WorldWideScience

Sample records for low temperature fluidity

  1. Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids

    Science.gov (United States)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2014-12-01

    In this paper we address the ratio of the shear viscosity to entropy density η /s in bosonic and fermionic superfluids. A small η /s is associated with nearly perfect fluidity, and more general measures of the fluidity perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic superfluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio η /s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature T to inverse lifetime γ (T ) ) with η /s ∝T /γ (T ) , corresponding to imperfect fluidity. By contrast, near the unitary limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.

  2. Effect of reinforcement amount, mold temperature, superheat, and mold thickness on fluidity of in-situ Al-Mg2Si composites

    Directory of Open Access Journals (Sweden)

    Reza Vatankhah Barenji

    2018-01-01

    Full Text Available In the present study, the effects of mold temperature, superheat, mold thickness, and Mg2Si amount on the fluidity of the Al-Mg2Si as-cast in-situ composites were investigated using the mathematical models. Composites with different amounts of Mg2Si were fabricated, and the fluidity and microstructure of each were then analyzed. For this purpose, the experiments were designed using a central composite rotatable design, and the relationship between parameters and fluidity were developed using the response surface method. In addition, optical and scanning electron microscopes were used for microstructural observation. The ANOVA shows that the mathematical models can predict the fluidity accurately. The results show that by increasing the mold temperature from 25 °C to 200 °C, superheat from 50 °C to 250 °C, and thickness from 3 mm to 12 mm, the fluidity of the composites decreases, where the mold thickness is more effective than other factors. In addition, the higher amounts of Mg2Si in the range from 15wt.% to 25wt.% lead to the lower fluidity of the composites. For example, when the mold temperature, superheat, and thickness are respectively 100 °C, 150 °C, and 7 mm, the fluidity length is changed in the range of 11.9 cm to 15.3 cm. By increasing the amount of Mg2Si, the morphology of the primary Mg2Si becomes irregular and the size of primary Mg2Si is increased. Moreover, the change of solidification mode from skin to pasty mode is the most noticeable microstructural effect on the fluidity.

  3. Influence of membrane fluidity on human immunodeficiency virus type 1 entry

    International Nuclear Information System (INIS)

    Harada, Shinji; Yusa, Keisuke; Monde, Kazuaki; Akaike, Takaaki; Maeda, Yosuke

    2005-01-01

    For penetration of human immunodeficiency virus type 1 (HIV-1), formation of fusion-pores might be required for accumulating critical numbers of fusion-activated gp41, followed by multiple-site binding of gp120 with receptors, with the help of fluidization of the plasma membrane and viral envelope. Correlation between HIV-1 infectivity and fluidity was observed by treatment of fluidity-modulators, indicating that infectivity was dependent on fluidity. A 5% decrease in fluidity suppressed the HIV-1 infectivity by 56%. Contrarily, a 5% increase in fluidity augmented the infectivity by 2.4-fold. An increased temperature of 40 deg C or treatment of 0.2% xylocaine after viral adsorption at room temperature enhanced the infectivity by 2.6- and 1.5-fold, respectively. These were inhibited by anti-CXCR4 peptide, implying that multiple-site binding was accelerated at 40 deg C or by xylocaine. Thus, fluidity of both the plasma membrane and viral envelope was required to form the fusion-pore and to complete the entry of HIV-1

  4. Study on fluidity of squeeze cast AZ91D magnesium alloy with different wall thicknesses

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2014-03-01

    Full Text Available Rectangular cross-section specimens with different section thicknesses were prepared to study the influences of pouring temperature, mould temperature and squeeze velocity on the fluidity of squeeze cast AZ91D magnesium alloy by means of orthogonal test design method. The results show that pouring temperature, mould temperature and squeeze velocity can significantly affect the fluidity of magnesium alloy specimens with wall thickness no more than 4 mm, and the pouring temperature is the most influential factor on the fluidity of specimens with wall thickness of 1, 2 and 3 mm, while mould temperature is the one for specimens with wall thickness of 4 mm. Increasing pouring temperature between 700 °C and 750 °C is beneficial to the fluidity of AZ91D magnesium alloy, and increasing mould temperature significantly enhances the filling ability of thick (3 and 4 mm section castings. The fluidity of squeeze cast magnesium alloy increases with the increase of wall thickness. It is not recommended to produce magnesium alloy casting with wall thickness of smaller than 3 mm by squeeze cast process due to the poor fluidity. The software DPS was used to generate the regression model, and linear regression equations of the fluidity of squeeze cast AZ91D with different wall thicknesses are obtained using the test results.

  5. Effects of Insecticides on the Fluidity of Mitochondrial Membranes of the Diamondback Moth, Plutella xylostella, Resistant and Susceptible to Avermectin

    Science.gov (United States)

    Hu, J.; Liang, P.; Shi, X.; Gao, X.

    2008-01-01

    The effects of various insecticides on the fluidity of mitochondrial membranes and cross-resistance were investigated in the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) using strains that were both resistant and susceptible to avermectin. The resistant strain of P. xylostella, AV-R, developed 1078-fold resistance to avermetins with a high level of cross-resistance to the analogs of avermectins, ivermectin and emamectin benzoate. It had more than 1000 times greater resistance when compared with the avermectin-susceptible strain, XH-S. Mitochondrial membrane fluidity was measured by detecting fluorescence polarization using DPH (1,6-Diphenyl -1,3,5-hexatriene) as the fluorescence probe. Abamectin, emamectin benzoate, ivermectin, cypermethrin and fenvalerate decreased the fluidity of mitochondrial membranes in the XH-S strain at 25°C. However, fipronil and acephate did not change the fluidity of mitochondrial membrane when the concentration of these insecticides was 1×10-4 mol/L. Membrane fluidity increased as the temperature increased. The thermotropic effect on the polarization value of DPH increased as the insecticide concentration was increased. There was a significant difference of mitochondrial membrane fluidity between both XH-S and AV-R when temperature was less than 25°C and no difference was observed when the temperature was more than 25°C. The low-dose abamectin (0.11 mg/L) in vivo treatment caused a significant change of membrane fluidity in the XH-S strain and no change in the AV-R strain. However, a high-dose abamectin (11.86 mg/L) resulted in 100% mortality of the XH-S strain. In vivo treatment may cause a significant change of membrane fluidity in the AV-R strain PMID:20345311

  6. Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangrovei SK-02 As a function of growth temperature.

    Science.gov (United States)

    Chodchoey, Kanokwan; Verduyn, Cornelis

    2012-01-01

    Aurantiochytrium mangrovei Sk-02 was grown in a medium containing glucose (40 g/l), yeast extract (10 g/L) and sea salts (15 g/L) at temperatures ranging from 12 to 35°C. The fastest growth (µmax= 0.15 h(-1)) and highest fatty acid content of 415 mg/g-dry cell weight were found in the cells grown at 30°C. However, the cells grown at 12°C showed the highest percentage of polyunsaturated fatty acid (PUFA) (48.6% of total fatty acid). The percentage of docosahexaenoic acid (DHA) and pentadecanoic acid (C15:0) decreased with an increase in the growth temperature, whereas, palmitic acid (C16:0), stearic acid (C18:0) and DPA (C22:5n6) increased with an increase in the growth temperature. The composition of the major lipid class (%w/w) was slightly affected by the growth temperature. The fluidity of the organelle membrane or intracellular lipid (by DPH measurement) decreased with an increase in the growth temperatures, while the plasma membrane fluidity (by TMA-DPH measurement) could still maintain its fluidity in a wide range of temperatures (15 - 37°C). Furthermore, the distribution of DHA was found to be higher (36 - 54%) in phospholipid (PL) as compared to neutral lipid (NL) (20 - 41%).

  7. Membrane fluidity and the radiosensitivity of E. coli K1060

    International Nuclear Information System (INIS)

    Alper, T.; Cramp, W.A.; George, A.; Lunec, J.

    1981-01-01

    Escherichia coli K1060 is deficient in ability to synthesize unsaturated fatty acids, so that the composition of the membrane, and therefore its fluidity, can be changed. A discussion is presented of the results of George et al (1980) concerning the relation of radiosensitivity to membrane fluidity. The following speculations are made: 1) At ice temperatures the membrane of oleic grown bacteria is in the 'gel' state, whereas in elaidic grown bacteria the membrane is in an even more rigid configuration. As a result, lesions produced during irradiation in the presence of oxygen are more lethal than in the more fluid conditions prevailing at room temperature. 2) At room temperature it may be that the bacteria are conditioned by pre-irradiation anoxia so that they become more able to repair damage. When the temperature is decreased to ice levels in bacteria modified by growth in oleic and elaidic acid, reduced membrane fluidity may impair the metabolic activity required for this pre-irradiation conditioning. 3) The lack of temperature effects with the linoleic grown bacteria, that is, no sensitization under aerated conditions and no loss in shoulder under anoxic conditions, is consistent with the lower membrane transitions temperature (fluid to gel) associated with this fatty acid. (U.K.)

  8. Effects of causality on the fluidity and viscous horizon of quark-gluon plasma

    Science.gov (United States)

    Rahaman, Mahfuzur; Alam, Jan-e.

    2018-05-01

    The second-order Israel-Stewart-M u ̈ller relativistic hydrodynamics was applied to study the effects of causality on the acoustic oscillation in relativistic fluid. Causal dispersion relations have been derived with nonvanishing shear viscosity, bulk viscosity, and thermal conductivity at nonzero temperature and baryonic chemical potential. These relations have been used to investigate the fluidity of quark-gluon plasma (QGP) at finite temperature (T ). Results of the first-order dissipative hydrodynamics have been obtained as a limiting case of the second-order theory. The effects of the causality on the fluidity near the transition point and on the viscous horizon are found to be significant. We observe that the inclusion of causality increases the value of fluidity measure of QGP near Tc and hence makes the flow strenuous. It was also shown that the inclusion of the large magnetic field in the causal hydrodynamics alters the fluidity of QGP.

  9. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Pakiza

    2016-12-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural changes induced by proteins such as ARC and Cofilin among others in the case of synaptic modification. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. As expected, NIH3T3 cells have more rigid membrane at earlier stages of their development. On the other hand neurons tend to have the highest membrane fluidity early in their development emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  10. Relationship between the fluidity of heat-treated coals and molecular weight distributions of their solvent-soluble component; Netsushoritan no yobai kayo seibun no bunshiryo bunpu to ryudosei no kanren

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science; Kato, K. [Nippon Steel Co. Ltd., Tokyo (Japan); Fukada, K. [NKK Corp., Tokyo (Japan)

    1996-10-28

    In order to improve the coke manufacturing process, considerations were given on fluidity manifestation mechanism of heat-treated coals from molecular weight distributions of extracts of a solvent mixed with CS2-N-methyl-2-pyrrolidinone (CS2-NMP). The heat treatment was performed in an autoclave under nitrogen atmosphere at a rate of 3{degree}C/min to settings of 200 to 550{degree}C. The resultant heat-treated coal was quenched, and then extracted by using the CS2-NMP mixed solvent. The fluidity was measured by using a Gieseler plastometer. Maximum extraction rate and the highest fluidity are in linear relationship, which suggests that the extracts govern the fluidity. Since heavy caking coal has no difference in the extraction rates due to heat treatment temperature, and its molecular weight distribution trend does not change, the extracted components which have existed primarily in the original coal govern the fluidity. In semi-caking coals, polymer molecular components are extracted in a large quantity at the softening starting temperature, but the quantity decreases as the temperature rises. However, low-molecular components present no quantitative change, while polymer molecular components decompose, decrease in molecular weight, get solubilized with rising temperature, and act as a binder to cause a flow. 7 figs., 1 tab.

  11. Radiation-Induced Fluidity and Glass-Liquid Transition in Irradiated Amorphous Materials

    International Nuclear Information System (INIS)

    Ojovan, M.I.

    2009-01-01

    This paper describes the fluidity behaviour of continuously irradiated glasses using the Congruent Bond Lattice model in which broken bonds 'configurons' facilitate the flow. Irradiation breaks the bonds creating configurons which at high concentrations provide the transition of material from the glassy to liquid state. An explicit equation of viscosity has been derived which gives results in agreement with experimental data. This equation provides correct viscosity data for non-irradiated materials and shows a significant increase of fluidity in radiation fields. It demonstrates a decrease of activation energy of flow for irradiated glasses. A simple equation for glass-transition temperature was also obtained which shows that irradiated glasses have lower glass transition temperatures and are readily transformed from glassy to liquid state e.g. fluidized in strong radiation fields. (authors)

  12. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Bakiza Kamal

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  13. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Bakiza Kamal; Gratton, Enrico; Chaieb, Saharoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  14. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2015-01-01

    Full Text Available In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high-fluidity concrete mixed with 50% fly ash was measured to manufacture concrete that applies low water/binder ratio to measure the mechanical characteristics as compressive strength and elastic modulus. Also, in order to evaluate the field applicability, high-fluidity concrete containing high volume fly ash was evaluated for fluidity, compressive strength, heat of hydration, and drying shrinkage of concrete.

  15. Possible evolutionary origins of human female sexual fluidity.

    Science.gov (United States)

    Kanazawa, Satoshi

    2017-08-01

    I propose an evolutionary theory of human female sexual fluidity and argue that women may have been evolutionarily designed to be sexually fluid in order to allow them to have sex with their cowives in polygynous marriage and thus reduce conflict and tension inherent in such marriage. In addition to providing an extensive definition and operationalization of the concept of sexual fluidity and specifying its ultimate function for women, the proposed theory can potentially solve several theoretical and empirical puzzles in evolutionary psychology and sex research. Analyses of the National Longitudinal Study of Adolescent Health (Add Health) confirm the theory's predictions that: (i) women (but not men) who experience increased levels of sexual fluidity have a larger number of children (suggesting that female sexual fluidity, if heritable, may be evolutionarily selected); (ii) women (but not men) who experience marriage or parenthood early in adult life subsequently experience increased levels of sexual fluidity; and (iii) sexual fluidity is significantly positively correlated with known markers of unrestricted sexual orientation among women whereas it is significantly negatively correlated with such markers among men. © 2016 Cambridge Philosophical Society.

  16. Effect of grain refinement on the fluidity of two commercial Al-Si foundry alloys

    Science.gov (United States)

    Dahle, A. K.; Tøndel, P. A.; Paradies, C. J.; Arnberg, L.

    1996-08-01

    The effect of grain refinement on the fluidity of AlSi7Mg and AlSi11Mg has been investigated by spiral tests. Two different types of grain refiners have been evaluated. An AlTi5Bl master alloy was added to different Ti contents. Since the commercial alloys had a high initial content of titanium, model alloys were made to investigate the fluidity at low grain refiner additions. Commercial alloys grain refined only by boron additions have also been investigated. The results from the fluidity measurements have been verified by measuring the dendrite coherency point of the different cast alloys. Although different, the two methods show similar trends. The spirals from each fraction grain refiner cast were subsequently investigated metallographically at the tip of the spirals and at a reference point a distance behind, but no obvious difference in structure was observed. For both alloys, an increase in fluidity is observed as the content of grain refiner increases above 0.12 pct Ti, while the fluidity is impaired with increased grain refinement below 0.12 pct Ti. The alloys grain refined with ~0.015 pct B show the highest fraction solid at dendrite coherency, the smallest grain size, and the best fluidity.

  17. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    International Nuclear Information System (INIS)

    Block, E.R.; Edwards, D.

    1987-01-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of [ 14 C]-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells

  18. Numerical analysis of the thermal and fluid flow phenomena of the fluidity test

    Directory of Open Access Journals (Sweden)

    L. Sowa

    2010-01-01

    Full Text Available In the paper, two mathematical and numerical models of the metals alloy solidification in the cylindrical channel of fluidity test, which take into account the process of filling the mould cavity with molten metal, has been proposed. Velocity and pressure fields were obtained by solving the momentum equations and the continuity equation, while the thermal fields were obtained by solving the heat conduction equation containing the convection term. Next, the numerical analysis of the solidification process of metals alloy in the cylindrical mould channel has been made. In the models one takes into account interdependence of the thermal and dynamical phenomena. Coupling of the heat transfer and fluid flow phenomena has been taken into consideration by the changes of the fluidity function and thermophysical parameters of alloy with respect to the temperature. The influence of the velocity or the pressure and the temperature of metal pouring on the solid phase growth kinetics were estimated. The problem has been solved by the finite element method.

  19. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta

    DEFF Research Database (Denmark)

    Boardman, Leigh; Sørensen, Jesper Givskov; Terblanche, John S

    2015-01-01

    identified to date. Using larvae of false codling moth Thaumatotibia leucotreta, a pest of southern Africa, we investigated the physiological and molecular responses to hypoxia or temperature stress pre-treatments, followed by a standard low temperature exposure. Survival rates were significantly influenced...... by pretreatment conditions, although T. leucotreta shows relatively high basal resistance to various stressors (4% variation in larval survival across all pre-treatments). Results showed that mild pre-treatments with chilling and hypoxia increased resistance to low temperatures and that these responses were...... correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2 h at 35 C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold...

  20. Combination of 1H nuclear magnetic resonance spectroscopy and principal component analysis to evaluate the lipid fluidity of flutamide-encapsulated lipid nanoemulsions.

    Science.gov (United States)

    Takegami, Shigehiko; Ueyama, Keita; Konishi, Atsuko; Kitade, Tatsuya

    2018-06-06

    The lipid fluidity of various lipid nanoemulsions (LNEs) without and with flutamide (FT) and containing one of two neutral lipids, one of four phosphatidylcholines as a surfactant, and sodium palmitate as a cosurfactant was investigated by the combination of 1 H nuclear magnetic resonance (NMR) spectroscopy and principal component analysis (PCA). In the 1 H NMR spectra, the peaks from the methylene groups of the neutral lipids and surfactants for all LNE preparations showed downfield shifts with increasing temperature from 20 to 60 °C. PCA was applied to the 1 H NMR spectral data obtained for the LNEs. The PCA resulted in a model in which the first two principal components (PCs) extracted 88% of the total spectral variation; the first PC (PC-1) axis and second PC (PC-2) axis accounted for 73 and 15%, respectively, of the total spectral variation. The Score-1 values for PC-1 plotted against temperature revealed the existence of two clusters, which were defined by the neutral lipid of the LNE preparations. Meanwhile, the Score-2 values decreased with rising temperature and reflected the increase in lipid fluidity of each LNE preparation, consistent with fluorescence anisotropy measurements. In addition, the changes of Score-2 values with temperature for LNE preparations with FT were smaller than those for LNE preparations without FT. This indicates that FT encapsulated in LNE particles markedly suppressed the increase in lipid fluidity of LNE particles with rising temperature. Thus, PCA of 1 H NMR spectra will become a powerful tool to analyze the lipid fluidity of lipid nanoparticles. Graphical abstract ᅟ.

  1. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity.

    Science.gov (United States)

    Zavala-González, Ernesto A; Lopez-Moya, Federico; Aranda-Martinez, Almudena; Cruz-Valerio, Mayra; Lopez-Llorca, Luis Vicente; Ramírez-Lepe, Mario

    2016-07-01

    The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Growth and membrane fluidity of food-borne pathogen Listeria monocytogenes in the presence of weak acid preservatives and hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Ioannis eDiakogiannis

    2013-06-01

    Full Text Available This study addresses a major issue in microbial food safety, the elucidation of correlations between acid stress and changes in membrane fluidity of the pathogen Listeria monocytogenes. In order to assess the possible role that membrane fluidity changes play in L. monocytogenes tolerance to antimicrobial acids (acetic, lactic, hydrochloric acid at low pH or benzoic acid at neutral pH, the growth of the bacterium and the gel-to-liquid crystalline transition temperature point (Tm of cellular lipids of each adapted culture was measured and compared with unexposed cells. The Tm of extracted lipids was measured by Differential Scanning Calorimetry (DSC. A trend of increasing Tm values but not of equal extent was observed upon acid tolerance for all samples and this increase is not directly proportional to each acid antibacterial action. The smallest increase in Tm value was observed in the presence of lactic acid, which presented the highest antibacterial action. In the presence of acids with high antibacterial action such as acetic, hydrochloric acid or low antibacterial action such as benzoic acid, increased Tm values were measured. The Tm changes of lipids were also correlated with our previous data about fatty acid changes to acid adaptation. The results imply that the fatty acid changes are not the sole adaptation mechanism for decreased membrane fluidity (increased Tm. Therefore, this study indicates the importance of conducting an in-depth structural study on how acids commonly used in food systems affect the composition of individual cellular membrane lipid molecules.

  3. Increase of radiation damage to potassium-ion permeability in E. coli cells with decrease in membrane fluidity

    International Nuclear Information System (INIS)

    Suzuki, S.

    1980-01-01

    Membrane lipids of an auxotroph of E. coli requiring unsaturated fatty acid were manipulated by supplementing the growth medium with unsaturated fatty acids of different chain lengths and/or configurations, and the radiation damage to K + -permeability of the resulting modified cells was investigated in relation with factors influencing membrane fluidity, such as temperature and procaine. Radiation had greater effects on membranes supplemented with unsaturated fatty acids of the trans configuration with a longer chain than on those of the cis configuration with a shorter chain. Radiation damage also increased with decrease in temperature. Furthermore, procaine-treated membranes showed increased resistance to radiation. All these results indicate that the damage was affected by the physical character of membrane lipids and that it was greater in membranes with decreased fluidity. (author)

  4. Assessment and optimization of thermal and fluidity properties of high strength concrete via genetic algorithm

    Directory of Open Access Journals (Sweden)

    Barış Şimşek

    2016-12-01

    Full Text Available This paper proposes a Response Surface Methodology (RSM based Genetic Algorithm (GA using MATLAB® to assess and optimize the thermal and fluidity of high strength concrete (HSC. The overall heat transfer coefficient, slump-spread flow and T50 time was defined as thermal and fluidity properties of high strength concrete. In addition to above mentioned properties, a 28-day compressive strength of HSC was also determined. Water to binder ratio, fine aggregate to total aggregate ratio and the percentage of super-plasticizer content was determined as effective factors on thermal and fluidity properties of HSC. GA based multi-objective optimization method was carried out by obtaining quadratic models using RSM. Having excessive or low ratio of water to binder provides lower overall heat transfer coefficient. Moreover, T50 time of high strength concrete decreased with the increasing of water to binder ratio and the percentage of superplasticizer content. Results show that RSM based GA is effective in determining optimal mixture ratios of HSC.

  5. Fluidity models in ancient Greece and current practices of sex assignment.

    Science.gov (United States)

    Chen, Min-Jye; McCann-Crosby, Bonnie; Gunn, Sheila; Georgiadis, Paraskevi; Placencia, Frank; Mann, David; Axelrad, Marni; Karaviti, L P; McCullough, Laurence B

    2017-06-01

    Disorders of sexual differentiation such as androgen insensitivity and gonadal dysgenesis can involve an intrinsic fluidity at different levels, from the anatomical and biological to the social (gender) that must be considered in the context of social constraints. Sex assignment models based on George Engel's biopsychosocial aspects model of biology accept fluidity of gender as a central concept and therefore help establish expectations within the uncertainty of sex assignment and anticipate potential changes. The biology underlying the fluidity inherent to these disorders should be presented to parents at diagnosis, an approach that the gender medicine field should embrace as good practice. Greek mythology provides many accepted archetypes of change, and the ancient Greek appreciation of metamorphosis can be used as context with these patients. Our goal is to inform expertise and optimal approaches, knowing that this fluidity may eventually necessitate sex reassignment. Physicians should provide sex assignment education based on different components of sexual differentiation, prepare parents for future hormone-triggered changes in their children, and establish a sex-assignment algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Fluidity models in ancient Greece and current practices of sex assignment

    Science.gov (United States)

    Chen, Min-Jye; McCann-Crosby, Bonnie; Gunn, Sheila; Georgiadis, Paraskevi; Placencia, Frank; Mann, David; Axelrad, Marni; Karaviti, L.P; McCullough, Laurence B.

    2018-01-01

    Disorders of sexual differentiation such as androgen insensitivity and gonadal dysgenesis can involve an intrinsic fluidity at different levels, from the anatomical and biological to the social (gender) that must be considered in the context of social constraints. Sex assignment models based on George Engel’s biopsychosocial aspects model of biology accept fluidity of gender as a central concept and therefore help establish expectations within the uncertainty of sex assignment and anticipate potential changes. The biology underlying the fluidity inherent to these disorders should be presented to parents at diagnosis, an approach that the gender medicine field should embrace as good practice. Greek mythology provides many accepted archetypes of change, and the ancient Greek appreciation of metamorphosis can be used as context with these patients. Our goal is to inform expertise and optimal approaches, knowing that this fluidity may eventually necessitate sex reassignment. Physicians should provide sex assignment education based on different components of sexual differentiation, prepare parents for future hormone-triggered changes in their children, and establish a sex-assignment algorithm. PMID:28478088

  7. Fluidity of pea root plasma membranes under altered gravity

    Science.gov (United States)

    Klymchuk, D. O.; Baranenko, V. V.; Vorobyova, T. V.; Dubovoy, V. D.

    This investigation aims to determine whether clinorotation 2 rev min of pea Pisum sativum L seedlings induces the alterations in the physical-chemical properties of cellular membranes including the plasma membrane fluidity The last is an important regulator of functional activity of membrane enzymes The plasma membranes were isolated by aqueous two-phase partitioning from roots of 6-day old pea seedlings The membrane fluidity was examined by fluorescence spectroscopy using pyrene probe The plasma membrane vesicles with known protein concentration were added to the incubation buffer to a final concentration of 50 mu g of protein per ml A small amount by 1 mu l of pyrene solution in 2-propanol was added to the incubation mixture to a final probe concentration 5 mu M at constant mixing Fluorescence spectra were measured using a Perkin-Elmer LS-50 spectrofluorometer Perkin-Elmer England Pyrene was excited at 337 nm and fluorescence intensity of monomers I M and excimers I E were measured at 393 and 470 nm respectively The I E I M ratios were 0 081 pm 0 003 and 0 072 pm 0 004 in preparations obtained from clinorotated and the control seedlings respectively This fact indicates that rotation on the clinostat increases the membrane fluidity Compared with controls clinorotated seedlings have also showed a reduced growth and a higher level of total unsaturated fatty acids determined by gas chromatography The factors that influence on the fluidity of membrane lipids in bilayer appear to be the

  8. Membrane fatty acid composition and fluidity are involved in the resistance to freezing of Lactobacillus buchneri R1102 and Bifidobacterium longum R0175.

    Science.gov (United States)

    Louesdon, Séverine; Charlot-Rougé, Séverine; Tourdot-Maréchal, Raphaëlle; Bouix, Marielle; Béal, Catherine

    2015-03-01

    Determinations of membrane fatty acid composition and fluidity were used together with acidification activity and viability measurements to characterize the physiological state after freezing of Lactobacillus buchneri R1102 and Bifidobacterium longum R0175 cells harvested in the exponential and stationary growth phases. For both strains, lower membrane fluidity was achieved in cells harvested in the stationary growth phase. This change was linked to a lower unsaturated-to-saturated fatty acid ratio for both strains and a higher cyclic-to-saturated fatty acid ratio for L. buchneri R1102 alone. These membrane properties were linked to survival and to maintenance of acidification activity of the cells after freezing, which differed according to the strain and the growth phase. Survival of B. longum R0175 was increased by 10% in cells with low membrane fluidity and high relative saturated fatty acid contents, without any change in acidification activity. Acidification activity was more degraded (70 min) in L. buchneri R1102 cells displaying low membrane fluidity and high saturated and cyclic fatty acid levels. Finally, this study showed that membrane modifications induced by the growth phase differed among bacterial strains in terms of composition. By lowering membrane fluidity, these modifications could be beneficial for survival of B. longum R0175 during the freezing process but detrimental for maintenance of acidification activity of L. buchneri R1102. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  10. Sulfate and Chloride Resistance of High Fluidity Concrete including Fly Ash and GGBS for NPP

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Fly ash mixed concrete has been used for NPP concrete structures in Korea in order to prevent aging and improve durability since the Shin.Kori no.1,2 in 2005. Concentrated efforts to develop technology for the streamlining of construction work and to affect labor savings have been conducted in construction. The application of high fluidity concrete for nuclear power plants has been the research subject with the aim of further rationalization of construction works. Since high fluidity concrete can have the characteristics of high density and high strength without compaction. However, high fluidity concrete can cause thermal cracking by heat of hydration. For this reason, the amount of pozzolan binder should be increased in high fluidity concrete for nuclear power plants. In this study, the resistance of high fluidity concrete on sulfate and chloride was compared with that of the concrete currently using for nuclear power plants

  11. Even a Chronic Mild Hyperglycemia Affects Membrane Fluidity and Lipoperoxidation in Placental Mitochondria in Wistar Rats

    Science.gov (United States)

    Figueroa-García, María del Consuelo; Espinosa-García, María Teresa; Martinez-Montes, Federico; Palomar-Morales, Martín; Mejía-Zepeda, Ricardo

    2015-01-01

    It is known the deleterious effects of diabetes on embryos, but the effects of diabetes on placenta and its mitochondria are still not well known. In this work we generated a mild hyperglycemia model in female wistar rats by intraperitoneal injection of streptozotocin in 48 hours-old rats. The sexual maturity onset of the female rats was delayed around 6–7 weeks and at 16 weeks-old they were mated, and sacrificed at day 19th of pregnancy. In placental total tissue and isolated mitochondria, the fatty acids composition was analyzed by gas chromatography, and lipoperoxidation was measured by thiobarbituric acid reactive substances. Membrane fluidity in mitochondria was measured with the excimer forming probe dipyrenylpropane and mitochondrial function was measured with a Clark-type electrode. The results show that even a chronic mild hyperglycemia increases lipoperoxidation and decreases mitochondrial function in placenta. Simultaneously, placental fatty acids metabolism in total tissue is modified but in a different way than in placental mitochondria. Whereas the chronic mild hyperglycemia induced a decrease in unsaturated to saturated fatty acids ratio (U/S) in placental total tissue, the ratio increased in placental mitochondria. The measurements of membrane fluidity showed that fluidity of placenta mitochondrial membranes increased with hyperglycemia, showing consistency with the fatty acids composition through the U/S index. The thermotropic characteristics of mitochondrial membranes were changed, showing lower transition temperature and activation energies. All of these data together demonstrate that even a chronic mild hyperglycemia during pregnancy of early reproductive Wistar rats, generates an increment of lipoperoxidation, an increase of placental mitochondrial membrane fluidity apparently derived from changes in fatty acids composition and consequently, mitochondrial malfunction. PMID:26630275

  12. Tax aggressiveness and corporate social responsibility fluidity in ...

    African Journals Online (AJOL)

    Tax aggressiveness and corporate social responsibility fluidity in Nigerian firms. ... the nexus between shareholding and wider-spectrum stake-holding, where key ... to forge mutually expedient cash flow mechanisms for sustainable corporate ...

  13. Coal lithotypes before and after saturation with CO2; insights from micro- and mesoporosity, fluidity, and functional group distribution

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Walker, R.; Morse, D.

    2010-01-01

    Four lithotypes, vitrain, bright clarain, clarain, and fusain, were hand-picked from the core of the Pennsylvanian Springfield Coal Member (Petersburg Formation) in Illinois. These lithotypes were analyzed petrographically and for meso- and micropore characteristics, functional group distribution using FTIR techniques, and fluidity. High-pressure CO2 adsorption isotherm analyses of these lithotypes were performed and, subsequently, all samples were reanalyzed in order to investigate the effects of CO2. After the high-pressure adsorption isotherm analysis was conducted and the samples were reanalyzed, there was a decrease in BET surface area for vitrain from 31.5m2/g in the original sample to 28.5m2/g, as determined by low-pressure nitrogen adsorption. Bright clarain and clarain recorded a minimal decrease in BET surface area, whereas for fusain there was an increase from 6.6m2/g to 7.9m2/g. Using low-pressure CO2 adsorption techniques, a small decrease in the quantity of the adsorbed CO2 is recorded for vitrain and bright clarain, no difference is observed for clarain, and there is an increase in the quantity of the adsorbed CO2 for fusain. Comparison of the FTIR spectra before and after CO2 injection for all lithotypes showed no differences with respect to functional group distribution, testifying against chemical nature of CO2 adsorption. Gieseler plastometry shows that: 1) softening temperature is higher for the post-CO2 sample (389.5??C vs. 386??C); 2) solidification temperature is lower for the post-CO2 sample (443.5??C vs. 451??C); and 3) the maximum fluidity is significantly lower for the post-CO2 sample (4 ddpm vs. 14 ddpm). ?? 2010 Elsevier B.V.

  14. Effect of Growth Medium pH of Aeropyrum pernix on Structural Properties and Fluidity of Archaeosomes

    Directory of Open Access Journals (Sweden)

    Ajda Ota

    2012-01-01

    Full Text Available The influence of pH (6.0; 7.0; 8.0 of the growth medium of Aeropyrum pernix K1 on the structural organization and fluidity of archaeosomes prepared from a polar-lipid methanol fraction (PLMF was investigated using fluorescence anisotropy and electron paramagnetic resonance (EPR spectroscopy. Fluorescence anisotropy of the lipophilic fluorofore 1,6-diphenyl-1,3,5-hexatriene and empirical correlation time of the spin probe methylester of 5-doxylpalmitate revealed gradual changes with increasing temperature for the pH. A similar effect has been observed by using the trimethylammonium-6-diphenyl-1,3,5-hexatriene, although the temperature changes were much smaller. As the fluorescence steady-state anisotropy and the empirical correlation time obtained directly from the EPR spectra alone did not provide detailed structural information, the EPR spectra were analysed by computer simulation. This analysis showed that the archaeosome membranes are heterogeneous and composed of several regions with different modes of spin-probe motion at temperatures below 70°C. At higher temperatures, these membranes become more homogeneous and can be described by only one spectral component. Both methods indicate that the pH of the growth medium of A. pernix does not significantly influence its average membrane fluidity. These results are in accordance with TLC analysis of isolated lipids, which show no significant differences between PLMF isolated from A. pernix grown in medium with different pH.

  15. Influence of membrane fatty acid composition and fluidity on airborne survival of Escherichia coli.

    Science.gov (United States)

    Ng, Tsz Wai; Chan, Wing Lam; Lai, Ka Man

    2018-04-01

    Finding ways to predict and control the survival of bacterial aerosols can contribute to the development of ways to alleviate a number of crucial microbiological problems. Significant damage in the membrane integrity of Escherichia coli during aerosolization and airborne suspension has been revealed which has prompted the question of how the membrane fatty acid composition and fluidity influence the survival of airborne bacteria. Two approaches of using isogenic mutants and different growth temperatures were selected to manipulate the membrane fatty acid composition of E. coli before challenging the bacteria with different relative humidity (RH) levels in an aerosol chamber. Among the mutants (fabR - , cfa. fadA - ), fabR - had the lowest membrane fluidity index (FI) and generally showed a higher survival than the parental strain. Surprisingly, its resistance to airborne stress was so strong that its viability was fully maintained even after airborne suspension at 40% RH, a harsh RH level to bacterial survival. Moreover, E. coli cultured at 20 °C with a higher FI than that at 30 and 37 °C generally had a lower survival after aerosolization and airborne suspension. Unlike FI, individual fatty acid and cyclopropane fatty acid composition did not relate to the bacterial survival. Lipid peroxidation of the membrane was undetected in all the bacteria. Membrane fluidity plays a stronger role in determining the bacteria survival during airborne suspension than during aerosolization. Certain relationships between FI and bacteria survival were identified, which could help predict the transmission of bacteria under different conditions.

  16. Coal lithotypes before and after saturation with CO{sub 2}; insights from micro- and mesoporosity, fluidity, and functional group distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mastalerz, M.; Drobniak, A. [Indiana Geological Survey, Indiana University, 611 North Walnut Grove Ave., Bloomington, IN 47405-2208 (United States); Walker, R. [Pearson Coal Petrography, 7300 W. 15th Ave, Gary, IN 46406 (United States); Morse, D. [Illinois State Geological Survey, University of Illinois, Champaign, Illinois, 61820 (United States)

    2010-09-01

    Four lithotypes, vitrain, bright clarain, clarain, and fusain, were hand-picked from the core of the Pennsylvanian Springfield Coal Member (Petersburg Formation) in Illinois. These lithotypes were analyzed petrographically and for meso- and micropore characteristics, functional group distribution using FTIR techniques, and fluidity. High-pressure CO{sub 2} adsorption isotherm analyses of these lithotypes were performed and, subsequently, all samples were reanalyzed in order to investigate the effects of CO{sub 2}. After the high-pressure adsorption isotherm analysis was conducted and the samples were reanalyzed, there was a decrease in BET surface area for vitrain from 31.5 m{sup 2}/g in the original sample to 28.5 m{sup 2}/g, as determined by low-pressure nitrogen adsorption. Bright clarain and clarain recorded a minimal decrease in BET surface area, whereas for fusain there was an increase from 6.6 m{sup 2}/g to 7.9 m{sup 2}/g. Using low-pressure CO{sub 2} adsorption techniques, a small decrease in the quantity of the adsorbed CO{sub 2} is recorded for vitrain and bright clarain, no difference is observed for clarain, and there is an increase in the quantity of the adsorbed CO{sub 2} for fusain. Comparison of the FTIR spectra before and after CO{sub 2} injection for all lithotypes showed no differences with respect to functional group distribution, testifying against chemical nature of CO{sub 2} adsorption. Gieseler plastometry shows that: 1) softening temperature is higher for the post-CO{sub 2} sample (389.5 C vs. 386 C); 2) solidification temperature is lower for the post-CO{sub 2} sample (443.5 C vs. 451 C); and 3) the maximum fluidity is significantly lower for the post-CO{sub 2} sample (4 ddpm vs. 14 ddpm). (author)

  17. Effect of Ring Size in ω-Alicyclic Fatty Acids on the Structural and Dynamical Properties Associated with Fluidity in Lipid Bilayers.

    Science.gov (United States)

    Poger, David; Mark, Alan E

    2015-10-27

    Fatty acids containing a terminal cyclic group such as cyclohexyl and cycloheptyl are commonly found in prokaryotic membranes, especially in those of thermo-acidophilic bacteria. These so-called ω-alicyclic fatty acids have been proposed to stabilize the membranes of bacteria by reducing the fluidity in membranes and increasing lipid packing and lipid chain order. In this article, molecular dynamics simulations are used to examine the effect of 3- to 7-membered cycloalkyl saturated and unsaturated (cyclopent-2-enyl and phenyl) rings in ω-alicyclic fatty acyl chains on the structure (lipid packing, lipid chain order, and fraction of gauche defects in the chains) and dynamics (lateral lipid diffusion) of a model lipid bilayer. It was found that ω-alicyclic chains in which the ring was saturated reduced lipid condensation and lowered chain order which would be associated with enhanced fluidity. However, this effect was limited. The lateral diffusion of the lipids diminished as the ring size increased. In particular, ω-cyclohexyl and ω-cycloheptyl acyl tails led to a decrease in lipid diffusion. In contrast, ω-alicyclic acyl chains that contain an unsaturated ring promoted membrane fluidity both in terms of changes in membrane structure and lipid diffusion. This may indicate that saturated and unsaturated terminal rings in ω-alicyclic fatty acids fulfill alternative functions within membranes. Overall, the simulations suggest that ω-alicyclic fatty acids in which the terminal ring is saturated might protect the membrane of thermo-acidophilic bacteria from high-temperature and low-pH conditions through a "dynamical barrier" that would limit lipid diffusion and transmembrane diffusion of undesired ions and molecules.

  18. Born Both Ways: The Alloparenting Hypothesis for Sexual Fluidity in Women

    Directory of Open Access Journals (Sweden)

    Barry X. Kuhle

    2013-04-01

    Full Text Available Given the primacy of reproduction, same-sex sexual behavior poses an evolutionary puzzle. Why would selection fashion motivational mechanisms to engage in sexual behaviors with members of the same sex? We propose the alloparenting hypothesis, which posits that sexual fluidity in women is a contingent adaptation that increased ancestral women's ability to form pair bonds with female alloparents who helped them rear children to reproductive age. Ancestral women recurrently faced the adaptive problems of securing resources and care for their offspring, but were frequently confronted with either a dearth of paternal resources due to their mates' death, an absence of paternal investment due to rape, or a divestment of paternal resources due to their mates' extra-pair mating efforts. A fluid sexuality would have helped ancestral women secure resources and care for their offspring by promoting the acquisition of allomothering investment from unrelated women. Under this view, most heterosexual women are born with the capacity to form romantic bonds with both sexes. Sexual fluidity is a conditional reproductive strategy with pursuit of men as the default strategy and same-sex sexual responsiveness triggered when inadequate paternal investment occurs or when women with alloparenting capabilities are encountered. Discussion focuses on (a evidence for alloparenting and sexual fluidity in humans and other primates; (b alternative explanations for sexual fluidity in women; and (c fourteen circumstances predicted to promote same-sex sexual behavior in women.

  19. Religion and Sexual Identity Fluidity in a National Three-Wave Panel of U.S. Adults.

    Science.gov (United States)

    Scheitle, Christopher P; Wolf, Julia Kay

    2018-05-01

    Research has shown that cross-sectional estimates of sexual identities overlook fluidity in those identities. Research has also shown that social factors, such as competing identities, can influence sexual identity fluidity. We contributed to this literature in two ways. First, we utilized a representative panel of US adults (N = 1034) surveyed in 2010, 2012, and 2014 by the General Social Survey. The addition of a third observation allowed us to examine more complexity in sexual identity fluidity. We found that 2.40% of US adults reported at least one change in sexual identity across the 4 years, with 1.59% reporting one change and 0.81% reporting two changes. Our second contribution came from examining the role of religion, as past research has suggested that religion can destabilize and prolong sexual identity development. We found that lesbian or gay individuals (N = 17), bisexuals (N = 15), and females (N = 585) showed more sexual identity fluidity compared to heterosexuals (N = 1003) and males (N = 450), respectively. Marital status, age, race, and education did not have significant associations with sexual identity fluidity. Regarding the role of religion, we found that participants identifying as more religious in Wave 1 showed more fluidity in sexual identity across later observations. Further analysis showed that higher levels of religiosity make it more likely that lesbian or gay individuals will be fluid in sexual identity, but this is not the case for heterosexual individuals. This finding reinforces past qualitative research that has suggested that religion can extend or complicate sexual minorities' identity development.

  20. Membrane fluidity increases during apoptosis of sheep ileal Peyer's patch B cells

    International Nuclear Information System (INIS)

    Jourd'heuil, D.; Aspinall, A.; Reynolds, J.D.; Meddings, J.B.

    1996-01-01

    To investigate specific plasma membrane structural changes associated with apoptosis, whole cells and purified plasma membranes of apoptotic B cells from the ileal Peyer's patch of sheep were analyzed for their 'membrane fluidity'. The ileal Peyer's patch of sheep provided a large number of B cells required for plasma membrane isolation (>5 x 10 9 ). As the incidence of apoptosis increased with time of culture, the fluidity of purified plasma membranes, as measured with the fluorophore DPH (diphenylhexatriene), increased. To evaluate this phenomenon with intact cells, B cells at different apoptotic stages were fractionated on discontinuous Percoll gradients. Similar results were obtained using the fluorophore TMA-DPH (trimethylammoniumdiphenylhexatriene), which has been shown to localize specifically to the plasma membrane. Functionally, the increase in plasma membrane fluidity associated with apoptosis may represent either a mechanism to cycle phosphatidylserine to the outer leaflet, mediating phagocytic recognition of apoptotic cells, or a consequence of this event. (author). 20 refs., 1 tab., 4 figs

  1. Protein separations using enhanced-fluidity liquid chromatography.

    Science.gov (United States)

    Bennett, Raffeal; Olesik, Susan V

    2017-11-10

    Enhanced-fluidity liquid chromatography (EFLC) methods using methanol/H 2 O/CO 2 and hydrophilic interaction liquid chromatography (HILIC) were explored for the separation of proteins and peptides. EFLC is a separation mode that uses a mobile phase made of conventional solvents combined with liquid carbon dioxide (CO 2 ) in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis. TFA additive and elevated temperature were leveraged as key factors in the separation of a 13-analyte intact protein mixture in under 5min. Under these conditions EFLC showed modest improvement in terms of peak asymmetry and analysis time over the competing ACN/H 2 O separation. Protein analytes detected by electrospray ionization - quadrupole time of flight, were shown to be unaffected by the addition of CO 2 in the mobile phase. Herein, the feasibility of separating hydrophilic proteins up to 80kDa (with transferrin) is demonstrated for CO 2 -containing mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Relational and sexual fluidity in females partnered with male-to-female transsexual persons.

