the TWRS privatization strategy is a proof-of-concept/commercial demonstration-scale effort. The objectives of Phase I are to demonstrate the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process, and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. Three low-activity waste (LAW) envelopes are identified for Phase I of the privatization contract and are representative of the range of Hanford double-shelled tank (DST) waste

  5. Low-activity waste envelope definitions for the TWRS Privatization Phase I Request For Proposal

    Energy Technology Data Exchange (ETDEWEB)

    Patello, G.K.; Lauerhass, L.; Myers, R.L.; Wiemers, K.D.

    1996-11-01

    Radioactive waste has been stored in large underground storage tanks at the Hanford Site since 1944. Approximately 212 million liters of waste containing approximately 240,000 metric tons of processed chemicals and 177 mega-curies of radionuclides are now stored in 177 tanks. These caustic wastes are in the form of liquids, slurries, saltcakes, and sludge. In 1991, the Tank Waste Remediation System (TWRS) Program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, environmentally sound, and cost-effective manner. The Department of Energy (DOE) has believes that it is feasible to privatize portions of the TWRS Program. Under the privatization strategy embodied in the Request for Proposal (RFP), DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price contract. Phase I of the TWRS privatization strategy is a proof-of-concept/commercial demonstration-scale effort. The objectives of Phase I are to demonstrate the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process, and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. Three low-activity waste (LAW) envelopes are identified for Phase I of the privatization contract and are representative of the range of Hanford double-shelled tank (DST) waste.

  6. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  7. Background information for the development of a low-level waste performance assessment methodology

    International Nuclear Information System (INIS)

    Shipers, L.R.

    1989-12-01

    This document identifies and describes the potential postclosure pathways of radionuclide release, migration, and exposure from low-level radioactive waste disposal facilities. Each pathway identified is composed of a combination of migration pathways (air, surface water, ground water, food chain) and exposure pathways (direct gamma, inhalation, ingestion, surface contact). The pathway identification is based on a review and evaluation of existing information, and not all pathways presented in the document would necessarily be of importance at a given low-level waste disposal site. This document presents pathways associated with undisturbed (ground water, gas generation), naturally disturbed (erosion, bathtubbing, earth creep, frost heave, plant and animal intruder), and inadvertent intruder (construction, agriculture) scenarios of a low-level waste disposal facility. 20 refs., 1 fig

  8. International co-ordinated research project on low and intermediate level waste package performance

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, R. [International Atomic Energy Agency IAEA, Vienna (Austria)

    2001-07-01

    As part of IAEA's mandate to facilitate the transfer and exchange of information amongst Member States, the Agency is currently coordinating an international R and D project, involving 12 developed and developing countries, on Performance of Low and Intermediate Level Waste Packages under Disposal Conditions. This paper will review the current status of the Coordinated Research Project (CRP) and summarize the key findings of the work completed to date within the context of the CRP in the participating Member States. (author)

  9. International co-ordinated research project on low and intermediate level waste package performance

    International Nuclear Information System (INIS)

    Dayal, R.

    2001-01-01

    As part of IAEA's mandate to facilitate the transfer and exchange of information amongst Member States, the Agency is currently coordinating an international R and D project, involving 12 developed and developing countries, on Performance of Low and Intermediate Level Waste Packages under Disposal Conditions. This paper will review the current status of the Coordinated Research Project (CRP) and summarize the key findings of the work completed to date within the context of the CRP in the participating Member States. (author)

  10. Confirmation tests of construction method and initial performance quality for low permeable engineered barrier in side part of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Yamada, Atsuo; Chijimatsu, Masakazu; Akiyama, Yoshihiro; Komine, Hideo; Iizuka, Atsushi

    2016-01-01

    As for the low permeable layer, important functions are expected as an engineered barrier of radioactive waste disposal for low-level waste with comparatively high radiation levels. On examining the construction methods of this low permeable layer, it is important to confirm the possibility of the construction in the conditions similar to the actual constructed conditions with a true scale size. Therefore, the construction examination for the side part of the low permeable layer by bentonite and the performance check test of the low permeable layer were carried out. The result of the construction examination showed that the possibility of the construction were confirmed, and the result of performance check test showed that it was possible to ensure the required performance of the low permeable layer, such as hydraulic conductivity. (author)

  11. Spanish experience in managing low and intermediate activity radioactive wastes

    International Nuclear Information System (INIS)

    Granero, J.J.

    1986-01-01

    The Spanish experience in management of low and intermediated level radioactive wastes is presented. The radioactive wastes stored come from research reactors, nuclear power plants, nuclear fuel cycle, scientific research, radiodiagnostic and medical applications. The commonest method is incorporation in cement inside special drums, even though some facilities use processes based on urea formal dehyde and on asphalt. Transport of the wastes is carried out by private undertakings and the Nuclear Energy Board. The sites used for storing are temporary in nature. The wastes produced by nuclear power plants are stored on site, with those processed by the Nuclear Energy Board are taken to a province of Cordoba. The National Company ENRESA for managing of all kinds of wastes was created. The Spanish legislation on this subject and the research being carried out by Spain itself and in cooperation with other States, are described. (Author) [pt

  12. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M. [eds.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  13. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site

  14. Immobilization of simulated low and intermediate level waste in alkali-activated slag-fly ash-metakaolin hydroceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wjin761026@163.com [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Wang, Jun-xia; Zhang, Qin [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Li, Yu-xiang [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China)

    2016-04-15

    Highlights: • Evaluation of the suitability of ASFMH for solidifying simulated S-LILW. • The introduction of S-LILW avails forming zeolitic phases of ASFMH waste forms. • The ASFMH waste forms have low leachability and high compressive strength. - Abstract: In the current study, the alkali-activated slag-fly ash-metakaolin hydroceramic (ASFMH) waste forms for immobilizing simulated low and intermediate level waste (S-LILW) were prepared by hydrothermal process. The crystalline phase compositions, morphology, compressive strength and aqueous stability of S-LILW ASFMH waste forms were investigated. The results showed that the main crystalline phases of S-LILW ASFMH waste forms were analcime and zeolite NaP1. The changes of Si/Al molar ratio (from 1.7 to 2.2) and Ca/Al molar ratio (from 0.15 to 0.35) had little effect on the phase compositions of S-LILW ASFMH waste forms. However, the hydrothermal temperature, time as well as the content of S-LILW (from 12.5 to 37.5 wt%) had a major impact on the phase compositions. The compressive strength of S-LILW ASFMH waste forms was not less than 20 MPa when the content of S-LILW reached 37.5 wt%. In addition, the aqueous stability testing was carried out using the standard MCC-1 static leach test method; the normalized elemental leach rates of Sr and Cs were fairly constant in a low value below 5 × 10{sup −4} g m{sup −2} d{sup −1} and 3 × 10{sup −4} g m{sup −2} d{sup −1} after 28 days, respectively. It is indicated that ASFMH waste form could be a potential host for safely immobilizing LILW.

  15. A performance assessment methodology for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Deering, L.R.; Kozak, M.W.

    1990-01-01

    To demonstrate compliance with the performance objectives governing protection of the general population in 10 CFR 61.41, applicants for land disposal of low-level radioactive waste are required to conduct a pathways analysis, or quantitative evaluation of radionuclide release, transport through environmental media, and dose to man. The Nuclear Regulatory Commission staff defined a strategy and initiated a project at Sandia National Laboratories to develop a methodology for independently evaluating an applicant's analysis of postclosure performance. This performance assessment methodology was developed in five stages: (1) identification of environmental pathways, (2) ranking, the significance of the pathways, (3) identification and integration of models for pathway analyses, (4) identification and selection of computer codes and techniques for the methodology, and (5) implementation of the codes and documentation of the methodology. The final methodology implements analytical and simple numerical solutions for source term, ground-water flow and transport, surface water transport, air transport, food chain, and dosimetry analyses, as well as more complex numerical solutions for multidimensional or transient analyses when more detailed assessments are needed. The capability to perform both simple and complex analyses is accomplished through modular modeling, which permits substitution of various models and codes to analyze system components

  16. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  17. The Evolution of Low-Level Radioactive Waste (LLW) Disposal Practices at the Savannah River Site Coupled with Vigorous Stakeholder Interaction

    International Nuclear Information System (INIS)

    Goldston, W. T.; Wilhite, E. L.; Cook, J. R.; Sauls, V. W.

    2002-01-01

    Low-level radioactive waste (LLW) disposal practices at SRS evolved from trench disposal with little long-term performance basis to disposal in robust concrete vaults, again without modeling long-term performance. Now, based on an assessment of long-term performance of various waste forms and methods of disposal, the LLW disposal program allows for a ''smorgasbord'' of various disposal techniques and waste forms, all modeled to ensure long-term performance is understood. New disposal techniques include components-in-grout, compaction/volume reduction prior to disposal, and trench disposal of extremely low activity waste. Additionally, factoring partition coefficient (Kd) measurements based on waste forms has been factored into performance models. This paper will trace the development of the different disposal methods, and the extensive public communications effort that resulted in endorsement of the changes by the SRS Citizens Advisory Board

  18. Unit cell modeling in support of interim performance assessment for low level tank waste disposal

    International Nuclear Information System (INIS)

    Kline, N.W.

    1996-01-01

    A unit cell model is used to simulate the base analysis case and related sensitivity cases for the interim performance assessment of low level tank waste disposal. Simulation case results are summarized in terms of fractional contaminant release rates to the vadose zone and to the water table at the unconfined aquifer. Results suggest that the crushed glass water conditioning layer at the top of the facility and the chemical retardation pad at the bottom of the facility can be important components of the facility. Results also suggest that the release rates to the water table are dominated by the release rate from the waste form

  19. Historic low-level radioactive waste federal policies, programs and oversight

    International Nuclear Information System (INIS)

    Blanchette, M.; Kenney, J.; Zelmer, B.

    2011-01-01

    the federal government. Through the Ongoing Waste program, the LLRWMO supports NRCan in its development and implementation of national policies and strategies for the disposal of wastes and in meeting its commitment to international organizations such as the International Atomic Energy Agency. The Information program addresses public information needs related to specific historic waste projects and to low-level radioactive waste management in general. The PHAI MO was established in 2009 to perform similar activities as the LLRWMO but to focus solely on managing the clean-up of historic waste located in the Port Hope area where over 90% of Canada's known historic waste is located. The clean-up is being addressed through Canada's Port Hope Area Initiative (PHAI). The mandate of the PHAI MO to manage the implementation of the PHAI will extend through the completion of Phase 2 of the PHAI. The PHAI MO is a tripartite organization, established within AECL and involving the participation of Public Works and Government Services Canada and NRCan. It is accountable to a Steering Committee, chaired by NRCan, which provides strategic direction. The PHAI MO activities are carried out under two primary projects -- the Port Hope Project and the Port Granby Project. In addition to the construction of long-term waste management facilities and the remediation of sites contaminated with historic waste its responsibilities also include delivery of various community-related programs established under the PHAI An overview of the historic waste program activities managed on behalf of the federal government through these organizations in the Port Hope area, the Greater Toronto Area, in Fort McMurray, Alberta and along the Northern Transportation Route is provided. (author)

  20. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1986-01-01

    Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt %), activated charcoal (6 wt %), synthetic zeolite (20 wt %), and soil (73 wt %) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 refs., 6 figs., 3 tabs

  1. Prestudy of final disposal of long-lived low and intermediate level waste

    International Nuclear Information System (INIS)

    Wiborgh, M.

