WorldWideScience

Sample records for low power reactor assembly

  1. Low power unattended defense reactor

    International Nuclear Information System (INIS)

    Kirchner, W.L.; Meier, K.L.

    1984-01-01

    A small, low power, passive, nuclear reactor electric power supply has been designed for unattended defense applications. Through innovative utilization of existing proven technologies and components, a highly reliable, ''walk-away safe'' design has been obtained. Operating at a thermal power level of 200 kWt, the reactor uses low enrichment uranium fuel in a graphite block core to generate heat that is transferred through heat pipes to a thermoelectric (TE) converter. Waste heat is removed from the TEs by circulation of ambient air. Because such a power supply offers the promise of minimal operation and maintenance (OandM) costs as well as no fuel logistics, it is particularly attractive for remote, unattended applications such as the North Warning System

  2. Low power unattended defense reactor

    International Nuclear Information System (INIS)

    Kirchner, W.L.; Meier, K.L.

    1984-01-01

    A small, low power, passive, nuclear reactor electric power supply has been designed for unattended defense applications. Through innovative utilization of existing proven technologies and components, a highly reliable, walk-away safe design has been obtained. Operating at a thermal power level of 200 kWt, the reactor uses low enrichment uranium fuel in a graphite block core to generate heat that is transferred through heat pipes to a thermoelectric (TE) converter. Waste heat is removed from the TEs by circulation of ambient air. Because such a power supply offers the promise of minimal operation and maintenance (O and M) costs as well as no fuel logistics, it is particularly attractive for remote, unattended applications such as the North Warning System

  3. Low inductance power electronics assembly

    Science.gov (United States)

    Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

    2012-10-02

    A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

  4. Low power reactor for remote applications

    International Nuclear Information System (INIS)

    Meier, K.L.; Palmer, R.G.; Kirchner, W.L.

    1985-01-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long-term, virtually maintenance free, operation of this reactor for remote applications. 10 refs., 7 figs., 3 tabs

  5. Damage of fuel assembly premature changing in a power reactor

    International Nuclear Information System (INIS)

    Rudik, A.P.

    1987-01-01

    Material balance, including energy recovery and nuclear fuel flow rate, under conditions of premature FA extraction from power reactor is considered. It is shown that in cases when before and after FA extraction reactor operates not under optimal conditions damage of FA premature changing is proportional to the first degree of fuel incomplete burning. If normal operating conditions of reactor or its operation after FA changing is optimal, the damage is proportional to the square of fuel incomplete burning

  6. WWER-440 control assembly local power peaking investigation on LR-0 reactor

    International Nuclear Information System (INIS)

    Mikus, J.

    2002-01-01

    This paper presents information concerning the local power peaking problem induced by the WWER-440 control assembly and the investigation possibilities on the light water, zero power reactor LR-0 at the Nuclear Research Institute (NRI) Rez plc. A brief description is given about the disposable control assembly model, experimental arrangement and conditions on the LR-0 reactor with regard to the earlier performed investigations as well as to the relevant measurements to be realized in the near future.(abstract)

  7. Assessment of nuclear reactor concepts for low power space applications

    Science.gov (United States)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  8. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sakurai, Shungo; Ogiya, Shunsuke.

    1990-01-01

    In a fuel assembly, if the entire fuels comprise mixed oxide fuels, reactivity change in cold temperature-power operation is increased to worsen the reactor shutdown margin. The reactor shutdown margin has been improved by increasing the burnable poison concentration thereby reducing the reactivity of the fuel assembly. However, since unburnt poisons are present at the completion of the reactor operation, the reactivity can not be utilized effectively to bring about economical disadvantage. In view of the above, the reactivity change between lower temperature-power operations is reduced by providing a non-boiling range with more than 9.1% of cross sectional area at the inside of a channel at the central portion of the fuel assembly. As a result, the amount of the unburnt burnable poisons is decreased, the economy of fuel assembly is improved and the reactor shutdown margin can be increase. (N.H.)

  9. Conceptual Study for development of a low power research reactor

    International Nuclear Information System (INIS)

    Park, C.; Kim, H. S.; Park, J. H.; Chae, H. T.; Lee, B. C.

    2013-01-01

    Even though the nuclear society is again facing with difficult situations after Fukusima accident, some countries still continues to consider nuclear power as one option of national energy sources and to introduce nuclear energy. As a research reactor has been regarded as a step-stone to establish infrastructures for the nuclear power development program, some countries that have plan to introduce the nuclear power energy are considering to construct a research reactor. Particularly, a low power research reactor whose main purpose is basic researches on the nuclear technology and education/training would be of interest to developing countries when taking the economy and level of science and technology into consideration. And many low power research reactors at operation are obsolescent and their numbers are decreasing. Hence, some concepts on a low power research reactor are being studied for the future needs. This paper presents the conceptual study on the basic requirements and the preliminary design features of a low power research reactor

  10. Gas core reactor power plants designed for low proliferation potential

    International Nuclear Information System (INIS)

    Lowry, L.L.

    1977-09-01

    The feasibility of gas core nuclear power plants to provide adequate power while maintaining a low inventory and low divertability of fissile material is studied. Four concepts were examined. Two used a mixture of UF 6 and helium in the reactor cavities, and two used a uranium-argon plasma, held away from the walls by vortex buffer confinement. Power levels varied from 200 to 2500 MWth. Power plant subsystems were sized to determine their fissile material inventories. All reactors ran, with a breeding ratio of unity, on 233 U born from thorium. Fission product removal was continuous. Newly born 233 U was removed continuously from the breeding blanket and returned to the reactor cavities. The 2500-MWth power plant contained a total of 191 kg of 233 U. Less than 4 kg could be diverted before the reactor shut down. The plasma reactor power plants had smaller inventories. In general, inventories were about a factor of 10 less than those in current U.S. power reactors

  11. Fuel assemblies for nuclear reactor

    International Nuclear Information System (INIS)

    Nishi, Akihito.

    1987-01-01

    Purpose: To control power-up rate at the initial burning stage of new fuel assemblies due to fuel exchange in a pressure tube type power reactor. Constitution: Burnable poisons are disposed to a most portion of fuel pellets in a fuel assembly to such a low concentration as the burn-up rate changes with time at the initial stage of the burning. The most portion means substantially more than one-half part of the pellets and gadolinia is used as burn-up poisons to be dispersed and the concentration is set to less than about 0.2 %. Upon elapse of about 15 days after the charging, the burnable poisons are eliminated and the infinite multiplication factors are about at 1.2 to attain a predetermined power state. Since the power-up rate of the nuclear reactor fuel assembly is about 0.1 % power/hour and the power-up rate of the fuel assembly around the exchanged channel is lower than that, it can be lowered sufficiently than the limit for the power-up rate practiced upon reactor start-up thereby enabling to replace fuels during power operation. (Horiuchi, T.)

  12. An approach of raising the low power reactor trip block (P-7) in Maanshan Power Plant

    International Nuclear Information System (INIS)

    Wang, L.C.

    1984-01-01

    The technical specification for the Maanshan Nuclear Power Station (FSAR Table 16.2.2-3) requires that with an increasing reactor power level above the setpoint of low power reactor trip block (P-7), a turbine trip shall initiate a reactor trip. This anticipatory reactor trip on turbine trip prevents the pressurizer PORV from openning during turbine trip event. In order to reduce unnecessary reactor trip due to turbine trip on low reactor power level during Maanshan start-up stage, Taiwan Power Company performed a transient analysis for turbine trip event by using RETRAN code. The highest reactor power level at which a turbine trip will not open the pressurizer PORV is searched. The results demonstrated that this power level can be increased from the original value-10% of the rated thermal power-to about 48% of the rated thermal power

  13. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    International Nuclear Information System (INIS)

    Nash, C.A.; Blake, J.E.; Rush, G.C.

    1990-01-01

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m 2 ) (1.1E+6 BTU/(ft 2 hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient

  14. Calculation of Savannah River K Reactor Mark-22 assembly LOCA/ECS power limits

    International Nuclear Information System (INIS)

    Fischer, S.R.; Farman, R.F.; Birdsell, S.A.

    1992-01-01

    This paper summarizes the results of TRAC-PF1/MOD3 calculations of Mark-22 fuel assembly of loss-of-coolant accident/emergency cooling system (LOCA/ECS) power limits for the Savannah River Site (SRS) K Reactor. This effort was part of a larger effort undertaken by the Los Alamos National Laboratory for the US Department of Energy to perform confirmatory power limits calculations for the SRS K Reactor. A method using a detailed three-dimensional (3D) TRAC model of the Mark-22 fuel assembly was developed to compute LOCA/ECS power limits. Assembly power was limited to ensure that no point on the fuel assembly walls would exceed the local saturation temperature. The detailed TRAC model for the Mark-22 assembly consisted of three concentric 3D vessel components which simulated the two targets, two fuel tubes, and three main flow channels of the fuel assembly. The model included 100% eccentricity between the assembly annuli and a 20% power tilt. Eccentricity in the radial alignment of the assembly annuli arises because axial spacer ribs that run the length of the fuel and targets are used. Wall-shear, interfacial-shear, and wall heat-transfer correlations were developed and implemented in TRAC-PF1/MOD3 specifically for modeling flow and heat transfer in the narrow ribbed annuli encountered in the Mark-22 fuel assembly design. We established the validity of these new constitutive models using separate-effects benchmarks. TRAC system calculations of K Reactor indicated that the limiting ECS-phase accident is a double-ended guillonite break in a process water line at the pump discharge (i.e., a PDLOCA). The fuel assembly with the minimum cooling potential is identified from this system calculation. Detailed assembly calculations then were performed using appropriate boundary conditions obtained from this limiting system LOCA. Coolant flow rates and pressure boundary conditions were obtained from this system calculation and applied to the detailed assembly model

  15. System for determining the local power in the fuel assembly of a nuclear reactor

    International Nuclear Information System (INIS)

    Rolstad, Erik; Korpas, T.-H.; Leyse, R.H.; Smith, R.D.

    1979-01-01

    System for determining the local power in the fuel assembly of a nuclear reactor which includes a rod conducting the heat and electricity, along which axial areas act as a gamma radiation thermometer. Each area includes a thermal bridge, a cold source and a pair of junctions acting as thermocouples so placed that they measure the temperature difference between the thermal bridge and the cold source. The power created by the fuel assembly near each area acting as gamma thermometer is found from this difference in temperature [fr

  16. Nuclear reactor control assembly

    International Nuclear Information System (INIS)

    Negron, S.B.

    1991-01-01

    This patent describes an assembly for providing global power control in a nuclear reactor having the core split into two halves. It comprises a disk assembly formed from at least two disks each machined with an identical surface hole pattern such that rotation of one disk relative to the other causes the hole pattern to open or close, the disk assembly being positioned substantially at the longitudinal center of and coaxial with the core halves; and means for rotating at least one of the disks relative to the other

  17. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Aoyama, Motoo; Koyama, Jun-ichi; Uchikawa, Sadao; Bessho, Yasunori; Nakajima, Akiyoshi; Maruyama, Hiromi; Ozawa, Michihiro; Nakamura, Mitsuya.

    1990-01-01

    The present invention concerns fuel assemblies charged in a BWR type reactor and the reactor core. The fuel assembly comprises fuel rods containing burnable poisons and fuel rods not containing burnable poisons. Both of the highest and the lowest gadolinia concentrations of the fuel rods containing gadolinia as burnable poisons are present in the lower region of the fuel assembly. This can increase the spectral shift effect without increasing the maximum linear power density. (I.N.)

  18. Neutron energy spectra calculations in the low power research reactor

    International Nuclear Information System (INIS)

    Omar, H.; Khattab, K.; Ghazi, N.

    2011-01-01

    The neutron energy spectra have been calculated in the fuel region, inner and outer irradiation sites of the zero power research reactor using the MCNP-4C code and the combination of the WIMS-D/4 transport code for generation of group constants and the three-dimensional CITATION diffusion code for core analysis calculations. The neutron energy spectrum has been divided into three regions and compared with the proposed empirical correlations. The calculated thermal and fast neutron fluxes in the low power research reactor MNSR inner and outer irradiation sites have been compared with the measured results. Better agreements have been noticed between the calculated and measured results using the MCNP code than those obtained by the CITATION code. (author)

  19. Low power modular power generating reactors or Small Modular Reactors (SMR)

    International Nuclear Information System (INIS)

    Chenais, Jacques

    2016-01-01

    Electronuclear reactors were small reactors at the beginning, and then tend to be always bigger and more powerful, but since some recent times, several countries specialized in reactor design and fabrication (USA, Russia, China, and South Korea) have been developing Small Modular Reactors (SMR) of less than 300 MW. As France has already produced feasibility studies and is about to launch a SMR development programme, the author comments some specific aspects of this new architecture of reactors, characterises the targeted markets, gives an overview of the various more or less advanced existing concepts: a floating barge in Russia, the SMART 100 MW project in South Korea, several concepts in the USA (the mPower 125 MW, the NuScale 45 MW, the Westinghouse 225 MW, and the HI-SMUR 160 MW projects), the ACP 100 MW in China, the CAREM 27 MW in Argentina. French projects developed by the CEA, EDF, Areva and DCNS are then presented

  20. New reactor safety circuit for low-power-level operation

    International Nuclear Information System (INIS)

    McDowell, W.P.; Keefe, D.J.; Rusch, G.K.

    1978-01-01

    In the operation of nuclear reactors at low-power levels, one of the primary instrumentation problems is that the statistical fluctuations of reactor neutron population are accentuated by conventional log-count-rate and differentiating circuits and can cause frequent spurious scrams unless long time constants are incorporated in the circuit. Excessive time constants may introduce undesirable delay in the circuit response to legitimate scram signals. The paper develops the concept of a count doubling-time monitor which generates a scram signal if the number of counts from a pulse type neutron detector doubles in a given period of time. The paper demonstrates the theoretical relation between count doubling time and asymptomatic periods. A practical circuit to implement the function is described

  1. Structural characteristics of a graphite moderated critical assembly for a Zero Power reactor at IEA (Brazil)

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de; Hukai, R.Y.

    1975-01-01

    The structural characteristics of a graphite moderated core of a critical assembly to be installed in the Zero Power Reactor of IEA have been defined. These characteristics are the graphite block dimensions, the number and dimensions of the holes in the graphite, the pitch, the dimensions of the sticks of fuel and graphite to be inserted in the holes, and the mechanical reproducibility of the system. The composition of the fuel and moderator sticks were also defined. The main boundary conditions were the range of the relation C/U and C/TH used in commercial HTGR and the neutronics homogeneity

  2. Determination of power density distribution of fuel assemblies for research reactor by directly measuring the strontium-91 activities

    International Nuclear Information System (INIS)

    Yuan, Liq-Ji

    1987-01-01

    This work described the investigations of reactor core power peaking and three dimensional power density distribution of present core configuration of Tsing Hua Open-pool reactor (THOR). An experimental program, based on non-destructive fuel gamma scanning of 91 Sr activities, provides the data of fission density distribution for individual fuel pin of four-rod TRIGA-LEU cluster or for MTR-type fuel assembly. The informations are essentially important for the safety of reactor operation and for fuel management especially for the mixed loading with three different types of fuel at present. The relative power peaking values and the power density distribution for present core are discussed. (author)

  3. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  4. Operation and utilization of low power research reactor critical facility for Advanced Heavy Water Reactor (AHWR)

    International Nuclear Information System (INIS)

    De, S.K.; Karhadkar, C.G.

    2017-01-01

    An Advanced Heavy Water Reactor (AHWR) has been designed and developed for maximum power generation from thorium considering large reserves of thorium. The design envisages using 54 pin MOX cluster with different enrichment of "2"3"3U and Pu in Thoria fuel pins. Theoretical models developed to neutron transport and the geometrical details of the reactor including all reactivity devices involve approximations in modelling, resulting in uncertainties. With a view to minimize these uncertainties, a low power research reactor Critical Facility was built in which cold clean fuel can be arranged in a desired and precise geometry. Different experiments conducted in this facility greatly contribute to understand and validate the physics design parameters

  5. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Nervi, J.C.

    1975-01-01

    This invention refers to fuel assemblies for a liquid metal cooled fast neutron reactor. Each assembly is composed of a hollow vertical casing, of regular polygonal section, containing a bundle of clad pins filled with a fissile or fertile substance. The casing is open at its upper end and has a cylindrical foot at its lower end for positioning the assembly in a housing provided in the horizontal diagrid, on which the core assembly rests. A set of flat bars located on the external surface of the casing enables it to be correctly orientated in its housing among the other core assemblies [fr

  6. Radiological shielding of low power compact reactor: calculation and design

    International Nuclear Information System (INIS)

    Marino, Raul

    2004-01-01

    The development of compact reactors becoming a technology that offers great projection and innumerable use possibilities, both in electricity generation and in propulsion.One of the requirements for the operation of this type of reactor is that it must include a radiological shield that will allow for different types of configurations and that, may be moved with the reactor if it needs to be transported.The nucleus of a reactor emits radiation, mainly neutrons and gamma rays in the heat of power, and gamma radiation during the radioactive decay of fission products.This radiation must be restrained in both conditions of operation to avoid it affecting workers or the public.The combination of different materials and properties in layers results in better performance in the form of a decrease in radiation, hence causing the dosage outside the reactor, whether in operation or shut down, to fall within the allowed limits.The calculations and design of radiological shields is therefore of paramount importance in reactor design.The choice of material and the design of the shield have a strong impact on the cost and the load capacity, the latter being one of the characteristics to optimize.The imposed condition of design is that the reactor can be transported together with the decay shield in a standard container of 40 foot [es

  7. Review of the status of low power research reactors and considerations for its development

    International Nuclear Information System (INIS)

    Lim, In Cheol; Wu, Sang Ik; Lee, Byung Chul; Ha, Jae Joo

    2012-01-01

    At present, 232 research reactors in the world are in operation and two thirds of them have a power less than 1 MW. Many countries have used research reactors as the tools for educating and training students or engineers and for scientific service such as neutron activation analysis. As the introduction of a research reactor is considered a stepping stone for a nuclear power development program, many newcomers are considering having a low power research reactor. The IAEA has continued to provide forums for the exchange of information and experiences regarding low power research reactors. Considering these, the Agency is recently working on the preparation of a guide for the preparation of technical specification possibly for a member state to use when wanting to purchase a low power research reactor. In addition, ANS has stated that special consideration should be given to the continued national support to maintain and expand research and test reactor programs and to the efforts in identifying and addressing the future needs by working toward the development and deployment of next generation nuclear research and training facilities. Thus, more interest will be given to low power research reactors and its role as a facility for education and training. Considering these, the status of low power research reactors was reviewed, and some aspects to be considered in developing a low power research reactor were studied

  8. Fuel design with low peak of local power for BWR reactors with increased nominal power

    International Nuclear Information System (INIS)

    Perusquia C, R.; Montes, J.L.; Hernandez, J.L.; Ortiz, J.J.; Castillo, A.

    2006-01-01

    The Federal Commission of Electricity recently announcement the beginning of the works related with the increase of the power to 120% of the original nominal one in the Boiling Water Reactors (BWR) of the Laguna Verde Central (CLV): In the National Institute of Nuclear Research (ININ) are carried out studies of the impact on the design of the recharge of derived fuel of this increase. One of the main effects of the power increase type that it is promoting, is the increment of the flow of generated vapor, what takes, to a bigger fraction of vacuum in the core presenting increased values of the maximum fraction to the limit, so much of the ratio of lineal heat generation (XFLPD) as of the ratio of critic power (MFLCPR). In the made studies, it is found that these fractions rise lineally with the increase of the nominal power. Considering that the reactors of the CLV at the moment operate to 105% of the original nominal power, it would imply an increment of the order of 13.35% in the XFLPD and in the MFLCPR operating to a nominal power of 120% of the original one. This would propitiate bigger problems to design appropriately the fuel cycle and the necessity, almost unavoidable, of to resort to a fuel assembly type more advanced for the recharges of the cores. As option, in the ININ the feasibility of continuing using the same type of it fuel assembles that one has come using recently in the CLV, the type GE12 is analyzed. To achieve it was outlined to diminish the peak factor of local power (LPPF) of the power cells that compose the fuel recharge in 13.35%. It was started of a fuel design previously used in the recharge of the unit 1 cycle 12 and it was re-design to use it in the recharge design of the cycle 13 of the unit 1, considering an increase to 120% of the original power and the same requirements of cycle extension. For the re-design of the fuel assembly cell it was used the PreDiCeldas computer program developed in the ININ. It was able to diminish the LPPF

  9. Guide to power reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The IAEA's major first scientific publication is the Directory of Power Reactors now in operation or under construction in various parts of the world. The purpose of the directory is to present important details of various power projects in such a way as to provide a source of easy reference for anyone interested in the development of the peaceful uses of atomic energy, either at the technical or management level. Six pages have been devoted to each reactor the first of which contains general information, reactor physics data and information about the core. The second and third contain sketches of the fuel element or of the fuel element assembly, and of the horizontal and vertical sections of the reactor. On the fourth page information is grouped under the following heads: fuel element, core heat transfer, control, reactor vessel and over-all dimensions, and fluid flow. The fifth page shows a simplified flow diagram, while the sixth provides information on reflector and shielding, containment and turbo generator. Some information has also been given, when available, on cost estimates and operating staff requirements. Remarks and a bibliography constitute the last part of the description of each reactor. Reactor projects included in this directory are pressurized light water cooled power reactors. Boiling light water cooled power reactors, heavy water cooled power reactors, gas cooled power reactors, organic cooled power reactors liquid metal cooled power reactors and liquid metal cooled power reactors

  10. Examples of in-service inspections and typical maintenance schedule for low-power research reactors

    International Nuclear Information System (INIS)

    Boeck, H.

    1997-01-01

    In-service inspection methods for low-power research reactors are described which have been developed during the past 37 years of the operation of the TRIGA reactor Vienna. Special tools have been developed during this period and their application for maintenance and in-serve inspection is discussed. Two practical in-service inspections at a TRIGA reactor and at a MTR reactor are presented. Further a typical maintenance plan for a TRIGA reactor is listed in the annex. (author)

  11. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Yuchi, Yoko; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro; Koyama, Jun-ichi.

    1996-01-01

    In a fuel assembly of a BWR type reactor, a region substantially containing burnable poison is divided into an upper region and a lower region having different average concentrations of burnable poison along a transverse cross section perpendicular to the axial direction. The ratio of burnable poison contents of both regions is determined to not more than 80%, and the average concentration of the burnable poison in the lower region is determined to not less than 9% by weight. An infinite multiplication factor at an initial stage of the burning of the fuel assembly is controlled effectively by the burnable poisons. Namely, the ratio of the axial power can be controlled by the distribution of the enrichment degree of uranium fuels and the distribution of the burnable poison concentration in the axial direction. Since the average enrichment degree of the reactor core has to be increased in order to provide an initially loaded reactor core at high burnup degree. Distortion of the power distribution in the axial direction of the reactor core to which fuel assemblies at high enrichment degree are loaded is flattened to improve thermal margin, to extend continuous operation period and increase a burnup degree upon take-out thereby improving fuel economy without worsening the reactor core characteristics of the initially loaded reactor core. (N.H.)

  12. Materialistic Aspects of Raising Resource of Pressurized Water Reactors for Low-Power Nuclear Plants

    International Nuclear Information System (INIS)

    Parshin, A.M.; Muratov, O.E.

    2005-01-01

    The opportunity of using ships reactors for low-power nuclear plants is considered. Some aspects of working constructional materials on cases of water-water reactors of ships nuclear units are considered. Advantages of raising resource of ships reactors are shown

  13. Analysis of Opportunity to Create Self-Regulating Reactor Facility of Extra-Low Power

    International Nuclear Information System (INIS)

    Kazansky, Y.A.; Levtchenko, V.A.; Yuriev, Y.S.

    2002-01-01

    This paper deals with fundamental possibilities (economy, safety, self-regulation) of creating an extra-low power reactor facility for heat supply. It contains the results of calculations for thermal and fast neutron reactors. The concept of this type of a reactor had been developed by the contributors earlier

  14. Refitting of the 'Celimene' hot cell for following up the fuel assembly of 900 MWe PWR power reactors

    International Nuclear Information System (INIS)

    Lhermenier, Andre; Van Craeynest, J.-C.

    1980-05-01

    The 'Celimene' cell adjoining the EL3 reactor provides for the acceptance, handling and the examination of irradiated fuel assemblies from power reactors (length approximately 4m, weight approximately 700 kg). Within the framework of the PWR fuel behavior follow-up or reprocessing, it is possible to extract an assembly representative of the normal fuel cycle, carry out non destructive tests on this assembly, extract pencils from it and re-insert this assembly, after refitting the head, into the normal fuel cycle for handling in a reprocessing plant or storage pond. Given suitable refitting techniques, the re-irradiation of the assembly can be considered after examination. Significant changes have been made to the buildings and the hoist facilities for handling very heavy flasks. It was necessary to rearrange the handling, machining and in-cell storage facilities. The development of an inspection rig will make it possible, some time in 1980, to carry out non destructive tests of assemblies, optical and metrological examination of assemblies prior to dismantling or of the structure after dismantling [fr

  15. Temperature coefficients in the Dragon low-enriched power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1972-05-15

    The temperature coefficient of the fuel and of the moderator have been evaluated for the Dragon HTR design for different stages in reactor life, initial core, end of no-refuelling period and equilibrium conditions. The investigation has shown the low-enriched HTR to have a strong, positive moderator coefficient. In some cases and for special operating conditions, even leading to a positive total temperature coefficient. This does not imply, however, that the HTR is an unsafe reactor system. By adequate design of the control system, safe and reliable operating characteristics can be achieved. This has already been proved satisfactory through many years of operation of other graphite moderated systems, such as the Magnox stations.

  16. Nuclear reactor spacer assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.; Groves, M.D.

    1979-01-01

    A fuel assembly for a nuclear reactor is disclosed wherein the fuel element receiving and supporting grid is comprised of a first metal, the guide tubes which pass through the grid assembly are comprised of a second metal and the grid is supported on the guide tubes by means of expanded sleeves located intermediate the grid and guide tubes. The fuel assembly is fabricated by inserting the sleeves, of initial outer diameter commensurate with the guide tube outer diameters, through the holes in the grid assembly provided for the guide tubes and thereafter expanding the sleeves radially outwardly along their entire length such that the guide tubes can subsequently be passed through the sleeves. The step of radial expansion, as a result of windows provided in the sleeves having dimensions commensurate with the geometry of the grid, mechanically captures the grid and simultaneously preloads the sleeve against the grid whereby relative motion between the grid and guide tube will be precluded

  17. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  18. Nuclear reactor assembly

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    A nuclear reactor assembly includes a reactor pressure tank having a substantially cylindrical side wall surrounded by the wall of a cylindrical cavity formed by a biological shield. A rotative cylindrical wall is interposed between the walls and has means for rotating it from outside of the shield, and a probe is carried by the rotative wall for monitoring the pressure tank's wall. The probe is vertically movable relative to the rotative cylindrical wall, so that by the probe's vertical movement and rotation of the rotative cylinder, the reactor's wall can be very extensively monitored. If the reactor pressure tank's wall fails, it is contained by the rotative wall which is backed-up by the shield cavity wall. (Official Gazette)

  19. Judgement on the data for fuel assembly outlet temperatures of WWER fuel assemblies in power reactors based on measurements with experimental fuel assemblies

    International Nuclear Information System (INIS)

    Krause, F.

    1986-01-01

    In the period from 1980 to 1985, in the Rheinsberg nuclear power plant experimental fuel assemblies were used on lattices at the periphery of the core. These particular fuel assemblies dispose of an extensive in-core instrumentation with different sensors. Besides this, they are fit out with a device to systematically thottle the coolant flow. The large power gradient present at the core position of the experimental fuel assembly causes a temperature profile along the fuel assemblies which is well provable at the measuring points of the outlet temperature. Along the direction of flow this temperature profile in the coolant degrades only slowly. This effect is to be taken into account when measuring the fuel assembly outlet temperature of WWER fuel assemblies. Besides this, the results of the measurements hinted both at a γ-heating of the temperature measuring points and at tolerances in the calculation of the micro power density distribution. (author)

  20. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  1. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  2. Reactor and fuel assembly

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Bessho, Yasunori; Sano, Hiroki; Yokomizo, Osamu; Yamashita, Jun-ichi.

    1990-01-01

    The present invention realizes an effective spectral operation by applying an optimum pressure loss coefficient while taking the characteristics of a lower tie plate into consideration. That is, the pressure loss coefficient of the lower tie plate is optimized by varying the cross sectional area of a fuel assembly flow channel in the lower tie plate or varying the surface roughness of a coolant flow channel in the lower tie plate. Since there is a pressure loss coefficient to optimize the moderator density over a flow rate change region, the effect of spectral shift rods can be improved by setting the optimum pressure loss coefficient of the lower tie plate. According to the present invention, existent fuel assemblies can easily be changed successively to fuel assemblies having spectral shift rods of a great spectral shift effect by using existent reactor facilities as they are. (I.S.)

  3. Reactor fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.; Groves, M.D.

    1980-01-01

    A nuclear reactor fuel assembly having a lower end fitting and actuating means interacting therewith for holding the assembly down on the core support stand against the upward flow of coolant. Locking means for interacting with projections on the support stand are carried by the lower end fitting and are actuated by the movement of an actuating rod operated from above the top of the assembly. In one embodiment of the invention the downward movement of the actuating rod forces a latched spring to move outward into locking engagement with a shoulder on the support stand projections. In another embodiment, the actuating rod is rotated to effect the locking between the end fitting and the projection. (author)

  4. Simulated nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Berta, V.T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end

  5. Fuel assembly outlet temperature profile influence on core by-pass flow and power distribution determination in WWER -440 reactors

    International Nuclear Information System (INIS)

    Petenyi, V.; Klucarova, K.; Remis, J.

    2003-01-01

    The in core instrumentation of the WWER-440 reactors consists of the thermocouple system and the system of self powered detectors (SPD). The thermocouple systems are positioned about 50 cm above the fuel bundle upper flow-mixing grid. The usual assumption is that, the coolant is well mixed in the Tc location, i.e. the temperature is constant through the flow cross-section area. The present evaluations by using the FLUENT 5.5.14 code reveal that, this assumption is not fulfilled. There exists a temperature profile that depends on fuel assembly geometry and on inner power profile of the fuel assembly. The paper presents the estimation of this effect and its influence on the core power distribution and the core by-pass flow determination. Comparison with measurements in Mochovce NPP will also be a part of this presentation (Authors)

  6. Rearrangement of fuel assemblies in the RBMK type reactors to flatten power distribution and improve the fuel cycle

    International Nuclear Information System (INIS)

    Mityaev, Yu.I.; Vikulov, V.K.

    1982-01-01

    A possibility of increasing the burnup of uranium fuel unloaded from the RBMK type reactors is investigated. Three variants of a two-zone reactor-refueling are considered: 1. the simplest variant of continuous refueling used at present, when the central and peripherical reactor zones are additionally fueled independently by similar fuel assemblies (FA); 2. the variant under which new FA are loaded to the peripherical zone and are used there up to the same burnup as in the first case, then all the peripherical FA (PFA) are rearranged to the centre and they are used there up to maximum burnup; 3. the same as in the second variant, but not all the PFA are rearranged to the centre but only FA with small fuel burnup. It is shown by calculation that average fuel burnup for the third refueling variant is several per cent higher at the optimal burnup of rearranged FA. Besides, flattening of fuel channel power is improved in this case, that permits to increase uranium enrichment and burnup at the same maximum power. It essentially improves economic parameters of the reactor. It is concluded that realization of the considered variant of fuel refueling will produce the most essential effect for reactors refueled without shutdown

  7. Device for measuring the local power in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Thor, E.R.; Korpaas, Harald; Leyse, R.H.; Smith, R.D.

    1977-01-01

    The purpose of the invention is to make possible the fabrication of a gamma ray thermometer, capable of being accurately calibrated, before being mounted in the core of the reactor, by means of a system simulating the power released by the fuel. As already indicated, the principle used for performing the measurement with a gamma ray thermometer consists, schematically, in establishing a constant and given conductance path in the mass of an absorbent body and, after calibration, deducting from the temperature difference recorded at the ends of this path the value of the calorific power absorbed by the body and therefore generated by the surrounding nuclear fuel [fr

  8. Nuclear Education and Training Courses as a Commercial Product of a Low Power Research Reactor

    International Nuclear Information System (INIS)

    Böck, H.; Villa, M.; Steinhauser, G.

    2013-01-01

    The Vienna University of Technology (VUT) operates a 250 kW TRIGA Mark II research reactor at the Atominstitut (ATI) since March 1962. This reactor is uniquely devoted to nuclear education and training with the aim to offer an instrument to perform academic research and training. During the past decade a number of requests to the Atominstitut asked for the possibility to offer this reactor for external training courses. Over the years, such courses have been developed as regular courses for students during their academic curricula at the VUT/ATI. The courses cover such subjects as “Reactor physics and kinetics”, and “Reactor instrumentation and control”, in total about 20 practical exercises. Textbooks have been developed in English language for both courses. Target groups for commercial courses are other universities without an access to research reactors (i.e., the Technical University of Bratislava, Slovak Republic, or the University of Manchester, UK), international organisations (i.e., IAEA Dept of Safeguards, training section), research centres (ie. Mol, Belgium) for retraining of their reactor staff or nuclear power plants for staff retraining. These courses have been very successful during the past five years in such a manner that the Atominstitut has now to decline new course applications as the reactor is also used for Masters thesis and PhD work which requires full power operation while courses require low power operation. The paper describes typical training programs, target groups and possible transfers of these courses to other reactors. (author)

  9. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  10. Fuel assembly for pressure loss variable PWR type reactor

    International Nuclear Information System (INIS)

    Yoshikuni, Masaaki.