    Science.gov (United States)

    Aramburu Alegría, C

    2013-03-01

    This paper reports on a study examining sexuality in females who remain partnered with male-to-female transsexual persons. Participants' self-view and sexual fluidity following their partners' transition from man to woman is examined. Sixteen females participated in in-depth, semi-structured interviews. An inductive process of data analysis was conducted, using the constant comparative method, an iterative process by which data are compared within and across subjects. Data were collected until thematic saturation was achieved. Four themes related to sexuality emerged: (1) questioning of sexual orientation; (2) sexual orientation categorization; (3) relational fluidity without sexual relations; and (4) relational fluidity with sexual relations. Participants maintained a heterosexual identity, yet modified their self-view to include an identity that reflected their reformed relationship. The majority of the respondents reported sexual lives that were active or evolving. Others remained in relationships that no longer included sexual activity. The study findings highlight the potential fluidity within the sexual and relational lives of females, and can enhance healthcare providers' preparedness and efficacy with diverse populations. Providers are in a unique position to offer resources to patients who identify as sexually or gender-diverse, or who are in relationships with sexually or gender-diverse persons. © 2012 Blackwell Publishing.

  3. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    Science.gov (United States)

    Sonmez, Melda; Ince, Huseyin Yavuz; Yalcin, Ozlem; Ajdžanović, Vladimir; Spasojević, Ivan; Meiselman, Herbert J; Baskurt, Oguz K

    2013-01-01

    The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; palcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  4. Correlation between ionic conductivity and fluidity of polymer gel ...

    Indian Academy of Sciences (India)

    Unknown

    Ionic conductivity; ion aggregates; FTIR spectroscopy; gels; fluidity. 1. Introduction ... liquid and polymer gel electrolytes have been studied as functions of salt ..... Ratner M A 1987 in Polymer electrolyte reviews (eds) J R. MacCallum and C A ...

  5. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].

    Science.gov (United States)

    Zhang, Ying; Zeng, Xin-An; Wen, Qi-Biao; Li, Lin

    2008-01-01

    To know the lethal mechanism of microorganisms under pulsed electric field treatment, the relationship between the inactivation of Saccharomyces cerevisiae (CICC1308) cell and the permeability and fluidity changes of its cell membrane treated by pulsed electric field (0-25 kV x cm(-1), 0-266 ms) was investigated. With 1,6-diphenyl-1,3,5-hexatriene (DPH) used as a probe, the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field was expressed by fluorescence polarization. Results showed that the cell membrane fluidity decreases when the electric flied strength is up to 5 kV x cm(-1), and decreases with the increase in electric field strength and treatment time. The plate counting method and ultraviolet spectrophotometer were used to determine the cell viability and to investigate the cell membrane permeability, respectively, treated by pulsed electric field. Results showed that the lethal ratio and the content of protein and nucleic acid leaked from intracellular plasma increased with the increase in the electric field strength and the extension of treatment time. Even in a quite lower electric field of 5 kV x cm(-1) with a tiny microorganism lethal level, the increase in UV absorption value and the decrease in fluidity were significant. It was demonstrated that the cell membrane fluidity decreases with the increase in lethal ratio and cell membrane permeability. The viscosity of cell membrane increases with the decrease in fluidity. These phenomena indicated that cell membrane is one of the most key sites during the pulsed electric field treatment, and the increased membrane permeability and the decreased cell membrane fluidity contribute to the cell death.

  6. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    Directory of Open Access Journals (Sweden)

    Melda Sonmez

    Full Text Available The role of membrane fluidity in determining red blood cell (RBC deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol using ektacytometry and electron paramagnetic resonance (EPR spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01. The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  7. Subcellular membrane fluidity of Lactobacillus delbrueckii subsp. bulgaricus under cold and osmotic stress.

    Science.gov (United States)

    Meneghel, Julie; Passot, Stéphanie; Cenard, Stéphanie; Réfrégiers, Matthieu; Jamme, Frédéric; Fonseca, Fernanda

    2017-09-01

    Cryopreservation of lactic acid bacteria may lead to undesirable cell death and functionality losses. The membrane is the first target for cell injury and plays a key role in bacterial cryotolerance. This work aimed at investigating at a subcellular resolution the membrane fluidity of two populations of Lactobacillus delbrueckii subsp. bulgaricus when subjected to cold and osmotic stresses associated to freezing. Cells were cultivated at 42 °C in mild whey medium, and they were exposed to sucrose solutions of different osmolarities (300 and 1800 mOsm L -1 ) after harvest. Synchrotron fluorescence microscopy was used to measure membrane fluidity of cells labeled with the cytoplasmic membrane probe 1-[4 (trimethylamino) phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Images were acquired at 25 and 0 °C, and more than a thousand cells were individually analyzed. Results revealed that a bacterial population characterized by high membrane fluidity and a homogeneous distribution of fluidity values appeared to be positively related to freeze-thaw resistance. Furthermore, rigid domains with different anisotropy values were observed and the occurrence of these domains was more important in the freeze-sensitive bacterial population. The freeze-sensitive cells exhibited a broadening of existing highly rigid lipid domains with osmotic stress. The enlargement of domains might be ascribed to the interaction of sucrose with membrane phospholipids, leading to membrane disorganization and cell degradation.

  8. Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit.

    Science.gov (United States)

    Cesari, A B; Paulucci, N S; Biasutti, M A; Reguera, Y B; Gallarato, L A; Kilmurray, C; Dardanelli, M S

    2016-01-01

    We study the Azospirillum brasilense tolerance to water deficit and the dynamics of adaptive process at the level of the membrane. Azospirillum brasilense was exposed to polyethylene glycol (PEG) growth and PEG shock. Tolerance, phospholipids and fatty acid (FA) composition and membrane fluidity were determined. Azospirillum brasilense was able to grow in the presence of PEG; however, its viability was reduced. Cells grown with PEG showed membrane fluidity similar to those grown without, the lipid composition was modified, increasing phosphatidylcholine and decreasing phosphatidylethanolamine amounts. The unsaturation FAs degree was reduced. The dynamics of the adaptive response revealed a decrease in fluidity 20 min after the addition of PEG, indicating that the PEG has a fluidizing effect on the hydrophobic region of the cell membrane. Fluidity returned to initial values after 60 min of PEG exposure. Azospirillum brasilense is able to perceive osmotic changes by changing the membrane fluidity. This effect is offset by changes in the composition of membrane phospholipid and FA, contributing to the homeostasis of membrane fluidity under water deficit. This knowledge can be used to develop new Azospirillum brasilense formulations showing an adapted membrane to water deficit. © 2015 The Society for Applied Microbiology.

  9. Differences in Sexual Orientation Diversity and Sexual Fluidity in Attractions Among Gender Minority Adults in Massachusetts.

    Science.gov (United States)

    Katz-Wise, Sabra L; Reisner, Sari L; Hughto, Jaclyn White; Keo-Meier, Colton L

    2016-01-01

    This study characterized sexual orientation identities and sexual fluidity in attractions in a community-based sample of self-identified transgender and gender-nonconforming adults in Massachusetts. Participants were recruited in 2013 using bimodel methods (online and in person) to complete a one-time, Web-based quantitative survey that included questions about sexual orientation identity and sexual fluidity. Multivariable logistic regression models estimated adjusted risk ratios (aRRs) and 95% confidence intervals (95% CIs) to examine the correlates of self-reported changes in attractions ever in lifetime among the whole sample (n = 452) and after transition among those who reported social gender transition (n = 205). The sample endorsed diverse sexual orientation identities: 42.7% queer, 19.0% other nonbinary, 15.7% bisexual, 12.2% straight, and 10.4% gay/lesbian. Overall, 58.2% reported having experienced changes in sexual attractions in their lifetime. In adjusted models, trans masculine individuals were more likely than trans feminine individuals to report sexual fluidity in their lifetime (aRR = 1.69; 95% CI = 1.34, 2.12). Among those who transitioned, 64.6% reported a change in attractions posttransition, and trans masculine individuals were less likely than trans feminine individuals to report sexual fluidity (aRR = 0.44; 95% CI = 0.28, 0.69). Heterogeneity of sexual orientation identities and sexual fluidity in attractions are the norm rather than the exception among gender minority people.

  10. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Bakiza Kamal

    2016-01-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural

  11. Characterization of membrane lipid fluidity in human embryo cells malignantly transfer med post 238Pu α irradiation

    International Nuclear Information System (INIS)

    Qi Zirong; Sun Ling; Liu Guolian; Shen Zhiyuan

    1992-01-01

    The membrane lipid fluidity of malignantly transformed human embryo cells following 238 Pu α particlce irradiation in vitro has been studied. The results indicate that the ontogenesis depends on irradiation dose (Gy) and the membrane lipid fluidity in malignantly transformed cells is higher than that in normal embryo cells. With the microviscosity (η) of cells plotted against the cell counts, the correlation coefficient (γ) is calculated to be between 0.9936 and 0.9999. Since the malignant transformation of irradiated embryo cells is manifested early on cell membrane lipid, the fluidity of membrane lipid can be used as an oncologic marker

  12. Effects of unripe Citrus hassaku fruits extract and its flavanone glycosides on blood fluidity.

    Science.gov (United States)

    Itoh, Kimihisa; Masuda, Megumi; Naruto, Shunsuke; Murata, Kazuya; Matsuda, Hideaki

    2010-01-01

    The enhancement of blood fluidity may lead to improvements in skin problems resulting from unsmooth circulation or blood stagnation. Since a 50% ethanolic extract (CH-ext) obtained from unripe Citrus hassaku fruits may be a useful ingredient in skin-whitening cosmetics, the present study was designed to examine the effect of CH-ext on blood fluidity. CH-ext concentration-dependently inhibited in vitro collagen-induced rabbit platelet aggregation and in vitro polybrene-induced rat erythrocyte aggregation. The CH-ext showed in vitro fibrinolysis activity in fibrin plate assay. Activity-guided fractionation of the CH-ext using antiplatelet activity, inhibitory activity of erythrocyte aggregation, and fibrinolysis activity revealed that these activities of CH-ext were attributable to naringenin-7-glycoside (prunin). Successive oral administration of CH-ext to rats inhibited the lipopolysaccharide (LPS)-induced decrease of blood platelets and fibrinogen, and LPS-induced increase of fibrin degradation products (FDP) in LPS-induced disseminated intravascular coagulation (DIC) model rats. Effects of CH-ext on blood fluidity were analyzed by a micro channel array flow analyzer (MC-FAN). Preventive oral administration of CH-ext to rats showed dose-dependent reduction of the passage time of whole blood flow of the DIC model rats in comparison with that of the vehicle control rats. These results imply that CH-ext may have effects which improve effects on blood fluidity.

  13. Differences in Sexual Orientation Diversity and Sexual Fluidity in Attractions among Gender Minority Adults in Massachusetts

    Science.gov (United States)

    Katz-Wise, Sabra L.; Reisner, Sari L.; White, Jaclyn M.; Keo-Meier, Colton L.

    2015-01-01

    This study characterized sexual orientation identities and sexual fluidity in attractions in a community-based sample of self-identified transgender and gender nonconforming adults in Massachusetts. Participants were recruited in 2013 using bi-model methods (online and in-person) to complete a one-time web-based quantitative survey that included questions about sexual orientation identity and sexual fluidity. Multivariable logistic regression models estimated Adjusted Risk Ratios (aRR) and 95% Confidence Intervals (95% CI) to examine the correlates of self-reported changes in attractions ever in lifetime among the whole sample (n=452) and after transition among those who reported social gender transition (n=205). The sample endorsed diverse sexual orientation identities: 42.7% queer, 19.0% other non-binary, 15.7% bisexual, 12.2% straight, 10.4% gay/lesbian. Overall, 58.2% reported having experienced changes in sexual attractions in their lifetime. In adjusted models, trans masculine individuals were more likely than trans feminine individuals to report sexual fluidity in their lifetime (aRR=1.69; 95% CI=1.34, 2.12). Among those who transitioned, 64.6% reported a change in attractions post-transition and trans masculine individuals were less likely than trans feminine individuals to report sexual fluidity (aRR=0.44; 95% CI=0.28, 0.69). Heterogeneity of sexual orientation identities and sexual fluidity in attractions are the norm rather than the exception among gender minority people. PMID:26156113

  14. Vibration improved the fluidity of aluminum alloys in thin wall ...

    African Journals Online (AJOL)

    user

    The technique to "increase" the metal head during casting and improve the ... The effect of vibration is quantified and incorporated into the fluidity model, such that the ..... Deformation, caused by the expansion and contraction of the thin skin of ...

  15. Influence of zinc deficiency on cell-membrane fluidity in Jurkat, 3T3 and IMR-32 cells.

    Science.gov (United States)

    Verstraeten, Sandra V; Zago, M Paola; MacKenzie, Gerardo G; Keen, Carl L; Oteiza, Patricia I

    2004-01-01

    We investigated whether zinc deficiency can affect plasma membrane rheology. Three cell lines, human leukaemia T-cells (Jurkat), rat fibroblasts (3T3) and human neuroblastoma cells (IMR-32), were cultured for 48 h in control medium, in zinc-deficient medium (1.5 microM zinc; 1.5 Zn), or in the zinc-deficient medium supplemented with 15 microM zinc (15 Zn). The number of viable cells was lower in the 1.5 Zn group than in the control and 15 Zn groups. The frequency of apoptosis was higher in the 1.5 Zn group than in the control and 15 Zn groups. Membrane fluidity was evaluated using the 6-(9-anthroyloxy)stearic acid and 16-(9-anthroyloxy)palmitic acid probes. Membrane fluidity was higher in 1.5 Zn cells than in the control cells; no differences were observed between control cells and 15 Zn cells. The effect of zinc deficiency on membrane fluidity at the water/lipid interface was associated with a higher phosphatidylserine externalization. The higher membrane fluidity in the hydrophobic region of the bilayer was correlated with a lower content of arachidonic acid. We suggest that the increased fluidity of the membrane secondary to zinc deficiency is in part due to a decrease in arachidonic acid content and the apoptosis-related changes in phosphatidylserine distribution. PMID:14629198

  16. Gender fluidity and child abuse: A personal view.

    Science.gov (United States)

    Lewis, Charles

    2017-12-01

    Gender fluidity and a failure to respect biological norms may have potentially horrific implications for children and adolescents who express doubt about their bodies. Are transgender activists driving an agenda that will result in inappropriate interventions that block normal development in children and adolescents from which there can be no return? Can the Law protect children and adolescents from harm committed with the intention of helping them?

  17. Lipid fluidity at different regions in LDL and HDL of β-thalassemia/Hb E patients

    International Nuclear Information System (INIS)

    Morales, Noppawan Phumala; Charlermchoung, Chalermkhwan; Luechapudiporn, Rataya; Yamanont, Paveena; Fucharoen, Suthat; Chantharaksri, Udom

    2006-01-01

    Atherosclerosis-related vascular complications in β-thalassemia/hemoglobin E (β-thal/Hb E) patients may result from iron induced oxidation of lipoproteins. To identify the specific site of oxidative damage, changes in lipid fluidity at different regions in LDL and HDL particle were investigated using two fluorescence probes and two ESR spin probes. The magnitude of increased lipid fluidity in thalassemic lipoproteins was dependent on the location of the probes. In hydrophobic region, the rotational correlation times for 16-doxyl stearic acid and DPH anisotropy were markedly changed in LDL and HDL of the patients. In the surface region, there was only a slight change in the order parameter (S) for 5-doxyl stearic acid and TMA-DPH anisotropy. Lipid fluidity at the core of LDL and HDL showed good correlation with oxidative stress markers, the ratio of CL/CO, and the level of α-tocopherol, suggesting that hydrophobic region of thalassemic lipoprotein was a target site for oxidative damage

  18. Beyond Alphabet Soup: Helping College Health Professionals Understand Sexual Fluidity

    Science.gov (United States)

    Oswalt, Sara B.; Evans, Samantha; Drott, Andrea

    2016-01-01

    Many college students today are no longer using the terms straight, gay, lesbian, bisexual, or transgender to self-identify their sexual orientation or gender identity. This commentary explores research related to fluidity of sexual identities, emerging sexual identities used by college students, and how these identities interact with the health…

  19. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity.

    Science.gov (United States)

    Santhosh, Poornima Budime; Velikonja, Aljaž; Perutkova, Šarka; Gongadze, Ekaterina; Kulkarni, Mukta; Genova, Julia; Eleršič, Kristina; Iglič, Aleš; Kralj-Iglič, Veronika; Ulrih, Nataša Poklar

    2014-02-01

    The aim of this work is to investigate the effect of electrostatic interactions between the nanoparticles and the membrane lipids on altering the physical properties of the liposomal membrane such as fluidity and bending elasticity. For this purpose, we have used nanoparticles and lipids with different surface charges. Positively charged iron oxide (γ-Fe2O3) nanoparticles, neutral and negatively charged cobalt ferrite (CoFe2O4) nanoparticles were encapsulated in neutral lipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine lipid mixture. Membrane fluidity was assessed through the anisotropy measurements using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene. Though the interaction of both the types of nanoparticles reduced the membrane fluidity, the results were more pronounced in the negatively charged liposomes encapsulated with positively charged iron oxide nanoparticles due to strong electrostatic attractions. X-ray photoelectron spectroscopy results also confirmed the presence of significant quantity of positively charged iron oxide nanoparticles in negatively charged liposomes. Through thermally induced shape fluctuation measurements of the giant liposomes, a considerable reduction in the bending elasticity modulus was observed for cobalt ferrite nanoparticles. The experimental results were supported by the simulation studies using modified Langevin-Poisson-Boltzmann model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Age-dependent effects of He-Ne laser irradiation on the membrane fluidity of human erythrocytes

    Science.gov (United States)

    Kovacs, Eugenia; Savopol, Tudor; Pologea-Moraru, Roxana; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    1997-12-01

    The low power He-Ne laser radiation has been extensively used in past decades as medical device to relieve pain, accelerate wound healing as well as aiming beam in invisible laser beam in invisible laser beam applications. It is not known however if there are any secondary, undesirable effects of He-Ne laser radiation on the irradiated tissue. In this paper we investigate the changes induced in membrane fluidity of human erythrocyte during/upon the interaction with the He-Ne laser beam having the parameters currently used for target aiming in laser surgery.

  1. Fluidity in the networked society

    DEFF Research Database (Denmark)

    Levinsen, Karin Tweddell

    2011-01-01

    In the globalized economies e-permeation has become a basic condition in our everyday lives. ICT can no longer be understood solely as artefacts and tools and computer-related literacy are no longer restricted to the ability to operate digital tools for specific purposes. The network society......, and therefore also eLearning are characterized by fluidity and the key competence for social actors in this ever changing e-permeated environment is the ability to cope with change - or Castells’ conceptualisation self-programming. Castells’ theory has influenced international definitions of future key...... competencies. Both lifelong learning and digital literacy understood as "bildung" have emerged as central for the definitions of and standards for future key competencies. However, definitions and standards only tell us about the desired destination and outcome of digital competence building. They tell us...

  2. Influence of Temperature and Storing Time on Selected Red Wine Physical Properties

    Directory of Open Access Journals (Sweden)

    Peter Hlaváč

    2016-01-01

    Full Text Available Presented article is focused on red wine rheological and thermal properties. Effects of temperature and short term storage on density, rheological parameters and thermal parameters were investigated. First measurement was done at the beginning of storage and then the same sample was measured again after one week of storing. Density was measured by densimeter Mettler Toledo DM 40 at different temperatures. For dynamic viscosity measurement was used rotational viscometer Anton Paar DV-3P. The kinematic viscosity and fluidity were determined according to the definitions. Thermal parameters were measured by instrument Isomet 2104. Temperature dependencies of wine dynamic and kinematic viscosity had decreasing exponential shape and temperature dependencies of fluidity had an increasing exponential shape. Temperature dependencies of red wine thermal conductivity and diffusivity had increasing linear character. Decreasing polynomial functions were obtained for temperature dependencies of red wine density. The values of dynamic and kinematic viscosity, thermal conductivity and diffusivity, and density of red wine were a little bit higher after short term storing, which can be expressed by changed amount of water caused by evaporation. Due to the same reasons were values of fluidity little bit lower after storage.

  3. Evidence that survival of γ-irradiated Escherichia coli is influenced by membrane fluidity

    International Nuclear Information System (INIS)

    Yatvin, M.B.

    1976-01-01

    Survival studies have been carried out on an Escherichia coli auxotroph (K-12 strain K1060) defective in both fatty acid degradation and in unsaturated fatty acid biosynthesis. Cultures were grown overnight in media supplemented with either oleic or linolenic acid, and γ-irradiated at two temperatures. Gas chromatography of total cellular fatty acids demonstrated marked differences in the compositions. In the bacteria grown in oleate, plamitate accounted for 35% and oleate 43%, whereas those grown in linolenate had no oleate but contained 56% palmitate and 35% linolenate. The loss (35%) in total DNA radioactivity from ( 3 H)TdR labelled cells after irradiation at room temperature or on ice, was essentially the same in bacteria grown with linoleic or oleic acid medium. The survival of linolenic substituted bacteria was altered little by irradiation at ice-bath temperature, but the oleic-grown bacteria were much more radiosensitive when irradiated and plated from the cold. The temperatures of the membrane phase transitions are such that at ice-bath temperature (approximately 3 to 5 0 C) only the membrane of the linolenate grown bacteria could possibly still be in the liquid (unorganized) state. The results therefore indicate that one of the factors influencing survival of irradiated bacteria may be membrane fluidity, and the membranes are an important factor in determining the extent of damage, 'repair' and ultimate survival in irradiated cells. (U.K.)

  4. Transcriptional responses of olive flounder (Paralichthys olivaceus to low temperature.

    Directory of Open Access Journals (Sweden)

    Jinwei Hu

    Full Text Available The olive flounder (Paralichthys olivaceus is an economically important flatfish in marine aquaculture with a broad thermal tolerance ranging from 14 to 23°C. Cold-tolerant flounder that can survive during the winter season at a temperature of less than 14°C might facilitate the understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of flounder to cold stress (0.7±0.05°C was characterized using RNA sequencing. Transcriptome sequencing was performed using the Illumina MiSeq platform for the cold-tolerant (CT group, which survived under the cold stress; the cold-sensitive (CS group, which could barely survive at the low temperature; and control group, which was not subjected to cold treatment. In all, 29,021 unigenes were generated. Compared with the unigene expression profile of the control group, 410 unigenes were up-regulated and 255 unigenes were down-regulated in the CT group, whereas 593 unigenes were up-regulated and 289 unigenes were down-regulated in the CS group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, lipid metabolism, digestive system, and signaling molecules and interaction were the most highly enriched pathways for the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following four biological functions for flounder that can survive under cold stress: signal response to cold stress, cell repair/regeneration, energy production, and cell membrane construction and fluidity.

  5. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    Science.gov (United States)

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.

  6. Trends in educational fluidity after the fall of socialism in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Katrňák, T.; Simonová, Natalie

    2016-01-01

    Roč. 10, č. 3 (2016), s. 49-69 ISSN 1802-4637 R&D Projects: GA ČR GB14-36154G Institutional support: RVO:68378025 Keywords : educational fluidity * cohort analysis * educational inequality Subject RIV: AO - Sociology, Demography OBOR OECD: Sociology

  7. The fluidities of digital learning environments and resources

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2012-01-01

    The research project “Educational cultures and serious games on a global market place” (2009-2011) dealt with the challenge of the digital learning environment and hence it’s educational development space always existing outside the present space and hence scope of activities. With a reference...... and establishments of the virtual universe called Mingoville.com, the research shows a need to include in researchers’ conceptualizations of digital learning environments and resources, their shifting materialities and platformations and hence emerging (often unpredictable) agencies and educational development...... spaces. Keywords: Fluidity, digital learning environment, digital learning resource, educational development space...

  8. Comparison on Heat of Hydration between Current Concrete for NPP and High Fluidity Concrete including Pozzolan Powders

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Nuclear power plant (NPP) concrete structures are exposed to many construction factors that lower the quality of concrete due to densely packed reinforcements and heat of hydration since they are mostly constructed with mass concrete. The concrete currently being used in Korean NPPs is mixed with Type I cement and fly ash. However, there is a demand to improve the performance of concrete with reduced heat of hydration and superior constructability. Many advantages such as improving workability and durability of concrete and decreasing heat of hydration are introduced by replacing cement with pozzolan binders. Therefore, the manufacturing possibility of high fluidity concrete should be investigated through applying multi-component powders blended with pozzolan binders to the concrete structure of NPPs, while the researches on properties, characteristic of hydration, durability and long-term behavior of high fluidity concrete using multi-component cement should be carried out. High fluidity concrete which is made using portland cement and pozzlonan powders such as fly ash and blast furnace slag has better properties on heat of hydration than the concrete currently in use for NPPs

  9. [The effects of electromagnetic pulse on fluidity and lipid peroxidation of mitochondrial membrane].

    Science.gov (United States)

    Wang, Changzhen; Cong, Jianbo; Xian, Hong; Cao, Xiaozhe; Sun, Cunpu; Wu, Ke

    2002-08-01

    To study the effects of intense electromagnetic pulse(EMP) on the biological effects of mitochondrial membrane. Rat liver mitochondrial suspension was exposed to EMP at 60 kV/m level. The changes of membrane lipid fluidity and membrane protein mobility were detected by ESR and spin label technique. Malondialdehyde(MDA) was detected by spectrophotometer. The mobility of membrane protein decreased significantly(P < 0.05). Correlation time (tau c) of control group was (0.501 +/- 0.077) x 10(-9)s, and tau c of EMP group was (0.594 +/- 0.049) x 10(-9)s, indicating that the mobility of protein was restricted. The fluidity of mitochondrial membrane increased significantly(P < 0.05) at the same time. Order parameter(S) of mitochondrial membrane lipid in control group was 0.63 +/- 0.01, while S of EMP group was 0.61 +/- 0.01(P < 0.05). MDA decreased significantly. The mobility and lipid peroxidation of mitochondrial membrane may be disturbed after EMP exposure.

  10. Radiation killing of E. coli K1060: role of membrane fluidity, hypothermia and local anaesthetics

    International Nuclear Information System (INIS)

    Yatvin, M.B.; Schmitz, B.J.; Dennis, W.H.

    1980-01-01

    The enhancement of killing by γ irradiation, which is seen when E. coliK1060 are cooled below the transition temperature of their membrane lipids, is blocked by procaine-HCl. These data are consistent with the hypothesis that increased killing associated with irradiation at 0 0 C is the result of membrane microviscosity increases, since procaine is known to fluidize membranes. A cooling enhancement ratio (c.e.r.) is defined as the ratio of radiation D 0 at 22 0 C to its value at 0 0 C. The c.e.r. for oxygen-bubbled cells is 1.5 and for nitrogen-bubbled cells is 2.1. In the presence of 25mM procaine the respective c.e.r. values are 1.08 and 1.29. The oxygen enhancement ratio (o.e.r.) at 22 0 C is 3.43 and at 0 0 C is 2.45. The addition of procaine does not change the o.e.r. Thus, the temperature effect on o.e.r. does not appear to be related to membrane fluidity. (author)

  11. Increased fluidity and oxidation of malarial lipoproteins: relation with severity and induction of endothelial expression of adhesion molecules

    Directory of Open Access Journals (Sweden)

    Looareesuwan Sornchai

    2004-06-01

    Full Text Available Abstract Introduction Oxidative stress has been demonstrated in malaria. The potential oxidative modification of lipoproteins derived from malaria patients was studied. These oxidized lipids may have role in pathogenesis of malaria. Method The plasma lipid profile and existence of oxidized forms of very low density lipoprotein (VLDL, low density lipoprotein (LDL and high density lipoprotein (HDL were investigated in malaria (17 mild and 24 severe patients and 37 control subjects. Thiobarbituric acid reactive substances (TBARs, conjugated dienes, tryptophan fluorescence and fluidity of lipoproteins were determined as markers of oxidation. The biological effect of malarial lipoproteins was assessed by the expression of adhesion molecules on endothelial cells. Results Malarial lipoproteins had decreased cholesterol (except in VLDL and phospholipid. The triglyceride levels were unchanged. The cholesterol/phospholipid ratio of LDL was decreased in malaria, but increased in VLDL and HDL. TBARs and conjugate dienes were increased in malarial lipoproteins, while the tryptophan fluorescence was decreased. The fluidity of lipoproteins was increased in malaria. These indicated the presence of oxidized lipoproteins in malaria by which the degree of oxidation was correlated with severity. Of three lipoproteins from malarial patients, LDL displayed the most pronounced oxidative modification. In addition, oxidized LDL from malaria patients increased endothelial expression of adhesion molecules. Conclusion In malaria, the lipoproteins are oxidatively modified, and the degree of oxidation is related with severity. Oxidized LDL from malarial patients increases the endothelial expression of adhesion molecules. These suggest the role of oxidized lipoproteins, especially LDL, on the pathogenesis of disease.

  12. Emotion Talk in Preschool Same-Sex Friendship Groups: Fluidity over Time and Context.

    Science.gov (United States)

    Kyratzis, Amy

    2001-01-01

    Examined "emotion talk" among 3- and 4-year-old peers in a children's center in different contexts over the academic year. Found that the boys' group evolved norms against expression of being scared with norms downgrading girl characteristics. Boys' and girls' groups showed contextual fluidity in expressing emotion and emotion talk that…

  13. The fluidity of Thai women's gendered and sexual subjectivities.

    Science.gov (United States)

    Thaweesit, Suchada

    2004-05-01

    This paper reports on an ethnographic study of gender and sexuality as factors within contemporary Thai factory women's subjectivities. Competing discourses of what it means to be a woman in contemporary Thai society make women's self-presentations fluid and incoherent. Data from participant-observation and open-ended interviews suggest that the fluidity and inconsistency of women's self-presentations reflect both their negative experiences and oppression within the Thai patriarchal system, and women's strength and resistance to the normative discourses that oppress them. By naming or reinterpreting experiences and desires in their own terms, Thai factory women can redraw elements of their own lives.

  14. INFLUENCE OF STORING AND TEMPERATURE ON RHEOLOGIC AND THERMOPHYSICAL PROPERTIES OF WHISKY SAMPLES

    Directory of Open Access Journals (Sweden)

    Peter Hlavac

    2013-09-01

    Full Text Available Temperature and storing time can be included between the most significant parameters that influence physical properties of food. This article deals with selected rheologic and thermophysical properties of alcohol drink whisky. Our research was oriented on measuring of rheologic and thermophysical characteristics of whisky. There were measured two types of whisky Grant s and Jim Beam from two different producers, both samples had 40 percent of alcohol content. During the experiments were analyzed rheologic parameters as dynamic viscosity, kinematic viscosity and fluidity and thermophysical parameters as thermal conductivity, thermal diffusivity and volume specific heat. Selected parameters were measured in temperature range 5 to 27 C. Measurements were done on whisky samples in different days during the storage. Measuring of dynamic viscosity was performed by digital rotational viscometer Anton Paar. Principle of measuring is based on dependency of sample resistance against the probe rotation. Density of whisky samples was determined by pycnometric method. Average density at given temperature along with dynamic viscosity value was used at calculation of kinematic viscosity and fluidity was also determined. Measuring of thermophysical parameters was performed by instrument Isomet 2104 Measurement by Isomet is based on analysis of the temperature response of the measured sample to heat flow impulses. Relations of rheologic and thermophysical parameters to the temperature were made and influence of storing time was discussed. From obtained results is clear that dynamic and kinematic viscosity is decreasing exponentially with temperature and fluidity has increasing exponential progress. We found out that both whisky samples had at the beginning and after one week of storage very similar values of rheologic parameters. Very small difference in rheologic parameters of whisky samples was found after two weeks of storing. Values of dynamic and kinematic

  15. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    DEFF Research Database (Denmark)

    Degreif, Daniel; de Rond, Tristan; Bertl, Adam

    2017-01-01

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. Here we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggere...

  16. Low to moderate temperature nanolaminate heater

    Science.gov (United States)

    Eckels, J Del [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Hau-Riege, Stefan [Fremont, CA; Walton, Chris [Oakland, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  17. Evolution of low-temperature phases in a low-temperature structural transition of a La cuprate

    International Nuclear Information System (INIS)

    Inoue, Y.; Horibe, Y.; Koyama, Y.

    1997-01-01

    The microstructure produced by a low-temperature structural phase transition in La 1.5 Nd 0.4 Sr 0.1 CuO 4 has been examined by transmission electron microscopy with the help of imaging plates. The low-temperature transition was found to be proceeded not only by the growth of the Pccn/low-temperature-tetragonal phases nucleated along the twin boundary but also by the nucleation and growth of the phases in the interior of the low-temperature-orthorhombic domain. In addition, because the map of the octahedron tilt as an order parameter is not identical to that of the spontaneous strain accompanied by the transition, the microstructure below the transition is understood to be a very complex mixture of the low-temperature phases. copyright 1997 The American Physical Society

  18. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    International Nuclear Information System (INIS)

    Green, Michael A.

    2000-01-01

    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enabling technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given

  19. Low temperature distillation

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, J N; Postel, C

    1929-04-09

    To recover gas, oil tars, and coked residues by low temperature distillation from bituminous coals, lignites, oil shales, and the like, the raw material is fed from a hopper into a rotary retort which is zonally heated, the temperature being greatest at the discharge end. The material is heated first to a relatively low temperature, thereby removing the moisture and lighter volatiles which are withdrawn through a pipe by the suction of a pump, while the higher boiling point volatiles and fixed gases are withdrawn by suction through an outlet from the higher temperature zone. The vapors withdrawn from the opposite ends of the retort pass through separate vapor lines and condensers, and the suction in each end of the retort, caused by the pumps, is controlled by valves, which also control the location of the neutral point in the retort formed by said suction. Air and inert gas may be introduced into the retort from pipe and stack respectively through a pipe, and steam may be admitted into the high temperature zone through a pipe.

  20. Low temperature carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, A A

    1934-01-10

    A process is described in which coal is passed through a distillation chamber in one retort at a comparatively low temperature, then passing the coal through a distillation chamber of a second retort subjected to a higher temperature, thence passing the coal through the distillation chamber of a third retort at a still higher temperature and separately collecting the liquid and vapors produced from each retort.

  1. To deal with fluidity in the networked society

    DEFF Research Database (Denmark)

    Levinsen, Karin Tweddell

    2010-01-01

    In the globalized economies e-permeation has become a basic condition in our everyday lives. ICT can no longer be understood solely as artefacts and tools and computer-related literacy are no longer restricted to the ability to operate digital tools for specific purposes. The network society......, and therefore also eLearning are characterized by fluidity and the key competence for social actors in this ever changing e-permeated environment is the ability to cope with change - or Castells’ conceptualisation self-programming. Castells’ theory has influenced international definitions of future key...... competencies. Both lifelong learning and digital literacy understood 'bildun' have emerged as central for the definitions of and standards for future key competencies. However, definitions and standards only tell us about the desired destination and outcome of digital competence building. They tell us nothing...

  2. Certification testing at low temperatures

    International Nuclear Information System (INIS)

    Noss, P.W.; Ammerman, D.J.

    2004-01-01

    Regulations governing the transport of radioactive materials require that most hypothetical accident condition tests or analyses consider the effects of the environmental temperature that most challenges package performance. For many packages, the most challenging temperature environment is the cold condition (-29 C according to U.S. regulations), primarily because the low temperature causes the highest free drop impact forces due to the higher strength of many energy-absorbing materials at this temperature. If it is decided to perform low temperature testing, it is only necessary that the relevant parts of the package have the required temperature prior to the drop. However, the details of performing a drop at low temperature can have a large influence on testing cost and technical effectiveness. The selection of the test site, the chamber and type of chilling equipment, instrumentation, and even the time of year are all important. Control of seemingly minor details such as the effect on internal pressure, placement of monitoring thermocouples, the thermal time constant of the test article, and icing of equipment are necessary to ensure a successful low temperature test. This paper will discuss these issues and offer suggestions based on recent experience

  3. F2α-isoprostane, Na+-K+ ATPase and membrane fluidity of placental syncytiotrophoblast cell in preeclamptic women with vitamin E supplementation

    Directory of Open Access Journals (Sweden)

    Franciscus D. Suyatna

    2012-11-01

    Full Text Available Background: The aim of our study was to analyze F2α-isoprostane level, Na+-K+ ATPase activity and placental syncytiotrophoblast cell membrane fluidity in preeclamptic women who received vitamin E supplementation.Methods: The study was conducted between September 2003 and February 2005 at Budi Kemuliaan Maternity Hospital, Central Jakarta. Samples were 6 preeclamptic women with vitamin E supplementation, 6 preeclamptic women without vitamin E supplementation and 6 normal pregnant women. The dose of vitamin E was 200 mg daily. F2α-isoprostane was measured with ELISA reader at λ of 450 nm. Cell membrane fluidity was measured by comparing the molar ratio of total cholesterol and cell membrane phospholipid concentration. The cholesterol was measured by Modular C800 using Roche reagent. Phospholipid was measured by Shimadzu RF5301PC spectrofluorometer (excitation 267 nm, emission 307 nm. Na+-K+ ATPase activity was inhibited by ouabain. Pi production was measured with Fiske and Subbarow method using spectrophotometer at λ of 660 nm. Data was analyzed using F test with one-way ANOVA.Results: Vitamin E supplementation in preeclamptic women decreased the oxidative stress, indicated by significantly lower level of F2α-isoprostane compared to those without vitamin E (26.72 ± 11.21 vs 41.85 ± 7.09 ng/mL, respectively, p = 0.017. Membrane fluidity in syncytiotrophoblast cell of preeclampsia with vitamin E group was maintained at 0.39 ± 0.08 while in those without vitamin E was 0.53 ± 0.14 (p = 0.04. Na+-K+ ATPase activity in syncytiotrophoblast cell membrane was not affected by vitamin E (p = 0.915.Conclusion: Vitamin E supplementation in preeclamptic women decreases F2α-isoprostane level and maintains cell membrane fluidity of syncytiotrophoblast cells; however, it does not increase Na+-K+ ATPase enzyme activity. (Med J Indones. 2012;21:225-9Keywords: F2α-isoprostane, membrane fluidity, Na+-K+ ATPase, preeclampsia, vitamin E

  4. Fluidity of the dietary fatty acid profile and risk of coronary heart disease and ischemic stroke: Results from the EPIC-Netherlands cohort study.

    Science.gov (United States)

    Sluijs, I; Praagman, J; Boer, J M A; Verschuren, W M M; van der Schouw, Y T

    2017-09-01

    The fluidity of dietary fatty acids consumed has been suggested to inversely affect coronary heart disease (CHD) risk. Lipophilic index (LI) represents overall fluidity of the dietary fatty acid profile. Lipophilic load (LL) represents a combination of overall fluidity and absolute intake of dietary fatty acids. We investigated the relations of dietary LI and LL with risk of CHD and ischemic stroke (iStroke). We used data from the prospective EPIC-NL study, including 36,520 participants aged 20-70 years. LI and LL were calculated using dietary intake data estimated with a validated FFQ. Incident CHD (n = 2348) and iStroke (n = 479) cases were obtained through linkage to national registers during 15 years follow-up. LI and LL were not associated with CHD risk (HRs highest-versus-lowest-quartiles : 0.93 [95%CI: 0.83, 1.04], and 0.92 [95%CI: 0.79, 1.07], respectively), and neither with iStroke risk (HRs 1.15 (95%CI: 0.89, 1.48), and 0.98 (95%CI: 0.70, 1.38), respectively). Original fatty acid classes (SFA, MUFA and PUFA), and LI and LL stratified by these fatty acid classes, were overall not related to CHD and ischemic stroke either. In this Dutch population, neither the overall fluidity of the dietary fatty acid profile (LI), nor the combined fluidity and amount of fatty acids consumed (LL) were related to CHD or iStroke risk. Dietary LI and LL may have limited added value above original fatty acid classes and food sources in establishing the relation of fatty acid consumption with CVD. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  5. The effect of cooling to different subzero temperatures on dog sperm cryosurvival.

    Science.gov (United States)

    Alcantar-Rodriguez, A; Medrano, A

    2017-06-01

    The objective was to assess the effect of cooling to different subzero temperatures around ice formation (-5°C) on dog sperm cryosurvival and plasma membrane fluidity. Semen was centrifuged, and sperm were resuspended in a Tris-egg yolk medium (3% glycerol). Diluted sperm were cooled from 22 to 5°C, and then, a Tris-egg yolk medium containing 7% glycerol was added (final concentration of 5% glycerol and 200 × 10 6  cells/ml). Sperm were packaged in 0.5-ml plastic straws, and equilibration was done 16 hr at 5°C before freezing. I. Straws (n = 47) at 5°C were exposed to nitrogen vapours to determine the freezing point. II. Other straws (from different ejaculates) processed as mentioned, were further cooled to -3, -5 or -7°C and immediately rewarmed in a water bath at 37°C. Motility, plasma membrane functionality and acrosome integrity were assessed. III. Other straws (from different ejaculates) processed as mentioned were further cooled to -3 or -5°C, frozen over nitrogen vapours and stored in liquid nitrogen for one month. Straws were thawed in a water bath at 38°C for 30 s. Motility, plasma membrane functionality, plasma membrane integrity, acrosome integrity, capacitation status and plasma membrane fluidity were assessed. Ice nucleation temperature was -14.3 ± 2.05°C (mean ± SD); cooling to +5, -3, -5 and -7°C, without freezing, produces no differences on sperm quality between target temperatures; cooling to +5, -3, and -5°C produced no differences on sperm survival and plasma membrane fluidity after freeze-thawing. In conclusion, cooling of dog spermatozoa to different subzero temperatures did not improve sperm cryosurvival and had no effect on plasma membrane fluidity after thawing. © 2017 Blackwell Verlag GmbH.

  6. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence.

    Science.gov (United States)

    Sandor, Roman; Der, Christophe; Grosjean, Kevin; Anca, Iulia; Noirot, Elodie; Leborgne-Castel, Nathalie; Lochman, Jan; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2016-09-01

    Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    District heating (DH) is a cost-effective method of heat supply, especially to area with high heat density. Ultra-low-temperature district heating (ULTDH) is defined with supply temperature at 35-45 degrees C. It aims at making utmost use of the available low-temperature energy sources. In order...... to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...... lower return temperature and higher efficiency for DHW supply, an innovative substation was devised, which replaced the bypass with an instantaneous heat exchanger and a micro electric storage tank. The energy performance of the proposed substation and the resulting benefits for the DH system...

  8. Development of low weight self-levelling mortars

    International Nuclear Information System (INIS)

    Padilla, A; Panama, I; Toledo, A; Flores, A

    2015-01-01

    This work shows the development of self levelling mortars, using micro bubbles based on aluminium silicate with a density of 0.25 g/cm 3 . Mortars formulations are composed by 8 different components in order to achieve properties balance between fresh and solid state. The mean objective is development light weight mortars with high fluidity and compression strength using micro bubbles and some additives. Formulations were designed employing Taguchi DOE of 8 variables and 3 states. Result analysis according to Taguchi method lets indentify the preponderant effect of each variable on the cited properties. Several formulations reached fluidity higher than 250%, with compression strength around 100 kg/cm 2 and a low volumetric weigh. Obtained volumetric weights are 20% less than commercial self levelling mortars weight. Finally some relations are presented such: as relation water/cement with fluidity, and micro bubble content versus mortars volumetric weight, and finally compression strength versus the volumetric weight of mortars

  9. Extremely low temperature properties of epoxy GFRP

    International Nuclear Information System (INIS)

    Kadotani, Kenzo; Nagai, Matao; Aki, Fumitake.

    1983-01-01

    The examination of fiber-reinforced plastics, that is, plastics such as epoxy, polyester and polyimide reinforced with high strength fibers such as glass, carbon, boron and steel, for extremely low temperature use began from the fuel tanks of rockets. Therafter, the trial manufacture of superconducting generators and extremely low temperature transformers and the manufacture of superconducting magnets for nuclear fusion experimental setups became active, and high performance FRPs have been adopted, of which the extremely low temperature properties have been sufficiently grasped. Recently, the cryostats made of FRPs have been developed, fully utilizing such features of FRPs as high strength, high rigidity, non-magnetic material, insulation, low heat conductivity, light weight and the freedom of molding. In this paper, the mechanical properties at extremely low temperature of the plastic composite materials used as insulators and structural materials for extremely low temperature superconducting equipment is outlined, and in particular, glass fiber-reinforced epoxy laminates are described somewhat in detail. The fracture strain of GFRP at extremely low temperature is about 1.3 times as large as that at room temperature, but at extremely low temperature, clear cracking occurred at 40% of the fracture strain. The linear thermal contraction of GFRP showed remarkable anisotropy. (Kako, I.)

  10. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  11. Low-Temperature Supercapacitors

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.

    2008-01-01

    An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (>1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically >10(exp 6) charge/discharge cycles).