    1995-01-01

    The repository for long-lived low and intermediate level waste, SFL 3-5, is foreseen to be located adjacent to the deep repository for spent encapsulated fuel, SFL 2. The SFL 3-5 repository comprises of three repository parts which will be used for the different categories of waste. In this report the work performed within a pre-study of the SFL 3-5 repository concept is summarised. The aim was to make a first preliminary and simplified assessment of the near-field as a barrier to radionuclide dispersion. A major task has been to compile information on the waste foreseen to be disposed of in SFL 3-5. The waste comprises of; low and intermediate level waste from Studsvik, operational waste from the central interim storage for spent fuel, CLAB, and the encapsulation plant, decommissioning waste from these facilities, and core components and internal parts from the reactors. The total waste volume has been estimated to about 25000 m 3 . The total activity content at repository closure is estimated to be about 1 ·10 17 Bq in SFL 3-5. At repository closure the short-lived radionuclides, for example Co-60 and Fe-55, have decayed considerably and the activity is dominated by nickel isotopes in the metallic waste from the reactors, to be disposed of in SFL 5. However, other radionuclides may be more or equally important from a safety point of view, e.g cesium-isotopes and actinides which are found in largest amounts in the SFL 3 waste. A first evaluation of the long term performance or the SFL 3-5 repository has been made. A systematic methodology for scenario formulation was tested. The near-field release of contaminants was calculated for a selected number of radionuclides and chemo-toxic elements. The radionuclide release calculations revealed that Cs-137 and Ni-63 would dominate the annual release from all repository parts during the first 1000 years after repository closure and that Ni-59 would dominate at longer times

  2. Prestudy of final disposal of long-lived low and intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wiborgh, M [ed.; Kemakta Konsult AB., Stockholm (Sweden)

    1995-01-01

    The repository for long-lived low and intermediate level waste, SFL 3-5, is foreseen to be located adjacent to the deep repository for spent encapsulated fuel, SFL 2. The SFL 3-5 repository comprises of three repository parts which will be used for the different categories of waste. In this report the work performed within a pre-study of the SFL 3-5 repository concept is summarised. The aim was to make a first preliminary and simplified assessment of the near-field as a barrier to radionuclide dispersion. A major task has been to compile information on the waste foreseen to be disposed of in SFL 3-5. The waste comprises of; low and intermediate level waste from Studsvik, operational waste from the central interim storage for spent fuel, CLAB, and the encapsulation plant, decommissioning waste from these facilities, and core components and internal parts from the reactors. The total waste volume has been estimated to about 25000 m{sup 3}. The total activity content at repository closure is estimated to be about 1 {center_dot}10{sup 17} Bq in SFL 3-5. At repository closure the short-lived radionuclides, for example Co-60 and Fe-55, have decayed considerably and the activity is dominated by nickel isotopes in the metallic waste from the reactors, to be disposed of in SFL 5. However, other radionuclides may be more or equally important from a safety point of view, e.g cesium-isotopes and actinides which are found in largest amounts in the SFL 3 waste. A first evaluation of the long term performance or the SFL 3-5 repository has been made. A systematic methodology for scenario formulation was tested. The near-field release of contaminants was calculated for a selected number of radionuclides and chemo-toxic elements. The radionuclide release calculations revealed that Cs-137 and Ni-63 would dominate the annual release from all repository parts during the first 1000 years after repository closure and that Ni-59 would dominate at longer times.

  3. Performance evaluation and operational experience with a semi-automatic monitor for the radiological characterization of low-level wastes

    International Nuclear Information System (INIS)

    Davey, E.C.; Csullog, G.W.

    1987-03-01

    Chalk River Nuclear Laboratories (CRNL) have undertaken a Waste Disposal Project to co-ordinate the transition from the current practice of interim storage to permanent disposal for low-level radioactive wastes (LLW). The strategy of the project is to classify and segregate waste segments according to their hazardous radioactive lifetimes and to emplace them in disposal facilities engineered to isolate and contain them. To support this strategy, a waste characterization program was set up to estimate the volume and radioisotope inventories of the wastes managed by CRNL. A key element of the program is the demonstration of a non-invasive measurement technique for the isotope-specific characterization of solid LLW. This paper describes the approach taken at CRNL for the non-invasive assay of LLW and the field performance and early operational experience with a waste characterization monitor to be used in a waste processing facility

  4. Performance evaluation and operational experience with a semi-automatic monitor for the radiological characterization of low-level wastes

    International Nuclear Information System (INIS)

    Davey, E.C.; Csullog, G.W.

    1987-01-01

    Chalk River Nuclear Laboratories (CRNL) have undertaken a Waste Disposal Project to co-ordinate the transition from the current practice of interim storage to permanent disposal for low-level radioactive wastes (LLW). The strategy of the project is to classify and segregate waste segments according to their hazardous radioactive lifetimes and to emplace them in disposal facilities engineered to isolate and contain them. To support this strategy, a waste characterization program was set up to estimate the volume and radioisotope inventories of the wastes managed by CRNL. A key element of the program is the demonstration of a non-invasive measurement technique for the isotope-specific characterization of solid LLW. This paper describes the approach taken at CRNL for the non-invasive assay of LLW and the field performance and early operational experience with a waste characterization monitor to be used in a waste processing facility

  5. Management of low-level radioactive wastes around the world

    International Nuclear Information System (INIS)

    Lakey, L.T.; Harmon, K.M.; Colombo, P.

    1985-04-01

    This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls

  6. Low-level waste program technical strategy

    International Nuclear Information System (INIS)

    Bledsoe, K.W.

    1994-01-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite

  7. Aube storage center for very-low-level radioactive wastes. Annual report 2010

    International Nuclear Information System (INIS)

    2011-09-01

    The National Radioactive Waste Management Agency (Andra), was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. The Andra operates two storage centers in the Aube region (France): the center for short-lived low- and intermediate-level wastes, and the center for very-low-level radioactive wastes. This document is the 2010 activity report of the center for very-low-level radioactive wastes. It presents a review of the activities of the center: presentation of the installations, safety, security and radiation protection, environmental monitoring and effluents, public information and communication

  8. Scenarios of the TWRS low-level waste disposal program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  9. Selection of a computer code for Hanford low-level waste engineered-system performance assessment. Revision 1

    International Nuclear Information System (INIS)

    McGrail, B.P.; Bacon, D.H.

    1998-02-01

    Planned performance assessments for the proposed disposal of low-activity waste (LAW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. The available computer codes with suitable capabilities at the time Revision 0 of this document was prepared were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical processes expected to affect LAW glass corrosion and the mobility of radionuclides. This analysis was repeated in this report but updated to include additional processes that have been found to be important since Revision 0 was issued and to include additional codes that have been released. The highest ranked computer code was found to be the STORM code developed at PNNL for the US Department of Energy for evaluation of arid land disposal sites

  10. Considerations on the activity concentration determination method for low-level waste packages and nuclide data comparison between different countries

    International Nuclear Information System (INIS)

    Kashiwagi, M.; Mueller, W.

    2000-01-01

    In low-level waste disposal, acceptable activity concentration limits are regulated for individual nuclides and groups of nuclides according to the conditions of each disposal site. Such regulated limits principally concern total alpha and beta /gamma activity as well as nuclides such as C-14, Ni-63, and Pu-238 which are long-lived and difficult to measure (hereinafter referred to as difficult-to-measure nuclides). Before waste packages are transported to the disposal site, the activities or activity concentrations of the regulated nuclides and groups of nuclides in the waste packages must be assessed and declared. A generally applicable theoretical method to determine these activities is lacking at present. Therefore, to meet this requirement, for NPP waste each country independently samples actual waste and carries out radiochemical analyses on these samples. The activity concentrations of difficult-to-measure nuclides are then determined by statistical correlation of the measured data between difficult-to-measure nuclides and Co-60 and Cs-137 which are measurable from outside the waste packages (hereinafter referred to as key nuclides). This method is called 'Scaling Factor Method'. It is widely adopted as a method for determining the activity concentrations of the limited nuclides in low-level waste packages from NPP, and it is also approved by responsible authorities in the respective country. In the past, each country independently determined scaling factors based on measurements on samples from the local NPPs. In the first part of this study, the possibility of an international scaling factor assessment using a database integrating data from different countries was studied by comparing radiochemical analysis data between Germany, Japan, and the United States. These countries have accumulated a large number of those nuclide data required to determine scaling factors. Statistical values such as correlation coefficients change with an accumulation of data. In

  11. Radioactive Demonstrations Of Fluidized Bed Steam Reforming As A Supplementary Treatment For Hanford's Low Activity Waste And Secondary Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  12. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    International Nuclear Information System (INIS)

    Ramsey, William Gene

    2013-01-01

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  13. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  14. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  15. Low level tank waste disposal study

    International Nuclear Information System (INIS)

    Mullally, J.A.

    1994-01-01

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site

  16. A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    Science.gov (United States)

    Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.

    2006-12-01

    For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need

  17. Glass optimization for vitrification of Hanford Site low-level tank waste

    International Nuclear Information System (INIS)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design

  18. Some aspects of low-level radioactive-waste disposal in the US

    International Nuclear Information System (INIS)

    Schweitzer, D.G.; Davis, R.E.

    1982-01-01

    This report summarizes the NRC supported Shallow Land Burial research program at Brookhaven National Laboraotry and its relationship to the proposed revised ruling on disposal of low level radioactive waste, 10 CFR Part 61. Section of the proposed regulation, which establish the new low level waste classification system and the performance objective placed on waste form, are described briefly. The report also summarizes the preliminary results obtained from the EPA program in which low level waste drums were retrieved from the Atlantic and Pacific Oceans

  19. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  20. International perspective on repositories for low level waste

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva

    2011-12-01

    Nuclear energy production gives rise to different types of radioactive waste. The use of nuclear isotopes within the research, industry and medical sectors also generates radioactive waste. To protect man and the environment from radiation the waste is isolated and contained by deposition in repositories. These repositories may have various designs regarding location, barriers etc depending on the potential danger of the waste. In Sweden, low- and intermediate level waste (LILW) is disposed of in the SFR repository in Forsmark. The repository is located 60 metres down into the bedrock under the bottom of the sea and covered by 6 metres of water. It is planned to extend SFR to accommodate decommissioning waste from the dismantling of the Swedish nuclear power facilities and also for the additional operation waste caused by the planned prolonged operation time. When planning the extension consultations will be carried out with the host municipality, authorities, organisations and general public. In planning the extension, SKB has performed a worldwide compilation of how other countries have, or plan to, handle the final disposal of similar wastes. The aim of this report is to give a brief description of LILW repositories worldwide; including general brief descriptions of many facilities, descriptions of the waste and the barriers as well as safety assessments for a few chosen repositories which represent different designs. The latter is performed, where possible, to compare certain features against the Swedish SFR. To provide a background and context to this study, international organisations and conventions are also presented along with internationally accepted principles regarding the management of radioactive waste. Similar to SFR, suitable locations for the repositories have, in many countries, been found at sites that already have, or used to have nuclear activities, such as reactor sites. Abandoned and disused mines, such as the salt mines in Germany, also

  1. International perspective on repositories for low level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva (SKB International AB (Sweden))

    2011-12-15

    Nuclear energy production gives rise to different types of radioactive waste. The use of nuclear isotopes within the research, industry and medical sectors also generates radioactive waste. To protect man and the environment from radiation the waste is isolated and contained by deposition in repositories. These repositories may have various designs regarding location, barriers etc depending on the potential danger of the waste. In Sweden, low- and intermediate level waste (LILW) is disposed of in the SFR repository in Forsmark. The repository is located 60 metres down into the bedrock under the bottom of the sea and covered by 6 metres of water. It is planned to extend SFR to accommodate decommissioning waste from the dismantling of the Swedish nuclear power facilities and also for the additional operation waste caused by the planned prolonged operation time. When planning the extension consultations will be carried out with the host municipality, authorities, organisations and general public. In planning the extension, SKB has performed a worldwide compilation of how other countries have, or plan to, handle the final disposal of similar wastes. The aim of this report is to give a brief description of LILW repositories worldwide; including general brief descriptions of many facilities, descriptions of the waste and the barriers as well as safety assessments for a few chosen repositories which represent different designs. The latter is performed, where possible, to compare certain features against the Swedish SFR. To provide a background and context to this study, international organisations and conventions are also presented along with internationally accepted principles regarding the management of radioactive waste. Similar to SFR, suitable locations for the repositories have, in many countries, been found at sites that already have, or used to have nuclear activities, such as reactor sites. Abandoned and disused mines, such as the salt mines in Germany, also

  2. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  3. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz.