    1993-01-01

    In a PWR type reactor, a pressure loss control plate is attached detachably to a securing screw holes on the lower surface of a lower nozzle to reduce a water channel cross section and increase a pressure loss. If a fuel assembly attached with the pressure loss control plate is disposed at a periphery of the reactor core where the power is low and heat removal causes no significant problem, a flowrate at the periphery of the reactor core is reduced. Since this flowrate is utilized for removal of heat from fuel assemblies of high powder at the center of the reactor core where a pressure loss control plate is not attached, a thermal limit margin of the whole reactor core is increased. Thus, a limit of power peaking can be moderated, to obtain a fuel loading pattern improved with neutron economy. (N.H.)

  11. Inherent Safety Feature of Hybrid Low Power Research Reactor during Reactivity Induced Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, DongHyun; Yum, Soo Been; Hong, Sung Teak; Lim, In-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hybrid low power research reactor(H-LPRR) is the new design concept of low power research reactor for critical facility as well as education and training. In the case of typical low power research reactor, the purposes of utilization are the experiments for education of nuclear engineering students, Neutron Activation Analysis(NAA) and radio-isotope production for research purpose. H-LPRR is a light-water cooled and moderated research reactor that uses rod-type LEU UO{sub 2} fuels same as those for commercial power plants. The maximum core thermal power is 70kW and, the core is placed in the bottom of open pool. There are 1 control rod and 2 shutdown rods in the core. It is designed to cool the core by natural convection, retain negative feedback coefficient for entire fuel periods and operate for 20 years without refueling. Inherent safety in H-LPRR is achieved by passive design features such as negative temperature feedback coefficient and core cooling by natural convection during normal and emergency conditions. The purpose of this study is to find out that the inherent safety characteristics of H-LPRR is able to control the power and protect the reactor from the RIA(Reactivity induced accident). RIA analysis was performed to investigate the inherent safety feature of H-LPRR. As a result, it was found that the reactor controls its power without fuel damage in the event and that the reactor remains safe states inherently. Therefore, it is believed that high degree of safety inheres in H-LPRR.

  12. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Mochida, Takaaki.

    1987-01-01

    Purpose: To increase the plutonium utilization amount and improve the uranium-saving effect in the fuel assemblies of PWR type reactor using mixed uranium-plutonium oxides. Constitution: MOX fuel rods comprising mixed plutonium-uranium oxides are disposed to the outer circumference of a fuel assembly and uranium fuel rods only composed of uranium oxides are disposed to the central portion thereof. In such a fuel assembly, since the uranium fuel rods are present at the periphery of the control rod, the control rod worth is the same as that of the uranium fuel assembly in the prior art. Further, since about 25 % of the entire fuel rods is composed of the MOX fuel rods, the plutonium utilization amount is increased. Further, since the MOX fuel rods at low enrichment degree are present at the outer circumferential portion, mismatching at the boundary to the adjacent MOX fuel assembly is reduced and the problem of local power peaking increase in the MOX fuel assembly is neither present. (Kamimura, M.)

  13. A neutron tomography facility at a low power research reactor

    CERN Document Server

    Körner, S; Von Tobel, P; Rauch, H

    2001-01-01

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at ...

  14. Accident sequence analysis for a BWR [Boiling Water Reactor] during low power and shutdown operations

    International Nuclear Information System (INIS)

    Whitehead, D.W.; Hake, T.M.

    1990-01-01

    Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs

  15. Stationary low power reactor No. 1 (SL-1) accident site decontamination ampersand dismantlement project

    International Nuclear Information System (INIS)

    Perry, E.F.

    1995-01-01

    The Army Reactor Area (ARA) II was constructed in the late 1950s as a test site for the Stationary Low Power Reactor No. 1 (SL-1). The SL-1 was a prototype power and heat source developed for use at remote military bases using a direct cycle, boiling water, natural circulation reactor designed to operate at a thermal power of 3,000 kW. The ARA II compound encompassed 3 acres and was comprised of (a) the SL-1 Reactor Building, (b) eight support facilities, (c) 50,000-gallon raw water storage tank, (d) electrical substation, (e) aboveground 1,400-gallon heating oil tank, (f) underground 1,000-gallon hazardous waste storage tank, and (g) belowground power, sewer, and water systems. The reactor building was a cylindrical, aboveground facility, 39 ft in diameter and 48 ft high. The lower portion of the building contained the reactor pressure vessel surrounded by gravel shielding. Above the pressure vessel, in the center portion of the building, was a turbine generator and plant support equipment. The upper section of the building contained an air cooled condenser and its circulation fan. The major support facilities included a 2,500 ft 2 two story, cinder block administrative building; two 4,000 ft 2 single story, steel frame office buildings; a 850 ft 2 steel framed, metal sided PL condenser building, and a 550 ft 2 steel framed decontamination and laydown building

  16. Correlations between power and test reactor data bases

    International Nuclear Information System (INIS)

    Guthrie, G.L.; Simonen, E.P.

    1989-02-01

    Differences between power reactor and test reactor data bases have been evaluated. Charpy shift data has been assembled from specimens irradiated in both high-flux test reactors and low-flux power reactors. Preliminary tests for the existence of a bias between test and power reactor data bases indicate a possible bias between the weld data bases. The bias is nonconservative for power predictive purposes, using test reactor data. The lesser shift for test reactor data compared to power reactor data is interpreted primarily in terms of greater point defect recombination for test reactor fluxes compared to power reactor fluxes. The possibility of greater thermal aging effects during lower damage rates is also discussed. 15 refs., 5 figs., 2 tabs

  17. Neutronic design studies for an unattended, low power reactor

    International Nuclear Information System (INIS)

    Palmer, R.G.; Durkee, J.W. Jr.

    1986-01-01

    The Los Alamos National Laboratory is involved in the design and demonstrations of a small, long-lived nuclear heat and electric power source for potential applications at remote sites where alternate fossil energy systems would not be cost effective. This paper describes the neutronic design analysis that was performed to arrive at two conceptual designs, one using thermoelectric conversion, the other using an organic Rankine cycle. To meet the design objectives and constraints a number of scoping and optimization studies were carried out. The results of calculations of control worths, temperature coefficients of reactivity and fuel depletion effects are reported

  18. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  19. Reactor power distribution monitor

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1980-01-01

    Purpose: To improve the performance and secure the safety of a nuclear reactor by rapidly computing and display the power density in the nuclear reactor by using a plurality of processors. Constitution: Plant data for a nuclear reactor containing the measured values from a local power monitor LPRM are sent and recorded in a magnetic disc. They are also sent to a core performance computer in which burn-up degree distribution and the like are computed, and the results are sent and recorded in the magnetic disc. A central processors loads programs to each of the processors and applies data recorded in the magnetic disc to each of the processors. Each of the processors computes the corresponding power distribution in four fuel assemblies surrounding the LPRM string by the above information. The central processor compiles the computation results and displays them on a display. In this way, power distribution in the fuel assemblies can rapidly be computed to thereby secure the improvement of the performance and safety of the reactor. (Seki, T.)

  20. The low power miniature neutron source reactors: Design, safety and applications

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, M.; Bezboruah, T.; Johri, M.; Akaho, E.H.K.

    2006-04-01

    The Chinese Miniature Neutron Source Reactor (MNSR) is a low power research reactor with maximum thermal neutron flux of 1 x 10 12 n.cm -2 .s -1 in one of its inner irradiation channels and thermal power of approximately 30kW. The MNSR is designed based on the Canadian SLOWPOKE reactor and is one of the smallest commercial research reactors presently available in the world. Its commercial versions currently in operation in China, Ghana, Iran, Nigeria, Pakistan and Syria, is considered as an excellent tool for Neutron Activation Analysis (NAA), training of Scientist, and Engineers in nuclear science and technology and small scale radioisotope production. The paper highlights the basic design and theory of the commercial MNSR, its safety features, applications and advantages over the Chinese Prototype. The experimental flux characteristics determined in this work and in similar studies by other authors reveal that the commercial MNSR has more flux stability, longer life span, higher negative temperature coefficient of reactivity and low under-moderation compared to its prototype in China. The result shows that the facility is safe for reactor physics experiments, teaching and training of students and also ideal for application of NAA for the determination of elemental composition of biological and environmental samples. It can also be a useful tool for geochemical and soil fertility mapping. (author)

  1. Risk contribution from low power and shutdown of a pressurized water reactor

    International Nuclear Information System (INIS)

    Chu, T.L.; Pratt, W.T.

    1997-01-01

    During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (a pressurized water reactor) and Grand Gulf (a boiling water reactor), were selected for study by Brookhaven National Laboratory and Sandia National Laboratories, respectively. The program objectives included assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing estimated core damage frequencies, important accident sequences, and other qualitative and quantitative results with full power accidents as assessed in NUREG-1150. The scope included a Level 3 PRA for traditional internal events and a Level 1 PRA on fire, flooding, and seismically induced core damage sequences. 12 refs., 7 tabs

  2. Assessment and management of ageing of major nuclear power plant components important to safety: CANDU reactor assemblies

    International Nuclear Information System (INIS)

    2001-02-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance, design or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wearout of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring, and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs) including the Soviet designed water moderated and water cooled energy reactors (WWERs), are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age-related licensing issues. Since the reports are written from a safety perspective, they do not address life or life-cycle management of the plant components, which

  3. The low-temperature water-water reactor for district heating atomic power plant (DHPP)

    International Nuclear Information System (INIS)

    Skvortsov, S.A.; Sokolov, I.N.; Krauze, L.V.; Nikiporetz, Yu.G.; Philimonov, Yu.V.

    1977-01-01

    The district heating atomic power plant in the article is distinguished by the increased reliability and safety of operation that was provided by the use of following main principles: relatively low parameters of the coolant; the intergral arrangement of equipment and accordingly the minimum branching of the reactor circuit; the natural circulation of coolant of the primary circuit in the steady-state, transient and emergency regimes of reactor operation; the considerable reserves of cold water of the primary circuit in the reactor vessel, providing the emergency cooling; the application of two shells each of which is designed for the total working pressure, the second shell is made of prestressed reinforced concrete that eliminates its brittle failure. (M.S.)

  4. Low-temperature thermionics in space nuclear power systems with the safe-type fast reactor

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Yarygin, V.I.; Lazarenko, G.E.; Zabudko, A.N.; Ovcharenko, M.K.; Pyshko, A.P.; Mironov, V.S.; Kuznetsov, R.V.

    2007-01-01

    The potentialities of the use of the low-temperature thermionic converters (TIC) with the emitter temperature ≤ 1500 K in the space nuclear power system (SNPS) with the SAFE-type (Safe Affordable Fission Engine) fast reactor proposed and developed by common efforts of American experts have been considered. The main directions of the 'SAFE-300-TEG' SNPS (300 kW(thermal)) design update by replacing the thermoelectric converters with the low-temperature high-performance thermionic converters (with the barrier index V B ≤ 1.9 eV and efficiency ≥ 10%) meant for a long-term operation (5 years at least) as the components of the SAFE-300-TIC SNPS for a Lunar base have been discussed. The concept of the SNPS with the SAFE-type fast reactor and low-temperature TICs with specific electric power of about 1.45 W/cm 2 as the components of the SAFE-300-TIC system meeting the Nasa's initial requirements to a Lunar base with the electric power demand of about 30 kW(electrical) for robotic mission has been considered. The results, involving optimization and mass-and-size estimation, show that the SAFE-300-TIC system meets the initial requirements by Nasa to the lunar base power supply. The main directions of the system update aimed at the output electric power increase up to 100 kW(electrical) have also been presented. (authors)

  5. Systematic assembly homogenization and local flux reconstruction for nodal method calculations of fast reactor power distributions

    International Nuclear Information System (INIS)

    Dorning, J.J.

    1991-01-01

    A simultaneous pin lattice cell and fuel bundle homogenization theory has been developed for use with nodal diffusion calculations of practical reactors. The theoretical development of the homogenization theory, which is based on multiple-scales asymptotic expansion methods carried out through fourth order in a small parameter, starts from the transport equation and systematically yields: a cell-homogenized bundled diffusion equation with self-consistent expressions for the cell-homogenized cross sections and diffusion tensor elements; and a bundle-homogenized global reactor diffusion equation with self-consistent expressions for the bundle-homogenized cross sections and diffusion tensor elements. The continuity of the angular flux at cell and bundle interfaces also systematically yields jump conditions for the scaler flux or so-called flux discontinuity factors on the cell and bundle interfaces in terms of the two adjacent cell or bundle eigenfunctions. The expressions required for the reconstruction of the angular flux or the 'de-homogenization' theory were obtained as an integral part of the development; hence the leading order transport theory angular flux is easily reconstructed throughout the reactor including the regions in the interior of the fuel bundles or computational nodes and in the interiors of the pin lattice cells. The theoretical development shows that the exact transport theory angular flux is obtained to first order from the whole-reactor nodal diffusion calculations, done using the homogenized nuclear data and discontinuity factors, is a product of three computed quantities: a ''cell shape function''; a ''bundle shape function''; and a ''global shape function''. 10 refs

  6. Influence on living body by radiant rays produced in low power reactor. Irradiation of rabbit inside of low power reactor (UTR-KINKI)

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Isao; Nakamura, Katsuichi; Usuyama, Hideo; Usui, Akinori; Hosomi, Takashi; Yoshimura, Yoshinao; Nakai, Takahide; Egashira, Masamichi

    1984-12-01

    There is possibility of a risk that a living body is irradiated by those for slightly indifference to radiant rays, radiation source or devices of low level dose or dose rate. Accordingly, a low power reactor (UTR-KINKI) was utilized for a observation of influence by radiation of low level dose or dose rate, the rabbits were irradiated in it at output 1 w. The large influence was not expected for the low level dose rate of 1.313 Rad/hr even if they were irradiated for the several hours, but in a part of blood components a slight change was recognized. The change of M pattern in white blood corpuscle number was indicated likewise as irradiation of 500R X-ray, reported from Jacobson and others, by irradiation to about 13 Rads. In addition, lymphocyte number was increased considerably in an early stage. This fact will be useful for a recovery of an injury as mentioned by Lucky. The rabbits of alloxan diabetes mellitus and hepatitis were irradiated in the same way as above, but they scarcely showed the alterations. However, numerous rabbits can't be used in this experiment for the equipment and others. (author).

  7. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  8. Fuel assembly in a reactor

    International Nuclear Information System (INIS)

    Saito, Shozo; Kawahara, Akira.

    1975-01-01

    Object: To provide a fuel assembly in a reactor which can effectively prevent damage of the clad tube caused by mutual interference between pellets and the clad tube. Structure: A clad tube for a fuel element, which is located in the outer peripheral portion, among the fuel elements constituting fuel assemblies arranged in assembled and lattice fashion within a channel box, is increased in thickness by reducing the inside diameter thereof to be smaller than that of fuel elements internally located, thereby preventing damage of the clad tube resulting from rapid rise in output produced when control rods are removed. (Kamimura, M.)

  9. CEA fuel pencil qualification under irradiation: from component conception to fuel assembly irradiation in a power reactor

    International Nuclear Information System (INIS)

    Marin, J.-F.; Pillet, Claude; Francois, Bernard; Morize, Pierre; Petitgrand, Sylvie; Atabek, R.-M.; Houdaille, Brigitte.

    1981-06-01

    Fabrication of fuel pins made of uranium oxide pellets and of a zircaloy 4 cladding is described. Irradiation experiment results are given. Thermomechanical behavior of the fuel pin in a power reactor is examined [fr

  10. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  11. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  12. Simmer model of a low-enriched uranium non-power reactor

    International Nuclear Information System (INIS)

    Wilhelm, Dirk; Biaut, Guillaume; Tobita, Yoshiharu

    2006-01-01

    IRSN has started to use the coupled neutronics - fluid dynamics code SIMMER to study core-disruptive accident induced by insertions of large reactivities sufficient to very short period power excursions in fuel plate-type and water-moderated experimental research reactors. Until now, French safety analysis retain thermal energy released and mechanical yields, deduced from analysis of destructive test programs SPERT-I and BORAX-I to demonstrate the behavior of such reactors and design their structures and containment. The present research program models the design basis accident of a low enriched fuel currently used in experimental research reactors contrary to SPERT-I or BORAX-I. The objective is to analyze the effects of counter reactivities and how these would limit the generated thermal energy in the fuel. This part demands a close coupling to the fluid dynamics analysis. The consequences of the nuclear power excursion, the changes of state of the fuel and the coolant, and ultimately the mechanical energy released are calculated by SIMMER. For large step-wise reactivity introductions, the Doppler effect limits the power excursion before energy is released high enough to melt a large part of the fuel. Moreover, it has been shown that imposing an external reactivity as a step-wise or time dependant reactivity introduction yields results quite different from those of the physical movement of control rods. (author)

  13. SIMMER model of a low-enriched uranium non-power reactor

    International Nuclear Information System (INIS)

    Wilhelm, Dirk; Biaut, Guillaume; Tobita, Yoshiharu

    2008-01-01

    IRSN has started using the coupled neutronics-fluid dynamics code SIMMER [] to study core-disruptive accidents induced by insertions of large reactivities to produce very short period power excursions in fuel plate-type and water-moderated experimental research reactors. Until now, French safety analyses retain a bounding thermal energy released and mechanical yields, deduced from analysis of destructive in-pile test programs, to study the behavior of such reactors and design their structures and containment. Contrary to this approach, the present research program aims at modeling the design basis accident of research reactors with a low-enriched fuel using a CFD code. The objective is to analyze the effects of reactivity feedbacks and how they would limit the generated thermal energy released in the fuel. These aspects require a close coupling of the neutronics to the fluid dynamics analysis. The consequences of the nuclear power excursion, the changes of state of the fuel and the coolant, and ultimately the mechanical energy released are calculated by SIMMER. For large step-wise reactivity introductions, the Doppler effect and, at a lower extent, the fuel element thermal dilatation, which generates locally a decrease of the moderator to fuel ratio, limit the power excursion before the energy released is high enough to melt a large part of the fuel. Moreover, it has been shown that imposing an external reactivity as a step-wise or time-dependent reactivity introduction yields results quite different from those of the physical movement of control rods

  14. Reactor power control device

    International Nuclear Information System (INIS)

    Imaruoka, Hiromitsu.

    1994-01-01

    A high pressure water injection recycling system comprising injection pipelines of a high pressure water injection system and a flow rate control means in communication with a pool of a pressure control chamber is disposed to a feedwater system of a BWR type reactor. In addition, the flow rate control means is controlled by a power control device comprising a scram impossible transient event judging section, a required injection flow rate calculation section for high pressure water injection system and a control signal calculation section. Feed water flow rate to be supplied to the reactor is controlled upon occurrence of a scram impossible transient event of the reactor. The scram impossible transient event is judged based on reactor output signals and scram operation demand signals and injection flow rate is calculated based on a predetermined reactor water level, and condensate storage tank water or pressure control chamber pool water is injected to the reactor. With such procedures, water level can be ensured and power can be suppressed. Further, condensate storage tank water of low enthalpy is introduced to the pressure suppression chamber pool to directly control elevation of water temperature and ensure integrity of the pressure vessel and the reactor container. (N.H.)

  15. Power module assembly

    Science.gov (United States)

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  16. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  17. Nuclear reactor power supply

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector is interposed between the protection system and the control system. This selector prevents a parameter signal of a set of signals, which differs from the other parameters signals of the set by more than twice the allowable variation of the sensors which produce the set, from passing to the control system. The selectors include a pair of signal selection units, one unit sending selected process signals to primary control channels and the other sending selected process signals to back-up control channels. Test signals are periodically impressed by a test unit on a selected pair of a selected unit and control channels. When test signals are so impressed the selected control channel is disabled from transmitting control signals to the reactor and/or its associated components. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test

  18. Low-activation structural ceramic composites for fusion power reactors: materials development and main design issues

    International Nuclear Information System (INIS)

    Perez, A.S.; Le Bars, N.; Giancarli, L.; Proust, E.; Salavy, J.F.

    1994-01-01

    Development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics is discussed, for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (author) 11 refs.; 3 figs

  19. Feasibility studies on large sample neutron activation analysis using a low power research reactor

    International Nuclear Information System (INIS)

    Gyampo, O.

    2008-06-01

    Instrumental neutron activation analysis (INAA) using Ghana Research Reactor-1 (GHARR-1) can be directly applied to samples with masses in grams. Samples weights were in the range of 0.5g to 5g. Therefore, the representativity of the sample is improved as well as sensitivity. Irradiation of samples was done using a low power research reactor. The correction for the neutron self-shielding within the sample is determined from measurement of the neutron flux depression just outside the sample. Correction for gamma ray self-attenuation in the sample was performed via linear attenuation coefficients derived from transmission measurements. Quantitative and qualitative analysis of data were done using gamma ray spectrometry (HPGe detector). The results of this study on the possibilities of large sample NAA using a miniature neutron source reactor (MNSR) show clearly that the Ghana Research Reactor-1 (GHARR-1) at the National Nuclear Research Institute (NNRI) can be used for sample analyses up to 5 grams (5g) using the pneumatic transfer systems.

  20. Reactor fuel assembly fastening

    International Nuclear Information System (INIS)

    Formanek, F.J.; Schukei, G.E.

    1980-01-01

    A nuclear fuel assembly is described, adapted to be locked into first mating surfaces on a core support stand, comprising a lower end fitting having posts for resting on the stand; elongated hook members pivotally connected at one end to the lower end fitting and having a second mating surface at the other end to engage the first mating surfaces; actuating means located between the posts on the lower end fitting and being vertically movable relative to the end fitting; and rigid links pivotally attached at one end to the hook members intermediate the connection of the hook members to the end fitting and the second mating surface and pivotally attached at the other end to the actuating means, the link having a length between the pivoted connections such that the second mating surface on the hook members locks into engagement with the first mating surfaces on the stand as the links approach the horizontal. (author)

  1. Production of 165 Dy for radiation synovectomy, in a low-power (slowpoke) nuclear reactor

    International Nuclear Information System (INIS)

    Bridges, C.; Duke, M.J.M.; McQuarrie, S.A.; Wiebe, L.I.

    1998-01-01

    Full text: Severe, debilitating pain accompanies inflammation of the synovial membrane in rheumatoid arthritis. Under certain conditions, radiation synovectomy is an effective alternative to surgery for relief of these symptoms. Radionuclides which decay by the emission of beta particles, or beta plus low yields of gamma/x-rays are indicated for this medical application. Of the radionuclides with appropriate decay emissions, half-life and physical/chemical properties, 165 Dy is a suitable candidate for production in a low-power reactor. Literature methods for production of this radiopharmaceutical usually involve irradiating solid Dy(OH) 3 , which is dissolved in HCl to form DyCl 3 and then re-precipitated under controlled conditions using NaOH, to produce the desired particle size for medical use. A procedure in which most or all of this post-irradiation processing can be eliminated is particularly important when using low neutron flux reactors, in order to avoid reductions in the amount of deliverable radiopharmaceutical. Radiological safety considerations may also necessitate avoiding post-irradiation processing, since low-power reactor facilities usually have no appropriate hot cells for extensive manipulation of highly active samples. Appropriately-sized, pre-formed Dy(OH) 3 particles were produced under a variety of conditions in attempts to produce a stable, sodium-free product that would be suitable for irradiation and use without further processing. Sodium content could be reduced to about 165 Dy production yields and particle characteristics will be presented in support of this concept

  2. Reducing scram frequency by modifying/eliminating steam generator low-low level reactor trip setpoint for Maanshan nuclear power plant

    International Nuclear Information System (INIS)

    Yuann, R.Y.; Chiang, S.C.; Hsiue, J.K.; Chen, P.C.

    1987-01-01

    The feasibility of modification/elimination of steam generator low-low level reactor trip setpoint is evaluated by using RETRAN-02 code for the purpose of reducing scram frequency in Maanshan 3-loop pressurized water reactor. The ANS Condition II event loss of normal feedwater and condition IV event feedwater system line break are the basis for steam generator low-low level reactor trip setpoint sensitivity analysis, including various initial reactor power levels, reactivity feedback coefficients, and system functions assumptions etc., have been performed for the two basis events with steam generator low-low level reactor trip setpoint at 0% narrow range and without this trip respectively. The feasibility of modifying/eliminating current steam generator low-low level reactor trip setpoint is then determined based on whether the analysis results meet with the ANS Condition II and IV acceptance criteria or not

  3. Risk contribution from low power and shutdown of a pressurized water reactor

    International Nuclear Information System (INIS)

    Chu, T.L.; Pratt, W.T.

    1997-01-01

    During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (a pressurized water reactor) and Grand Gulf (a boiling water reactor), were selected for study by Brookhaven National Laboratory and Sandia National Laboratories, respectively. The program objectives included assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing estimated core damage frequencies, important accident sequences, and other qualitative and quantitative results with full power accidents as assessed in NUREG-1150. The scope included a Level 3 PRA for traditional internal events and a Level 1 PRA on fire, flooding, and seismically induced core damage sequences. A phased approach was used in Level 1. In Phase 1 the concept of plant operational states (POSs) was developed to provide a better representation of the plant as it transitions from power to non power operation. This included a coarse screening analysis of all POSs to identify vulnerable plant configurations, to characterize (on a high, medium, or low basis) potential frequencies of core damage accidents, and to provide a foundation for a detailed Phase 2 analysis. In Phase 2, selected POSs from both Grand Gulf and Surry were chosen for detailed analysis. For Grand Gulf, POS 5 (approximately Cold Shutdown as defined by Grand Gulf Technical Specifications) during a refueling outage was selected. For Surry, three POSs representing the time the plant spends in mid loop operation were chosen for analysis. Level 1 and Level 2/3 results from the Surry analyses are presented

  4. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  5. Feasible reactor power cutback logic development for an integral reactor

    International Nuclear Information System (INIS)

    Han, Soon-Kyoo; Lee, Chung-Chan; Choi, Suhn; Kang, Han-Ok

    2013-01-01

    Major features of integral reactors that have been developed around the world recently are simplified operating systems and passive safety systems. Even though highly simplified control system and very reliable components are utilized in the integral reactor, the possibility of major component malfunction cannot be ruled out. So, feasible reactor power cutback logic is required to cope with the malfunction of components without inducing reactor trip. Simplified reactor power cutback logic has been developed on the basis of the real component data and operational parameters of plant in this study. Due to the relatively high rod worth of the integral reactor the control rod assembly drop method which had been adapted for large nuclear power plants was not desirable for reactor power cutback of the integral reactor. Instead another method, the control rod assembly control logic of reactor regulating system controls the control rod assembly movements, was chosen as an alternative. Sensitivity analyses and feasibility evaluations were performed for the selected method by varying the control rod assembly driving speed. In the results, sensitivity study showed that the performance goal of reactor power cutback system could be achieved with the limited range of control rod assembly driving speed. (orig.)

  6. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    In a nuclear fuel assembly, hollow guide posts protrude into a fuel assembly and fitting grill from a biased spring pad with a plunger that moves with the spring pad plugging one end of each of the guide posts. A plate on the end fitting grill that has a hole for fluid discharge partially plugs the other end of the guide post. Pressurized water coolant that fills the guide post volume acts as a shock absorber and should the reactor core receive a major seismic or other shock, the fuel assembly is compelled to move towards a pad depending from a transversely disposed support grid. The pad bears against the spring pad and the plunger progressively blocks the orifices provided by slots in the guide posts thus gradually absorbing the applied shock. After the orifice has been completely blocked, controlled fluid discharge continues through a hole coil spring cooperating in the attenuation of the shock. (author)

  7. FFTF primary system transition to natural circulation from low reactor power

    International Nuclear Information System (INIS)

    Bouchey, G.D.; Additon, S.L.; Nutt, W.T.

    1980-01-01

    Plans for reactor and primary loop natural circulation testing in the Fast Flux Test Facility (FFTF) are summarized. Detailed pretest planning with an emphasis on understanding the implications of process noise and model uncertainties for model verification and test acceptance are discussed for a transition to natural circulation in the reactor core and primary heat transport loops from initial conditions of 5% of rated reactor power and 75% of full flow

  8. Nuclear reactor shutdown control rod assembly

    International Nuclear Information System (INIS)

    Bilibin, K.

    1988-01-01

    This patent describes a nuclear reactor having a reactor core and a reactor coolant flowing therethrough, a temperature responsive, self-actuated nuclear reactor shutdown control rod assembly, comprising: an upper drive line terminating at its lower end with a substantially cylindrical wall member having inner and outer surfaces; a lower drive line having a lower end adapted to be attached to a neutron absorber; a ring movable disposed about the outer surface of the wall member of the upper drive line; thermal actuation means adapted to be in heat exchange relationship with coolant in an associated reactor core and in contact with the ring, and balls located within the openings in the upper drive line. When reactor coolant approaches a predetermined design temperature the actuation means moves the ring sufficiently so that the balls move radially out from the recess and into the space formed by the second portion of the ring thereby removing the vertical support for the lower drive line such that the lower drive line moves downwardly and inserts an associated neutron absorber into an associated reactor core resulting in automatic reduction of reactor power

  9. Power reactor noise

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    This book concentrates on the different types of noise present in power reactors and how the analysis of this noise can be used as a tool for reactor monitoring and diagnostics. Noise analysis is a growing field that offers advantages such as simplicity, low cost, and natural multivariable interactions. A major advantage, continuous and undisturbed monitoring, supplies a means of obtaining early warnings of possible reactor malfunctions thus preventing further complications by alerting operators to a problem - and aiding in the diagnosis of that problem - before it demands major repairs. Following an introductory chapter, the theoretical basis for the various methods of noise analysis is explained, and full chapters are devoted to the fundamentals of statistics for time-domain analysis and Fourier series and related topics for frequency-domain analysis. General experimental techniques and associated theoretical considerations are reviewed, leading to discussion of practical applications in the latter half of the book. Besides chapters giving examples of neutron noise and acoustical noise, chapters are also devoted to extensive examples from pressurized water reactor and boiling water reactor power plants

  10. Lateral restraint assembly for reactor core

    Science.gov (United States)

    Gorholt, Wilhelm; Luci, Raymond K.

    1986-01-01

    A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.

  11. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  12. Computer program for modelling the history of the in-service bending of fast power reactor fuel assemblies

    International Nuclear Information System (INIS)

    Dienstbier, J.

    1979-04-01

    The studies into stresses and deformations in the core are mainly focused on the fuel rod and the fuel assembly can. In high neutron doses austenitic steel swells and this is associated with a considerable increase in the volume of material. The SANDRA computer program is used for solving the problems of can deformations and stress during long-term reactor operation. The block for the mechanical interaction of cans is the key part of the program. The program input data include temperature distribution, fast neutron flux distribution and coolant overpressure inside the cans. Reactor operation is modelled using operating modes A, B, C which may arbitrarily be combined. Mode A computes bending deformations and the deformations of the can cross-section due to temperature dilatation in the change in temperature fields in the reactor; mode B computes deformations due to swelling and creep in long-term operation; mode C computes thermal deformations in reactor shut-down. A flowsheet is shown of program SANDRA as are examples of computed deformations. (M.S.)

  13. Computer realization of an algorithm for determining the optimal arrangement of a fast power reactor core with hexagonal assemblies

    International Nuclear Information System (INIS)

    Karpov, V.A.; Rybnikov, A.F.

    1983-01-01

    An algorithm for solving the problems associated with fast nuclear reactor computer-aided design is suggested. Formulation of the discrete optimization problem dealing with chosing of the first loading arrangement, determination of the control element functional purpose and the order of their rearrangement during reactor operation as well as the choice of operations for core reloading is given. An algorithm for computerized solutions of the mentioned optimization problem based on variational methods relized in the form of the DESIGN program complex written in FORTRAN for the BEhSM-6 computer is proposed. A fast-response program for solving the diffusion equations of two-dimensional reactor permitting to obtain the optimization problem solution at reasonable period of time is developed to conduct necessary neutron-physical calculations for the reactor in hexagonal geometry. The DESIGN program can be included into a computer-aided design system for automation of the procedure of determining the fast power reactor core arrangement. Application of the DESIGN program permits to avoid the routine calculations on substantiation of neutron-physical and thermal-hydraulic characteristics of the reactor core that releases operators from essential waste of time and increases efficiency of their work

  14. Status of control assembly materials in Indian water reactors

    International Nuclear Information System (INIS)

    Date, V.G.; Kulkarni, P.G.

    2000-01-01

    India's present operating water cooled power reactors comprise boiling water reactors of Tarapur Atomic Power Station (TAPS) and pressurized heavy water reactors (PHWRs) at Kota (RAPS), Kalpakkam (MAPS), Narora (NAPS) and Kakrapara (KAPS). Boiling water reactors of TAPS use boron carbide control blades for control of power as well as for shut down (scram). PHWRs use boron steel and cobalt absorber rods for power control and Cd sandwiched shut off rods (primary shut down system) and liquid poison rods (secondary shut down system) for shut down. In TAPS, Gadolinium rods (burnable poison rods) are also incorporated in fuel assembly for flux flattening. Boron carbide control blades and Gadolinium rods for TAPS, cobalt absorber rods and shut down assemblies for PHWRs are fabricated indigenously. Considerable development work was carried out for evolving material specifications, component and assembly drawings, and fabrication processes. Details of various control and shut off assemblies being fabricated currently are highlighted in the paper. (author)

  15. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Leclercg, J.

    1985-01-01

    Improvements to guide tubes for the fuel assemblies of light water nuclear reactors, said assemblies being immersed in operation in the cooling water of the core of such a reactor, the guide tubes being of the type made from zircaloy and fixed at their two ends respectively to an upper end part and a lower end part made from stainless steel or Irconel and which incorporate devices for braking the fall of the control rods which they house during the rapid shutdown of the reactor, wherein the said braking devices are constituted by means for restricting the diameter of the guide tubes comprising for each guide tube a zircaloy inner sleeve spot welded to the said guide tube and whose internal diameter permits the passage, with a calibrated clearance, of the corresponding control rod, the sleeve being distributed over the lower portion of each guide tube and associated with orifices made in the actual guide tubes to produce the progressive hydraulic absorption of the end of the fall of the control rods

  16. A Study of Performance in Low-Power Tokamak Reactor with Integrated Predictive Modeling Code

    International Nuclear Information System (INIS)

    Pianroj, Y.; Onjun, T.; Suwanna, S.; Picha, R.; Poolyarat, N.