  12. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    Energy Technology Data Exchange (ETDEWEB)

    Degreif, Daniel [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Technical Univ. of Darmstadt (Germany); de Rond, Tristan [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Bertl, Adam [Technical Univ. of Darmstadt (Germany); Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark); Budin, Itay [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States)

    2017-03-18

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. In this paper, we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggered cell-cell adhesion (flocculation), a phenomenon characteristic of industrial yeast but uncommon in laboratory strains. We find that ER lipid saturation sensors induce expression of FLO1 – encoding a cell wall polysaccharide binding protein – independently of its canonical regulator. In wild-type cells, Flo1p-dependent flocculation occurs under oxygen-limited growth, which reduces unsaturated lipid synthesis and thus serves as the environmental trigger for flocculation. Transcriptional analysis shows that FLO1 is one of the most highly induced genes in response to changes in lipid unsaturation, and that the set of membrane fluidity-sensitive genes is globally activated as part of the cell's long-term response to hypoxia during fermentation. Finally, our results show how the lipid homeostasis machinery of budding yeast is adapted to carry out a broad response to an environmental stimulus important in biotechnology.

  13. WORKSHOP: Low temperature devices

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    With extraterrestrial neutrinos (whether from the sun or further afield) continuing to make science news, and with the search for the so far invisible 'dark matter' of the universe a continual preoccupation, physicists from different walks of life (solid state, low temperature, particles, astrophysics) gathered at a workshop on low temperature devices for the detection of neutrinos and dark matter, held from 12-13 March at Ringberg Castle on Lake Tegernsee in the Bavarian Alps, and organized by the Max Planck Institute for Physics and Astrophysics in Munich

  14. WORKSHOP: Low temperature devices

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-06-15

    With extraterrestrial neutrinos (whether from the sun or further afield) continuing to make science news, and with the search for the so far invisible 'dark matter' of the universe a continual preoccupation, physicists from different walks of life (solid state, low temperature, particles, astrophysics) gathered at a workshop on low temperature devices for the detection of neutrinos and dark matter, held from 12-13 March at Ringberg Castle on Lake Tegernsee in the Bavarian Alps, and organized by the Max Planck Institute for Physics and Astrophysics in Munich.

  15. Effects of minor scandium on as-cast microstructure, mechanical properties and casting fluidity of ZA84 magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Cheng Liang

    2010-01-01

    The effects of minor Sc on the as-cast microstructure, mechanical properties and casting fluidity of the ZA84 magnesium alloy were investigated. The results indicate that the Mg 32 (Al,Zn) 49 phase in the ZA84 alloy is refined with the addition of 0.12-0.35 wt.% Sc, and the formation of the Mg 32 (Al,Zn) 49 phase is suppressed. An increase in Sc amount from 0.12 wt.% to 0.35 wt.% causes the morphology of the Mg 32 (Al,Zn) 49 phase to gradually change from coarse continuous and/or quasi-continuous net to relatively fine quasi-continuous and/or disconnected shapes. In addition, it is shown that the tensile and creep properties of the ZA84 alloy are improved, but the casting fluidity of the alloy is decreased with the addition of 0.12-0.35 wt.% Sc.

  16. Basics of Low-temperature Refrigeration

    CERN Document Server

    Alekseev, A.

    2014-07-17

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  17. Basics of Low-temperature Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A [Linde AG, Munich (Germany)

    2014-07-01

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  18. Improved Low Temperature Performance of Supercapacitors

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe

    2013-01-01

    Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary

  19. Low-temperature carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Strankmuller, J

    1954-01-01

    The low-temperature carbonization plant at Boehlen in Eastern Germany (the first in which Lurgi type ovens were installed) worked with a throughput of 300 tons of brown-coal briquets per day per oven since 1936, later increased to 365 tons per day. The rising demand for low-temperature tar for hydrogenation purposes led to development of a modified oven of 450 tons throughput. This was achieved by stepping up the flow of the circulating gas and air mixture from 420,000 to 560,000 cubic feet per hour and by additional rows of V-shaped deflectors across the width of the oven chamber, which break up and loosen the charge, thus reducing cooling-gas pressure and allowing a greater flow of scavenging gas. The distance traversed by each briquet is nearly doubled, and the temperature gradient is less. It is claimed that the tar and the coke from modified ovens are of comparable quality. The compressive strength of the briquets was found to have an appreciable effect on the output. Better qts the chemistry, mechanism and thermodynamics of the Fischer-Tropsch reaction and aectromagnetic radiation.

  20. Thermal conductivity at very low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, M [CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Service des Basses Temperatures

    1976-06-01

    The interest of low and very low temperatures in solid physics and especially that of thermal measurements is briefly mentioned. Some notes on the thermal conductivity of dielectrics, the method and apparatus used to measure this property at very low temperatures (T<1.5K) and some recent results of fundamental and applied research are then presented.

  1. Automatic low-temperature calorimeter

    International Nuclear Information System (INIS)

    Malyshev, V.M.; Mil'ner, G.A.; Shibakin, V.F.; Sorkin, E.L.

    1986-01-01

    This paper describes a low-temperature adiabatic calorimeter with a range of 1.5-500K. The system for maintaining adiabatic conditions is implemented by two resitance thermometers, whose sensitivity at low temperatures is several orders higher than that of thermocouples. The calorimeter cryostat is installed in an STG-40 portable Dewar flask. The calorimeter is controlled by an Elektronika-60 microcomputer. Standard platinum and germanium thermometers were placed inside of the calorimeter to calibrate the thermometers of the calorimeter and the shield, and the specific heats of specimens of OSCh 11-4 copper and KTP-8 paste were measured to demonstrate the possibilities of the described calorimeter. Experience with the calorimeter has shown that a thorough study of the dependence of heat capacity on temperature (over 100 points for one specimen) can be performed in one or two dats

  2. Low temperature oxidation and spontaneous combustion characteristics of upgraded low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.K.; Kim, S.D.; Yoo, J.H.; Chun, D.H.; Rhim, Y.J.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2013-07-01

    The low temperature oxidation and spontaneous combustion characteristics of dried coal produced from low rank coal using the upgraded brown coal (UBC) process were investigated. To this end, proximate properties, crossing-point temperature (CPT), and isothermal oxidation characteristics of the coal were analyzed. The isothermal oxidation characteristics were estimated by considering the formation rates of CO and CO{sub 2} at low temperatures. The upgraded low rank coal had higher heating values than the raw coal. It also had less susceptibility to low temperature oxidation and spontaneous combustion. This seemed to result from the coating of the asphalt on the surface of the coal, which suppressed the active functional groups from reacting with oxygen in the air. The increasing upgrading pressure negatively affected the low temperature oxidation and spontaneous combustion.

  3. Minimizing material damage using low temperature irradiation

    International Nuclear Information System (INIS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-01-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to −80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use. - Highlights: ► A study is performed to quantify low temperature irradiation effects on polymer materials and BIs. ► Low temperature irradiation alters the balance of cross-linking and chain scissoning in polymers. ► Low temperatures provide radioprotection for BIs. ► Benefits of low temperatures are application specific and must be considered when dose setting.

  4. Low-temperature plasma modelling and simulation

    NARCIS (Netherlands)

    Dijk, van J.

    2011-01-01

    Since its inception in the beginning of the twentieth century, low-temperature plasma science has become a major ¿eld of science. Low-temperature plasma sources and gas discharges are found in domestic, industrial, atmospheric and extra-terrestrial settings. Examples of domestic discharges are those

  5. Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?

    Science.gov (United States)

    Kohn, Florian; Hauslage, Jens; Hanke, Wolfgang

    2017-10-01

    All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. According to the underlying mechanisms a variety of questions, especially about gravity sensation of single cells without specialized organelles or structures for gravity sensing is being still open. Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. This is also correct for the gravity dependence of cells and organisms which is well accepted since long for a wide range of biological systems. However, it is as well established that parameters of the lipid matrix are directly modifying the function of proteins. Thus, the question must be asked, whether, and how far plain lipid membranes are affected by gravity directly. In principle it can be said that up to recently no real basic mechanism for gravity perception in single cells has been presented or verified. However, it now has been shown that as a basic membrane parameter, membrane fluidity, is significantly dependent on gravity. This finding might deliver a real basic mechanism for gravity perception of living organisms on all scales. In this review we summarize older and more recent results to demonstrate that the finding of membrane fluidity being gravity dependent is consistent with a variety of published laboratory experiments. We additionally point out to the consequences of these recent results for research in the field life science under space condition.

  6. Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    To improve energy efficiency and give more access to renewable energy sources, low-temperature district heating (LTDH) is a promising concept to be realized in the future. However, concern about Legionella proliferation restricts applying low-temperature district heating in conventional systems with domestic hot water (DHW) circulation. In this study, a system with decentralized substations was analysed as a solution to this problem. Furthermore, a modification for the decentralized substation system were proposed in order to reduce the average return temperature. Models of conventional system with medium-temperature district heating, decentralized substation system with LTDH, and innovative decentralized substation system with LTDH were built based on the information of a case building. The annual distribution heat loss and the operating costs of the three scenarios were calculated and compared. From the results, realizing LTDH by the decentralized substation unit, 30% of the annual distribution heat loss inside the building can be saved compared to a conventional system with medium-temperature district heating. Replacing the bypass pipe with an in-line supply pipe and a heat pump, the innovative decentralized substation system can reduce distribution heat loss by 39% compared to the conventional system and by 12% compared to the normal decentralized substation system with bypass. - Highlights: • The system of decentralized substations can realize low-temperature district heating without running the risk of Legionella. • Decentralized substations help reduce the distribution heat loss inside the building compared to conventional system. • A new concept that can reduce the return temperature for district heating is proposed and analysed.

  7. Variations in daily intakes of myristic and alpha-linolenic acids in sn-2 position modify lipid profile and red blood cell membrane fluidity.

    Science.gov (United States)

    Dabadie, Henry; Motta, Claude; Peuchant, Evelyne; LeRuyet, Pascale; Mendy, François

    2006-08-01

    The present study evaluated the effects of moderate intakes of myristic acid (MA), at 1.2% and 1.8% of total energy (TE), associated with a 0.9% TE intake of alpha-linolenic acid (ALA) on lipid and fatty acid profiles and red blood cell membrane fluidity. Twenty-nine monks without dyslipidaemia were enrolled in a 1-year nutritional study in which two experimental diets were tested for 3 months each: diet 1, MA 1.2 % and ALA 0.9%; diet 2, MA 1.8% and ALA 0.9%. A control diet (MA 1.2%, ALA 0.4%) was given 3 months before diets 1 and 2. Thus, two different levels of MA (1.2%, 1.8%) and ALA (0.4%, 0.9%) were tested. Intakes of other fatty acids were at recommended levels. Samples were obtained on completion of all three diets. For fluidity analysis, the red blood cells were labelled with 16-doxylstearate and the probe incorporated the membrane where relaxation-correlation time was calculated. Diet 1 was associated with a decrease in total cholesterol, in LDL-cholesterol, in triacylglycerols and in the ratio of total to HDL-cholesterol; ALA and EPA levels were increased in both phospholipids and cholesterol esters. Diet 2 was associated with a decrease in triacylglycerols and in the ratios of total to HDL-cholesterol and of triacylglycerols to HDL-cholesterol, and with an increase in HDL-cholesterol; EPA levels were decreased in phospholipids and cholesterol esters. Red blood cell membrane fluidity was increased in both diets (Pdiet 1, mainly in the oldest subjects. Intakes of myristic acid (1.2%TE) and ALA (0.9%TE), both mainly in the sn-2 position, were associated with favourable lipid and n-3 long-chain fatty acid profiles. These beneficial effects coexisted with particularly high membrane fluidity, especially among the oldest subjects.

  8. Temperature and storing time influence on selected physical properties of milk and acidophilus milk

    Directory of Open Access Journals (Sweden)

    Monika Božiková

    2013-01-01

    Full Text Available This article deals with thermophysical parameters as: temperature, thermal conductivity, diffusivity and rheologic parameters as: dynamic, kinematic viscosity and fluidity of milk and acidophilus milk. For thermophysical parameters measurements was used Hot Wire method and for rheologic parameters measurements was used single – spindle viscometer. In the first series of measurements we measured relations between thermophysical and rheologic parameters in temperature range (5–25 °C for milk and acidophilus milk. Relations of all physical parameters of milk to the temperature showed influence of relative fat content. Effect of storage on milk and acidophilus milk is shown in the text. All measured relations for milk and acidophilus milk during temperature stabilisation had linear increasing progress with high coefficients of determination in the range (0.991–0.998. It was shown that increasing relative fat content has decreasing influence on milk thermal conductivity. Relations of rheologic parameters as dynamic and kinematic viscosity to the temperature had decreasing exponential progress, while relation of fluidity to the temperature had increasing exponential shape with high coefficients of determination in the range (0.985–0.994.. Mathematical description of the dependencies is summarised by regression equations and all coefficients are in presented tables.

  9. Effect of Low Temperature Cultivation on the Phytochemical Profile and Bioactivity of Arctic Plants: A Case of Dracocephalum palmatum

    Science.gov (United States)

    Chirikova, Nadezhda K.; Gornostai, Tat’yana G.; Selyutina, Inessa Yu.; Zilfikarov, Ifrat N.

    2017-01-01

    The influence of climatic factors, e.g., low temperature, on the phytochemical composition and bioactivity of the arctic plant Dracocephalum palmatum Steph. ax Willd. (palmate dragonhead), a traditional food and medical herb of Northern Siberia, was investigated. D. palmatum seedlings were grown in a greenhouse experiment at normal (20 °C, NT) and low (1 °C, LT) temperature levels and five groups of components that were lipophilic and hydrophilic in nature were characterized. The analyses indicated that D. palmatum under NT demonstrates high content of photosynthetic pigments, specific fatty acid (FA) profile with domination of saturated FA (53.3%) and the essential oil with trans-pinocamphone as a main component (37.9%). Phenolic compounds were identified using a combination of high performance liquid chromatography with diode array detection and electrospray ionization mass-spectrometric detection (HPLC-DAD-ESI-MS) techniques, as well as free carbohydrates and water soluble polysaccharides. For the first time, it was established that the cold acclimation of D. palmatum seedlings resulted in various changes in physiological and biochemical parameters such as membrane permeability, photosynthetic potential, membrane fluidity, leaf surface secretory function, reactive oxygen species–antioxidant balance, osmoregulator content and cell wall polymers. In brief, results showed that the adaptive strategy of D. palmatum under LT was realized on the accumulation of membrane or surface components with more fluid properties (unsaturated FA and essential oils), antioxidants (phenolic compounds and enzymes), osmoprotectants (free sugars) and cell wall components (polysaccharides). In addition, the occurrence of unusual flavonoids including two new isomeric malonyl esters of eriodictyol-7-O-glucoside was found in LT samples. Data thus obtained allow improving our understanding of ecophysiological mechanisms of cold adaptation of arctic plants. PMID:29189749

  10. Fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    mental temperature, the fluidity of bacterial cell-membranes decreases and ... Listeria monocytogenes is a food-borne pathogen that grows at refri- geration ... acid in the growth of Listeria monocytogenes at low temperatures; Appl. Environ.

  11. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  12. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    Science.gov (United States)

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Low temperature magnetic structure of MnSe

    Indian Academy of Sciences (India)

    Abstract. In this paper we report low temperature neutron diffraction studies on MnSe in order to understand the anomalous behaviour of their magnetic and transport prop- erties. Our study indicates that at low temperatures MnSe has two coexisting crystal structures, high temperature NaCl and hexagonal NiAs. NiAs phase ...

  14. Low-temperature mobility measurements on CMOS devices

    International Nuclear Information System (INIS)

    Hairpetian, A.; Gitlin, D.; Viswanathan, C.R.

    1989-01-01

    The surface channel mobility of carriers in eta- and rho-MOS transistors fabricated in a CMOS process was accurately determined at low temperatures down to 5 Κ. The mobility was obtained by an accurate measurement of the inversion charge density using a split C-V technique and the conductance at low drain voltages. The split C-V technique was validated at all temperatures using a one-dimensional Poisson solver (MOSCAP), which was modified for low-temperature application. The mobility dependence on the perpendicular electric field for different substrate bias values appears to have different temperature dependence for eta- and rho-channel devices. The electron mobility increases with a decrease in temperature at all gate voltages. On the other hand, the hole mobility exhibits a different temperature behavior depending upon whether the gate voltage corresponds to strong inversion or is near threshold

  15. "It Has No Color, It Has No Gender, It's Gender Bending": Gender and Sexuality Fluidity and Subversiveness in Drag Performance.

    Science.gov (United States)

    Egner, Justine; Maloney, Patricia

    2016-07-01

    Gender identity is a key question for drag performers. Previous research has shown a lack of consensus about the subversiveness and gender fluidity of drag performers. This article examines the question: How does the relationship between performers and their audience affect the subversive nature and gender representation of drag performers in this study? Furthermore, is this relationship complicated by sexuality? This study uses ethnographic and interview methods, examining experiences of 10 drag performers. Findings indicate mutuality in the relationship between performers and audience. The recursiveness of this relationship provides a constant feedback to the performers in their effort to displace the audience's previously held notions. The performers have fluid understandings of gender and sexuality, often presenting multiple genders in and out of drag. Interactions between performers and their audience indicate their belief in gender fluidity; moreover, the drag performers themselves desire to be subversive and gender and sexually fluid.

  16. Mechanical pumping at low temperature

    International Nuclear Information System (INIS)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1995-01-01

    This novel concept consist of a mechanical pump able to run at low temperature (25K). Since gas density varies inversely with temperature, this pump would deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are order of magnitude reduction in size, weight, when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. This pump would be a solution to allow continuously tritium extraction and minimize the mass inventory. (orig.)

  17. Erosion–corrosion and corrosion properties of DLC coated low temperature Erosion–corrosion and corrosion properties of DLC coated low temperature

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Christiansen, Thomas; Hilbert, Lisbeth Rischel

    2009-01-01

    of AISI 316 as substrate for DLC coatings are investigated. Corrosion and erosion–corrosion measurements were carried out on low temperature nitrided stainless steel AISI 316 and on low temperature nitrided stainless steel AISI 316 with a top layer of DLC. The combination of DLC and low temperature...... nitriding dramatically reduces the amount of erosion–corrosion of stainless steel under impingement of particles in a corrosive medium....

  18. Low temperature CVD growth of ultrathin carbon films

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC used in several device processing technologies.

  19. Thermoluminescent system for low temperatures

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.; Leite, N.G.

    1988-09-01

    A system for measurements of the thermoluminescent glow curve, the thermoluminescent emission spectrum and the optical absorption spectrum of solid samples, from liquid nitrogen temperature up to 473 K, is reported. A specially designed temperature programmer provides a linear heating of the sample at a wide range of selectable heating rates, as also long term steady-state temperatures for annealing and isothermal decay studies. The system operates at a pressure of 1.33 x 10 -3 Pa. Presently it is being used for lithium fluoride low temperature thermoluminescent studies. (author) [pt

  20. The Low Temperature Microgravity Physics Facility Project

    Science.gov (United States)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; hide

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  1. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    Science.gov (United States)

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Study on melting conditions of radioactive miscellaneous solid waste. Contract research

    International Nuclear Information System (INIS)

    Fukui, Toshiki; Nakashio, Nobuyuki; Isobe, Motoyasu; Otake, Atsushi; Wakui, Takuji; Nakashima, Mikio; Hirabayashi, Takakuni

    2001-02-01

    Improvement of fluidity of molten slag is one of the most important factors for plasma melting treatment of low level radioactive miscellaneous wastes generated from nuclear facilities. In general, it is considered that elevating molten slag temperature of addition of flux is of certain use in improvement of fluidity of molten slag. However, these ways are not necessarily suitable from the viewpoints of refractory erosion or reduction of waste volume. In this report, we suggested that fluidity of molten slag could be improved by controlling chemical compositions of molten slag. On the Basic of the investigation using phase diagram and viscosity data, FeO was selected as a key component for improving fluidity: Viscosity and melting point of molten slag decreased with increasing relative concentration of FeO in molten slag. Accordingly, we concluded that it is important to adjust basicity of molten slag for melting treatment of low-level radioactive miscellaneous solid wastes. (author)

  3. Measuring Poisson Ratios at Low Temperatures

    Science.gov (United States)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  4. Sweating at low temperature

    International Nuclear Information System (INIS)

    Chalaye, H.; Launay, J.P.

    1980-11-01

    Tests of penetration liquids normally used between 10 and 40 0 C have shown that the arrangement of operationaal conditions (penetration and revealing times) was not sufficient to maintain their sensitivity below 10 0 C, thereby confirming that this temperature is a limit below which such products cannot be employed. The results achieved with a penetrant and a tracer specially devised for low temperatures (SHERWIN B 305 + D100) are satisfactory between 0 0 C and 15 0 C [fr

  5. Low temperature safety of lithium-thionyl chloride cells

    Science.gov (United States)

    Subbarao, S.; Deligiannis, F.; Shen, D. H.; Dawson, S.; Halpert, G.

    The use of lithium thionyl chloride cells for low-temperature applications is presently restricted because of their unsafe behavior. An attempt is made in the present investigation to identify the safe/unsafe low temperature operating conditions and to understand the low temperature cell chemistry responsible for the unsafe behavior. Cells subjected to extended reversal at low rate and -40 C were found to explode upon warm-up. Lithium was found to deposit on the carbon cathodes during reversal. Warming up to room temperature may be accelerating the lithium corrosion in the electrolyte. This may be one of the reasons for the cell thermal runaway.

  6. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  7. Low temperature modification of gamma-irradiation effect on peas. II.Low temperature effect on the radio-sensitivity and the chlorophyll mutations

    International Nuclear Information System (INIS)

    Najdenova, N.; Vasileva, M.

    1976-01-01

    Dry pea seeds of cv.Ramonskii 77 with 11-12% moisture were γ-irradiated by 60 Co in doses 5, 15, 20 and 30 krad. Low temperature (-78 deg C) was effected in the form of dry ice for a 24 h period prior to, at the time of and post irradiation. As control were used: (a) dry non-irradiated seeds, stored at room temperature; (b) non-irradiated seeds subjected to low temperature (-78 deg C) for a 24 h period. and (c) seeds irradiated by the named doses, stored at room temperature until the time of irradiation. Treated and control seeds were sown in the field. Germination, survival rate and sterility were recorded in M 1 , while in M 2 chlorophyll mutations were scored. Results obtained showed that low temperature modification effect on the various irradiation doses depended on the time of its application; low temperature (-78 deg C) treatment prior to seed irradiation with doses 15, 20 and 30 krad increased germination percentage, plant survival and yield components in M 1 . The post-irradiation treatment did not have a significant effect on gamma-rays; highest protection effect was obtained in case seeds were irradiated at low temperature and then received supplementary treatment at high temperature. In this way the damaging effect of radiation was reduced to a maximum degree; low temperature treatment prior to irradiation with doses of 15 and 20 krad or at the time of irradiation with doses of 15, 20 and 30 krad resulted in a considerably wider chlorophyll mutation spectrum. (author)

  8. Electrostatic fluctuations measured in low temperature helical plasmas with low collisionality

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ikeda, R.; Ito, T.; Toi, K.; Suzuki, C.; Matsunaga, G.

    2004-01-01

    Electrostatic fluctuations have been measured by Langmuir probes from edge to core plasma region in low temperature helical plasmas which are produced by 2.45 GHz microwaves at very low field less than 0.1 T. The principal dimensionless parameters of the plasmas, that is, the normalized electron-ion collision frequency ν ei , and averaged plasma β φ and others are in the same range of them in high temperature plasmas, except the normalized gyro radius ρ s . The data on fluctuation characteristics from the dimensionally similar low temperature plasmas may give an important insight into the understanding of turbulent transport in high temperature plasmas. Dependences of fluctuation amplitudes on the radial electric field shear, ρ s and ν ei are investigated. Electrostatic fluctuations propagating in electron-diamagnetic drift direction have been observed in the plasma edge region and in ion-diamagnetic drift direction in the plasma core region. (authors)

  9. Low temperature destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    1938-07-05

    A process is given and apparatus is described for the destructive distillation at low temperature of coal, oil shale, and the like by subjection to the action of a stream of hot gases or superhearted steam, flowing in a closed circuit. Subsequent treatment of the distillation residues with a gas stream containing oxygen results in combustion of the carbon-containing material therein brings to a high temperature the solid residue, in which the process comprises subsequently contacting the hot solid residue with the fluid stream effecting the distillation.

  10. Low temperatures - hot topic

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Neutrino mass measurements, next-generation double beta experiments, solar neutrino detection, searches for magnetic monopoles and the challenge of discovering what most of the Universe is made of (dark matter), not to mention axions (cosmic and solar), supersymmetric neutral particles and cosmic neutrinos. All this physics could use cryogenic techniques. Thus the second European Workshop on Low Temperature Devices for the Detection of Low Energy Neutrinos and Dark Matter, held at LAPP (Annecy) in May, covered an active and promising field.

  11. Low temperatures - hot topic

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Neutrino mass measurements, next-generation double beta experiments, solar neutrino detection, searches for magnetic monopoles and the challenge of discovering what most of the Universe is made of (dark matter), not to mention axions (cosmic and solar), supersymmetric neutral particles and cosmic neutrinos. All this physics could use cryogenic techniques. Thus the second European Workshop on Low Temperature Devices for the Detection of Low Energy Neutrinos and Dark Matter, held at LAPP (Annecy) in May, covered an active and promising field

  12. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  13. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  14. Dynamic phases of low-temperature low-current driven vortex matter in superconductors

    International Nuclear Information System (INIS)

    Benkraouda, M; Obaidat, I M; Khawaja, U Al; Mulaa, N M J

    2006-01-01

    Using molecular dynamics simulations of vortices in a high-temperature superconductor with square periodic arrays of pinning sites, dynamic phases of the low-current driven vortices are studied at low temperatures. A rough vortex phase diagram of three distinct regimes of vortex flow is proposed. At zero temperature, we obtain a coupled-channel regime where rows of vortices flow coherently in the direction of the driving force. As the temperature is increased, a smooth crossover into an uncoupled-channel regime occurs where the coherence between the flowing rows of vortices becomes weaker. Increasing the temperature further leads to a plastic vortex regime, where the channels of flowing vortices completely disappear. The temperatures of the crossovers between these regimes were found to decrease with the driving force

  15. Mechanical pumping at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1994-12-31

    This new concept consists of a mechanical pump able to run at low temperature (25 K). Since gas density varies inversely with temperature, the pump could deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are reduction of an order of magnitude in size and weight when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. Results obtained at 80 K and 25 K with a Holweck type molecular drag pump of 100 mm diameter and with few stages of a turbomolecular pump running at the same temperatures, are given. This pump would be a solution to allow continuous tritium extraction and minimize the mass inventory for the ITER (International Tokamak Experiment Reactor). 5 figs., 2 tabs., 4 refs.

  16. Low temperature humidification dehumidification desalination process

    International Nuclear Information System (INIS)

    Al-Enezi, Ghazi; Ettouney, Hisham; Fawzy, Nagla

    2006-01-01

    The humidification dehumidification desalination process is viewed as a promising technique for small capacity production plants. The process has several attractive features, which include operation at low temperature, ability to utilize sustainable energy sources, i.e. solar and geothermal, and requirements of low technology level. This paper evaluates the characteristics of the humidification dehumidification desalination process as a function of operating conditions. A small capacity experimental system is used to evaluate the process characteristics as a function of the flow rate of the water and air streams, the temperature of the water stream and the temperature of the cooling water stream. The experimental system includes a packed humidification column, a double pipe glass condenser, a constant temperature water circulation tank and a chiller for cooling water. The water production is found to depend strongly on the hot water temperature. Also, the water production is found to increase upon the increase of the air flow rate and the decrease of the cooling water temperature. The measured air and water temperatures, air relative humidity and the flow rates are used to calculate the air side mass transfer coefficient and the overall heat transfer coefficient. Measured data are found to be consistent with previous literature results

  17. Influence of low ambient temperature on epitympanic temperature measurement: a prospective randomized clinical study.

    Science.gov (United States)

    Strapazzon, Giacomo; Procter, Emily; Putzer, Gabriel; Avancini, Giovanni; Dal Cappello, Tomas; Überbacher, Norbert; Hofer, Georg; Rainer, Bernhard; Rammlmair, Georg; Brugger, Hermann

    2015-11-05

    Epitympanic temperature (Tty) measured with thermistor probes correlates with core body temperature (Tcore), but the reliability of measurements at low ambient temperature is unknown. The aim of this study was to determine if commercially-available thermistor-based Tty reflects Tcore in low ambient temperature and if Tty is influenced by insulation of the ear. Thirty-one participants (two females) were exposed to room (23.2 ± 0.4 °C) and low (-18.7 ± 1.0 °C) ambient temperature for 10 min using a randomized cross-over design. Tty was measured using an epitympanic probe (M1024233, GE Healthcare Finland Oy) and oesophageal temperature (Tes) with an oesophageal probe (M1024229, GE Healthcare Finland Oy) inserted into the lower third of the oesophagus. Ten participants wore ear protectors (Arton 2200, Emil Lux GmbH & Co. KG, Wermelskirchen, Switzerland) to insulate the ear from ambient air. During exposure to room temperature, mean Tty increased from 33.4 ± 1.5 to 34.2 ± 0.8 °C without insulation of the ear and from 35.0 ± 0.8 to 35.5 ± 0.7 °C with insulation. During exposure to low ambient temperature, mean Tty decreased from 32.4 ± 1.6 to 28.5 ± 2.0 °C without insulation and from 35.6 ± 0.6 to 35.2 ± 0.9 °C with insulation. The difference between Tty and Tes at low ambient temperature was reduced by 82% (from 7.2 to 1.3 °C) with insulation of the ear. Epitympanic temperature measurements are influenced by ambient temperature and deviate from Tes at room and low ambient temperature. Insulating the ear with ear protectors markedly reduced the difference between Tty and Tes and improved the stability of measurements. The use of models to correct Tty may be possible, but results should be validated in larger studies.

  18. Low-temperature carbonization plant for lignite

    Energy Technology Data Exchange (ETDEWEB)

    Shiotsuki, Y

    1949-01-01

    The design and operational data of a low-temperature carbonization plant for Japanese lignite are described. The retort had a vertical cylinder with a capacity of about 10 tons per day. By continuous operation, in which a part of the gas produced was circulated and burned in the lignite zone, about 40 percent semicoke and 3 to 4 percent tar were obtained. From the tar the following products were separated: Low-temperature carbonization cresol, 18.3; motor fuel, 1.00; solvent, 9.97; cresol for medical uses, 11.85; and creosote oil, 32 percent.

  19. Low-temperature preparation of pyrolytic carbon

    International Nuclear Information System (INIS)

    Kidd, R.W.; Seifert, D.A.; Browning, M.F.

    1984-01-01

    Previous studies have demonstrated that nuclear waste forms coated with chemical vapor deposited pyrolytic carbon (PyC) at about 1273 K can provide ground water leach protection. To minimize the release during coating of volatile material from the waste forms and permit the coating of waste forms with a low softening point, a study was initiated to develop parameters for the catalytic deposition of PyC at low temperatures. The parameters surveyed in a fluidized-bed coater were deposition temperatures, carbon precursors, catalyst, diluent gas, concentration, and pressure

  20. Exploitation of low-temperature energy sources from cogeneration gas engines

    International Nuclear Information System (INIS)

    Caf, A.; Urbancl, D.; Trop, P.; Goricanec, D.

    2016-01-01

    This paper describes an original and innovative technical solution for exploiting low-temperature energy sources from cogeneration gas reciprocating engines installed within district heating systems. This solution is suitable for those systems in which the heat is generated by the use of reciprocating engines powered by gaseous fuel for combined heat and power production. This new technical solution utilizes low-temperature energy sources from a reciprocating gas engine which is used for a combined production of heat and power. During the operation of the cogeneration system low-temperature heat is released, which can be raised to as much as 85 °C with the use of a high-temperature heat-pump, thus enabling a high-temperature regime for heating commercial buildings, district heating or in industrial processes. In order to demonstrate the efficiency of utilizing low-temperature heat sources in the cogeneration system, an economic calculation is included which proves the effectiveness and rationality of integrating high-temperature heat-pumps into new or existing systems for combined heat and power production with reciprocating gas engines. - Highlights: • The use of low-temperature waste heat from the CHP is described. • Total energy efficiency of the CHP can be increased to more than 103.3%. • Low-temperature heat is exploited with high-temperature heat pump. • High-temperature heat pump allows temperature rise to up to 85 °C. • Exploitation of low-temperature waste heat increases the economics of the CHP.

  1. Low-temperature phase transformation in rubidium and cesium superoxides

    International Nuclear Information System (INIS)

    Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.

    1980-01-01

    Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru

  2. Factors determining Staphylococcus aureus susceptibility to photoantimicrobial chemotherapy: RsbU activity, staphyloxanthin level and membrane fluidity.

    Directory of Open Access Journals (Sweden)

    Monika Kossakowska-Zwierucho

    2016-07-01

    Full Text Available Photoantimicrobial chemotherapy (PACT constitutes a particular type of stress condition, in which bacterial cells induce a pleiotropic and as yet unexplored effect. In light of this, the key master regulators are of putative significance to the overall phototoxic outcome. In Staphylococcus aureus, the alternative sigma factor σB controls the expression of genes involved in the response to environmental stress. We show that aberration of any sigB operon genes in S. aureus USA300 isogenic mutants causes a pronounced sensitization (>5 log10 reduction in CFU drop to PACT with selected photosensitizers, namely protoporphyrin diarginate, zinc phthalocyanine and rose bengal. This effect is partly due to aberration-coupled staphyloxanthin synthesis inhibition. We identified frequent mutations in RsbU, a σB activator, in PACT-vulnerable clinical isolates of S. aureus, resulting in σB activity impairment. Locations of significant changes in protein structure (IS256 insertion, early STOP codon occurrence, substitutions A230T and A276D were shown in a theoretical model of S. aureus RsbU. As a phenotypic hallmark of PACT-vulnerable S. aureus strains, we observed an increased fluidity of bacterial cell membrane, which is a result of staphyloxanthin content and other yet unidentified factors. Our research indicates σB as a promising target of adjunctive antimicrobial therapy and suggests that enhanced cell membrane fluidity may be an adjuvant strategy in photoantimicrobial chemotherapy.

  3. Minimizing material damage using low temperature irradiation

    Science.gov (United States)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  4. Challenges in Smart Low-Temperature District Heating Development

    DEFF Research Database (Denmark)

    Li, Hongwei; Wang, Stephen Jia

    2014-01-01

    Previous research and development shows that low temperature district heating (LTDH) system is economic feasible for low energy buildings and buildings at sparse areas. Coupling with reduced network temperature and well-designed district heating (DH) networks, LTDH can reduce network heat loss by...

  5. Changing rooster sperm membranes to facilitate cryopreservation

    Science.gov (United States)

    Cryopreservation damages rooster sperm membranes. Part of this damage is due to membrane transitioning from the fluid to the gel state as temperature is reduced. This damage may be prevented by increasing membrane fluidity at low temperatures by incorporating cholesterol or unsaturated lipids into t...

  6. Low temperature monitoring system for subsurface barriers

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  7. Power generation from low-temperature heat source

    Energy Technology Data Exchange (ETDEWEB)

    Lakew, Amlaku Abie

    2012-07-01

    The potential of low-temperature heat sources for power production has been discussed for decades. The diversity and availability of low-temperature heat sources makes it interesting for power production. The thermodynamic power cycle is one of the promising technologies to produce electricity from low-temperature heat sources. There are different working fluids to be used in a thermodynamic power cycle. Working fluid selection is essential for the performance of the power cycle. Over the last years, different working fluid screening criteria have been used. In broad speaking the screening criteria can be grouped as thermodynamic performance, component size requirement, economic performance, safety and environmental impact. Screening of working fluids at different heat source temperatures (80-200 Celsius degrees) using thermodynamic performance (power output and exergy efficiency) and component size (heat exchanger and turbine) is investigated. It is found that the 'best' working fluid depends on the criteria used and heat source temperature level. Transcritical power cycles using carbon dioxide as a working fluid is studied to produce power at 100 Celsius degrees. Carbon dioxide is an environmentally friendly refrigerant. The global warming potential of carbon dioxide is 1. Furthermore, because of its low critical temperature (31 Celsius degrees), carbon dioxide can operate in a transcritical power cycle for lower heat source temperatures. A transcritical configuration avoids the problem of pinching which otherwise would happened in subcritical power cycle. In the process, better temperature matching is achieved and more heat is extracted. Thermodynamic analysis of transcritical cycle is performed; it is found that there is an optimal operating pressure for highest net power output. The pump work is a sizable fraction of the work produced by the turbine. The effect of efficiency deterioration of the pump and the turbine is compared. When the

  8. Nitrous oxide emissions at low temperatures

    International Nuclear Information System (INIS)

    Martikainen, P.J.

    2002-01-01

    Microbial processes in soil are generally stimulated by temperature, but at low temperatures there are anomalies in the response of microbial activities. Soil physical-chemical characteristics allow existence of unfrozen water in soil also at temperatures below zero. Therefore, some microbial activities, including those responsible for nitrous oxide (N 2 0) production, can take place even in 'frozen' soil. Nitrous oxide emissions during winter are important even in boreal regions where they can account for more than 50% of the annual emissions. Snow pack therefore has great importance for N 2 0 emissions, as it insulates soil from the air allowing higher temperatures in soil than in air, and possible changes in snoav cover as a result of global warming would thus affect the N 2 0 emission from northern soils. Freezing-thawing cycles highly enhance N 2 0 emissions from soil, probably because microbial nutrients, released from disturbed soil aggregates and lysed microbial cells, support microbial N 2 0 production. However, the overall interactions between soil physics, chemistry, microbiology and N 2 0 production at low temperatures, including effects of freezing-thawing cycles, are still poorly known. (au)

  9. Low-temperature centrifugal helium compressor

    International Nuclear Information System (INIS)

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  10. Chamber for uniaxial pressure application at low temperatures

    International Nuclear Information System (INIS)

    Grillo, M.L.N.; Carmo, L.C.S. do; Picon, A.P.

    1984-08-01

    A chamber for alignment of low temperature ferroelastic domains in crystals by the use of uniaxial stress was built. The system allows the use of EPR and optical techniques, as well as X-ray irradiation at temperatures as low as 77K. (Author) [pt

  11. Water droplets' internal fluidity during horizontal motion on a superhydrophobic surface with an external electric field.

    Science.gov (United States)

    Sakai, Munetoshi; Kono, Hiroki; Nakajima, Akira; Sakai, Hideki; Abe, Masahiko; Fujishima, Akira

    2010-02-02

    On a superhydrophobic surface, the internal fluidity of water droplets with different volumes (15, 30 microL) and their horizontal motion in an external electric field were evaluated using particle image velocimetry (PIV). For driving of water droplets on a superhydrophobic coating between parallel electrodes, it was important to place them at appropriate positions. Droplets moved with slipping. Small droplets showed deformation that is more remarkable. Results show that the dielectrophoretic force induced the initial droplet motion and that the surface potential gradient drove the droplets after reaching the middle point between electrodes.

  12. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  13. PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans.

    Science.gov (United States)

    Svensk, Emma; Ståhlman, Marcus; Andersson, Carl-Henrik; Johansson, Maja; Borén, Jan; Pilon, Marc

    2013-01-01

    C. elegans PAQR-2 is homologous to the insulin-sensitizing adiponectin receptors in mammals, and essential for adaptation to growth at 15°C, a low but usually acceptable temperature for this organism. By screening for novel paqr-2 suppressors, we identified mutations in genes involved in phosphatidylcholine synthesis (cept-1, pcyt-1 and sams-1) and fatty acid metabolism (ech-7, hacd-1, mdt-15, nhr-49 and sbp-1). We then show genetic evidence that paqr-2, phosphatidylcholines, sbp-1 and Δ9-desaturases form a cold adaptation pathway that regulates the increase in unsaturated fatty acids necessary to retain membrane fluidity at low temperatures. This model is supported by the observations that the paqr-2 suppressors normalize the levels of saturated fatty acids, and that low concentrations of detergents that increase membrane fluidity can rescue the paqr-2 mutant.

  14. Installation for low temperature vapor explosion experiment

    International Nuclear Information System (INIS)

    Nilsuwankosit, Sunchai; Archakositt, Urith

    2000-01-01

    A preparation for the experiment on the low temperature vapor explosion was planned at the department of Nuclear Technology, Chulalongkorn University, Thailand. The objective of the experiment was to simulate the interaction between the molten fuel and the volatile cooling liquid without resorting to the high temperature. The experiment was expected to involve the injection of the liquid material at a moderate temperature into the liquid material with the very low boiling temperature in order to observe the level of the pressurization as a function of the temperatures and masses of the applied materials. For this purpose, the liquid nitrogen and the water were chosen as the coolant and the injected material for this experiment. Due to the size of the installation and the scale of the interaction, only lumped effect of various parameters on the explosion was expected from the experiment at this initial stage. (author)

  15. Corrosion test by low-temperature coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Ando, S; Yamamoto, S

    1952-01-01

    Corrosive actions of various fractions of low-temperature coal tar against mild steel or Cr 13-steel were compared at their boiling states. Corrosions became severe when the boiling points exceeded 240/sup 0/. The acidic fractions were more corrosive. In all instances, corrosion was excessive at the beginning of immersion testing and then gradually became mild; boiling accelerated the corrosion. Cr 13-steel was corrosion-resistant to low-temperature coal-tar fractions.

  16. A low-temperature research facility for space

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    The Jet Propulsion Laboratory is proposing to NASA a new initiative to construct a Low Temperature Research Facility for use in space. The facility is described, together with some details of timing and support. An advisory group has been formed which seeks to advise JPL and NASA of the capabilities required in this facility and to invite investigators to propose experiments which require the combination of low temperature and reduced gravity to be successful. (orig.)

  17. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    DEFF Research Database (Denmark)

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.

    2002-01-01

    source present at the low temperature. To maintain overall thermal neutrality, the low air temperature was partly compensated for by individually controlled radiant heating, and partly by allowing subjects to modify clothing insulation. A reduction of the air temperature from 23 deg.C to 18 deg.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature....

  18. Electron microscopic observation at low temperature on superconductors

    International Nuclear Information System (INIS)

    Yokota, Yasuhiro; Hashimoto, Hatsujiro; Yoshida, Hiroyuki.

    1991-01-01

    The authors have observed superconducting materials with a high resolution electron microscope at liquid helium temperature. First, observation was carried out on Nb system intermetallic compounds such as Nb 3 Al and Nb 3 Sn of Al 5 type and Nb 3 Ge of 11 type at extremely low temperature. Next, the observation of high temperature superconductive ceramics in the state of superconductivity was attempted. In this paper, first the development of the liquid helium sample holder for a 400 kV electron microscope to realize the observation is reported. Besides, the sample holder of Gatan Co. and an extremely low temperature, high resolution electron microscope with a superconducting lens are described. The purpose of carrying out the electron microscope observation of superconductors at low temperature is the direct observation of the crystalline lattice image in the state of superconductivity. Also the structural transformation from tetragonal crystals to rhombic crystals in Al 5 type superconductors can be observed. The results of observation are reported. (K.I.)

  19. Low temperature surface chemistry and nanostructures

    Science.gov (United States)

    Sergeev, G. B.; Shabatina, T. I.

    2002-03-01

    The new scientific field of low temperature surface chemistry, which combines the low temperature chemistry (cryochemistry) and surface chemistry approaches, is reviewed in this paper. One of the most exciting achievements in this field of science is the development of methods to create highly ordered hybrid nanosized structures on different organic and inorganic surfaces and to encapsulate nanosized metal particles in organic and polymer matrices. We consider physical and chemical behaviour for the systems obtained by co-condensation of the components vapours on the surfaces cooled down to 4-10 and 70-100 K. In particular the size effect of both types, the number of atoms in the reactive species structure and the thickness of growing co-condensate film, on the chemical activity of the system is analysed in detail. The effect of the internal mechanical stresses on the growing interfacial co-condensate film formation and on the generation of fast (explosive) spontaneous reactions at low temperatures is discussed. The examples of unusual chemical interactions of metal atoms, clusters and nanosized particles, obtained in co-condensate films on the cooled surfaces under different conditions, are presented. The examples of highly ordered surface and volume hybrid nanostructures formation are analysed.

  20. Performance of low-temperature district heating for low-energy houses

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend

    2010-01-01

    A Low Energy District Heating (LEDH) network supplying district heating water with temperature 50°C was built in Lærkehaven-Lystrup, Denmark, as a part of the ongoing “Energy Technology Development and Demonstration Programme” [EUDP, 2008] focused on “CO2-reduction in low energy buildings and com...

  1. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  2. Three-particle recombination at low temperature: QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Roy, A.