    1996-04-01

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of 137 Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes

  4. Treatment needs for greater-than-Class C low-level wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Brouns, R.A.; Burkholder, H.C.

    1988-01-01

    Greater-than-Class C (GTCC) radioactive wastes are those low-level wastes that exceed the 10CFR61 limits for shallow-land burial but are not within the historical definition of high-level wastes (i.e., spent fuel and first-cycle reprocessing wastes). The GTCC category can include all transuranic (TRU) wastes, although for the purposes of this paper, contact-handled defense TRU wastes are excluded because of the major efforts in the past decade to prepare them for disposal at the Waste Isolation Pilot Plant (WIPP). Thus, the GTCC category includes all high-activity and remote-handled TRU wastes regardless of origin. This paper defines the need for treatment of existing and projected GTCC low-level radioactive wastes in the United States. The sources, characteristics, treatment considerations, and methods for treatment are reviewed

  5. Model for the separate collection of packaging waste in Portuguese low-performing recycling regions.

    Science.gov (United States)

    Oliveira, V; Sousa, V; Vaz, J M; Dias-Ferreira, C

    2018-06-15

    Separate collection of packaging waste (glass; plastic/metals; paper/cardboard), is currently a widespread practice throughout Europe. It enables the recovery of good quality recyclable materials. However, separate collection performance are quite heterogeneous, with some countries reaching higher levels than others. In the present work, separate collection of packaging waste has been evaluated in a low-performance recycling region in Portugal in order to investigate which factors are most affecting the performance in bring-bank collection system. The variability of separate collection yields (kg per inhabitant per year) among 42 municipalities was scrutinized for the year 2015 against possible explanatory factors. A total of 14 possible explanatory factors were analysed, falling into two groups: socio-economic/demographic and waste collection service related. Regression models were built in an attempt to evaluate the individual effect of each factor on separate collection yields and predict changes on the collection yields by acting on those factors. The best model obtained is capable to explain 73% of the variation found in the separate collection yields. The model includes the following statistically significant indicators affecting the success of separate collection yields: i) inhabitants per bring-bank; ii) relative accessibility to bring-banks; iii) degree of urbanization; iv) number of school years attended; and v) area. The model presented in this work was developed specifically for the bring-bank system, has an explanatory power and quantifies the impact of each factor on separate collection yields. It can therefore be used as a support tool by local and regional waste management authorities in the definition of future strategies to increase collection of recyclables of good quality and to achieve national and regional targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Low-Level Waste Drum Assay Intercomparison Study

    International Nuclear Information System (INIS)

    Greutzmacher, K.; Kuzminski, J.; Myers, S. C.

    2003-01-01

    Nuclear waste assay is an integral element of programs such as safeguards, waste management, and waste disposal. The majority of nuclear waste is packaged in drums and analyzed by various nondestructive assay (NDA) techniques to identify and quantify the radioactive content. Due to various regulations and the public interest in nuclear issues, the analytical results are required to be of high quality and supported by a rigorous Quality Assurance (QA) program. A valuable QA tool is an intercomparison program in which a known sample is analyzed by a number of different facilities. While transuranic waste (TRU) certified NDA teams are evaluated through the Performance Demonstration Program (PDP), low-level waste (LLW) assay specialists have not been afforded a similar opportunity. NDA specialists from throughout the DOE complex were invited to participate in this voluntary drum assay intercomparison study that was organized and facilitated by the Solid Waste Operations and the Safeguards Science and Technology groups at the Los Alamos National Laboratory and by Eberline Services. Each participating NDA team performed six replicate blind measurements of two 55-gallon drums with relatively low-density matrices (a 19.1 kg shredded paper matrix and a 54.4 kg mixed metal, rubber, paper and plastic matrix). This paper presents the results from this study, with an emphasis on discussing the lessons learned as well as desirable follow up programs for the future. The results will discuss the accuracy and precision of the replicate measurements for each NDA team as well as any issues that arose during the effort

  7. B Plant low level waste system integrity assessment report

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-09-01

    This document provides the report of the integrity assessment activities for the B Plant low level waste system. The assessment activities were in response to requirements of the Washington State Dangerous Waste Regulations, Washington Administrative Code (WAC), 173-303-640. This integrity assessment report supports compliance with Hanford Federal Facility Agreement and Consent Order interim milestone target action M-32-07-T03

  8. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-01-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at Hanford in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of 10, 3 M deep by 1.8 M diameter, closed-bottomed lysimeters around a central 4 M deep by 4 M diameter instrument caisson. Commercial cement and dow polymer waste samples were removed from 210 L drums and placed in the 1.8 M diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility this year. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are being automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste streams

  9. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  10. Michigan State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Michigan State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Michigan. The profile is the result of a survey of NRC licensees in Michigan. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the discussion of relevant government agencies and activities, all of which may impact waste management practices in Michigan

  11. Illinois State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Illinois State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Illinois. The profile is the result of a survey of NRC licensees in Illinois. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Illinois

  12. Initial integration of accident safety, waste management, recycling, effluent, and maintenance considerations for low-activation materials

    International Nuclear Information System (INIS)

    Piet, S.J.; Herring, J.S.; Cheng, E.T.; Fetter, S.

    1991-01-01

    A true low-activation material should ideally achieve all of the following objectives: 1. The possible prompt dose at the site boundary from 100% release of the inventory should be <2 Sv (200 rem); hence, the design would be inherently safe in that no possible accident could result in prompt radiation fatalities. 2. The possible cancers from realistic releases should be limited such that the accident risk is <0.1%/yr of the existing background cancer risk to local residents. This includes consideration of elemental volatility. 3. The decay heat should be limited so that active mitigative measures are not needed to protect the investment from cooling transients; hence, the design would be passively safe with respect to decay heat. 4. Used materials could be either recycled or disposed of as near- surface waste. 5. Hands-on maintenance should be possible around coolant system piping and components such as the heat exchanger. 6. Effluent of activation products should be minor compared to the major challenge of limiting tritium effluents. The most recent studies in these areas are used to determine which individual elements and engineering materials are low activation. Grades from A (best) to G (worst) are given to each element in the areas of accident safety, recycling, and waste management. Structure/fluid combinations are examined for low-activation effluents and out-of-blanket maintenance. The lowest activation structural materials are silicon carbide, vanadium alloys, and ferritic steels. Impurities and minor alloying constituents must be carefully considered. The lowest activation coolants are helium, water, FLiBe, and lithium. The lowest activation breeders are lithium, lithium oxide, lithium silicate, and FLiBe. Designs focusing on these truly low-activation materials will help achieve the excellent safety and environmental potential of fusion energy

  13. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-09-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford site near Richland, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at the Hanford site in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of ten 3-m-deep by 1.8-m-diameter, closed-bottom lysimeters around a central instrument caisson, 4 m in diameter. Commercial cement and vinyl ester-styrene waste samples were removed from 210-L drums and placed in the 1.8-m-diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility in 1984. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste forms, concentrations of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste steams. 8 references, 3 figures, 5 tables

  14. Shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Daniel, D.E.

    1983-01-01

    Low-level radioactive waste has been produced since the early 1940's. Most of it has been buried in shallow pits at 11 existing sites. Several of the existing sites have performed poorly. Inability to control flow of surface and ground water into and out of disposal pits has been the most important problem. Lack of attention to design of earthen covers over the waste and improper emplacement of the waste in the pits have also contributed to poor performance. Several steps are recommended for improving disposal practices: (1) Waste settlement can be minimized by stacking wastes neatly into pits rather than dumping them randomly; (2) the earthen cover can be made to perform better by making it thicker and by maintaining it properly; and (3) groundwater contamination can be minimized by siting disposal facilities at locations with favorable geohydrologic characteristics. In addition, improved designs are needed for earthen covers, and technology for predicting ground water contamination in the saturated/unsaturated soils that underlie the waste also needs improvement

  15. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  16. Method to determine the activity concentration and total activity of radioactive waste

    International Nuclear Information System (INIS)

    Angeles C, A.

    2001-02-01

    A characteristic system of radioactive waste is described to determine the concentration of radionuclides activity and the total activity of bundles of radioactive waste. The system this integrated by three subsystems: - Elevator of drums. - Electromechanics. - Gamma spectroscopy. In the system it is analyzed waste of issuing gamma specifically, and this designed for materials of relative low density and it analyzes materials of cylindrical recipients

  17. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Science.gov (United States)

    2010-07-01

    ... waste combustion unit at your plant. Include supporting calculations. (b) Records of low carbon feed... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...

  18. Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Dobbs, S.; Nine, B.J.

    1980-01-01

    Trench leachate samples collected anoxically from shallow-land, low-level radioactive waste disposal sites were analyzed for total aerobic and anaerobic populations, sulfate reducers, denitrifiers, and methanogens. Among the several aerobic and anaerobic bacteria isolated, only Bacillus sp., Pseudomonas sp., Citrobacter sp., and Clostridium sp. were identified. Mixed bacterial cultures isolated from the trench leachates were able to grow anaerobically in trench leachates, which indicates that the radionuclides and organic chemicals present were not toxic to these bacteria. Changes in concentrations of several of the organic constituents of the waste leachate samples were observed due to anaerobic microbial activity. Growth of a mixed culture of trench-water bacteria in media containing a mixture of radionuclides, 60 Co, 85 Sr, and 134 137 Cs, was not affected at total activity concentrations of 2.6 x 10 2 and 2.7 x 10 3 pCi/ml

  19. Performance-assessment progress for the Rozan low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smietanski, L.; Mitrega, J.; Frankowski, Z. [Polish Geological Institute, Warsaw (Poland)] [and others

    1995-12-31

    The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangered unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.

  20. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    International Nuclear Information System (INIS)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-01-01

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  1. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  2. Field lysimeter facility for evaluating the performance of commercial solidified low-level waste

    International Nuclear Information System (INIS)

    Walter, M.B.; Graham, M.J.; Gee, G.W.

    1984-11-01

    Analyzing the potential migration of radionuclides from sites containing solid low-level wastes requires knowledge of contaminant concentrations in the soil solution surrounding the waste. This soil solution concentration is generally referred to as the source term and is determined by such factors as the concentration of radionuclides in the solid waste, the rate of leachate formation, the concentration of dissolved species in the leachate, any solubility reactions occurring when the leachate contacts the soil, and the rate of water flow in the soil surrounding the waste. A field lysimeter facility established at the Hanford site is being used to determine typical source terms in arid climates for commercial low-level wastes solidifed with cement, Dow polymer (vinyl ester-styrene), and bitumen. The field lysimeter facility consists of 10, 3-m-deep by 1.8-m-dia closed-bottom lysimeters situated around a 4-m-deep by 4-m-dia central instrument caisson. Commercial cement and Dow polymer waste samples were removed from 210-L drums and placed in 8 of the lysimeters. Two bitumen samples are planned to be emplaced in the facility's remaining 2 lysimeters during 1984. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste. Suction candles (ceramic cups) placed around the waste forms will be used to periodically collect soil-water samples for chemical analysis. Meteorological data, soil moisture content, and soil temperature are automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle-size distribution, and distributions and concentrations of radionuclides in the waste forms. 11 references, 12 figures, 5 tables

  3. Treatment of low- and intermediate-level solid radioactive wastes

    International Nuclear Information System (INIS)

    1983-01-01

    One of the essential aims in the waste management is to reduce as much as possible the waste volumes to be stored or disposed of, and to concentrate and immobilize as much as possible the radioactivity contained in the waste. This document describes the treatment of low- and intermediate-level solid waste prior to its conditioning for storage and disposal. This report aims primarily at compiling the experience gained in treating low- and intermediate-active solid wastes, one of the major waste sources in nuclear technology. Apart from the description of existing facilities and demonstrated handling schemes, this report provides the reader with the basis for a judgement that facilitates the selection of appropriate solutions for a given solid-waste management problem. It thus aims at providing guidelines in the particular field and indicates new promising approaches that are actually under investigation and development

  4. Low-level radioactive waste management at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Rock, C.M.; Shearer, T.L.; Nelson, R.A.