    2009-07-01

    Full text: A fusion hybrid or a small fusion power output with low power tokamak reactor is presented as another useful application of nuclear fusion. Such tokamak can be used for fuel breeding, high-level waste transmutation, hydrogen production at high temperature, and testing of nuclear fusion technology components. In this work, an investigation of the plasma performance in a small fusion power output design is carried out using the BALDUR predictive integrated modeling code. The simulations of the plasma performance in this design are carried out using the empirical-based Mixed Bohm/gyro Bohm (B/gB) model, whereas the pedestal temperature model is based on magnetic and flow shear (δ α ρ ζ 2 ) stabilization pedestal width scaling. The preliminary results using this core transport model show that the central ion and electron temperatures are rather pessimistic. To improve the performance, the optimization approach are carried out by varying some parameters, such as plasma current and power auxiliary heating, which results in some improvement of plasma performance

  17. An integrated nuclear reactor unit for a floating low capacity nuclear power plant designed for power supply in remote areas with difficult access

    International Nuclear Information System (INIS)

    Achkasov, A.N.; Grechko, G.I.; Gladkov, O.G.; Pavlov, V.L.; Pepa, V.N.; Shishkin, V.A.

    1997-01-01

    The paper describes the conceptual design of an integrated advanced safety nuclear reactor unit for a low capacity floating, NPP designed for power supply in areas which are remote with difficult access. The paper describes the major structural and lay-out components of the steam generator and reactor units with main technical characteristics. (author)

  18. Influence on living body by radiant rays produced in low power reactor

    International Nuclear Information System (INIS)

    Ogura, Isao; Nakamura, Katsuichi; Usuyama, Hideo; Usui, Akinori; Hosomi, Takashi; Yoshimura, Yoshinao; Nakai, Takahide; Egashira, Masamichi

    1984-01-01

    There is possibility of a risk that a living body is irradiated by those for slightly indifference to radiant rays, radiation source or devices of low level dose or dose rate. Accordingly, a low power reactor (UTR-KINKI) was utilized for a observation of influence by radiation of low level dose or dose rate, the rabbits were irradiated in it at output 1 w. The large influence was not expected for the low level dose rate of 1.313 Rad/hr even if they were irradiated for the several hours, but in a part of blood components a slight change was recognized. The change of M pattern in white blood corpuscle number was indicated likewise as irradiation of 500R X-ray, reported from Jacobson and others, by irradiation to about 13 Rads. In addition, lymphocyte number was increased considerably in an early stage. This fact will be useful for a recovery of an injury as mentioned by Lucky. The rabbits of alloxan diabetes mellitus and hepatitis were irradiated in the same way as above, but they scarcely showed the alterations. However, numerous rabbits can't be used in this experiment for the equipment and others. (author)

  19. A two-dimensional simulator of the neutronic behaviour of low power fast reactors

    International Nuclear Information System (INIS)

    Penha, M.A.V.R. da.

    1984-01-01

    A model to simulate the temporal neutronic behaviour of fast breeder reactors was developed. The effective cross-sections are corrected, whenever the reactor state change; by using linear correlations and interpolation schemes with data contained in a library previously compiled. This methodology was coupled with a simplified spatial neutronic calculation to investigate the temporal behaviour of neutronic parameters such as breeding gain, flux and power. (Author) [pt

  20. Effects of low heterogeneity in fast critical assemblies

    International Nuclear Information System (INIS)

    Belov, S.P.; Dulin, V.A.; Zhukov, A.V.; Kuzin, E.N.; Mozhaev, V.K.; Sitnikov, V.I.; Tsibulya, A.M.; Shapar', A.V.; Zayfert, E.; Kuntsman, B.; Khayntsel'man, B.

    1989-01-01

    The problem of the low heterogeneity of fast critical assemblies, which are used to simulate fast reactors that are under design, has begun to assume increasing importance as the errors in nuclear data and group constants decrease and the capabilities of design codes improve. The design of the fuel channels of the fast critical assemblies of a BFS differs from that of the fuel subassemblies of a power reactor. The principal difference is that critical assemblies have a more heterogeneous structure than a reactor core does. As a result, the effects of this heterogeneity turn out to be appreciable for a number of functionals. Of particular interest was the measurement of the main neutronic characteristics of a fast reactor in its actual design and in the mockup produced by using BFS facilities. The authors measured and calculated the most important functionals (the ratios of the average cross sections of the main absorbing and fissioning elements, etc.) for both a homogeneous medium (fuel assemblies) and a heterogeneous medium (slugs, tubes) of practically identical composition. The objective of this work was to compare the discrepancy between experiment and calculations for the central functionals in the homogeneous and heterogeneous cases after corrections. This is a check of the accuracy of the simulation of homogeneous cores in fast power reactors by using the tools of the BFS fast critical assembly

  1. Fuel assembly for FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki.

    1995-01-01

    Ordinary sodium bond-type fuel pins using nitride fuels, carbide fuels or metal fuels and pins incorporated with hydride moderators are loaded in a wrapper tube at a ratio of from 2 to 10% based on the total number of fuel pins. The hydride moderators are sealed in the hydride moderator incorporated pins at the position only for a range from the upper end to a reactor core upper position of substantially 1/4 of the height of the reactor core from the upper end of the reactor core as a center. Then, even upon occurrence of ULOF (loss of flow rate scram failure phenomenon), it gives characteristic of reducing the power only by a doppler coefficient and not causing boiling of coolant sodium but providing stable cooling to the reactor core. Therefore, a way of thinking on the assurance of passive safety is simplified to make a verification including on the reactor structure unnecessary. In an LMFBR type reactor using the fuel assembly, a critical experiment for confirming accuracy of nuclear design is sufficient for the item required for study and development, which provides a great economical effect. (N.H.)

  2. Experimental study of the large-scale axially heterogeneous liquid-metal fast breeder reactor at the fast critical assembly: Power distribution measurements and their analyses

    International Nuclear Information System (INIS)

    Iijima, S.; Obu, M.; Hayase, T.; Ohno, A.; Nemoto, T.; Okajima, S.

    1988-01-01

    Power distributions of the large-scale axially heterogeneous liquid-metal fast breeder reactor were studied by using the experiment results of fast critical assemblies XI, XII, and XIII and the results of their analyses. The power distributions were examined by the gamma-scanning method and fission rate measurements using /sup 239/Pu and /sup 238/U fission counters and the foil irradiation method. In addition to the measurements in the reference core, the power distributions were measured in the core with a control rod inserted and in a modified core where the shape of the internal blanket was determined by the radial boundary. The calculation was made by using JENDL-2 and the Japan Atomic Energy Research Institute's standard calculation system for fast reactor neutronics. The power flattening trend, caused by the decrease of the fast neutron flux, was observed in the axial and radial power distributions. The effect of the radial boundary shape of the internal blanket on the power distribution was determined in the core. The thickness of the internal blanket was reduced at its radial boundary. The influence of the internal blanket was observed in the power distributions in the core with a control rod inserted. The calculation predicted the neutron spectrum harder in the internal blanket. In the radial distributions of /sup 239/Pu fission rates, the space dependency of the calculated-to-experiment values was found at the active core close to the internal blanket

  3. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  4. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Masumi, Ryoji; Ishibashi, Yoko.

    1995-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison-incorporated fuel rods and a spectral shift-type water rod. As the burnable poison for the burnable poison-incorporated fuel rod, a plurality of burnable poison elements each having a different neutron absorption cross section are used. A burnable poison element such as boron having a relatively small neutron absorbing cross section is disposed more in the upper half region than the lower half region of the burnable poison-incorporated fuel rods. In addition, a burnable poison element such as gadolinium having a relatively large neutron absorbing cross section is disposed more in the lower half-region than the upper half region thereof. This can flatten the power distribution in the vertical direction of the fuel assembly and the power distribution in the horizontal direction at the final stage of the operation cycle. (I.N.)

  5. Measurement of nuclear reactor noise at low power; Merenje nuklearnog reaktorskog suma na malim snagama

    Energy Technology Data Exchange (ETDEWEB)

    Velickovic, Lj [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1968-07-01

    Theoretical interpretation of reactor noise experiments is based on stochastic model developed and described in this paper. Ratio l/{beta} as well as subcriticality level can be determined bu measuring transfer function. In this paper the ratio l/{beta} was determined directly from auto-correlation functions for different critical configurations of the RB zero power reactor core and not by transfer function. This simplified the procedure significantly. It was found that the 0.5 W power level is most suitable for experimental study of neutron fluctuations. In this case fluctuations are intense compared to noise of the detector and electronic devices used.

  6. Kinetic analysis of sub-prompt-critical reactor assemblies

    International Nuclear Information System (INIS)

    Das, S.

    1992-01-01

    Neutronic analysis of safety-related kinetics problems in experimental neutron multiplying assemblies has been carried out using a sub-prompt-critical reactor model. The model is based on the concept of a sub-prompt-critical nuclear reactor and the concept of instantaneous neutron multiplication in a reactor system. Computations of reactor power, period and reactivity using the model show excellent agreement with results obtained from exact kinetics method. Analytic expressions for the energy released in a controlled nuclear power excursion are derived. Application of the model to a Pulsed Fast Reactor gives its sensitivity between 4 and 5. (author). 6 refs., 4 figs., 1 tab

  7. Modular Low-Heater-Power Cathode/Electron Gun Assembly for Microwave and Millimeter Wave Traveling Wave Tubes

    Science.gov (United States)

    Wintucky, Edwin G.

    2000-01-01

    A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular

  8. Determining the axial power profile of partly flooded fuel in a compact core assembled in reactor LR-0

    International Nuclear Information System (INIS)

    Košťál, Michal; Švadlenková, Marie; Baroň, Petr; Rypar, Vojtěch; Milčák, Ján

    2016-01-01

    Highlights: • Fission density in partly flooded compact core. • Calculation of fission density axial profile. • Significant calculational under prediction of experimental axial profile. - Abstract: Measurement and calculation of the axial power profile near the boundary of a moderated and non-moderated core is used to analyze the suitability of the neutron-physical process description, mainly the angular cross-section of a water-moderated uranium system. This is also an important issue because it affects the radiation situation above the partly flooded core of a water-moderated reactor. Axial power profiles of various fuel pins irradiated on reactor LR-0 were measured and the results were compared with MCNP6 code calculations using the ENDF/B-VII.0 nuclear data library. The calculated power profile in positions above the moderator level significantly underestimates experimental results. This might be caused by an improper description of the angular distribution of scattered neutrons in a water-moderated uranium system.

  9. Development and evaluation of a novel low power, high frequency piezoelectric-based ultrasonic reactor for intensifying the transesterification reaction

    Directory of Open Access Journals (Sweden)

    Mortaza Aghbashlo

    2016-12-01

    Full Text Available In this study, a novel low power, high frequency piezoelectric-based ultrasonic reactor was developed and evaluated for intensifying the transesterification process. The reactor was equipped with an automatic temperature control system, a heating element, a precise temperature sensor, and a piezoelectric-based ultrasonic module. The conversion efficiency and specific energy consumption of the reactor were examined under different operational conditions, i.e., reactor temperature (40‒60 °C, ultrasonication time (6‒10 min, and alcohol/oil molar ratio (4:1‒8:1. Transesterification of waste cooking oil (WCO was performed in the presence of a base-catalyst (potassium hydroxide using methanol. According to the obtained results, alcohol/oil molar ratio of 6:1, ultrasonication time of 10 min, and reactor temperature of 60 °C were found as the best operational conditions. Under these conditions, the reactor converted WCO to biodiesel with a conversion efficiency of 97.12%, meeting the ASTM standard satisfactorily, while the lowest specific energy consumption of 378 kJ/kg was also recorded. It should be noted that the highest conversion efficiency of 99.3 %, achieved at reactor temperature of 60 °C, ultrasonication time of 10 min, and alcohol/oil molar ratio of 8:1, was not favorable as the associated specific energy consumption was higher at 395 kJ/kg. Overall, the low power, high frequency piezoelectric-based ultrasonic module could be regarded as an efficient and reliable technology for intensifying the transesterification process in terms of energy consumption, conversion efficiency, and processing time, in comparison with high power, low frequency ultrasonic system reported previously. Finally, this technology could also be considered for designing, developing, and retrofitting chemical reactors being employed for non-biofuel applications as well.

  10. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Dodd, J.A.

    1981-01-01

    An improved fuel sub-assembly for a liquid metal cooled fast breeder reactor, is described, in which fatigue damage due to buffeting by cross-current flows is reduced and protection is provided against damage by contact with other reactor structures during loading and unloading of the sub-assembly. (U.K.)

  11. Reactor power control device

    International Nuclear Information System (INIS)

    Doi, Kazuyori.

    1981-01-01

    Purpose: To automatically control the BWR type reactor power by simple and short-time searching the load pattern nearest to the required pattern at a nuclear power plant side. Constitution: The reactor power is automatically regulated by periodical modifying of coefficients fitting to a reactor core model, according as a required load pattern. When a load requirement pattern is given, a simulator estimates the total power change and the axial power distribution change from a xenon density change output calculated by a xenon dynamic characteristic estimating device, and a load pattern capable of being realized is searched. The amount to be recirculated is controlled on the basis of the load patteren thus searched, and the operation of the BWR type reactor is automatically controlled at the side of the nuclear power plant. (Kamimura, M.)

  12. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  13. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1978-01-01

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  14. Reactor power distribution monitor

    International Nuclear Information System (INIS)

    Hoizumi, Atsushi.

    1986-01-01

    Purpose: To grasp the margin for the limit value of the power distribution peaking factor inside the reactor under operation by using the reactor power distribution monitor. Constitution: The monitor is composed of the 'constant' file, (to store in-reactor power distributions obtained from analysis), TIP and thermocouple, lateral output distribution calibrating apparatus, axial output distribution synthesizer and peaking factor synthesizer. The lateral output distribution calibrating apparatus is used to make calibration by comparing the power distribution obtained from the thermocouples to the power distribution obtained from the TIP, and then to provide the power distribution lateral peaking factors. The axial output distribution synthesizer provides the power distribution axial peaking factors in accordance with the signals from the out-pile neutron flux detector. These axial and lateral power peaking factors are synthesized with high precision in the three-dimensional format and can be monitored at any time. (Kamimura, M.)

  15. Low-cost and versatile thermal test chip for power assemblies assessment and thermometric calibration purposes

    International Nuclear Information System (INIS)

    Jorda, X.; Perpina, X.; Vellvehi, M.; Madrid, F.; Flores, D.; Hidalgo, S.; Millan, J.

    2011-01-01

    Chips specifically designed for thermal tests such as the assessment of packages, are of main interest in Microelectronics. Nevertheless, these test dies are required in relatively low quantities and their price is a limiting factor. This work describes a low-cost thermal test chip, specifically developed for the needs of power electronics. It is based on a poly-silicon heating resistor and a decoupled Pt temperature sensing resistor on the top, allowing to dissipate more than 60 W (170 W/cm 2 ) and reaching temperatures up to 200 o C. Its simple structure allows an easy simulation and modeling. These features have been taken in profit for packaging materials assessment, calibration of temperature measurement apparatus and methods, and validation of thermal models and simulations. - Highlights: → We describe a low-cost thermal test chip developed for power electronics applications. → It integrates a poly-silicon heating resistor and a Pt temperature sensing resistor on the top. → It can dissipate up to 200 W/cm 2 and work up to 200 o C. → It has been used for thermal resistance and conductivity measurement of substrates. → It allowed also the calibration of advanced thermometric equipments.

  16. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Tower, S.N.; Huckestein, E.A.

    1982-01-01

    A fuel assembly for a nuclear reactor comprises a 5x5 array of guide tubes in a generally 20x20 array of fuel elements, the guide tubes being arranged to accommodate either control rods or water displacer rods. The fuel assembly has top and bottom Inconel (Registered Trade Mark) grids and intermediate Zircaloy grids in engagement with the guide tubes and supporting the fuel elements and guide tubes while allowing flow of reactor coolant through the assembly. (author)

  17. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    International Nuclear Information System (INIS)

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-01-01

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR's) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design

  18. Lateral restraint assembly in a nuclear reactor

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, W.

    1977-01-01

    A lateral restraint assembly is described for a reactor of, for example, the high temperature gas-cooled type which commonly includes a reactor core of relatively complex construction supported within a shell or vessel providing a shielded cavity for containing the reactor core. (U.K.)

  19. Power reactor noise

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    Noise analysis is a growing field that offers advantages such as simplicity, low cost, and natural multivariable interactions. A major advantage, continuous and undisturbed monitoring, supplies a means of obtaining early warnings of possible reactor malfunctions, thus preventing further complications by alerting opeators to a problem - and aiding in the diagnosis of that problem - before it demands major repairs. Dr. Thie hopes to further, through detailed explanations and over 70 illustrations, the acceptance of the use of noise analysis by the nuclear utility industry. Following an introductory chapter, the theoretical basis for the various methods of noise analysis is explained, and full chapters are devoted to the fundamentals of statistics for time-domain analysis and Fourier series and related topics for frequency-domain analysis. General experimental techniques and associated theoretical considerations are reviewed, leading to discussions of practical applications in the latter half of the book. Besides chapters giving examples of neutron noise and acoustical noise, chapters are also devoted to extensive examples from pressurized water reactor and boiling water reactor power plants

  20. Power reactors operational diagnosis

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1976-01-01

    The definition of reactor operational diagnostics is presented and the fundamental trends of research are determined. The possible sources of power reactor malfunctions, the methods of defect detection, the data evaluation and the analysis of the results are discussed in detail. In view of scarcity of a theoretical basis and of insufficient in-core instrumentation, operational diagnostics cannot be as yet incorporated in a computer-aided reactor control system. (author)

  1. Solid State Track Recorder fission rate measurements in low power light water reactor pressure vessel mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Kellogg, L.S.

    1985-01-01

    The results of extensive SSTR measurements made at the Pool Critical Assembly (PCA) facility at Oak Ridge National Laboratory have been reported previously. Measurements were made at key locations in PCA which is an idealized mockup of the water gap, thermal shield, pressure vessel geometry of a light water reactor. Recently, additional SSTR fission rate measurements have been carried out for 237-Np, 238-U, and 235-U in key locations in the NESTOR Shielding and Dosimetry Improvement Program (NESDIP) mockup facility located at Winfrith, England. NESDIP is a replica of the PCA facility, and comparisons will be made between PCA and NESDIP measurements. The results of measurements made at the engineering mockup at the VENUS critical assembly at CEN/SCK, Mol, Belgium will also be reported. Measurements were made at selected radial and azimuthal locations in VENUS, which models the in-core and near-core regions of a pressurized water reactor. Comparisons of absolute SSTR fission rates with absolute fission rates made with the Mol miniature fission chamber will be reported. Absolute fission rate comparisons have also been made between the NBS fission chamber, radiometric fission foils, and SSTRs, and these results will be summarized

  2. FFTF reactor assembly system technology

    International Nuclear Information System (INIS)

    Mangelsdorf, T.A.

    1975-01-01

    An overview is presented of the FFTF reactor and plant together with descriptions of core components, core internals, core system, primary and secondary control rod system, reactor instrumentation, reactor vessel and closure head, and supporting test programs

  3. Impact of the use of low or medium enriched uranium on the masses of space nuclear reactor power systems

    International Nuclear Information System (INIS)

    1994-12-01

    The design process for determining the mass increase for the substitution of low-enriched uranium (LEU) for high-enriched uranium (HEU) in space nuclear reactor systems is an optimization process which must simultaneously consider several variables. This process becomes more complex whenever the reactor core operates on an in-core thermionic power conversion, in which the fissioning of the nuclear fuel is used to directly heat thermionic emitters, with the subsequent elimination of external power conversion equipment. The increased complexity of the optimization process for this type of system is reflected in the work reported herein, where considerably more information has been developed for the moderated in-core thermionic reactors

  4. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  5. Reactor power control device

    International Nuclear Information System (INIS)

    Kobayashi, Akira.

    1980-01-01

    Purpose: To prevent misoperation in a control system for the adjustment of core coolant flow rate, and the increase in the neutron flux density caused from the misoperation in BWR type reactors. Constitution: In a reactor power control system adapted to control the reactor power by the adjustment of core flow rate, average neutron flux signals of a reactor core, entire core flow rate signals and operation state signals for coolant recycling system are inputted to a microcomputer. The outputs from the computer are sent to a recycling MG set speed controller to control the reactor core flow rate. The computer calculates the change ratio with time in the average neutron flux signals, correlation between the average neutron flux signals and the entire core flow rate signals, change ratio with time in the operation state signals for the coolant recycling system and the like and judges the abnormality in the coolant recycling system based on the calculated results. (Ikeda, J.)

  6. Nuclear reactor fuel assembly grid

    International Nuclear Information System (INIS)

    Alder, J.L.; Kmonk, S.; Racki, F.R.

    1981-01-01

    A grid for a nuclear reactor fuel assembly which includes intersecting straps arranged to form a structure of egg crate configuration. The cells defined by the intersecting straps are adapted to contain axially extending fuel rods, each of which occupy one cell, while each control rod guide tube or thimble occupies the space of four cells. To effect attachment of each guide thimble to the grid, a short intermediate sleeve is brazed to the strap walls and the guide thimble is then inserted therein and mechanically secured to the sleeve walls. Each sleeve preferably, although not necessarily, is equipped with circumferentially spaced openings useful in adjusting dimples and springs in adjacent cells. To accurately orient each sleeve in position in the grid, the ends of straps extending in one direction project through transversely extending straps and terminate in the wall of the guide sleeve. Other straps positioned at right angles thereto terminate in that portion of the wall of a strap which lies next to a wall of the sleeve

  7. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.

    1982-01-01

    A fuel assembly in a nuclear reactor comprises a locking mechanism that is capable of locking the fuel assembly to the core plate of a nuclear reactor to prevent inadvertent movement of the fuel assembly. The locking mechanism comprises a ratchet mechanism 108 that allows the fuel assembly to be easily locked to the core plate but prevents unlocking except when the ratchet is disengaged. The ratchet mechanism is coupled to the locking mechanism by a rotatable guide tube for a control rod or water displacer rod. (author)

  8. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Ford, J.; Bishop, J.F.W.

    1981-01-01

    An improved fuel sub-assembly for liquid metal cooled fast breeder nuclear reactors is described which facilitates dismantling operations for reprocessing purposes. The method of dismantling is described. (U.K.)

  9. Operating US power reactors

    International Nuclear Information System (INIS)

    Silver, E.G.

    1988-01-01

    This update, which appears regularly in each issue of Nuclear Safety, surveys the operations of those power reactors in the US which have been issued operating licenses. Table 1 shows the number of such reactors and their net capacities as of September 30, 1987, the end of the three-month period covered in this report. Table 2 lists the unit capacity and forced outage rate for each licensed reactor for each of the three months (July, August, and September 1987) covered in this report and the cumulative values of these parameters since the beginning of commercial operation. In addition to the tabular data, this article discusses other significant occurrences and developments that affected licensed US power reactors during this reporting period. Status changes at Braidwood Unit 1, Nine Mile Point 2, and Beaver Valley 2 are discussed. Other occurrences discussed are: retraining of control-room operators at Peach Bottom; a request for 25% power for Shoreham, problems at Fermi 2 which delayed the request to go to 75% power; the results of a safety study of the N Reactor at Hanford; a proposed merger of Pacific Gas and Electric with Sacramento Municipal Utility District which would result in the decommissioning of Rancho Seco; the ordered shutdown of Oyster Creek; a minor radioactivity release caused by a steam generator tube rupture at North Anna 1; and 13 fines levied by the NRC on reactor licensees

  10. Measurement of nuclear reactor noise at low power levels; Merenje nuklearnog reaktorskog suma na malim snagama

    Energy Technology Data Exchange (ETDEWEB)

    Velickovic, Lj; Petrovic, M [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1968-11-15

    Spatial and time dependence relation of neutrons from fission and other reactions in the reactor core result in non Poisson fluctuations of neutron density. Analytical formula developed for auto-correlation function includes physical parameters which characterize time behaviour of neutrons in the reactor system. Since auto-correlation function can be easily measured, it is a useful tool for experimental determination of these parameters. Noise from the ionization chamber was measured and analyzed by a digital computer. measurements were analyzed completely in the time domain (auto-correlation functions). This enabled separating the noise caused by neutron detection from the noise from neutron density fluctuation in the reactor. All the results can be analyzed by spatial independent reactor theory. Physical analysis of reactor noise was limited to determination of {beta}/l ratio from auto-correlation measurements at 0.5 W power level (RB reactor in Vinca). Three different reactor core lattices were analyzed (lattice pitch 8 cm, 11.3 cm and 14 cm). It was shown that parameter {beta}/l could be determined from auto-correlation measurements of neutron density with high precision (few percents) Prostorna i vremenska povezanost neutrona koji nastaju u fisiji i drugim procesima koji se desavaju u reaktoru dovodi do ne Poisson-ovih fluktuacija neutronske gustine. Analiticka formula, razvijena za autokorelacionu funkciju ovih fluktuacija, sadrzi fizicke parametre koji karakterisu vremensko ponasanje neutrona u reaktorskom sistemu. Kako autokorelaciona funkcija moze lako da se meri, ona je korisno sredstvo za eksperimentalno odredjivanje ovih parametara. Sum iz jonizacione komore digitalno je meren i analiziran u digitalnom racunaru. Merenja su kompletno analizirana u vremenskom domenu (autokorelacione funkeije). To je olaksalo razdvajanje suma izazvanog procesom neutronske detekcije od suma koji potice od fluktuacija neutronske gustine u reaktorskom sistemu. Svi rezultati

  11. Nuclear reactor power supply system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector prevents a parameter signal which differs from the other parameter signals of the set by more than twice the allowable variation from passing to the control system. Test signals are periodically impressed by a test unit on a selected pair of a selection unit and control channels. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test. (author)

  12. Compact power reactor

    International Nuclear Information System (INIS)

    Wetch, J.R.; Dieckamp, H.M.; Wilson, L.A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector

  13. Power reactor design trends

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1985-01-01

    Cascade and Pulse Star represent new trends in ICF power reactor design that have emerged in the last few years. The most recent embodiments of these two concepts, and that of the HYLIFE design with which they will compare them, are shown. All three reactors depend upon protecting structural elements from neutrons, x rays and debris by injecting massive amounts of shielding material inside the reaction chamber. However, Cascade and Pulse Star introduce new ideas to improve the economics, safety, and environmental impact of ICF reactors. They also pose different development issues and thus represent technological alternatives to HYLIFE

  14. Determination of the in-core power and the average core temperature of low power research reactors using gamma dose rate measurements

    International Nuclear Information System (INIS)

    Osei Poku, L.

    2012-01-01

    Most reactors incorporate out-of-core neutron detectors to monitor the reactor power. An accurate relationship between the powers indicated by these detectors and actual core thermal power is required. This relationship is established by calibrating the thermal power. The most common method used in calibrating the thermal power of low power reactors is neutron activation technique. To enhance the principle of multiplicity and diversity of measuring the thermal neutron flux and/or power and temperature difference and/or average core temperature of low power research reactors, an alternative and complimentary method has been developed, in addition to the current method. Thermal neutron flux/Power and temperature difference/average core temperature were correlated with measured gamma dose rate. The thermal neutron flux and power predicted using gamma dose rate measurement were in good agreement with the calibrated/indicated thermal neutron fluxes and powers. The predicted data was also good agreement with thermal neutron fluxes and powers obtained using the activation technique. At an indicated power of 30 kW, the gamma dose rate measured predicted thermal neutron flux of (1* 10 12 ± 0.00255 * 10 12 ) n/cm 2 s and (0.987* 10 12 ± 0.00243 * 10 12 ) which corresponded to powers of (30.06 ± 0.075) kW and (29.6 ± 0.073) for both normal level of the pool water and 40 cm below normal levels respectively. At an indicated power of 15 kW, the gamma dose rate measured predicted thermal neutron flux of (5.07* 10 11 ± 0.025* 10 11 ) n/cm 2 s and (5.12 * 10 11 ±0.024* 10 11 ) n/cm 2 s which corresponded to power of (15.21 ± 0.075) kW and (15.36 ± 0.073) kW for both normal levels of the pool water and 40 cm below normal levels respectively. The power predicted by this work also compared well with power obtained from a three-dimensional neutronic analysis for GHARR-1 core. The predicted power also compares well with calculated power using a correlation equation obtained from

  15. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1981-01-01

    A fuel assembly for use in pressurized water cooled nuclear fast breeder reactors is described in which moderator to fuel ratios, conducive to a high Pu-U-D 2 O reactor breeding ratio, are obtained whilst at the same time ensuring accurate spacing of fuel pins without the parasitic losses associated with the use of spacer grids. (U.K.)

  16. Plutonium assemblies in reload 1 of the Dodewaard Reactor

    International Nuclear Information System (INIS)

    Bairiot, H.; Deramaix, P.; Vandenberg, C.; Leenders, L.; Mostert, P.

    1977-01-01

    Since 1963, Belgonucleaire has been developing the design of plutonium assemblies of the island type (i.e., plutonium rods inserted in the control zone of the assembly and enriched uranium rods at the periphery) for light water reactors. The application to boiling water reactors (BWRs) led to the introduction, in April 1971, of two prototype plutonium island assemblies in the Dodewaard BWR (The Netherlands): Those assemblies incorporating plutonium in 42 percent of the rods are interchangeable with standard uranium assemblies of the same reload. Their design, which had to meet these criteria, was performed using the routine order in use at Belgonucleaire; experimental checks included a mock-up configuration simulated in the VENUS critical facility at Mol and open-vessel cold critical experiments performed in the Dodewaard core. The pelleted plutonium rods were fabricated and controlled by Belgonucleaire following the manufacturing procedures developed at the production plant. In one of the assemblies, three vibrated plutonium fuel rods with a lower fuel density were introduced in the three most highly rated positions to reduce the power rating. Those plutonium assemblies experienced peak pellet ratings up to 535 W/cm and were discharged in April 1974 after having reached a mean burnup of approximately 21,000 MWd/MT. In-core instrumentation during operation, visual examinations, and reactivity substitution experiments during reactor shutdown did not indicate any special feature for those assemblies compared to the standard uranium assemblies, thereby demonstrating their interchangeability

  17. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Koyama, Jun-ichi; Ishibashi, Yoko; Mochida, Takaaki; Soneda, Hideo.

    1994-01-01

    In a fuel assembly having moderator rods, an axial average value of a ratio between the total of the lateral cross sectional area of a portion to be filled with moderators and the total of the lateral cross sectional area of fuel pellets is determined as greater than 0.4, a lateral cross sectional area of a portion to be filled with moderators per one moderator rod is determined as from 14 to 50cm 2 and the ratio between the total of the lateral cross sectional area of moderators and a total of the lateral cross sectional area of fuel pellets in a horizontal cross section is determined as from 2.7 to 3.4. Since the axial average value for lateral cross sectional area of a portion to be filled with moderators/lateral cross sectional area of fuel pellets is determined as ≥ 0.4, the lateral cross sectional area of moderators of moderator rods is increased, the lateral cross sectional area of a gap water region is decreased to reduce the value of local power peaking coefficient, so that thermal margin is ensured. At least one of the moderating rods is formed as a double-walled water rod tube to enhance an effect of spectral shift by flow rate control, reduce an uranium enrichment degree, and conduct operation without inserting control rods. (N.H.)

  18. Fuel assembly for nuclear reactor

    International Nuclear Information System (INIS)

    Yamanaka, Akihiro; Haikawa, Katsumasa; Haraguchi, Yuko; Nakamura, Mitsuya; Aoyama, Motoo; Koyama, Jun-ichi.

    1996-01-01

    In a BWR type fuel assembly comprising first fuel rods filled with nuclear fission products and second fuel rods filled with burnable poisons and nuclear fission products, the concentration of the burnable poisons mixed to a portion of the second fuel rods is controlled so that it is reduced at the upper portion and increased at the lower portion in the axial direction. In addition, a product of the difference of an average concentration of burnable poisons between the upper portion and the lower portion and the number of fuel rods is determined to higher than a first set value determined corresponding to the limit value of a maximum linear power density. The sum of the difference of the average concentration of the burnable poisons between the upper portion and the lower portion of the second fuel rod and the number of the second fuel rods is determined to lower than a second set value determined corresponding to a required value of a surplus reactivity. If the number of the fuel rods mixed with the burnable poisons is increased, the infinite multiplication factor at an initial stage of the burning is lowered and, if the concentration of the mixed burnable poisons is increased, the time of exhaustion of the burnable poisons is delayed. As a result, the maximum value of the infinite multiplication factor is suppressed thereby enabling to control surplus reactivity. (N.H.)