    2001-01-01

    A theoretical study of three-body recombination of proton in presence of a spectator electron with electronic beam at near-zero temperature is presented using field theory and invariant Lorentz gauge. Contributions from the Feynman diagrams of different orders give an insight into the physics of the phenomena. Recombination rate coefficient is obtained for low lying principal quantum number n = 1 to 10. At a fixed ion beam temperature (300 K) recombination rate coefficient is found to increase in general with n, having a flat and a sharp peak at quantum states 3 to 5, respectively. In absence of any theoretical and experimental results for low temperature formation of H-atom by three-body recombination at low lying quantum states, we have presented the theoretical results of Stevefelt and group for three-body recombination of deuteron with electron along with the present results. Three-body recombination of antihydrogen in antiproton-positron plasma is expected to yield similar result as that for three-body recombination of hydrogen formation in proton-electron plasma. The necessity for experimental investigation of low temperature three-body recombination at low quantum states is stressed. (author)

  3. Vol. 5: Low Temperature Physics

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceeding are published in 6 volumes. The papers presented in this volume refer to low-temperature physics

  4. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  5. Low temperature thermophysical properties of lunar soil

    Science.gov (United States)

    Cremers, C. J.

    1973-01-01

    The thermal conductivity and thermal diffusivity of lunar fines samples from the Apollo 11 and Apollo 12 missions, determined at low temperatures as a function of temperature and various densities, are reviewed. It is shown that the thermal conductivity of lunar soil is nearly the same as that of terrestrial basaltic rock under the same temperature and pressure conditions.

  6. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  7. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  8. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    Science.gov (United States)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  9. Behaviour of polar crystals at low temperatures

    International Nuclear Information System (INIS)

    Drozhdin, S.N.; Novik, V.K.; Gavrilova, N.D.; Koptsik, V.A.; Popova, T.V.

    1975-01-01

    Temperature dependencies of pyrocoefficient for a wide class of various pyroactive crystals in the temperature range from 4,2 to 300 deg K were investigated. The problems to be solved were: to confirm a conclusion on the pyrocoefficient γsup(sigma) tending to zero at T → 0; to compare experimental data with conclusions of existing theories; to reveal specific features in the behaviour of both linear pyroelectrics and segnetoelectrics at low temperatures. The behaviour of the total pyrocoefficient for all crystals obeys the regularity γsup(sigma) → 0 at T → O. In the range of low temperatures the pyrocoefficient varies by the power law: γsup(sigma) approximately Tsup(α). For the majority of crystals studied α is close to 3. CdS, BeO, ZiNbO 3 and other crystals were studied

  10. Quality control of Photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids

    Directory of Open Access Journals (Sweden)

    Yasusi Yamamoto

    2016-08-01

    Full Text Available When oxygenic photosynthetic organisms are exposed to excessive light and/or heat, Photosystem II is damaged and electron transport is blocked. In these events, reactive oxygen species, endogenous radicals and lipid peroxidation products generated by photochemical reaction and/or heat cause the damage. Regarding light stress, plants first dissipate excessive light energy captured by light-harvesting chlorophyll protein complexes as heat to avoid the hazards, but once light stress is unavoidable, they tolerate the stress by concentrating damage in a particular protein in photosystem II, i.e. the reaction-center binding D1 protein of Photosystem II. The damaged D1 is removed by specific proteases and replaced with a new copy produced through de novo synthesis (reversible photoinhibition. When light intensity becomes extremely high, irreversible aggregation of D1 occurs and thereby D1 turnover is prevented. Once the aggregated products accumulate in Photosystem II complexes, removal of them by proteases is difficult, and irreversible inhibition of Photosystem II takes place (irreversible photoinhibition. Important is that various aspects of both the reversible and irreversible photoinhibition are highly dependent on the membrane fluidity of the thylakoids. Heat stress-induced inactivation of photosystem II is an irreversible process, which may be also affected by the fluidity of the thylakoid membranes. Here I describe why the membrane fluidity is a key to regulate the avoidance and tolerance of Photosystem II on environmental stresses.

  11. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  12. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    Cuttings of three hybrid clones of P. ussuriensis × P. deltoides were exposed to different low temperatures (cold and freezing) for 24 h, or consecutive low temperatures (5°C, 0 to 120 h), to determine physiological and biochemical responses to cold stress in these woody plants. Soluble sugar and protein contents increased ...

  13. Measuring Systems for Thermometer Calibration in Low-Temperature Range

    Science.gov (United States)

    Szmyrka-Grzebyk, A.; Lipiński, L.; Manuszkiewicz, H.; Kowal, A.; Grykałowska, A.; Jancewicz, D.

    2011-12-01

    The national temperature standard for the low-temperature range between 13.8033 K and 273.16 K has been established in Poland at the Institute of Low Temperature and Structure Research (INTiBS). The standard consists of sealed cells for realization of six fixed points of the International Temperature Scale of 1990 (ITS-90) in the low-temperature range, an adiabatic cryostat and Isotech water and mercury triple-point baths, capsule standard resistance thermometers (CSPRT), and AC and DC bridges with standard resistors for thermometers resistance measurements. INTiBS calibrates CSPRTs at the low-temperature fixed points with uncertainties less than 1 mK. In lower temperature range—between 2.5 K and about 25 K — rhodium-iron (RhFe) resistance thermometers are calibrated by comparison with a standard which participated in the EURAMET.T-K1.1 comparison. INTiBS offers a calibration service for industrial platinum resistance thermometers and for digital thermometers between 77 K and 273 K. These types of thermometers may be calibrated at INTiBS also in a higher temperature range up to 550°C. The Laboratory of Temperature Standard at INTiBS acquired an accreditation from the Polish Centre for Accreditation. A management system according to EN ISO/IEC 17025:2005 was established at the Laboratory and presented on EURAMET QSM Forum.

  14. Radiation detection at very low temperature. DRTBT 1991 Aussois - Course collection

    International Nuclear Information System (INIS)

    Salce, B.; Godfrin, H.; Dumoulin, L.; Garoche, Pierre; Pannetier, B.; Equer, B.; Hubert, PH.; Urbina, C.; Lamarre, J.M.; Brison, J.P.; Lesueur, D.; Bret, J.L.; Ayela, F.; Coron, N.; Gonzalez-Mestres, L.

    1991-12-01

    This publication gather several courses which propose or address: Thermal conduction, Kapitza resistance, Metal-insulator transition, Thermal properties and specific heat at low temperature, Thermometry, Low temperature superconductors, Defects due to irradiations in solids, Semiconducting detectors, Techniques of protection of a measurement assembly at low temperatures against perturbations, Noise reduction by impedance matching converter at low temperature, Low noise electronics and measurement, Low radio-activities, SQUID and electrometer, Results and expectations related to bolometers, Infrared and sub-millimetre radiation in astrophysics, Neutrinos, dark matter and heavy ions

  15. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  16. Technological uses of low temperature plasmas

    International Nuclear Information System (INIS)

    Lawton, J.

    1975-01-01

    Types of low temperature plasma sources considered include; arc discharge, high pressure discharge, low pressure discharge and flame. The problems of uniform heating of a gas are discussed and it is considered that the most reliable technique is the magnetically rotated arc, but expanded discharges of one kind or another are likely to be serious competitors in the future. The uses of low temperature plasma in chemistry and combustion are considered. The potential for plasma chemistry lies with processes in which the reactions occur in the plasma itself or its neighbouring gas phase, including those which require the vaporization of liquefaction of a refractory material and also highly endothermic reactions. The production of thixotropic silica and acetylene are discussed as examples of such reactions. The field of plasma and combustion including; ignition, flame ionization and soot formation, and the MHD generator, is considered. (U.K.)

  17. Low temperature experiments in radiation biophysics

    International Nuclear Information System (INIS)

    Moan, J.

    1977-01-01

    The reasons for performing experiments in radiation biophysics at low temperatures, whereby electron spectra may be studied, are explained. The phenomenon of phosphorescence spectra observed in frozen aqueous solutions of tryptophan and adenosine is also described. Free radicals play an important part in biological radiation effects and may be studied by ESR spectroscopy. An ESR spectrum of T 1 bacteriophages irradiated dry at 130K is illustrated and discussed. Hydrogen atoms, which give lines on the spectrum, are believed to be those radiation products causing most biological damage in a dry system. Low temperature experiments are of great help in explaining the significance of direct and indirect effects. This is illustrated for the case of trypsin. (JIW)

  18. Thermoluminescence analysis of co-doped NaCl at low temperature irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Zaragoza, E., E-mail: ecruz@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Ortiz, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F. (Mexico); Furetta, C. [Touro University Rome, Circne Gianicolense 15-17, 00153 Rome (Italy); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2011-02-15

    The thermoluminescent response and kinetics parameters of NaCl, doubly activated by Ca-Mn and Cd-Mn ions, exposed to gamma radiation are analyzed. The doped NaCl samples were irradiated at relative low temperature, i.e. at the liquid nitrogen temperature (LNT) and at dry ice temperature (DIT), and the glow curves obtained after 2 Gy of gamma irradiation were analyzed using the computerized glow curve deconvolution (CGCD). An evident variation in the glow curve structure after LNT and DIT was observed. It seems that different kinds of trapping levels are activated at relative low temperature. The original two prominent peaks in compositions A (Ca,Mn) and B (Ca,Mn) have been changed in only one main peak with satellites in the low temperature side of the glow curves. In compositions C (Cd,Mn) and D (Cd,Mn), low temperature peaks become stronger and prominent than the high temperature peaks; this effect could be explained considering that the trapping probability for low temperature traps, the one very close to the conduction band, is enhanced by low temperatures during irradiation.

  19. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand...... energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply.......Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network...

  20. Extreme low temperature tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    George Richard Strimbeck

    2015-10-01

    Full Text Available Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40˚C and minimum temperatures below -60˚C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196˚C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature. Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at extreme low temperature: 1. Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to 30˚C, preventing phase changes that result in irreversible injury. 2. High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. 3. Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.

  1. Exploring the limits: A low-pressure, low-temperature Haber-Bosch process

    Science.gov (United States)

    Vojvodic, Aleksandra; Medford, Andrew James; Studt, Felix; Abild-Pedersen, Frank; Khan, Tuhin Suvra; Bligaard, T.; Nørskov, J. K.

    2014-04-01

    The Haber-Bosch process for ammonia synthesis has been suggested to be the most important invention of the 20th century, and called the ‘Bellwether reaction in heterogeneous catalysis’. We examine the catalyst requirements for a new low-pressure, low-temperature synthesis process. We show that the absence of such a process for conventional transition metal catalysts can be understood as a consequence of a scaling relation between the activation energy for N2 dissociation and N adsorption energy found at the surface of these materials. A better catalyst cannot obey this scaling relation. We define the ideal scaling relation characterizing the most active catalyst possible, and show that it is theoretically possible to have a low pressure, low-temperature Haber-Bosch process. The challenge is to find new classes of catalyst materials with properties approaching the ideal, and we discuss the possibility that transition metal compounds have such properties.

  2. Effect of low-temperature thermomechanical treatment on mechanical properties of low-alloying molybdenum alloys with carbide hardening

    International Nuclear Information System (INIS)

    Bernshtejn, L.M.; Zakharov, A.M.; Veller, M.V.

    1978-01-01

    Presented are results of testing low-temperature thermomechanical treatment of low-alloying molybdenum alloys, including quenching from 2100 deg C, 40% deformation by hydroextrusion and aging at the temperature of 1200-1400 deg C. Tensile tests at room temperature with the following processing of results have shown that low-temperature thermomechanical treatment of low-alloying molybdenum alloys of Mo-Zr-C and Mo-Zr-Nb-C systems leads to a significant increase in low-temperature mechanical properties (strength properties - by 30-35%, ductility - by 30-40%) as compared with conventional heat treatment (aging after quenching). The treatment proposed increases resistance to small, as well as large plastic deformations, and leads to a simultaneous rise of strength and plastic properties at all stages of tensile test. Alloying of the Mo-Zr-C system with niobium increases both strength and plastic characteristics as compared with alloys without niobium when testing samples, subjected to low temperature thermomechanical treatment and conventional heat treatment at room temperature

  3. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  4. Low temperature barrier wellbores formed using water flushing

    Science.gov (United States)

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  5. Low-temperature random matrix theory at the soft edge

    International Nuclear Information System (INIS)

    Edelman, Alan; Persson, Per-Olof; Sutton, Brian D.

    2014-01-01

    Low temperature” random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, β is identified with inverse temperature, and low temperatures are achieved through the limit β → ∞. In this paper, we derive statistics for low-temperature random matrices at the “soft edge,” which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-β Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of general-β random matrix theory

  6. Development of a low cost, low temperature cryocooler using the Gifford McMahon cycle

    Science.gov (United States)

    Ramanayaka, A.; Mani, R.

    2008-03-01

    Although Helium is the second most abundant element, its concentration in the earth's atmosphere is fairly low and constant, as the portion that escapes from the atmosphere is replace by new emission. Historically, Helium was extracted as a byproduct of natural gas production, and stored in gas fields in a National Helium Reserve, in an attempt to conserve this interesting element. National policy has changed and the cost of liquid Helium has increased rapidly in the recent past. These new circumstances have created new interest in alternative eco-friendly methods to realizing and maintaining low temperatures in the laboratory. There have been number of successful attempts at making low temperature closed cycle Helium refrigerators by modifying an existing closed cycle system, and usually the regenerator has been replaced in order to achieve the desired results. Here, we discus our attempt to fabricate a low cost, low temperature closed cycle Helium refrigerator starting from a 15K Gifford McMahon system. We reexamine the barriers to realizing lower temperature here and our attempts at overcoming them.

  7. The Low Temperature CFB Gasifier

    DEFF Research Database (Denmark)

    Stoholm, P.; Nielsen, Rasmus Glar; Richardt, K.

    2004-01-01

    straw, animal manure and waste and for co-firing the product gas in existing, e.g. coal fired power plant boilers. The aim is to prevent fouling, agglomeration and high temperature corrosion caused by potassium and chlorine and other fuel components when producing electricity. So far 92 hours......The Low Temperature Circulating Fluidised Bed (LT-CFB) gasification process is described together with the 50 kW and the 500 kW test plants and latest test results. The LT-CFB process is especially developed for medium and large scale (few to >100 MW) gasification of problematic bio-fuels like...... of experiments with the 50 kW test plant with two extremely difficult types of straw has shown low char losses and high retentions of ash including e.g. potassium. Latest 27 hours of experiments with dried, high ash pig- and hen manure has further indicated the concepts high fuel flexibility. The new 500 kW test...

  8. PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans.

    Directory of Open Access Journals (Sweden)

    Emma Svensk

    Full Text Available C. elegans PAQR-2 is homologous to the insulin-sensitizing adiponectin receptors in mammals, and essential for adaptation to growth at 15°C, a low but usually acceptable temperature for this organism. By screening for novel paqr-2 suppressors, we identified mutations in genes involved in phosphatidylcholine synthesis (cept-1, pcyt-1 and sams-1 and fatty acid metabolism (ech-7, hacd-1, mdt-15, nhr-49 and sbp-1. We then show genetic evidence that paqr-2, phosphatidylcholines, sbp-1 and Δ9-desaturases form a cold adaptation pathway that regulates the increase in unsaturated fatty acids necessary to retain membrane fluidity at low temperatures. This model is supported by the observations that the paqr-2 suppressors normalize the levels of saturated fatty acids, and that low concentrations of detergents that increase membrane fluidity can rescue the paqr-2 mutant.

  9. Evaluation Method for Low-Temperature Performance of Lithium Battery

    Science.gov (United States)

    Wang, H. W.; Ma, Q.; Fu, Y. L.; Tao, Z. Q.; Xiao, H. Q.; Bai, H.; Bai, H.

    2018-05-01

    In this paper, the evaluation method for low temperature performance of lithium battery is established. The low temperature performance level was set up to determine the best operating temperature range of the lithium battery using different cathode materials. Results are shared with the consumers for the proper use of lithium battery to make it have a longer service life and avoid the occurrence of early rejection.

  10. Oregon Low-Temperature-Resource Assessment Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.; Black, G.L.; Woller, N.M.

    1981-01-01

    Numerous low-temperature hydrothermal systems are available for exploitation throughout the Cascades and eastern Oregon. All of these areas have heat flow significantly higher than crustal averages and many thermal aquifers. In northeastern Oregon, low temperature geothermal resources are controlled by regional stratigraphic aquifers of the Columbia River Basalt Group at shallow depths and possibly by faults at greater depths. In southeastern Oregon most hydrothermal systems are of higher temperature than those of northeastern Oregon and are controlled by high-angle fault zones and layered volcanic aquifers. The Cascades have very high heat flow but few large population centers. Direct use potential in the Cascades is therefore limited, except possibly in the cities of Oakridge and Ashland, where load may be great enough to stimulate development. Absence of large population centers also inhibits initial low temperature geothermal development in eastern Oregon. It may be that uses for the abundant low temperature geothermal resources of the state will have to be found which do not require large nearby population centers. One promising use is generation of electricity from freon-based biphase electrical generators. These generators will be installed on wells at Vale and Lakeview in the summer of 1982 to evaluate their potential use on geothermal waters with temperatures as low as 80/sup 0/C (176/sup 0/F).

  11. Low-energy physics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ''universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter

  12. Containment test in area of high latitude and low temperature

    International Nuclear Information System (INIS)

    Cai Jiantao; Ni Yongsheng; Jia Wutong

    2014-01-01

    The effects of high latitude and low temperature on containment test are detailed analyzed from the view of design, equipment, construct and start-up, and the solution is put forward. The major problems resolved is as below: the effects of low temperature and high wind on defect inspection of the containment surface, the effects of test load on the affiliated equipment of containment in the condition of low temperature, and the effects of low temperature on the containment leak rate measurement. Application in Hongyanhe Unit 1 showed that the proposed scheme can effectively overcome the influence of adverse weather on the containment test. (authors)

  13. Recent progress in low-temperature silicon detectors

    International Nuclear Information System (INIS)

    Abreu, M.; D'Ambrosio, N.; Bell, W.; Berglund, P.; Borchi, E.; Boer, W. de; Borer, K.; Bruzzi, M.; Buontempo, S.; Casagrande, L.; Chapuy, S.; Cindro, V.; Devine, S.R.H.; Dezillie, B.; Dierlamm, A.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Grohmann, S.; Hauler, F.; Heijne, E.; Heising, S.; Hempel, O.; Herzog, R.; Haerkoenen, J.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; De Masi, R.; Menichelli, D.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieri, V.G.; Paul, S.; Pretzl, K.; Smith, K.; Solano, B. Pere; Sousa, P.; Pirollo, S.; Rato Mendes, P.; Ruggiero, G.; Sonderegger, P.; Tuominen, E.; Verbitskaya, E.; Da Via, C.; Watts, S.; Wobst, E.; Zavrtanik, M.

    2003-01-01

    The CERN RD39 Collaboration studies the possibility to extend the detector lifetime in a hostile radiation environment by operating them at low temperatures. The outstanding illustration is the Lazarus effect, which showed a broad operational temperature range around 130 K for neutron irradiated silicon detectors

  14. Computational Chemistry of Cyclopentane Low Temperature Oxidation

    KAUST Repository

    El Rachidi, Mariam

    2015-03-30

    Cycloalkanes are significant constituents of conventional fossil fuels, but little is known concerning their combustion chemistry and kinetics, particularly at low temperatures. This study investigates the pressure dependent kinetics of several reactions occurring during low-temperature cyclopentane combustion using theoretical chemical kinetics. The reaction pathways of the cyclopentyl + O2 adduct is traced to alkylhydroperoxide, cyclic ether, β-scission and HO2 elimination products. The calculations are carried out at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The barrierless entrance channel is treated using variable-reaction-coordinate transition state theory (VRC-TST) at the CASPT2(7e,6o) level of theory, including basis set, geometry relaxation and ZPE corrections. 1-D time-dependent multiwell master equation analysis is used to determine pressure-and temperature-dependent rate parameters of all investigated reactions. Tunneling corrections are included using Eckart barriers. Comparison with cyclohexane is used to elucidate the effect of ring size on the low temperature reactivity of naphthenes. The rate coefficients reported herein are suitable for use in cyclopentane and methylcyclopentane combustion models, even below ~900 K, where ignition is particularly sensitive to these pressure-dependent values.

  15. Quintessential inflation at low reheating temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Llibert Areste [Universitat Politecnica de Catalunya, Departament de Matematiques, Barcelona (Spain); Ludwig-Maximilians-Universitaet, Fakultaet fuer Physik, Munich (Germany); Haro, Jaume de [Universitat Politecnica de Catalunya, Departament de Matematiques, Terrassa (Spain)

    2017-11-15

    We have tested some simple quintessential inflation models, imposing the requirement that they match with the recent observational data provided by the BICEP and Planck team and leading to a reheating temperature, which is obtained via gravitational particle production after inflation, supporting the nucleosynthesis success. Moreover, for the models coming from supergravity one needs to demand low temperatures in order to avoid problems such as the gravitino overproduction or the gravitational production of moduli fields, which are obtained only when the reheating temperature is due to the production of massless particles with a coupling constant very close to its conformal value. (orig.)

  16. Low temperature gaseous nitriding of Ni based superalloys

    DEFF Research Database (Denmark)

    Eliasen, K. M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2010-01-01

    In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr......In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr...

  17. INFLUENCE OF A LOW TEMPERATURE AGEING ON THE ...

    African Journals Online (AJOL)

    The effect of a low temperature ageing treatment on the hardness, tensile and corrosion characteristics of sand cast Al-6.5%Si-0.35%Mg alloy was studied. The temper conditions are low temperature ageing at 90oC, 95oC, 100oCand 105oC respectively followed by ageing to 180oC for 2 hrs. This was compared with the ...

  18. Influence of low temperature on kinetics of magnesium alloy fatigue fracture

    International Nuclear Information System (INIS)

    Serdyuk, V.A.; Grinberg, N.M.; Malinkina, T.I.; Kamyshkov, A.S.

    1980-01-01

    Studied is the effect of low temperature on kinetics of fatigue fracture in a number of magnesium alloys (MA2-1, MA15, IMV6, MA21, MA12). Cylindrical samples have been tested in vacuum at 20 deg C and at -120 deg C using cyclic symmetric tension-compression. Presented is a dependence of residual durability of alloys at low temperature on the number of preliminary deformation reversals at room temperature. It is shown that for the MA15, MA 12 alloys the durability increases at low temperature due to increasing crack initiation duration, and the out-of-grain crack growth rate is higher at low temperature than at room temperature; whereas for the second group alloys (IMV6, MA21, MA2-1) an increase in the crack initiation stage and a decrease in the crack growth at temperature decreasing are characteristic. A conclusion is made that different behavior of Mg alloys at low temperature is conditioned by their different structural states

  19. Rheological behavior of drilling fluids under low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lomba, Rosana F.T.; Sa, Carlos H.M. de; Brandao, Edimir M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: rlomba, chsa, edimir@cenpes.petrobras.com.br

    2000-07-01

    The so-called solid-free fluids represent a good alternative to drill through productive zones. These drill-in fluids are known to be non-damaging to the formation and their formulation comprise polymers, salts and acid soluble solids. Xanthan gum is widely used as viscosifier and modified starch as fluid loss control additive. The salts most commonly used are sodium chloride and potassium chloride, although the use of organic salt brines has been increasing lately. Sized calcium carbonate is used as bridging material, when the situation requires. The low temperatures encountered during deep water drilling demand the knowledge of fluid rheology at this temperature range. The rheological behavior of drill-in fluids at temperatures as low as 5 deg C was experimentally evaluated. Special attention was given to the low shear rate behavior of the fluids. A methodology was developed to come up with correlations to calculate shear stress variations with temperature. The developed correlations do not depend on a previous choice of a rheological model. The results will be incorporated in a numerical simulator to account for temperature effects on well bore cleaning later on. (author)

  20. Development of a sample environment for neutron diffraction at low temperature

    International Nuclear Information System (INIS)

    Lee, Jeong Soo; Lee, Chang Hee; Choi, Yong Nam

    2000-06-01

    This report contains the development of low temperature sample environment for the neutron diffraction and its utilization techniques. With this research, a low temperature experimental facility of T=10-300 K was developed. We measured magnetic peak of La 1 .4Sr 1 .6Mn 2 O 7 due to low temperature phase transition successfully by this unit installed at the sample table of HRPD. Therefore, the research capability for various materials under the low temperature was expanded

  1. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  2. Frugal Biotech Applications of Low-Temperature Plasma.

    Science.gov (United States)

    Machala, Zdenko; Graves, David B

    2017-09-01

    Gas discharge low-temperature air plasma can be utilized for a variety of applications, including biomedical, at low cost. We term these applications 'frugal plasma' - an example of frugal innovation. We demonstrate how simple, robust, low-cost frugal plasma devices can be used to safely disinfect instruments, surfaces, and water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Measurement of low-temperature specific heat

    International Nuclear Information System (INIS)

    Stewart, G.R.

    1983-01-01

    The measurement of low-temperature specific heat (LTSH) (0.1 K< T<60 K) has seen a number of breakthroughs both in design concepts and instrumentation in the last 15 years: particularly in small sample calorimetry. This review attempts to provide an overview of both large and small sample calorimetry techniques at temperatures below 60 K, with sufficient references to enable more detailed study. A comprehensive review is made of the most reliable measurements of the LTSH of 84 of the elements to illustrate briefly some of the problems of measurements and analysis, as well as to provide additional references. More detail is devoted to three special areas of low-temperature calorimetry that have seen rapid development recently: (1) measurement of the specific heat of highly radioactive samples, (2) measurement of the specific heat of materials in high magnetic fields (18 T), and (3) measurement of the specific heat of very small (100 μg) samples. The review ends with a brief discussion of the frontier research currently underway on microcalorimetry for nanogram sample weights

  4. Low Temperature Plasma Medicine

    Science.gov (United States)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  5. Indoor Temperatures in Low Cost Housing in Johannesburg, South Africa

    Directory of Open Access Journals (Sweden)

    Nisha Naicker

    2017-11-01

    Full Text Available Ambient and indoor temperature affects thermal comfort and human health. In a changing climate with a predicted change in temperature extremes, understanding indoor temperatures, both hot and cold, of different housing types is important. This study aimed to assess the hourly, daily and monthly variation in indoor temperatures in different housing types, namely formal houses, informal houses, flats, government-built low-cost houses and old, apartheid era low-cost housing, in five impoverished urban communities in Johannesburg, South Africa. During the cross-sectional survey of the Health, Environment and Development study data loggers were installed in 100 homes (20 per suburb from February to May 2014. Indoor temperature and relative humidity were recorded on an hourly basis. Ambient outdoor temperatures were obtained from the nearest weather station. Indoor and outdoor temperature and relative humidity levels were compared; and an inter-comparison between the different housing types were also made. Apparent temperature was calculated to assess indoor thermal comfort. Data from 59 retrieved loggers showed a significant difference in monthly mean indoor temperature between the five different housing types (p < 0.0001. Low cost government-built houses and informal settlement houses had the greatest variation in temperature and experienced temperatures between 4 and 5 °C warmer than outdoor temperatures. Housing types occupied by poor communities experienced indoor temperature fluctuations often greater than that observed for ambient temperatures. Families living in government-built low-cost and informally-constructed homes are the most at risk for indoor temperature extremes. These types of housing should be prioritised for interventions aimed at assisting families to cope with extreme temperatures, gaining optimal thermal comfort and preventing temperature-related health effects.

  6. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  7. Analysis of optimal design of low temperature economizer

    Science.gov (United States)

    Song, J. H.; Wang, S.

    2017-11-01

    This paper has studied the Off-design characteristic of low temperature economizer system based on thermodynamics analysis. Based on the data from one 1000 MW coal-fired unit, two modes of operation are contrasted and analyzed. One is to fix exhaust gas temperature and the other one is to take into account both of the average temperature difference and the exhaust gas temperature. Meanwhile, the cause of energy saving effect change is explored. Result shows that: in mode 1, the amount of decrease in coal consumption reduces from 1.11 g/kWh (under full load) to 0.54 g/kWh (under half load), and in mode 2, when the load decreases from 90% to 50%, the decrease in coal consumption reduces from 1.29 g/kWh to 0.84 g/kWh. From the result, under high load, the energy saving effect is superior, and under lower work load, energy saving effect declines rapidly when load is reduced. When load changes, the temperature difference of heat transfer, gas flow, the flue gas heat rejection and the waste heat recovery change. The energy saving effect corresponding changes result in that the energy saving effect under high load is superior and more stable. However, rational adjustment to the temperature of outlet gas can alleviate the decline of the energy saving effect under low load. The result provides theoretical analysis data for the optimal design and operation of low temperature economizer system of power plant.

  8. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  9. Analysis of low-temperature tar fractions

    Energy Technology Data Exchange (ETDEWEB)

    Kikkawa, S; Yamada, F

    1952-01-01

    A preliminary comparative study was made on the applicability of the methods commonly used for the type analysis of petroleum products to the low-temperature tar fractions. The usability of chromatography was also studied.

  10. Dehydration of hydrated low-temperature tar

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T

    1949-01-01

    Yoshida examined the mechanism of the dehydration of hydrated low-temperature tar with a microscope. The tar containing free carbon and coal dust is so stable that the removal of the above substances and water by a physical method is very difficult. Addition of light oil produced by fractionation of low-temperature tar facilitates the operations. Yoshida tried using the separate acid, neutral, and basic components of the light oil; the acid oil proved to be most effective. For many reasons it is convenient to use light oil as it is. In this method the quantity of light oil required is 2 to 3 times that of tar. But in supplementing the centrifugal method, the quantity of light oil needed might be only half the amount of tar.

  11. Low-temperature conductivity of gadolinium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Mustafaeva, S. N., E-mail: solmust@gmail.com [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan); Asadov, S. M., E-mail: mirasadov@gmail.com [Azerbaijan National Academy of Sciences, Institute of Catalysis and Inorganic Chemistry (Azerbaijan)

    2016-09-15

    In samples of GdS{sub x} (x = 1.475–2) of various compositions, the conductivity temperature dependences are investigated for the case of direct current in the low-temperature region (4.2–225 K). The presence of the activation and activationless hopping mechanisms of charge transport over the band gap of the samples of GdS{sub x} phases is established. The parameters of localized states in GdS{sub x} are determined.

  12. Wolte 5. low temperature electronics

    International Nuclear Information System (INIS)

    Balestra, F.; Dieudonne, F.; Jomaah, J.

    2002-01-01

    This book present the latest research and development results in advanced materials, technologies, devices, circuits and systems for low temperature electronics. The main themes of the papers are ranging from physics and fundamental aspects, modeling and simulation, to device and circuit design. The topics include advanced process and characterization, novel devices and cryogenic instrumentation. The papers are divided into nine sections, reflecting the main research efforts in different areas: i) deep submicron silicon MOSFETs, ii) alternative MOSFETs (SOI, innovating device architectures), iii) III-V devices, iv) other semiconductor devices (Ge devices, p-n junctions, IR sensors, semiconductor microcrystals), v) emerging devices and phenomena (nano Si-based devices, conduction and fluctuations mechanisms), vi) superconducting materials, vii) superconducting detectors, viii) superconducting devices and circuits (RSFQ, SIS mixers, metal-superconducting-semiconductor structures), ix) low temperature electronics for space applications. Six invited papers presented by internationally recognized authors, and 39 contributed papers are presented. The invited papers provide an excellent overview of today's status and progress, as well as tomorrow's challenges and trends in this important discipline for many cryogenic applications. (authors)

  13. Correlation functions of one-dimensional bosons at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)

    2010-12-15

    We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)

  14. Low-Temperature Co-Fired Unipoled Multilayer Piezoelectric Transformers.

    Science.gov (United States)

    Gao, Xiangyu; Yan, Yongke; Carazo, Alfredo Vazquez; Dong, Shuxiang; Priya, Shashank

    2018-03-01

    The reliability of piezoelectric transformers (PTs) is dependent upon the quality of fabrication technique as any heterogeneity, prestress, or misalignment can lead to spurious response. In this paper, unipoled multilayer PTs were investigated focusing on high-power composition and co-firing profile in order to provide low-temperature synthesized high-quality device measured in terms of efficiency and power density. The addition of 0.2 wt% CuO into Pb 0.98 Sr 0.02 (Mg 1/3 Nb 2/3 ) 0.06 (Mn 1/3 Nb 2/3 ) 0.06 (Zr 0.48 Ti 0.52 ) 0.88 O 3 (PMMnN-PZT) reduces the co-firing temperature from 1240 °C to 930 °C, which allows the use of Ag/Pd inner electrode instead of noble Pt inner electrode. Low-temperature synthesized material was found to exhibit excellent piezoelectric properties ( , , %, pC/N, and °C). The performance of the PT co-fired with Ag/Pd electrode at 930 °C was similar to that co-fired at 1240 °C with Pt electrode (25% reduction in sintering temperature). Both high- and low-temperature synthesized PTs demonstrated 5-W output power with >90% efficiency and 11.5 W/cm 3 power density.

  15. Final Report Low-temperature Resource Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J. [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR (US); Ross, H. [Earth Sciences and Resources Institute, University of Utah

    1996-02-01

    The U.S. Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation's low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20 degrees Celsius to 150 degrees Celsius has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50 degrees Celsius located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy costevaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  16. Ionometric determination of fluorides at low temperatures

    International Nuclear Information System (INIS)

    Kostyukova, I.S.; Ennan, A.A.; Dzerzhko, E.K.; Leivikova, A.A.

    1995-01-01

    A method for determining fluoride ions in solution at low temperatures using a solid-contact fluorine-selective electrode (FSE) has been developed. The effect of temperature (60 to -15 degrees C) on the calibration slope, potential equilibrium time, and operational stability is studied; the effect of an organic additive (cryoprotector) on the calibration slope is also studied. The temperature relationships obtained for the solid-contact FSEs allow appropriate corrections to be applied to the operational algorithm of the open-quotes Ftoringclose quotes hand-held semiautomatic HF gas analyzer for the operational temperature range of -16 to 60 degrees C

  17. Science with low temperature detectors

    International Nuclear Information System (INIS)

    Sadoulet, B.; Lawrence Berkeley National Lab., CA; California Univ., Berkeley

    1996-01-01

    The novel technique of particle detection with low temperature detectors opens a number of new scientific opportunities. We review some of these, focusing on three generic applications: far infrared bolometry taking as an example the cosmic microwave background, X-ray spectroscopy for astrophysics and biological applications, and massive calorimeters for dark matter searches and neutrino physics. (orig.)

  18. Exergy and Energy Analysis of Low Temperature District Heating Network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    is in line with a pilot project that is carrying out in Denmark with network supply/return temperature at 55oC/25 oC. The consumer domestic hot water (DHW) demand is supplied with a special designed district heating (DH) storage tank. The space heating (SH) demand is supplied with a low temperature radiator......Low temperature district heating (LTDH) with reduced network supply and return temperature provides better match of the low quality building thermal demand and the low quality waste heat supply. In this paper, an exemplary LTDH network was designed for 30 low energy demand residential houses, which....... The network thermal and hydraulic conditions were simulated under steady state with an in-house district heating network design and simulation code. Through simulation, the overall system energetic and exergetic efficiencies were calculated and the exergy losses for the major district heating system...

  19. Low-Temperature Baseboard Heaters in Built Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ploskic, Adnan

    2010-10-15

    The European Union has adopted a plan to decrease 20 % of total energy consumption through improved energy efficiency by 2020. One way of achieving this challenging goal may be to use efficient water-based heating systems supplied by heat pumps or other sustainable systems. The goal of this research was to analyze and improve the thermal performance of water-based baseboard heaters at low-temperature water supply. Both numerical (CFD) and analytical simulations were used to investigate the heat efficiency of the system. An additional objective of this work was to ensure that the indoor thermal comfort was satisfied in spaces served by such a low-temperature heating system. Analyses showed that it was fully possible to cover both transmission and ventilation heat losses using baseboard heaters supplied by 45 deg C water flow. The conventional baseboards, however, showed problems in suppressing the cold air down-flow created by 2.0 m high glazing and an outdoor temperature of -12 deg C. The draught discomfort at ankle level was slightly above the upper limit recommended by international and national standards. On the other hand, thermal baseboards with integrated ventilation air supply showed better ability to neutralize cold downdraught at the same height and conditions. Calculations also showed that the heat output from the integrated system with one ventilation inlet was approximately twice as high as that of the conventional one. The general conclusion from this work was that low temperature baseboards, especially with integrated ventilation air supply, are an efficient heating system and able to be combined with devices that utilize the low-quality sustainable energy sources such as heat pumps

  20. Low-temperature catalytic conversion of carbonaceous materials

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available Laws of the rate of carbon conversion in steam atmosphere at a temperature in modes of the catalytic low-temperature treatment of peat, brown coal, semi-coke from peat and brown coal are obtained by experiments. Increasing of the rate of carbon conversion in temperature range up to 500 °C is achieved by using of catalysts. The possibility of using results is associated with the burners, a working zone of which is porous filling from carbonaceous particles.

  1. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  2. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement

    Science.gov (United States)

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  3. Efficient prepreg recycling at low temperatures

    Science.gov (United States)

    Pannkoke, Kord; Oethe, Marcus; Busse, Jürgen

    When manufacturing fibre reinforced plastics engineers are still confronted with a lack of experience concerning efficient recycling methods for prepreg cutting waste. Normally, the prepregs are cured and subsequently milled to use them as a filler material for polymers. However, this method is expensive and it is difficult to find applications for the milled FRP. An alternative method to recycle CFRP prepregs will be presented in this paper. Cutting the uncured prepreg waste was done by means of a saw mill which was cooled down to low temperatures. Working temperatures of -30°C are sufficient to harden the uncured resin and to achieve cuttable prepregs. Furthermore, post-curing during the cutting process is avoided with this technique. The result is a `cotton'-like matted structure with random fibre orientation and fibre length distribution. Subsequent curing was done by means of a press and an autoclave, respectively. It will be shown by means of tension and bending tests that low-temperature cutting of uncured prepregs is a way to partly conserve the high valuation of FRP during recycling. Furthermore, it offers possibilities for various applications.

  4. Tar bases in low-temperature coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, S; Ueno, H; Yokoyama, H

    1951-01-01

    Tar bases were extracted from three fractions, that boil below 260/sup 0/ at 260/sup 0/ to 280/sup 0/, and 280/sup 0/ to 330/sup 0/, respectively, of the low-temperature tar obtained by the carbonization of Ube coal in a Koppers' vertical retort at approximately 750/sup 0/. These were divided, respectively, into three groups, acetate-forming amine, HCl salt-forming bases (I), and CHCl/sub 3/-soluble bases (II), and further fractionally distilled. From the physical and chemical properties of the fractions thus obtained, it was concluded that low-temperature coal tar contained no low boiling pyridine homologues and that, besides higher homologues of pyridine, nonaromatic, more saturated, and less basic compounds of larger atomic weight and smaller refractive index, such as derivatives of pyrrole and indole, also existed as in crude petroleum.

  5. Low Temperature Cure Powder Coatings (LTCPC)

    Science.gov (United States)

    2010-10-01

    Dr. Glen Merfeld, General Electric Global Research evaluated and optimized the formulation, and cure and performance parameters of candidate LTCPC...Unacceptable test result = Marginal test result = Acceptable test result 80 therefore suffer from brittleness at extremely low temperatures. NASA’s

  6. Inverse shear viscosity (fluidity) scaled with melting point properties: Almost 'universal' behaviour of heavier alkalis

    International Nuclear Information System (INIS)

    Tankeshwar, K.; March, N.H.

    1997-07-01

    Some numerical considerations relating to the potential of mean force at the melting point of Rb metal are first presented, which argue against the existence of a well defined activation energy for the shear viscosity of this liquid. Therefore, a scaling approach is developed, based on a well established formula for the viscosity η m of sp liquid metals at their melting points T m . This approach is shown to lead to an 'almost' universal plot of scaled fluidity η -1 η m against (T/T m ) 1/2 for the liquid alkali metals, excluding Li. This metal is anomalous because it is a strong scattering liquid, in marked contrast to the other alkali metals. (author). 9 refs, 3 figs, 1 tab

  7. Boron, arsenic and phosphorus dopant incorporation during low temperature low pressure silicon epitaxial growth

    International Nuclear Information System (INIS)

    Borland, J.O.; Thompson, T.; Tagle, V.; Benzing, W.

    1987-01-01

    Submicron silicon epitaxial structures with very abrupt epi/substrate transition widths have been realized through the use of low temperature silicon epitaxial growth techniques. At these low temperature and low pressure epitaxial growth conditions there is minimal, if any, dopant diffusion from the substrate into the epilayer during deposition. The reincorporation of autodoped dopant as well as the incorporation of intentional dopant can be a trade-off at low temperatures and low pressures. For advanced CMOS and Bi-CMOS technologies, five to six orders of magnitude change in concentration levels are desirable. In this investigation, all of the epitaxial depositions were carried out in an AMC-7810 epi-reactor with standard jets for a turbulent mixing system, and using a modified center inject configuration to achieve a single pass laminar flow system. To simulate the reincorporation of various autodoped dopant, the authors ran a controlled dopant flow of 100 sccm for each of the three dopants (boron, phosphorus and arsenic) to achieve the controlled background dopant level in the reactor gas stream

  8. Low-temperature tar from bituminous coal and its further treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, C J

    1950-01-01

    High-temperature carbonization of bituminous coal yields only 3 to 4 percent tar, as compared with 8 to 10 percent or even more for low-temperature carbonization. The yield of phenols is 20 to 30 times as great from the low-temperature tar. Five conditions that must be met by a satisfactory low-temperature carbonization process are listed. The only method that satisfies all of these conditions is the Brennstoff-Technik (BT) process, in which iron retorts with movable walls are used. One disadvantage of most of the other processes is the high-pitch content of the tar. These tars are processed further to a neutral oil and a phenol-containing oil which are good diesel fuels with high-cetane numbers; the neutral oil can be fractionated to give oils of high-, medium-, and low-cetane number. Attempts to fractionate the tar oil by solvents have not proved commercially useful. However, the tar can be diluted with low-temperature light oil and phenols extracted with NaOH solution without distillation. Some difficulty is found, owing to the simultaneous extraction of viscous resins and other products that are readily removed from the phenols by distillation.

  9. Low frequency temperature forcing of chemical oscillations.

    Science.gov (United States)

    Novak, Jan; Thompson, Barnaby W; Wilson, Mark C T; Taylor, Annette F; Britton, Melanie M

    2011-07-14

    The low frequency forcing of chemical oscillations by temperature is investigated experimentally in the Belousov-Zhabotinsky (BZ) reaction and in simulations of the Oregonator model with Arrhenius temperature dependence of the rate constants. Forcing with temperature leads to modulation of the chemical frequency. The number of response cycles per forcing cycle is given by the ratio of the natural frequency to the forcing frequency and phase locking is only observed in simulations when this ratio is a whole number and the forcing amplitude is small. The global temperature forcing of flow-distributed oscillations in a tubular reactor is also investigated and synchronisation is observed in the variation of band position with the external signal, reflecting the periodic modulation of chemical oscillations by temperature.

  10. Muon nuclear fusion and low temperature nuclear fusion

    International Nuclear Information System (INIS)

    Nagamine, Kanetada

    1990-01-01

    Low temperature (or normal temperature) nuclear fusion is one of the phenomena causing nuclear fusion without requiring high temperature. In thermal nuclear fusion, the Coulomb barrier is overcome with the help of thermal energy, but in the low temperature nuclear fusion, the Coulomb barrier is neutralized by the introduction of the particles having larger mass than electrons and negative charges, at this time, if two nuclei can approach to the distance of 10 -13 cm in the neutral state, the occurrence of nuclear fusion reaction is expected. As the mass of the particles is heavier, the neutral region is smaller, and nuclear fusion is easy to occur. The particles to meet this purpose are the electrons within substances and muons. The research on muon nuclear fusion became suddenly active in the latter half of 1970s, the cause of which was the discovery of the fact that the formation of muons occurs resonantly rapidly in D-T and D-D systems. Muons are the unstable elementary particles having the life of 2.2 μs, and they can have positive and negative charges. In the muon catalyzed fusion, the muons with negative charge take part. The principle of the muon catalyzed fusion, its present status and future perspective, and the present status of low temperature nuclear fusion are reported. (K.I.)

  11. Low-temperature strain gauges based on silicon whiskers

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2008-08-01

    Full Text Available To create low-temperature strain gauges based on p-type silicon whiskers tensoresistive characteristics of these crystals in 4,2—300 K temperature range were studied. On the basis of p-type Si whiskers with different resistivity the strain gauges for different materials operating at cryogenic temperatures with extremely high gauge factor at 4,2 K were developed, as well as strain gauges operating at liquid helium temperatures in high magnetic fields.

  12. [Description and evaluation of creative thinking in preterm low birth weight infants].