    1997-01-01

    This paper is an overview of the low-level radioactive waste management practices and treatment systems at Argonne National Laboratory - East (ANL-E). It addresses the systems, processes, types of waste treated, and the status and performance of the systems. ANL-E is a Department of Energy laboratory that is engaged in a variety of research projects, some of which generate radioactive waste, in addition a significant amount of radioactive waste remains from previous projects and decontamination and decommissioning of facilities where this work was performed

  5. Low level waste management at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rodgers, A.D.; Truitt, D.J.; Logan, J.A.; Brown, R.M.

    1986-02-01

    EG and G Idaho, Inc. is the lead contractor for the Department of Energy (DOE) National Low Level Waste Management Program, established in 1979. In this role, the company uses its waste management expertise to provide management and technical direction to support the disposal of low-level waste (LLW) in a manner that protects the environment and the public health and safety while improving efficiency and cost-effectiveness. Program activities are divided into two areas: defense-related and commercial nuclear reactor programs. The defense program was established to develop technology improvements, provide technology transfer, and to ensure a more efficient and uniform system for low level waste disposal. To achieve the program's goals, it is necessary to improve, document, and, where necessary, develop new methods for waste generation reduction, waste treatment, shallow-land burial, greater confinement disposal, and measures to correct existing site deficiencies. The commercial low level waste management program provides support to assist the states in developing an effective national low level waste management system and provides technical assistance for siting of regional commercial LLW disposal sites. The program provides technical and informational support to state officials, low level waste generators, managers, and facility operators to resolve low level waste problems and to improve the systems' overall effectiveness. Procedures are developed and documented and made available to commercial users through this program. Additional work is being conducted to demonstrate the stabilization and closure of low level radioactive waste disposal sites and develop the criteria and procedures for acceptance of such sites by the Department of Energy after closure has been completed. 7 refs., 6 figs., 1 tab

  6. Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance

    Directory of Open Access Journals (Sweden)

    Steven L. McGeehan

    2012-01-01

    Full Text Available Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment.

  7. Introduction to Envirocare of Utah's low activity radioactive waste disposal site located at Clive, Utah

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Envirocare of Utah was licensed by the state of Utah on February 2, 1988, to become fully operational to receive low-activity radioactive waste at its disposal site near Clive, Utah. This paper discusses the organization of the firm, political support, acceptable materials, benefits of the operation, site characteristics, construction, health physics program, and environmental program

  8. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  9. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    The Department of Energy's (DOE's) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE's obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option

  10. Low-impact sampling under an active solid low-level radioactive waste disposal unit using horizontal drilling technology

    International Nuclear Information System (INIS)

    Puglisi, C.V.; Vold, E.L.

    1995-01-01

    The purpose of this project was to determine the performance of the solid low-level radioactive waste (LLRW) disposal units located on a mesa top at TA-54, Area G, Los Alamos National Laboratory (LANL), Los Alamos, NM, and to provide in-situ (vadose zone) site characterization information to Area G's Performance Assessment. The vadose zone beneath an active disposal unit (DU 37), was accessed by utilizing low-impact, air-rotary horizontal drilling technology. Core samples were pulled, via wire-line core method, in 3 horizontal holes fanning out below DU 37 at approximately 5 foot intervals depending on recovery percentage. Samples were surveyed and prepared in-field following Environmental Restoration (ER) guidelines. Samples were transferred from the field to the CST-9 Radvan for initial radiological screening. Following screening, samples were delivered to CST-3 analytical lab for analyses including moisture content, 23 inorganics, 60 volatile organic compounds (VOC's), 68 semivolatile organic compounds (SVOC's), tritium, lead 210, radium 226 ampersand 228, cesium 137, isotopic plutonium, americium 241, strontium 90, isotopic uranium, and isotopic thorium. Other analyses included matric potential, alpha spectroscopy, gamma spectroscopy, and gross alpha/beta. The overall results of the analysis identified only tritium as having migrated from the DU. Am-241, Eu-152, and Pu-238 were possibly identified above background but the results are not definitive. Of all organics analysed for, only ethyl acetate was tentatively identified slightly above background. All inorganics were found to be well below regulatory limits. Based on the results of the above mentioned analyses, it was determined that Area G's disposal units are performing well and no significant liquid phase migration of contaminants has occurred

  11. Development of low-activation design method for reduction of radioactive waste (4). Development of low-activation cement

    International Nuclear Information System (INIS)

    Ichitsubo, Koki; Tanosaki, Takao; Miura, Keiichi; Tomotake, Hiroichi; Yamada, Kazunori; Fujita, Hideki; Kinno, Masaharu; Hasegawa, Akira

    2008-01-01

    When nuclear plants will reach to decommission stage, a huge amount of concrete should be disposed as radioactive waste. To reduce the amount of radioactive concrete, the most effective methodology is not to use the materials of high radionuclide content such as coal ash and blast furnace slag, and to use limestone as additives or aggregate. However, concrete uses Portland cement for hardening, therefore, it is difficult to reduce the amount of radioactive concrete unless radionuclide content in cement is reduced. So in this study, we tried to develop the new type of Low-activation cement by reducing of radionuclide as europium and cobalt. As a result, we could reduce the amount of europium and cobalt in cement significantly, and obtained the result that the new cements can reduce radioactivity to one-third or less against commercially Portland cement in Japan. (author)

  12. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    International Nuclear Information System (INIS)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the open-quotes as low as reasonably achievableclose quotes concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes

  13. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  14. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    International Nuclear Information System (INIS)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ''unpackaged'' volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste

  15. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  16. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    International Nuclear Information System (INIS)

    McGrail, B.P.; Mahoney, L.A.

    1995-10-01

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected to affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites

  17. Regulation of higher-activity NARM wastes by EPA

    International Nuclear Information System (INIS)

    Bandrowski, M.S.

    1988-01-01

    The US Environmental Protection Agency (EPA) is currently developing standards for the disposal of low-level radioactive waste (LLW). As part of this Standard, EPA is including regulations for the disposal of naturally occurring and accelerator-produced radioactive material (NARM) wastes not covered under the Atomic Energy Act (AEA). The regulations will cover only higher-activity NARM wastes, defined as NARM waste with specific activity exceeding two nanocuries per gram. The proposed regulations will specify that NARM wastes exceeding the above limits, except for specific exempted items, must be disposed of in regulated radioactive waste disposal facilities. The proposed EPA regulations for NARM wastes will be discussed, as well as the costs and benefits of the regulation, how it will be implemented by EPA, and the rationale for covering only higher-activity NARM wastes exceeding two nanocuries per gram

  18. Characterization of low and medium active wastes

    International Nuclear Information System (INIS)

    Saas, A.

    1993-01-01

    For several years now, research on raw or packaged waste characterization has been carried out in France. Qualitative or quantitative analysis are given of radionuclides present in already packaged waste (including badly packaged waste) or in unpackaged waste; as far as possible, evaluation of the main physico-mechanical and confinement characteristics

  19. Colorado State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Colorado State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Colorado. The profile is the result of a survey of NRC licensees in Colorado. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Colorado

  20. Texas State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

  1. Tennessee State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee.

  2. Florida State Briefing Book for low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

  3. California State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-12-01

    The California State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in California. The profile is the result of a survey of NRC licensees in California. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in California

  4. Massachusetts State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-01-01

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts

  5. Delaware State Briefing Book on low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Delaware State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Delaware. The profile is the result of a survey of NRC licensees in Delaware. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Delaware

  6. Massachusetts State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-12

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

  7. Utah State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  8. Indiana State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    Mitter, E.L.; Hume, R.D.; Briggs, H.R.; Feigenbaum, E.D.

    1981-01-01

    The Indiana State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Indiana. The profile is the result of a survey of NRC licensees in Indiana. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Indiana

  9. Kentucky State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky

  10. Hawaii State briefing book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Hawaii State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Hawaii. The profile is the result of a survey of NRC licensees in Hawaii. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Hawaii

  11. Georgia State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Georgia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Georgia. The profile is the result of a survey of NRC licensees in Georgia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Georgia

  12. Oklahoma State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Oklahoma State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oklahoma. The profile is the result of a survey of NRC licensees in Oklahoma. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oklahoma

  13. Louisiana State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Louisiana State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Louisiana. The profile is a result of a survey of NRC licensees in Louisiana. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Louisiana

  14. Georgia State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-01-01

    The Georgia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Georgia. The profile is the result of a survey of NRC licensees in Georgia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Georgia

  15. Wyoming State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  16. Kansas State Briefing Book on low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Kansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kansas. The profile is the result of a survey of radioactive material licensees in Kansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Kansas

  17. Vermont State Briefing Book on low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont

  18. Tennessee State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal Agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee

  19. Tennessee State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee

  20. Wisconsin State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin.

  1. Pennsylvania State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania.

  2. Mississippi State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.

  3. Alabama State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Alabama State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Alabama. The profile is the result of a survey of NRC licensees in Alabama. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Alabama

  4. Florida State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The Florida State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida

  5. Ohio State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio

  6. Oklahoma State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Oklahoma State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oklahoma. The profile is the result of a survey of NRC licensees in Oklahoma. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal cmmunications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oklahoma

  7. Arizona State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Arizona State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Arizona. The profile is the result of a survey of NRC licensees in Arizona. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Arizona

  8. Iowa State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Iowa State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Iowa. The profile is the result of a survey of NRC licensees in Iowa. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Iowa

  9. Wyoming State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming

  10. Washington State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  11. Arkansas State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Arkansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Arkansas. The profile is the result of a survey of NRC licensees in Arkansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Arkansas

  12. Vermont State Briefing Book on low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

  13. Connecticut State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The Connecticut State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Connecticut. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Connecticut. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Connecticut

  14. Wisconsin State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin

  15. Idaho State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Idaho State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Idaho. The profile is the result of a survey of NRC licensees in Idaho. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Idaho

  16. Virginia State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Virginia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Virginia. The profile is the result of a survey of NRC licensees in Virginia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Virginia

  17. Oregon State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon

  18. Washington State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington

  19. Mississippi State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi

  20. Arkansas State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Arkansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Arkansas. The profile is the result of a survey of NRC licensees in Arkansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Arkansas

  1. Florida State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida

  2. Texas State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas

  3. Utah State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah

  4. Ohio State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.

  5. Oregon State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon.

  6. Pennsylvania State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania

  7. Alternative techniques for low-level waste shallow land burial

    International Nuclear Information System (INIS)

    Levin, G.B.; Mezga, L.J.

    1983-01-01

    Experience to date relative to the shallow land burial of low-level radioactive waste (LLW) indicates that the physical stability of the disposal unit and the hydrologic isolation of the waste are the two most important factors in assuring disposal site performance. Disposal unit stability can be ensured by providing stable waste packages and waste forms, compacting backfill material, and filling the void spaces between the packages. Hydrologic isolation can be achieved though a combination of proper site selection, subsurface drainage controls, internal trench drainage systems, and immobilization of the waste. A generalized design of a LLW disposal site that would provide the desired long-term isolation of the waste is discussed. While this design will be more costly than current practices, it will provide additional confidence in predicted and reliability and actual site performance

  8. Update on low-level waste compacts and state agencies

    International Nuclear Information System (INIS)

    Tenan, M.; Rabbe, D.; Thompson, P.