  19. Biomass low-temperature gasification in a rotary reactor prior to cofiring of syngas in power boilers

    International Nuclear Information System (INIS)

    Ostrowski, Piotr; Maj, Izabella; Kalisz, Sylwester; Polok, Michał

    2017-01-01

    Highlights: • An innovative method of gasification with use of flue gas was investigated. • Gasification temperature ranging from 350 °C was considered. • Discussed gasification unit is connected to a power boiler. • Syngas with combustible components is recirculated to the boiler. • Wide range of biomass and waste fuels can be used as a feedstock. - Abstract: The paper presents results of the investigation of an innovative biomass and alternative fuel low-temperature gasification method before co-firing in industrial or power plant boilers. Before running industrial-size installation, laboratory tests were carried out to determine usability of alternative fuels to low-temperature gasification process. Tests were conducted in a laboratory reactor designed and constructed specifically for this purpose. The experimental stand enables recording of the weight loss of a sample and syngas composition. The process occurs for a fuel sample of a constant weight and known granulation and with a flue gas of known composition used as a gasifying agent. The aim of the laboratory research was to determine the usability of selected biomass fuel for indirect co-firing in power boilers and to build a knowledge base for industrial-size process by defining the process kinetics (time for fuel to remain in the reactor), recommended fuel granulation and process temperature. Presented industrial-size gasification unit has been successfully built in Marcel power plant in Radlin town, Poland. It consist an innovative rotary gasification reactor. Gasification process takes place with use of flue gas from coal and coke-oven fired boiler as a gasifying agent with recirculation of resulting gas (syngas) with combustible components: CO, H 2 , CH 4 . C n H m to the boiler’s combustion chamber. The construction of the reactor allows the use of a wide range of fuels (biomass, industrial waste and municipal waste). This paper presents the results of the reactor tests using coniferous

  20. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  1. Nuclear power reactor safety

    International Nuclear Information System (INIS)

    Pon, G.A.

    1976-10-01

    This report is based on the Atomic Energy of Canada Limited submission to the Royal Commission on Electric Power Planning on the safety of CANDU reactors. It discusses normal operating conditions, postulated accident conditions, and safety systems. The release of radioactivity under normal and accident conditions is compared to the limits set by the Atomic Energy Control Regulations. (author)

  2. Conceptual design of reactor assembly of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Selvaraj, A.; Balasubramaniyan, V.; Raghupathy, S.; Elango, D.; Sodhi, B.S.; Chetal, S.C.; Bhoje, S.B.

    1996-01-01

    The conceptual design of Reactor Assembly of 500 MWe Prototype Fast Breeder Reactor (as selected in 1985) was reviewed with the aim of 'simplification of design', 'Compactness of the reactor assembly' and 'ease in construction'. The reduction in size has been possible by incorporating concentric core arrangement, adoption of elastomer seals for Rotatable plugs, fuel handling with one transfer arm type mechanism, incorporation of mechanical sealing arrangement for IHX at the penetration in Inner vessel redan and reduction in number of components. The erection of the components has been made easier by adopting 'hanging' support for roof slab with associated changes in the safety vessel design. This paper presents the conceptual design of the reactor assembly components. (author). 8 figs, 2 tabs

  3. Nuclear power plant with several reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grishanin, E I; Ilyunin, V G; Kuznetsov, I A; Murogov, V M; Shmelev, A N

    1972-05-10

    A design of a nuclear power plant suggested involves several reactors consequently transmitting heat to a gaseous coolant in the joint thermodynamical circuit. In order to increase the power and the rate of fuel reproduction the low temperature section of the thermodynamical circuit involves a fast nuclear reactor, whereas a thermal nuclear reactor is employed in the high temperature section of the circuit for intermediate heating and for over-heating of the working body. Between the fast nuclear and the thermal nuclear reactors there is a turbine providing for the necessary ratio between pressures in the reactors. Each reactor may employ its own coolant.

  4. Experience with reactor assembly of FBTR

    International Nuclear Information System (INIS)

    Srinivasan, G.; Ravishankar, K.; Babu, A.; Varadarajan, S.; Arumugam, P.; Sekhar, P.

    2006-01-01

    Reactor Assembly, also called Block Pile, is the heart of FBTR and houses the core, top and lateral shields, control rod drive mechanisms (CRDM), sodium inlet pipe and outlet pipes etc. Two major problems which arose during commissioning were reactor vessel tilt due to convection in cover gas space and failure of inflatable seals. The reactor vessel tilt was solved by Helium injection. Reactor was operated without pressurising the inflatable seals till 2005, when the seals were replaced. Other major problems in the course of twenty years of reactor operation were failure of three CRDM lower parts, Core Cover plate which houses the core thermocouples getting stuck in the fuel handling position, water leaks from the Biological Shield Cooling (BSC) coils around the reactor, failure of core wires in the trailing cables during fuel handling etc. This paper addresses the major problems faced and modifications carried out. (author)

  5. Outline of a method for final storage of low- and medium-active waste from possible Danish power reactors

    International Nuclear Information System (INIS)

    Brodersen, K.; Jensen, J.; Oestergaard, K.

    1977-02-01

    A method is outlined for the final storage of Danish low-and medium-active power reactor waste. The waste drums are contained in large concretre blocks placed just below the ground surface. A plant for storing waste by means of this method is sketched. It consists of a system of reinforced concrete pits with the top level with the ground surface. Each pit measures c. 5 x 5 m and is c. 6 m deep. The pits are envisaged cast with a permanent inside, step-like shuttering of thin steel plates. The volume between the drums will be cast with concrete when a pit is filled. Calculations are given of the construction and running costs. It is estimated that the final storage of reactor wastes is only a small problem regarding economy and space, and also that there is hardly doubt that full safety can be achieved. (B.P.)

  6. Method for determining detailed rod worth profiles at low power in the fast test reactor

    International Nuclear Information System (INIS)

    Sevenich, R.A.

    1975-08-01

    A method for obtaining a detailed rod worth profile at low power for a slow control rod insertion is presented. The accuracy of the method depends on a preparatory experiment in which the test rod is dropped quickly to yield, upon analysis, the magnitude of the rod worth and an effective source value. These numbers are employed to initialize the inverse kinetics analysis for the slow insertion. Corrections for changes in detection efficiency are not included for the simulated experiments. (U.S.)

  7. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1990-01-01

    Among a plurality of power monitoring programs in a reactor power monitoring device, rapid response is required for a scram judging program for the power judging processing of scram signals. Therefore, the scram judging program is stored independently from other power monitoring programs, applied with a priority order, and executed in parallel with other programs, to output scram signals when the detected data exceeds a predetermined value. As a result, the capacity required for the scram judging program is reduced and the processing can be conducted in a short period of time. In addition, since high priority is applied to the scram judging program which is divided into a small capacity, it is executed at higher frequency than other programs when they are executed in parallel. That is, since the entire processings for the power monitoring program are repeated in a short cycle, the response speed of the scram signals required for high responsivity can be increased. (N.H.)

  8. Nuclear reactor, fuel assembly and neutron measuring system

    International Nuclear Information System (INIS)

    Chaki, Masao; Murase, Michio; Zukeran, Atsushi; Moriya, Kimiaki

    1998-01-01

    The present invention provides a BWR type reactor improved with the efficiency of used fuels and fuel economy by increasing a rated power and reducing exchange fuels. Namely, in a BWR type reactor at present, a thermal limit value is determined by conducting nuclear calculation of the reactor core based on data of reactor flow rate measurement and data of neutron flux measurement. However, since the neutron calculation of the reactor core is based on fuel assemblies while the points for the neutron measurement are present at the outside of the fuel assemblies, errors are caused. A margin including the errors has been used as a thermal limit value during operation. In the present invention, neutron fluxes in the fuel assembly as a base of the nuclear calculation can be measured by the same number of neutron detector tubes, but the number of the measuring points is increased to four times. With such procedures, errors caused by the difference of the neutron calculation and values at neutron measuring points can be reduced. As a result, a margin of the thermal limit value is reduced to increase the degree of freedom of reactor operation. Then, the economical property of the reactor operation can be improved. (N.H.)

  9. Photonic-powered cable assembly

    Science.gov (United States)

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  10. Fuel design with low peak of local power for BWR reactors with increased nominal power; Diseno de un combustible con bajo pico de potencia local para reactores BWR con potencia nominal aumentada

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia C, R.; Montes, J.L.; Hernandez, J.L.; Ortiz, J.J.; Castillo, A. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2006-07-01

    The Federal Commission of Electricity recently announcement the beginning of the works related with the increase of the power to 120% of the original nominal one in the Boiling Water Reactors (BWR) of the Laguna Verde Central (CLV): In the National Institute of Nuclear Research (ININ) are carried out studies of the impact on the design of the recharge of derived fuel of this increase. One of the main effects of the power increase type that it is promoting, is the increment of the flow of generated vapor, what takes, to a bigger fraction of vacuum in the core presenting increased values of the maximum fraction to the limit, so much of the ratio of lineal heat generation (XFLPD) as of the ratio of critic power (MFLCPR). In the made studies, it is found that these fractions rise lineally with the increase of the nominal power. Considering that the reactors of the CLV at the moment operate to 105% of the original nominal power, it would imply an increment of the order of 13.35% in the XFLPD and in the MFLCPR operating to a nominal power of 120% of the original one. This would propitiate bigger problems to design appropriately the fuel cycle and the necessity, almost unavoidable, of to resort to a fuel assembly type more advanced for the recharges of the cores. As option, in the ININ the feasibility of continuing using the same type of it fuel assembles that one has come using recently in the CLV, the type GE12 is analyzed. To achieve it was outlined to diminish the peak factor of local power (LPPF) of the power cells that compose the fuel recharge in 13.35%. It was started of a fuel design previously used in the recharge of the unit 1 cycle 12 and it was re-design to use it in the recharge design of the cycle 13 of the unit 1, considering an increase to 120% of the original power and the same requirements of cycle extension. For the re-design of the fuel assembly cell it was used the PreDiCeldas computer program developed in the ININ. It was able to diminish the LPPF

  11. Accident sequences evaluation using SFATs for low power and shutdown operation of pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Kim, Chansoo; Chung, Chang-Hyun; Yang, Huichang

    2004-01-01

    To maintain the level of defense-in-depth safety of Pressurized Heavy Water Reactor (PHWR) during LP/SD operation, the qualitative risk evaluation methods such as Safety Function Assessment Trees (SFATs) are required. Therefore SFATs are suggested to assess and manage the PHWR safety in LP/SD. Before this study, safety functions of PHWR were classified into 7 groups; Reactivity Control, Core Cooling, Secondary Heat Removal, Primary Heat Transport Inventory, Essential Electrical Power, Cooling Water, and Containment Integrity. The SFATs for PHWR LP/SD operations were developed along with the Plant Outage Status (POS) variation, and totally 38 SFATs were developed for Wolsung Unit 2. For the verification of SFATs logics developed, top 5 accident sequences those contribute the CDF of PHWR were selected, and plant safety status were evaluated for those accident sequences. Accident sequences such as DCC-4 (Dual Control Computer Failure), CL4-16 (Total Loss of Class IV Power), and FWPV-11 (Loss of Feedwater Supply to SG due to Failure of Pumps/Values) were included. In this research the evaluation of plant safety status by accident sequences using SFATs and the verification of the SFATs were performed. Through the verification of SFAT logics, the enhancements to the internal logics of the SFATs were made, and the dependencies between safety systems and support systems were considered. It is expected the defense-in-depth evaluation model of PHW just as SFATs can be utilized in the configuration risk management program (CRMP) development and improve technical specifications development for Korean PHWRs. (author)

  12. Tests and foreseen developments of fibered-OSLD gamma heating measurements in low-power reactors

    Science.gov (United States)

    Gruel, A.; Guillou, M. Le; Blaise, P.; Destouches, C.; Magne, S.

    2018-01-01

    In this paper are presented test measurements of a fibered-OSLD system performed during a dedicated experimental phase in EOLE zero-power reactor. The measurement setup consists of an OSLD crystal connected onto the extremity of an optical fiber and a laser stimulation system, manufactured by the CEA/LIST in Saclay. The OSL sensor is remotely stimulated via an optical fiber using a diode-pumped solid-state laser. The OSL light is collected and guided back along the same fiber to a photomultiplier tube. Results obtained using this system are compared to usual gamma heating measurement protocol using OSLD pellets. The presence of induced radio-luminescence in the OSLD during the irradiation was also observed and could be used to monitor the gamma flux. The feasibility of remote measurements is achieved, whereas further developments could be conducted to improve this technique since the readout procedure still requires to withdraw the OSLD off the gamma flux (hence from the core) on account of the dose rate (around a few Gy.h-1), and the readout time remains quite long for on-line applications. Several improvements are foreseen, and will be tested in the forthcoming years.

  13. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Ross, Kyle W. (Los Alamos National Laboratory, Los Alamos, NM); Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  14. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi; Masumi, Ryoji; Soneda, Hideo.

    1994-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison rods incorporated with burnable poisons, and water rods which can vary the height in the tube depending on the coolant flow rate flown into the assembly. The amount of entire burnable poisons of the burnable poison-containing rods in adjacent with the water rods is smaller than the amount of entire burnable poisons in the burnable poison containing rods not in adjacent with the water rods. Then the average concentration of burnable poisons in the axial upper half region is made smaller than the average concentration of the burnable poisons at the axial lower half region. Further, a burnable poison concentration at the upper half region of at least one of burnable poison-containing rods in adjacent with the water rods is made lower than the burnable poison concentration in the lower half region. Since this can fasten the combustion of the burnable poisons, a fuel assembly having good fuel economy can be attained. (I.N.)

  15. Reactor core and control rod assembly in FBR type reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi.

    1993-01-01

    Fuel assemblies and control rod assemblies are attached respectively to reactor core support plates each in a cantilever fashion. Intermediate spacer pads are disposed to the lateral side of a wrapper tube just above the fuel rod region. Intermediate space pads are disposed to the lateral side of a control rod guide tube just above a fuel rod region. The thickness of the intermediate spacer pad for the control rod assembly is made smaller than the thickness of the intermediate spacer pad for the fuel assembly. This can prevent contact between intermediate spacer pads of the control guide tube and the fuel assembly even if the temperature of coolants is elevated to thermally expand the intermediate spacer pad, by which the radial displacement amount of the reactor core region along the direction of the height of the control guide tube is reduced substantially to zero. Accordingly, contribution of the control rod assembly to the radial expansion reactivity can be reduced to zero or negative level, by which the effect of the negative radial expansion reactivity of the reactor is increased to improve the safety upon thermal transient stage, for example, loss of coolant flow rate accident. (I.N.)

  16. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  17. Nuclear reactor fuel assembly spacer grids

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    Designs of nuclear reactor fuel assembly spacer grids for supporting and spacing fuel elements are described which do not utilize resilient grid plate protrusions in the peripheral band but retain the advantages inherent in the combination resilient and rigid protrusion cells. (U.K.)

  18. Reactor power control device

    International Nuclear Information System (INIS)

    Watanabe, Mitsutaka

    1997-01-01

    Hardware of an analog nuclear instrumentation system is reformed, a function generator is added to a setting calculation circuit of the nuclear instrumentation system, and each of setting lines of the nuclear instrumentation system is set in parallel with an upper limit curve in an operation region defined by a second order or third order equation. Upon transient change of abnormal power elevation during operation, scram signals are generated by power change in the same state as 100% rated operation due to elevation of reactor thermal power. Since the operation limit value relative to transient change due to power elevation can be made substantially equal with the same as that upon rated operation, the operation limit value for partial power operation state can be kept substantially the same level as that upon rated operation. When transition change caused by abnormal control rod withdrawal occurs during operation, a control rod withdrawal inhibition signal can ensure the power elevation width equal with that upon rated power operation, and since the withdrawal inhibition signal is generated in substantially the same withdrawing state, the operation limit value relative to a partial power operation state can be kept at the same level as that during rated operation. (N.H.)

  19. Power controlling method for BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1983-01-01

    Purpose: To enable reactor operation exactly following after an aimed curve in the high power resuming and maintaining period without failures in cladding tubes. Method: Upon recovery of the reactor power to a high power level after changing the reactor power from the high power to the low power level, control rod is operated under such conditions that the linear power density after operation of the control rod does not exceed the PC envelope in the low power period, and the core flow rate is coordinated to the control rod operation. The linear power density can be suppressed within an allowable linear power density by the above operation during high power resuming and maintaining period and, as the result, PCI failures can be prevented. (Kamimura, M.)

  20. Reactor power region measuring device

    International Nuclear Information System (INIS)

    Kashiwa, Takao.

    1996-01-01

    The device of the present invention can rapidly detect abnormality of a local power region monitor (LPRM) even at a low power region caused such as upon start-up of a BWR type reactor. Namely, the present invention comprises (1) an LPRM detector for measuring neutron fluxes in the reactor, (2) a gamma thermo detector for calibrating the sensitivity of the LPRM detector, (3) a comparison circuit for comparing the detected values of the detectors (1) and (2), and (4) an alarm circuit for outputting an alarm when the comparative difference of the output of the circuit (3) exceeds a predetermined value. Signals of an alarm for a lower limit of the LPRM detector have been issued continuously upon start-up and shut down of the reactor since neutron fluxes in the reactor are reduced. However, the gamma thermo detector is always secured in the inside of the reactor different from a travelling-type incore probe monitor (TIP) disposed so far for the same purpose. Accordingly, the alarm generated upon usual start-up can be eliminated by comparing the detected values of the detector (2) and abnormality of the detector (1) can be rapidly detected by judging the abnormality of the comparative difference. (I.S.)

  1. A series of lectures on operational physics of power reactors

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.; Rastogi, B.P.

    1982-01-01

    This report discusses certain aspects of operational physics of power reactors. These form a lecture series at the Winter College on Nuclear Physics and Reactors, Jan. - March 1980, conducted at the International Centre for Theoretical Physics, Trieste, Italy. The topics covered are (a) the reactor physics aspects of fuel burnup (b) theoretical methods applied for burnup prediction in power reactors (c) interpretation of neutron detector readings in terms of adjacent fuel assembly powers (d) refuelling schemes used in power reactors. The reactor types chosen for the discussion are BWR, PWR and PHWR. (author)

  2. Equations of macrotransport in reactor fuel assemblies

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Zhukov, A.V.; Kornienko, Yu.N.; Ushakov, P.A.

    1986-01-01

    The rigorous statement of equations of macrotransport is obtained. These equations are bases for channel-by-channel methods of thermohydraulic calculations of reactor fuel assemblies within the scope of the model of discontinuous multiphase coolant flow (including chemical reactions); they also describe a wide range of problems on thermo-physical reactor fuel assembly justification. It has been carried out by smoothing equations of mass, momentum and enthalpy transfer in cross section of each phase of the elementary fuel assembly subchannel. The equation for cross section flows is obtaind by smoothing the equation of momentum transfer on the interphase. Interaction of phases on the channel boundary is described using the Stanton number. The conclusion is performed using the generalized equation of substance transfer. The statement of channel-by-channel method without the scope of homogeneous flow model is given

  3. Axial power monitoring uncertainty in the Savannah River Reactors

    International Nuclear Information System (INIS)

    Losey, D.C.; Revolinski, S.M.

    1990-01-01

    The results of this analysis quantified the uncertainty associated with monitoring the Axial Power Shape (APS) in the Savannah River Reactors. Thermocouples at each assembly flow exit map the radial power distribution and are the primary means of monitoring power in these reactors. The remaining uncertainty in power monitoring is associated with the relative axial power distribution. The APS is monitored by seven sensors that respond to power on each of nine vertical Axial Power Monitor (APM) rods. Computation of the APS uncertainty, for the reactor power limits analysis, started with a large database of APM rod measurements spanning several years of reactor operation. A computer algorithm was used to randomly select a sample of APSs which were input to a code. This code modeled the thermal-hydraulic performance of a single fuel assembly during a design basis Loss-of Coolant Accident. The assembly power limit at Onset of Significant Voiding was computed for each APS. The output was a distribution of expected assembly power limits that was adjusted to account for the biases caused by instrumentation error and by measuring 7 points rather than a continuous APS. Statistical analysis of the final assembly power limit distribution showed that reducing reactor power by approximately 3% was sufficient to account for APS variation. This data confirmed expectations that the assembly exit thermocouples provide all information needed for monitoring core power. The computational analysis results also quantified the contribution to power limits of the various uncertainties such as instrumentation error

  4. Nuclear reactor seismic fuel assembly grid

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1977-01-01

    The strength of a nuclear reactor fuel assembly is enhanced by increasing the crush strength of the zircaloy spacer grids which locate and support the fuel elements in the fuel assembly. Increased resistance to deformation as a result of laterally directed forces is achieved by increasing the section modulus of the perimeter strip through bending the upper and lower edges thereof inwardly. The perimeter strip is further rigidized by forming, in the central portion thereof, dimples which extend inwardly with respect to the fuel assembly. The integrity of the spacer grid may also be enhanced by providing back-up arches for some or all of the integral fuel element locating springs and the strength of the fuel assembly may be further enhanced by providing, intermediate its ends, a steel seismic grid. 13 claims, 6 figures

  5. Exergy-based sustainability analysis of a low power, high frequency piezo-based ultrasound reactor for rapid biodiesel production

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Tabatabaei, Meisam; Hosseinpour, Soleiman; Khounani, Zahra; Hosseini, Seyed Sina

    2017-01-01

    Highlights: • Piezoultrasonic-assisted biodiesel production was exergetically analyzed. • Alcohol content, sonication time, and temperature affected exergetic parameters. • 6:1 methanol/oil, 10 min sonication, and 60 °C temperature were the best conditions. • The exergetic sustainability index at the favorable conditions was found to be 11. - Abstract: In this work a thermodynamic model was developed to attain enhanced process comprehension of waste cooking oil (WCO) transesterification process in a low power, high frequency piezo-based ultrasound reactor. The reactor performance was assessed using the exergy concept to distinguish the effects of various operational variables, i.e., methanol to oil molar ratio (4:1–8:1), ultrasonic irradiation time (6–10 min), and temperature (40–60 °C) on the efficiency and sustainability factors. The exergetic efficiency of the developed reactor was found to be ranging from 98% to 99% and from 9% to 91% using the universal and functional definitions, respectively. The maximum functional exergetic efficiency as a decision making parameter, was found at 91% for methanol to oil molar ratio of 6:1, ultrasonic irradiation time of 10 min, and temperature of 60 °C. The exergetic sustainability index of the transesterification process at the selected conditions was determined at about 11. Under these conditions, the reactor efficiently converted triglycerides to methyl esters with an acceptable conversion efficiency of 97%, satisfying the ASTM standard. Overall, the outcomes of the current survey manifested that exergy analysis can be a preferred basis for decision making on the efficiency and sustainability of various biodiesel synthesizing systems.

  6. Nuclear fuel assembly for fast neutron reactors

    International Nuclear Information System (INIS)

    Ilyunin, V.G.; Murogov, V.M.; Troyanov, M.F.; Rinejskij, A.A.; Ustinov, G.G.; Shmelev, A.N.

    1982-01-01

    The fuel assembly of a fast reactor consists of fuel elements comprising sections with fissionable and breeding material and tubes with hollows designed for entrapping gaseous fission products. Tubes joining up to the said sections are divided in a middle and a peripheral group such that at least one of the tube groups is placed in the space behind the coolant inlet ports. The configuration above allows reducing internal overpressure in the fuel assembly, thus reducing the volume of necessary structural elements in the core. (J.B.)

  7. Nuclear power reactor technology

    International Nuclear Information System (INIS)

    1978-09-01

    Risoe National Laboratory was established more than twenty years ago with research and development of nuclear reactor technology as its main objective. The Laboratory has by now accumulated many years of experience in a number of areas vital to nuclear reactor technology. The work and experience of, and services offered by the Laboratory within the following fields are described: Health physics site supervision; Treatment of low and medium level radioactive waste; Core performance evaluation; Transient analysis; Accident analysis; Fuel management; Fuel element design, fabrication and performance evaluation; Non-destructive testing of nuclear fuel; Theoretical and experimental structural analysis; Reliability analysis; Site evaluation. Environmental risk and hazard calculation; Review and analysis of safety documentation. Risoe has already given much assistance to the authorities, utilities and industries in such fields, carrying out work on both light and heavy water reactors. The Laboratory now offers its services to others as a consultant, in education and training of staff, in planning, in qualitative and quantitative analysis, and for the development and specification of fabrication techniques. (author)

  8. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  9. Light water reactors fuel assembly mechanical design and evaluation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This standard establishes a procedure for performing an evaluation of the mechanical design of fuel assemblies for light water-cooled commercial power reactors. It does not address the various aspects of neutronic or thermalhydraulic performance except where these factors impose loads or constraints on the mechanical design of the fuel assemblies. This standard also includes a set of specific requirements for design, various potential performance problems and criteria aimed specifically at averting them. This standard replaces ANSI/ANS-57.5-1978

  10. The feasibility of using a Fourier RTOF spectrometer at a low-power research reactor

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; Priesmeyer, H.G.; Kudryashev, V.A.

    1991-01-01

    The present situation of Fourier time-of-flight (TOF) spectrometry is discussed using the FSS spectrometer as example. The use of the Fourier reverse TOF spectrometry, as an efficient tool for studying condensed matter, at a 2 MW (WWR-S type) reactor is also assessed. The arrangement of the RTOF spectrometer, which could be successfully used at such type of reactor, is introduced. The suggested arrangement applies a neutron guide tube of 24 m length and allows for effective luminosity 2.4.10 6 at a flight path distance of 3.6 m. The number of neutrons scattered from a sample (5 cm 3 in volume) and incident on the detector system, as estimated for the suggested arrangement, is ∝1.6.10 3 n/sec. Such high counting rate allows to measure a diffraction spectrum within less than an hour. (orig.) With 12 figs [de

  11. Power reactors in member states

    International Nuclear Information System (INIS)

    1975-01-01

    This is the first issue of a periodical computer-based listing of civilian nuclear power reactors in the Member States of the IAEA, presenting the situation as of 1 April 1975. It is intended as a replacement for the Agency's previous annual publication of ''Power and Research Reactors in Member States''. In the new format, the listing contains more information about power reactors in operation, under construction, planned and shut down. As far as possible all the basic design data relating to reactors in operation have been included. In future these data will be included also for other power reactors, so that the publication will serve to give a clear picture of the technical progress achieved. Test and research reactors and critical facilities are no longer listed. Of interest to nuclear power planners, nuclear system designers, nuclear plant operators and interested professional engineers and scientists

  12. Fuel assemblies for BWR type reactors

    International Nuclear Information System (INIS)

    Ishizuka, Takao.

    1981-01-01

    Purpose: To enable effective failed fuel detection by the provision of water rod formed with a connecting section connected to a warmed water feed pipe of a sipping device at the lower portion and with a warmed water jetting port in the lower portion in a fuel assembly of a BWR type reactor to thereby carry out rapid sipping. Constitution: Fuel rods and water rods are contained in the channel box of a fuel assembly, and the water rod is provided at its upper portion with a connecting section connected to the warmed water feed pipe of the sipping device and formed at its lower portion with a warmed water jetting port for jetting warmed water fed from the warmed water feed pipe. Upon detection of failed fuels, the reactor operation is shut down and the reactor core is immersed in water. The cover for the reactor container is removed and the cap of the sipping device is inserted to connect the warmed water feed pipe to the connecting section of the water rod. Then, warmed water is fed to the water rod and jetted out from the warmed water jetting port to cause convection and unify the water of the channel box in a short time. Thereafter, specimen is sampled and analyzed for the detection of failed fuels. (Moriyama, K.)

  13. Remote assembly and maintenance of fusion reactors

    International Nuclear Information System (INIS)

    Becquet, M.C.; Farfaletti-Casali, F.

    1991-01-01

    This paper intend to present the state of the art in the field of remote assembly and maintenance, including system analysis design and operation for controlled fusion device such as JET, and the next NET and ITER reactors. The operational constraints of fusion reactors with respect to temperature, radiations dose rates and cumulated doses are considered with the resulting design requirements. Concepts like articulated boom, in-vessel vehicle and blanket handling device are presented. The close relations between computer simulations and experimental validation of those concepts are emphasized to ensure reliability of the operational behavior. Mockups and prototypes in reduced and full scale, as operating machines are described to illustrate the progress in remote operations for fusion reactors. The developments achieved at the Institute for System Engineering and Informatics of the Joint Research Center, in the field of remote blanket maintenance, reliability assessment of RH systems and remote cut and welding of lips joints are considered. (author)

  14. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  15. Tokamak reactor startup power

    International Nuclear Information System (INIS)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor

  16. Method of controlling power distribution in FBR type reactors

    International Nuclear Information System (INIS)

    Sawada, Shusaku; Kaneto, Kunikazu.

    1982-01-01

    Purpose: To attain the power distribution flattening with ease by obtaining a radial power distribution substantially in a constant configuration not depending on the burn-up cycle. Method: As the fuel burning proceeds, the radial power distribution is effected by the accumulation of fission products in the inner blancket fuel assemblies which varies the effect thereof as the neutron absorbing substances. Taking notice of the above fact, the power distribution is controlled in a heterogeneous FBR type reactor by varying the core residence period of the inner blancket assemblies in accordance with the charging density of the inner blancket assemblies in the reactor core. (Kawakami, Y.)

  17. Calibration of RB reactor power

    International Nuclear Information System (INIS)

    Sotic, O.; Markovic, H.; Ninkovic, M.; Strugar, P.; Dimitrijevic, Z.; Takac, S.; Stefanovic, D.; Kocic, A.; Vranic, S.

    1976-09-01

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  18. Tendencies in operating power reactors

    International Nuclear Information System (INIS)

    Brinckmann, H.F.

    1987-01-01

    A survey is given about new tendencies in operating power reactors. In order to meet the high demands for control and monitoring of power reactors modern procedures are applicated such as the incore-neutron flux detection by means of electron emission detectors and multi-component activation probes, the noise diagnostics as well as high-efficient automation systems

  19. Reconstitutable fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Ferlan, S.J.; Kmonk, S.; Schallenberger, J.M.

    1982-01-01

    A reconstitutable fuel assembly for a nuclear reactor which includes a mechanical, rather than metallurgical, arrangement for connecting control rod guide thimbles to the top and bottom nozzles of a fuel assembly. Multiple sleeves enclosing control rod guide thimbles interconnect the top nozzle to the fuel assembly upper grid. Each sleeve is secured to the top nozzle by retaining rings disposed on opposite sides of the nozzle. Similar sleeves enclose the lower end of control rod guide thimbles and interconnect the bottom nozzle with the lowermost grid on the assembly. An end plug fitted in the bottom end of each sleeve extends through the bottom nozzle and is secured thereto by a retaining ring. Should it be necessary to remove a fuel rod from the assembly, the retaining rings in either the top or bottom nozzles may be removed to release the nozzle from the control rod guide thimbles and thus expose either the top or bottom ends of the fuel rods to fuel rod removing mechanisms

  20. Tests of the RBMK-1500 reactor fuel assemblies in the Leningrad reactor

    International Nuclear Information System (INIS)

    Aden, V.C.; Varovin, I.A.; Vorontsov, B.A.

    1981-01-01

    Test of fuel assemblies of the RBMK-1500 reactor is conducted in the reactor of the Leningrad NPP unit 2 for proving the calculational values of critical power of the RBMK-1500 reactor fuel assemblies adopted in design. The experiment presupposes the maximal approximation of the fuel assembly operation parameters to the calculational critical parameters without bringing into the mode of heat transfer crisis. The experiments are carried out at 500, 850 and 900 MW(el) of the reactor. The maximal channel power made up 472 kW at 20.5 t/h coolant flow rate and 49% mass steam content at the outlet of the channel. It was concluded that there was supply up to the heat transfer crisis in all the investigated modes. Data of temperature measurings of the fuel element cans, readings of the devices of the failure control system of the fuel element cans and external inspection of the assemblies after the tests testify to it [ru

  1. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bertoncini, P.J.

    1976-01-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 yr. The EPR operates in a pulsed mode at a frequency of approximately 1/min, with approximately 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2 cm thick stainless steel, and has 2 cm thick detachable, beryllium-coated coolant panels mounted on the interior. A 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic heating and equilibrium field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam injectors which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-convertors

  2. CANDU fuel - fifteen years of power reactor experience

    International Nuclear Information System (INIS)

    Fanjoy, G.R.; Bain, A.S.

    1977-01-01

    CANDU (Canada Deuterium Uranium) fuel has operated in power reactors since 1962. Analyses of performance statistics, supplemented by examinations of fuel from power reactors and experimental loops have yielded: (a) A thorough understanding of the fundamental behaviour of CANDU fuel. (b) Data showing that the predicted high utilization of uranium has been achieved. Actual fuelling costs in 1976 at the Pickering Generating Station are 1.2 m$/kWh (1976 Canadian dollars) with the simple oncethrough natural-UO 2 fuel cycle. (c) Criteria for operation, which have led to the current very low defect rate of 0.03% of all assemblies and to ''CANLUB'' fuel, which has a graphite interlayer between the fuel and sheath to reduce defects on power increases. (d) Proof that the short length (500 mm), collapsible cladding features of the CANDU bundle are successful and that the fuel can operate at high-power output (current peak outer-element linear power is 58 +- 15% kW/m). Involvement by the utility in all stages of fuel development has resulted in efficient application of this fundamental knowledge to ensure proper fuel specifications, procurement, scheduling into the reactor and feedback to developers, designers and manufacturers. As of mid-1976 over 3 x 10 6 individual elements have been built in a well-estabilished commercially competitive fuel fabrication industry and over 2 x 10 6 elements have been irradiated. Only six defects have been attributed to faulty materials or fabrication, and the use of high-density UO 2 with low-moisture content precluded defects from hydrogen contamination and densification. Development work on UO 2 and other fuel cycles (plutonium and thorium) is continuing, and, because CANDU reactors use on-power fuelling, bundles can be inserted into power reactors for testing. Thus new fuel designs can be quickly adopted to ensure that the CANDU system continues to provide low-cost energy with high reliability

  3. Power peak in vicinity of WWER-440 control assembly

    International Nuclear Information System (INIS)

    Mikus, J.