    Science.gov (United States)

    Parisi, L; Di Filippo, T; Firrigno, L; La Grutta, S; Testa, D; Roccella, M

    2007-04-01

    Since the 1950s, the problem of how to evaluate creativity has been addressed in studies on the definition of measurement criteria and on the relationship between intelligence and creative thinking. Many revealed cognitive and relational disorders in preterm infants, particularly in preterm very low birth weight infants (birth weight 2500 g. The test battery included: Torrance Test of Creative Thinking (TCTT); WISC-R intelligence test; Goodenough Human Figure Drawing Test. Statistical analysis (Mann-Whitney U test) showed a statistically significant difference (P>0.05) between the 2 groups; scores for figure originality, figure fluidity and figure elaboration were consistently higher in the control group. Within the low birth weight group, there was a significant correlation (Spearman r) between verbal IQ and verbal fluidity and verbal flexibility subscale scores and between IQ performance and figure elaboration. Scores on the figure drawing tests showed higher creative ability in the control group. In children born preterm with low birth weight, emotive dynamics and flow of affection may influence the channels of communication between child and family. The low figure originality subscale scores support the hypothesis that psychodynamic and relational factors (worry about the preterm condition, overprotective behaviour by parents and others) could lead to diminished autonomy, flexibility and manipulatory interest in the child.

  13. The HD+ dissociative recombination rate coefficient at low temperature

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2015-01-01

    Full Text Available The effect of the rotational temperature of the ions is considered for low-energy dissociative recombination (DR of HD+. Merged beams measurements with HD+ ions of a rotational temperature near 300 K are compared to multichannel quantum defect theory calculations. The thermal DR rate coefficient for a Maxwellian electron velocity distribution is derived from the merged-beams data and compared to theoretical results for a range of rotational temperatures. Good agreement is found for the theory with 300 K rotational temperature. For a low-temperature plasma environment where also the rotational temperature assumes 10 K, theory predicts a considerably higher thermal DR rate coefficient. The origin of this is traced to predicted resonant structures of the collision-energy dependent DR cross section at few-meV collision energies for the particular case of HD+ ions in the rotational ground state.

  14. NMR study of CeTe at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hinderer, J. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland)]. E-mail: hinderer@phys.ethz.ch; Weyeneth, S.M. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Weller, M. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Gavilano, J.L. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Felder, E. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Hulliger, F. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Ott, H.R. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland)

    2006-05-01

    We present {sup 125}Te NMR measurements on CeTe powder at temperatures between 1 and 150K and in magnetic fields between 5 and 8T. CeTe is a rocksalt-type intermetallic compound. It orders antiferromagnetically at T{sub N}{approx}2.2K with a much reduced ordered moment [H.R. Ott, J.K. Kjems, F. Hulliger, Phys. Rev. Lett. 42 20 (1979) 1378]. From our low-temperature NMR spectra we infer the presence of at least three inequivalent Te sites at low temperatures. Considering the crystal structure this result is completely unexpected. The linewidths and the Knight shifts of the individual lines are significantly different and increase substantially with decreasing temperature. They follow the temperature dependence of the magnetic susceptibility above 20K. Above T{sub N}, hyperfine fields of 1.6, 0.8 and 0.0T at the three Te sites per Bohr magneton of Ce moment are deduced from Knight shift vs. magnetic susceptibility data. These values are typical for transferred hyperfine fields via conduction electrons.

  15. On the Interpretation of Low Temperature Calorimetry Data

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette; Geiker, Mette Rica

    2008-01-01

    The effect of selected factors and phenomena on Low Temperature Calorimetry (LTC) results has been investigated, in order to determine the possibilities and limitations of using LTC for characterisation of the porosity of cement-based materials. LTC was carried out on a model material with mono......-sized pores of approximately 14 nm saturated with either distilled water or a sodium chloride solution, as well as on water, the salt solution, and an artificial pore solution, alone. It was found that supercooling is unavoidable during the liquid-solid phase transition, and that even at low temperature...... to limit transport of liquid, whereas heating should be undertaken at a low rate to limit the effect of non-equilibrium....

  16. [Impact of low temperature in young ear formation stage on rice seed setting.

    Science.gov (United States)

    Ma, Shu Qing; Liu, Xiao Hang; Deng, Kui Cai; Quan, Hu Jie; Tong, Li Yuan; Xi, Zhu Xiang; Chai, Qing Rong; Yang, Jun

    2018-01-01

    A low temperature treatment in rice booting key period was executed on the north slope of Changbai Mountains to construct the impact model of low temperature on rice shell rate, and to reveal the effects of low temperature at different stages of rice young panicle on seed setting. The results showed that effects of low temperature in the young ear formation stage on rice shell rate generally followed the logarithmic function, the lower the temperature was, the greater the temperature influence coefficient was, and the longer the low temperature duration was, the higher rice shell rate was. The seed setting rate was most sensitive to low temperature in the middle time of booting stage (the period from formation to meiosis of the pollen mother cell), followed by the early and later stages. During the booting stage, with 1 ℃ decrease of daily temperature under 2-, 3- and 5-day low temperature treatments, the shell rate increased by 0.5, 1.7 and 4.3 percentage, respectively, and with 1 ℃ decrease of daily minimum temperature, the shell rate increased by 0.4,1.8 and 4.5 percentage, respectively. The impact of 2-day low temperature was smaller than that of 3 days or more. The impact of accumulative cold-temperature on the shell rate followed exponential function. In the range of harmful low temperature, rice shell rate increased about 8.5 percentage with the accumulative cold-temperature increasing 10 ℃·d. When the 3 days average temperature dropped to 21.6, 18.0 and 15.0 ℃, or the 5 days average temperature dropped to 22.0, 20.4 and 18.5 ℃, or the accumulative cold-temperature was more than 8, 19, 26 ℃·d, the light, moderate and severe booting stage chilling injury would occur, respectively. In Northeast China, low temperature within 2 d in rice booting stage might not cause moderate and severe chilling injury.

  17. Sucrose Phosphate Synthase and Sucrose Accumulation at Low Temperature 1

    Science.gov (United States)

    Guy, Charles L.; Huber, Joan L. A.; Huber, Steven C.

    1992-01-01

    The influence of growth temperature on the free sugar and sucrose phosphate synthase content and activity of spinach (Spinacia oleracea) leaf tissue was studied. When plants were grown at 25°C for 3 weeks and then transferred to a constant 5°C, sucrose, glucose, and fructose accumulated to high levels during a 14-d period. Predawn sugar levels increased from 14- to 20-fold over the levels present at the outset of the low-temperature treatment. Sucrose was the most abundant free sugar before, during, and after exposure to 5°C. Leaf sucrose phosphate synthase activity was significantly increased by the low-temperature treatment, whereas sucrose synthase and invertases were not. Synthesis of the sucrose phosphate synthase subunit was increased during and after low-temperature exposure and paralleled an increase in the steady-state level of the subunit. The increases in sucrose and its primary biosynthetic enzyme, sucrose phosphate synthase, are discussed in relation to adjustment of metabolism to low nonfreezing temperature and freezing stress tolerance. Images Figure 1 Figure 2 Figure 3 PMID:16652990

  18. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  19. Radioluminescence and thermoluminescence of albite at low temperature

    International Nuclear Information System (INIS)

    Can, N.; Garcia-Guinea, J.; Kibar, R.; Cetin, A.; Ayvacikli, M.; Townsend, P.D.

    2011-01-01

    Feldspar as an archaeological and geological natural material for dating and retrospective dosimetry is receiving more and more attention because of its useful luminescence properties. In this study, the 25-280 K thermoluminescence (TL) and radioluminescence (RL) spectra in albite, which is a component of the two main feldspar series, the alkali feldspar (Na, K)AlSi 3 O 8 and the plagioclases (NaAlSi 3 O 8 -CaAl 2 Si 2 O 8 ) have been presented for aliquots along (001) and (010) crystallographic orientations. There are four main emission bands that are considered to arise from complexes of intrinsic defects linked in larger complexes with impurities such as Na + , Mn 2+ or Fe 3+ ions. The consequence of their association is to produce different luminescence efficiencies that produce wavelength sensitive TL curves. Radioluminescence data at low temperature for albites is distorted by contributions from the TL sites, even when the RL is run in a cooling cycle. This indicates the potential for a far more general problem for analysis of low temperature RL in insulating materials. - Highlights: → TL and RL spectra in albite were presented for different orientations. → There are 4 emission bands that are considered to arise from complexes of intrinsic. → RL data at low temperature for albite is distorted by contributions from TL sites. → This indicates the potential problem for analysis of low temperature RL.

  20. Indoor Temperatures in Low Cost Housing in Johannesburg, South Africa.

    Science.gov (United States)

    Naicker, Nisha; Teare, June; Balakrishna, Yusentha; Wright, Caradee Yael; Mathee, Angela

    2017-11-18

    Ambient and indoor temperature affects thermal comfort and human health. In a changing climate with a predicted change in temperature extremes, understanding indoor temperatures, both hot and cold, of different housing types is important. This study aimed to assess the hourly, daily and monthly variation in indoor temperatures in different housing types, namely formal houses, informal houses, flats, government-built low-cost houses and old, apartheid era low-cost housing, in five impoverished urban communities in Johannesburg, South Africa. During the cross-sectional survey of the Health, Environment and Development study data loggers were installed in 100 homes (20 per suburb) from February to May 2014. Indoor temperature and relative humidity were recorded on an hourly basis. Ambient outdoor temperatures were obtained from the nearest weather station. Indoor and outdoor temperature and relative humidity levels were compared; and an inter-comparison between the different housing types were also made. Apparent temperature was calculated to assess indoor thermal comfort. Data from 59 retrieved loggers showed a significant difference in monthly mean indoor temperature between the five different housing types ( p informal settlement houses had the greatest variation in temperature and experienced temperatures between 4 and 5 °C warmer than outdoor temperatures. Housing types occupied by poor communities experienced indoor temperature fluctuations often greater than that observed for ambient temperatures. Families living in government-built low-cost and informally-constructed homes are the most at risk for indoor temperature extremes. These types of housing should be prioritised for interventions aimed at assisting families to cope with extreme temperatures, gaining optimal thermal comfort and preventing temperature-related health effects.

  1. Evaluation of ionizing radiation effects on recycled polyamide-6 by infrared spectroscopy and measures of fluidity index

    International Nuclear Information System (INIS)

    Evora, Maria Cecilia; Goncalez, Odair Lelis

    2000-01-01

    In this work are presented partial results from a set of experiments and analyses performed at CTA and IPEN laboratories for the characterization of the polyamide-6, recycled and irradiated with a 1.5 MeV electron beam with a 500 kGy dose. The experimental determinations were carried out using infrared spectroscopy with Fourier transform (FTIR), in the medium infrared region (MIR) and in the far infrared region (FAR), to evaluate if exist significant changes in the infrared absorption region of the amide groups due to the polyamide irradiation. Characteristics relative to the measured fluidity index were used to evaluate the irradiated material crosslinking. (author)

  2. Postmortem magnetic resonance imaging dealing with low temperature objects

    International Nuclear Information System (INIS)

    Kobayashi, Tomoya; Shiotani, Seiji; Isobe, Tomonori

    2010-01-01

    In Japan, the medical examiner system is not widespread, the rate of autopsy is low, and many medical institutions therefore perform postmortem imaging using clinical equipment. Postmortem imaging is performed to clarify cause of death, select candidates for autopsy, make a guide map for autopsy, or provide additional information for autopsy. Findings are classified into 3 categories: cause of death and associated changes, changes induced by cardiopulmonary resuscitation, and postmortem changes. Postmortem magnetic resonance imaging shows characteristic changes in signal intensity related to low body temperature after death; they are low temperature images. (author)

  3. Low-temperature heating systems and public administration

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, H

    1981-06-01

    The even temperature distribution and comfortable climate in rooms heated by low-temperature heating systems is mostly due to one of the preconditions of this type of heating system namely, efficient thermal insulation of the rooms. Thermal insulation is already required as part of the pertinent legal regulations but it is also in the interest of the builder-owner as it will, in the long run, greatly reduce the heating cost.

  4. California low-temperature geothermal resources update: 1993

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, L.G.

    1994-12-31

    The US Department of Energy -- Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Geothermal Resources and Technology Transfer Program to bring the inventory of the nation`s low- and moderate-temperature geothermal resources up to date and to encourage development of the resources. The Oregon Institute of Technology, Geo-Heat Center (OIT/GHC) and the University of Utah Research Institute (UURI) established subcontracts and coordinated the project with the state resource teams from the western states that participated in the program. The California Department of Conservation, Division of Mines and Geology (DMG) entered into contract numbered 1092--023(R) with the OIT/GHC to provide the California data for the program. This report is submitted in fulfillment of that contract.

  5. Low-temperature phase diagram of YbBiPt

    International Nuclear Information System (INIS)

    Movshovich, R.; Lacerda, A.; Canfield, P.C.; Thompson, J.D.; Fisk, Z.

    1994-01-01

    Resistivity measurements are reported on the cubic heavy-fermion compound YbBiPt at ambient and hydrostatic pressures to ∼19 kbar and in magnetic fields to 1 T. The phase transition at T c =0.4 K is identified by a sharp rise in resistivity. That feature is used to build low-temperature H-T and P-T phase diagrams. The phase boundary in the H-T plane follows the weak-coupling BCS expression remarkably well from T c to T c /4, while small hydrostatic pressure of ∼1 kbar suppresses the low-temperature phase entirely. These effects of hydrostatic pressure and magnetic field on the phase transition are consistent with an spin-density-wave (SDW) formation in a very heavy electron band at T=0.4 K. Outside of the SDW phase at low temperature, hydrostatic pressure increases the T 2 coefficient of resistivity, signaling an increase in heavy-fermion correlations with hydrostatic pressure. The residual resistivity decreases with pressure, contrary to trends in other Yb heavy-fermion compounds

  6. Neutron moderation at very low temperatures (1691)

    International Nuclear Information System (INIS)

    Lacaze, A.

    1961-04-01

    Starting from Harwell experiment carried out inside a low-power reactor, we intended to maintain a liquid hydrogen cell in a channel of the EL3 reactor (at Saclay) whose thermal neutrons flux is 10 14 neutrons/cm 2 /s. We tried to work out a device giving off an important beam of cold neutrons and able to operate in a way as automatic as possible during many consecutive day without a stop. Several circuits have already been achieved at very low temperatures but they brought out volumes and fluxes much lower than those we used this time. The difficulties we have met in carrying out such a device arose on the one hand from the very high energy release to which any kind of experiment is inevitably submitted when placed near the core of the reactor, on the other, hand from the very little room which is available in experimental channels of reactors. In such condition, it is necessary to use a moderator as effective as possible. This study is divided into three parts ; in the first part, we try to determine: a) conditions in which moderation takes place, hence the volume of the cell; b) materials likely to be used at low temperature and in pile; c) cooling system; hence we had to study fluid flow conditions at very low temperatures in very long ducts. The second part is devoted to the description of the device. The third part ventilates the results we have obtained. (author) [fr

  7. Phenomenon of quantum low temperature limit of chemical reaction rates

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.

    1975-01-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerisation, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerisation reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau 0 ) required to add one new link to the polymer chain of formaldehyde during its polymerisation by radiation and during postpolymerisation and to establish that below 80K the increase of tau 0 slows down and that at T approximately equal to 10-4K the time tau 0 reaches a plateau (tau 0 approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life)

  8. Phenomenon of quantum low temperature limit of chemical reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Gol' danskii, V I [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1975-12-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius Law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerization, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerization reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau/sub 0/) required to add one new link to the polymer chain of formaldehyde during its polymerization by radiation and during postpolymerization and to establish that below 80K the increase of tau/sub 0/ slows down and that at T approximately equal to 10-4K the time tau/sub 0/ reaches a plateau (tau/sub 0/ approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life).

  9. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  10. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  11. Low-temperature behaviour of the engine oil

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2013-01-01

    Full Text Available The behaviour of engine oil is very important. In this paper has been evaluated temperature dependence kinematic viscosity of engine oils in the low temperatures. Five different commercially distributed engine oils (primarily intended for automobile engines with viscosity class 0W–40, 5W–40, 10W–40, 15W–40, and 20W–40 have been evaluated. The temperature dependence kinematic viscosity has been observed in the range of temperature from −15 °C to 15 °C (for all oils. Considerable temperature dependence kinematic viscosity was found and demonstrated in case of all samples, which is in accordance with theoretical assumptions and literature data. Mathematical models have been developed and tested. Temperature dependence dynamic viscosity has been modeled using a polynomials 3rd and 4th degree. The proposed models can be used for prediction of flow behaviour of oils. With monitoring and evaluating we can prevent technical and economic losses.

  12. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    Science.gov (United States)

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  13. Temperature dependence of positronium reactivities with charge transfer molecules in bilayer membranes

    International Nuclear Information System (INIS)

    Jean, Y.C.; Yu, C.; Wang, Y.Y.; Yeh, Y.Y.

    1984-01-01

    Rate constants for positronium atoms reacting chemically with charge-transfer molecules such as p-benzoquinone, nitrobenzene, and coenzyme Q-10 in a model bilayer membrane, dipalmitoylphosphatidylcholine (DPPC), have been measured at temperatures between 23 and 65 0 C. A strong variation of the positronium chemical reactivities, k/sub Ps/ was observed in these systems: k/sub Ps/ increases with increasing temperature until the pretransition temperature of the membrane reaches a maximum value near the main transition temperature and decreases at temperatures higher than the main transition temperature. This variation is interpreted in terms of fluidity and permeability changes associated with the phase transitions of membranes and in terms of charge-transfer-complex formation between the solubilized molecules and the polar head of the membrane. These results demonstrate that positronium and its annihilation characteristics can be employed to investigate charge transport phenomena and microstructural changes of real biological membranes

  14. Computational Chemistry of Cyclopentane Low Temperature Oxidation

    KAUST Repository

    El Rachidi, Mariam; Zá dor, Judit; Sarathy, Mani

    2015-01-01

    reactions occurring during low-temperature cyclopentane combustion using theoretical chemical kinetics. The reaction pathways of the cyclopentyl + O2 adduct is traced to alkylhydroperoxide, cyclic ether, β-scission and HO2 elimination products. The calculations are carried out at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The barrierless entrance channel is treated using variable-reaction-coordinate transition state theory (VRC-TST) at the CASPT2(7e,6o) level of theory, including basis set, geometry relaxation and ZPE corrections. 1-D time-dependent multiwell master equation analysis is used to determine pressure-and temperature-dependent rate parameters of all investigated reactions. Tunneling corrections are included using Eckart barriers. Comparison with cyclohexane is used to elucidate the effect of ring size on the low temperature reactivity of naphthenes. The rate coefficients reported herein are suitable for use in cyclopentane and methylcyclopentane combustion models, even below ~900 K, where ignition is particularly sensitive to these pressure-dependent values.

  15. Flow processes at low temperatures in ultrafine-grained aluminum

    International Nuclear Information System (INIS)

    Chinh, Nguyen Q.; Szommer, Peter; Csanadi, Tamas; Langdon, Terence G.

    2006-01-01

    Experiments were conducted to evaluate the flow behavior of pure aluminum at low temperatures. Samples were processed by equal-channel angular pressing (ECAP) to give a grain size of ∼1.2 μm and compression samples were cut from the as-pressed billets and tested over a range of strain rates at temperatures up to 473 K. The results show the occurrence of steady-state flow in these highly deformed samples and a detailed analysis gives a low strain rate sensitivity and an activation energy similar to the value for grain boundary diffusion. By using depth-sensing indentation testing and atomic force microscopy, it is shown that grain boundary sliding occurs in this material at low temperatures. This result is attributed to the presence of high-energy non-equilibrium boundaries in the severely deformed samples

  16. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  17. Heat Transfer and Cooling Techniques at Low Temperature

    CERN Document Server

    Baudouy, B

    2014-07-17

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  18. Heat Transfer and Cooling Techniques at Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B [Saclay (France)

    2014-07-01

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  19. Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Estéfani García-Rios

    2016-08-01

    Full Text Available Many factors, such as must composition, juice clarification, fermentation temperature or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10-15 ºC is becoming more prevalent in order to produce white and rosé wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1 and URM1, whose deletion strongly impaired low-temperature growth.

  20. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  1. Importance of low-temperature distillation of coal for German fuel economics

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, F

    1942-01-01

    Improved processes are available to give low-temperature distillation products economic importance. Low-temperature distillation is limited to the utilization of high-volatile nut coals and briquets. The coke formed can be used as a smokeless fuel, and the tar directly as a fuel oil. Phenols can be extracted, in order to work up the residue into fuel oil and motor fuel. Large deposits of coal in Upper Silesia and in the Saar District are suitable for low-temperature distillation.

  2. Effects of low temperature and drought on the physiological and ...

    African Journals Online (AJOL)

    To find out how oil palm adapts to the environmental conditions, the dynamics of a series of important physiological components derived from the leaves of potted oil palm seedlings under drought stress (DS) (water with holding) and low temperature stress (LTS) (10°C) were studied. The results showed that low temperature ...

  3. Low-temperature thermal properties of yttrium and lutetium dodecaborides

    International Nuclear Information System (INIS)

    Czopnik, A; Shitsevalova, N; Pluzhnikov, V; Krivchikov, A; Paderno, Yu; Onuki, Y

    2005-01-01

    The heat capacity (C p ) and dilatation (α) of YB 12 and LuB 12 are studied. C p of the zone-melted YB 12 tricrystal is measured in the range 2.5-70 K, of the zone-melted LuB 12 single crystal in the range 0.6-70 K, and of the LuB 12 powder sample in the range 4.3-300 K; α of the zone-melted YB 12 tricrystal and LuB 12 single crystals is measured in the range 5-200 K. At low temperatures a negative thermal expansion (NTE) is revealed for both compounds: for YB 12 at 50-70 K, for LuB 12 at 10-20 K and 60-130 K. Their high-temperature NTE is a consequence of nearly non-interacting freely oscillating metal ions (Einstein oscillators) in cavities of a simple cubic rigid Debye lattice formed by B 12 cage units. The Einstein temperatures are ∼254 and ∼164 K, and the Debye temperatures are ∼1040 K and ∼1190 K for YB 12 and LuB 12 respectively. The LuB 12 low-temperature NTE is connected with an induced low-energy defect mode. The YB 12 superconducting transition has not been detected up to 2.5 K

  4. Amorphous gallium oxide grown by low-temperature PECVD

    KAUST Repository

    Kobayashi, Eiji

    2018-03-02

    Owing to the wide application of metal oxides in energy conversion devices, the fabrication of these oxides using conventional, damage-free, and upscalable techniques is of critical importance in the optoelectronics community. Here, the authors demonstrate the growth of hydrogenated amorphous gallium oxide (a-GaO:H) thin-films by plasma-enhanced chemical vapor deposition (PECVD) at temperatures below 200 °C. In this way, conformal films are deposited at high deposition rates, achieving high broadband transparency, wide band gap (3.5-4 eV), and low refractive index (1.6 at 500 nm). The authors link this low refractive index to the presence of nanoscale voids enclosing H, as indicated by electron energy-loss spectroscopy. This work opens the path for further metal-oxide developments by low-temperature, scalable and damage-free PECVD processes.

  5. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...... for both the demand side (community building structure) and the supply side (network properties or energy sources). Especially in connection with buildings that demand only low temperatures for space heating. The utilisation of lower temperatures reduces losses in pipelines and can increase the overall...

  6. Production and investigation of low-temperature coal tar. [Book in German

    Energy Technology Data Exchange (ETDEWEB)

    1953-01-01

    Research into low-temperature carbonization has recently been stimulated because this process can be applied to coals that are not suitable for treatment by the usual high-temperature method. However, in spite of the value of the coke produced by low-temperature carbonization as a smokeless fuel, this process has not proved economical in Germany. Research has therefore been directed towards a more profitable utilization of the tar, and this government publication reports experiments on its detailed analysis by distillation and other methods. The book also includes descriptions of the various types of plant used for low-temperature carbonization and presents a brief history of the process.

  7. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  8. Low-temperature behavior of ZrO2 oxygen sensors

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Bannister, M.J.

    1983-01-01

    The relative importance of the solid electrolyte and the electrodes in determining the low-temperature behavior of stabilized zirconia oxygen sensors is considered. Contrary to general belief, the electrodes play the more important role at low temperatures. The performance may be greatly improved by using, instead of porous platinum, oxide electrodes comprising solid solutions based on UO 2 . Laboratory tests and plant trials show that ideal behavior in oxygen-excess gases can be achieved below 400 0 C

  9. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Radaelli, Guido [Siluria Technologies, Inc., San Francisco, CA (United States); Chachra, Gaurav [Siluria Technologies, Inc., San Francisco, CA (United States); Jonnavittula, Divya [Siluria Technologies, Inc., San Francisco, CA (United States)

    2017-12-30

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The output of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.

  10. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Danyun; Mo, Yunjie [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Xiaofang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China); He, Yingyou [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Jiang, Shaoji, E-mail: stsjsj@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China)

    2017-06-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  11. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    International Nuclear Information System (INIS)

    Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji

    2017-01-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  12. Compensation systems for low temperature applications

    CERN Document Server

    Skoczen, Balzej T

    2004-01-01

    The book is dedicated to the behaviour of ductile materials at cryogenic temperatures, structural stability issues and reliability oriented parametric optimisation of compensation systems containing the corrugated bellows. The problems of local and global stability of systems containing bellows, coupling between the low-cycle fatigue and stability as well as evolution of plastic strain fields, micro-damage and strain induced phase transformation in the corrugated shells at cryogenic temperatures are presented. As a special feature reliability oriented optimum design of compensation systems under strength, stability, fatigue and geometrical constraints is discussed. The relevant applications in the particle accelerators and cryogenic transfer lines are shown.

  13. Future directions in geobiology and low-temperature geochemistry

    Science.gov (United States)

    Freeman, Katherine H.; Goldhaber, M.B.

    2011-01-01

    Humanity is confronted with an enormous challenge, as succinctly stated by the late Steven Schneider (2001; quoted by Jantzen 2004*): “Humans are forcing the Earth’s environmental systems to change at a rate that is more advanced than their knowledge of the consequences.” Geobiologists and low-temperature geochemists characterize material from the lithosphere, hydrosphere, atmosphere, and biosphere to understand processes operating within and between these components of the Earth system from the atomic to the planetary scale. For this reason, the interwoven disciplines of geobiology and low-temperature geochemistry are central to understanding and ultimately predicting the behavior of these life-sustaining systems. We present here comments and recommendations from the participants of a workshop entitled “Future Directions in Geobiology and Low-Temperature Geochemistry,” hosted by the Carnegie Institution of Washington, Geophysical Laboratory, Washington, DC, on 27–28 August 2010. The goal of the workshop was to suggest ways to leverage the vast intellectual and analytical capabilities of our diverse scientific community to characterize the Earth’s past, present, and future geochemical habitat as we enter the second decade of what E. O. Wilson dubbed “the century of the environment.”

  14. 12th International Workshop on Low Temperature Electronics

    International Nuclear Information System (INIS)

    2017-01-01

    The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 12th International Workshop on Low Temperature Electronics held in Tempe, Arizona, USA from September 18-21, 2016. The conference was organized by the School of Earth and Space Exploration at Arizona State University.The International Workshop on Low Temperature Electronics (WOLTE) is a biennial conference devoted to the presentation and exchange of the most recent advances in the field of low temperature electronics and its applications. This international forum is open to everyone in the field.The technical program included oral presentations and posters on fundamental properties of cryogenic materials, cryogenic transistors, quantum devices and systems, astronomy and physics instrumentation, and fabrication of cryogenic devices. More than 50 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, and the Americas attended the conference.We would like to thank all speakers for their presentations and all attendees for their participation. We would also like to express our sincerest gratitude to our sponsors: Lake Shore Cryotronics, ASU NewSpace, ASU School of Earth and Space Exploration, and IRA A. Fulton Schools of Engineering for making this conference possible. (paper)

  15. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    International Nuclear Information System (INIS)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Eichwald, Olivier; Merbahi, Nofel; Frongia, Céline; Ducommun, Bernard; Lobjois, Valérie

    2014-01-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy

  16. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    Science.gov (United States)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Frongia, Céline; Eichwald, Olivier; Ducommun, Bernard; Merbahi, Nofel; Lobjois, Valérie

    2014-04-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy.

  17. Effect of preliminary plastic deformation on low temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Gur'ev, A.V.; Alkhimenkov, T.B.

    1979-01-01

    Considered is the effect of preliminary plastic deformation on the following low-temperature strength (at -196 deg C) of structural carbon steels at the room temperature. The study of regularities of microheterogenetic deformations by alloy structure elements at room and low temperatures shows that the transition on low -temperature loading is built on the base of inheritance of the general mechanism of plastic deformation, which took place at preliminary deformation; in this effect the ''memory'' of metal to the history of loading is shown. It is established that physical strengthening (cold hardening), received by the metal during preliminary loading at the room temperature is put over the strengthening connected only with decrease of test temperature

  18. Mechanical Properties of Low Density Alloys at Cryogenic Temperatures

    International Nuclear Information System (INIS)

    Jiao, X. D.; Liu, H. J.; Li, L. F.; Yang, K.

    2006-01-01

    Low-density alloys include aluminum alloys, titanium alloys and magnesium alloys. Aluminum alloys and titanium alloys have been widely investigated and used as structural materials for cryogenic applications because of their light weight and good low-temperature mechanical properties.For aerospace applications, persistent efforts are being devoted to reducing weight and improving performance. Magnesium alloys are the lightest structural alloys among those mentioned above. Therefore, it is necessary to pay attention to magnesium alloys and to investigate their behaviors at cryogenic temperatures. In this paper, we have investigated the mechanical properties and microstructures of some magnesium alloys at cryogenic temperatures. Experimental results on both titanium and magnesium alloys are taken into account in considering these materials for space application

  19. Reversible bulk-phase change of anthroyl compounds for photopatterning based on photodimerization in the molten state and thermal back reaction.

    Science.gov (United States)

    Kihara, Hideyuki; Yoshida, Masaru

    2013-04-10

    As new organic materials for rewritable photopatterning, 2-anthroyl and 9-anthroyl ester compounds were synthesized. Their bulk-phase changes (we use "bulk-phase change" as complete phase change in a mass of a material neither in a surface nor in a small quantity in this study) triggered by photodimerization under melting conditions (melt-photodimerization) and subsequent thermal back reactions were investigated. All the anthroyl compounds exhibited melting points lower than ca. 160 °C, and they were nearly quantitatively converted to the corresponding photodimers by UV irradiation at temperatures of ∼5 °C higher than their respective melting points. We found that there were two kinds of bulk-phase change behaviors through the photoreaction. Two of the anthroyl compounds remained isotropic and lost fluidity during the melt-photodimerization. The obtained photodimers exhibited robust solid-state amorphous phases at room temperature. In contrast, the other three anthroyl compounds showed crystallization during the melt-photodimerization. The resulting photodimers changed from isotropic to crystalline phases, even at high temperature. Various experiments revealed that the bulk phase of the photodimers was affected not by the existence of regioisomers but by their fluidity at the photoirradiation temperature. The latter three photodimers retained enough fluidity, reflecting their high molecular mobilities at the photoirradiation temperature at which the isothermal crystallization occurred. The other two products were not able to crystallize due to low fluidity, resulting in amorphous phases. We also found that all the photodimers reverted to the corresponding monomers by thermal back reaction and recovered their initial photochemical and thermal properties. Using these reversible bulk-phase changes of the anthroyl compounds, we successfully demonstrated rewritable photopatterning in not only negative images but also positive ones, based on the optical contrast

  20. Characteristic of Low Temperature Carburized Austenitic Stainless Steel

    Science.gov (United States)

    Istiroyah; Pamungkas, M. A.; Saroja, G.; Ghufron, M.; Juwono, A. M.

    2018-01-01

    Low temperature carburizing process has been carried out on austenitic stainless steel (ASS) type AISI 316L, that contain chromium in above 12 at%. Therefore, conventional heat treatment processes that are usually carried out at high temperatures are not applicable. The sensitization process due to chromium migration from the grain boundary will lead to stress corrosion crack and decrease the corrosion resistance of the steel. In this study, the carburizing process was carried out at low temperatures below 500 °C. Surface morphology and mechanical properties of carburized specimens were investigated using optical microscopy, non destructive profilometer, and Vicker microhardness. The surface roughness analysis show the carburising process improves the roughness of ASS surface. This improvement is due to the adsorption of carbon atoms on the surface of the specimen. Likewise, the hardness test results indicate the carburising process increases the hardness of ASS.

  1. Silk-Quality, Spinnability and Low Temperature Behavior

    Science.gov (United States)

    2015-12-02

    inert  atmosphere  (N2   gas   flow  rate  of  100  mL/min).  Changes   in  weight  percentage  during   temperature...Performance 3. DATES COVERED (From - To) 01-06-2012 to 31-05-2015 4. TITLE AND SUBTITLE Silk-Quality, Spinnability and Low Temperature Behaviour 5a...deploy the huge range in mechanical behaviour between different silk species and intra-species varieties. In particular, I set out to formulate a

  2. Innovative system for delivery of low temperature district heating

    OpenAIRE

    Ianakiev, A; Cui, JM; Garbett, S; Filer, A

    2017-01-01

    An innovative low temperature district heating (LTDH) local network is developed in Nottingham, supported by the REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the existing district heating system in Nottingham would be created to use low temperature heating for the first time on such scale in the UK. The development is aimed to extract unused heat from existing district heating system and to mak...

  3. Model-Based Energy Efficiency Optimization of a Low-Temperature Adsorption Dryer

    NARCIS (Netherlands)

    Atuonwu, J.C.; Straten, G. van; Deventer, H.C. van; Boxtel, A.J.B. van

    2011-01-01

    Low-temperature drying is important for heat-sensitive products, but at these temperatures conventional convective dryers have low energy efficiencies. To overcome this challenge, an energy efficiency optimization procedure is applied to a zeolite adsorption dryer subject to product quality. The

  4. A redetermination at low temperature of the structure of triethylammonium bromide

    Directory of Open Access Journals (Sweden)

    Natasha H. Munro

    2008-11-01

    Full Text Available The structure of the title compound, C6H16N+·Br−, was determined at low temperature and the cell dimensions were comparable to those reported for room-temperature studies [James, Cameron, Knop, Newman & Falp, (1985. Can. J. Chem. 63, 1750–1758]. Initial analysis of the data led to the assignment of P31c as the space group rather than P63mc as reported for the room-temperature structure. Careful examination of the appropriate |Fo| values in the low-temperature data showed that the equalities |F(overline hkl| = |F(hoverline kl| and |F(hkl| = |F(hkoverline l| did not hold at low temperature, confirming P31c as the appropriate choice of space group. As a consequence of this choice, the N atom sat on a threefold axis and the ethyl arms were not disordered as observed at room temperature. The crystal studied was an inversion twin with a 0.68 (3:0.32 (3 domain ratio.

  5. Performance study on a low-temperature absorption–compression cascade refrigeration system driven by low-grade heat

    International Nuclear Information System (INIS)

    Xu, Yingjie; Chen, Guangming; Wang, Qin; Han, Xiaohong; Jiang, Ning; Deng, Shiming

    2016-01-01

    Highlights: • An absorption–compression system for low-temperature is developed and analyzed. • Cooling capacity, compression power, and discharge temperature are all improved. • At −170 °C, giving 200 W low-grade cooling capacity, COP increases by 28.6%. • Simulation results are verified experimentally, showing good agreement. - Abstract: This paper presents a performance study on a low-temperature absorption–compression cascade refrigeration system (LACRS), which consists of an absorption subsystem (AS) and a vapor compression auto-cascade subsystem (CS). In the system, low-grade heat of AS is used to subcool the CS, which can obtain cold energy at −170 °C. A simulation study is carried out to investigate the effects of evaporating temperature and low-grade cooling capacity on system performance. The study results show that as low-grade cooling capacity from the AS is provided to the CS, high-grade cooling capacity increases, compressor power consumption decreases, and the COP of the CS therefore increases. Comparing with compression auto-cascade cycle, the largest COP improvement of LACRS is about 38%. The model is verified by experimental data. An additional high-grade cooling capacity is obtained experimentally at −170 °C. The study results presented in this paper not only demonstrate the excellent performance of the LACRS, but also provide important guidance to further system design, and practical application.

  6. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Science.gov (United States)

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  7. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  8. Recrystallization of magnesium deformed at low temperatures

    International Nuclear Information System (INIS)

    Fromageau, R.; Pastol, J.L.; Revel, G.

    1978-01-01

    The recrystallization of magnesium was studied after rolling at temperatures ranging between 248 and 373 K. For zone refined magnesium the annealing behaviour as observed by electrical resistivity measurements showed two stages at about 250 K and 400 K due respectively to recrystallization and grain growth. The activation energy associated with the recrystallization stage was 0.75 +- 0.01 eV. In less pure magnesium, with nominal purity 99.99 and 99.9%, the recrystallization stage was decomposed into two substages. Activation energies were determined in relation with deformation temperature and purity. The magnesium of intermediate purity (99.99%) behaved similarly to the lowest purity metal when it was deformed at high temperature and to the purest magnesium when the deformation was made at low temperature. This behaviour was discussed in connection with the theories of Luecke and Cahn. (Auth.)

  9. Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis.

    Science.gov (United States)

    Tai, Siew Leng; Daran-Lapujade, Pascale; Walsh, Michael C; Pronk, Jack T; Daran, Jean-Marc

    2007-12-01

    Effects of suboptimal temperatures on transcriptional regulation in yeast have been extensively studied in batch cultures. To eliminate indirect effects of specific growth rates that are inherent to batch-cultivation studies, genome-wide transcriptional responses to low temperatures were analyzed in steady-state chemostats, grown at a fixed specific growth rate (0.03 h(-1)). Although in vivo metabolic fluxes were essentially the same in cultures grown at 12 and at 30 degrees C, concentrations of the growth-limiting nutrients (glucose or ammonia) were higher at 12 degrees C. This difference was reflected by transcript levels of genes that encode transporters for the growth-limiting nutrients. Several transcriptional responses to low temperature occurred under both nutrient-limitation regimes. Increased transcription of ribosome-biogenesis genes emphasized the importance of adapting protein-synthesis capacity to low temperature. In contrast to observations in cold-shock and batch-culture studies, transcript levels of environmental stress response genes were reduced at 12 degrees C. Transcription of trehalose-biosynthesis genes and intracellular trehalose levels indicated that, in contrast to its role in cold-shock adaptation, trehalose is not involved in steady-state low-temperature adaptation. Comparison of the chemostat-based transcriptome data with literature data revealed large differences between transcriptional reprogramming during long-term low-temperature acclimation and the transcriptional responses to a rapid transition to low temperature.

  10. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  11. Evaluating the Properties of High-Temperature and Low-Temperature Wear of TiN Coatings Deposited at Different Temperatures

    Directory of Open Access Journals (Sweden)

    B. Khorrami Mokhori

    2017-02-01

    Full Text Available In this research titanium nitride (TiN films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C. Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C and low (25 °C temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers. Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.

  12. Low temperature transport in p-doped InAs nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra; Jespersen, Thomas Sand; Madsen, Morten Hannibal

    2013-01-01

    We present low temperature electrical measurements of p-type Indium Arsenide nanowires grown via molecular beam epitaxy using Beryllium as a dopant. Growth of p-type wires without stacking faults is demonstrated. Devices in field-effect geometries exhibit ambipolar behavior, and the temperature...

  13. Experimental Research of Inactivation Effect of Low-Temperature Plasma on Bacteria

    International Nuclear Information System (INIS)

    Shi Xingmin; Yuan Yukang; Sun Yanzhou; Yuan Wang; Fengling, Peng; Qiu Yuchang

    2006-01-01

    The killing logarithms index in killing a vegetative form in an explosure of about 90 s and a spore in an explosure of about 120 s, by using a low-temperature plasma produced by dielectric barrier discharge (DBD), reached 5. The speed in killing the strains tested, by using a low-temperature plasma, was the highest with E. Coli, then S. Aureus and B. Subtilis var niger spore. The results of the scanning electron microscope showed that the low-temperature plasma destroyed the outer structure of the bacteria and that the vegetative form was more susceptible to the inactivation effect of the low-temperature plasma than was the spore. This indicated that the effects of the high voltage and high velocity particle flow, in plasma, penetrating through the outer structure of the bacteria might play a dominant role during the inactivation of the bacteria

  14. Surface modification of chromatography adsorbents by low temperature low pressure plasma

    DEFF Research Database (Denmark)

    Arpanaei, Ayyoob; Winther-Jensen, Bjørn; Theodosiou, E.

    2010-01-01

    In this study we show how low temperature glow discharge plasma can be used to prepare bi-layered chromatography adsorbents with non-adsorptive exteriors. The commercial strong anion exchange expanded bed chromatography matrix, Q HyperZ, was treated with plasmas in one of two general ways. Using ...

  15. New insights into the low-temperature oxidation of 2-methylhexane

    KAUST Repository

    Wang, Zhandong

    2016-09-24

    In this work, we studied the low-temperature oxidation of a stoichiometric 2-methylhexane/O2/Ar mixture in a jet-stirred reactor coupled with synchrotron vacuum ultraviolet photoionization molecular-beam mass spectrometry. The initial gas mixture was composed of 2% 2-methyhexane, 22% O2 and 76% Ar and the pressure of the reactor was kept at 780Torr. Low-temperature oxidation intermediates with two to five oxygen atoms were observed. The detection of C7H14O5 and C7H12O4 species suggests that a third O2 addition process occurs in 2-methylhexane low-temperature oxidation. A detailed kinetic model was developed that describes the third O2 addition and subsequent reactions leading to C7H14O5 (keto-dihydroperoxide and dihydroperoxy cyclic ether) and C7H12O4 (diketo-hydroperoxide and keto-hydroperoxy cyclic ether) species. The kinetics of the third O2 addition reactions are discussed and model calculations were performed that reveal that third O2 addition reactions promote 2-methylhexane auto-ignition at low temperatures. © 2016 The Combustion Institute.

  16. Low-temperature transport in out-of-equilibrium XXZ chains

    Science.gov (United States)

    Bertini, Bruno; Piroli, Lorenzo

    2018-03-01

    We study the low-temperature transport properties of out-of-equilibrium XXZ spin-1/2 chains. We consider the protocol where two semi-infinite chains are prepared in two thermal states at small but different temperatures and suddenly joined together. We focus on the qualitative and quantitative features of the profiles of local observables, which at large times t and distances x from the junction become functions of the ratio \\zeta=x/t . By means of the generalized hydrodynamic equations, we analyse the rich phenomenology arising by considering different regimes of the phase diagram. In the gapped phases, variations of the profiles are found to be exponentially small in the temperatures, but described by non-trivial functions of ζ. We provide analytical formulae for the latter, which give accurate results also for small but finite temperatures. In the gapless regime, we show how the three-step conformal predictions for the profiles of energy density and energy current are naturally recovered from the hydrodynamic equations. Moreover, we also recover the recent non-linear Luttinger liquid predictions for low-temperature transport: universal peaks of width \

  17. Low-temperature transitions in cod and tuna determined by differential scanning calorimetry

    DEFF Research Database (Denmark)

    Jensen, Kristina Nedenskov; Jørgensen, Bo; Nielsen, Jette

    2003-01-01

    Differential scanning calorimetry measurements have revealed different thermal transitions in cod and tuna samples. Transition temperatures detected Lit -11degreesC, -15degreesC and -21degreesC were highly dependent on the annealing temperature. In tuna muscle an additional transition was observed...... at -72degreesC. This transition appeared differently than the thermal events observed at higher temperatures, as it spanned a broad temperature interval of 25degreesC. The transition was comparable to low-temperature glass transitions reported in protein-rich systems. No transition at this low...... temperature was detected in cod samples. The transitions observed at higher temperatures (-11degreesC to -21degreesC) may possibly stein from a glassy matrix containing muscle proteins. However, the presence of a glass transition at - 11degreesC was in disagreement with the low storage stability at -18degrees...