    1995-01-01

    This article updates information on the following agencies involved in low-level radioactive wastes: Appalachian States Low-Level Radioactive Waste Commission; Central Interstate Low-Level radioactive Waste Commission; Central Midwest Interstate Low-Level radioactive Waste Compact; Massachusetts Low-Level radioactive Waste Management Board; Michigan Low-Level Radioactive Waste Authority; Midwest Interstate Low-Level Radioactive Waste Commission; New York State Low-Level Radioactive Waste Siting Commission; Northeast Interstate Low-Level Radioactive Waste Compact; Northwest Interstate Compact on Low-Level Radioactive Waste Management; Rocky Mountain Low-Level Radioactive Waste Board; Southeast Compact Commission for Low-Level Radioactive Waste Management;Southwest Low-Level Radioactive Waste Commission; Texas Low-Level Radioactive Waste Disposal Authority

  9. Aube's very-low-level waste storage Center. Annual report 2008

    International Nuclear Information System (INIS)

    2008-01-01

    After a presentation of the ANDRA (the French national Agency for radioactive waste management), its missions, its facilities, and its financing, this report reviews the activity of the very-low-activity level waste storage centre located in the boroughs of Morvilliers and La Chaise in the Aube district (France), the operation of which started in 2003. It briefly specifies the waste types and origins, its facilities, its operation data for 2008. It describes its safety, security, and radioprotection installations and actions, its environment monitoring activity, its actions for information transparency

  10. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1987-01-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite of clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 references, 6 figures, 3 tables

  11. Engineered sorbent barriers for low-level waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  12. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs

  13. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    International Nuclear Information System (INIS)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at 6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment

  14. Modeling and low-level waste management: an interagency workshop

    Energy Technology Data Exchange (ETDEWEB)

    Little, C.A.; Stratton, L.E. (comps.)

    1980-01-01

    The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop.

  15. Modeling and low-level waste management: an interagency workshop

    International Nuclear Information System (INIS)

    Little, C.A.; Stratton, L.E.

    1980-01-01

    The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop

  16. Guidelines for radiological performance assessment of DOE low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Case, M.J.; Otis, M.D.

    1988-07-01

    This document provides guidance for conducting radiological performance assessments of Department of Energy (DOE) low-level radioactive waste (LLW) disposal facilities. The guidance is specifically intended to provide the fundamental approach necessary to meet the performance assessment requirements. The document is written for LLW facility operators or other personnel who will manage the performance assessment task. The document is meant to provide guidance for conducting performance assessments in a generally consistent manner at all DOE LLW disposal facilities. The guidance includes a summary of performance objectives to be met by LLW disposal facilities (these objectives are derived from current DOE and other applicable federal regulatory guidelines); specific criteria for an adequate performance assessment and from which a minimum set of required calculations may be determined; recommendations of methods for screening critical components of the analysis system so that these components can be addressed in detail; recommendations for the selection of existing models and the development of site-specific models; recommendations of techniques for comparison of assessment results with performance objectives; and a summary of reporting requirements

  17. Waste Disposal: Long-term Performance Studies for Radioactive Waste Disposal and Hydrogeological Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Marivoet, J

    2000-07-01

    The main objectives of SCK-CEN's R and D programme on long-term performance studies are: (1) to develop a methodology and associated tools for assessing the long-term safety of geological disposal of all types of radioactive waste in clay formations and of the shallow-land burial of low-level waste; (2) to assess the performance and to identify the most influential elements of integrated repository systems for the disposal of radioactive waste; (3) to collect geological, piezometric and hydraulic data required for studying the hydrogeological system in north-eastern Belgium; (4) to develop a regional aquifer model for north-easter Belgium and to apply it in the performance assessments for the Mol site; (5) to test, verify and improve computer codes used in the performance assessment calculations of waste disposal concepts and contaminated sites (the computer codes simulate water flow and transport of radionuclides in engineered barriers, aquifers and contaminated sites). The scientific programme and achievements in 1999 are described.

  18. Development of a low-level waste risk methodology

    International Nuclear Information System (INIS)

    Fisher, J.E.; Falconer, K.L.

    1984-01-01

    A probabilistic risk assessment method is presented for performance evaluation of low-level waste disposal facilities. The associated program package calculates the risk associated with postulated radionuclide release and transport scenarios. Risk is computed as the mathematical product of two statistical variables: the dose consequence of a given release scenario, and its occurrence probability. A sample risk calculation is included which demonstrates the method. This PRA method will facilitate evaluation of facility performance, including identification of high risk scenarios and their mitigation via optimization of site parameters. The method is intended to be used in facility licensing as a demonstration of compliance with the performance objectives set forth in 10 CFR Part 61, or in corresponding state regulations. The Low-Level Waste Risk Methodology is being developed under sponsorship of the Nuclear Regulatory Commission

  19. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  20. Considerations for closure of low-level radioactive waste engineered disposal facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Proper stabilization and closure of low-level radioactive waste disposal facilities require detailed planning during the early stages of facility development. This report provides considerations for host States, compact regions, and unaffiliated States on stabilization and closure of engineered low-level radioactive waste and mixed waste disposal facilities. A time line for planning closure activities, which identifies closure considerations to be addressed during various stages of a facility's development, is presented. Current Federal regulatory requirements and guidance for closure and post-closure are outlined. Significant differences between host State and Federal closure requirements are identified. Design features used as stabilization measures that support closure, such as waste forms and containers, backfill materials, engineered barrier systems, and site drainage systems, are described. These design features are identified and evaluated in terms of how they promote long-term site stability by minimizing water infiltration, controlling subsidence and surface erosion, and deterring intrusion. Design and construction features critical to successful closure are presented for covers and site drainage. General considerations for stabilization and closure operations are introduced. The role of performance and environmental monitoring during closure is described

  1. Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment

    International Nuclear Information System (INIS)

    Becker, G.; Connolly, M.; McIlwain, M.

    1999-01-01

    The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types

  2. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    International Nuclear Information System (INIS)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., 108m Ag, 93 Mo, 36 Cl, 10 Be, 113m Cd, 121m Sn, 126 Sn, 93m Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., 14 C, 129 I, and 99 Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments

  3. Technology assessment guide for application of engineered sorbent barriers to low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.; Depner, J.P.

    1989-06-01

    An engineered sorbent barrier (ESB) uses sorbent materials (such as activated carbon or natural zeolites) to restrict migration of radionuclides from low-level waste sites. The permeability of the ESB allows moisture to pass while the sorbent material traps or absorbs contaminants. In contrast, waste sites with impermeable barriers could fill with water, especially those waste sites in humid climates. A sorbent barrier can be a simple, effective, and inexpensive method for restricting radionuclide migration. This report provides information and references to be used in assessing the sorbent barrier technology for low-level waste disposal. The ESB assessment is based on sorbent material and soil properties, site conditions, and waste properties and inventories. These data are used to estimate the thickness of the barrier needed to meet all performance requirements for the waste site. This document addresses the following areas: (1) site information required to assess the need and overall performance of a sorbent barrier; (2) selection and testing of sorbent materials and underlying soils; (3) use of radionuclide transport models to estimate the required barrier thickness and long-term performance under a variety of site conditions; (4) general considerations for construction and quality assurance; and (5) cost estimates for applying the barrier. 37 refs., 6 figs., 2 tabs.

  4. General safety guidelines for looking for a low mass activity-long life waste storage site

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this document is to define general guidelines which must be followed during the stages of search for a site and stages of design of a storage facility for low activity-long life radioactive wastes, in order to ensure its safety after closure. After having specified the considered wastes, geological shapes, and situations, this document defines the fundamental objective and the associated criteria (protection against chemical risk, radioprotection). It presents the design aspects related to safety (safety principles and functions, waste packages, public works engineering, geological environment, storage concepts). The last part deals with the safety demonstration after site closure which includes the control of some components, the assessment of disturbances in the storage facility or due to its presence, the taking of uncertainty and sensitivity studies into account, the influence of natural events

  5. Improving plant performance through efficient nuclear waste management - The French experience

    International Nuclear Information System (INIS)

    Peterson, C.H.

    1986-01-01

    This paper discusses high and low level waste management and its effect on Plant Performance. In France, high level waste policy is an improtant factor in plant performance. The LLW section of the paper discusses the role of French Industry organization as well as the benefits of standard plants with standard practices. The regulation of the production of waste and the waste processing by utilities is covered

  6. Minnesota State Briefing Book on low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Minnesota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Minnesota. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Minnesota conducted by the Minnesota Department of Health. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Minnesota

  7. Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype

    KAUST Repository

    Thu, Kyaw

    2013-10-01

    This paper discusses the performance analysis of an advanced adsorption desalination (AD) cycle with an internal heat recovery between the condenser and the evaporator. The AD cycle employs the adsorption-desorption principles to convert sea or brackish water into high-grade potable water with total dissolved solids (TDS) less than 10 ppm (mg/L) utilizing low-temperature heat source. The salient features of the AD cycle are the utilization of low temperature waste heat (typically 55 C to 85 C) with the employment of an environment-friendly silica gel/water pair and the low maintenance as it has no major moving parts other than the pumps and valves. For improved performance of the AD pilot plant, the internal heat recovery scheme between the condenser and evaporator has been implemented with a run-about water circuit between them. The efficacy of the scheme is analyzed in terms of key performance indicators such as the specific daily water production (SDWP) and the performance ratio (PR). Extensive experiments were performed for assorted heat source temperatures ranging from 70 C to 50 C. From the experiments, the SDWP of the AD cycle with the proposed heat recovery scheme is found to be 15 m3 of water per ton of silica gel that is almost twice that of the yield obtained by a conventional AD cycle for the same operation conditions. Another important finding of AD desalination plant is that the advanced AD cycle could still be operational with an inlet heat source temperature of 50 C and yet achieving a SDWP of 4.3 m3 - a feat that never seen by any heat-driven cycles. © 2013 Elsevier Ltd. All rights reserved.

  8. Vitrified waste form performance modeling applied to the treatment and disposal of mixed-waste sludge at the Savannah River Site

    International Nuclear Information System (INIS)

    Whited, A.R.; Fjeld, R.A.

    1998-01-01

    Vitrification, the conversion of source components into a solid amorphous glass matrix, has emerged as a viable treatment technology for low-level radioactive waste and mixed waste. To dispose of vitrified low-level waste at US Department of Energy facilities, site-specific radiological performance assessments must be conducted to demonstrate that waste glass satisfies performance objectives for environmental protection. More than 2,500 m 3 of F0006-listed low-level mixed-waste sludge stored in the Reactor Materials Department (M-Area) at the Savannah River Site (SRS) is scheduled for vitrification. This study evaluates the feasibility of on-site disposal of vitrified M-Area waste at SRS. Laboratory leaching tests that accelerate the glass corrosion process are currently the best indicators of vitrified waste form durability. A method to incorporate laboratory leaching data into performance assessments is presented. A screening-level performance assessments code is used to model trench disposal of M-Area waste glass. The allowable leach rate for vitrified M-Area waste is determined based on both a maximum radiological dose equivalent of 4 mrem/yr for the drinking water pathway and a maximum uranium concentration of 20 microg/ell in groundwater. The allowable leach rate is compared with published long-term leaching data for a wide range of waste glass compositions and test conditions. This analysis demonstrates that trench disposal of the waste glass is likely to meet applicable performance objectives if the glass is of above average durability compared with the reference set of glasses

  9. Aube storage center for short-lived low- and intermediate-level wastes. Annual report 2008

    International Nuclear Information System (INIS)

    2009-06-01

    The National Radioactive Waste Management Agency (Andra), was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. The Andra operates two storage centers in the Aube region (France): the center for short-lived low- and intermediate-level wastes, and the center for very-low-level radioactive wastes. This document is the 2008 activity report of the center for short-lived low- and intermediate-level wastes. It presents a review of the activities of the center: presentation of the installations, safety and radiation protection, events or incidents, environmental monitoring, wastes management, public information

  10. Development of a unit cell model for interim performance assessment of vitrified low level waste disposal

    International Nuclear Information System (INIS)

    Kline, N.W.