    2002-01-01

    This paper presents information concerning the WWER-440 local power peaking problem induced by a control assembly and corresponding investigation possibilities on the light-water zero-power reactor LR-O at the Nuclear Research Institute Rez plc. Brief description of the disposable CA model, experimental arrangement and conditions on the LR-O reactor, preparation of the relevant measurements in the WWER-440 type cores with CA model, as well as some preliminary results of the fission density distribution obtained in a core without boron and with fuel assemblies having profiled enrichment are mentioned too (Author)

  4. Fuel assembly design for APR1400 with low CBC

    Energy Technology Data Exchange (ETDEWEB)

    Hah, Chang Joo, E-mail: changhah@kings.ac.kr [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-04-29

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to Δk{sub TARGET}. A set of new designed fuel assembly satisfies an objective function, min [f=∑{sub i}(Δk{sub FA}−Δk{sub i})], and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to Δk{sub TARGET} as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  5. MIT research reactor. Power uprate and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin-Wen [Nuclear Reactor Laboratory, Massachusetts Inst. of Technology, Cambridge, MA (United States)

    2012-03-15

    The MIT Research Reactor (MITR) is a university research reactor located on MIT campus. and has a long history in supporting research and education. Recent accomplishments include a 20% power rate to 6 MW and expanding advanced materials fuel testing program. Another important ongoing initiative is the conversion to high density low enrichment uranium (LEU) monolithic U-Mo fuel, which will consist of a new fuel element design and power increase to 7 MW. (author)

  6. Fuel assembly and nuclear reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Yamashita, Jun-ichi.

    1995-01-01

    The present invention concerns a fuel assembly and a nuclear reactor core capable of improving a transmutation rate of transuranium elements while improving a residual rate of fission products. In a reactor core of a BWR type reactor to which fuel rods with transuranium elements (TRU) enriched are loaded, the enrichment degree of transuranium elements occupying in fuel materials is determined not less than 2wt%, as well as a ratio of number of atoms between hydrogen and fuel heavy metals in an average reactor core under usual operation state (H/HM) is determined not more than 3 times. In addition, a ratio of the volumes between coolant regions and fuel material regions is determined not more than 2 times. A T ratio (TRU/Pu) is lowered as the TRU enrichment degree is higher and the H/HM ratio is lower. In order to reduce the T ratio not more than 1, the TRU enrichment degree is determined as not less than 2wt%, and the H/HM ratio is determined to not more than 3 times. Accordingly, since the H/HM ratio is reduced to not more than 1, and TRU is transmuted while recycling it with plutonium, the transmutation ratio of transuranium elements can be improved while improving the residual rate of fission products. (N.H.)

  7. Gaseous fuel reactors for power systems

    International Nuclear Information System (INIS)

    Helmick, H.H.; Schwenk, F.C.

    1978-01-01

    The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems. Low power reactor experiments using uranium hexafluoride gas as fuel demonstrated performance in accordance with reactor physics predictions. The final phase of experimental activity now in progress is the fabrication and testing of a buffer gas vortex confinement system

  8. Calculation of the power distribution in the fuel rods of the low power research reactor using the MCNP4C code

    International Nuclear Information System (INIS)

    Dawahra, S.; Khattab, K.

    2011-01-01

    Highlights: → The MCNP4C code was used to calculate the power distribution in 3-D geometry in the MNSR reactor. → The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. → The minimum power was found in the fuel ring number 9 and was 79.9 W. → The total power in the total fuel rods was 30.9 kW. - Abstract: The Monte Carlo method, using the MCNP4C code, was used in this paper to calculate the power distribution in 3-D geometry in the fuel rods of the Syrian Miniature Neutron Source Reactor (MNSR). To normalize the MCNP4C result to the steady state nominal thermal power, the appropriate scaling factor was defined to calculate the power distribution precisely. The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. The minimum power was found in the fuel ring number 9 and was 79.9 W. The total power in the total fuel rods was 30.9 kW. This result agrees very well with nominal power reported in the reactor safety analysis report which equals 30 kW. Finally, the peak power factors, which are defined as the ratios between the maximum to the average and the maximum to the minimum powers were calculated to be 1.18 and 1.31 respectively.

  9. Fuel assembly transfer and storage system for nuclear reactors

    International Nuclear Information System (INIS)

    Allain, Albert; Thomas, Claude.

    1981-01-01

    Transfer and storage system on a site comprising several reactors and at least one building housing the installations common to all these reactors. The system includes: transfer and storage modules for the fuel assemblies comprising a containment capable of containing several assemblies carried on a transport vehicle, a set of tracks for the modules between the reactors and the common installations, handling facilities associated with each reactor for moving the irradiated assemblies from the reactor to a transfer module placed in loading position on a track serving the reactor and conversely to move the new assemblies from the transfer module to the reactor, and at least one handling facility located in the common installation building for loading the modules with new assemblies [fr

  10. The low-power low-pressure flow resonance in a natural circulation cooled boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, T.H.J.J. van der; Stekelenburg, A.J.C. [Delft Univ. of Technology (Netherlands)

    1995-09-01

    The last few years the possibility of flow resonances during the start-up phase of natural circulation cooled BWRs has been put forward by several authors. The present paper reports on actual oscillations observed at the Dodewaard reactor, the world`s only operating BWR cooled by natural circulation. In addition, results of a parameter study performed by means of a simple theoretical model are presented. The influence of relevant parameters on the resonance characteristics, being the decay ratio and the resonance frequency, is investigated and explained.

  11. A nuclear power reactor

    International Nuclear Information System (INIS)

    Borrman, B.E.; Broden, P.; Lundin, N.

    1979-12-01

    The invention consists of shock absorbing support beams fastened to the underside of the reactor tank lid of a BWR type reactor, whose purpose is to provide support to the steam separator and dryer unit against accelerations due to earthquakes, without causing undue thermal stresses in the unit due to differential expansion. (J.I.W.)

  12. A Mixed-Oxide Assembly Design for Rapid Disposition of Weapons Plutonium in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Adams, Marvin L.

    2002-01-01

    We have created a new mixed-oxide (MOX) fuel assembly design for standard pressurized water reactors (PWRs). Design goals were to maximize the plutonium throughput while introducing the lowest perturbation possible to the control and safety systems of the reactor. Our assembly design, which we call MIX-33, offers some advantages for the disposition of weapons-grade plutonium; it increases the disposition rate by 8% while increasing the worth of control material, compared to a previous Westinghouse design. The MIX-33 design is based upon two ideas: the use of both uranium and plutonium fuel pins in the same assembly, and the addition of water holes in the assembly. The main result of this paper is that both of these ideas are effective at increasing Pu throughput and increasing the worth of control material. With this new design, according to our analyses, we can transition smoothly from a full low-enriched-uranium (LEU) core to a full MIX-33 core while meeting the operational and safety requirements of a standard PWR. Given an interruption of the MOX supply, we can transition smoothly back to full LEU while meeting safety margins and using standard LEU assemblies with uniform pinwise enrichment distribution. If the MOX supply is interrupted for only one cycle, the transition back to a full MIX-33 core is not as smooth; high peaking could cause power to be derated by a few percent for a few weeks at the beginning of one transition cycle

  13. Reactor Dynamics Experiments with a Sub-Critical Assembly

    International Nuclear Information System (INIS)

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-01-01

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory

  14. Low activity blanket designs and heat transfer for experimental power reactors

    International Nuclear Information System (INIS)

    Fillo, J.; Tichler, P.; Lazareth, O.; Powell, J.

    1976-01-01

    Two minimum activity blanket designs are described, based on the ANL TEPR circular design parameters. A first wall loading (plasma on) of 1.0 MW(th)/m 2 has been assumed. The first option is composed of SAP (sintered aluminum product) modules. The oval shaped SAP shell, in which approximately 45 percent of the fusion energy is removed, is maintained at a temperature of approximately 400 0 C by a He coolant stream. The remaining 55 percent of the fusion energy is deposited in a thermally insulated hot interior (SiC and B 4 C) and removed by a separate He coolant, with exit temperature of 800 0 C. In the second option, the blanket is a thick graphite block structure (approximately 50 cm thickness) with SAP coolant tubes carrying He (50 atm) embedded deep within the graphite to minimize radiation damage. The neutron and gamma energy deposited in the graphite is radiated along internal slots and conducted through the graphite to the coolant tubes. To reduce surface evaporation above 2000 0 C, the blanket surface is radiatively cooled to a low temperature radiation sink, a bank of He cooled SAP tubes. Approximately 20 percent of the fusion energy is removed in this region, the remaining 80 percent in the primary graphite-aluminum blanket. Both blanket options are mounted on heavy Al backing plates, cooled by He, which are in turn supported from the fixed shield

  15. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  16. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Carter, R.E.

    1985-01-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  17. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R E

    1985-07-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  18. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  19. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    Aguilar Martinez, O.

    1994-01-01

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  20. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  1. Effect of Burnable Absorbers on Inert Matrix Fuel Performance and Transuranic Burnup in a Low Power Density Light-Water Reactor

    Directory of Open Access Journals (Sweden)

    Geoff Recktenwald

    2013-04-01

    Full Text Available Zirconium dioxide has received particular attention as a fuel matrix because of its ability to form a solid solution with transuranic elements, natural radiation stability and desirable mechanical properties. However, zirconium dioxide has a lower coefficient of thermal conductivity than uranium dioxide and this presents an obstacle to the deployment of these fuels in commercial reactors. Here we show that axial doping of a zirconium dioxide based fuel with erbium reduces power peaking and fuel temperature. Full core simulations of a modified AP1000 core were done using MCNPX 2.7.0. The inert matrix fuel contained 15 w/o transuranics at its beginning of life and constituted 28% of the assemblies in the core. Axial doping reduced power peaking at startup by more than ~23% in the axial direction and reduced the peak to average power within the core from 1.80 to 1.44. The core was able to remain critical between refueling while running at a simulated 2000 MWth on an 18 month refueling cycle. The results show that the reactor would maintain negative core average reactivity and void coefficients during operation. This type of fuel cycle would reduce the overall production of transuranics in a pressurized water reactor by 86%.

  2. Power reactors in Member States. 1978 edition

    International Nuclear Information System (INIS)

    1978-01-01

    The computer-based reactor listing gives information on reactor core characteristics and plant systems for all power reactors in operation under construction and planned. The following two tables are included to give a general picture of the overall situation: Reactor types and net electrical power; Reactor units and net electrical power by country and cumulated by year

  3. Power reactor information system (PRIS)

    International Nuclear Information System (INIS)

    1989-06-01

    Since the very beginning of commercial operation of nuclear power plants, the nuclear power industry worldwide has accumulated more than 5000 reactor years of experience. The IAEA has been collecting Operating Experience data for Nuclear Power Plants since 1970 which were computerized in 1980. The Agency has undertaken to make Power Reactor Information System (PRIS) available on-line to its Member States. The aim of this publication is to provide the users of PRIS from their terminals with description of data base and communication systems and to show the methods of accessing the data

  4. Possible ways and aspects of conversions for the German low power research reactors BER II, FRM, and FMRB

    International Nuclear Information System (INIS)

    Roegler, H.-J.

    1983-01-01

    Based on the overall agreement about methods and principal results on core conversions from HEU to MEU within the work done for the IAEA Guidebook, investigations were started of the three specific cases, that means the conversions of the German Research Reactors within the German AF-Program. The first step of this work was done for the three low power MTR-reactors: the Ber II in Berlin operating at KW, FMRB in Brunswick operating at 1 MW, and FRM near Munich operating at 4 W. The simplest core from the point of view of conversion calculations was the BER II reactor. The core is made up out of 33 fuel elements and 5 control elements, it is built up on a 8 x 8 grid plate. On three sides the core is surrounded by reflector elements partially made of graphite and partially of beryllium. The main purpose of the core is to provide high neutron fluxes for the 12 beam tubes on all reflector sides. A little bit more complicated - from the conversion point of view - was the status of the Munich FRM. This is on one hand due to the two different cores they operate: a so-called normal core and a smaller beryllium core and on the other other hand due to the different uranium-loadings of fuel elements partially 230 g 235-U per element and partially 180 g 235-U per element with control elements of both plate loadings as well. The third reactor investigated was the Brunswick FMRB, which has specific design features that cause specific problems. The core is split into two parts, the so-called north core and the south core interacting via a heavy water reflector in between. Calculations with LEU-fuel - in these three cases no MEU-fuel was used - were done looking at different criteria for the conversion. The first group we call cycle length criteria and they are split into two versions, the same cycle length for LEU-fuel as for the existing HEU-fuel measured in MWd with the same excess reactivity at EOL as it exists at present; the same criterion as the previous except the cycle

  5. Specification for carbon and low alloy steel containment structures for stationary nuclear power reactors. [Now obsolescent (by Amendment No. 1)

    Energy Technology Data Exchange (ETDEWEB)

    1967-01-01

    This British Standard covers the design, construction, inspection and testing of steel reactor containment structures made of carbon and low alloy steel for temperatures not exceeding 300 deg C. Such structures are not in contact with the reactor coolant during normal operation. Pressure-relieved structures are not excluded, provided they are of a form that contains the fission products or ensures their safe disposal. Attachments such as air-locks or piping that is or may become directly connected between the interior of the containment structure and a closure, and may therefore contain radioactive material released during accidents, is considered part of the containment structure.

  6. Fuel assemblies for FBR type reactor

    International Nuclear Information System (INIS)

    Ikeda, Kiyoshi.

    1981-01-01

    Purpose: To decrease errors in the flow rate distribution of coolants by resiliently inserting a flow regulation rod having a variable flow regulation element formed at the upper portion along the axial direction in the entrance nozzle of a fuel assembly. Constitution: A plurality of orifice aperture are formed to the entrance nozzle of a fuel assembly and an aperture for inserting a flow regulation rod is formed to the top end of the entrance nozzle. A fixed flow regulation element A and a variable flow regulation element B supported coaxially with the nozzle by a support ring are disposed to the inside of the nozzle. The element B is urged by the resilient urging spring to the element A and connected by way of support lever to the flow regulation rod. While on the other hand, the top end of the nozzle is inserted through the partition wall between a high pressure coolant chamber and a low pressure coolant chamber. An aperture for hydrodynamically supporting the fuel assembly is provided by way of a frame and a flow regulation rod that stands vertically from the low pressure coolant chamber is disposed to the center of the frame. In the fuel assembly, the flow regulation rod inserted from the aperture at the top end of the nozzle pushes the element B upwardly to thereby maintain a flow passage of the coolant between the elements A and B. (Seki, T.)

  7. Basic experiments of reactor physics using the critical assembly TCA

    International Nuclear Information System (INIS)

    Obara, Toru; Igashira, Masayuki; Sekimoto, Hiroshi; Nakajima, Ken; Suzaki, Takenori.

    1994-02-01

    This report is based on lectures given to graduate students of Tokyo Institute of Technology. It covers educational experiments conducted with the Tank-Type Critical Assembly (TCA) at Japan Atomic Energy Research Institute in July, 1993. During this period, the following basic experiments on reactor physics were performed: (1) Critical approach experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, (5) Measurement of safety sheet worth by the rod drop method. The principle of experiments, experimental procedure, and analysis of results are described in this report. (author)

  8. Power oscillations in BWR reactors

    International Nuclear Information System (INIS)

    Espinosa P, G.

    2002-01-01

    One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)

  9. Methods of assembling and disassembling spider and burnable poison rod structures for nuclear reactors

    International Nuclear Information System (INIS)

    Walton, L.A.

    1981-01-01

    A method is described of joining burnable poison rods to the spider arms of a pressurised water power reactor fuel assembly which is proof against the reactor core environment but permits these rods to be removed from the spider simply, swiftly and delicately. (U.K.)

  10. Study of a low power plasma reactor for the synthesis of zinc oxide as window layers in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Alexandre, E-mail: alexadre.ma@chimie-paristech.fr [Institut de Recherche de Chimie Paris (IRCP), Equipe 2PM (Procédés, Plasmas, Microsystèmes), UMR 8247, Chimie ParisTech-CNRS, 11 Rue Pierre et Marie Curie, 75005 Paris (France); Institute of Research and Development of Photovoltaic Energy (IRDEP), UMR7174, EDF-CNRS-Chimie ParisTech, 6 Quai Watier, 78401 Chatou (France); ADEME (French Environment and Energy Management Agency), 20 avenue du Grésillé, BP 90406, 49004 Angers Cedex 01 (France); Donsanti, Frédérique [Institute of Research and Development of Photovoltaic Energy (IRDEP), UMR7174, EDF-CNRS-Chimie ParisTech, 6 Quai Watier, 78401 Chatou (France); Rousseau, Frédéric; Morvan, Daniel [Institut de Recherche de Chimie Paris (IRCP), Equipe 2PM (Procédés, Plasmas, Microsystèmes), UMR 8247, Chimie ParisTech-CNRS, 11 Rue Pierre et Marie Curie, 75005 Paris (France)

    2015-05-01

    The low power plasma reactor is an original process which allows the deposition of ZnO controlled thickness films from an aqueous precursor solution in a cold plasma only in order to reach high growth rates. The quality of the deposited material (purity, crystallinity, size of the grains…) depends primarily on the interactions in the reactor between the droplets and the plasma. In this study, the parameters of the deposition (composition of the gases, pressure, power, temperature…) were studied and controlled. The doping characteristics are mainly influenced by the concentration of the precursors in the solution and by the method of injection. The final optimizations allowed high growth rates ranging from 0.6 to 1 nm/s. X-ray Diffraction results show a good crystallinity of the deposited layer (würtzite structure). According to the transmittance measurements, the films present a good transparency and a calculated optical gap value ranging between 3.2 and 3.3 eV. This deposition technique using plasma is fast, flexible, low power consuming and easily adaptable. Cu(In,Ga)Se{sub 2} solar cells with a ZnO window layer have successfully been achieved by using the low power plasma reactor and their performances show an efficiency of 11%. - Highlights: • The low power plasma reactor is a very fast and flexible deposition process. • ZnO films are realized from an aqueous nitrate solution in a plasma discharge only. • ZnO films exhibit good properties for the window layer application. • CIGS solar cells present promising performances with an efficiency of 11%.

  11. Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    Spiegelberg, R.

    1992-01-01

    The IAEA has been collecting Operating Experience data for Nuclear Power Plants of the IAEA Member States since 1970. In order to facilitate an analysis of nuclear power plant performance as well as to produce relevant publications, all previously collected data supplied from the questionnaires were computerized in 1980 and the Power Reactor Information System was implemented. PRIS currently contains production records for the years up to and including 1990 and about 98% of the reactors-years operating experience in the world is contained in PRIS. (orig.)

  12. Nuclear reactor fuel element sub-assemblies

    International Nuclear Information System (INIS)

    Hill, G.D.; Trevalion, P.A.

    1977-01-01

    A fuel element sub-assembly for a liquid metal cooled fast reactor is described. It comprises a bundle of fuel pins enclosed by a tubular wrapper having a lower end journal for plugging into an upper aperture in a core supporting structure and a spike bar with an articulated bush for engaging a lower aperture in the core supporting structure. The articulated bush is retained on a spherical end portion of the spike bar by a pair of parallel retaining pins arranged transversely and disposed one each side of the spike bar. The pins are tubular and collapsible at a predetermined loading to enable the spherical end portion to pass between them. The articulated bush has an internal groove for engagement by a lifting grab, this groove being formed in a bore for receiving the spherical end portion of the spike bar. The construction lessens liability to rattling of the fuel element sub-assemblies and aids removal for replacement. (U.K.)

  13. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    Kato, Shigeru.

    1993-01-01

    In the fuel assembly of the present invention, a means for mounting and securing short fuel rods is improved. Not only long fuel rods but also short fuel rods are disposed in channel of the fuel assembly to improve reactor safety. The short fuel rods are supported by a screw means only at the lower end plug. The present invention prevents the support for the short fuel rod from being unreliable due to the slack of the screw by the pressure of inflowing coolants. That is, coolant abutting portions such as protrusions or concave grooves are disposed at a portion in the channel box where coolants flowing from the lower tie plate, as an uprising stream, cause collision. With such a constitution, a component caused by the pressure of the flowing coolants is formed. The component acts as a rotational moment in the direction of screwing the male threads of the short fuel rod into the end plug screw hole. Accordingly, the screw is not slackened, and the short fuel rods are mounted and secured certainly. (I.S.)

  14. An alternative solution for heavy liquid metal cooled reactors fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Di Maio, Damiano, E-mail: damiano.vitaledimaio@uniroma1.it [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Cretara, Luca; Giannetti, Fabio [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Peluso, Vincenzo [“ENEA”, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Gandini, Augusto [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Manni, Fabio [“SRS Engineering Design S.r.l.”, Vicolo delle Palle 25-25/b, 00186 Rome (Italy); Caruso, Gianfranco [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy)

    2014-10-15

    Highlights: • A new fuel assembly locking system for heavy metal cooled reactor is proposed. • Neutronic, mechanical and thermal-hydraulic evaluations of the system behavior have been performed. • A comparison with other solutions has been presented. - Abstract: In the coming future, the electric energy production from nuclear power plants will be provided by both thermal reactors and fast reactors. In order to have a sustainable energy production through fission reactors, fast reactors should provide an increasing contribution to the total electricity production from nuclear power plants. Fast reactors have to achieve economic and technical targets of Generation IV. Among these reactors, Sodium cooled Fast Reactors (SFRs) and Lead cooled Fast Reactors (LFRs) have the greatest possibility to be developed as industrial power plants within few decades. Both SFRs and LFRs require a great R and D effort to overcome some open issues which affect the present designs (e.g. sodium-water reaction for the SFRs, erosion/corrosion for LFRs, etc.). The present paper is mainly focused on LFR fuel assembly (FA) design: issues linked with the high coolant density of lead or lead–bismuth eutectic cooled reactors have been investigated and an innovative solution for the core mechanical design is here proposed and analyzed. The solution, which foresees cylindrical fuel assemblies and exploits the buoyancy force due to the lead high density, allows to simplify the FAs locking system, to reduce their length and could lead to a more uniform neutron flux distribution.

  15. Comparison of fuel assemblies in lead cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G., E-mail: alejandria.peval@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  16. Comparison of fuel assemblies in lead cooled fast reactors

    International Nuclear Information System (INIS)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G.

    2016-09-01

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  17. Design characteristics of research zero power fast reactor Lasta

    International Nuclear Information System (INIS)

    Milosevic, M.; Stefanovic, D.; Pesic, M.; Nikolic, D.; Antic, D.; Zavaljevski, N.; Popovic, D.

    1990-01-01

    LASTA is a flexible zero power reactor with uranium and plutonium fuel designed for research in the neutron physics and in the fast reactor physics. Safety considerations and experimental flexibility led to the choice of a fixed vertical assembly with two safety blocks as the main safety elements, so that safety devices would be operated by gravity. The neutron and reactor physics, the control and safety philosophy adopted in our design, are described in this paper. Developed computer programs are presented. (author)

  18. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  19. Calculation of the power distribution in the fuel rods of the low power research reactor using the MCNP4C code

    International Nuclear Information System (INIS)

    Dawahra, S.; Khattab, K.

    2012-01-01

    The Monte Carlo method, using the MCNP4C code, was used in this paper to calculate the power distribution in 3-D geometry in the fuel rods of the Syrian Miniature Neutron Source Reactor (MNSR). To normalize the MCNP4C result to the steady state nominal thermal power, the appropriate scaling factor was defined to calculate the power distribution precisely. The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. The minimum power was found in the fuel ring number 9 and was 79.9 W. The total power in the total fuel rods was 30.9 k W. This result agrees very well with nominal power reported in the reactor safety analysis report which equals 30 k W. Finally, the peak power factors, which are defined as the ratios between the maximum to the average and the maximum to the minimum powers were calculated to be 1.18 and 1.31 respectively. (author)

  20. The Swedish Zero Power Reactor R0

    Energy Technology Data Exchange (ETDEWEB)

    Landergaard, Olof; Cavallin, Kaj; Jonsson, Georg

    1961-05-15

    The reactor R0 is a critical facility built for heavy water and natural uranium or fuel of low enrichment,, The first criticality was achieved September 25, 1959. During a first period of more than two years the R0 will be operated as a bare reactor in order to simplify interpretation of results. The reactor tank is 3. 2 m high and 2. 25 m in diameter. The fuel suspension system is quite flexible in order to facilitate fuel exchange and lattice variations. The temperature of the water can be varied between about 10 and 90 C by means of a heater and a cooler placed in the external circulating system. The instrumentation of the reactor has to meet the safety requirements not only during operation but also during rearrangements of the core in the shut-down state. Therefore, the shut-down state is always defined by a certain low 'safe' moderator level in the reactor tank. A number of safety rods are normally kept above the moderator ready for action. For manual or automatic control of the reactor power a specially designed piston pump is needed, by which the moderator level is varied. The pump speed is controlled from the reactor power error by means of a Ward-Leonard system. Moderator level measurement is made by means of a water gauge with an accuracy of {+-} 0. 1 mm.

  1. The Swedish Zero Power Reactor R0

    International Nuclear Information System (INIS)

    Landergaard, Olof; Cavallin, Kaj; Jonsson, Georg

    1961-05-01

    The reactor R0 is a critical facility built for heavy water and natural uranium or fuel of low enrichment,, The first criticality was achieved September 25, 1959. During a first period of more than two years the R0 will be operated as a bare reactor in order to simplify interpretation of results. The reactor tank is 3. 2 m high and 2. 25 m in diameter. The fuel suspension system is quite flexible in order to facilitate fuel exchange and lattice variations. The temperature of the water can be varied between about 10 and 90 C by means of a heater and a cooler placed in the external circulating system. The instrumentation of the reactor has to meet the safety requirements not only during operation but also during rearrangements of the core in the shut-down state. Therefore, the shut-down state is always defined by a certain low 'safe' moderator level in the reactor tank. A number of safety rods are normally kept above the moderator ready for action. For manual or automatic control of the reactor power a specially designed piston pump is needed, by which the moderator level is varied. The pump speed is controlled from the reactor power error by means of a Ward-Leonard system. Moderator level measurement is made by means of a water gauge with an accuracy of ± 0. 1 mm

  2. Event data collection and database development during plant shutdown and low power operations at domestic and foreign reactors

    International Nuclear Information System (INIS)

    Kim, T. Y.; Park, J. H.; Han, S. J.; Im, H. K.; Jang, S. C.

    2003-01-01

    To reduce conservatism and to obtain completeness for Low Power and ShutDown(LPSD) PSA of nuclear plants, total of 625 event data have collected during shutdown and low power operations which have occurred during about 30 years at nuclear power plants of USA and European countries including 2 domestic events. To utilize efficiently these event data, a database program which is called LEDB (Low power and shutdown Event Database) was developed and all the event data collected were inserted in that program. By reviewing and analyzing these event data various way, a lot of very useful insights and ideas for preventing similar events from reoccurrence in domestic nuclear power plants can be obtained

  3. Power semiconductor device adaptive cooling assembly

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to a power semiconductor device (100) cooling assembly for cooling a power semiconductor device (100), wherein the assembly comprises an actively cooled heat sink (102) and a controller (208; 300), wherein the controller (208; 300) is adapted for adjusting the cooling

  4. Cascade ICF power reactor

    International Nuclear Information System (INIS)

    Hogan, W.J.; Pitts, J.H.

    1986-01-01

    The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO 2 . The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor

  5. Reactor power system deployment and startup

    International Nuclear Information System (INIS)

    Wetch, J.R.; Nelin, C.J.; Britt, E.J.; Klein, G.; Rasor Associates, Inc., Sunnyvale, CA; California Institute of Technology, Pasadena)

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems. 5 references

  6. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  7. Nuclear reactor power control device

    International Nuclear Information System (INIS)

    Koshi, Yuji; Sakata, Akira; Karatsu, Hiroyuki.

    1987-01-01

    Purpose: To control abrupt changes in neutron fluxes by feeding back a correction signal obtained from a deviation between neutron fluxes and heat fluxes for changing the reactor core flow rate to a recycling flow rate control system upon abrupt power change of a nuclear reactor. Constitution: In addition to important systems, that is, a reactor pressure control system and a recycling control system in the power control device of a BWR type power plant, a control circuit for feeding back a deviation between neutron fluxes and heat fluxes to a recycling flow rate control system is disposed. In the suppression circuit, a deviation signal is prepared in an adder from neutron flux and heat flux signals obtained through a primary delay filter. The deviation signal is passed through a dead band and an advance/delay filter into a correction signal, which is adapted to be fed back to the recycling flow rate control system. As a result, the reactor power control can be conducted smoothly and it is possible to effectively suppress the abrupt change or over shoot of the neutron fluxes and abrupt power change. (Kamimura, M.)

  8. Results of assembly test of HTTR reactor internals

    International Nuclear Information System (INIS)

    Maruyama, S.; Saikusa, A.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    The assembly test of the HTTR actual reactor internals had been carried out at the works, prior to their installation in the actual reactor pressure vessel(RPV) at the construction site. The assembly test consists of several items such as examining fabricating precision of each component and alignment of piled-up structures, measuring circumferential coolant velocity profile in the passage between the simulated RPV and the reactor internals as well as under the support plates, measuring by-pass flow rate through gaps between the reactor internals, and measuring the binding force of the core restraint mechanism. Results of the test showed good performance of the HTTR reactor internals. Installation of the reactor internals in the actual RPV was started at the construction site of HTTR in April, 1995. In the installation process, main items of the assembly test at the works were repeated to investigate the reproducibility of installation. (author). 5 refs, 11 figs

  9. Power control system in BWR type reactors

    International Nuclear Information System (INIS)

    Nishizawa, Yasuo.

    1980-01-01

    Purpose: To control the reactor power so that the power distribution can satisfy the limiting conditions, by regulating the reactor core flow rate while monitoring the power distribution in the reactor core of a BWR type reactor. Constitution: A power distribution monitor determines the power distribution for the entire reactor core based on the data for neutron flux, reactor core thermal power, reactor core flow rate and control rod pattern from the reactor and calculates the linear power density distribution. A power up ratio computing device computes the current linear power density increase ratio. An aimed power up ratio is determined by converting the electrical power up ratio transferred from a load demand input device into the reactor core thermal power up ratio. The present reactor core thermal power up ratio is subtracted from the limiting power up ratio and the difference is sent to an operation amount indicator and the reactor core flow rate is changed in a reactor core flow rate regulator, by which the reactor power is controlled. (Moriyama, K.)

  10. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement predication models and of pressure vessel integrity can be greatly expedited by the use of a well-designed, computerized data base. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The Nuclear Regulatory Commission (NRC) has provided financial support, and the Electric Power Research Institute (EPRI) has provided technical assistance in the quality assurance (QA) of the data to establish an industry-wide data base that will be maintained and updated on a long-term basis. Successful applications of the data base to several of NRC's evaluations have received favorable response and support for its continuation. The future direction of the data base has been designed to include the test reactor and other types of data of interest to the regulators and the researchers. 1 ref

  11. Power reactor core safety research

    International Nuclear Information System (INIS)

    Rim, C.S.; Kim, W.C.; Shon, D.S.; Kim, J.

    1981-01-01

    As a part of nuclear safety research program, a project was launched to develop a model to predict fuel failure, to produce the data required for the localizaton of fuel design and fabrication technology, to establish safety limits for regulation of nuclear power plants and to develop reactor operation method to minimize fuel failure through the study of fuel failure mechanisms. During 1980, the first year of this project, various fuel failure mechanisms were analyzed, an experimental method for out-of-pile tests to study the stress corrosion cracking (SCC) behaviour of Zircaloy cladding underiodine environment was established, and characteristics of PWR and CANDU Zircaloy specimens were examined. Also developed during 1980 were the methods and correlations to evaluate fuel failures in the reactor core based on operating data from power reactors

  12. Experimental power reactor

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The following five topics are discussed using figures and diagrams: (1) energy storage and transfer program, (2) thermomechanical analysis, (3) a steam dual-cycle power conversion system for the EPR, (4) EPR tritium facility scoping studies, and (5) vacuum systems

  13. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    Science.gov (United States)

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. MOX fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Shimada, Hidemitsu; Koyama, Jun-ichi; Aoyama, Motoo

    1998-01-01

    The MOX fuel assembly of the present invention is of a c-lattice type loaded to a BWR type reactor. 74 MOX fuel rods filled with mixed oxides of uranium and plutonium and two water rods disposed to a space equal to that for 7 MOX fuel rods are arranged in 9 x 9 matrix. MOX fuel rods having the lowest enrichment degree are disposed to four corners of the 9 x 9 matrix. The enrichment degree means a ratio of the weight of fission products based on the total weight of fuels. Two MOX fuel rods having the same enrichment degree are arranged in each direction so as to be continuous from the MOX fuel rods at four corners in the direction of the same row and different column and same column and the different row. In addition, among the outermost circumferential portion of the 9 x 9 matrix, MOX fuel rods having a lower enrichment degree next to the MOX fuel rods having the lowest enrichment degree are arranged, each by three to a portion where MOX fuel rods having the lowest enrichment degree are not disposed. (I.N.)

  15. Design and fabrication of self-powered in-core neutron flux monitor assembly

    International Nuclear Information System (INIS)

    Chung, M.K.; Cho, S.W.; Kang, H.D.; Cho, K.K.; Cho, B.S.; Kang, S.S.