  18. Radically Different Kinetics at Low Temperatures

    Science.gov (United States)

    Sims, Ian

    2014-06-01

    The use of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photochemical kinetics methods has shown that reactions involving radicals can be very rapid at temperatures down to 10 K or below. The results have had a major impact in astrochemistry and planetology, as well as proving an exacting test for theory. The technique has also been applied to the formation of transient complexes of interest both in atmospheric chemistry and combustion. Until now, all of the chemical reactions studied in this way have taken place on attractive potential energy surfaces with no overall barrier to reaction. The F + H2 {→} HF + H reaction does possess a substantial energetic barrier ({\\cong} 800 K), and might therefore be expected to slow to a negligible rate at very low temperatures. In fact, this H-atom abstraction reaction does take place efficiently at low temperatures due entirely to tunneling. I will report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations by François Lique (Université du Havre) and Millard Alexander (University of Maryland). It is thought that long chain cyanopolyyne molecules H(C2)nCN may play an important role in the formation of the orange haze layer in Titan's atmosphere. The longest carbon chain molecule observed in interstellar space, HC11N, is also a member of this series. I will present new results, obtained in collaboration with Jean-Claude Guillemin (Ecole de Chimie de Rennes) and Stephen Klippenstein (Argonne National Labs), on reactions of C2H, CN and C3N radicals (using a new LIF scheme by Hoshina and Endo which contribute to the low temperature formation of (cyano)polyynes. H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J. Klippenstein, I. W. M. Smith, Science 317, 102 (2007). S. D. Le Picard, M

  19. Solution-phase synthesis of nanomaterials at low temperature

    Science.gov (United States)

    Zhu, Yongchun; Qian, Yitai

    2009-01-01

    This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.

  20. Bile salt-induced increases in duodenal brush-border membrane proton permeability, fluidity, and fragility

    International Nuclear Information System (INIS)

    Zhao, D.L.; Hirst, B.H.

    1990-01-01

    Rabbit duodenal brush-border membrane vesicles were treated in vitro with deoxycholate, glycodeoxycholate, or taurodeoxycholate. Intravesicular [14C]glucose space at equilibrium, 0.54 microliters/mg protein, was reduced by exposure to the three bile salts in a concentration (0.1-5.0 mM)-dependent manner, equatable with increased membrane fragility. Net proton permeability (Pnet), determined by acridine orange fluorescence quenching, was increased from 6.3 x 10(-4) cm/sec in untreated vesicles, by approximately 120, 150, and 170%, by treatment with bile salts at 0.1, 0.5 and 1.0 mM, respectively. The three bile salts were equipotent. The increases in membrane fragility and Pnet were not accompanied by significant increases in membrane fluidity, as assessed from steady-state and time-resolved diphenylhexatriene fluorescence anisotropy. The data demonstrate direct effects of bile salts on duodenal apical membrane fragility and proton permeability that are likely to be early events in bile salt-induced mucosal damage

  1. Design for ASIC reliability for low-temperature applications

    Science.gov (United States)

    Chen, Yuan; Mojaradi, Mohammad; Westergard, Lynett; Billman, Curtis; Cozy, Scott; Burke, Gary; Kolawa, Elizabeth

    2005-01-01

    In this paper, we present a methodology to design for reliability for low temperature applications without requiring process improvement. The developed hot carrier aging lifetime projection model takes into account both the transistor substrate current profile and temperature profile to determine the minimum transistor size needed in order to meet reliability requirements. The methodology is applicable for automotive, military, and space applications, where there can be varying temperature ranges. A case study utilizing this methodology is given to design for reliability into a custom application-specific integrated circuit (ASIC) for a Mars exploration mission.

  2. Industrial Applications of Low Temperature Plasmas

    International Nuclear Information System (INIS)

    Bardsley, J N

    2001-01-01

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed

  3. Arc generators of low-temperature plasma

    International Nuclear Information System (INIS)

    Krolikowski, Cz.; Niewiedzial, R.; Siwiec, J.

    1979-01-01

    This paper is a review of works concerning investigation and use of low-temperature plasma in arc plasma generators made in Electric Power Institute of PP. There are discussed: analytical approach to a problem of volt-current and operational characteristics of DC arc plasma generators, determination of limits of their stable work and possibilities of their use to technological aims. (author)

  4. High and low temperatures have unequal reinforcing properties in Drosophila spatial learning.

    Science.gov (United States)

    Zars, Melissa; Zars, Troy

    2006-07-01

    Small insects regulate their body temperature solely through behavior. Thus, sensing environmental temperature and implementing an appropriate behavioral strategy can be critical for survival. The fly Drosophila melanogaster prefers 24 degrees C, avoiding higher and lower temperatures when tested on a temperature gradient. Furthermore, temperatures above 24 degrees C have negative reinforcing properties. In contrast, we found that flies have a preference in operant learning experiments for a low-temperature-associated position rather than the 24 degrees C alternative in the heat-box. Two additional differences between high- and low-temperature reinforcement, i.e., temperatures above and below 24 degrees C, were found. Temperatures equally above and below 24 degrees C did not reinforce equally and only high temperatures supported increased memory performance with reversal conditioning. Finally, low- and high-temperature reinforced memories are similarly sensitive to two genetic mutations. Together these results indicate the qualitative meaning of temperatures below 24 degrees C depends on the dynamics of the temperatures encountered and that the reinforcing effects of these temperatures depend on at least some common genetic components. Conceptualizing these results using the Wolf-Heisenberg model of operant conditioning, we propose the maximum difference in experienced temperatures determines the magnitude of the reinforcement input to a conditioning circuit.

  5. Determination of magnetic characteristics of nanoparticles by low-temperature calorimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ugulava, A.; Toklikishvili, Z. [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Chkhaidze, S., E-mail: simon.chkhaidze@tsu.ge [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Kekutia, Sh. [V. Chavchanidze Institute of Cybernetics, at the Technical State University, S. Euli str. 5, 0186 Tbilisi, Georgia (United States)

    2017-05-15

    At low temperatures, the heat capacity of a superparamagnetic “ideal gas” determined by magnetic degrees of freedom can greatly exceed the lattice heat capacity. It is shown that in the presence of an external magnetic field, the temperature dependence of the magnetic part of the heat capacity has two maxima. The relations between the temperature at which these maxima are achieved, the magnetic moment of the nanoparticles and the magnetic anisotropy constant have been obtained. Measuring the heat capacity maxima temperatures by low-temperature calorimetry methods and using the obtained relations, we can obtain the numerical values both of the magnetic moment of nanoparticles and the magnetic anisotropy constants.

  6. Recycling of tailings from Korea Molybdenum Corporation as admixture for high-fluidity concrete.

    Science.gov (United States)

    Jung, Moon Young; Choi, Yun Wang; Jeong, Jae Gwon

    2011-01-01

    The main objective of this study is to develop an eco-friendly and a large recycling technique of flotation Tailings from korea (TK) from metal mines as construction materials such as admixtures for high-fluidity concrete (HFC). TK used in this study was obtained from the Korea Molybdenum Corporation in operation. TK was used as the alternative material to adjust flowability and viscosity of HFC in the form of powder agent which enables adjustment of concrete compressive strength. In this study, we have performed concrete rheological tests and concrete flowability tests to obtain the quality characteristics of TK for using as the admixture in producing HFC. The results indicated that the adequate mix ratio of cement to TK should be 8:2 (vol%). It is more effective to use the TK as admixture to control flowability, viscosity and strength of HFC than the normal concrete. It was found that TK could be recycled construction materials in bulk such as admixture for HFC, in terms of the economic and eco-friendly aspects.

  7. A reduced low-temperature electro-thermal coupled model for lithium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Jiuchun; Ruan, Haijun; Sun, Bingxiang; Zhang, Weige; Gao, Wenzhong; Wang, Le Yi; Zhang, Linjing

    2016-01-01

    Highlights: • A reduced low-temperature electro-thermal coupled model is proposed. • A novel frequency-dependent equation for polarization parameters is presented. • The model is validated under different frequency and low-temperature conditions. • The reduced model exhibits a high accuracy with a low computational effort. • The adaptability of the proposed methodology for model reduction is verified. - Abstract: A low-temperature electro-thermal coupled model, which is based on the electrochemical mechanism, is developed to accurately capture both electrical and thermal behaviors of batteries. Activation energies reveal that temperature dependence of resistances is greater than that of capacitances. The influence of frequency on polarization voltage and irreversible heat is discussed, and frequency dependence of polarization resistance and capacitance is obtained. Based on the frequency-dependent equation, a reduced low-temperature electro-thermal coupled model is proposed and experimentally validated under different temperature, frequency and amplitude conditions. Simulation results exhibit good agreement with experimental data, where the maximum relative voltage error and temperature error are below 2.65% and 1.79 °C, respectively. The reduced model is demonstrated to have almost the same accuracy as the original model and require a lower computational effort. The effectiveness and adaptability of the proposed methodology for model reduction is verified using batteries with three different cathode materials from different manufacturers. The reduced model, thanks to its high accuracy and simplicity, provides a promising candidate for development of rapid internal heating and optimal charging strategies at low temperature, and for evaluation of the state of battery health in on-board battery management system.

  8. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test.

    Science.gov (United States)

    Pszczola, Marek; Jaczewski, Mariusz; Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-10

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from -20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.

  9. Fluid dynamic analysis and experimental study of a low radiation error temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie, E-mail: yangjie396768@163.com [Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing 210044 (China); School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Liu, Qingquan, E-mail: andyucd@163.com [Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing 210044 (China); Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044 (China); Dai, Wei, E-mail: daiweiilove@163.com [Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing 210044 (China); School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Ding, Renhui, E-mail: drhabcd@sina.com [Jiangsu Meteorological Observation Center, Nanjing 210008 (China)

    2017-01-30

    To improve the air temperature observation accuracy, a low radiation error temperature sensor is proposed. A Computational Fluid Dynamics (CFD) method is implemented to obtain radiation errors under various environmental conditions. The low radiation error temperature sensor, a naturally ventilated radiation shield, a thermometer screen and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated platform served as an air temperature reference. The mean radiation errors of the naturally ventilated radiation shield and the thermometer screen are 0.57 °C and 0.32 °C, respectively. In contrast, the mean radiation error of the low radiation error temperature sensor is 0.05 °C. The low radiation error temperature sensor proposed in this research may be helpful to provide a relatively accurate air temperature measurement result. - Highlights: • A CFD method is applied to obtain a quantitative solution of radiation error. • A temperature sensor is proposed to minimize radiation error. • The radiation error of the temperature sensor is on the order of 0.05 °C.

  10. Shock waves in helium at low temperatures

    International Nuclear Information System (INIS)

    Liepmann, H.W.; Torczynski, J.R.

    1986-01-01

    Results are reported from studies of the properties of low temperature He-4 using shock waves as a probe. Ideal shock tube theory is used to show that sonic speeds of Mach 40 are attainable in He at 300 K. Viscosity reductions at lower temperatures minimize boundary layer effects at the side walls. A two-fluid model is described to account for the phase transition which He undergoes at temperatures below 2.2 K, after which the quantum fluid (He II) and the normal compressed superfluid (He I) coexist. Analytic models are provided for pressure-induced shocks in He I and temperature-induced shock waves (called second sound) which appear in He II. The vapor-fluid interface of He I is capable of reflecting second and gasdynamic sound shocks, which can therefore be used as probes for studying phase transitions between He I and He II. 17 references

  11. Regulation of Calcium on Peanut Photosynthesis Under Low Night Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-fei; HAN Xiao-ri; ZHAN Xiu-mei; YANG Jin-feng; WANG Yu-zhi; SONG Qiao-bo; CHEN Xin

    2013-01-01

    The effects of different levels of CaCl2 on photosynthesis under low night temperature (8°C) stress in peanuts were studied in order to ifnd out the appropriate concentration of Ca2+ through the artiifcial climate chamber potted culture test. The results indicated that Ca2+, by means of improving the stomatal conductivity of peanut leaves under low night temperature stress, may mitigate the decline of photosynthetic rate in the peanut leaves. The regulation with 15 mmol L-1 CaCl2 (Ca15) was the most effective, compared with other treatments. Subsequently, the improvement of Ca2+ on peanut photosynthesis under low night temperature stress was validated further through spraying withCa15, Ca2+ chelator (ethylene glycol bis(2-aminoethyl) tetraacetic acid; EGTA) and calmodulin antagonists (trilfuonerazine; TFP).And CaM (Ca2+-modulin) played an important role in the nutritional signal transduction for Ca2+ mitigating photosynthesis limitations in peanuts under low night temperature stress.

  12. Characterization of Si(100) homoepitaxy grown in the STM at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Grube, H. (Holger); Brown, G. W. (Geoffrey W.); Pomeroy, J. M. (Joshua M.); Hawley, M. E. (Marilyn E.)

    2002-01-01

    We explore the growth of low-temperature bulk-like Si(100) homoepitaxy with regard to microscopic surface roughness and defects We characterize films grown at different temperatures up to 500K in-situ by means of an effusion cell added to our UHVSTM. The development of novel architectures for future generation computers calls for high-quality homoepitaxial (WOO) grown at low temperature. Even though Si(100) can be grown crystalline up to a limited thickness: the microstructure reveals significant small-scale surface roughness and defects specific to low-temperature growth. Both can he detrimental to fabrication and operation of small-scale electronic devices.

  13. Pengaruh unsur Tembaga (Cu terhadap fluiditas paduan Al-Si 11.8 wt% (ADC 12 dengan metode Vacuum Suction Test

    Directory of Open Access Journals (Sweden)

    Bambang Suharno

    2012-11-01

    Full Text Available Al-Si 11.8 wt% alloy which classified to eutectic Al-Si composition usually used to produce a flat casting product with high pressure die casting process. Alloying element become an important things to determine behavior and characteristic of aluminum. Copper added into aluminum to improve strength and hardness, but there has no many studies on the effect of copper on fluidity. This fluidity study is using vacuum suction test method and the microstructure is observed with SEM/EDS. Spectrometer test has been used to find out chemical composition of sample. The result of this study shows that with copper addition from 2.25 wt% to 3.11 wt%, the fluidity value has increased 24.11% on 680oC pouring temperature. On 3.11 wt% copper composition, fluidity value has increased 14.38% from 640oC pouring temperature to 700oC pouring temperature.

  14. Low Temperature Synthesis of Magnesium Aluminate Spinel

    International Nuclear Information System (INIS)

    Lebedovskaya, E.G.; Gabelkov, S.V.; Litvinenko, L.M.; Logvinkov, D.S.; Mironova, A.G.; Odejchuk, M.A.; Poltavtsev, N.S.; Tarasov, R.V.

    2006-01-01

    The low-temperature synthesis of magnesium-aluminum spinel is carried out by a method of thermal decomposition in combined precipitated hydrates. The fine material of magnesium-aluminium spinel with average size of coherent dispersion's area 4...5 nanometers is obtained. Magnesium-aluminum spinel and initial hydrates were investigated by methods of the differential thermal analysis, the x-ray phase analysis and measurements of weight loss during the dehydration and thermal decomposition. It is established that synthesis of magnesium-aluminum spinel occurs at temperature 300 degree C by method of the x-ray phase analysis

  15. An ultra-low-power CMOS temperature sensor for RFID applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Conghui; Gao Peijun; Che Wenyi; Tan Xi; Yan Na; Min Hao, E-mail: yanna@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-04-15

    An ultra-low-power CMOS temperature sensor with analog-to-digital readout circuitry for RFID applications was implemented in a 0.18-mum CMOS process. To achieve ultra-low power consumption, an error model is proposed and the corresponding novel temperature sensor front-end with a new double-measure method is presented. Analog-to-digital conversion is accomplished by a sigma-delta converter. The complete system consumes only 26 muA and 1.8 V for continuous operation and achieves an accuracy of +-0.65 deg. C from -20 to 120 deg. C after calibration at one temperature.

  16. An ultra-low-power CMOS temperature sensor for RFID applications

    International Nuclear Information System (INIS)

    Xu Conghui; Gao Peijun; Che Wenyi; Tan Xi; Yan Na; Min Hao

    2009-01-01

    An ultra-low-power CMOS temperature sensor with analog-to-digital readout circuitry for RFID applications was implemented in a 0.18-μm CMOS process. To achieve ultra-low power consumption, an error model is proposed and the corresponding novel temperature sensor front-end with a new double-measure method is presented. Analog-to-digital conversion is accomplished by a sigma-delta converter. The complete system consumes only 26 μA and 1.8 V for continuous operation and achieves an accuracy of ±0.65 deg. C from -20 to 120 deg. C after calibration at one temperature.

  17. Work station for low temperature positron annihilation studies

    International Nuclear Information System (INIS)

    Chaturvedi, T.P.; Venkiteswaran, S.; Pujari, P.K.

    1999-05-01

    This report describes the automation implemented in the low temperature Positron Annihilation Spectroscopy studies system. Temperature programmer and controller (Lakeshore 330) is interfaced to PC-AT through an IEEE-488 add-on card. Through this data can be read and written to the temperature controller and it can be handled remotely. The PC- AT also houses the PCA-II card. Software (TEMP330.EXE) was developed to communicate with the temperature controller. A master software is also developed under which TEMP330.EXE and PCAII.EXE should run. Another program DATASEG.EXE creates a user file to store the temperature points given by user over which data acquisition is required. This has not only widened the scope of the positron research, but also helps achieve result with better precision. (author)

  18. Low temperature chemical processing of graphite-clad nuclear fuels

    Science.gov (United States)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  19. Radiation detection at very low temperature. DRTBT 2002, Oleron - Course collection

    International Nuclear Information System (INIS)

    Pekola, J.; Charles, I.; Jin, Yong; Camus, Ph.; Juillard, A.; Chardin, G.; Leblanc, Elvire; Delabrouille, Jacques; Pigot, C.

    2002-01-01

    The contributions of this session addressed several themes: Tools (pumped helium-3 cryostats; dilution based cryostats; principle and application scope of demagnetisation devices; cooling by tunnel evaporation of electrons; very low temperatures without external cryogenic fluid), Very low temperature thermometry - resistive thermometry and its difficulties (temperature control, low temperature electronics), Bolometers (focussing, filtering and absorption; principle of a bolometer with resistive sensor, bolometer matrices, multiplexing; Anderson insulator; superconductors); Signal formation mechanism (high energy phonons, ballistic phonons and final thermalization), Signal acquisition and processing (reduction of noise due to the environment, from the cold pre-amplifier to the hard disk, signal processing and data analysis), and scientific culture (metrology, the microwave cosmological background, other astrophysical applications of cryogenic sensors). Contributions are printed in a different order than they listed in the table of contents

  20. Change in digestibility of gamma-irradiated starch by low temperature cooking

    International Nuclear Information System (INIS)

    Kume, T.; Ishigaki, I.; Rahman, S.

    1988-01-01

    Combination effect of irradiation and low temperature cooking on starch digestibility has been investigated as a basic research for application of radiosterilization on starch fermentation. The digestion of corn starch by glucoamylase after cooking at low temperature was enhanced by γ-irradiation and the required cooking temperature was decreased from 75-80 0 C to 65 0 C by 25 kGy. Gelatinization of starches except tapioca starch was enhanced by irradiation and it corresponds to the digestibility. The digestibility of potato starch which has a high viscosity was especially enhanced at low temperature cooking because the viscosity was markedly decreased by irradiation. These results show that the irradiation of starches is useful not only for the sterilization of fermentation broth but also for the enhancement of digestion. (orig.) [de

  1. Change in digestibility of gamma-irradiated starch by low temperature cooking

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Ishigaki, I.; Rahman, S.

    1988-04-01

    Combination effect of irradiation and low temperature cooking on starch digestibility has been investigated as a basic research for application of radiosterilization on starch fermentation. The digestion of corn starch by glucoamylase after cooking at low temperature was enhanced by ..gamma..-irradiation and the required cooking temperature was decreased from 75-80/sup 0/C to 65/sup 0/C by 25 kGy. Gelatinization of starches except tapioca starch was enhanced by irradiation and it corresponds to the digestibility. The digestibility of potato starch which has a high viscosity was especially enhanced at low temperature cooking because the viscosity was markedly decreased by irradiation. These results show that the irradiation of starches is useful not only for the sterilization of fermentation broth but also for the enhancement of digestion.

  2. Low-frequency permittivity of spin-density wave in (TMTSF)2PF6 at low temperatures

    DEFF Research Database (Denmark)

    Nad, F.; Monceau, P.; Bechgaard, K.

    1995-01-01

    Conductivity and permittivity epsilon of(TMTSF)(2)PF6 have been measured at low frequencies of (10(2)-10(7) Hz) at low temperatures below the spin-density wave (SDW) transition temperature T-p. The temperature dependence of the conductivity shows a deviation from thermally activated behavior at T...

  3. Highly anisotropic SmCo5 nanoflakes by surfactant-assisted ball milling at low temperature

    International Nuclear Information System (INIS)

    Liu, Lidong; Zhang, Songlin; Zhang, Jian; Ping Liu, J.; Xia, Weixing; Du, Juan; Yan, Aru; Yi, Jianhong; Li, Wei; Guo, Zhaohui

    2015-01-01

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo 5 nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo 5 nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo 5 nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo 5 nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo 5 nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified

  4. Strong anisotropy in the low temperature Compton profiles of ...

    Indian Academy of Sciences (India)

    Compton profiles of momentum distribution of conduction electrons in the orthorhombic phase of -Ga metal at low temperature are calculated in the band model for the three crystallographic directions (100), (010), and (001). Unlike the results at room temperature, previously reported by Lengeler, Lasser and Mair, the ...

  5. Low-temperature gasification of waste tire in a fluidized bed

    International Nuclear Information System (INIS)

    Xiao Gang; Ni Mingjiang; Chi Yong; Cen Kefa

    2008-01-01

    In order to recovery energy and materials from waste tire efficiently, low-temperature gasification is proposed. Experiments are carried out in a lab-scale fluidized bed at 400-800 deg. C when equivalence ratio (ER) is 0.2-0.6. Low heat value (LHV) of syngas increases with increasing temperature or decreasing ER, and the yield is in proportion to ER linearly. The yield of carbon black decreases with increasing temperature or ER lightly. When temperature is over 600 deg. C, characteristics of carbon black is similar. When temperature is over 700 deg. C, LHV of syngas rises up lightly with increasing temperature, which indicates that it hardly facilitates gasification any more. It is suitable for tire gasification when temperature is 650-700 deg. C and ER is 0.2-0.4. Under this condition, LHV and yield of syngas are about 4000-9000 kJ/Nm 3 and 1.8-3.7 Nm 3 /kg, respectively; surface area and yield of carbon black lie in range of 20-30 m 3 /g and 550-650 g/kg, respectively. The carbon balance of these experiments achieves 85-95% when temperature is over 600 deg. C

  6. Light-oil recovery in the low-temperature carbonization of brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, A

    1944-01-01

    The various methods used for low-temperature carbonization of brown coal are reviewed as well as the effect of the method of carbonization on the properties and yields of light oil and tar. The composition of the light oil varied considerably with the coal and the method used. Light oil from the low-temperature distillation of brown coal contains relatively high contents of unsaturated hydrocarbons and variable content of phenols and S compounds, depending on the coal. Light oil is best recovered from low-temperature-carbonization gas by oil scrubbing; the use of active C would require preliminary removal of S compounds, which would be quite expensive.

  7. High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Chandrani; Kumar, Ashok, E-mail: ask@tezu.ernet.in, E-mail: okram@csr.res.in [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784 028 (India); Kuo, Yung-Kang [Department of Physics, National Dong-Hwa University, Hualien 974, Taiwan (China); Okram, Gunadhor Singh, E-mail: ask@tezu.ernet.in, E-mail: okram@csr.res.in [Electrical Transport Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India)

    2014-09-29

    Thermoelectric coolers with figure of merit (ZT) close to unity at low temperatures are the need of the hour with new advances in high temperature superconductors, superconducting microelectronic circuits, quantum computers, and photonics. Here, we demonstrate that the conducting polymer polyaniline (Pani) doped with camphor sulfonic acid synthesized in semi-crystalline nanostructures, possesses a giant Seebeck effect at low temperatures. The resulting enormously large Seebeck coefficient (up to 0.6 V/K) combined with an intrinsically low electrical conductivity and thermal conductivity give rise to a ZT = 0.77 at 45 K and ZT = 2.17 at 17 K.

  8. Investigation on low room-temperature resistivity Cr/(Ba0.85Pb0.15)TiO3 positive temperature coefficient composites

    DEFF Research Database (Denmark)

    He, Zeming; Ma, J.; Qu, Yuanfang

    2009-01-01

    discussed. Using these special processes, the prepared composite with 20 wt% Cr possessed low room-temperature resistivity (2.96 Ω cm at 25 °C) and exhibited PTC effect (resistivity jump of 10), which is considered as a promising candidate for over-current protector when working at low voltage. The grain......Low room-temperature resistivity positive temperature coefficient (PTC) Cr/(Ba0.85Pb0.15)TiO3 composites were produced via a reducing sintering and a subsequent oxidation treatment. The effects of metallic content and processing conditions on materials resistivity–temperature properties were...

  9. Electrical conductivity of high-purity germanium crystals at low temperature

    Science.gov (United States)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  10. National Low-Temperature Neutron-Irradiation Facility

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1983-08-01

    The Materials Sciences Division of the United States Department of Energy will establish a National Low Temperature Neutron Irradiation Facility (NLTNIF) which will utilize the Bulk Shielding Reactor (BSR) located at Oak Ridge National Laboratory. The facility will provide high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. This report describes the planned experimental capabilities of the new facility

  11. Ammonia synthesis at low temperatures

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2000-01-01

    have been carried out to evaluate its feasibility. The calculations suggest that it might be possible to catalytically produce ammonia from molecular nitrogen at low temperatures and pressures, in particular if energy is fed into the process electrochemically. (C) 2000 American Institute of Physics.......Density functional theory (DFT) calculations of reaction paths and energies for the industrial and the biological catalytic ammonia synthesis processes are compared. The industrial catalyst is modeled by a ruthenium surface, while the active part of the enzyme is modeled by a MoFe6S9 complex...

  12. Low-temperature glycerolysis of avocado oil

    Science.gov (United States)

    Satriana, Arpi, Normalina; Supardan, Muhammad Dani; Gustina, Rizka Try; Mustapha, Wan Aida Wan

    2018-04-01

    Glycerolysis can be a useful technique for production of mono- and diacylglycerols from triacylglycerols present in avocado oil. In the present work, the effect of catalyst and co-solvent concentration on low-temperature glycerolysis of avocado oil was investigated at 40oC of reaction temperature. A hydrodynamic cavitation system was used to enhance the miscibility of the oil and glycerol phases. NaOH and acetone were used as catalyst and co-solvent, respectively. The experimental results showed that the catalyst and co-solvent concentration affected the glycerolysis reaction rate. The catalyst concentration of 1.5% and co-solvent concentration of 300% were the optimised conditions. A suitable amount of NaOH and acetone must be added to achieve an optimum of triacylglycerol conversion.

  13. The development of low-temperature calorimeter on the Peltier elements

    Science.gov (United States)

    Baturevich, Tatyana; Tyagunin, Anatoly

    2017-09-01

    The article is devoted to the design of low-temperature calorimeter on the Peltier elements. This calorimeter can be used to study the temperature dependence of the specific heat capacity of different substances.

  14. Low-temperature atomic layer deposition of MoS{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Jurca, Titel; Wang, Binghao; Tan, Jeffrey M.; Lohr, Tracy L.; Marks, Tobin J. [Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL (United States); Moody, Michael J.; Henning, Alex; Emery, Jonathan D.; Lauhon, Lincoln J. [Department of Materials Science and Engineering, and the Materials Research Center, Northwestern University, Evanston, IL (United States)

    2017-04-24

    Wet chemical screening reveals the very high reactivity of Mo(NMe{sub 2}){sub 4} with H{sub 2}S for the low-temperature synthesis of MoS{sub 2}. This observation motivated an investigation of Mo(NMe{sub 2}){sub 4} as a volatile precursor for the atomic layer deposition (ALD) of MoS{sub 2} thin films. Herein we report that Mo(NMe{sub 2}){sub 4} enables MoS{sub 2} film growth at record low temperatures - as low as 60 C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    Science.gov (United States)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  16. H_{2} adsorption on multiwalled carbon nanotubes at low temperatures and low pressures

    Directory of Open Access Journals (Sweden)

    F. Xu

    2008-11-01

    Full Text Available We present an experimental study on H_{2} adsorption on multiwalled carbon nanotubes (MWCNTs at low temperatures (12–30 K and low pressures (2×10^{-5}  Torr using the temperature programmed desorption technique. Our results show that the molecular hydrogen uptake increases nearly exponentially from 6×10^{-9}  wt. % at 24.5 K to 2×10^{-7}  wt. % at 12.5 K and that the desorption kinetics is of the first order. Comparative measurements indicate that MWCNTs have an adsorption capacity about two orders higher than that of activated carbon (charcoal making them a possible candidate as hydrogen cryosorber for eventual applications in accelerators and synchrotrons.

  17. New developments in low temperature physics New developments in low temperature physics

    Science.gov (United States)

    Hallock, Bob; Paalanenn, Mikko

    2009-04-01

    Below you will find part of the activity report to the IUPAP General Assembly, October 2008, by the present and previous Chairmen of C5. It provides an overview of the most important and recent developments in low temperature physics, much in line with the program of LT25. For the field of experimental low temperature physics, the ability to conduct research has been damaged by the dramatic increase in the price of liquid helium. In the USA, for example, the price of liquid helium has approximately doubled over the past two years. This has led to a reduction in activity in many laboratories as the funding agencies have not quickly increased support in proportion. The increase in price of liquid helium has accelerated interest in the development and use of alternative cooling systems. In particular, pulse-tube coolers are now available that will allow cryostats with modest cooling needs to operate dilution refrigerators without the need for repeated refills of liquid helium from external supply sources. Solid helium research has seen a dramatic resurgence. Torsional oscillator experiments have been interpreted to show that solid helium may undergo a transition to a state in which some of the atoms in the container do not follow the motion of the container, e.g. may be 'supersolid'. The observation is robust, but the interpretation is controversial. The shear modulus of solid helium undergoes a similar signature with respect to temperature. Experiments that should be expected to cause helium to flow give conflicting results. Theory predicts that a perfect solid cannot show supersolid behavior, but novel superfluid-like behavior should be seen in various defects that can exist in the solid, and vorticity may play a significant role. And, recently there have been reports of unusual mass decoupling in films of pure 4He on graphite surfaces as well as 3He- 4He mixture films on solid hydrogen surfaces. These may be other examples of unusual superfluid-like behavior. There

  18. Reflood behavior at low initial clad temperature in Slab Core Test Facility Core-II

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Sobajima, Makoto; Abe, Yutaka; Iwamura, Takamichi; Ohnuki, Akira; Okubo, Tsutomu; Murao, Yoshio; Okabe, Kazuharu; Adachi, Hiromichi.

    1990-07-01

    In order to study the reflood behavior with low initial clad temperature, a reflood test was performed using the Slab Core Test Facility (SCTF) with initial clad temperature of 573 K. The test conditions of the test are identical with those of SCTF base case test S2-SH1 (initial clad temperature 1073 K) except the initial clad temperature. Through the comparison of results from these two tests, the following conclusions were obtained. (1) The low initial clad temperature resulted in the low differential pressures through the primary loops due to smaller steam generation in the core. (2) The low initial clad temperature caused the accumulated mass in the core to be increased and the accumulated mass in the downcomer to be decreased in the period of the lower plenum injection with accumulator (before 50s). In the later period of the cold leg injection with LPCI (after 100s), the water accumulation rates in the core and the downcomer were almost the same between both tests. (3) The low initial clad temperature resulted in the increase of the core inlet mass flow rate in the lower plenum injection period. However, the core inlet mass flow rate was almost the same regardless of the initial clad temperature in the later period of the cold leg injection period. (4) The low initial clad temperature resulted in the low turnaround temperature, high temperature rise and fast bottom quench front propagation. (5) In the region apart from the quench front, low initial clad temperature resulted in the lower heat transfer. In the region near the quench front, almost the same heat transfer coefficient was observed between both tests. (6) No flow oscillation with a long period was observed in the SCTF test with low initial clad temperature of 573 K, while it was remarkable in the Cylindrical Core Test Facility (CCTF) test which was performed with the same initial clad temperature. (J.P.N.)

  19. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2017-05-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  20. Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We...

  1. Coulometric titration at low temperatures-nonstoichiometric silver selenide

    OpenAIRE

    Beck, Gesa K.; Janek, Jürgen

    2003-01-01

    A modified coulometric titration technique is described for the investigation of nonstoichiometric phases at low temperatures. It allows to obtain titration curves at temperatures where the conventional coulometric titration technique fails because of too small chemical diffusion coefficients of the mobile component. This method for indirect coulometric titration is applied to silver selenide between -100 and 100 °C. The titration curves are analyzed on the basis of a defect chemical model an...

  2. Flare pits wastes remediation by low temperature oxidation

    International Nuclear Information System (INIS)

    Catalan, L. J. L.; Jamaluddin, A. K. M.; Mehta, R.; Moore, R. G.; Okazawa, N.; Ursenbach, M.

    1997-01-01

    The remediation of contaminated soil in oilfield sites, flare pits in particular, is subject to strict environmental regulations. Most current remediation techniques such as biological or thermal treatment are not particularly effective in highly contaminated sites, or effective only at costs that are considered prohibitive. This contribution describes a cost-effective method for the treatment of contaminated soil in-situ. The proposed treatment involves low temperature oxidation which converts the hydrocarbons in the contaminated soil to inert coke. In laboratory studies contaminated soil was oxidized with air at temperatures between 150 degrees C and 170 degrees C for three weeks. After the three week treatment extractable hydrocarbon levels were reduced to less than 0.1 per cent. Bioassays also demonstrated that toxicity associated with hydrocarbons was eliminated. Salts and metals remaining in the soil after treatment were removed by leaching with water. Low temperature oxidation requires no special equipment; it can occur under conditions and with equipment that are readily available in an oilfield setting. 5 refs., 8 tabs., 7 figs

  3. Helium-filled proportional counter and its operation mechanism at low temperatures

    CERN Document Server

    Isozumi, Y; Kishimoto, S

    2002-01-01

    The operation mechanism of helium-filled proportional counter (HFPC) at about 4.2 K is explained. Unstable behavior of HFPC is caused by releasing secondary-electron from the cathode by four kinds of active particles such as He sub n sup + , non-resonance photon from excited helium atom, non-resonance photon from He sub 2 sup * (A sup 1 Su sup +) and He sub 2 sup m (a sup 3 Su sup +). On experiments of HFPC behavior at low temperature, the following facts were observed; 1) main charge formation process in the electron avalanche is direct ionization by electron without Hornbeck-Molnar process. Accordingly, the gas amplification factor becomes small at low temperature. 2) Stable helium cation is He sub 2 sup + at room temperature, but cluster at low temperature. Large after-pulse is observed in output signal depends on cluster ion. The probability of secondary-electron emission decreased. The gas gain increased with increasing anode voltage. 3) By decreasing reaction rate of atom and molecule collision at low t...

  4. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  5. Thermal expansion of diamond at low temperatures.

    Science.gov (United States)

    Stoupin, Stanislav; Shvyd'ko, Yuri V

    2010-02-26

    Temperature variation of a lattice parameter of a synthetic diamond crystal (type IIa) was measured using high-energy-resolution x-ray Bragg diffraction in backscattering. A 2 order of magnitude improvement in the measurement accuracy allowed us to directly probe the linear thermal expansion coefficient at temperatures below 100 K. The lowest value measured was 2x10{-9} K-1. It was found that the coefficient deviates from the expected Debye law (T3) while no negative thermal expansion was observed. The anomalous behavior might be attributed to tunneling states due to low concentration impurities.

  6. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis.

    Science.gov (United States)

    He, Jing; Yang, Zhaojie; Hu, Binbin; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2015-11-01

    This study aimed to investigate the correlation between the cold adaptation of Rhodotorula glutinis YM25079 and the membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of the Δ(12)-desaturase gene. The optimum temperature for YM25079 growth was analysed first, then the composition changes of membrane lipid in YM25079 were detected by GC-MS and membrane fluidity was evaluated by 1-anilinonaphthalene-8-sulphonate (ANS) fluorescence. Meanwhile, the encoding sequence of Δ(12)-fatty acid desaturase in YM25079 was cloned and further transformed into Saccharomyces cerevisiae INVScl for functional analysis. The mRNA expression levels of Δ(12)-fatty acid desaturase at 15°C and 25°C were analysed by real-time PCR. YM25079 could grow at 5-30°C, with the optimum temperature of 15°C. The membrane fluidity of YM25079 was not significantly reduced when the culture temperature decreased from 25°C to 15°C, but the content of polyunsaturated fatty acids (PUFAs), including linoleic acid and α-Linolenic acid increased significantly from 29.4% to 55.39%. Furthermore, a novel Δ(12)-fatty acid desaturase gene YM25079RGD12 from YM25079 was successfully identified and characterized, and the mRNA transcription level of the Δ(12)-desaturase gene was about five-fold higher in YM25079 cells grown at 15°C than that at 25°C. These results suggests that the cold adaptation of Rhodotorula glutinis YM25079 might result from higher expression of genes, especially the Δ(12)-fatty acid desaturase gene, during polyunsaturated fatty acids biosynthesis, which increased the content of PUFAs in the cell membrane and maintained the membrane fluidity at low temperature. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study.

    Directory of Open Access Journals (Sweden)

    Danni Zheng

    Full Text Available Rates of acute intracerebral hemorrhage (ICH increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2 participants on an hourly timescale.INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset and elevated systolic blood pressure (SBP, 150-220 mmHg assigned to intensive (target SBP <140 mmHg or guideline-recommended (SBP <180 mmHg BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs and 95% CI.Low ambient temperature (≤10°C was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99-1.91 for 10°C, 1.92 (1.31-2.81 for 0°C, 3.13 (1.89-5.19 for -10°C, and 5.76 (2.30-14.42 for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses.Exposure to low ambient temperature within several hours increases the risk of ICH.ClinicalTrials.gov NCT00716079.

  8. A low-power CMOS smart temperature sensor for RFID application

    International Nuclear Information System (INIS)

    Xie Liangbo; Liu Jiaxin; Wang Yao; Wen Guangjun

    2014-01-01

    This paper presents the design and implement of a CMOS smart temperature sensor, which consists of a low power analog front-end and a 12-bit low-power successive approximation register (SAR) analog-to-digital converter (ADC). The analog front-end generates a proportional-to-absolute-temperature (PTAT) voltage with MOSFET circuits operating in the sub-threshold region. A reference voltage is also generated and optimized in order to minimize the temperature error and the 12-bit SAR ADC is used to digitize the PTAT voltage. Using 0.18 μm CMOS technology, measurement results show that the temperature error is −0.69/+0.85 °C after one-point calibration over a temperature range of −40 to 100 °C. Under a conversion speed of 1K samples/s, the power consumption is only 2.02 μW while the chip area is 230 × 225 μm 2 , and it is suitable for RFID application. (semiconductor integrated circuits)

  9. Development of decay energy spectroscopy using low temperature detectors.

    Science.gov (United States)

    Jang, Y S; Kim, G B; Kim, K J; Kim, M S; Lee, H J; Lee, J S; Lee, K B; Lee, M K; Lee, S J; Ri, H C; Yoon, W S; Yuryev, Y N; Kim, Y H

    2012-09-01

    We have developed a high-resolution detection technique for measuring the energy and activity of alpha decay events using low-temperature detectors. A small amount of source material containing alpha-emitting radionuclides was enclosed in a 4π metal absorber. The energy of the alpha particles as well as that of the recoiled nuclides, low-energy electrons, and low-energy x-rays and γ-rays was converted into thermal energy of the gold absorber. A metallic magnetic calorimeter serving as a fast and sensitive thermometer was thermally attached to the metal absorber. In the present report, experimental demonstrations of Q spectroscopy were made with a new meander-type magnetic calorimeter. The thermal connection between the temperature sensor and the absorber was established with annealed gold wires. Each alpha decay event in the absorber resulted in a temperature increase of the absorber and the temperature sensor. Using the spectrum measured for a drop of (226)Ra solution in a 4π gold absorber, all of the alpha emitters in the sample were identified with a demonstration of good detector linearity. The resolution of the (226)Ra spectrum showed a 3.3 keV FWHM at its Q value together with an expected gamma escape peak at the energy shifted by its γ-ray energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  11. Performance Limits and Opportunities for Low Temperature Thermal Desalination

    OpenAIRE

    Nayar, Kishor Govind; Swaminathan, Jaichander; Warsinger, David Elan Martin; Lienhard, John H.

    2015-01-01

    Conventional low temperature thermal desalination (LTTD) uses ocean thermal temperature gradients to drive a single stage flash distillation process to produce pure water from seawater. While the temperature difference in the ocean drives distillation and provides cooling in LTTD, external electrical energy is required to pump the water streams from the ocean and to maintain a near vacuum in the flash chamber. In this work, an LTTD process from the literature is compared against, the thermody...

  12. Determination of Henry’s law constant of light hydrocarbon gases at low temperatures

    International Nuclear Information System (INIS)

    Mohebbi, V.; Naderifar, A.; Behbahani, R.M.; Moshfeghian, M.

    2012-01-01

    Highlights: ► Henry’s constants of light hydrocarbon gases are reported at low temperatures. ► Solubility of iso-butane in water at low temperatures (275 K to 293 K) was measured. ► An expression of Krichevsky–Kasarnovsky equation is reported. - Abstract: The solubility of i-butane in water at the low temperatures was measured (274 K to 293 K). Additionally, Henry’s law constants of light hydrocarbons (methane, ethane, propane, i-butane, and n-butane) in water at the low temperatures are reported. A modified equation based on Krichevsky–Kasarnovsky equation is proposed to consider the effect of pressure and temperature on the equation parameters. Results show that Henry’s law constant of the selected components depends on temperature. It is deduced that pressure has a considerable effect on Henry’s law constant for methane, ethane, and propane, whereas this dependency for butanes is negligible.

  13. Anomalous thermal property behaviour of uranium at low temperatures

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1975-01-01

    Low temperature heat capacity curves are presented for polycrystalline 235 U and 238 U metals in different microstructural states and of different purities. Thermal conductivity versus temperature curves are shown for low-purity, polycrystalline 238 U in the temperature range between approximately 80 and 373 0 K for metal having undergone varied fabrication procedures. Published information suggests that there will be no structural modification in very pure uranium below room temperature. The influence of impurities on low temperature transitions may be through their effects on dislocation formation. Thermal conductivity and heat capacity runs started at approximately 80 0 K, after holding specimens at the temperature of boiling liquid nitrogen, do not give results which match up with runs started below 36 to 43 0 K. Result of measurements started at approximately 80 0 K indicate that an ordering mechanism is predominating, with microstructure rather than purity being the important factor. This can be explained if ordering at approximately 80 0 K is through lattice imperfections remaining from prior specimen processing. The drop off in heat capacity appearing above 36 0 K in the C/sub p/ versus T curves of 235 U and 238 U suggest the possibility of: (1) heat evolution from a developing antiphase structure or (2) heat evolution similar to that noted with a quenched martensite. Physical property changes in 238 U at 250 to 270 0 K and at 325 to 350 0 K seem to be related to the heat evolution which starts at 36 0 K during adiabatic heat capacity measurements. The data from heat capacity and thermal conductivity measurements are analyzed to help explain the significance of the sometimes very slight physical property changes observed at 36 to 43, approximately 80, 250 to 270 and 325 to 350 0 K in uranium metal. (U.S.)

  14. Low Temperature Oxidation of Methane: The Influence of Nitrogen Oxides

    DEFF Research Database (Denmark)

    Bendtsen, Anders Broe; Glarborg, Peter; Dam-Johansen, Kim

    2000-01-01

    by the competition between three reaction paths from CH3 to CH2O. A direct high temperature path (A), a two-step NO2 enhanced low temperature path (B) and a slow three step NO enhanced path (C), which may produce NO2 to activate path B. The negative temperature coefficient behaviour was explained by a competition...

  15. Comparative technical-economic analysis of the low temperature heating systems

    International Nuclear Information System (INIS)

    Sharevski, Vasko; Sharevski, Milan

    1994-01-01

    A method for comparative technical-economic analysis between low temperature heating systems and heating systems with fossil fuel boiler plant, heat pump heating system and electrical heating systems is presented. The single and combined heating systems are analyzed. The technical-economic priority application of the heating system is determined according to the prices of the low temperature heat energy, fossil fuel heat energy, electrical energy, as well as to the coefficient of the annual use of the installed heating capacity, investment expenses, structure of the combined heating system and coefficient of performances of the heat pump. The combined heating system, composed with a low temperature heating subsystem, which is used to cover the base heat demands, and a oil boiler plant heating subsystem, for the top heat demands, have technical-economic justification and wide range of priority application, in comparison with single heating systems. (author)

  16. Application and microbial ecology of psychrotrophs in domestic wastewater treatment at low temperature.

    Science.gov (United States)

    Xu, Zhenzhen; Ben, Yue; Chen, Zhonglin; Jiang, Anxi; Shen, Jimin; Han, Xiaoyun

    2018-01-01

    The feasibility of a bunch of screened psychrotrophs being applied to low-temperature wastewater treatment was investigated. The screened psychrophillic strains are capable of growth at a broad temperature-range from 0 to 40 °C and exhibit a preferable TTC-dehydrogenase activity at low temperature (4-10 °C). Along the sharply fluctuant temperatures (25-4-25 °C), the screened psychrotrophs (compared with the indigenous mesophiles) demonstrate less fluctuations of COD removal and more rapid recovery after temperature shocks. COD removal of approximate 80% was recorded by single psychrotrophs (while only 10% by single mesophiles) at low temperature (4 °C). Soft polyurethane foam showed better performance for psychrotrophs immobilization, with the optimal filling rate of 30% (v/v) in the bioreactor. The observation shows that the immobilized psychrotrophs demonstrated a relatively high performance on both conventional and emerging organic contaminants removals at low temperature. In order to check the feasibility of the screened psychrotrophs in treating actual domestic wastewater, a pilot-scale ICABR bioreactor was operated firstly at low temperature (4 °C) and then at seasonal varying temperatures (0-30 °C) for one year, the influent COD of 150-600 mg L -1 was efficiently reduced to 40 ± 18 mg L -1 under the conditions of an overall hydraulic retention time of 10 h. Furthermore, psychrotrophs performed stably as the predominant bacteria family during the whole operation. This study provides evidence that microbial intensification with psychrotrophs was a feasible strategy to improve the efficiency of conventional wastewater treatment process at low temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Apparatus and Method for Low-Temperature Training of Shape Memory Alloys

    Science.gov (United States)

    Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.