    1995-09-01

    The unit cell modeling approach has been developed and used in analysis of some design options for a vitrified low level waste disposal facility. The unit cell modeling approach is likely to be useful in interim performance assessment for the facility. The present unit cell model will probably need to be refitted in terms of some model parameters for the latter purpose. Two present disposal facility concepts differ in the length of a capillary barrier proposed to limit effective recharge through the top of the facility. Results of the study summarized herein suggest design of a capillary barrier which can reduce a recharge rate of 0.1 cm/yr by one or two orders of magnitude seems feasible for both concepts. A benchmark comparison of the unit cell model against a full facility model shows comparable predictive accuracy in less than one percent of the computer time. Results suggest that model parameters include capillary barrier performance, inter-canister spacing, rate of moisture withdrawal due to glass corrosion, contaminant inventory, and the well interceptor factor. It is also important that variations of waste form hydraulic parameters suggest that transport through the waste form is dominated by diffusion

  11. Shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Cannon, J.B.; Jacobs, D.G.; Lee, D.W.

    1986-02-01

    The performance objectives included in regulations for disposal of low-level radioactive waste (10 CFR 61 for commercial waste and DOE Order 5820.2 for defense waste) are generic principles that generate technical requirements which must be factored into each phase of the development and operation of a shallow land burial facility. These phases include a determination of the quantity and characteristics of the waste, selection of a site and appropriate facility design, use of sound operating practices, and closure of the facility. The collective experience concerning shallow land burial operations has shown that achievement of the performance objectives (specifically, waste isolation and radionuclide containment) requires a systems approach, factoring into consideration the interrelationships of the phases of facility development and operation and their overall impact on performance. This report presents the technical requirements and procedures for the development and operation of a shallow land burial facility for low-level radioactive waste. The systems approach is embodied in the presentation. The report is not intended to be an instruction manual; rather, emphasis is placed on understanding the technical requirements and knowing what information and analysis are needed for making informed choices to meet them. A framework is developed for using the desired site characteristics to locate potentially suitable sites. The scope of efforts necessary for characterizing a site is then described and the range of techniques available for site characterization is identified. Given the natural features of a site, design options for achieving the performance objectives are discussed, as are the operating practices, which must be compatible with the design. Site closure is presented as functioning to preserve the containment and isolation provided at earlier stages of the development and operation of the facility

  12. Controlling low-level radioactive waste

    International Nuclear Information System (INIS)

    1990-01-01

    This series of information sheets describes at a popular level the sources of low-level radioactive wastes, their associated hazards, methods of storage, transportation and disposal, and the Canadian regulations that cover low-level wastes

  13. Treatment of low and intermediate level wastes

    International Nuclear Information System (INIS)

    Hoehlein, G.

    1978-05-01

    The methods described of low and intermediate level waste treatment are based exclusively on operating experience gathered with the KfK facilities for waste management, the Karlsruhe Reprocessing Plant (WAK), the ALKEM fuel element fabrication plant, the MZFR, KNK and FR 2 reactors as well as at the Karlsruhe Nuclear Research Center and at the state collecting depot of Baden-Wuerttemberg. The processing capacities and technical status are similar to that in 1976. With an annual throughput of 10000 m 3 of solid and liquid raw wastes, an aggregate activity of 85000 Ci, 500 kg of U and 2 kg of Pu, final waste in the amount of 500 m 3 was produced which was stored in the ASSE II salt mine. (orig.) [de

  14. Environmental assessment for Sandia National Laboratories/New Mexico offsite transportation of low-level radioactive waste

    International Nuclear Information System (INIS)

    1996-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is managed and operated by Sandia Corporation, a Lockheed Martin Company. SNL/NM is located on land owned by the U.S. Department of Energy (DOE) within the boundaries of the Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. Low-level radioactive waste (LLW) is generated by some of the activities performed at SNL/NM in support of the DOE. This report describes potential environmental effects of the shipments of low-level radioactive wastes to other sites

  15. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  16. Extended storage of low-level radioactive waste: potential problem areas

    International Nuclear Information System (INIS)

    Siskind, B.; Dougherty, D.R.; MacKenzie, D.R.

    1985-12-01

    If a state or state compact does not have adequate disposal capacity for low-level radioactive waste (LLRW) by 1986 as required by the Low-Level Waste Policy Act, then extended storage of certain LLRW may be necessary. In this report, extended storage of LLRW is considered in order to determine for the Nuclear Regulatory Commission areas of concern and actions recommended to resolve these concerns. The focus is on the properties and performance of the waste form and waste container. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. The areas of concern about extended storage of LLRW are grouped into two categories: (1) Performance of the waste form and/or container during storage, e.g., radiolytic gas generation, radiation-enhanced degradation of polymeric materials, and corrosion. (2) Effects of extended storage on the properties of the waste form and/or container that are important after storage (e.g., radiation-induced embrittlement of high-density polyethylene and the weakening of steel containers resulting from corrosion). A discussion is given of additional information and actions required to address these concerns

  17. A model for a national low level waste program

    International Nuclear Information System (INIS)

    Blankenhorn, James A.

    2009-01-01

    A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site

  18. Performance test results of noninvasive characterization of RCRA surrogate waste by prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Propp, W.A.

    1997-11-01

    A performance evaluation to determine the feasibility of using prompt gamma neutron activation analysis (PGNAA) for noninvasive, quantitative assay of mixed waste containers was sponsored by DOE's Office of Technology Development (OTD), the Mixed Waste Focus Area (MWFA), and the Idaho National Engineering and Environmental Laboratory (INEEL). The evaluation was conducted using a surrogate waste, based on Portland cement, that was spiked with three RCRA metals, mercury, cadmium, and lead. The results indicate that PGNAA has potential as a process monitor. However, further development is required to improve its sensitivity to meet regulatory requirements for determination of these RCRA metals

  19. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  20. High performance supercapacitor from activated carbon derived from waste orange skin

    Science.gov (United States)

    Ahmed, Sultan; Hussain, S.; Ahmed, Ahsan; Rafat, M.

    2018-05-01

    Activated carbon due to its inherent properties such as large surface area and low cost is most frequently used electrode material for supercapacitor. Activated carbon has been previously derived from various biomass such as coconut shell, coffee bean etc. Herein, we report the synthesis of activated carbon from waste orange skin. The material was synthesized employing chemical activation method and the success of synthesis was confirmed by its physical and electrochemical properties. The physical properties of the as-prepared sample were studied using the techniques of XRD, SEM, Raman spectroscopy and N2 adsorption/desorption analysis while its electrochemical properties were studied in two-electrode assembly using liquid electrolyte (consisting of 1 M solution of LiTFSI dispersed in ionic liquid EMITFSI) and employing the techniques of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge- discharge. The synthesized sample of activated carbon exhibits high specific capacitance of 115 F g-1 at 10 mV s-1. Also, the activated carbon electrode shows the retention of ˜75% in initial capacitance value for more than 2000 initial cycles, indicating the as-prepared activated carbon can be profitably used as electrode material for energy storage devices.

  1. New developments in low level radioactive waste management in Spain

    International Nuclear Information System (INIS)

    Zuloaga, P.

    2006-01-01

    El Cabril disposal facility was commissioned in 1992 and is a key element in LILW Management in Spain. It is a vault-type surface disposal facility with a total internal volume of 100,000 m 3 . The installation also has facilities for waste treatment and conditioning, verification and characterisation, interim storage and other ancillary equipment. This paper includes a brief description of the facility, the operational experience, the design improvements and new developments in waste acceptance procedures, safety assessment and the related research programme. The paper also refers to the new disposal facility intended for very low activity waste, under construction at the same site. This facility, a part of El Cabril nuclear installation, will have a maximum capacity for 130,000 m 3 of very low activity waste. Its construction started in February 2006, after the evaluation of the nuclear safety authority and the environmental impact statement procedure. (author)

  2. Experiment of Industrial Waste Absorption using Activated Carbon from Coal of Tanjung Tabalong, South Kalimantan

    Directory of Open Access Journals (Sweden)

    M. Ulum Gani

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.130Activated carbon made from Tanjung Tabalong coal was investigated its absorption capability to organic and inorganic elements in industrial waste. Coal was carbonized at low temperature of 600C to produce semicoke, and then was activated at temperature of 700C with activation time of 120 minutes with water steam flow. The absorption capability of activated carbon to chemical oxygen demand (COD was performed using 2.5 and 9.0 g activated carbon for 250 ml and 300 ml COD waste respectively. The agitation time of each experiment were 30, 60, and 90 minutes. Atomic absorption spectrophotometer (AAS was used to analyze the COD waste. The result shows that 2.5 g activated carbon could absorb COD waste ranging from 6.9-67.5 %, while the utilization of 9 g could absorb COD waste ranging from 88.9 - 100 %. The more activated carbon and the longer time of agitation used in this experiment, the more the absorption of COD waste.

  3. Low activation ferritic alloys

    Science.gov (United States)

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  4. Aube storage centre for short-lived low- and intermediate-level wastes. Annual report 2009

    International Nuclear Information System (INIS)

    2010-06-01

    The National Radioactive Waste Management Agency (Andra), was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. The Andra operates two storage centers in the Aube region (France): the center for short-lived low- and intermediate-level wastes, and the center for very-low-level radioactive wastes. This document is the 2009 activity report of the center for short-lived low- and intermediate-level wastes. It presents a review of the activities of the center: presentation of the installations, safety and radiation protection, events or incidents, environmental monitoring, wastes management, public information, opinion of the Health and safety Committee (CHSCT)

  5. Aube storage center for short-lived low- and intermediate-level wastes. Annual report 2010

    International Nuclear Information System (INIS)

    2011-06-01

    The National Radioactive Waste Management Agency (Andra), was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. The Andra operates two storage centers in the Aube region (France): the center for short-lived low- and intermediate-level wastes, and the center for very-low-level radioactive wastes. This document is the 2010 activity report of the center for short-lived low- and intermediate-level wastes. It presents a review of the activities of the center: presentation of the installations, safety and radiation protection, events or incidents, environmental monitoring, wastes management, public information, recommendations of the Health and safety Committee (CHSCT)

  6. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    International Nuclear Information System (INIS)

    Mersereau, M.; McIntyre, K.

    2006-01-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  7. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    Energy Technology Data Exchange (ETDEWEB)

    Mersereau, M.; McIntyre, K. [Point Lepreau Generating Station, Lepreau, New Brunswick (Canada)]. E-mail: MMersereau@nbpower.com; KMcIntyre@nbpower.com

    2006-07-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  8. Long term behaviour of low and intermediate level waste packages under repository conditions. Results of a co-ordinated research project 1997-2002

    International Nuclear Information System (INIS)

    2004-06-01

    The development and application of approaches and technologies that provide long term safety is an essential issue in the disposal of radioactive waste. For low and intermediate level radioactive waste, engineered barriers play an important role in the overall safety and performance of near surface repositories. Thus, developing a strong technical basis for understanding the behaviour and performance of engineered barriers is an important consideration in the development and establishment of near surface repositories for radioactive waste. In 1993, a Co-ordinated Research Project (CRP) on Performance of Engineered Barrier Materials in Near Surface Disposal Facilities for Radioactive Waste was initiated by the IAEA with the twin goals of addressing some of the gaps in the database on radionuclide isolation and long term performance of a wide variety of materials and components that constitute the engineered barriers system (IAEA-TECDOC-1255 (2001)). However, during the course of the CRP, it was realized that that the scope of the CRP did not include studies of the behaviour of waste packages over time. Given that a waste package represents an important component of the overall near surface disposal system and the fact that many Member States have active R and D programmes related to waste package testing and evaluation, a new CRP was launched, in 1997, on Long Term Behaviour of Low and Intermediate Level Waste Packages Under Repository Conditions. The CRP was intended to promote research activities on the subject area in Member States, share information on the topic among the participating countries, and contribute to advancing technologies for near surface disposal of radioactive waste. Thus, this CRP complements the afore mentioned CRP on studies of engineered barriers. With the active participation and valuable contributions from twenty scientists and engineers from Argentina, Canada, Czech Republic, Egypt, Finland, India, Republic of Korea, Norway, Romania

  9. Alaska State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Alaska State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste generators in Alaska. The profile is the result of a survey of NRC licensees in Alaska. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Alaska

  10. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    International Nuclear Information System (INIS)

    Rogers, B.C.; Walter, P.L.; Baird, R.D.