    1980-01-01

    This is the final report on the prototypical fabrication of an in-core neutron flux monitor detector assembly for a specific power reactor conducted by KAERI from July 1, 1978 to December 31, 1979. It is well known that power reactors require a large number of in-core neutron flux detector for reactor regulation and the structures of detector assemblies are different from reactor to reactor. Therefore, from the nature of this project, it should be noted here that the target model of the prototypical farbrication of an in-core neutron flux monitor detector assembly is a VFD-2 System for Wolsung CANDU. It is concluded that fabrication of in-core neutron flux monitor detector assembly for CANDU reactor is technically feasible and will bring economical benefit as much as 50 % of the unit price if they are fabricated in Korea by using partially materials which are available from local market. (author)

  16. Preliminary study on the feasibility of ductless fuel assembly for fast reactors

    International Nuclear Information System (INIS)

    Shibahara, Itaru; Enokido, Yuji

    1988-01-01

    Preliminary study on the feasibility of ductless fuel assembly for fast reactors has been conducted. The primary concern is with forecasting the thermal hydraulic characteristics and the heat removal efficiency from the core. The thermal hydraulic analysis revealed the coolant mixing in the core at steady state operating condition was not intensive and the coolant temperature increase was almost proportional to the power of each assembly. The hot spot analysis of the ductless core indicated that the hottest temperature in the core could be comparable with the temperature of the conventional ducted core, even in case the radial power flattening was not actively pursued but with adopting ducted radial blanket assemblies. Under off-normal conditions, the ductless core had improved heat removal capability which was caused by inter-assembly coolant flow. The study has indicated the feasibility of the ductless fuel assembly for fast reactors. The experiments to demonstrate the feasibility will be the next key process for the development. (author)

  17. To question of NPP power reactor choice for Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.; Reznikova, R.A.; Sidorenco, A.V.

    2004-01-01

    Full text: The requirements to NPP power reactors that will be under construction in Kazakhstan are proved and given in the report. A comparative analysis of the most advanced projects of power reactors with light and heavy water under pressure of large, medium and low power is carried out. Different reactors have been considered as follows: 1. Reactors with high-power (700 MW(el) and up) such as EPR, French - German reactor; CANDU-9, Canadian heavy-water reactor; System 80+, developed by ABB Combustion Engineering company, USA; KNGR, Korean reactor of the next generation; APWR, Japanese advanced reactor; WWER-1000 (V-392) - development of Atomenergoproect /Gydropress, Russian Federation; EP 1000, European passive reactor. 2. Reactors with medium power (300 MW (el) - 700 MW (el): AP-600, passive PWR of the Westinghouse company; CANDU-6, Canadian heavy-water reactor; AC-600, Chinese passive PWR; WWER-640, Russian passive reactor; MS-600 Japanese reactor of Mitsubishi Company; KSNP-600, South Korean reactor. 3. Reactors with low power (a few MW(el)- 300 MW(el)): IRIS, reactor of IV generation, developed by the International Corporation of 13 organizations from 7 countries, SMART, South Korean integrated reactor; CAREM, Argentina integrated reactor; MRX, Japanese integrated reactor; 'UNITERM', Russian NPP with integrated reactor, development of NIKIET; AHEC-80, Russian NPP, developed by OKBM. A comparison of the projects of the above-mentioned power reactors was carried out with respect to 15 criteria of nuclear, radiating, ecological safety and economic competitiveness, developed especially for this case. Data on a condition and prospects of power production and power consumption, stations and networks in Kazakhstan necessary for the choice of projects of NPP reactors for Kazakhstan are given. According to the data a balance of power production and power consumption as a whole in the country was received at the level of 59 milliard kw/h. However, strong dis balance

  18. To question of NPP power reactor choice for Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.; Reznikova, R.A.; Sidorenco, A.V.

    2004-01-01

    The requirements to NPP power reactors that will be under construction in Kazakhstan are proved and given in the report. A comparative analysis of the most advanced projects of power reactors with light and heavy water under pressure of large, medium and low power is carried out. Different reactors have been considered as follows: 1. Reactors with high-power (700 MW(el) and up) such as EPR, French - German reactor; CANDU-9, Canadian heavy-water reactor; System 80+, developed by ABB Combustion Engineering company, USA; KNGR, Korean reactor of the next generation; APWR, Japanese advanced reactor; WWER-1000 (V-392) - development of Atomenergoproect /Gydropress, Russian Federation; EP 1000, European passive reactor. 2. Reactors with medium power (300 MW (el) - 700 MW (el): AP-600, passive PWR of the Westinghouse company; CANDU-6, Canadian heavy-water reactor; AC-600, Chinese passive PWR; WWER-640, Russian passive reactor; MS-600 Japanese reactor of Mitsubishi Company; KSNP-600, South Korean reactor. 3. Reactors with low power (a few MW(el)- 300 MW(el)): IRIS, reactor of IV generation, developed by the International Corporation of 13 organizations from 7 countries, SMART, South Korean integrated reactor; CAREM, Argentina integrated reactor; MRX, Japanese integrated reactor; 'UNITERM', Russian NPP with integrated reactor, development of NIKIET; AHEC-80, Russian NPP, developed by OKBM. A comparison of the projects of the above-mentioned power reactors was carried out with respect to 15 criteria of nuclear, radiating, ecological safety and economic competitiveness, developed especially for this case. Data on a condition and prospects of power production and power consumption, stations and networks in Kazakhstan necessary for the choice of projects of NPP reactors for Kazakhstan are given. According to the data a balance of power production and power consumption as a whole in the country was received at the level of 59 milliard kw/h. However, strong dis balance in the

  19. Reactor power peaking information display

    International Nuclear Information System (INIS)

    Book, T.L.; Kochendarfer, R.A.

    1986-01-01

    This patent describes a system for monitoring operating conditions within a nuclear reactor. The system consists of a method for measuring the operating parameters within the nuclear reactor, including the position of axial power shaping rods and regulating control rod. It also includes a method for determining from the operating parameters the operating limits before a power peaking condition exists within the nuclear reactor, and a method for displaying the operating limits which consists of a visual display permitting the continuous monitoring of the operating conditions within the nuclear reactor as a graph of the shaping rod position vs the regulating rod position having a permissible area and a restricted area. The permissible area is further divided into a recommended operating area for steady state operation and a cursor located on the graph to indicate the present operating condition of the nuclear reactor to allow an operator to view any need for corrective action based on the movement of the cursor out of the recommended operating area and to take any corrective transient action within the permissible area

  20. Research and design calculation of multipurpose critical assembly using moderated light water and low enriched fuel from 1.6 to 5.0% U-235

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Vo Doan Hai Dang; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Minh Tuan; Nguyen Manh Hung; Pham Quang Huy; Tran Quoc Duong; Tran Tri Vien

    2015-01-01

    Basing on the idea in ??using fuel of nuclear power plants such as PWR (AP-1000) and VVER-1000 with light water as moderation, design calculation of critical assembly was performed to confirm the possibility of using these fuels. Designed critical assembly has simple structure consisting of low enriched fuel from 1.6% to 5% U-235; water has functions as cooling, biological protection and control. Critical assembly is operated at nominal power 100 W with fuel pitch about 2.0 cm. Applications of the critical assembly are quite abundant in basic research, education and training with low investment cost compare with research reactor and easy in operation. So critical assembly can be used for university or training centre for nuclear engineering training. Main objectives of the project are: design calculation in neutronics, thermal hydraulics and safety analysis for critical configuration benchmarks using low enriched fuel; design in mechanical and auxiliary systems for critical assembly; determine technical specifications and estimate construction, installation cost of critical assembly. The process of design, fabrication, installation and construction of critical assembly will be considered with different implementation phases and localization capabilities in installation of critical assembly is highly feasibility. Cost estimation of construction and installation of critical assembly was implemented and showed that investment cost for critical assembly is much lower than research reactor and most of components, systems of critical assembly can be localized with current technique quality of the country. (author)

  1. Development of conductor feedthrough module of LV electrical penetration assembly for research reactors

    International Nuclear Information System (INIS)

    Luo Zhiyuan; Wang Guangjin; Zhou Bin

    2007-01-01

    A LV electrical penetration assembly with perfusion sealing conductor feedthrough module was developed, which can be used for the connection of internal and external cables through the wall of the research reactor workshop. The LV electrical penetration assembly was combined with several independent modules. The maintenance and replacement of the assembly can be easily done in service. The sealing of conductor feedthrough module was achieved with the perfusion of self-extinguishing epoxy. The leakage between the conductor feedthrough module and the end plate module was blocked with rubber rings. The result of the leakage test and the electrical performance test for the samples of conductor feedthrough module satisfied the requirement of research reactor. The structure of the new electrical penetration assembly is simple and compact. It can be manufactured with mature technology and cost low price. The performance of the assembly is steady. It can be used widely in research reactors. (authors)

  2. Support a nuclear fuel assembly in a reactor

    International Nuclear Information System (INIS)

    Leclercq, J.

    1985-01-01

    The device has to maintain the assemblies with regard to a horizontal plate of the core. The assemblies, having the same section, are arranged side by side in a regular polygonal lattice and each asssembly is, either equipped with at least two zones to receive the rods which are vertically inserted and maintained during the reactor operation, or beside an assembly which is equipped. The device has two sets comprising each one at least one deformable locking element and a rigid element which raches with it, one fixed to the fuel assembly and the other fixed to a horizontal plate attached to the reactor core, positioned so that inserting a fuel rod into an emplacement in the fuel assembly deforms the bolt transversally to lock it with the rigid piece. The invention can be applied to water moderated reactors [fr

  3. Nuclear power plant piping prefabrication and assembly

    International Nuclear Information System (INIS)

    Schmidt, H.

    1990-01-01

    The piping design for nuclear power plants projects reveals, at the beginning, a modification through the application of new fabrication techniques for prefabrication and assembly. This report presents a fabrication methodology which aims to minimize the fabrication and assembly costs as well as to improve and assure quality. (Author) [es

  4. Surveillance of nuclear power reactors

    International Nuclear Information System (INIS)

    Marini, J.

    1983-01-01

    Surveillance of nuclear power reactors is now a necessity imposed by such regulatory documents as USNRC Regulatory Guide 1.133. In addition to regulatory requirements, however, nuclear reactor surveillance offers plant operators significant economic advantages insofar as a single day's outage is very costly. The economic worth of a reactor surveillance system can be stated in terms of the improved plant availability provided through its capability to detect incidents before they occur and cause serious damage. Furthermore, the TMI accident has demonstrated the need for monitoring certain components to provide operators with clear information on their functional status. In response to the above considerations, Framatome has developed a line of products which includes: pressure vessel leakage detection systems, loose part detection systems, component vibration monitoring systems, and, crack detection and monitoring systems. Some of the surveillance systems developed by Framatome are described in this paper

  5. Control assembly materials for water reactors: Experience, performance and perspectives. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The safe, reliable and economic operation of water cooled nuclear power reactors depends to a large extent upon the reliable operation of control assemblies for the regulation and shutdown of the reactors. These consist of neutron absorbing materials clad in stainless steel or zirconium based alloys, guide tubes and guide cards, and other structural components. Current designs have worked extremely well in normal conditions, but less than ideal behaviour limits the lifetimes of control materials, imposing an economic penalty which acts as a strong incentive to produce improved materials and designs that are more reliable. Neutron absorbing materials currently in use include the ceramic boron carbide, the high melting point metal hafnium and the low melting point complex alloy Ag-In-Cd. Other promising neutron absorbing materials, such as dysprosium titanate, are being evaluated in the Russian Federation. These control materials exhibit widely differing mechanical, physical and chemical properties, which must be understood in order to be able to predict the behaviour of control rod assemblies. Identification of existing failure mechanisms, end of life criteria and the implications of the gradual introduction of extended burnup, mixed oxide (MOX) fuels and more complex fuel cycles constitutes the first step in a search for improved materials and designs. In the early part of this decade, it was recognized by the International Working Group on Fuel Performance and Technology (IWGFPT) that international conferences, symposia and published reviews on the materials science aspects of control assemblies were few and far between. Consequently, the IWGFPT recommended that the IAEA should rectify this situation with a series of Technical Committee meetings (TCMs) devoted entirely to the materials aspects of reactor control assemblies. The first was held in 1993 and in the intervening five years considerable progress has been made. In bringing together experts in the

  6. Control assembly materials for water reactors: Experience, performance and perspectives. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-02-01

    The safe, reliable and economic operation of water cooled nuclear power reactors depends to a large extent upon the reliable operation of control assemblies for the regulation and shutdown of the reactors. These consist of neutron absorbing materials clad in stainless steel or zirconium based alloys, guide tubes and guide cards, and other structural components. Current designs have worked extremely well in normal conditions, but less than ideal behaviour limits the lifetimes of control materials, imposing an economic penalty which acts as a strong incentive to produce improved materials and designs that are more reliable. Neutron absorbing materials currently in use include the ceramic boron carbide, the high melting point metal hafnium and the low melting point complex alloy Ag-In-Cd. Other promising neutron absorbing materials, such as dysprosium titanate, are being evaluated in the Russian Federation. These control materials exhibit widely differing mechanical, physical and chemical properties, which must be understood in order to be able to predict the behaviour of control rod assemblies. Identification of existing failure mechanisms, end of life criteria and the implications of the gradual introduction of extended burnup, mixed oxide (MOX) fuels and more complex fuel cycles constitutes the first step in a search for improved materials and designs. In the early part of this decade, it was recognized by the International Working Group on Fuel Performance and Technology (IWGFPT) that international conferences, symposia and published reviews on the materials science aspects of control assemblies were few and far between. Consequently, the IWGFPT recommended that the IAEA should rectify this situation with a series of Technical Committee meetings (TCMs) devoted entirely to the materials aspects of reactor control assemblies. The first was held in 1993 and in the intervening five years considerable progress has been made. In bringing together experts in the

  7. Automatic coolant flow control device for a nuclear reactor assembly

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  8. Storage arrangement for nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    Said invention is intended for providing an arrangement of spent fuel assembly storage inside which the space is efficiently used without accumulating a critical mass. The storage is provided for long fuel assemblies having along their longitudinal axis an active part containing the fuel and an inactive part empty of fuel. Said storage arrangement comprises a framework constituting some long-shaped cells designed so as each of them can receive a fuel assembly. Means of axial positioning of said assembly in a cell make it possible to support the fuel assemblies inside the framework according to a spacing ratio, along the cell axis, such as the active part of an assembly is adjacent to the inactive part of the adjacent assemblies [fr

  9. Refueling the RPI reactor facility with low-enrichment fuel

    International Nuclear Information System (INIS)

    Harris, D.R.; Rodriguez-Vera, F.; Wicks, F.E.

    1985-01-01

    The RPI Critical Facility has operated since 1963 with a core of thin, highly enriched fuel plates in twenty-five fuel assembly boxes. A program is underway to refuel the reactor with 4.81 w/o enriched SPERT (F-1) fuel rods. Use of these fuel rods will upgrade the capabilities of the reactor and will eliminate a security risk. Adequate quantities of SPERT (F-1) fuel rods are available, and their use will result in a great cost saving relative to manufacturing new low-enrichment fuel plates. The SPERT fuel rods are 19 inches longer than are the present fuel plates, so a modified core support structure is required. It is planned to support and position the SPERT fuel pins by upper and lower lattice plates, thus avoiding the considerable cost of new fuel assembly boxes. The lattice plates will be secured to the existing top and bottom plates. The design permits the fabrication and use of other lattice plates for critical experiment research programs in support of long-lived full development for power reactors. (author)

  10. Packaging and transport case of test fuel assembly irradiated in the Creys-Malville reactor

    International Nuclear Information System (INIS)

    Geffroy, J.; Vivien, J.; Pouard, M.; Dujardin, G.N.; Veron, B.; Michoux, H.

    1986-06-01

    Some irradiated fuel assemblies from the fast neutron Creys Malville reactor will be sent to hot laboratories to follow fuel behavior. These test assemblies will be examined after a limited cooling time and transport is realized at high residual power (about 10kW) and cladding temperature should not rise over 500deg C. The fuel assemblies are not dismantled and transported into sodium. The assembly is placed into a case containing sodium plugged and put into a packaging. Dimensioning, thermal behavior, radiation protection and containment are examined [fr

  11. Guidance of reactor operators and TSC personnel with the severe accident management guidance under shutdown and low power conditions

    International Nuclear Information System (INIS)

    Van Haesendonck, M.F.; Prior, R.P.

    2000-01-01

    The Westinghouse Owners Group Severe Accident Management Guidance (WOG SAMG) was developed between 1991 and 1994. The primary goals for severe accident management that form the basis of the WOG SAMG are to terminate any radioactive releases to the environment; to prevent failure of any containment fission product boundary and to return the plant to a controlled stable condition. The WOG SAMG is primarily a TSC tool for mitigation of low probability core damage events. The philosophy is that control room operators should remain focused on the prevention of core damage, whereas the TSC personnel should concentrate on the mitigation of the severe accident. The symptom based package is built up as a structured process for choosing appropriate actions based on actual plant conditions. No detailed knowledge of severe accident phenomena is required. The scope of the WOG SAMG is limited to severe accidents resulting from initiating events occurring during full power operation. However, a number of studies such as the EdF EPS 1300 Probabilistic Safety Assessment (PSA), the shutdown Probabilistic Risk Assessment (PRA) for Surry, the BERA shutdown PRA for Beznau, the EPRI/ Westinghouse ORAM methodology etc. have shown that the frequency of core damage (a severe accident) during shutdown and low power operation can be of the same order of magnitude as for full power operation. The at-power SAMG is viewed as the resolution of the severe accident issue. Similarly, it is expected that as shutdown PRAs mature, the final resolution of the severe accident issue will lie in SAMG for low power and shutdown operation. Therefore in resolution of this issue, Westinghouse has developed the Shutdown Severe Accident Management Guidance (SSAMG) which gives guidance for both control room and TSC personnel to mitigate a severe accident under shutdown or low power conditions. In the last few years, many LWR plants have been implementing SAMG. In the US, all plants have developed SAMG, and many

  12. Power reactor pressure vessel benchmarks

    International Nuclear Information System (INIS)

    Rahn, F.J.

    1978-01-01

    A review is given of the current status of experimental and calculational benchmarks for use in understanding the radiation embrittlement effects in the pressure vessels of operating light water power reactors. The requirements of such benchmarks for application to pressure vessel dosimetry are stated. Recent developments in active and passive neutron detectors sensitive in the ranges of importance to embrittlement studies are summarized and recommendations for improvements in the benchmark are made. (author)

  13. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  14. Educational reactor-physics experiments with the critical assembly TCA

    International Nuclear Information System (INIS)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki; Horiki, Oichiro; Suzaki, Takenori.

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for 1) Critical approach and Exponential experiment, 2) Measurement of neutron flux distribution, 3) Measurement of power distribution, 4) Measurement of fuel rod worth distribution, and 5) Measurement of safety plate worth by the rod drop method. (author)

  15. Safety grade pressurizer heater power supply connector assembly

    International Nuclear Information System (INIS)

    Burnett, J.M.; Daftari, R.M.; Reyns, R.M.

    1987-01-01

    This patent describes a pressurizer heater power supply connector assembly for attaching a power cable to an electric heater within a pressurizer of a pressurized water nuclear reactor system, the electric heater having pin contacts. The assembly comprises: a pin-socket type connector including a tubular body having a first open end carrying a pin-socket contact member and an insert intermediate a shell and the pin-socket contact member, the contact member having socket means for electrically receiving and contacting the pin contacts, and a second open end; a flexible sealed conduit including a flexible corrugated tube having one end connected to the second open end of the pin-socket type connector, and another end; and a shop splice assembly including a header adapter and a hose clamp interconnected between the header adapter and another end of the flexible corrugated tube

  16. Detailed channel thermal-hydraulic calculation of nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sorokin, A.P.; Ushakov, P.A.; Yur'ev, Yu.S.

    1981-01-01

    The system of equations of mass balance, quantity of motion and energy used in calculation of nuclear reactor fuel assemblies is obtained. The equation system is obtained on the base of integral equations of hydrodynamics interaction in assemblies of smooth fuel elements and fuel elements with wire packing. The calculation results of coolant heating distributions by the fast reactor assembly channels are presented. The analysis of the results obtained shows that interchannel exchange essentially uniforms the coolant heating distribution in the peripheral range of the assembly but it does not remove non-uniformity caused by power distribution non-uniformity in the cross section. Geometry of the peripheral assembly range plays an essential role in the heating distribution. Change of the calculation gap between the peripheral fuel elements and assembly shells can result either in superheating or in subcooling in the peripheral channels relatively to joint internal channels of the assembly. Heat supply to the coolant passing through interassembly gaps decreases temperature in the assembly periphery and results in the increase of temperature non-uniformity by the perimeter of peripheral fuel elements. It is concluded that the applied method of the channel-by-channel calculation is ef-- fective in thermal-physical calculation of nuclear reactor fuel assemblies and it permits to solve a wide range of problems [ru

  17. CFD analysis of flow distribution of reactor core and temperature rise of coolant in fuel assembly for VVER reactor

    International Nuclear Information System (INIS)

    Du Daiquan; Zeng Xiaokang; Xiong Wanyu; Yang Xiaoqiang

    2015-01-01

    Flow field of VVER-1000 reactor core was investigated by using computational fluid dynamics code CFX, and the temperature rise of coolant in hot assembly was calculated. The results show that the maximum value of flow distribution factor is 1.12 and the minimum value is 0.92. The average value of flow distribution factor in hot assembly is 0.97. The temperature rise in hot assembly is higher than current warning limit value ΔT t under the deviated operation condition. The results can provide reference for setting ΔT t during the operation of nuclear power plant. (authors)

  18. The Optimization of power reactor control system

    International Nuclear Information System (INIS)

    Danupoyo, S.D.

    1997-01-01

    A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system

  19. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto

    1990-01-01

    Various considerations are applied to fuel rods for improving the fuel burnup degree. If a gap between the fuel rods is changed, this varies the easiness for the flow of coolants depending on places, to reduce the thermal margin. Then, it is noted for the distribution of stresses generated due to the difference of water pressure caused by the difference of water streams between the inside and the outside of a channel box, and composite value, of stresses upon occurrence of earthquakes, neutron irradiation and a channel creep phenomenon caused by the stresses of due to the water pressure difference described above, the thickness of the channel box is increased in the upstream and decreased toward the downstream. Further, fuel spacers at the position where the thickness of the channel box is changed are spaced apart from the channel box so as not to brought into contact with the channel box. This can contribute to the reduction of coolants pressure loss, improvement of critical power and improvement of reactivity, as well as remarkably moderate local stresses applied from the fuel spacers to the channel box due to horizontal vibrations upon occurrence of earthquakes to improve the integrity of fuel assembly. (N.H.)

  20. Assembling Markets for Wind Power

    DEFF Research Database (Denmark)

    Pallesen, Trine

    hand, as an economic good, wind power is said to suffer from (techno-economic) ‘disabilities’, such as high costs, fluctuating and unpredictable generation, etc. Therefore, because of its performance as a good, it is argued that the survival of wind power in the market is premised on different......This project studies the making of a market for wind power in France. Markets for wind power are often referred to as ‘political markets: On the one hand, wind power has the potential to reduce CO2-emissions and thus stall the effects of electricity generation on climate change; and on the other...... instruments, some of which I will refer to as ‘prosthetic devices’. This thesis inquires into two such prosthetic devices: The feed-in tariff and the wind power development zones (ZDE) as they are negotiated and practiced in France, and also the ways in which they affect the making of markets for wind power....

  1. Thermal Aspects Related to Power Assemblies

    Directory of Open Access Journals (Sweden)

    PLESCA, A.

    2010-02-01

    Full Text Available In many cases when a power assembly based on power semiconductors is used, catastrophic failure is the result of steep temperature gradient in the localized temperature distribution. Hence, an optimal heatsink design for certain industrial applications has become a real necessity. In this paper, the Pro/ENGINEER software with the thermal simulation integrated tool, Pro/MECHANICA, has been used for thermal study of a specific power semiconductor assembly. A series of steady-state and transient thermal simulations have been performed. The experimental tests have confirmed the simulation results. Therefore, the use of specific 3D modeling and simulation software allows to design special power semiconductor assemblies with a better thermal transfer between its heatsink and power electronic components at given operating conditions.

  2. Device for transferring fast nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Plagnard, Andre.

    1982-01-01

    The description is given of a device for transferring fuel assemblies between a storage position near the reactor vessel and a position where the irradiated assemblies are evacuated and the provision of new assemblies for the reactor. This device can be dismantled and is movable as a whole for its successive use on several reactors and includes: - a platform mounted so as to rotate on a support made to rest on the structure of the reactor, the platform having at least one opening then being horizontal and mobile about a vertical axis to bring the opening successively in position with vertical wells giving access to the storage and evacuation positions of the assemblies provided in the reactor structure, - at least one hopper that can contain one assembly in a vertical position, located on the upper surface of the platform around the opening provided in it and fitted with a winch for the vertical moving of the assemblies inside the wells and the hopper, when these follow each other by rotation of the platform, - at least one connecting device carried on the platform for connecting the hopper and wells when these are in line [fr

  3. Spatial kinetics studies in liquid-metal fast breeder reactor critical assemblies

    International Nuclear Information System (INIS)

    Brumback, S.B.; Goin, R.W.; Carpenter, S.G.

    1988-01-01

    Recent measurements in the zero-power physics reactor have been used to study the effect of spatial decoupling in fast reactor critical assemblies of various sizes and compositions. Flux distributions in these assemblies had varying degrees of sensitivity to perturbations. Decoupling was investigated using rod-drop, boron-oscillator, and noise-coherence techniques, which emphasized different times following perturbations. Equilibrium flux distributions were also measured for subcritical configurations with inserted control rods. For most assemblies, accurate reactivity measurements were obtained by analyzing the power history from a single detector using inverse kinetics methods, assuming an instantaneous efficiency change for the detector. The instantaneous efficiency change assumption broke down, however, in assemblies with zones in which normal plutonium fuel was replaced by /sup 235/U fuel or fuel with a high /sup 240/Pu content. Flux redistributions caused by perturbations in these cores took several minutes to evolve

  4. A study of the friction and wear processes of the structural components of fuel assemblies for water-cooled and water moderated power reactors

    International Nuclear Information System (INIS)

    Makarov, V.; Afanasiev, A.; Matvienko, I.; Drozdov, Y.; Puchkov, V.

    2011-01-01

    The friction forces affect the fuel assembly (FA) strength at all the stages of its lifecycle. The paper covers the methods and the results of the pre-irradiation experimental studies of the static and dynamic processes the friction forces are involved in. These comprise the FA assembling at the manufacturer, fuel rod flow-induced vibration and fretting-wear in the fuel rod-to-cell friction pairs, rod cluster control assembly (RCCA) movement in the FA guide tubes, FA bowing, FA loading-unloading into the core, irradiation-induced growth and thermal-mechanical fuel rod-to-spacer grid interaction. (authors)

  5. Power reactors in Member States. 1979 edition

    International Nuclear Information System (INIS)

    1979-01-01

    This is the fifth issue of a periodic computer-based listing of nuclear power reactors, presenting the situation as of 1 May 1979. The basic design data for all reactors in operation, under construction, planned and shut down have been included. The following two tables are included to give a general picture of the overall situation: Table I: Reactor types and net electrical power. Table II: Reactor units and net electrical powered by country cummulated by year

  6. Computerized reactor power regulation with logarithmic controller

    International Nuclear Information System (INIS)

    Gossanyi, A.; Vegh, E.

    1982-11-01

    A computerized reactor control system has been operating at a 5 MW WWR-SM research reactor in the Central Research Institute for Physics, Budapest, for some years. This paper describes the power controller used in the SPC operating mode of the system, which operates in a 5-decade wide power range with +-0.5% accuracy. The structure of the controller easily limits the minimal reactor period and produces a reactor transient with constant period if the power demand changes. (author)

  7. Operational power reactor health physics

    International Nuclear Information System (INIS)

    Watson, B.A.

    1987-01-01

    Operational Health Physics can be comprised of a multitude of organizations, both corporate and at the plant sites. The following discussion centers around Baltimore Gas and Electric's (BG and E) Calvert Cliffs Nuclear Power Plant, located in Lusby, Maryland. Calvert Cliffs is a twin Combustion Engineering 825 MWe pressurized water reactor site with Unit I having a General electric turbine-generator and Unit II having a Westinghouse turbine-generator. Having just completed each Unit's ten-year Inservice Inspection and Refueling Outge, a total of 20 reactor years operating health physics experience have been accumulated at Calvert Cliffs. Because BG and E has only one nuclear site most health physics functions are performed at the plant site. This is also true for the other BG and E nuclear related organizations, such as Engineering and Quality Assurance. Utilities with multiple plant sites have corporate health physics entity usually providing oversight to the various plant programs

  8. Methods and equipments used in power reactors

    International Nuclear Information System (INIS)

    Beraha, R.; Delevallee, A.

    1976-01-01

    The various reactor γ fuel scanning facilities presently operating around the world are reviewed. Both equipments proposed by FRAMATOME are described: one is intended for scanning removable fuel pencils, and the other one for fuel assembly scanning [fr

  9. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: (1) to compile and to verify the quality of the PR-EDB; (2) to provide user-friendly software to access and process the data; (3) to explore or confirm embrittlement prediction models; and (4) to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. To achieve these goals, the data base architecture was designed after much discussion and planning with prospective users, namely, material scientists and members of the research staff. The current compilation of the PR-EDB (Version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points for 110 different irradiated base materials and 161 data points for 79 different welds. Results from heat-affected zone materials are also listed. The time and effort required to process and evaluate different types of data in the PR-EDB have been drastically reduced from previous data bases. The Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of PR-EDB and will be supplementing the data base with additional data and documentation

  10. Study of graphite reactivity worth on well-defined cores assembled on LR-0 reactor

    International Nuclear Information System (INIS)

    Košťál, Michal; Rypar, Vojtěch; Milčák, Ján; Juříček, Vlastimil; Losa, Evžen; Forget, Benoit; Harper, Sterling

    2016-01-01

    Highlights: • A light water critical facility for graphite reactivity worth measurements. • Comparison of calculated and measured k eff . • Effect of graphite description on k eff . - Abstract: Graphite is an often-used moderating material on the basis of its good moderating power and very low absorption cross section. This small absorption cross section permits the use of natural or low-enriched uranium in graphite moderated reactors. Graphite is now being considered as the moderator for Fluoride-salt-cooled High Temperature Reactors (FHR). The critical moderator level was measured for various graphite block configurations in an experimental dry assembly of the LR-0 reactor. Comparisons with experiments were performed between Monte Carlo simulation tools for which satisfactory agreement was obtained with the exception of some systematic discrepancies. The larger discrepancies were observed when using the ENDF/B-VII.0 library. To decrease the uncertainties, based on conservative assumptions, relative comparisons were done. The results provided by the different nuclear data libraries are within 3 sigma interval of experimental uncertainties. It has been determined that differences between the results of calculations are caused by variations in the (n,n), (n,n′), (n,g) reactions and also by various angular distributions, while the (n,g) cross section variations play only a minor role for these configurations.

  11. Grid structure for nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Wachter, W.J.; Akey, J.G.

    1975-01-01

    Described is a nuclear fuel element support system comprising an egg-crate-type grid made up of slotted vertical portions interconnected at right angles to each other, the vertical portions being interconnected by means of cross straps which are dimpled midway between their ends to engage fuel elements disposed within openings formed in the egg-crate assembly. The cross straps are disposed at an angle, other than a right angle, to the vertical portions of the assembly whereby their lengths are increased for a given span, and the total elastic deflection capability of the cell is increased. The assembly is particularly adapted for computer design and automated machine tool fabrication

  12. Reactor power reduction system and method

    International Nuclear Information System (INIS)

    Bruno, S.J.; Dunn, S.A.; Raber, M.

    1978-01-01

    A method of operating a nuclear power reactor is disclosed which enables an accelerated power reduction of the reactor without completely shutting the reactor down. The method includes monitoring the incidents which, upon their occurrence, would require an accelerated power reduction in order to maintain the reactor in a safe operation mode; calculating the power reduction required on the occurrence of such an incident; determining a control rod insertion sequence for the normal operation of the reactor, said sequence being chosen to optimize reactor power capability; selecting the number of control rods necessary to respond to the accelerated power reduction demand, said selection being made according to a priority determined by said control rod insertion sequence; and inserting said selected control rods into the reactor core. 11 claims, 13 figures

  13. Comparison of the parameters of the IR-8 reactor with different fuel assembly designs with LEU fuel

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1999-01-01

    The estimation of neutron-physical, heat and hydraulic parameters of the IR-8 research reactor with low enriched uranium (LEU) fuel was performed. Two fuel assembly (FA) designs were reviewed: IRT-4M with the tubular type fuel elements and IRT-MR with the rod type fuel elements. UO 2 -Al dispersion 19.75% enrichment fuel is used in both cases. The results of the calculations were compared with main parameters of the reactor, using the current IRT-3M FA with 90% high enriched uranium (HEU) fuel. The results of these comparisons showed that during the LEU conversion of the reactor the cycle length, excess reactivity and peak power of the IRT-MR type FA are higher than for the IRT-3M type FA and IRT-4M type FA. (author)

  14. Physical protection of power reactors

    International Nuclear Information System (INIS)

    Darby, J.L.

    1979-01-01

    Sandia Laboratories has applied a systematic approach to designing physical protection systems for nuclear facilities to commercial light-water reactor power plants. A number of candidate physical protection systems were developed and evaluated. Focus is placed on the design of access control subsystems at each of three plant layers: the protected area perimeter, building surfaces, and vital areas. Access control refers to barriers, detectors, and entry control devices and procedures used to keep unauthorized personnel and contraband out of the plant, and to control authorized entry into vital areas within the plant

  15. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  16. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    International Nuclear Information System (INIS)

    Novelli, A.