    2015-01-01

    An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.

  18. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    International Nuclear Information System (INIS)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard

    2014-01-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K

  19. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  20. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope.

    Science.gov (United States)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard

    2014-02-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  1. Positron annihilation in low-temperature rare gases. II. Argon and neon

    International Nuclear Information System (INIS)

    Canter, K.F.; Roellig, L.O.

    1975-01-01

    Lifetime measurements of slow-positron and ortho-positronium (o-Ps) annihilation were made in argon and neon gases at room temperature and below. The argon experiments cover the temperature range 115 to 300 0 K and the density range 0.0356 to 0.0726 g/cm 3 (approximately equal to 20 to 40 amagat). The slow-positron spectra in argon exhibit a departure from free-positron annihilation below 200 0 K. The departure becomes more marked as the temperature is lowered. No deviation from free o-Ps pickoff annihilation is observed in argon at low temperatures. The neon measurements cover the temperature range 30 to 300 0 K and the density range 0.032 to 0.89 g/cm 3 (approximately equal to 35 to 980 amagat). No effect of temperature on the slow-positron spectra throughout the temperature and density ranges investigated in neon is observed. The spectra are very exponential with a corresponding decay rate which is temperature as well as time independent and is directly proportional to density over the ranges investigated. The o-Ps data are more eventful in that the o-Ps lifetime at near-liquid densities is approximately 20 nsec, a factor of nearly 4 greater than the value obtained using the pickoff-annihilation coefficient obtained at lower densities. This is evidence for positronium-induced cavities in low-temperature neon. A brief discussion of the argon and neon results is given in the context of the explanations offered for the low-temperature effects observed in helium gas

  2. Low-temperature capacitive sensor based on perovskite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zaza, F., E-mail: fabio.zaza@enea.it; Serra, E.; Caprioli, F. [ENEA-Casaccia R.C. via Anguillarese 301, 00123 Rome (Italy); Orio, G.; Pasquali, M. [Department of Basic and Applied Sciences for Engineering, La Sapienza University, Via A. Scarpa 14/16, 00161 Rome (Italy)

    2015-06-23

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface.

  3. Low-temperature capacitive sensor based on perovskite oxides

    International Nuclear Information System (INIS)

    Zaza, F.; Serra, E.; Caprioli, F.; Orio, G.; Pasquali, M.

    2014-01-01

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface

  4. Low-temperature capacitive sensor based on perovskite oxides

    Science.gov (United States)

    Zaza, F.; Orio, G.; Serra, E.; Caprioli, F.; Pasquali, M.

    2015-06-01

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface.

  5. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  6. Room and low temperature synthesis of carbon nanofibres

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.

    2002-01-01

    Carbon nanotubes and nanofibres have attracted attention in recent years as new materials with a number of very promising potential applications. Carbon nanotubes are potential candidates for field emitters in flat panel displays. Carbon nanofibres could also be used as a hydrogen storage material and as a filling material in polymer composites. Carbon nanotubes are already used as tips in scanning probe microscopy due to their remarkable mechanical and electrical properties, and could be soon used as nanotweezers. Use of carbon nanotubes in nanoelectronics will open further miniaturisation prospects. Temperatures ranging from 450 to 1000 deg C have been a required for catalytic growth of carbon nanotubes and nanofibres. Researchers have been trying to reduce the growth temperatures for decades. Low temperature growth conditions will allow the growth of carbon nanotubes on different substrates, such glass (below 650 deg C) and as plastics (below 150 deg C) over relatively large areas, which is especially suitable for fiat panel display applications. Room temperature growth conditions could open up the possibility of using different organic substrates and bio-substrates for carbon nanotubes synthesis. Carbon nanofibres have been synthesised at room temperature and low temperatures below 250 deg C using radio frequency plasma enhanced chemical vapour deposition (r.f. PECVD). Previously, the growth of carbon nanofibres has been via catalytic decomposition of hydrocarbons or carbon monoxide at temperatures above 300 deg C. To the best of our knowledge, this is the first evidence of the growth of carbon nanofibres at temperatures lower than 300 deg C by any method. The use of a transition metal catalyst and r.f.-PECVD system is required for the growth of the carbon nanofibre when a hydrocarbon flows above the catalyst. Within the semiconductor industry r.f.-PECVD is a well established technique which lends itself for the growth of carbon nanofibres for various

  7. An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Mullane, Michelle; Gleason, Michael; Reber, Tim; McCabe, Kevin; Mooney, Meghan; Young, Katherine R.

    2017-05-01

    Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water heating, greenhouse warming, pool heating, aquaculture, and low-temperature manufacturing processes. Several studies published over the past 40 years have provided assessments of the resource potential for multiple types of low-temperature geothermal systems (e.g. hydrothermal convection, hydrothermal conduction, and enhanced geothermal systems) with varying temperature ranges and depths. This paper provides a summary and additional analysis of these assessments of shallow (= 3 km), low-temperature (30-150 degrees C) geothermal resources in the United States, suitable for use in direct-use applications. This analysis considers six types of geothermal systems, spanning both hydrothermal and enhanced geothermal systems (EGS). We outline the primary data sources and quantitative parameters used to describe resources in each of these categories, and present summary statistics of the total resources available. In sum, we find that low-temperature hydrothermal resources and EGS resources contain approximately 8 million and 800 million TWh of heat-in-place, respectively. In future work, these resource potential estimates will be used for modeling of the technical and market potential for direct-use geothermal applications for the U.S. Department of Energy's Geothermal Vision Study.

  8. Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass

    International Nuclear Information System (INIS)

    Vasiliev, A. N.; Voloshok, T. N.; Granato, A. V.; Joncich, D. M.; Mitrofanov, Yu. P.; Khonik, V. A.

    2009-01-01

    Low-temperature (2 K≤T≤350 K) heat capacity and room-temperature shear modulus measurements (ν=1.4 MHz) have been performed on bulk Pd 41.25 Cu 41.25 P 17.5 in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

  9. Temperature dependent heterogeneous rotational correlation in lipids.

    Science.gov (United States)

    Dadashvand, Neda; Othon, Christina M

    2016-11-15

    Lipid structures exhibit complex and highly dynamic lateral structure; and changes in lipid density and fluidity are believed to play an essential role in membrane targeting and function. The dynamic structure of liquids on the molecular scale can exhibit complex transient density fluctuations. Here the lateral heterogeneity of lipid dynamics is explored in free standing lipid monolayers. As the temperature is lowered the probes exhibit increasingly broad and heterogeneous rotational correlation. This increase in heterogeneity appears to exhibit a critical onset, similar to those observed for glass forming fluids. We explore heterogeneous relaxation in in a single constituent lipid monolayer of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine  by measuring the rotational diffusion of a fluorescent probe (1-palmitoyl-2-[1]-sn-glycero-3-phosphocholine), which is embedded in the lipid monolayer at low labeling density. Dynamic distributions are measured using wide-field time-resolved fluorescence anisotropy. The observed relaxation exhibits a narrow, liquid-like distribution at high temperatures (τ ∼ 2.4 ns), consistent with previous experimental measures (Dadashvand et al 2014 Struct. Dyn. 1 054701, Loura and Ramalho 2007 Biochim. Biophys. Acta 1768 467-478). However, as the temperature is quenched, the distribution broadens, and we observe the appearance of a long relaxation population (τ ∼ 16.5 ns). This supports the heterogeneity observed for lipids at high packing densities, and demonstrates that the nanoscale diffusion and reorganization in lipid structures can be significantly complex, even in the simplest amorphous architectures. Dynamical heterogeneity of this form can have a significant impact on the organization, permeability and energetics of lipid membrane structures.

  10. Low power consumption and high temperature durability for radiation sensor

    International Nuclear Information System (INIS)

    Matsumoto, Yoshinori; Ueno, Hiroto

    2015-01-01

    Low power consumption and high temperature operation are important in an environmental monitoring system. The power consumption of 3 mW is achieved for the radiation sensor using low voltage operational amplifier and comparator in the signal processing circuit. The leakage reverse current of photodiode causes the charge amplifier saturation over 50degC. High temperature durability was improved by optimizing the circuit configuration and the values of feedback resistance and capacitance in the charge amplifier. The pulse response of the radiation sensor was measured up to 55degC. The custom detection circuit was designed by 0.6 μm CMOS process at 5-V supply voltage. The operation temperature was improved up to 65degC. (author)

  11. Mechanisms of Low-Temperature Nitridation Technology on a TaN Thin Film Resistor for Temperature Sensor Applications.

    Science.gov (United States)

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2016-12-01

    In this letter, we propose a novel low-temperature nitridation technology on a tantalum nitride (TaN) thin film resistor (TFR) through supercritical carbon dioxide (SCCO2) treatment for temperature sensor applications. We also found that the sensitivity of temperature of the TaN TFR was improved about 10.2 %, which can be demonstrated from measurement of temperature coefficient of resistance (TCR). In order to understand the mechanism of SCCO2 nitridation on the TaN TFR, the carrier conduction mechanism of the device was analyzed through current fitting. The current conduction mechanism of the TaN TFR changes from hopping to a Schottky emission after the low-temperature SCCO2 nitridation treatment. A model of vacancy passivation in TaN grains with nitrogen and by SCCO2 nitridation treatment is eventually proposed to increase the isolation ability in TaN TFR, which causes the transfer of current conduction mechanisms.

  12. Lipophilic Contaminants Influence Cold Tolerance of Invertebrates through Changes in Cell Membrane Fluidity

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Bouvrais, Hélène; Westh, Peter

    2014-01-01

    Contaminants taken up by living organisms in the environment as a result of anthropogenic contamination can reduce the tolerance of natural stressors, e.g., low temperatures, but the physiological mechanisms behind these interactions of effects are poorly understood. The tolerance to low temperat...

  13. On exhaust emissions from petrol-fuelled passenger cars at low ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1998-11-01

    The study at hand deals with regulated and unregulated exhaust emissions from petrol-fuelled cars at low ambient temperatures with present-day or near-future exhaust after treatment systems. The subject has been investigated at VTT over a decade and this report compiles data from various sub-studies carried out between the years 1993 - 1997. Each one of them viewed different aspects of the phenomenon, like determining the low-temperature response of today`s new cars employing three-way catalytic converters or assessing the long-term durability and the influence of vehicle mileage upon the low-temperature emissions performance. Within these studies, together more than 120 cars of model years from 1990 to 1997 have been tested. Most of them were normal, in-service vehicles with total mileages differing between only a few thousand kilometres for new cars up to 80,000 km or even more for the in-use vehicles. Both the US FTP75 and the European test cycle have been employed, and the ambient temperatures ranged from the baseline (+22 deg C) down to +- O deg C, -7 deg C and in some cases even to -20 deg C. The studies attested that new cars having today`s advanced emissions control systems produced fairly low levels of emissions when tested in conditions designated in the regulations that are the basis of the current new-vehicle certification. However, this performance was not necessarily attained at ambient temperatures that were below the normative range. Fairly widespread response was recorded, and cars having almost equal emissions output at baseline could produce largely deviating outcomes in low-temperature conditions. On average, CO and HC emissions increased by a factor of five to 10, depending on the ambient temperature and vehicle type. However, emissions of NO{sub x} were largely unaffected. Apart from these regulated emissions, many unregulated species were also determined, either by using traditional sampling and chromatography methods or on-line, employing

  14. Crystal growth from low-temperature solutions

    International Nuclear Information System (INIS)

    Sangwal, K.

    1994-01-01

    The state of the art in crystal growth from solutions at low-temperatures has been done. The thermodynamic and kinetic parameters have been discussed in respect to different systems. The methods of crystal growth from water and organic solutions and different variants of their technical realizations have been reviewed. Also the growth by chemical reactions and gel growth have been described. The large number of examples have been shown. 21 refs, 30 figs, 3 tabs

  15. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  16. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  17. On the nature of low temperature anomalies of metallic glass inelastic properties

    International Nuclear Information System (INIS)

    Spivak, L.V.; Khonik, V.A.

    1997-01-01

    Low-temperature (30 60 Nb 40 metallic glass (MG) exposed to the preliminary cold deformation via rolling, to high-temperature homogeneous deformation or to electrolytic hydrogen absorption were investigated. Conclusion is made that the published low-temperature peaks of the internal friction in quick-hardened cold-deformed or hydrogen absorbed MGs are of the common dislocation-like nature. Effect of 2 MeV electron irradiation on the temperature dependence of the internal friction and on the elasticity module of hydrogenated specimens was investigated, as well [ru

  18. Material for electrodes of low temperature plasma generators

    Science.gov (United States)

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  19. Application of piezoceramic materials in low temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Panich, A.E.

    1989-01-01

    Temperature dependences of the voltage-to-movement conversion coefficients for piezoceramic domestic materials PKR and TsTS-19 are measured using a capacitance dilatometer in the 0.4< T<300K temperature range. Anisotropy of thermal expansion of materials determined by the polarization vector is observed. Some recommendations concerning the use of the given materials in low-temperature scanning tunnel microscopes are given

  20. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  1. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study

    Science.gov (United States)

    Zheng, Danni; Arima, Hisatomi; Sato, Shoichiro; Gasparrini, Antonio; Heeley, Emma; Delcourt, Candice; Lo, Serigne; Huang, Yining; Wang, Jiguang; Stapf, Christian; Robinson, Thompson; Lavados, Pablo; Chalmers, John; Anderson, Craig S.

    2016-01-01

    Background Rates of acute intracerebral hemorrhage (ICH) increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) participants on an hourly timescale. Methods INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset) and elevated systolic blood pressure (SBP, 150–220 mmHg) assigned to intensive (target SBP <140 mmHg) or guideline-recommended (SBP <180 mmHg) BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs) and 95% CI. Results Low ambient temperature (≤10°C) was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99–1.91) for 10°C, 1.92 (1.31–2.81) for 0°C, 3.13 (1.89–5.19) for -10°C, and 5.76 (2.30–14.42) for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses. Conclusions Exposure to low ambient temperature within several hours increases the risk of ICH. Trial Registration ClinicalTrials.gov NCT00716079 PMID:26859491

  2. A LOW TEMPERATURE ALUMINIZING TREATMENT OF HOT WORK TOOL STEEL

    OpenAIRE

    Matijević, Božidar

    2013-01-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to the X40CrMoV5-1 hot tool steel. The aluminizing temperature was from 550 °C to 620 °C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the alumini...

  3. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  4. Stability of retained austenite arising at low temperatures in low carbon steels with copper using TRIP effect

    International Nuclear Information System (INIS)

    Michta, G.; Pietrzyk, J.; Osuch, W.; Kruk, A.

    2003-01-01

    The magnetometric measurement results of decomposition of retained austenite arising during low temperature bainite transformation, obtained structure and mechanical properties are presented. Presented results demonstrate that the low temperature bainite transformation leads to formation of two kinds of retained austenite with different stability. Decomposition of low stability retained austenite was observed during cooling to -196 o C, the second with high stability was decomposed only during heating up to 560 o C. The first one was observed in microstructure as big grains and the second more refinement in structure was localised between bainitic regions. (author)

  5. Desalination by very low temperature nuclear heat

    International Nuclear Information System (INIS)

    Saari, Risto

    1977-01-01

    A new sea water desalination method has been developed: Nord-Aqua Vacuum Evaporation, which utilizes waste heat at a very low temperature. The requisite vacuum is obtained by the aid of a barometric column and siphon, and the dissolved air is removed from the vacuum by means of water flows. According to test results from a pilot plant, the process is operable if the waste heat exists at a temperature 7degC higher than ambient. The pumping energy which is then required is 9 kcal/kg, or 1.5% of the heat of vaporization of water. Calculations reveal that the method is economically considerably superior to conventional distilling methods. (author)

  6. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  7. Industrial applications of low-temperature plasma physics

    International Nuclear Information System (INIS)

    Chen, F.F.

    1995-01-01

    The application of plasma physics to the manufacturing and processing of materials may be the new frontier of our discipline. Already partially ionized discharges are used in industry, and the performance of plasmas has a large commercial and technological impact. However, the science of low-temperature plasmas is not as well developed as that of high-temperature, collisionless plasmas. In this paper several major areas of application are described and examples of forefront problems in each are given. The underlying thesis is that gas discharges have evolved beyond a black art, and that intellectually challenging problems with elegant solutions can be found. copyright 1995 American Institute of Physics

  8. Low-temperature conversion of low-grade organic raw, part 1 (technical aspects)

    OpenAIRE

    Kazakov Alexander V.; Tabakaev Roman B.; Novoseltsev Pavel Y.; Astafev Alexander V.

    2014-01-01

    Relevance of the local organic raw using in Russian fuel and energy market was shown. Status of Tomsk region decentralized energy supply was analyzed. Variants of power units on the basis of the low-temperature intracyclic conversion were presented. The results of the design calculation power units were given.

  9. Ultrasonic attenuation of CdSe at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B.J., E-mail: braulio@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Calderon, E.; Bracho, D.B. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Perez, J.F. [Laboratorio de Instrumentacion Cientifica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of)

    2010-08-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter {gamma} is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter {gamma}, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  10. Ultrasonic attenuation of CdSe at low temperatures

    International Nuclear Information System (INIS)

    Fernandez, B.J.; Calderon, E.; Bracho, D.B.; Perez, J.F.

    2010-01-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter γ is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter γ, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  11. Selective growth of Ge nanowires by low-temperature thermal evaporation.

    Science.gov (United States)

    Sutter, Eli; Ozturk, Birol; Sutter, Peter

    2008-10-29

    High-quality single-crystalline Ge nanowires with electrical properties comparable to those of bulk Ge have been synthesized by vapor-liquid-solid growth using Au growth seeds on SiO(2)/Si(100) substrates and evaporation from solid Ge powder in a low-temperature process at crucible temperatures down to 700 °C. High nanowire growth rates at these low source temperatures have been identified as being due to sublimation of GeO from substantial amounts of GeO(2) on the powder. The Ge nanowire synthesis from GeO is highly selective at our substrate temperatures (420-500 °C), i.e., occurs only on Au vapor-liquid-solid growth seeds. For growth of nanowires of 10-20 µm length on Au particles, an upper bound of 0.5 nm Ge deposition was determined in areas of bare SiO(2)/Si substrate without Au nanoparticles.

  12. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    International Nuclear Information System (INIS)

    Feng Tai-Chen; Zhang Ke-Quan; Wang Xiao-Juan; Zhang Wen-Yu; Su Hai-Jing; Gong Zhi-Qiang

    2015-01-01

    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak; the number of lasted days has decreased; and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter. (paper)

  13. Enhanced fluidity liquid chromatography of inulin fructans using ternary solvent strength and selectivity gradients.

    Science.gov (United States)

    Bennett, Raffeal; Olesik, Susan V

    2018-01-25

    The value of exploring selectivity and solvent strength ternary gradients in enhanced fluidity liquid chromatography (EFLC) is demonstrated for the separation of inulin-type fructans from chicory. Commercial binary pump systems for supercritical fluid chromatography only allow for the implementation of ternary solvent strength gradients which can be restrictive for the separation of polar polymeric analytes. In this work, a custom system was designed to extend the capability of EFLC to allow tuning of selectivity or solvent strength in ternary gradients. Gradient profiles were evaluated using the Berridge function (RF 1 ), normalized resolution product (NRP), and gradient peak capacity (P c ). Selectivity gradients provided the separation of more analytes over time. The RF 1 function showed favor to selectivity gradients with comparable P c to that of solvent strength gradients. NRP did not strongly correlate with P c or RF 1 score. EFLC with the hydrophilic interaction chromatography, HILIC, separation mode was successfully employed to separate up to 47 fructan analytes in less than 25 min using a selectivity gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fuel oil from low-temperature carbonization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Thau, A

    1941-01-01

    A review has been given of German developments during the last 20 years. Four methods for the low-temperature carbonization of coal have been developed to the industrial stage; two involving the use of externally heated, intermittent, metallic chamber ovens; and two employing the principle of internal heating by means of a current of gas. Tar from externally heated retorts can be used directly as fuel oil, but that from internally heated retorts requires further treatment. In order to extend the range of coals available for low-temperature carbonization, and to economize metals, an externally heated type of retort constructed of ceramic material has been developed to the industrial stage by T. An excellent coke and a tar that can be used directly as fuel oil are obtained. The properties of the tar obtained from Upper Silesian coal are briefly summarized.

  15. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Ford, Rufus; Pietruschka, Dirk; Sipilä, Kari

    participants being VTT Technical Research Centre of Finland (VTT), Technical University of Denmark (DTU), Norwegian University of Science and Technology (NTNU), Stuttgart Technology University of Applied Sciences (HFT) and SSE Enterprise in United Kingdom. The demonstration cases described in the report......This report titled “Case studies and demonstrations” is the subtask D report of the IEA DHC|CHP Annex TS1 project “Low Temperature District Heating for Future Energy Systems” carried out between 2013 and 2016. The project was led by Fraunhofer Institute for Building Physics (IBP) with the other...... include examples on low temperature district heating systems, solar heating in a district heating system, heat pump based heat supply and energy storages for both peak load management and for seasonal heat storage. Some demonstrations have been implemented while others are at planning phase...

  16. Crisis or Fluidity? Florian Znaniecki’s Theory of Civilization

    Directory of Open Access Journals (Sweden)

    Elżbieta Hałas

    2017-01-01

    Full Text Available The preoccupation with the processes of globalization, which has become a key concept in the analysis of the sociocultural condition of postmodernity, has led to a decreased interest in the theory of civilization. The ideological burden of the concept of civilization and its stigmatization by critics of post-Enlightenment modernity also contribute to this current state. However, issues associated with the processes of civilization have once again come to the fore, as shown by the reconstruction of threads associated with civilization in social theory, including sociological works. The views on civilization presented by Weber, Durkheim and Mauss, by their successors Sorokin, Elias and Nelson, down to the contemporary publications of Huntington and Eisenstadt are widely known, whereas works published on this subject in Polish by Florian Znaniecki are not. On a backdrop of the genesis of civilization-associated discourse and its antinomy as regards religion, the article presents Znaniecki’s concept of civilization processes as the social integration of culture, developed on the basis of his theory of cultural and social systems. Two types of human participation in culture are significant here: cultural communities and social groups which create a cultural bond. The de-civilizing processes which Znaniecki described are shown. The article analyzes Znaniecki’s idea of a fluid civilization and the conditions which are necessary for its existence, in the shape of reflexive cultural knowledge as the answer to a cultural crisis. The new type of cultural crisis stems from cultural innovations. The article shows the differences between Znaniecki’s concept of fluidity and Bauman’s liquid modernity. It presents the concept of “civilization of the future” as a pan-human civilization, which requires the formation of a new type of cultural community – the world culture society.

  17. Elaboration in the area of low temperature chlorination of rare-metal crude ore

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    The chemical base of low temperature chlorination of rare-metal crude ore was elaborated. The chemical nature of chlorination process which pass at low temperature was decoded and scientifically elaborated

  18. Temperature measurement in low pressure plasmas. Temperaturmessungen im Niederdruckplasma

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbauer, K.A.; Wilting, H.; Schramm, G. (Duesseldorf Univ. (Germany, F.R.). Abt. fuer Histologie und Embryologie)

    1989-11-01

    The present work discusses the influence of various parameters on the substrate temperature in a low pressure plasma. The measurement method chosen utilized Signotherm (Merck) temperature sensors embedded in silicon between two glass substrates. All measurements were made in a 200 G Plasma Processor from Technics Plasma GmbH. The substrate temperature is dependent on the process time, the RF power, the process gas and the position in the chamber. The substrate temperature increases with increasing process time and increasing power. Due to the location of the microwave port from the magnetron to the chamber, the substrate temperature is highest in the center of the chamber. Measurements performed in an air plasma yielded higher results than in an oxygen plasma. (orig.).

  19. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C

    NARCIS (Netherlands)

    Liu, Dandan; Zhang, Lei; Chen, Si; Buisman, Cees; Heijne, ter Annemiek

    2016-01-01

    Anaerobic digestion at low temperature is an attractive technology especially in moderate climates, however, low temperature results in low microbial activity and low rates of methane formation. This study investigated if bioelectrochemical systems (BESs) can enhance methane production from

  20. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-09

    Nov 9, 2011 ... Levels of electrolyte leak and MDA were lower than in UD189 or UD191. Poplar hybrid clones ... humidity, exposure, and water status and health conditions of ... consecutive low temperature treatment; and to detect variation ...

  1. Some experiments in low-temperature thermometry

    International Nuclear Information System (INIS)

    Fogle, W.E.

    1982-11-01

    A powdered cerous magnesium nitrate (CMN) temperature scale has been developed in the 0.016 to 3.8 K region which represents an interpolation between the 3 He/ 4 He (T 62 /T 58 ) vapor pressure scale and absolute temperatures in the millikelvin region as determined with a 60 Co in hcp Co nuclear orientation thermometer (NOT). Both ac and dc susceptibility thermometers were used in these experiments. The ac susceptibility of a 13 mg CMN-oil slurry was measured with a mutual inductance bridge employing a SQUID null detector while the dc susceptibility of a 3 mg slurry was measured with a SQUID/flux transformer combination. To check the internal consistency of the NOT, γ-ray intensities were measured both parallel and perpendicular to the Co crystal c-axis. The independent temperatures determined in this fashion were found to agree to within experimental error. For the CMN thermometers employed in these experiments, the susceptibility was found to obey a Curie-Weiss law with a Weiss constant of Δ = 1.05 +- 0.1 mK. The powdered CMN scale in the 0.05 to 1.0 K region was transferred to two germanium resistance thermometers for use in low-temperature specific heat measurements. The integrity of the scale was checked by examining the temperature dependence of the specific heat of high purity copper in the 0.1 to 1 K region. In more recent experiments in this laboratory, the scale was also checked by a comparison with the National Bureau of Standards cryogenic temperature scale (NBS-CTS-1). The agreement between the two scales in the 99 to 206 mK region was found to be on the order of the stated accuracy of the NBS scale

  2. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids.

    Science.gov (United States)

    Connolly, J G; Brown, I D; Lee, A G; Kerkut, G A

    1985-01-01

    The swimming velocity and the amplitude of the helical swimming path of T. pyriformis-NT1 cells grown at 20 degrees C (Tg 20 degrees C) and 38 degrees C (Tg 38 degrees C) were monitored between 0 and 40 degrees C in the presence and absence of electric fields. Within physiological limits the swimming velocity increased and the amplitude decreased as temperature was raised. The temperature profiles of these properties were not linear, and showed discontinuities at different temperatures for the different cultures. The break points in Arrhenius plots of the resting potential, regenerative spike magnitude, repolarization time, swimming velocity and swimming amplitude are tabulated and compared. The initial breakpoints upon cooling were clustered about the breakpoints in fluorescence polarization of D.P.H. in extracted phospholipids, and around the transition temperatures estimated from the literature for the pellicular membrane of these cells. The average of the initial breakpoints on cooling was 22.9 degrees C for Tg 38 degrees C cells and 13.7 degrees C for Tg 20 degrees C cells, a shift of 9.2 degrees C. Unlike Paramecium there is no depolarizing receptor potential in Tetrahymena upon warming. It is suggested that this may be the basis of a behavioural difference between Tetrahymena and Paramecium--namely that in Tetrahymena maximum swimming velocity occurs above growth temperature whereas in Paramecium the two points coincide. Swimming velocity and resting potential were correlated with membrane fluidity within physiological limits, but for other parameters the relationship with fluidity was more complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  4. Quantum Simulations of Low Temperature High Energy Density Matter

    National Research Council Canada - National Science Library

    Voth, Gregory

    2004-01-01

    .... Using classical molecular dynamics simulations to evaluate these equilibrium properties would predict qualitatively incorrect results for low temperature solid hydrogen, because of the highly quantum...

  5. Potential of low-temperature nuclear heat applications

    International Nuclear Information System (INIS)

    1986-12-01

    At present, more than one third of the fossil fuel currently used is being consumed to produce space heating and to meet industrial needs in many countries of the world. Imported oil still represents a large portion of this fossil fuel and despite its present relatively low price future market evolutions with consequent upward cost revisions cannot be excluded. Thus the displacement of the fossil fuel by cheaper low-temperature heat produced in nuclear power plants is a matter which deserves careful consideration. Technico-economic studies in many countries have shown that the use of nuclear heat is fully competitive with most of fossil-fuelled plants, the higher investment costs being offset by lower production cost. Another point in favour of heat generation by nuclear source is its indisputable advantage in terms of benefits to the environment. The IAEA activity plans for 1985-86 concentrate on information exchange with specific emphasis on the design criteria, operating experience, safety requirements and specifications of heat-only reactors, co-generation plants and existing power plants backfitted for additional heat applications. The information gained up to 1985 was discussed during the Advisory Group Meeting on the Potential of Low-Temperature Nuclear Heat Applications held in the Federal Institute for Reactor Research, Wuerenlingen, Switzerland in September 1985 and, is included in the present Technical Document

  6. Chapter 4. Fundamental mechanisms of the low temperature plastic deformation of metals

    International Nuclear Information System (INIS)

    Fouquet, J. de

    1976-01-01

    The influence of microstructure, grain boundaries, and strain hardening, on the low temperature plasticity of polycristals is studied. The experimental data on flow stress, work hardening, temperature and strain rate effects, alloying elements and grain size effect are firstly considered, on a macroscopic scale. The mechanisms of the low temperature plastic deformation, and the strain-stress relations are then described in terms of slip modes, mobility, configuration and distributions and interactions of dislocations [fr

  7. Survey on the characteristics of rock under low and high temperature

    International Nuclear Information System (INIS)

    Shin, Koich; Kitano, Koichi

    1987-01-01

    Rock caverns for Superconducting Magnetic Energy Storage (SMES), Radioactive Waste Disposal, or Liquified Natural Gas Storage will suffer extraordinary temperature. Therefore, authors have researched the rock characteristics under the low temperature conditions and the rock mass behavior when it is heated, by papers so far reported. As a result, rock characteristics such as strength, linear expansion coefficient, thermal conductivity etc. are found to be ready to change with temperature condition and the kind of rocks. Even an anisotropy of some kind appears under some conditions. So, when sitting those facilities before mentioned, rock characteristics under each temperature condition must be enough clarified for the purpose of the evaluation of rock cavern stability and especially, rock behavior when it is loaded dynamically under low temperature must be cleared from now on, for such studies have been few. (author)

  8. Automation of low temperature positron annihilation spectroscopy system

    International Nuclear Information System (INIS)

    Chaturvedi, T.P.; Venkiteswaran, S.; Pujari, P.K.

    1997-01-01

    This paper describes the automation implemented in the low temperature measurements in positron annihilation spectroscopic studies. This has not only widened the scope of the positron research, but also helps achieve result with better precision. (author). 3 refs., 1 fig

  9. A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies

    Science.gov (United States)

    Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme

    2018-05-01

    Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.

  10. Low-temperature synthesis of superconducting nanocrystalline MgB2

    International Nuclear Information System (INIS)

    Lu, J.; Xiao, Z.; Lin, Q.; Claus, H.; Fang, Z.Z.

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  11. High pressure neutron and X-ray diffraction at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J.; Kamenev, Konstantin V. [Edinburgh Univ. (United Kingdom). School of Engineering and the Centre for Science at Extreme Conditions

    2014-04-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  12. High pressure neutron and X-ray diffraction at low temperatures

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Kamenev, Konstantin V.

    2014-01-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  13. Low-temperature localization in the transport properties of self-doped

    Indian Academy of Sciences (India)

    ... such as electron–electron, Kondo, electron–phonon and electron–magnon are found to be strongly influenced by the applied magnetic field. The results suggest that interplay between electron–electron and Kondo-like scatterings lead to the localization in the temperature dependence of resistivity at low temperature.

  14. Highly anisotropic SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lidong; Zhang, Songlin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhang, Jian, E-mail: zhangj@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Ping Liu, J. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Xia, Weixing; Du, Juan; Yan, Aru [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Yi, Jianhong [Institute of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Li, Wei; Guo, Zhaohui [Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2015-01-15

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo{sub 5} nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo{sub 5} nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo{sub 5} nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo{sub 5} nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified.

  15. Low temperature measurement of the vapor pressures of planetary molecules

    Science.gov (United States)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  16. Low-temperature conversion of low-grade organic raw, part 1 (technical aspects

    Directory of Open Access Journals (Sweden)

    Kazakov Alexander V.

    2014-01-01

    Full Text Available Relevance of the local organic raw using in Russian fuel and energy market was shown. Status of Tomsk region decentralized energy supply was analyzed. Variants of power units on the basis of the low-temperature intracyclic conversion were presented. The results of the design calculation power units were given.

  17. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation.

    Science.gov (United States)

    Zhang, Zhiping; Zhang, Xu; Tan, Tianwei

    2014-04-01

    The capacity of lipid and carotenoid production by Rhodotorula glutinis was investigated under different irradiation conditions, temperatures and C/N ratios. The results showed that dark/low-temperature could enhance lipid content, while irradiation/high-temperature increased the yields of biomass and carotenoid. The optimum C/N ratio for production was between 80 and 100. A two-stage cultivation strategy was used for lipid and carotenoid production in a 5L fermenter. In the first stage, the maximum biomass reached 28.1g/L under irradiation/high-temperature. Then, the cultivation condition was changed to dark/low-temperature, and C/N ratio was adjusted to 90. After the second stage, the biomass, lipid content and carotenoid reached 86.2g/L, 26.7% and 4.2mg/L, respectively. More significantly, the yields of biomass and lipid were 43.1% and 11.5%, respectively. Lipids contained 79.7% 18C and 16.8% 16C fatty acids by GC analysis. HPLC quantified the main carotenoids were β-carotene (68.4%), torularhodin (21.5%) and torulene (10.1%). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  18. High density microelectronics package using low temperature cofirable ceramics

    International Nuclear Information System (INIS)

    Fu, S.-L.; Hsi, C.-S.; Chen, L.-S.; Lin, W. K.

    1997-01-01

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe 2/3 W 1/3 ) x (Fe l/2 Nb l/2 ) y Ti 2 O 3 was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  19. High density microelectronics package using low temperature cofirable ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S -L; Hsi, C -S; Chen, L -S; Lin, W K [Kaoshiung Polytechnic Institute Ta-Hsu, Kaoshiung (China)

    1998-12-31

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe{sub 2/3}W{sub 1/3}){sub x}(Fe{sub l/2}Nb{sub l/2}){sub y}Ti{sub 2}O{sub 3} was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  20. Account of low temperature hardening in calculation of permissible stresses

    International Nuclear Information System (INIS)

    Novikov, N.V.; Ul'yanenko, A.P.; Gorodyskij, N.I.

    1980-01-01

    Suggested is a calculation scheme of permissible stresses with the account of temperature hardening for steels and alloys, the dependences of strength, plasticity and rupture work of which on cooling temperature do not have threshold changes in a wide range of low temperatures (from 300 to 4.2 K). Application of the suggested scheme is considered on the example of 12Kh18N10T austenitic chromium-nickel steel

  1. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    Science.gov (United States)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  2. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2016-10-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  3. Thermodynamic power stations at low temperatures

    Science.gov (United States)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  4. Low temperature behaviour of elastomers in seals; Tieftemperaturverhalten von Elastomeren im Dichtungseinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Jaunich, Matthias

    2012-04-25

    Elastomeric seals are of high importance as machine parts and construction elements, but in spite of this the low temperature limit for the use of a seal was not fully understood. Hence, the required safety relevant evaluation of the lowest acceptable operating seal temperature is difficult. Therefore the presented work was aimed to understand the temperature dependent material behaviour of representative elastomers and to conclude from this knowledge the low temperature limit down to which such seals could safely fulfil the desired requirements. Starting with the published statement that a seal can safely work below its glass transition temperature the influence of the glass-rubber-transition was investigated. At first the glass-rubber-transition temperatures of the selected elastomers were determined applying several techniques to allow a comparison with the behaviour of the seals during component tests. Furthermore a new method to characterise the low temperature behaviour of elastomers was developed that emulates the key features of the standardised compression set test used for seal materials. In comparison to the standardized test this new method allows a much faster measurement that can be automatically performed. Using a model based data analysis an extrapolation of the results to different temperatures can be performed and therefore the necessary measuring expenditure can be additionally reduced. For the temperature dependent characterisation of the failure process of real seals a measurement setup was designed and the materials behaviour was investigated. By use of the results of all applied characterisation techniques the observed dependence of the failure temperature on the degree of compression could be explained for the investigated seals under static load. Additionally information about the behaviour of such seals under dynamic load could be gained from the time dependent material behaviour by use of the time temperature superposition relationship

  5. Analysis of the Potential of Low-Temperature Heat Pump Energy Sources

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2017-11-01

    Full Text Available The paper deals with an analysis of temperatures of ground masses in the proximities of linear and slinky-type HGHE (horizontal ground heat exchanger. It evaluates and compares the potentials of HGHEs and ambient air. The reason and aim of the verification was to gain knowledge of the temperature course of the monitored low-temperature heat pump energy sources during heating periods and periods of stagnation and to analyse the knowledge in terms of the potential to use those sources for heat pumps. The study was conducted in the years 2012–2015 during three heating periods and three periods of HGHEs stagnation. The results revealed that linear HGHE had the highest temperature potential of the observed low-temperature heat pump energy sources. The average daily temperatures of the ground mass surrounding the linear HGHE were the highest ranging from 7.08 °C to 9.20 °C during the heating periods, and having the lowest temperature variation range of 12.62–15.14 K, the relative frequency of the average daily temperatures of the ground mass being the highest at 22.64% in the temperature range containing the mode of all monitored temperatures in a recorded interval of [4.10, 6.00] °C. Ambient air had lower temperature potential than the monitored HGHEs.

  6. Towards spontaneous parametric down-conversion at low temperatures

    Directory of Open Access Journals (Sweden)

    Akatiev Dmitrii

    2017-01-01

    Full Text Available The possibility of observing spontaneous parametric down-conversion in doped nonlinear crystals at low temperatures, which would be useful for combining heralded single-photon sources and quantum memories, is studied theoretically. The ordinary refractive index of a lithium niobate crystal doped with magnesium oxide LiNbO3:MgO is measured at liquid nitrogen and helium temperatures. On the basis of the experimental data, the coefficients of the Sellmeier equation are determined for the temperatures from 5 to 300 K. In addition, a poling period of the nonlinear crystal has been calculated for observing type-0 spontaneous parametric down-conversion (ooo-synchronism at the liquid helium temperature under pumping at the wavelength of λp = 532 nm and emission of the signal field at the wavelength of λs = 794 nm, which corresponds to the resonant absorption line of Tm3+ doped ions.

  7. Neutrinos, dark matter and low temperature detectors

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-01-01

    The present status of cryogenic detector developments for particle physics is discussed, with emphasis on applications at the cross-disciplinary frontier between particle physics and astrophysics, where low temperature devices appear to be particularly well suited. The overwiew of results is completed by a sketch of new ideas and possible ways for further improvements. Neutrino role importance is particularly shown

  8. Low-temperature anharmonicity in cesium chloride (CsCl)

    Energy Technology Data Exchange (ETDEWEB)

    Sist, Mattia; Faerch Fischer, Karl Frederik; Brummerstedt Iversen, Bo [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University (Denmark); Kasai, Hidetaka [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University (Denmark); Faculty of Pure and Applied Sciences, TIMS and CiRfSE, University of Tsukuba (Japan)

    2017-03-20

    Anharmonic lattice vibrations govern heat transfer in materials, and anharmonicity is commonly assumed to be dominant at high temperature. The textbook cubic ionic defect-free crystal CsCl is shown to have an unexplained low thermal conductivity at room temperature (ca. 1 W/(m K)), which increases to around 13 W/(m K) at 25 K. Through high-resolution X-ray diffraction it is unexpectedly shown that the Cs atomic displacement parameter becomes anharmonic at 20 K. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Investigating the low-temperature impedance increase of lithium-ion cells

    International Nuclear Information System (INIS)

    Abraham, D. P.; Heaton, J. R.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Engineering

    2008-01-01

    Low-temperature performance loss is a significant barrier to commercialization of lithium-ion cells in hybrid electric vehicles. Increased impedance, especially at temperatures below 0 C, reduces the cell pulse power performance required for cold engine starts, quick acceleration, or regenerative braking. Here we detail electrochemical impedance spectroscopy data on binder- and carbon-free layered-oxide and spinel-oxide electrodes, obtained over the +30 to ?30 C temperature range, in coin cells containing a lithium-preloaded Li 4/3 Ti 5/3 O 4 composite (LTOc) counter electrode and a LiPF 6 -bearing ethylene carbonate/ethyl methyl carbonate electrolyte. For all electrodes studied, the impedance increased with decreasing cell temperature; the increases observed in the midfrequency arc dwarfed the increases in ohmic resistance and diffusional impedance. Our data suggest that the movement of lithium ions across the electrochemical interface on the active material may have been increasingly hindered at lower temperatures, especially below 0 C. Low-temperature performance may be improved by modifying the electrolyte-active material interface (for example, through electrolyte composition changes). Increasing surface area of active particles (for example, through nanoparticle use) can lower the initial electrode impedance and lead to lower cell impedances at -30 C

  10. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    Energy Technology Data Exchange (ETDEWEB)

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.; Hook, Paul W.; Crowe, Braden J.; Huesemann, Michael H.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase in TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.

  11. Preparation of lanthanum ferrite powder at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Andoulsi, R.; Horchani-Naifer, K.; Ferid, M., E-mail: karima_horchani@yahoo.com [Physical Chemistry Laboratory of Mineral Materials and their Applications, Hammam-Lif (Tunisia)

    2012-01-15

    Single lanthanum ferrite phase was successfully prepared at low processing temperature using the polymerizable complex method. To implement this work, several techniques such as differential scanning calorimetry, X-ray diffraction, Fourier Transform Infrared Spectroscopy, scanning electron microscopy and BET surface area measurements were used. Throw the obtained results, it was shown that steps of preparing the powder precursor and temperature of its calcination are critical parameters for avoiding phase segregation and obtaining pure lanthanum ferrite compound. Thus, a single perovskite phase was obtained at 600 deg C. At this temperature, the powder was found to be fine and homogeneous with an average crystallite size of 13 nm and a specific surface area of 12.5 m{sup 2}.g{sup -1}. (author)

  12. Optimization criteria for low temperature waste heat utilization

    International Nuclear Information System (INIS)

    Kranebitter, F.

    1977-01-01

    A special case in this field is the utilization of very low temperature waste heat. The temperature level under consideration in this paper is in the range between the body temperature of human beings and their environment. The waste heat from power generation and industrial processes is also considered. Thermal energy conversion will be mainly accomplished by heat cycles where discharged waste heat is reverse proportional to the upper cycle temperature. Limiting this upper cycle temperature by technological reasons the optimization of the heat cycle will depend on the nature of the cycle itself and specially on the temperature selected for the heat discharge. The waste heat discharge is typical for the different kinds of heat cycles and the paper presents the four most important of them. Feasible heat transfer methods and their economic evaluations are discussed and the distillation processes will be the basis for further considerations. The waste heat utilization for distillation purposes could be realized by three different cycles, the open cycle, the closed cycle and the multy cycle. Resulting problems as deaeration of large water streams and removal of the dissolved gases and their solutions are also discussed. (M.S.)

  13. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  14. The pion quasiparticle in the low-temperature phase of QCD

    Directory of Open Access Journals (Sweden)

    Brandt Bastian B.