    1999-01-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation

  11. Maine State Briefing Book on low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

  12. Performance analysis of ORC power generation system with low-temperature waste heat of aluminum reduction cell

    Science.gov (United States)

    Wang, Zhiqi; Zhou, Naijun; Jing, Guo

    Performance of organic Rankine cycle (ORC) system to recover low-temperature waste heat from aluminum reduction cell was analyzed. The temperature of waste heat is 80°C-200°C and the flow rate is 3×105m3/h. The pinch temperature difference between waste heat and working fluids is 10°C. The results show that there is optimal evaporating temperature for maximum net power under the same pinch point. For heat source temperature range of 80°C-140°C and 150°C-170°C, the working fluid given biggest net power is R227ea and R236fa, respectively. When the temperature is higher than 180°C, R236ea generates the biggest net power. The variation of heat source temperature has important effect on net power. When the temperature decreases 10%, the net power will deviate 30% from the maximum value.

  13. Survey of stores for conditioned intermediate and low level wastes in Europe

    International Nuclear Information System (INIS)

    1985-10-01

    A survey has been conducted of eleven waste storage facilities in six countries. Wastes considered are intermediate and low level, conditioned for disposal. Civil engineering, handling facilities, container type, waste activities, doses to the public and to operators are considered. (author)

  14. Sampling and analysis plan for the preoperational environmental survey for the immobilized low activity waste (ILAW) project W-465

    International Nuclear Information System (INIS)

    Mitchell, R.M.

    1998-01-01

    This document provides a detailed description of the Sampling and Analysis Plan for the Preoperational Survey to be conducted at the Immobilized Low Activity Waste (ILAW) Project Site in the 200 East Area

  15. Development of very low-level radioactive waste sequestration process criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Wong, P., E-mail: nicholas.chan@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association's radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories' Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236m{sup 3} resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria. (author)

  16. A data base and a standard material for use in acceptance testing of low-activity waste products

    International Nuclear Information System (INIS)

    Wolf, S.F.; Ebert, W.L.; Luo, J.S.; Strachan, D.M.

    1998-04-01

    The authors have conducted replicate dissolution tests following the product consistency test (PCT) procedure to measure the mean and standard deviation of the solution concentrations of B, Na, and Si at various combinations of temperature, duration, and glass/water mass ratio. Tests were conducted with a glass formulated to be compositionally similar to low-activity waste products anticipated for Hanford to evaluate the adequacy of test methods that have been designated in privatization contracts for use in product acceptance. An important finding from this set of tests is that the solution concentrations generated in tests at 20 C will likely be too low to measure the dissolution rates of waste products reliably. Based on these results, the authors recommend that the acceptance test be conducted at 40 C. Tests at 40 C generated higher solution concentrations, were more easily conducted, and the measured rates were easily related to those at 20 C. Replicate measurements of other glass properties were made to evaluate the possible use of LRM-1 as a standard material. These include its composition, homogeneity, density, compressive strength, the Na leachability index with the ANSI/ANS 16.1 leach test, and if the glass is characteristically hazardous with the toxicity characteristic leach procedure. The values of these properties were within the acceptable limits identified for Hanford low-activity waste products. The reproducibility of replicate tests and analyses indicates that the glass would be a suitable standard material

  17. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    1992-01-01

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  18. New Jersey State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

  19. New Mexico State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The New Mexico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Mexico. The profile is the result of a survey of NRC licensees in New Mexico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Mexico

  20. New York State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The New York State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New York. The profile is the result of a survey of NRC licensees in New York. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New York

  1. South Carolina State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina

  2. North Dakota State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  3. West Virginia State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The West Virginia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in West Virginia. The profile is the result of a survey of NRC licensees in West Virginia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in West Virginia

  4. North Carolina State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina

  5. Rhode Island State Briefing Book on low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island.

  6. New Jersey State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey

  7. North Dakota State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota

  8. Rhode Island State Briefing Book on low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island

  9. South Dakota State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The South Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Dakota. The profile is the result of a survey of NRC licensees in South Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Dakota

  10. South Carolina State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

  11. Puerto Rico State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico

  12. North Carolina State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

  13. Puerto Rico State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

  14. Risk assessment associated with the transport of low specific activity waste to the Centre de l'Aube disposal facility, France

    International Nuclear Information System (INIS)

    Raffestin, D.; Tort, V.; Manen, P.; Schneider, T.; Lombard, J.

    1994-01-01

    Since 1991, French Low Specific Activity wastes have been stored in the near-surface waste disposal site in the Aube region (CSA). In 1995, the CSA plans to receive approximately 23,000 m 3 of waste from the three major producers, EDF (Electricite de France), COGEMA (COmpagnie GEnerale des MAtieres nucleaires), and the CEA (Commissariat a l'Energie Atomique). Four different kinds of package are broadly represented: the 200 l drums to be compacted, the 200 l drums filled with fixed wastes, concrete shells and metallic boxes. As the radiological exposures resulting from waste transport could stem from both incident-free transport and accident situations, two separate studies have been conducted. Using the INTERTRAN code (IAEA software) for accident-free transport, the overall effective collective doses related to the whole transport activity have been calculated and a risk of 0.48 man.Sv per year has been deduced. (author)

  15. Results after nine years of field testing low-level radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.; Sanford, W.E.; Sullivan, T.M.

    1995-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. Ion-exchange resins from a nuclear power station were solidified into waste forms using Portland cement and vinyl ester-styrene. These waste forms are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. This paper reviews radionuclide releases from those waste forms in the first 9 years of sampling. Included is a discussion of the recently discovered upward migration of radionuclides. Also, lysimeter data are applied to a performance assessment source term model, and initial results are presented

  16. Characterization of low level mixed waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Hepworth, E.; Montoya, A.; Holizer, B.

    1995-01-01

    The characterization program was conducted to maintain regulatory compliance and support ongoing waste treatment and disposal activities. The characterization team conducted a characterization review of wastes stored at the Laboratory that contain both a low-level radioactive and a hazardous component. The team addressed only those wastes generated before January 1993. The wastes reviewed, referred to as legacy wastes, had been generated before the implementation of comprehensive waste acceptance documentation procedures. The review was performed to verify existing RCRA code assignments and was required as part of the Federal Facility Compliance Agreement (FFCA). The review entailed identifying all legacy LLMW items in storage, collecting existing documentation, contacting and interviewing generators, and reviewing code assignments based upon information from knowledge of process (KOP) as allowed by RCRA. The team identified 7,546 legacy waste items in the current inventory, and determined that 4,200 required further RCRA characterization and documentation. KOP characterization was successful for accurately assigning RCRA codes for all but 117 of the 4,200 items within the scope of work. As a result of KOP interviews, 714 waste items were determined to be non-hazardous, while 276 were determined to be non-radioactive. Other wastes were stored as suspect radioactive. Many of the suspect radioactive wastes were certified by the generators as non-radioactive and will eventually be removed

  17. Los Alamos low-level waste performance assessment status

    International Nuclear Information System (INIS)

    Wenzel, W.J.; Purtymun, W.D.; Dewart, J.M.; Rodgers, J.E.

    1986-06-01

    This report reviews the documented Los Alamos studies done to assess the containment of buried hazardous wastes. Five sections logically present the environmental studies, operational source terms, transport pathways, environmental dosimetry, and computer model development and use. This review gives a general picture of the Los Alamos solid waste disposal and liquid effluent sites and is intended for technical readers with waste management and environmental science backgrounds but without a detailed familiarization with Los Alamos. The review begins with a wide perspective on environmental studies at Los Alamos. Hydrology, geology, and meteorology are described for the site and region. The ongoing Laboratory-wide environmental surveillance and waste management environmental studies are presented. The next section describes the waste disposal sites and summarizes the current source terms for these sites. Hazardous chemical wastes and liquid effluents are also addressed by describing the sites and canyons that are impacted. The review then focuses on the transport pathways addressed mainly in reports by Healy and Formerly Utilized Sites Remedial Action Program. Once the source terms and potential transport pathways are described, the dose assessment methods are addressed. Three major studies, the waste alternatives, Hansen and Rogers, and the Pantex Environmental Impact Statement, contributed to the current Los Alamos dose assessment methodology. Finally, the current Los Alamos groundwater, surface water, and environmental assessment models for these mesa top and canyon sites are described

  18. Survey of computer codes applicable to waste facility performance evaluations

    International Nuclear Information System (INIS)

    Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

    1988-01-01

    This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs

  19. Low and medium activity nuclear waste disposal characterisation laboratory. Example of Spanish E1 Cabril Disposal Centre Laboratory

    International Nuclear Information System (INIS)

    Boulanger, G.; Augustin, X.

    1993-01-01

    Low and medium activity radioactive waste generated in Spain by power reactors, research laboratories, etc. is stored in the E1 Cabril Disposal Centre. This Centre, based on a French design, provides a characterisation function for the stored waste and corresponding containers. Technicatome, prime contractor for the French disposal centre, and contributing to the design and construction of the E1 Cabril Centre, played an important part in the R and D work for this laboratory, and the manufacture of certain items of equipment. This laboratory, applying experience acquired in France by the CEA, comprises a set of buildings providing for active and inactive test operations

  20. Low-level radioactive wastes in subsurface soils

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-01-01

    Low-level radioactive wastes will continue to be buried in shallow-land waste disposal sites. Several of the burial sites have been closed because of the problems that developed as a result of poor site characteristics, types of waste buried, and a number of other environmental factors. Some of the problems encountered can be traced to the activities of microorganisms. These include microbial degradation of waste forms resulting in trench cover subsidence, production of radioactive gases, and production of microbial metabolites capable of complexation, solubilization, and bioaccumulation of radionuclides. Improvements in disposal technology are being developed to minimize these problems. These include waste segregation, waste pretreatment, incineration, and solidification. Microorganisms are also known to enhance and inhibit the movement of metals. Little is known about the role of autotrophic microbial transformations of radionuclides. Such microbial processes may be significant in light of improved disposal procedures, which may result in reductions in the organic content of the waste disposed of at shallow-land sites. 102 references, 5 figures, 19 tables

  1. Report of the Task Force on Low-Level Radioactive Waste. Position paper

    International Nuclear Information System (INIS)

    1980-01-01

    The Radiation Policy Council formed a Task Force in May 1980 to consider the problems associated with low-level radioactive waste disposal. Two major objectives were developed by the Task Force: (1) To recommend Federal policy for improving coordination and implementation of Federal and non-Federal programs that have been established to obtain solutions to existing low-level waste disposal problems, and (2) to recommend Federal policy for disposal of low-level waste containing minimal activity for which alternative disposal methods to existing shallow land burial practices may be acceptable for protecting the public health. These wastes constitute a significant fraction of what is currently classified as low-level radioactive wastes. Included are most of the wastes currently destined for shallow land burial from medical and research institutions, as well as from other sources. Such wastes include liquid scintillation vials, dry solids, animal carcasses, and paper trash; there are many items included which are needlessly classified, on a purely arbitrary basis, as radioactive waste merely because they contain detectable radioactive materials. It is this waste which is of major concern

  2. Low and intermediate radioactive waste management at OPG's western waste management facility

    International Nuclear Information System (INIS)

    Ellsworth, M.