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer. (author)

  17. PIE of test assembly of Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Ran, M.; Yan, J.; Wang, S.

    2000-01-01

    The small dimensional test fuel assembly (3x3-2) for the Qinshan Nuclear Power Plant was irradiated up to 25.7 Gwd/tU in the in-pile loop (15.5 Mpa,320 C) in Heavy Water Research Reactor (HWRR), CIAE, at simulative condition to Qinshan PWR normal and short time overpower operation for verifying the design, technology, and material properties of the fuel assembly. Comprehensive post-irradiation examination (PIE) including dimension measurement, gamma scanning, eddy current test, X ray, radiography, measurement of fission gas release, and quantitative metallography etc. were performed. PIE results show that the diameter of the fuel rods changed, ridges appeared on the cladding, pellets swelled, and the rate of fission gas release was higher than what we expected. The results would be an important basis for further improvement of design, technology and material properties for Qinshan PWR assembly. (author)

  18. MOCA, Criticality of VVER Reactor Hexagonal Fuel Assemblies

    International Nuclear Information System (INIS)

    KYNCL, Jan

    1994-01-01

    1 - Description of program or function: Criticality problem in neutron transport for hexagonal fuel assembly in VVER nuclear reactor. The assembly is assumed to be either arranged in an infinite hexagonal array or placed in vacuum. The problem is solved in three- dimensional geometry, using standard energy group formalism and assuming that effective scattering cross sections are presented as Legendre polynomial expansions. The code evaluates ten different physical quantities, e.g. multiplication factor, neutron flux per energy group and spatial zone, integrated over angle and power in any zone of the assembly. 2 - Method of solution: Monte Carlo method of successive generations is applied. Computation proceeds according to an analog random process. The code is organized into three blocks: In the first block, the input data are converted to quantities for use in the Monte Carlo calculation. An initial neutron distribution is calculated, which corresponds to a fission spectrum uniform in spatial and angular variables. The main calculations are carried out in the second block (subroutine PROC2). This block is subdivided into geometrical and physical parts. Neutron tracks in individual zones and groups as well as probabilities for the formation of secondary neutrons are calculated. In the third block (subroutine PROC3), the results are evaluated statistically. Effective multiplication coefficients, the neutron flux per group and zone, and respective errors are computed. These quantities serve as a basis for the evaluation of other quantities. The results are either printed or stored for future evaluations. 3 - Restrictions on the complexity of the problem: In the PC version of the program, the maximum number of neutrons is 1000, the maximum number of energy groups is 4, and the maximum number of material compositions is 15. Angular expansion of scattering cross sections is allowed up to P10. These restrictions can easily be removed by increasing input parameters and

  19. Power limit and quality limit of natural circulation reactor

    International Nuclear Information System (INIS)

    Zhao Guochang; Ma Changwen

    1997-01-01

    The circulation characteristics of natural circulation reactor in boiling regime are researched. It is found that, the circulation mass flow rate and the power have a peak value at a mass quality respectively. Therefore, the natural circulation reactor has a power limit under certain technological condition. It can not be increased steadily by continually increasing the mass quality. Corresponding to this, the mass quality of natural circulation reactor has a reasonable limit. The relations between the maximum power and the reactor parameters, such as the resistance coefficient, the working pressure and so on, are analyzed. It is pointed out that the power limit of natural circulation reactor is about 1000 MW at present technological condition. Taking the above result and low quality stability experimental result into account, the authors recommend that the reasonable mass quality of natural circulation reactor working in boiling regime is from 2% to 3% under the researched working pressure

  20. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  1. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    Science.gov (United States)

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  3. Fuel assembly for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, H M; Miller, D L; Tong, L S

    1973-09-06

    The subject of the patent is a spacer design applicable, primarily, to LWR, and especially, though not specifically PWR, fuel assemblies. The spacer consists of an egg-box type of assembly formed of interlocking pressed plates giving a square lattice whose openings accommodate fuel pins or regulating rods. The pressed plates are formed to provide pressed-out spring-like flanges which hold the fuel pins in position and guide the regulating rods. Additional pressed-out flanges ensure the correct configuration of the spacer structure. The spacer is designed to present as little resistance as possible to coolant flow.

  4. CANDU fuel - fifteen years of power reactor experience

    International Nuclear Information System (INIS)

    Fanjoy, G.R.; Bain, A.S.

    1977-05-01

    Analyses of performance statistics, supplemented by examinations of fuel from power reactors and experimental loops have yielded: (a) a thorough understanding of the fundamental behaviour of CANDU fuel; (b) data showing that the predicted high utilization of uranium has been achieved; (c) criteria for operation, which have led to the current very low defect rate of 0.03% of all assemblies and to 'CANLUB' fuel, which has a graphite interlayer between the fuel and sheath to reduce defects on power increases; (d) proof that the short length (500 mm), collapsible cladding features of the CANDU bundle are successful and that the fuel can operate at high-power output (current peak outer-element linear power is 58 +- 15% kW/m). As of mid-1976 over 3 x 10 6 individual elements have been built and over 2 x 10 6 elements have been irradiated. Only six defects have been attributed to faulty materials or fabrication, and the use of high-density UO 2 with low-moisture content precluded defects from hydrogen contamination and densification

  5. Simulation model of dynamical behaviour of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Planchard, J.

    1994-01-01

    This report briefly describes the homogenized dynamical equations of a tube bundle placed in a perfect irrotational fluid, on case of small displacements. This approach can be used to study the mechanical behaviour of fuel assemblies of PWR reactor submitted to earthquake or depressurization blow-down. The numerical calculations require to define the added mass matrix of the fuel assemblies, for which the principle of computation is presented. (author). 14 refs., 4 figs

  6. Systems aspects of a space nuclear reactor power system

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  7. A method of reactor power decrease by 2DOF control system during BWR power oscillation

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1998-09-01

    Occurrence of power oscillation events caused by void feedback effects in BWRs operated at low-flow and high-power condition has been reported. After thoroughly examining these events, BWRs have been equipped with the SRI (Selected Rod Insertion) system to avoid the power oscillation by decreasing the power under such reactor condition. This report presents a power control method for decreasing the reactor power stably by a two degree of freedom (2DOF) control. Performing a numerical simulation by utilizing a simple reactor dynamics model, it is found that the control system designed attains a satisfactory control performance of power decrease from a viewpoint of setting time and oscillation. (author)

  8. Reactor Noise: A study of Neutronic Fluctuations in Low-Power Nuclear Reactors, with Special Emphasis on Accurate Time-Domain Analysis. RCN Report

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, J. B.

    1968-10-15

    Nuclear reactors can be considered as devices in which nuclear energy is produced as a result of neutron-induced fission reactions. Reactor physics is a branch of applied physics, and is concerned with the physical aspects of the design and study of nuclear reactors. The motivation is the achievement of configurations, which meet certain requirements regarding safety, reliability, economy, etc. The reactor physical method is to study neutron populations in a reactor. This study has two aspects : - the microscopic aspect: a study of the nuclear processes that take place. This aspect belongs to nuclear physics. Reaction probabilities can be expressed in cross sections,which are assumed to be known for the second part: - the macroscopic aspect, concerned with neutron migration and multiplication. All basic features may be traced back to a knowledge of neutron distribution functions. For most phenomena it is sufficient to study the singulet density, i.e. the mean number of neutrons per unit volume, unit velocity, moving in unit solid angle. For the subject of this thesis this singulet density will appear to be insufficient. The theory for the macroscopic aspect is part of statistical mechanics, and is closely related to other statistical theories, for phenomena like transfer of radiation in stellar atmosphere, penetration of radiation in scattering media, cosmic ray showers, etc.

  9. Reactor Noise: A study of Neutronic Fluctuations in Low-Power Nuclear Reactors, with Special Emphasis on Accurate Time-Domain Analysis. RCN Report

    International Nuclear Information System (INIS)

    Dragt, J.B.

    1968-10-01

    Nuclear reactors can be considered as devices in which nuclear energy is produced as a result of neutron-induced fission reactions. Reactor physics is a branch of applied physics, and is concerned with the physical aspects of the design and study of nuclear reactors. The motivation is the achievement of configurations, which meet certain requirements regarding safety, reliability, economy, etc. The reactor physical method is to study neutron populations in a reactor. This study has two aspects : - the microscopic aspect: a study of the nuclear processes that take place. This aspect belongs to nuclear physics. Reaction probabilities can be expressed in cross sections,which are assumed to be known for the second part: - the macroscopic aspect, concerned with neutron migration and multiplication. All basic features may be traced back to a knowledge of neutron distribution functions. For most phenomena it is sufficient to study the singulet density, i.e. the mean number of neutrons per unit volume, unit velocity, moving in unit solid angle. For the subject of this thesis this singulet density will appear to be insufficient. The theory for the macroscopic aspect is part of statistical mechanics, and is closely related to other statistical theories, for phenomena like transfer of radiation in stellar atmosphere, penetration of radiation in scattering media, cosmic ray showers, etc

  10. Reactor power control method upon accidents of electrical power system

    International Nuclear Information System (INIS)

    Hirose, Masao.

    1983-01-01

    Purpose: To enable to continue the operation of a BWR type reactor by avoiding the scram while suppressing the reactor power, just after the external disturbance such as earth-trouble in power-transmission network. Method: Steep power drop of an electrical generator is to be detected not only by a current-type power-load-unbalance relay but also with a power-type power-load-unbalance-relay. If steep power-drop was detected by the latter relay, a previously selected control rod is rapidly inserted into the reactor. In this way, in the case where there is a possibility of the reactor scram, the scram can be avoided by suppressing the reactor power, thus the reactor operation can be continued. (Kamimura, M.)

  11. Spacing grid intended for nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Patterson, J.F.; Flora, B.S.

    1977-01-01

    This invention concerns a new improved type of spacing grid that can be used in nuclear reactor fuel assemblies. Under the invention a spacing grid is provided, preferably of the bimetallic type. This grid includes a set of flexible inconel strips positioned by structural 'zircalloy' fittings, having relatively low neutron absorption characteristics in comparison with systems where the flexible strips are welded in position, or where the spring forms an integral part of the structure. The openings for the fuel elements which are defined by the structural fittings intercrossing are fitted internally with bosses which work in conjunction with a spring directed downwards as from the flexible strip so as to position the individual fuel rods in their respective openings inside the grid structure. These flexible strips are arranged in rows extending in directions which depend on the particular design of the fuel asembly and which contain flexible components so distributed that the loads of the individual springs tend to equalize each other mutually. The reaction load exerting itself on the supporting structure is reduced to the minimum, and this results in a lesser distortion in the reactor and an equalisation of the spring loads [fr

  12. Power module assembly with reduced inductance

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Terence G.; Stancu, Constantin C.; Jaksic, Marko; Mann, Brooks S.

    2018-03-13

    A power module assembly has a plurality of electrically conducting layers, including a first layer and a third layer. One or more electrically insulating layers are operatively connected to each of the plurality of electrically conducting layers. The electrically insulating layers include a second layer positioned between and configured to electrically isolate the first and the third layers. The first layer is configured to carry a first current flowing in a first direction. The third layer is configured to carry a second current flowing in a second direction opposite to the first direction, thereby reducing an inductance of the assembly. The electrically insulating layers may include a fourth layer positioned between and configured to electrically isolate the third layer and a fifth layer. The assembly results in a combined substrate and heat sink structure. The assembly eliminates the requirements for connections between separate substrate and heat sink structures.

  13. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    National Research Council Canada - National Science Library

    Presby, Andrew L

    2004-01-01

    .... This has potential benefits for space nuclear reactor power systems currently in development. The primary obstacle to space operation of thermophotovoltaic devices appears to be the low heat rejection temperatures which necessitate large radiator areas...

  14. BN-1200 Reactor Power Unit Design Development

    International Nuclear Information System (INIS)

    Vasilyev, B.A.; Shepelev, S.F.; Ashirmetov, M.R.; Poplavsky, V.M.

    2013-01-01

    Main goals of BN-1200 design: • Develop a reliable new generation reactor plant for the commercial power unit with fast reactor to implement the first-priority objectives in changing over to closed nuclear fuel cycle; • Improve technical and economic indices of BN reactor power unit to the level of those of Russian VVER of equal power; • Enhance the safety up to the level of the requirements for the 4th generation RP

  15. Circuit designs for measuring reactor period, peak power, and pulse fluence on TRIGA and other pulse reactor

    International Nuclear Information System (INIS)

    Meyer, R.D.; Thome, F.V.; Williams, R.L.

    1976-01-01

    Inexpensive circuits for use in evaluating reactor pulse prompt period, peak power, and pulse fluence (NVT) are presented. In addition to low cost, these circuits are easily assembled and calibrated and operate with a high degree of accuracy. The positive period measuring system has been used in evaluating reactivity additions as small as 5 cents (with an accuracy of ±0.1 cents) and as large as $4.50 (accuracy ±2 cents). Reactor peak power is measured digitally with a system accuracy of ±0.04% of a 10 Volt input (±4 mV). The NVT circuit measures over a 2-1/2 decade range, has 3 place resolution and an accuracy of better than 1%. (author)

  16. SP-100 space reactor power system readiness

    International Nuclear Information System (INIS)

    Josloff, A.T.; Matteo, D.N.; Bailey, H.S.

    1992-01-01

    This paper discusses the SP-100 Space Reactor Power System which is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety performance, reliability and life requirements. The system is scalable and flexible and can be configured to provide 10's to 100's of kWe without repeating development work and can meet DoD goals for an early, low-power demonstration flight in the 1996-1997 time frame

  17. Liquid-poison type power controlling device for nuclear reactor

    International Nuclear Information System (INIS)

    Horiuchi, Tetsuo; Yamanari, Shozo; Sugisaki, Toshihiko; Goto, Hiroshi.

    1981-01-01

    Purpose: To improve the safety and the operability of a nuclear reactor by adjusting the density of liquid poison. Constitution: The thermal expansion follow-up failure between cladding and a pellet upon abrupt and local variations of the power is avoided by adjusting the density of liquid poison during ordinary operation in combination with a high density liquid poison tank and a filter and smoothly controlling the reactor power through a pipe installed in the reactor core. The high density liquid poison is abruptly charged in to the reactor core under relatively low pressure through the tube installed in the reactor core at the time of control rod insertion failure in an accident, thereby effectively shutting down the reactor and improving the safety and the operability of the reactor. (Yoshihara, H.)

  18. Television alignment of mast assembly in refueling of nuclear reactor

    International Nuclear Information System (INIS)

    Kaufmann, J.W.; Swidwa, K.J.; Hornak, L.P.

    1990-01-01

    This patent describes the refueling of a nuclear reactor having component assemblies of at least one type and being disposed in a pit in a containment under water, the refueling being carried out with a mast movable axially and circumferentially for raising and lowering the component assemblies, a mechanism, connected to an end of the mast, cooperative with the mast, for engaging a component assembly to be raised by the mast, a television camera, and a television monitor having an image-reference indication, the mechanism being connected to the mast movable with the mast; the method of positioning the mechanism to engage the component assembly appropriately for raising and lowering. It comprises: mounting the camera on the mechanism movable therewith, suspending the mast in the water of the pit with the mechanism extending from the end of the mast in the pit in position to engage the component assembly

  19. About fuel assemblies optimization in research reactor

    International Nuclear Information System (INIS)

    Malers, Yu.P.

    1992-01-01

    Ealier was considered an algorithm for optimization of fuel assembly arrangement in a research reator. The alggorithm was based on an analytical relation between distributions of energy release and fuel concentration and on the method of succesive linearization and partially integral-number programming. In the paper are solved the problems, appeared as a result of realization of the used approach and required more correct formulation of the algorithm and introduction in it some variations

  20. Power reactor embrittlement data base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1989-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well-designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: to compile and to verify the quality of the PR-EDB; to provide user-friendly software to access and process the data; to explore or confirm embrittlement prediction models; and to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. 9 figs

  1. Performance indicators for power reactors

    International Nuclear Information System (INIS)

    Gillies, C.; White, M.

    1995-11-01

    A review of Canadian and worldwide performance indicator definitions and data was performed to identify a set of indicators that could be used for comparison of performance among nuclear power plants. The results of this review are to be used as input to an AECB team developing a consistent set of performance indicators for measuring Canadian power reactor safety performance. To support the identification of performance indicators, a set of criteria was developed to assess the effectiveness of each indicator for meaningful comparison of performance information. The project identified a recommended set of performance indicators that could be used by AECB staff to compare the performance of Canadian nuclear power plants among themselves, and with international performance. The basis for selection of the recommended set and exclusion of others is provided. This report provides definitions and calculation methods for each recommended performance indicator. In addition, a spreadsheet has been developed for comparison and trending for the recommended set of indicators. Example trend graphs are included to demonstrate the use of the spreadsheet. (author). 50 refs., 11 tabs., 3 figs

  2. Transient bowing of core assemblies in advanced liquid metal fast reactors

    International Nuclear Information System (INIS)

    Kamal, S.A.; Orechwa, Y.

    1986-01-01

    Two alternative core restraint concepts are considered for a conceptual design of a 900 MWth liquid metal fast reactor core with a heterogeneous layout. The two concepts, known as limited free bowing and free flowering, are evaluated based on core bowing criteria that emphasize the enhancement of inherent reactor safety. The core reactivity change during a postulated loss of flow transient is calculated in terms of the lateral displacements and displacement-reactivity-worths of the individual assemblies. The NUBOW-3D computer code is utilized to determine the assembly deformations and interassembly forces that arise when the assemblies are subjected to temperature gradients and irradiation induced creep and swelling during the reactor operation. The assembly ducts are made of the ferritic steel HT-9 and remain in the reactor core for four-years at full power condition. Whereas both restraint systems meet the bowing criteria, a properly designed limited free bowing system appears to be more advantageous than a free flowering system from the point of view of enhancing the reactor inherent safety

  3. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  4. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    International Nuclear Information System (INIS)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO 2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239 Pu and ≥90% total Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products

  5. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  6. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  7. Reactor cell assembly for use in spectroscopy and microscopy applications

    Science.gov (United States)

    Grindstaff, Quirinus; Stowe, Ashley Clinton; Smyrl, Norm; Powell, Louis; McLane, Sam

    2015-08-04

    The present disclosure provides a reactor cell assembly that utilizes a novel design and that is wholly or partially manufactured from Aluminum, such that reactions involving Hydrogen, for example, including solid-gas reactions and thermal decomposition reactions, are not affected by any degree of Hydrogen outgassing. This reactor cell assembly can be utilized in a wide range of optical and laser spectroscopy applications, as well as optical microscopy applications, including high-temperature and high-pressure applications. The result is that the elucidation of the role of Hydrogen in the reactions studied can be achieved. Various window assemblies can be utilized, such that high temperatures and high pressures can be accommodated and the signals obtained can be optimized.

  8. Power module assemblies with staggered coolant channels

    Science.gov (United States)

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  9. Nuclear reactor fuel assembly spacer grid

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    A spacer grid for a nuclear fuel assembly is comprised of a lattice of grid plates forming multiple cells that are penetrated by fuel elements. Resilient protrusions and rigid protrusions projecting into the cells from the plates bear against the fuel element to effect proper support and spacing. Pairs of intersecting grid plates, disposed in a longitudinally spaced relationship, cooperate with other plates to form a lattice wherein each cell contains adjacent panels having resilient protrusions arranged opposite adjacent panels having rigid protrusions. The peripheral band bounding the lattice is provided solely with rigid protrusions projecting into the peripheral cells. (Auth.)

  10. Removable fuel assembly for nuclear reactor

    International Nuclear Information System (INIS)

    Dubief, J.M.; Bonnamour, M.

    1984-01-01

    To facilitate the replacement of one or more fuel rods, taking into account the fact the operations are remote operations and under several meters of water, the following invention is presented. The fuel assembly is composed of a bundle of canned fuel pencils maintened on a structure which includes ends linked by spacer tubes. These tubes are fixed to one end in such a manner they are removable. For this, the plug of each tube has a plane stop surface on the end part and a conic coupling and guiding plug cooperating with a truncated bearing of the end part. Flat parts made on the cone allow to stop the tube rotating [fr

  11. Study of the neutronic behavior of a fuel assembly with gadolinium of a reactor HPLWR

    International Nuclear Information System (INIS)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L.; Espinosa P, G.

    2012-10-01

    This work presents a neutronic study of a square assembly design of double line of fuel rods, with moderator box to center of the arrangement, for the nuclear reactor cooled with supercritical water, High Performance Light Water Reactor (HPLWR). For the fuel analyses of the reactor HPLWR the neutronic code Helios-2 was used, settling down as the first study on fuel under conditions of supercritical water that has been simulated with this code. The analyzed variables, essentials in the neutronic design of any reactor, were the infinite neutrons multiplication factor (k∞) and the maximum power peaking factor (PPF max ), as well as the reactivity coefficients by the fuel temperature. The k∞ and PPF max values were obtained under conditions in cold (293.6 K) and in hot (to 880.8 K). The tests were realized for a reference fuel assembly design, with 40 fuel rods with enrichments of 4 and 5% of U-235, and considering different concentrations of consumable poison (gadolinium - Gd 2O3 ) in some rods of the same assembly. The obtained results show values k∞ and PPF max minors to the present in the conventional light water reactors. Moreover, the reactivity coefficients by fuel temperature were verified with the purpose of satisfying the safety conditions required in the nuclear reactors. (Author)

  12. Neutron measurements at nuclear power reactors [55

    CERN Document Server

    Scherpelz, R I

    2002-01-01

    Staff from the Pacific Northwest National Laboratory (operated by Battelle Memorial Institute), have performed neutron measurements at a number of commercial nuclear power plants in the United States. Neutron radiation fields at light water reactor (LWR) power plants are typically characterized by low-energy distributions due to the presence of large amounts of scattering material such as water and concrete. These low-energy distributions make it difficult to accurately monitor personnel exposures, since most survey meters and dosimeters are calibrated to higher-energy fields such as those produced by bare or D sub 2 O-moderated sup 2 sup 5 sup 2 Cf sources. Commercial plants typically use thermoluminescent dosimeters in an albedo configuration for personnel dosimetry and survey meters based on a thermal-neutron detector inside a cylindrical or spherical moderator for dose rate assessment, so their methods of routine monitoring are highly dependent on the energy of the neutron fields. Battelle has participate...

  13. Power generator in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to perform stable and dynamic conditioning operation for nuclear fuels in BWR type reactors. Constitution: The conditioning operation for the nuclear fuels is performed by varying the reactor core thermal power in a predetermined pattern by changing the predetermined power changing pattern of generator power, the rising rate of the reactor core thermal power and the upper limit for the rising power of the reactor core thermal power are calculated and the power pattern for the generator is corrected by a power conditioning device such that the upper limit for the thermal power rising rate and the upper limit for the thermal power rising rate are at the predetermined levels. Thus, when the relation between the reactor core thermal power and the generator electrical power is fluctuated, the fluctuation is detected based on the variation in the thermal power rising rate and the limit value for the thermal power rising rate, and the correction is made to the generator power changing pattern so that these values take the predetermined values to thereby perform the stable conditioning operation for the nuclear fuels. (Moriyama, K.)

  14. Boiler systems for nuclear powered reactors

    International Nuclear Information System (INIS)

    Cook, R.K.; George, B.V.

    1979-01-01

    A power generating plant which comprises a heat source, at least one main steam turbine and at least one main boiler heated by heat from the heat source and providing the steam to drive the turbine, comprises additionally at least one further steam turbine, smaller than the main turbine, and at least one further boiler, of lower capacity than the main boiler, and heated from the same heat source and providing steam for the further turbine. Particularly advantageous in nuclear power stations, where the heat source is a nuclear reactor, the invention enables peak loads, above the normal continuous rating of the main generators driven by the main turbines, to be met by the further turbine(s) and one or more further generators driven thereby. This enables the main turbines to be freed from the thermal stresses of rapid load changes, which stresses are more easily accommodated by the smaller and thus more tolerant further turbine(s). Thus auxiliary diesel-driven or other independent power plant may be made partly or wholly unnecessary. Further, low-load running which would be inefficient if achieved by means of the main turbine(s), can be more efficiently effected by shutting them down and using the smaller further turbine(s) instead. These latter may also be used to provide independent power for servicing the generating plant during normal operation or during emergency or other shutdown, and in this latter case may also serve as a heat sink for the shutdown reactor

  15. Guide tube insert assembly for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Hopkins, R.J.; Land, J.T.

    1992-01-01

    This patent describes an internals assembly for a nuclear reactor of the type including an upper support plate and an upper core plate, each having apertures for conducting control rod assemblies into an out of fuel assemblies with the apertures of the upper support plate being aligned with the apertures of the upper core plate, a guide tube insert assembly comprising: an elongated tubular body extending between at least one of the aligned apertures formed in the upper support plate and the upper core plate; guide plates within the elongated tubular body, each of the guide plates having a planar surface extending substantially perpendicular to an axial direction of the tubular body; at least one interconnecting means for interconnecting the guide plates into a guide tube insert assembly such that the guide plates are simultaneously mountable within and removable from the elongated body, and the periphery of each of the guide plates is spaced apart from the inner walls of the elongated tubular body at every point when the insert assembly is mounted within the tubular body, and a stabilizing means for securing the lowermost guide plate of the guide tube insert assembly within the elongated tubular body to prevent rotational and lateral movement between the guide tube insert assembly and the tubular body

  16. Threshold self-powered gamma detector for use as a nuclear reactor power monitor

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1977-01-01

    A study of a threshold self-powered gamma detector for use as a nuclear reactor power monitor was conducted. Measurements were performed to ascertain whether certain detector material arrangements could be used to obtain significant discrimination against low energy gammas. Results indicating agreement between detector response and reactor power output are presented. Evidence of rejection of low energy gammas by the detector is presented. The simplicity of construction and ruggedness of the detector are also discussed

  17. On fission product retention in the core of the low powered high temperature reactor under accident conditions

    International Nuclear Information System (INIS)

    Bastek, H.

    1984-01-01

    In the core of the high temperature reactor the fuel element and the coated particles contained herein provide the safest enclosure for fission products. The complex process of fission product transport out of the particle kernel, through the particle coating and within the fuel element graphite is described in a simplified form by the Fick's diffusion. The effective diffusion coefficient is used for calculation. Starting from the existing ideas of fission product transport five burn-up and temperature-dependent diffusion coefficients for Cesium in (Th,U)O 2 -kernels are derived in this study. The results have been gained from several fuel element radiation experiments in recent years, which showed extreme variation in regard to burn-up, temperature cycle, neutron flux and operation time. Cs-137 release measurements from single particle kernels were present from all the experiments. Furthermore, annealing tests of AVR-fuel elements were analyzed. Heat-temperatur and heating-time, the fuel element burn-up in the AVR-reactor, as well as the measured Cs-137 inventory of the fuel elements before and after annealing, are included in the investigation as essential parameters. With the aid of the derived diffusion coeffizients and already present data sets the Cs-137 release of fuel elements into a small reactor core is investigated under unrestricted core heat-up. While the released Cs-137 is derived mainly from defective particles at accident temperatures up to 1600 0 C, the main part diffuses through the particle coating at higher accident temperatures. (orig./HP) [de

  18. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  19. Subchannel analysis of sodium-cooled reactor fuel assemblies with annular fuel pins

    International Nuclear Information System (INIS)

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2009-01-01

    Using a RELAP5-3D subchannel analysis model, the thermal-hydraulic behavior of sodium-cooled fuel assemblies with internally and externally cooled annular fuel rods was investigated, in an effort to enhance the economic performance of sodium-fast reactors by increasing the core power density, decreasing the core pressure drop, and extending the fuel discharge burnup. Both metal and oxide fuels at high and low conversion ratios (CR=0.25 and CR=1.00) were investigated. The externally and internally cooled annular fuel design is most beneficial when applied to the low CR core, as clad temperatures are reduced by up to 62.3degC for the oxide fuel, and up to 18.5degC for the metal fuel. This could result in a power uprates of up to ∼44% for the oxide fuel, and up to ∼43% for the metal fuel. The use of duct ribs was explored to flatten the temperature distribution at the core outlet. Subchannel analyses revealed that no fuel melting would occur in the case of complete blockage of the hot interior-annular channel for both metal and oxide fuels. Also, clad damage would not occur for the metal fuel if the power uprate is 38% or less, but would indeed occur for the oxide fuel. (author)

  20. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  1. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Ferrari, H.M.; Miller, D.L.; Tong, L.S.

    1975-01-01

    A description is given of a fuel assembly including multiple open channel grids for holding fuel rods and control rod guide thimbles in predetermined fixed relationship with each other. Metallic straps are interwoven to form a grid or egg crate configuration having openings which receive the fuel rods and guide thimbles. To properly support and cool the fuel rods near the grid-fuel rod interface, springs and dimples on the grid straps project into each opening, the dimples being oriented in a direction to permit flow of coolant upwardly therethrough. To minimize turbulence in coolant flow, the leading edge of each grid strap is provided with cutout sections which form scallops effective in channeling coolant in a uniform flow path through the network of grid openings

  2. Neutronic analysis for core conversion (HEU–LEU of the low power research reactor using the MCNP4C code

    Directory of Open Access Journals (Sweden)

    Aldawahra Saadou

    2015-06-01

    Full Text Available Comparative studies for conversion of the fuel from HEU to LEU in the miniature neutron source reactor (MNSR have been performed using the MCNP4C code. The HEU fuel (UAl4-Al, 90% enriched with Al clad and LEU (UO2 12.6% enriched with zircaloy-4 alloy clad cores have been analyzed in this study. The existing HEU core of MNSR was analyzed to validate the neutronic model of reactor, while the LEU core was studied to prove the possibility of fuel conversion of the existing HEU core. The proposed LEU core contained the same number of fuel pins as the HEU core. All other structure materials and dimensions of HEU and LEU cores were the same except the increase in the radius of control rod material from 0.195 to 0.205 cm and keeping the outer diameter of the control rod unchanged in the LEU core. The effective multiplication factor (keff, excess reactivity (ρex, control rod worth (CRW, shutdown margin (SDM, safety reactivity factor (SRF, delayed neutron fraction (βeff and the neutron fluxes in the irradiation tubes for the existing and the potential LEU fuel were investigated. The results showed that the safety parameters and the neutron fluxes in the irradiation tubes of the LEU fuels were in good agreements with the HEU results. Therefore, the LEU fuel was validated to be a suitable choice for fuel conversion of the MNSR in the future.

  3. A partial grid for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Demario, E.E.

    1985-01-01

    The invention relates to a nuclear-reactor fuel assembly including fuel-rod supporting transverse grids. The fuel assembly includes at least one additional transverse grid which is disposed between two fuel-rod supporting grids and consists of at least one partial grid structure extending across only a portion of the fuel assembly and having fuel rods and control-rod guide thimbles of only said portion extending therethrough. The partial grid structure includes means for providing lateral support of the fuel rods and/or means for laterally deflecting coolant flow, and it is formed of inter-leaved inner straps and border straps, the interleaved inner straps preferably being of substantially smaller height than the border straps to reduce the amount of material capable of parasitically absorbing neutrons. The additional transverse grid may comprise several partial grid structures associated with different groups of fuel rods of the fuel assembly

  4. Compactable control element assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Dupen, C.F.G.

    1976-01-01

    A description is given of a compactable control element assembly for a nuclear reactor in which the absorber pins of the assembly are compacted during downward movement of the pin and are returned to their uncompacted state when downward movement is stopped. The control element assembly comprises a support member longitudinally movable within a control assembly duct and a plurality of absorber pins supported laterally outward of the support member and within the duct by pairs of support arms. The absorber pins are pivotably mounted to the support arms and the support arms in turn are supported from the support member for upward pivotable movement in a longitudinal plane. As the support member is moved downward, the support arms pivot upwardly and the absorber pins move upwardly and inwardly towards the support member. When the support member is stopped the absorber pins return to their uncompacted position

  5. Safe operation of critical assemblies and research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    Some countries have accumulated considerable experience in the operation of these reactors and have in the process developed safe practices. On the other hand, other countries which have recently acquired, or will soon acquire, such reactors do not have sufficient background of experience with them to have developed full knowledge regarding their safe operation. In this situation, the International Atomic Energy Agency has considered that it would be useful to make available to all its Member States a set of recommendations on the safe operation of these reactors, based on the accumulated experience and best practices. The Director General accordingly nominated a Pane Ion Safe Operation of Critical Assemblies and Research Reactors to assist the Agency's Secretariat in drafting such recommendations

  6. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  7. Method and device for controlling reactor power

    International Nuclear Information System (INIS)

    Oohashi, Masahisa; Masuda, Hiroyuki.

    1982-01-01

    Purpose: To enable load following-up operation of a reactor adapted to perform power conditioning by the control of the liquid poison density in the core and by the control rods. Constitution: In a case where the reactor power is repeatedly changed in a reactor having a liquid poison density control device and control rods, the time period for the power control is divided depending on the magnitude of the change with time in the reactivity and the optimum values are set for the injection and removal amount of the liquid poison within the divided period. Then, most parts of the control required for the power change are alloted to the liquid poison that gives no effect on the power distribution while minimizing the movement of the control rods, whereby the power change in the reactor as in the case of the load following-up operation can be practiced with ease. (Kawakami, Y.)

  8. Monitoring device for the power distribution within a nuclear reactor core

    International Nuclear Information System (INIS)

    Tanzawa, Tomio; Kumanomido, Hironori; Toyoshi, Isamu.

    1986-01-01

    Purpose: To provide a monitoring device for the power distribution in the reactor core that calculates the power distribution based on the measurement by instruments disposed within the reactor core of BWR type reactors. Constitution: The power distribution monitoring device in a reactor core comprises a signal correcting device, a signal normalizing device and a power distribution calculating device, in which the power distribution calculating device is constituted with an average power calculating device for four fuel assemblies and an average power calculating device for fuel assemblies. Gamma-ray signals corrected by the signal correcting device and signals from neutron detectors are inputted to the signal normalizing device, both of which are calibrated to determine the axial gamma-ray signal distribution in the central water gap region with the four fuel assemblies being as the unit. The average power from the four fuel assemblies are inputted to the fuel assembly average power calculating device to allocate to each of the fuel assembly average power thereby attaining the purpose. Further, thermal restriction values are calculated thereby enabling to secure the fuel integrity. (Kamimura, M.)