    2018-01-01

    Full Text Available We extend our previous studies [PhysRevD.90.054509, PhysRevD.92.094510] of the pion quasiparticle in the low-temperature phase of two-flavor QCD with support from chiral effective theory. This includes the analysis performed on a finite temperature ensemble of size 20 × 643 at T ≈ 151MeV and a lighter zero-temperature pion mass mπ ≈ 185 MeV. Furthermore, we investigate the Gell-Mann–Oakes-Renner relation at finite temperature and the Dey-Eletsky-Ioffe mixing theorem at finite quark mass.

  15. Low temperature gamma sterilization of a bioresorbable polymer, PLGA

    Science.gov (United States)

    Davison, Lisa; Themistou, Efrosyni; Buchanan, Fraser; Cunningham, Eoin

    2018-02-01

    Medical devices destined for insertion into the body must be sterilised before implantation to prevent infection or other complications. Emerging biomaterials, for example bioresorbable polymers, can experience changes in their properties due to standard industrial sterilization processes. Gamma irradiation is one of the most reliable, large scale sterilization methods, however it can induce chain scission, cross-linking or oxidation reactions in polymers. sterilization at low temperature or in an inert atmosphere has been reported to reduce the negative effects of gamma irradiation. The aim of this study was to investigate the impact of low temperature sterilization (at -80 °C) when compared to sterilization at ambient temperature (25 °C) both in inert atmospheric conditions of nitrogen gas, on poly(lactide co-glycolide) (PLGA). PLGA was irradiated at -80 and 25 °C at 40 kGy in a nitrogen atmosphere. Samples were characterised using differential scanning calorimetry (DSC), tensile test, Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC). The results showed that the molecular weight was significantly reduced as was the glass transition temperature, an indication of chain scission. FTIR showed small changes in chemical structure in the methyl and carbonyl groups after irradiation. Glass transition temperature was significantly different between irradiation at -80 °C and irradiation at 25 °C, however this was a difference of only 1 °C. Ultimately, the results indicate that the sterilization temperature used does not affect PLGA when carried out in a nitrogen atmosphere.

  16. Innovative system for delivery of low temperature district heating

    Directory of Open Access Journals (Sweden)

    Anton Ivanov Ianakiev

    2017-01-01

    Full Text Available An innovative Low Temperature District Heating (LTDH local network is developed in Nottingham, supported by REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the of the existing district heating system in Nottingham would be created to use low temperature heating for the first time in UK. The development is aimed to extract wasted (unused heat from existing district heating system and make it more efficient and profitable. Four maisonette blocks of 94 low-raised flats, at Nottingham demo site of the REMOURBAN project will be connected to this new LTDH system. The scheme will provide a primary supply of heat and hot water at approximately 50oC to 60oC. Innovated solutions have been put forward to overcome certain barriers, such as legionella related risks and peak loads during extreme heating seasons and occasional maintenance.

  17. Low temperature self-cleaning properties of superhydrophobic surfaces

    Science.gov (United States)

    Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

    2014-10-01

    Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

  18. Sclerotial formation of Polyporus umbellatus by low temperature treatment under artificial conditions.

    Science.gov (United States)

    Xing, Yong-Mei; Zhang, Li-Chun; Liang, Han-Qiao; Lv, Jing; Song, Chao; Guo, Shun-Xing; Wang, Chun-Lan; Lee, Tae-Soo; Lee, Min-Woong

    2013-01-01

    Polyporus umbellatus sclerotia have been used as a diuretic agent in China for over two thousand years. A shortage of the natural P. umbellatus has prompted researchers to induce sclerotial formation in the laboratory. P. umbellatus cultivation in a sawdust-based substrate was investigated to evaluate the effect of low temperature conditions on sclerotial formation. A phenol-sulfuric acid method was employed to determine the polysaccharide content of wild P. umbellatus sclerotia and mycelia and sclerotia grown in low-temperature treatments. In addition, reactive oxygen species (ROS) content, expressed as the fluorescence intensity of mycelia during sclerotial differentiation was determined. Analysis of ROS generation and sclerotial formation in mycelia after treatment with the antioxidants such as diphenyleneiodonium chloride (DPI), apocynin (Apo), or vitamin C were studied. Furthermore, macroscopic and microscopic characteristics of sclerotial differentiation were observed. Sclerotia were not induced by continuous cultivation at 25°C. The polysaccharide content of the artificial sclerotia is 78% of that of wild sclerotia. In the low-temperature treatment group, the fluorescent intensity of ROS was higher than that of the room temperature (25°C) group which did not induce sclerotial formation all through the cultivation. The antioxidants DPI and Apo reduced ROS levels and did not induce sclerotial formation. Although the concentration-dependent effects of vitamin C (5-15 mg mL(-1)) also reduced ROS generation and inhibited sclerotial formation, using a low concentration of vitamin C (1 mg mL(-1)) successfully induced sclerotial differentiation and increased ROS production. Exposure to low temperatures induced P. umbellatus sclerotial morphogenesis during cultivation. Low temperature treatment enhanced ROS in mycelia, which may be important in triggering sclerotial differentiation in P. umbellatus. Moreover, the application of antioxidants impaired ROS generation

  19. Comparison of Low-temperature District Heating Concepts in a Long-Term Energy System Perspective

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Østergaard, Dorte Skaarup; Yang, Xiaochen

    2017-01-01

    renewable energy systems. This study compares three alternative concepts for DH temperature level: Low temperature (55/25 °C), Ultra-low temperature with electric boosting (45/25 °C), and Ultra-low temperature with heat pump boosting (35/20 °C) taking into account the grid losses, production efficiencies......District heating (DH) systems are important components in an energy efficient heat supply. With increasing amounts of renewable energy, the foundation for DH is changing and the approach to its planning will have to change. Reduced temperatures of DH are proposed as a solution to adapt it to future...... and building requirements. The scenarios are modelled and analysed in the analysis tool EnergyPLAN and compared on primary energy supply and socioeconomic costs. The results show that the low temperature solution (55/25°C) has the lowest costs, reducing the total costs by about 100 M€/year in 2050....

  20. Spatial variation in near-ground radiation and low temperature. Interactions with forest vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, K.

    1997-10-01

    Low temperature has a large impact on the survival and distribution of plants. Interactive effects with high irradiance lead to cold-induced photo inhibition, which may impact on the establishment and growth of tree seedlings. In this thesis, novel approaches are applied for relating the spatial variability in low temperature and irradiance to photosynthetic performance and growth of tree seedlings, and for modelling the micro- and local-scale spatial variations in low temperature for heterogeneous terrain. The methodologies include the development and use of a digital image analysis system for hemispherical photographs, the use of Geographic Information Systems (GIS) and statistical methods, field data acquisition of meteorological elements, plant structure, growth and photosynthetic performance. Temperature and amounts of intercepted direct radiant energy for seedlings on clear days (IDRE) were related to chlorophyll a fluorescence, and the dry weight of seedlings. The combination of increased IDRE with reduced minimum temperatures resulted in persistent and strong photo inhibition as the season progressed, with likely implications for the establishment of tree seedlings at forest edges, and within shelter wood. For models of spatial distribution of low air temperature, the sky view factor was used to parameterize the radiative cooling, whilst drainage, ponding and stagnation of cold air, and thermal properties of the ground were all considered. The models hint at which scales and processes govern the development of spatial variations in low temperature for the construction of corresponding mechanistic models. The methodology is well suited for detecting areas that will be frost prone after clearing of forest and for comparing the magnitudes of impacts on low air temperature of forest management practices, such as shelter wood and soil preparation. The results can be used to formulate ground rules for use in practical forestry 141 refs, 5 figs, 1 tab

  1. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    Science.gov (United States)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  2. Lithium Batteries and Supercapacitors Capable of Operating at Low Temperatures for Planetary Exploration

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2012-01-01

    Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.

  3. Influence of low-temperature annealing on InSb properties

    International Nuclear Information System (INIS)

    Tsitsina, N.P.; Fadeeva, A.P.; Vdovkina, E.E.; Baryshev, N.S.; Aver'yanov, I.S.

    1975-01-01

    Annealing at 200 deg C during 6 days does not cause inversion of conductivity in n-InSb, leads to the increase of the carrier concentration and the decrease of the specific resistance in samples both of n- and of p-type; these variations being more significant in the material of n-type. The existence of a level at a distance of 0.15-0.17 eV from the ceiling of the valency zone in non-annealed samples of InSb is confirmed. The level is of acceptor type and disappears with low-temperature annealing. The low-temperature annealing practically does not influence the lifetime in p-type samples and results in the 5-20-fold increase in the lifetime in n-type samples

  4. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    Science.gov (United States)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  5. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    Science.gov (United States)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  6. Computer simulations of the restricted primitive model at very low temperature and density

    International Nuclear Information System (INIS)

    Valeriani, Chantal; Camp, Philip J; Zwanikken, Jos W; Van Roij, Rene; Dijkstra, Marjolein

    2010-01-01

    The problem of successfully simulating ionic fluids at low temperature and low density states is well known in the simulation literature: using conventional methods, the system is not able to equilibrate rapidly due to the presence of strongly associated cation-anion pairs. In this paper we present a numerical method for speeding up computer simulations of the restricted primitive model (RPM) at low temperatures (around the critical temperature) and at very low densities (down to 10 -10 σ -3 , where σ is the ion diameter). Experimentally, this regime corresponds to typical concentrations of electrolytes in nonaqueous solvents. As far as we are aware, this is the first time that the RPM has been equilibrated at such extremely low concentrations. More generally, this method could be used to equilibrate other systems that form aggregates at low concentrations.

  7. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  8. An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mullane, Michelle; Gleason, Michael; McCabe, Kevin; Mooney, Meghan; Reber, Timothy; Young, Katherine R.

    2016-10-01

    Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water heating, greenhouse warming, pool heating, aquaculture, and low-temperature manufacturing processes. Several studies published over the past 40 years have provided assessments of the resource potential for multiple types of low-temperature geothermal systems (e.g. hydrothermal convection, hydrothermal conduction, and enhanced geothermal systems) with varying temperature ranges and depths. This paper provides a summary and additional analysis of these assessments of shallow (= 3 km), low-temperature (30-150 degrees C) geothermal resources in the United States, suitable for use in direct-use applications. This analysis considers six types of geothermal systems, spanning both hydrothermal and enhanced geothermal systems (EGS). We outline the primary data sources and quantitative parameters used to describe resources in each of these categories, and present summary statistics of the total resources available. In sum, we find that low-temperature hydrothermal resources and EGS resources contain approximately 8 million and 800 million TWh of heat-in-place, respectively. In future work, these resource potential estimates will be used for modeling of the technical and market potential for direct-use geothermal applications for the U.S. Department of Energy's Geothermal Vision Study.

  9. Thermal conductivity of yttrium iron garnet at low temperatures

    International Nuclear Information System (INIS)

    Joshi, Y.P.; Sing, D.P.

    1979-01-01

    An analysis of the low-temperature thermal conductivity of yttrium iron garnet is presented giving consideration to the fact that in a conventional conductivity experiment the magnon temperature gradient inside a magnetic insulator need not be necessarily equal to the phonon temperature gradient. Consequently the effective conductivity can be less than the algebraic sum of the phonon and magnon intrinsic conductivities, depending on the magnon-phonon thermal relaxation rate. This relaxation rate has been distinguished from the individual phonon and magnon relaxation rates and an expression is derived for it. Theoretical calculations of the effective conductivity are found to be in good agreement with experimental results. The contribution of magnons to the effective conductivity is observed to be small at all temperatures below the conductivity maximum. (author)

  10. Fabrication of a Cu/Ni stack in supercritical carbon dioxide at low-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rasadujjaman, Md, E-mail: rasadphy@duet.ac.bd [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Department of Physics, Dhaka University of Engineering & Technology, Gazipur 1700 (Bangladesh); Watanabe, Mitsuhiro [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Sudoh, Hiroshi; Machida, Hideaki [Gas-Phase Growth Ltd., 2-24-16 Naka, Koganei, Tokyo 184-0012 (Japan); Kondoh, Eiichi [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2015-09-30

    We report the low-temperature deposition of Cu on a Ni-lined substrate in supercritical carbon dioxide. A novel Cu(I) amidinate precursor was used to reduce the deposition temperature. From the temperature dependence of the growth rate, the activation energy for Cu growth on the Ni film was determined to be 0.19 eV. The films and interfaces were characterized by Auger electron spectroscopy. At low temperature (140 °C), we successfully deposited a Cu/Ni stack with a sharp Cu/Ni interface. The stack had a high adhesion strength (> 1000 mN) according to microscratch testing. The high adhesion strength originated from strong interfacial bonding between the Cu and the Ni. However, at a higher temperature (240 °C), significant interdiffusion was observed and the adhesion became weak. - Highlights: • Cu/Ni stack fabricated in supercritical CO{sub 2} at low temperature. • A novel Cu(I) amidinate precursor was used to reduce the deposition temperature. • Adhesion strength of Cu/Ni stack improved dramatically. • Fabricated Cu/Ni stack is suitable for Cu interconnections in microelectronics.

  11. Damage annealing in low temperature Fe/Mn implanted ZnO

    International Nuclear Information System (INIS)

    Gunnlaugsson, H. P.; Bharuth-Ram, K.; Johnston, K.; Langouche, G.; Mantovan, R.; Mølholt, T. E.; Naidoo, D.; Ólafsson, O.; Weyer, G.

    2015-01-01

    57 Fe Emission Mössbauer spectra obtained after low fluence (<10 12 cm −2 ) implantation of 57 Mn (T 1/2 = 1.5 min.) into ZnO single crystal held at temperatures below room temperature (RT) are presented. The spectra can be analysed in terms of four components due to Fe 2+ and Fe 3+ on Zn sites, interstitial Fe and Fe in damage regions (Fe D ). The Fe D component is found to be indistinguishable from similar component observed in emission Mössbauer spectra of higher fluence (∼10 15 cm −2 ) 57 Fe/ 57 Co implanted ZnO and 57 Fe implanted ZnO, demonstrating that the nature of the damage regions in the two types of experiments is similar. The defect component observed in the low temperature regime was found to anneal below RT

  12. Analysis of final products from the liquid alkanes radiolysis at low dose, low temperature and high dose rate

    International Nuclear Information System (INIS)

    Tilquin, B.; Doncker, J. de.

    1991-01-01

    Yields of final products (dimers) from the radiolysis of n-hexane and 2,3-dimethylbutane are studied by capillary chromatographic techniques for trace analysis. Reaction of intermediates with the products, the alkane molecules or impurities, is reduced by using low dose (1 kGy), low temperature (195 K) and high dose rate (LINAC). Temperature is the most important experiment variable; by reducing the temperature, reactions with significant activation energies do not compete with radical-radical termination reactions. Products from LINAC radiolysis provide information about active species (reactive fragment, allylic radical...) which deserve a more detailed examination by direct methods [fr

  13. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    Science.gov (United States)

    Feng, Tai-Chen; Zhang, Ke-Quan; Su, Hai-Jing; Wang, Xiao-Juan; Gong, Zhi-Qiang; Zhang, Wen-Yu

    2015-10-01

    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak; the number of lasted days has decreased; and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter. Project supported by the National Natural Science Foundation of China (Grant No. 41305075), the National Basic Research Program of China (Grant Nos. 2012CB955203 and 2012CB955902), and the Special Scientific Research on Public Welfare Industry, China (Grant No. GYHY201306049).

  14. Biophysical and lipofection studies of DOTAP analogs.

    Science.gov (United States)

    Regelin, A E; Fankhaenel, S; Gürtesch, L; Prinz, C; von Kiedrowski, G; Massing, U

    2000-03-15

    In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.

  15. Low-temperature susceptibility of concentrated magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander F.; Lebedev, Alexander V.

    2004-09-01

    The initial susceptibility of concentrated magnetic fluids (ferrocolloids) has been experimentally investigated at low temperatures. The results obtained indicate that the interparticle dipole-dipole interactions can increase the susceptibility by several times as compared to the Langevin value. It is shown that good agreement between recent theoretical models and experimental observations can be achieved by introducing a correction for coefficients in the series expansion of susceptibility in powers of density and aggregation parameter. A modified equation for equilibrium susceptibility is offered to sum over corrections made by Kalikmanov (Statistical Physics of Fluids, Springer-Verlag, Berlin, 2001) and by B. Huke and M. Lücke (Phys. Rev. E 67, 051403, 2003). The equation gives good quantitative agreement with the experimental data in the wide range of temperature and magnetic particles concentration. It has been found that in some cases the magnetic fluid solidification occurs at temperature several tens of kelvins higher than the crystallization temperature of the carrier liquid. The solidification temperature of magnetic fluids is independent of particle concentration (i.e., magneto-dipole interparticle interactions) and dependent on the surfactant type and carrier liquid. This finding allows us to suggest that molecular interactions and generation of some large-scale structure from colloidal particles in magnetic fluids are responsible for magnetic fluid solidification. If the magnetic fluid contains the particles with the Brownian relaxation mechanism of the magnetic moment, the solidification manifests itself as the peak on the "susceptibility-temperature" curve. This fact proves the dynamic nature of the observed peak: it arises from blocking the Brownian mechanism of the magnetization relaxation.

  16. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  17. Ash behavior and de-fluidization in low temperature circulating fluidized bed biomass gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas

    ensures that high-alkali biomass fuels can be used without risks of bed de-fluidization. This thesis aims to understand the behavior of alkali metals and ash in the LTCFB system. The thesis work involved measurements made on bed material and product gas dust samples on a 100kW LTCFB gasifier placed......Biomass is increasingly used as a fuel for power generation. Herbaceous fuels however, contain high amounts of alkali metals which get volatilized at high temperatures and forms salts with low melting points and thus condense on pipelines, reactor surfaces and may cause de-fluidization. A Low......-Temperature Circulating Fluidized Bed System (LTCFB) gasifier allows pyrolysis and gasification of biomass to occur at low temperatures thereby improving the retention of alkali and other ash species within the system and minimizing the amount of ash species in the product gas. In addition, the low reactor temperature...

  18. Solitary ionizing surface waves on low-temperature plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.; Yu, M.Y.

    1993-01-01

    It is demonstrated that at the boundary of semi-infinite low-temperature plasma new types of localized ionizing surface wave structures can propagate. The solitary waves are described by an evolution equation similar to the KdV equation, but the solutions differ considerably from that of the latter

  19. Low-temperature magnetic modification of sensitive biological materials

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 142, mar (2015), s. 184-188 ISSN 0167-577X R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : magnetic iron oxides particles * microwave-assisted synthesis * low-temperature magnetic modification * immobilized enzymes Subject RIV: BO - Biophysics Impact factor: 2.437, year: 2015

  20. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  1. Potential market and characteristics of low-temperature reactors

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The low-temperature (100 to 200 deg C) heat market for industrial applications and district heating is very important. Two main studies have been developed: a swimming pool reactor delivering water at 110 deg C and a prestressed concrete vessel reactor delivering water at 200 deg C [fr

  2. Nanostructural studies on monoelaidin-water systems at low temperatures.

    Science.gov (United States)

    Kulkarni, Chandrashekhar V

    2011-10-04

    In recent years, lipid based nanostructures have increasingly been used as model membranes to study various complex biological processes. For better understanding of such phenomena, it is essential to gain as much information as possible for model lipid structures under physiological conditions. In this paper, we focus on one of such lipids--monoelaidin (ME)--for its polymorphic nanostructures under varying conditions of temperature and water content. In the recent contribution (Soft Matter, 2010, 6, 3191), we have reported the phase diagram of ME above 30 °C and compared with the phase behavior of other lipids including monoolein (MO), monovaccenin (MV), and monolinolein (ML). Remarkable phase behavior of ME, stabilizing three bicontinuous cubic phases, motivates its study at low temperatures. Current studies concentrate on the low-temperature (ME and subsequent reconstruction of its phase diagram over the entire temperature-water composition space (temperature, 0-76 °C; and water content, 0-70%). The polymorphs found for the monoelaidin-water system include three bicontinuous cubic phases, i.e., Ia3d, Pn3m, and Im3m, and lamellar phases which exhibit two crystalline (L(c1) and L(c0)), two gel (L(β) and L(β*)), and a fluid lamellar (L(α)) states. The fluid isotropic phase (L(2)) was observed only for lower hydrations (<20%), whereas hexagonal phase (H(2)) was not found under studied conditions. Nanostructural parameters of these phases as a function of temperature and water content are presented together with some molecular level calculations. This study might be crucial for perception of the lyotropic phase behavior as well as for designing nanostructural assemblies for potential applications. © 2011 American Chemical Society

  3. High-Performing, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants

    Science.gov (United States)

    Joshi, Prakash

    2015-01-01

    Long-duration space exploration will require spacecraft systems that can operate effectively over several years with minimal or no maintenance. Aerospace lubricants are key components of spacecraft systems. Physical Sciences Inc., has synthesized and characterized novel ionic liquids for use in aerospace lubricants that contribute to decreased viscosity, friction, and wear in aerospace systems. The resulting formulations offer low vapor pressure and outgassing properties and thermal stability up to 250 C. They are effective for use at temperatures as low as -70 C and provide long-term operational stability in aerospace systems. In Phase II, the company scaled several new ionic liquids and evaluated a novel formulation in a NASA testbed. The resulting lubricant compounds will offer lower volatility, decreased corrosion, and better tribological characteristics than standard liquid lubricants, particularly at lower temperatures.

  4. Low-temperature tar and oil: properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, R

    1942-01-01

    In Germany the value of low-temperature tar is largely dependent on its fuel fractions; these vary with the coal and the method of carbonization (external heating or recirculated gases). Brown-coal tars can be processed by distillation, cracking under pressure, hydrogenation under pressure (largest volume of tar is processed by this method) and by solvent extraction, with EtOH, SO/sub 2/, or phenol. Each of these processes is discussed in detail. In the pressure-hydrogenation process, 1.25 kilogram of brown-coal tar yields approximately 1 kilogram of gasoline with an octane number of 60 to 70. Low-temperature tars from bituminous coals can be hydrogenated readily but are not well adapted to solvent extraction. Attempts should be made to produce tar approximating the desired characteristics for fuel directly from the carbonizing apparatus. For laboratory carbonization tests, an approximation to results secured by externally heated retorts is secured by using an insert consisting of a series of perforated trays in the 200-gram Fischer aluminum retort; this reduces the capacity to 100 gram. Fractional condensation is used to separate heavy oil, middle oil, and liquor; low-boiling products are condensed at -20/sup 0/ by solid CO/sub 2/.

  5. Dynamics of implanted muons at low temperatures in white tin

    International Nuclear Information System (INIS)

    Solt, G.; Zimmermann, U.; Herlach, D.

    2008-01-01

    The low temperature lattice site of the implanted μ + particle and its subsequent delocalization at higher temperatures was investigated in single crystal white tin for 2 + was found to reside at the interstitial sites of type d. With increasing temperature thermally activated hopping sets in at T=48±2K, resulting in complete delocalization near 60 K. The activation energy for hopping, E a =113±15meV, is substantially higher than that found previously for the equally tetragonal indium

  6. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    Science.gov (United States)

    Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.

    2017-08-01

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.

  7. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    International Nuclear Information System (INIS)

    Adamovich, I; Baalrud, S D; Bogaerts, A; Bruggeman, P J; Cappelli, M; Colombo, V; Czarnetzki, U; Ebert, U; Eden, J G; Favia, P; Graves, D B; Hamaguchi, S; Hieftje, G; Hori, M

    2017-01-01

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges. (topical review)

  8. Fly ash particles spheroidization using low temperature plasma energy

    OpenAIRE

    Shekhovtsov, V. V.; Volokitin, O. G.; Vitske, Rudolf Evaldovich; Kondratyuk, Alexey Alekseevich

    2016-01-01

    The paper presents the investigations on producing spherical particles 65-110 [mu]m in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition ...

  9. Low temperature thermal expansion of liquid Helium-4

    International Nuclear Information System (INIS)

    Berthold, J.E.

    1976-01-01

    Results of a measurement of the thermal expansion of liquid He-4 are presented along the saturated vapor pressure curve at low temperatures (0.1 - 0.6 0 K). The thermal expansion is related to the low momentum region of the He-4 excitation spectrum, and the results of this measurement are analyzed to gain information concerning deviations from linearity in the phonon region of the spectrum. The data is also compared with theoretical predictions of Alrich and Bhatt and McMillan and with the thermal expansion measurement of Van Degrift. In addition a discussion of previous experimental evidence on the shape of the low momentum region of the dispersion relation is presented

  10. Geothermal low-temperature reservoir assessment program: A new DOE geothermal initiative

    International Nuclear Information System (INIS)

    Wright, P.M.; Lienau, P.J.; Mink, L.L.

    1992-01-01

    In Fiscal Year 1991, Congress appropriated money for the Department of Energy to begin a new program in the evaluation and use of low- and moderate-temperature geothermal resources. The objective of this program is to promote accelerated development of these resources to offset fossil-fuel use and help improve the environment. The program will consist of several components, including: (1) compilation of all available information on resource location and characteristics, with emphasis on resources located within 5 miles of population centers; (2) development and testing of techniques to discover and evaluate low- and moderate-temperature geothermal resources; (3) technical assistance to potential developers of low- and moderate-temperature geothermal resources; and (4) evaluation of the use of geothermal heat pumps in domestic and commercial applications. Program participants will include the Geo-Heat Center at the Oregon Institute of Technology, the University of Utah Research Institute, the Idaho Water Resources Research Institute and agencies of state governments in most of the western states

  11. Strength and low temperature toughness of Fe-13%Ni-Mo alloys

    International Nuclear Information System (INIS)

    Ishikawa, Keisuke; Maruyama, Norio; Tsuya, Kazuo

    1978-01-01

    Mechanical tests were made on newly developed Fe-13%Ni-Mo alloys for eryogenic service. The effects of the additional elements were investigated from the viewpoint of the strength and the low temperature toughness. The alloys added by Al, Ti or V have the better balance of these properties. They did not show low temperature brittleness induced by cleavage fracture in Charpy impact test at 77 K. The microfractography showed the utterly dimple rupture patterns on the broken surface of all specimens. It would be supposed that the cleavage fracture stress is considerably higher than the flow stress. These alloys are superior to some commercial structural materials for low temperature use in the balance between the strength at 300 K and the toughness at 77 K. Additionally, it is noted that these experimental alloys have a good advantage in getting high strength and high toughness by the rather simple heat treatment. (auth.)

  12. Rotating structures in low temperature magnetized plasmas - Insight from particle simulations

    Directory of Open Access Journals (Sweden)

    Jean-Pierre eBoeuf

    2014-12-01

    Full Text Available The EXB configuration of various low temperature plasma devices is often responsible for the formation of rotating structures and instabilities leading to anomalous electron transport across the magnetic field. In these devices, electrons are strongly magnetized while ions are weakly or not magnetized and this leads to specific physical phenomena that are not present in fusion plasmas where both electrons and ions are strongly magnetized. In this paper we describe basic phenomena involving rotating plasma structures in simple configurations of low temperature EXB plasma devices on the basis of PIC-MCC (Particle-In-Cell Monte Carlo Collisions simulations. We focus on three examples: rotating electron vortices and rotating spokes in cylindrical magnetrons, and azimuthal electron-cyclotron drift instability in Hall thrusters. The simulations are not intended to give definite answers to the many physics issues related to low temperature EXB plasma devices but are used to illustrate and discuss some of the basic questions that need further studies.

  13. Ruthenium(V) oxides from low-temperature hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hiley, Craig I.; Walton, Richard I. [Department of Chemistry, University of Warwick, Coventry (United Kingdom); Lees, Martin R. [Department of Physics, University of Warwick, Coventry (United Kingdom); Fisher, Janet M.; Thompsett, David [Johnson Matthey Technology Centre, Reading (United Kingdom); Agrestini, Stefano [Max-Planck Institut, CPfS, Dresden (Germany); Smith, Ronald I. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom)

    2014-04-22

    Low-temperature (200 C) hydrothermal synthesis of the ruthenium oxides Ca{sub 1.5}Ru{sub 2}O{sub 7}, SrRu{sub 2}O{sub 6}, and Ba{sub 2}Ru{sub 3}O{sub 9}(OH) is reported. Ca{sub 1.5}Ru{sub 2}O{sub 7} is a defective pyrochlore containing Ru{sup V/VI}; SrRu{sub 2}O{sub 6} is a layered Ru{sup V} oxide with a PbSb{sub 2}O{sub 6} structure, whilst Ba{sub 2}Ru{sub 3}O{sub 9}(OH) has a previously unreported structure type with orthorhombic symmetry solved from synchrotron X-ray and neutron powder diffraction. SrRu{sub 2}O{sub 6} exhibits unusually high-temperature magnetic order, with antiferromagnetism persisting to at least 500 K, and refinement using room temperature neutron powder diffraction data provides the magnetic structure. All three ruthenates are metastable and readily collapse to mixtures of other oxides upon heating in air at temperatures around 300-500 C, suggesting they would be difficult, if not impossible, to isolate under conventional high-temperature solid-state synthesis conditions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Low temperature diamond growth by linear antenna plasma CVD over large area

    International Nuclear Information System (INIS)

    Izak, Tibor; Babchenko, Oleg; Potocky, Stepan; Kromka, Alexander; Varga, Marian

    2012-01-01

    Recently, there is a great effort to increase the deposition area and decrease the process temperature for diamond growth which will enlarge its applications including use of temperature sensitive substrates. In this work, we report on the large area (20 x 30 cm 2 ) and low temperature (250 C) polycrystalline diamond growth by pulsed linear antenna microwave plasma system. The influence of substrate temperature varied from 250 to 680 C, as controlled by the table heater and/or by microwave power, is studied. It was found that the growth rate, film morphology and diamond to non-diamond phases (sp 3 /sp 2 carbon bonds) are influenced by the growth temperature, as confirmed by SEM and Raman measurements. The surface chemistry and growth processes were studied in terms of activation energies (E a ) calculated from Arrhenius plots. The activation energies of growth processes were very low (1.7 and 7.8 kcal mol -1 ) indicating an energetically favourable growth process from the CO 2 -CH 4 -H 2 gas mixture. In addition, from activation energies two different growth regimes were observed at low and high temperatures, indicating different growth mechanism. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels with multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.

  16. Design for a low temperature ion implantation and luminescence cryostat

    International Nuclear Information System (INIS)

    Noonan, J.R.; Kirkpatrick, C.G.; Myers, D.R.; Streetman, B.G.

    1976-01-01

    Several simple design changes of a conventional liquid helium optical Dewar can significantly improve the cryostat's versatility for use in low temperature particle irradiation. A bellows assembly provides precise sample positioning and allows convenient access for electrical connections. A heat exchanger consisting of thin walled tubing with a 'goose neck' bend provides a simple, effective means of cooling the sample as well as excellent thermal isolation of the sample holder from the coolant reservoir during controlled anneals. The addition of a vane-type vacuum valve, optical windows, and a rotatable tailpiece facilitates the study of optical properties of materials following low temperature ion implantation. (author)

  17. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  18. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    . High performance cathodes were obtained from strontium-doped lanthanum cobaltite (LSC) infiltrated - Ce0.9Gd0.1O1.95 (CGO) ionic conducting backbone. Systematic tuning of the CGO and LSC firing temperatures and LSC loading resulted in a cathode with low polarization resistance, Rp = 0.044 cm2 at 600......This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones...... with increasing LSC firing temperature, highlighting the importance of materials compability over higher ionic conductivity. The potential of Ca3Co4O9+delta as an electrocatalyst for SOFCs has also been explored and encouraging results were found i.e., Rp = 0.64 cm2 for a Ca3Co4O9+delta/CGO 50 vol % composite...

  19. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    International Nuclear Information System (INIS)

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  20. Strong anisotropy in the low temperature Compton profiles of ...

    Indian Academy of Sciences (India)

    able for comparison with theory, the resistivity data in α-Ga at low temperature strongly support this anisotropic ... renormalized free-atom (RFA) model [3], band model [5–7] and quantum Monte Carlo ... probability distribution function.

  1. Inconsistent effects of developmental temperatureacclimation on low-temperature performance andmetabolism in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kristensen, Torsten Nygaard; Overgaard, Johannes; Hoffmann, Ary A

    2012-01-01

    Question: Does acclimation to developmental temperature consistently affect metabolismand low-temperature performance when measured in different laboratory and field assays? Hypothesis: Developmental acclimation reflecting naturally fluctuating thermal conditionsconsistently increases different...... conditions in the field, while constant cool rearingconditions led to high cold resistance. The fluctuating- and low-temperature rearing conditionsresulted in a similar metabolic profile, while the 24C rearing profile was distinct and showeda lack of plasticity. The effects of developmental acclimation...

  2. Low temperature ultrasonic study of hydrogen in niobium

    International Nuclear Information System (INIS)

    Poker, D.B.

    1979-01-01

    Measurements were made of the velocity and attenuation of ultrasonic waves in niobium containing 1000 ppM oxygen with additional concentrations of hydrogen, to determine the properties of a relaxation of the hydrogen which appears below 10 K. Measurements were made as a function of temperature, frequency, polarization of the ultrasonic wave, hydrogen isotope, and concentration of hydrogen and oxygen. The Birnbaum--Flynn model of hydrogen tunnelling is modified to take into account the trapping of hydrogen by interstitial impurities. An Orbach process is proposed for a relaxation between the degenerate first excited states. Three parameters which are determined by the hydrogen ultrasonic attenuation data are sufficient to describe the properties of this model. The model correctly predicts the presence of unusual features of the relaxation which are not contained in a classical model of hydrogen motion over a potential barrrier; the decrease of the hydrogen relaxation strength at low temperatures, the decrease in velocity below the relaxation temperature without a corresponding effect in the attenuation, and the broadness of the deuterium decrement peak compared to that for hydrogen. A reasonable fit to the velocity data for low concentration of hydrogen is made by the model with no adjustable parameters. A fit to the heat capacity can be made with the addition of parameters representing the strain effects of the oxygen trapping

  3. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine

    The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...

  4. Low-temperature transport in ultra-thin tungsten films

    Energy Technology Data Exchange (ETDEWEB)

    Chiatti, Olivio [Neue Materialien, Institut fuer Physik, Humboldt-Univ. Berlin (Germany); London Centre for Nanotechnology, University College London (United Kingdom); Nash, Christopher; Warburton, Paul [London Centre for Nanotechnology, University College London (United Kingdom)

    2012-07-01

    Tungsten-containing films, fabricated by focused-ion-beam-induced chemical vapour deposition, are known to have an enhanced superconducting transition temperature compared to bulk tungsten, and have been investigated previously for film thickness down to 25 nm. In this work, by using ion-beam doses below 50 pC/{mu}m{sup 2} on a substrate of amorphous silicon, we have grown continuous films with thickness below 20 nm. The electron transport properties were investigated at temperatures down to 350 mK and in magnetic fields up to 3 T, parallel and perpendicular to the films. The films in this work are closer to the limit of two-dimensional systems and are superconducting at low temperatures. Magnetoresistance measurements yield upper critical fields of the order of 1 T, and the resulting coherence length is smaller than the film thickness.

  5. Low Temperature Hydrogen Antihydrogen Interactions

    International Nuclear Information System (INIS)

    Armour, E. A. G.; Chamberlain, C. W.

    2001-01-01

    In view of current interest in the trapping of antihydrogen (H-bar) atoms at low temperatures, we have carried out a full four-body variational calculation to determine s-wave elastic phase shifts for hydrogen antihydrogen scattering, using the Kohn Variational Principle. Terms outside the Born-Oppenheimer approximation have been taken into account using the formalism of Kolos and Wolniewicz. As far as we are aware, this is the first time that these terms have been included in an H H-bar scattering calculation. This is a continuation of earlier work on H-H-bar interactions. Preliminary results differ substantially from those calculated using the Born-Oppenheimer approximation. A method is outlined for reducing this discrepancy and taking the rearrangement channel into account.

  6. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  7. Transcriptomic response of maize primary roots to low temperatures at seedling emergence.

    Science.gov (United States)

    Di Fenza, Mauro; Hogg, Bridget; Grant, Jim; Barth, Susanne

    2017-01-01

    Maize ( Zea mays ) is a C 4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 °C for 16 h and 12 °C for 8 h) and low temperature (12 °C for 16 h and 6 °C for 8 h). Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR39B29. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling tolerance is possible in an already preselected gene pool.

  8. Transcriptomic response of maize primary roots to low temperatures at seedling emergence

    Directory of Open Access Journals (Sweden)

    Mauro Di Fenza

    2017-01-01

    Full Text Available Background Maize (Zea mays is a C4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. Methods In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 °C for 16 h and 12 °C for 8 h and low temperature (12 °C for 16 h and 6 °C for 8 h. Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. Results Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR39B29. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. Discussion We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling

  9. Effects of heavy ion temperature on low-frequency kinetic Alfven waves

    International Nuclear Information System (INIS)

    Yang, L.; Wu, D. J.

    2011-01-01

    Heavy ion-electron (or proton) temperature ratio varies in a wide range in the solar and space environment. In this paper, proton and heavy ion temperatures are included in a three-fluid plasma model. For the specified parameters, low-frequency (<< heavy ion gyrofrequency) kinetic Alfven waves (KAWs) with sub- and super-Alfvenic speeds are found to coexist in the same plasma environment. Our results show that the temperature ratio of heavy ions to electrons can considerably affect the dispersion, propagation, and electromagnetic polarizations of the KAWs. In particular, the temperature ratio can increase the ratio of parallel to perpendicular electric fields and the normalized electric to magnetic field ratio, the variations of which are greatly different in regions with a high heavy ion temperature and with a low one. The results may help to understand the physical mechanism of some energization processes of heavy ions in the solar and space plasma environment. Effects of the ratio of electron thermal to Alfven speeds and the heavy ion abundance on these parameters are also discussed.

  10. Low-temperature localization in the transport properties of self ...

    Indian Academy of Sciences (India)

    Transport properties; scattering mechanisms; low temperature localization. 1. Introduction ... Mn4+ appears in these compounds due to the La defi- ciency, leading ... microscopy (SEM) image in figure 1 shows the size and mor- phology of the ...

  11. On the nature of low temperature internal friction peaks in metallic glasses

    International Nuclear Information System (INIS)

    Khonik, V.A.; Spivak, L.V.

    1996-01-01

    Low temperature (30 60 Nb 40 subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs via formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin

  12. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Yushin, Gleb; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  13. A low temperature aluminizing treatment of hot work tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Matijevic, B., E-mail: bozidar.matijevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb (Croatia)

    2010-07-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to hot tool steel H13. The aluminizing treating temperature was from 550 to 620°C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the aluminized layer thickness and the oxide layer were studied. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), glow discharge optical spectroscopy (GDOS) were applied to observe the cross-sections and the distribution of elements. (author)

  14. A low temperature aluminizing treatment of hot work tool steel

    International Nuclear Information System (INIS)

    Matijevic, B.

    2010-01-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to hot tool steel H13. The aluminizing treating temperature was from 550 to 620°C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the aluminized layer thickness and the oxide layer were studied. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), glow discharge optical spectroscopy (GDOS) were applied to observe the cross-sections and the distribution of elements. (author)

  15. Colloid bands in silver chloride induced by reactor irradiation at low temperature

    International Nuclear Information System (INIS)

    Atobe, K.; Okada, M.; Nakagawa, M.

    1978-01-01

    It is well known that no trapped electron center exists stably in irradiated silver chlorides even at low temperatures. On the other hand, irradiation by ultra-violet light at room temperature produces a broad absorption (colloid bands) on the long wavelength side of the fundamental absorption. In this report, it is shown that one of the colloid bands appears in undoped AgCl crystals by reactor irradiation at low temperature (20 K) and the other colloid band by thermal annealing after the irradiation. The relation between the bands, which correspond to two types of colloidal silver, is represented. (author)

  16. Influence of low temperature and frost duration on Phytophthora alni subsp. alni viability

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, K.; Filipova, N.; Strnadova, V.

    2012-11-01

    Limits on the survival of P. alni subsp. alni (PAA) due to low temperature can be expected based on previously published laboratory and field studies. This study presents a laboratory experiment to test the influence of low temperature and frost duration on PAA viability. Ten PAA isolates were incubated at different temperatures (-0.1, -2.5, -5.0, -7.5, and -10.0 degree centigrade) and frost durations (0 - 7, 14, 21, and 28 days). A regression analysis confirmed the significant influence of both factors (low temperature and frost duration, and their interaction) on the survival of the pathogen under laboratory conditions. The survival and failure time analysis showed that the survival of the pathogen differs significantly after mild frost (all the isolates tested survived temperatures between -0.1 and -5.0 degree centigrade during the entire testing period) and heavy frost (the pathogen died after 21 days of incubation at -7.5 degree centigrade and after 2 days at -10.0 degree centigrade). Moreover, the viability of the pathogen decreased significantly if the temperature of -5.0 degree centigrade was maintained for at least 1 week and the temperature of -7.5 degree centigrade persisted in laboratory conditions for at least 4 days. The results of the study proved the pathogen to be very sensitive to heavy frost. The low-temperature limits for PAA occur regularly in Central Europe in January. It is probable that these temperatures can reduce PAA populations in diseased black alder stems. The climate change characterised by increases in the lowest minimum winter temperatures in Central Europe (as hypothesised by IPCC) may pose a significant risk for affected alder population in the area. (Author) 21 refs.

  17. Radiation detection at very low temperature. DRTBT 1992 -Londe-Les-Maures - Course collection

    International Nuclear Information System (INIS)

    Bellefon, A. de; Serra, Guy; Broniatowski, A.; Giraud-Heraud, Y.; Bruere Dawson, R.; Waysand, G.; Maneval, J.P.; Jacquier, B.; Leotin, J.; Chapellier, M.; Beaudin, G.; Encrenaz, P.; Gheudin, M.; Lamarre, J.M.; Ravex, A.; Godfrin, H.; Bret, J.L.; Gianese, Chr.; Torre, J.P.; Marcillac, P. de; Benoit, A.; Jegoudez, G.; Pari, P.

    1992-09-01

    The contributions addressed various themes: Cooled sensors, what are they for? (Search for rare events; Astrophysics, X rays and infrared, Spectrometry in nuclear physics); Cooled sensors (Bolometer physics, Bolometers for photometry, Bolometers for particle detection, Superconducting sensors, Other types of bolometers, Low temperature luminescence, Photo-conductors and photovoltaic BIB, Ionisation at very low temperature, Heterodyne detection); Problems related to the signal (Photometry and external measurement noise, Line, amplification and signal processing), Pulse measurement (Line and amplification, Signal processing), Cryogenics (Cryogenic machines, Very low temperature cryogenics, Noise and environment). Nota: contributions are printed in a different order than they are listed in the table of contents

  18. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  19. Theoretical study of energetic interactions between high temperature molten materials and a low temperature fluid

    International Nuclear Information System (INIS)

    Chen, S.H.H.

    1984-01-01

    Analytical models are developed to predict the hydrodynamical transients resulting from the energetic interactions between a high temperature molten material and a low temperature liquid coolant. Initially, the molten material at high temperature and pressure is separated from the low temperature fluid by a solid metal barrier. Upon contact between the molten material and solid barrier, thermal attack occurs eventually resulting in a loss of barrier integrity. Subsequently, the molten material is injected into the liquid pool resulting in energetic interactions. The analytical models integrate a wide variety of potentially mutually-interacting transport phenomena which dominate the transient process into a deterministic scheme to predict the hydrodynamic transient process into a deterministic scheme to predict the hydrodynamic transient process. The model calculations are compared with the existing experimental results to show its engineering accuracy and adequacy in predicting such energetic interactions. Two models are formulated to bracket the transport of molten material to the rupture site for the reactor system. The stratified model minimized the rate of transport of material to the break location while the dispersed model maximized such transport. These two models are applied to a reference pressure tube reactor to evaluate the pressure transients and the potential structural damages as a result of a postulated severe primary coolant blockage in a power channel

  20. Low-temperature thermal conductivity of terbium-gallium garnet

    International Nuclear Information System (INIS)

    Inyushkin, A. V.; Taldenkov, A. N.

    2010-01-01

    Thermal conductivity of paramagnetic Tb 3 Ga 5 O 12 (TbGG) terbium-gallium garnet single crystals is investigated at temperatures from 0.4 to 300 K in magnetic fields up to 3.25 T. A minimum is observed in the temperature dependence κ(T) of thermal conductivity at T min = 0.52 K. This and other singularities on the κ(T) dependence are associated with scattering of phonons from terbium ions. The thermal conductivity at T = 5.1 K strongly depends on the magnetic field direction relative to the crystallographic axes of the crystal. Experimental data are considered using the Debye theory of thermal conductivity taking into account resonance scattering of phonons from Tb 3+ ions. Analysis of the temperature and field dependences of the thermal conductivity indicates the existence of a strong spin-phonon interaction in TbGG. The low-temperature behavior of the thermal conductivity (field and angular dependences) is mainly determined by resonance scattering of phonons at the first quasi-doublet of the electron spectrum of Tb 3+ ion.