    2006-01-01

    'Full text:' This paper will discuss low and intermediate level radioactive waste operations at Ontario Power Generation's Western Waste Management Facility. The facility has been in operation since 1974 and receives about 5000 - 7000 m 3 of low and intermediate level radioactive waste per year from Ontario's nuclear power plants. Low-level radioactive waste is received at the Waste Volume Reduction Building for possible volume reduction before it is placed into storage. Waste may be volume reduced by one of two methods at the WWMF, through either compaction or incineration. The Compactor is capable of reducing the volume of waste by a factor up to 5:1 for most waste. The Radioactive Incinerator is capable of volume reducing incinerable material by a factor up to 70:1. After processing, low-level waste is stored in above ground concrete warehouse-like structures called Low Level Storage Buildings. Low-level waste that cannot be volume reduced is placed into steel containers and stored in the Low Level Storage Buildings. Intermediate level waste is stored mainly in steel lined concrete storage structures. WWMF has both above ground and in-ground storage structures for intermediate level waste. Intermediate level waste consists primarily of resin and filters used to keep reactor water systems clean, and some used reactor core components. All low and intermediate level waste storage at the WWMF is considered interim storage and the material can be retrieved for future disposal or permanent storage. Current improvement initiatives include the installation of a new radioactive incinerator and a shredder/bagger. The new incinerator is a continuous feed system that is expected to achieve volume reduction rates up to 70:1, while incinerating higher volumes of waste than its predecessor. The shredder will break down large/bulky items into a form, which can be processed for further volume reduction. A Refurbishment Waste Storage Project is underway in anticipation of the

  3. Regulatory control of solid low level radioactive waste disposal in the UK

    International Nuclear Information System (INIS)

    Newstead, S.; Schwemlein, P.

    1998-01-01

    The following topics are described: (i) regulatory authorities; (ii) inspection; (iii) waste categories; (iv) disposal routes for low level waste; (v) inspection of disposal routes; (vi) waste quality checking; (vii) reporting and application of results; and (viii) European Network activities. (P.A.)

  4. Proceedings of the sixth annual Participants' Information Meeting DOE Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    1984-12-01

    Sessions were held on disposal technology, characteristics and treatment of low-level waste, environmental aspects and performance prediction, predicting source terms for low-level wastes (LLW), performance assessment for LLW disposal facilities, and approaches to LLW facility siting and characteristics. Fifty-six papers were indexed separately

  5. INEL studies concerning solidification of low-level waste in cement

    International Nuclear Information System (INIS)

    Mandler, J.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL) has performed numerous studies addressing issues concerning the solidification of low-level radioactive waste in cement. These studies have been performed for both the Nuclear Regulatory Commission (NRC) and the Department of Energy (DOE). This short presentation will only outline the major topics addressed in some of these studies, present a few conclusions, and identify some of the technical concerns we have. More details of the work and pertinent results will be given in the Working Group sessions. The topics that have been addressed at the INEL which are relevant to this Workshop include (1) solidification of ion-exchange resins and evaporator waste in cement at commercial nuclear power plants, (2) leachability and compressive strength of power plant waste solidified in cement, (3) suggested guidelines for preparation of a solid waste process control program (PCP), (4) cement solidification of EPICOR-II resin wastes, and (5) performance testing of cement-solidified EPICOR-II resin wastes

  6. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2005-01-01

    The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the

  7. Low-level radioactive waste research program plan

    International Nuclear Information System (INIS)

    O'Donnell, E.; Lambert, J.

    1989-11-01

    The Waste Management Branch, Division of Engineering, Office of Nuclear Regulatory Research, has developed a strategy for conducting research on issues of concern to the US Nuclear Regulatory Commission (NRC) in its efforts to ensure safe disposal of low-level radioactive waste (LLW). The resulting LLW research program plan provides an integrated framework for planning the LLW research program to ensure that the program and its products are responsive and timely for use in NRC's LLW regulatory program. The plan discusses technical and scientific issues and uncertainties associated with the disposal of LLW, presents programmatic goals and objectives for resolving them, establishes a long-term strategy for conducting the confirmatory and investigative research needed to meet these goals and objectives, and includes schedules and milestones for completing the research. Areas identified for investigation include waste form and other material concerns, failure mechanisms and radionuclide releases, engineered barrier performance, site characterization and monitoring, and performance assessment. The plan proposes projects that (1) analyze and test actual LLW and solidified LLW under laboratory and field conditions to determine leach rates and radionuclide releases, (2) examine the short- and long-term performance of concrete-enhanced LLW burial structures and high-integrity containers, and (3) attempt to predict water movement and contaminant transport through low permeability saturated media and unsaturated porous media. 4 figs., 3 tabs

  8. 1996 annual report on low-level radioactive waste management progress. Report to Congress

    International Nuclear Information System (INIS)

    1997-11-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act (the Act), Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the activities during calendar year 1996 related to the establishment of new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress in developing new disposal facilities, and also includes an introduction that provides background information and perspective on US policy for low-level radioactive waste disposal

  9. Progress report on the design of a Low-Level Waste Pilot Facility at ORNL

    International Nuclear Information System (INIS)

    Hensley, L.C.; Turner, V.L.; Pruitt, A.S.

    1980-01-01

    All low-level radioactive solid wastes, excluding TRU wastes, are disposed of by shallow land burial at the Oak Ridge National Laboratory. Contaminated liquids and sludges are hydrofractures. The TRU wastes are stored in a retrievable fashion in concrete storage facilities. Currently, the capacity for low-level radioactive waste burial at the Oak Ridge National Laboratory is adequate for another six years of service at the current solids disposal rate which ranges between 80,000 and 100,000 cu ft per year. Decontamination and decommissioning of a number of ORNL facilities will be a significant activity in the next few years. Quantities of radioactive materials to be stored or disposed of as a result of these activities will be large; therefore, the technology to dispose of large quantities of low-level radioactive wastes must be demonstrated. The UCC-ND Engineering Division, in concert with divisions of the Oak Ridge National Laboratory, has been requested to prepare a conceptual design for a facility to both dispose of the currently produced low-level radioactive waste and also to provide a test bed for demonstration of other processes which may be used in future low-level radioactive wastes disposal facilities. This facility is designated as the Low-Level Waste Pilot Facility (LLWPF). This paper describes the status of the conceptual design of a facility for disposal of the subject radioactive waste

  10. Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 2, April 1994

    International Nuclear Information System (INIS)

    1994-04-01

    This is a publication of the Low-Level Radioactive Waste Forum Participants. The topics of the publication include DOE policy, state concerns and activities, court hearings and decisions, federal agency activities, US NRC waste management function reorganization, low-level radioactive waste storage and compaction, and US NRC rulemaking and hearings

  11. Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 2, April 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    This is a publication of the Low-Level Radioactive Waste Forum Participants. The topics of the publication include DOE policy, state concerns and activities, court hearings and decisions, federal agency activities, US NRC waste management function reorganization, low-level radioactive waste storage and compaction, and US NRC rulemaking and hearings.

  12. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    Science.gov (United States)

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (< 5 g VSL(-1)d(-1)). Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Development of a purification technology for treatment of medium- and low-activity radioactive waste of radiochemical production from Co-60 and Cs-137

    Directory of Open Access Journals (Sweden)

    Apalkov Gleb

    2016-01-01

    Full Text Available The technological flowchart of purification of medium- and low-activity waste from Co-60 and Cs-137 is developed and introduced. The developed purification scheme has been successfully tested using genuine medium- and low-level liquid radioactive waste of radiochemical production containing complexing and colloid forming components complexons, surfactants. The optimal conditions of the presented method of purification ensure reduction of the residual specific activity of 60Co and 137Cs radionuclides in the solution to less than 0,9 Bq per litre.

  14. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    International Nuclear Information System (INIS)

    Schanfein, M.; Bonner, C.; Maez, R.

    1997-01-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems' performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system's performance for specific waste types, the standardized systems' performance be evaluated. 7 figs., 11 tabs

  15. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Schanfein, M.; Bonner, C.; Maez, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems` performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system`s performance for specific waste types, the standardized systems` performance be evaluated. 7 figs., 11 tabs.

  16. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Caseria, E.S.; Salom, D.S.; Alamares, A.L.

    1997-01-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137 Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  17. Treatment of low-level radioactive waste using Volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E M; Marcelo, E A; Junio, J B; Caseria, E S; Salom, D S; Alamares, A L [Philippine Nuclear Research Inst., Manila (Philippines). Radiation Protection Services

    1997-02-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing {sup 137}Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs.

  18. Development of a low-level radioactive waste shipper model. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-03-01

    During 1982, Inter/Face Associates, Inc., conducted a low-level radioactive waste management survey of Nuclear Regulatory Commission (NRC) licensees in Massachusetts for the US Department of Energy's National Low-Level Waste Management Program. In the process of conducting the survey, a model was developed, based on existing NRC license classification systems, that would identify licensees who ship low-level waste for disposal. This report presents the model and documents the procedures used in developing and testing it. After the model was tested, several modifications were developed with the goal of determining the model's ability to identify waste shippers under different parameters. The report includes a discussion of the modifications

  19. Development of low-activation design method for reduction of radioactive waste (2). Precise neutron flux and activation estimation of nuclear power plants using MATXSLIB-J33T10

    International Nuclear Information System (INIS)

    Uematsu, Mikio; Hayashi, Katsumi; Nemezawa, Shigeki; Ogata, Tomohiro; Nakata, Mikihiro; Kinno, Masaharu; Yamaguchi, Katsuyoshi; Saito, Minoru; Hasegawa, Akira

    2008-01-01

    We have been developing low-activation concrete for biological shielding wall of nuclear power plants, for the purpose of reducing large amount of radioactive waste. Based on measurement of Eu and Co content in various aggregate candidates, limestone and electro-fused alumina were selected as the most feasible aggregate for low activation concrete. Induced activity in shielding wall was calculated for both low activation concrete and ordinary concrete using neutron flux obtained from DORT two-dimensional calculation made for typical ABWR and APWR models. We have prepared new cross section library named 'MATXSLIB-J33T10 that has multi-group structure in thermal energy. The library was processed from evaluated cross section library JENDL 3.3 by using NJOY 99.83. Activation cross section library for ORIGEN-79 code is prepared for each activation calculation case by collapsing JENDL-3.3 originated 183-group constants into 3-group activation cross section using 183-group neutron flux. One-group activation cross section was also prepared in the same manner for ORIGEN2 calculation. The ΣD/C value results for low-activation concrete was sufficiently low comparing to the ordinary concrete. By using the developed low-activation concrete, activation level of biological shielding wall concrete will be effectively decreased. The use of the developed low-activation concrete will contribute to economization of nuclear power plants decommissioning by reducing large amount of radioactive concrete waste. (author)

  20. Nondestructive assay of TRU waste using gamma-ray active and passive computed tomography

    International Nuclear Information System (INIS)

    Roberson, G.P.; Decman, D.; Martz, H.; Keto, E.R.; Johansson, E.M.

    1995-01-01

    The authors have developed an active and passive computed tomography (A and PCT) scanner for assaying radioactive waste drums. Here they describe the hardware components of their system and the software used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using ''mock'' waste drums and calibrated radioactive sources. They also describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content. The results are compared with X-ray NDE studies of the same TRU waste drum as well as assay results from segmented gamma scanner (SGS) measurements