  9. The conceptual design of the standard and the reduced fuel assemblies for an advanced research reactor

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Cho, Yeong Garp; Yoon, Doo Byung; Dan, Ho Jin; Chae, Hee Tack; Park, Cheol

    2005-01-01

    HANARO (Hi-flux Advanced Neutron Application Reactor), is an open-tank-in-pool type research reactor with a thermal power of 30MW. The HANARO has been operating at Korea Atomic Energy Research Institute since 1995. Based on the technical experiences in design and operation for the HANARO, the design of an Advanced Research Reactor (ARR) was launched by KAERI in 2002. The final goal of the project is to develop a new and advanced research reactor model which is superior in safety and economical aspects. This paper summarizes the design improvements of the conceptually designed standard fuel assembly based on the analysis results for the nuclear physics. It includes also the design of the reduced fuel assembly in conjunction with the flow tube as the fuel channel and the guide of the absorber rod. In the near future, the feasibility of the conceptually designed fuel assemblies of the ARR will be verified by investigating the dynamic and the thermal behaviors of the fuel assembly submerged in coolant

  10. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  11. Fissile fuel assembly for a sub-moderated nuclear reactor

    International Nuclear Information System (INIS)

    Millot, J.P.; Dejeux, Pol.; Alibran, Patrice.

    1983-01-01

    Each of the core assemblies is composed of a prismatic case made of a neutron absorbing material, inside which very long rods containing the fissile material are arranged parallel to the height of the case and according to a regular network in the straight sections of the case. At least one piece in a fertile material exposed to the neutrons emitted by the fissile material of the assembly is arranged on each one of the side faces of the case. The invention applies in particular to sub-moderated reactors, cooled and moderated by pressurized water [fr

  12. Spacer grid for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    The spacer grid consists of pairs of plates forming rectangular cells and enclosing the cylindrical fuel assemblies. They have got rigid as well as elastic projections extending into the cells and holding the fuel assemblies. Additional pairs of plates are arranged in about the center of the grid of plates. They have got only elastic projections extending on both sides of the plates into one cell each. This spacer grid may be used for reactor cores with and without fuel channels. By the combination of spring-elastic and rigid projections there is obtained a reinforced outer tie. Hydraulic pressure losses, parasitic neutron capture, and hot spots are essentially reduced. (DG) [de

  13. Hydraulic shock damper for fuel assemblies of nuclear reactors

    International Nuclear Information System (INIS)

    Jabson, F.S.

    1978-01-01

    A typical embodiment of this invention provides a hydraulic mechanism for alleviating the effect of seismic forces and other stresses that are applied to a fuel assembly in a nuclear reactor. Illustratively, hollow guide posts potrude into a fuel assembly end fitting grid from biased spring pads. Plungers that move with the spring pads plug one end of each of the respective guide posts. Plates on the end fitting grid that have individual holes for fluid discharge partially plug the other ends of the respective guide posts, thereby providing a hydraulic means for absorbing the longitudinal component of seismic shocks and other anticipated forces. (Auth.)

  14. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Sienicki, J.J.

    2012-01-01

    compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO 2 cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO 2 cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO 2 cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO 2 cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall

  15. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, William H. Sr.

    1998-01-01

    Self-powered neutron detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors worldwide. This paper describes the basic properties of these radiation sensors including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs, which are being effectively, used in in-core instrumentation systems for pressurized water, heavy water and graphite moderated light water reactors. Also examples are shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurized water and heavy water reactors worldwide. (author)

  16. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor... the design, construction, and operation of nuclear power reactors indicates that compliance with the...

  17. Transient Analysis of a Gas-cooled Fast Reactor for Single Control Assembly Withdrawal

    International Nuclear Information System (INIS)

    Choi, Hangbok

    2014-01-01

    The Energy Multiplier Module (EMZ) system response has been evaluated for control assembly withdrawal transients. Currently the EM2 core is equipped with six cylindrical drum-type control assemblies in the reflector zone for excess reactivity control and power maneuvering during the operating core life. This study investigates the system response to the control assembly withdrawal accident with various rotational speeds and reactivity worth to determine feasible control assembly design requirements from the physics viewpoint. The simulations have been conducted for single control assembly withdrawal transients without scram by a gas-cooled reactor plant simulator, which is based on a simplified plant nodal model, including the point reactor kinetics, single channel core thermal-fluid model, and a turbo-machinery performance model. Simulations were conducted for the middle-of- cycle core, when the excess reactivity of the core is the highest. Control assembly withdrawal times were varied from 1 (runaway) to 180 sec and reactivity worth was varied from 100 to 400 pcm. For a single control assembly withdrawal, the simulation has shown that the peak fuel temperature is expected to be ~1820°C when the assembly worth is 200 pcm and the runaway time is 1 sec per 180 degree rotation. The peak temperature could be reduced to ~1780°C if the assembly is rotated out in a moderate speed such as 1 degree/sec. These peak temperatures give a thermal margin of 22 to 24% to the melting point of uranium carbide fuel. The results also indicate that the current design with a single control assembly worth of 314 pcm may need adjustments in the future design. (author)

  18. Nuclear reactor power for an electrically powered orbital transfer vehicle

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  19. Nuclear reactor power for an electrically powered orbital transfer vehicle

    International Nuclear Information System (INIS)

    Jaffe, L.; Beatty, R.; Bhandari, P.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant

  20. Reactor fuel element and fuel assembly

    International Nuclear Information System (INIS)

    Okada, Seiji; Ishida, Tsuyoshi; Ikeda, Atsuko.

    1997-01-01

    A mixture of fission products and burnable poisons is disposed at least to a portion between MOX pellets to form a burnable poison-incorporated fuel element without mixing burnable poisons to the MOX pellets. Alternatively, a mixture of materials other than the fission products and burnable poisons is formed into disks, a fuel lamination portion is divided into at least to two regions, and the ratio of number of the disks of the mixture relative to the volume of the region is increased toward the lower portion of the fuel lamination portion. With such a constitution, the axial power distribution of fuels can be made flat easily. Alternatively, the thickness of the disk of the mixture is increased toward the lower region of the fuel lamination portion to flatten the axial power distribution of the fuels in the same manner easily. The time and the cost required for the manufacture are reduced, and MOX fuels filled with burnable poisons with easy maintenance and control can be realized. (N.H.)

  1. Power supplyer for reactor coolant recycling pump

    International Nuclear Information System (INIS)

    Nara, Hiroshi; Okinaka, Yo.

    1991-01-01

    The present invention concerns a variable voltage/variable frequency static power source (static power source) used as a power source for a coolants recycling pump motor of a nuclear power plant. That is, during lower power operation such as start up or shutdown in which stoppage of the power source gives less effect to a reactor core, power is supplied from a power system, a main power generator connected thereto or a high voltage bus in the plant or a common high voltage bus to the static power source. However, during rated power operation, power is supplied from the output of an axially power generator connected with a main power generator having an extremely great inertia moment to the static power device. With such a constitution, the static power device is not stopped by the lowering of the voltage due to a thunderbolt falling accident or the like to a power-distribution line suddenly occurred in the power system. Accordingly, reactor core flowrate is free from rapid decrease caused by the reduction of rotation speed of the recycling pump. Accordingly, disadvantgages upon operation control in the reactor core is not caused. (I.S.)

  2. Small and medium power reactors 1987

    International Nuclear Information System (INIS)

    1987-12-01

    This TECDOC follows the publication of TECDOC-347 Small and Medium Power Reactors Project Initiation Study - Phase I published in 1985 and TECDOC-376 Small and Medium Power Reactors 1985 published in 1986. It is mainly intended for decision makers in Developing Member States interested in embarking on a nuclear power programme. It consists of two parts: 1) Guidelines for the Introduction of Small and Medium Power Reactors in Developing Countries. These Guidelines were established during the Advisory Group Meeting held in Vienna from 11 to 15 May 1987. Their purpose is to review key aspects relating to the introduction of Small and Medium Power Reactors in developing countries; 2) Up-dated Information on SMPR Concepts Contributed by Supplier Industries. According to the recommendations of the Second Technical Committee Meeting on SMPRs held in Vienna in March 1985, this part contains the up-dated information formerly published in Annex I of the above mentioned TECDOC-347. Figs

  3. Small and medium power reactors 1987

    Science.gov (United States)

    1987-12-01

    This TECDOC follows the publication of TECDOC-347: Small and Medium Power Reactors (SMPR) Project Initiation Study, Phase 1, published in 1985 and TECDOC-376: Small and Medium Power Reactors 1985 published in 1986. It is mainly intended for decision makers in Developing Member States interested in embarking on a nuclear power program. It consists of two parts: (1) guidelines for the introduction of small and medium power reactors in developing countries. These Guidelines were established during the Advisory Group Meeting held in Vienna from 11 to 15 May 1987. Their purpose is to review key aspects relating to the introduction of small and medium power reactors in developing countries; (2) up-dated information on SMPR Concepts Contributed by Supplier Industries. According to the recommendations of the Second Technical Committee Meeting on SMPRs held in Vienna in March 1985, this part contains the up-dated information formerly published in Annex 1 of the above mentioned TECDOC-347.

  4. Drum of storing fuel assemblies of nuclear reactor

    International Nuclear Information System (INIS)

    Artemiev, L.N.; Batjukov, V.I.; Fadeev, A.I.

    1979-01-01

    The proposed drum for storing fuel assemblies of a nuclear reactor comprises a holder rotatable around its axis and provided with tubular sockets arranged in concentric rows along the circumference of the holder so that the axis of at least one socket of each row intersects the trajectory described by the grip of the recharging mechanism in the course of its movement. The proposed drum design makes it possible to facilitate and speed up the process of recharging fuel asemblies

  5. Automatic power control for a pressurized water reactor

    International Nuclear Information System (INIS)

    Hah, Yung Joon

    1994-02-01

    During a normal operation of a pressurized water reactor (PWR), the reactivity is controlled by control rods, boron, and the average temperature of the primary coolant. Especially in load follow operation, the reactivity change is induced by changes in power level and effects of xenon concentration. The control of the core power distribution is concerned, mainly, with the axial power distribution which depends on insertion and withdrawal of the control rods resulting in additional reactivity compensation. The utilization of part strength control element assemblies (PSCEAs) is quite appropriate for a control of the power distribution in the case of Yonggwang Nuclear Unit 3 (YGN Unit 3). However, control of the PSCEAs is not automatic, and changes in the boron concentration by dilution/boration are done manually. Thus, manual control of the PSCEAs and the boron concentration require the operator's experience and knowledge for a successful load follow operation. In this thesis, the new concepts have been proposed to adapt for an automatic power control in a PWR. One of the new concepts is the mode K control, another is a fuzzy power control. The system in mode K control implements a heavy-worth bank dedicated to axial shape control, independent of the existing regulating banks. The heavy bank provides a monotonic relationship between its motion and the axial power shape change, which allows automatic control of the axial power distribution. And the mode K enables precise regulation, by using double closed-loop control of the reactor coolant temperature and the axial power difference. Automatic reactor power control permits the nuclear power plant to accommodate the load follow operations, including frequency control, to respond to the grid requirements. The mode K reactor control concepts were tested using simulation responses of a Korean standardized 1000-MWe PWR which is a reference plant for the YGN Unit 3. The simulation results illustrate that the mode K would be

  6. Vibration analysis of reactor assembly internals for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Jalaldeen, S.; Srinivasan, R.; Chetal, S.C.; Bhoje, S.B.

    2003-01-01

    Vibration analysis of the reactor assembly components of 500 MWe Prototype Fast Breeder Reactor (PFBR) is presented. The vibration response of primary pump as well as dynamic forces developed at its supports are predicted numerically. The stiffness properties of hydrostatic bearing are determined by formulating and solving governing fluid and structural mechanics equations. The dynamic forces exerted by pump are used as input data for the dynamic response of reactor assembly components, mainly inner vessel, thermal baffle and control plug. Dynamic response of reactor assembly components is also predicted for the pressure fluctuations caused by sodium free level oscillations. Thermal baffle (weir shell) which is subjected to fluid forces developed at the associated sodium free levels is analysed by formulating and solving a set of non-linear equations for fluids, structures and fluid structure interaction (FSI). The control rod drive mechanism is analysed for response under flow induced forces on the parts subjected to cross flow in the zone just above the core top, taking into account FSI between sheaths of control and safety rod and absorber pin bundle. Based on the analysis results, it is concluded that the reactor assembly internals are free from any risk of mechanical as well as flow induced vibrations. (author)

  7. Multiple microprocessor based nuclear reactor power monitor

    International Nuclear Information System (INIS)

    Lewis, P.S.; Ethridge, C.D.

    1979-01-01

    The reactor power monitor is a portable multiple-microprocessor controlled data acquisition device being built for the International Atomic Energy Association. Its function is to measure and record the hourly integrated operating thermal power level of a nuclear reactor for the purpose of detecting unannounced plutonium production. The monitor consists of a 3 He proportional neutron detector, a write-only cassette tape drive and control electronics based on two INTEL 8748 microprocessors. The reactor power monitor operates from house power supplied by the plant operator, but has eight hours of battery backup to cover power interruptions. Both the hourly power levels and any line power interruptions are recorded on tape and in memory. Intermediate dumps from the memory to a data terminal or strip chart recorder can be performed without interrupting data collection

  8. Power distribution forecasting device for reactors

    International Nuclear Information System (INIS)

    Tsukii, Makoto

    1981-01-01

    Purpose: To save expensive calculations on the forecasting of reactor power distribution. Constitution: Core status (CSD) such as entire coolant flow rate, pressures in the reactor, temperatures at the outlet and inlet and positions for control rods are inputted into a power distribution calculation device to calculate the power distribution based on physical models intermittently. Further, present power distribution is calculated based on in-core neutron flux measured values and CSD in a process control computer. Further, the ratio of the calculation results of the latter to those of the former is calculated, stored and inputted into a correction device to correct the forecast power distribution obtained by the power distribution calculation device. This enables to forecast the power distribution with excellent responsivity in the reactor site. (Furukawa, Y.)

  9. Development of quality assurance methods for low enriched fuel assemblies

    International Nuclear Information System (INIS)

    Woolstenhulme, N.E.; Moore, G.A.; Perez, D.M.; Wachs, D.M.

    2010-01-01

    As the Reduced Enrichment for Research and Test Reactors (RERTR) fuel development program has furthered the technology of low enriched uranium fuels, much effort has been expended to specify requirements, perform appropriate inspections, and to qualify experimental fuel plates and assemblies for irradiation. A great deal of consideration has been given to generate examinations and criteria that are both applicable to the unique fuel types being developed and consistent with industry practices for inspecting plate-type reactor fuel. Recent developments in quality assurance (QA) methodologies have given a heightened confidence in satisfactory fuel plate performance. At the same time, recommendations are given to further develop a system suitable for the testing and acceptance of production fuel elements containing low enriched uranium fuels. (author)

  10. Power distribution monitor in a nuclear reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1983-01-01

    Purpose: To enable accurate monitoring for the reactor power distribution within a short time in a case where abnormality occurs in in-core neutron monitors or in a case where the reactor core state changes after the calibration for the neutron monitors. Constitution: The power distribution monitor comprises a power distribution calculator adapted to be inputted counted values from a reactor core present state data instruments and calculate the neutron flux distribution in the reactor core and the power distribution based on previously incorporated physical models, an RCF calculator adapted to be inputted with the counted values from the in-core neutron monitors and the neutron flux distribution and the power distribution calculated in the power distribution calculator and compensate the counted errors included in the counted values form the in-core neutron monitors and the calculation errors included in the power distribution calculated in the power distribution calculator to thereby calculate the power distribution within the reactor core, and an input/output device for the input of the data required for said power distribution calculator and the display for the calculation result calculated in the RCF calculator. (Ikeda, J.)

  11. Power conditioning system for a nuclear reactor

    International Nuclear Information System (INIS)

    Higashigawa, Yuichi; Joge, Toshio.

    1981-01-01

    Purpose: To provide a power conditioning system for a BWR type reactor which has a function to be automatically operated within a range that the relationship between the heat power of the reactor and the electric power of an electric generator does not lose the safety of fuel by eliminating the unnecessary fluctuation of the power of the reactor. Constitution: A load request error signal fed from a conventional turbine control system to recirculation flow regulator is eliminated, and a reactor power conditioning system is newly provided, to which an electric generator power signal, a reactor average power area monitor signal and a load request signal are inputted. Thus, the load request signal is compared directly with the electric power of the electric generator, the recirculation flow rate is controlled by the compared result, and whether the correlation between the heat power of the reqctor and the electric power of the generator satisfies the correlation determined to prove the safety of fuel or not is checked. If this correlation is satisfied, the recirculation flow rate is merely automatically controlled. (Yoshino, Y.)

  12. Gas-cooled reactor power systems for space

    International Nuclear Information System (INIS)

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system

  13. Conference SFEN about small and medium power reactors

    International Nuclear Information System (INIS)

    Giger, F.

    2001-01-01

    The main assets of low and medium power reactors (RPMP) are: a better implement in the existing power production network, less impact to the environment, a better profitability of the capital invested because of a shorter building time and a financing easier to find because less investment is required. Shorter building time and a lower power increment than that of a classical nuclear power plant reduce the risk of anticipation and the duration of possible over-equipment. (A.C.)

  14. Nuclear power reactors: reactor safety and military and civil defence

    International Nuclear Information System (INIS)

    Hvinden, T.

    1976-01-01

    The formation of fission products and plutonium in reactors is briefly described, followed by a short general discussion of reactor safety. The interaction of reactor safety and radioactive release considerations with military and civil defence is thereafter discussed. Reactors and other nuclear plants are factors which must be taken into account in the defence of the district around the site, and as potential targets of both conventional and guerilla attacks and sabotage, requiring special defence. The radiological hazards arising from serious damage to a power reactor by conventional weapons are briefly discussed, and the benefits of underground siting evaluated. Finally the author discusses the significance of the IAEA safeguards work as a preventive factor. (JIW)

  15. Identification of fast power reactivity effect in nuclear power reactor

    International Nuclear Information System (INIS)

    Efanov, A.I.; Kaminskas, V.A.; Lavrukhin, V.S.; Rimidis, A.P.; Yanitskene, D.Yu.

    1987-01-01

    A nuclear power reactor is an object of control with distributed parameters, characteristics of which vary during operation time. At the same time the reactor as the object of control has internal feedback circuits, which are formed as a result of the effects of fuel parameters and a coolant (pressure, temperature, steam content) on the reactor breeding properties. The problem of internal feedback circuit identification in a nuclear power reactor is considered. Conditions for a point reactor identification are obtained and algorithms of parametric identification are constructed. Examples of identification of fast power reactivity effect for the RBMK-1000 reactor are given. Results of experimental testing have shown that the developed method of fast power reactivity effect identification permits according to the data of normal operation to construct adaptive models for the point nuclear reactor, designed for its behaviour prediction in stationary and transition operational conditions. Therefore, the models considered can be used for creating control systems of nuclear power reactor thermal capacity (of RBMK type reactor, in particular) which can be adapted to the change in the internal feedback circuit characteristics

  16. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  17. A nuclear power reactor concept for Brazil

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1980-01-01

    For the purpose of developing an independent national nuclear technology and effective manner of transferring such a technology, as well as developing a modern reactor, a new nuclear power reactor concept is proposed which is considered as a suitable and viable project for Brazil to support its development and finally construct its prototype as an indigeneous venture. (Author) [pt

  18. Remarks on some problems of radiation protection concerning low active materials in nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    Eschner, G.

    1991-01-01

    Problems are discussed using as example a nuclide mixture accumulated on low active ion exchange resin and solution obtained during its regeneration. To decide whether such solutions can safely be given into a receiving body of water and whether or not low active ion exchangers should be shielded under specific conditions, calculations are made to describe the decay of the nuclide mixture. The decline of the dose rate is calculated radially from a rotational-symmetric ion exchanger loaded with the resin. To assess the radiotoxic danger of the nuclide mixture, annual limited intake values are calculated and shown in diagramm. Futhermore, a potential of danger is defined and also shown in diagramm. The influence of daughter products is studied. The radiotoxicity of the nuclide mixture mainly depends on the iodine nuclides. (orig./HP) [de

  19. Low power arcjet performance

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.

    1990-01-01

    An experimental investigation was performed to evaluate arcjet operation at low power. A standard, 1 kW, constricted arcjet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power regime. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope. The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.

  20. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  1. Conceptual design of nuclear fusion power reactor DREAM. Reactor structures and remote maintenance

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Seki, Yasushi; Ueda, Shuzo; Kurihara, Ryoichi; Adachi, Junichi; Yamazaki, Seiichiro; Hashimoto, Toshiyuki.

    1997-01-01

    Nuclear fusion reactors are required to be able to compete another energy sources in economy, reliability, safety and environmental integrity for commercial use. In the DREAM (DRastically EAsy Maintenance) reactor, a very low activated material of SiC/SiC composite has been introduced for the structural material, a reactor configuration for very easy maintenance and the helium gas of a high temperature for the cooling system, and hence DREAM has been proven to be very attractively as the commercial power reactor due to the high availability and efficiency of the plant and minimization of radioactive wastes. (author)

  2. The optimum shielding for a power reactor using local components

    International Nuclear Information System (INIS)

    AlHajali, S.; Kharita, M. H.; Yousef, S.; Naoom, B.; Al-Nassar, M.

    2009-07-01

    Some local concrete mixtures have been picked out (selected) to be studied as shielding concrete for prospective nuclear power reactor in Syria. This research has interested in the attenuation of gamma radiation and neutron fluxes by these local concretes in the ordinary conditions. In addition to the heat effect on the shielding and physical properties of local concrete. Furthermore the neutron activation of the elements of the local concrete mixtures have been studied that for selection the low-activation materials (low dose rate and short half life radioisotopes). In this way biological shielding for nuclear reactor can be safe during operation of nuclear power reactor, in addition to be low radioactive waste after decommissioning the reactor. (author)

  3. Analysis of the equalizing holes resistance in fuel assembly spike for lead-based reactor

    International Nuclear Information System (INIS)

    Zhang, Guangyu; Jin, Ming; Wang, Jianye; Song, Yong

    2017-01-01

    Highlights: • A RELAP5 model for a 10 MWth lead-based reactor was built to study the hydrodynamic characteristics between the equalizing holes in the fuel assembly spike. • Different fuel assembly total blockage scenarios and different resistances for different fuel assemblies were examined. • The inherent safety characteristics of the lead-based reactor was improved by optimizing the configuration of equalizing holes in the fuel assembly spike. - Abstract: To avoid the damage of the fuel rod cladding when a fuel assembly (FA) is totally blocked, a special configuration of the fuel assembly spike was designed with some equalizing holes in the center region which can let the coolant to flow during the totally blockage scenarios of FA. To study the hydrodynamic characteristics between the equalizing holes and an appropriate resistance, a RELAP5 model was developed for a 10 MWth lead-based reactor which used lead-bismuth as coolant. Several FA total blockage and partial core blockage scenarios were selected. The simulation results indicated that when all the FA spike equalizing holes had the same hydraulic resistance, only a narrow range of suitable equalizing holes resistances could be chosen when a FA was blocked. However, in the two or more FA blockage scenarios, there were no appropriate resistances to meet the requirement. In addition, with different FA spike equalizing holes with different resistances, a large range of suitable equalizing hole resistances could be chosen. Especially a series of suitable resistances were selected when the small power FA resistance was 1/2, 1/4, 1/8 of the large one. Under these circumstances, one, two or three FA blockages would not damage the core. These demonstrated that selecting a series of suitable hydraulic resistances for the equalizing holes could improve the safety characteristics of the reactor effectively.

  4. A high-speed data acquisition system to measure low-level current from self-powered flux detectors in CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Lawrence, C.B.; Hall, D.S.

    1982-05-01

    Self-powered flux detectors are used in CANDU nuclear power reactors to determine the spatial neutron flux distribution in the reactor core for use by both the reactor control and safety systems. To establish the dynamic response of different types of flux detectors, the Chalk River Nuclear Laboratories have an ongoing experimental irradiation program in the NRU research reactor for which a data acquistion system has been developed. The system described in this paper is used to measure the currents from the detectors both at a slow, regular logging interval, and at a rapid, adaptive rate following a reactor shutdown. Currents that range from 100 pA to 1 mA full scale can be measured from up to 38 detectors and stored at sampling rates of up to 20 samples per second. The dynamic characteristics of the detectors can be computed from the stored records. The data acquisition system comprises a DEC LSI-11/23 microcomputer, dual cartridge disks, floppy disks, a hard copy and a video display terminal. The RT-11 operating system is used and all application programs are written in FORTRAN

  5. SEISMIC DESIGN CRITERIA FOR NUCLEAR POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. A.

    1963-10-15

    The nature of nuclear power reactors demands an exceptionally high degree of seismic integrity. Considerations involved in defining earthquake resistance requirements are discussed. Examples of seismic design criteria and applications of the spectrum technique are described. (auth)

  6. Reactor power control method and device

    International Nuclear Information System (INIS)

    Fushimi, Atsushi; Ishii, Yoshihiko; Miyamoto, Yoshiyuki; Ishii, Kazuhiko; Kiyoharu, Norihiko; Aizawa, Yuko.

    1997-01-01

    The present invention provides a method and a device suitable to rise the temperature and increase the pressure of the reactor to an aimed pressure in accordance with an aimed value for a reactor water temperature changing rate in the course of rising temperature and increasing pressure of the reactor upon start up of a BWR type power plant. Namely, neutron fluxes in the reactor and the temperature of reactor water are detected respectively. The maximum value among the detected values for the neutron fluxes is detected. The reactor water temperature changing rate is calculated based on the detected values of the reactor water temperature, from which the maximum value of the reactor water temperature changing rate is detected. An aimed value for the neutron flux is calculated in accordance with both detected maximum values and the aimed value of the reactor water temperature changing rate. The position of control rods is adjusted in accordance with the aimed value for the calculated neutron flux. Then, an aimed value for the neutron flux for realizing the aimed value for the reactor water temperature changing rate can be obtained accurately with no influence of the sensitivity of the detected values of the neutron fluxes and the time delay of the reactor water temperature changing rate. (I.S.)

  7. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  8. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  9. Experience with construction and assembly of V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Prochazka, J.; Stepanek, S.; Drahy, J.

    1981-01-01

    The model is discussed of the constructions of the V-1 nuclear power plant at Jaslovske Bohunice with SKODA Trust fulfilling the role of the general supplier of the secondary part technology and the chief and special assembly contractor. The SKODA Trust mediated the Soviet supplies of technology, Soviet assembly and special assembly, and the mounting of the primary part according to Soviet projects. Plant start-up was safeguarded by the investor through Bohunice power plant staff and Soviet experts. The assembly of the primary circuit and the test assembly of reactor parts are described and the experience gained is discussed. The technological requirements are illustrated by the most important characteristics of the individual parts of the primary circuit. Also described are the design specifications of the 220 MW saturated steam turbine and the experience with its assembly and start-up. (B.S.)

  10. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  11. The zero power reactor SUR and its application

    International Nuclear Information System (INIS)

    Wesser, U.

    1986-01-01

    This low-power reactor, rated nominally at 100 milliwatts, has a cylindrical core of 26 cm in diameter and 24 cm high consisting of U 3 O 8 powder in a polyethylene matrix. The fuel is 20 percent enriched and the critical mass about 700 g. The excess reactivity is about 3 mk. The reactivity is controlled by two cadmium sheets in addition to a back-up system that drops the inner reflector. The reactor has no active cooling system. Personnel costs include a supervisor and an operator. The reactor is used for training in Reactor Theory (including use of a neutron chopper), reactor kinetics, nuclear technology, reactor operations and for doctoral thesis research. (author)

  12. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  13. Participation in IAEA proficiency test exercise on major, minor and trace elements in ancient Chinese ceramic (IAEA-CU-2006-06) using low power research reactor

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Zaidi, J.H.

    2011-01-01

    A proficiency test (PT) exercise was offered by the International Atomic Energy Agency (IAEA) for major, minor and trace elements in Chinese ceramic reference material (IAEA-CU-2006-06). Neutron activation analysis (NAA) laboratory at PINSTECH, Pakistan participated in the exercise and submitted the results for 28 elements. The aim of participation was to develop a suitable methodology for accurate measurement of as many elements as possible in ceramic material using a low power reactor (PARR-2) as this would help future investigation in a project on the authenticity of art objects, for provenance, conservation and management of ancient cultural heritage of the country. After receiving the final report of the PT exercise, a critical review of our data and final scoring of each element is made to check the suitability of our methodology and reliability of the acquired data. Most of the reported results passed different statistical evaluation criterion such as relative bias, z-score and u-scores and ratio of our results and IAEA target values. One element (Yb) falls in the unacceptable range of relative bias and z-scores. Hf and Tb showed slightly high z-scores within the questionable range. Ho, Mo and Sn were determined during this study but their results were not submitted to the IAEA. The confidence of accuracy observed for most of the elements in ceramic material has made it mandatory to report their results as information values. (author)

  14. reactor power control using fuzzy logic

    International Nuclear Information System (INIS)

    Ahmed, A.E.E.

    2001-01-01

    power stabilization is a critical issue in nuclear reactors. convention pd- controller is currently used in egypt second testing research reactor (ETRR-2). two fuzzy controllers are proposed to control the reactor power of ETRR-2 reactor. the design of the first one is based on a set of linguistic rules that were adopted from the human operators experience. after off-line fuzzy computations, the controller is a lookup table, and thus, real time controller is achieved. comparing this f lc response with the pd-controller response, which already exists in the system, through studying the expected transients during the normal operation of ETRR-2 reactor, the simulation results show that, fl s has the better response, the second controller is adaptive fuzzy controller, which is proposed to deal with system non-linearity . The simulation results show that the proposed adaptive fuzzy controller gives a better integral square error (i se) index than the existing conventional od controller

  15. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  16. Reactor Power Meter type SG-8

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1981-01-01

    The report describes the principle and electronic circuits of the Reactor Power Meter type SG-8. The gamma radiation caused by the activity of the reactor first cooling circuit affectes the ionization chamber being the detector of the instrument. The output detector signal direct current is converted into the frequency of electric pulses by means of the current-to-frequency converter. The output converter frequency is measured by the digital frequency meter: the number of measured digits in time unit is proportional to the reactor power.

  17. Physical characteristics of GE [General Electric] BWR [boiling-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Moore, R.S.; Notz, K.J.

    1989-06-01

    The physical characteristics of fuel assemblies manufactured by the General Electric Company for boiling-water reactors are classified and described. The classification into assembly types is based on the GE reactor product line, the Characteristics Data Base (CDB) assembly class, and the GE fuel design. Thirty production assembly types are identified. Detailed physical data are presented for each assembly type in an appendix. Descriptions of special (nonstandard) fuels are also reported. 52 refs., 1 fig., 6 tabs

  18. THE PHASE REACTOR INDUCTANCE SELECTION TECHNIQUE FOR POWER ACTIVE FILTER

    Directory of Open Access Journals (Sweden)

    D. V. Tugay

    2016-12-01

    Full Text Available Purpose. The goal is to develop technique of the phase inductance power reactors selection for parallel active filter based on the account both low-frequency and high-frequency components of the electromagnetic processes in a power circuit. Methodology. We have applied concepts of the electrical circuits theory, vector analysis, mathematical simulation in Matlab package. Results. We have developed a new technique of the phase reactors inductance selection for parallel power active filter. It allows us to obtain the smallest possible value of THD network current. Originality. We have increased accuracy of methods of the phase reactor inductance selection for power active filter. Practical value. The proposed technique can be used in the design and manufacture of the active power filter for real objects of energy supply.

  19. Passive gamma analysis of the boiling-water-reactor assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vo, D., E-mail: ducvo@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Favalli, A. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Schwalbach, P. [European Atomic Energy Community (EURATOM), Luxemburg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Tobin, S.; Trellue, H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Vaccaro, S. [European Atomic Energy Community (EURATOM), Luxemburg (Luxembourg)

    2016-09-11

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: {sup 137}Cs, {sup 154}Eu, {sup 134}Cs, and to a lesser extent, {sup 106}Ru and {sup 144}Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  20. New generation of reactors for space power

    International Nuclear Information System (INIS)

    Boudreau, J.E.; Buden, D.

    1982-01-01

    Space nuclear reactor power is expected to enable many new space missions that will require several times to several orders of magnitude anything flown in space to date. Power in the 100-kW range may be required in high earth orbit spacecraft and planetary exploration. The technology for this power system range is under development for the Department of Energy with the Los Alamos National Laboratory responsible for the critical components in the nuclear subsystem. The baseline design for this particular nuclear sybsystem technology is described in this paper; additionally, reactor technology is reviewed from previous space power programs, a preliminary assessment is made of technology candidates covering an extended power spectrum, and the status is given of other reactor technologies

  1. Compact reactor/ORC power source

    International Nuclear Information System (INIS)

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500 0 C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370 0 C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analysis have aided in the power source design. The analyses have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high. 10 refs

  2. A compact reactor/ORC power source

    International Nuclear Information System (INIS)

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for componenet development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500 0 C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370 0 C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analyses combined with a finite element thermal analysis have aided in the power source design. The analysis have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high

  3. Analysis of a total flow blockage of a Fuel Assembly in a typical MTR Research Reactor by RELAP5/MOD3.3

    International Nuclear Information System (INIS)

    Adorni, M.; Salah, A.B.; Di Maro, B.; Pierro, F.; D'Auria, F.; Hamidouche, T.

    2004-01-01

    The lack of full understanding of complex mechanisms connected with the interaction between thermal-hydraulics and neutronics still challenge the design and the operation of nuclear reactors by the adoption of conservative safety limits. The recent availability of powerful computer and computational techniques together with the continuing increase in operational experience imposes the revisiting of those areas and eventually the identification of design/safety requirements that can be relaxed [1]. Currently, the enlarged commercial exploitation of nuclear Research Reactors (RR) has increased the consideration to their corresponding safety issues. Almost all of the safety analyses have so far been performed using conservative computational tools [2]. Nowadays, the application of Best-Estimate (BE) methods constitutes a real necessity in order to increase their commercial productivity. In this framework, an attempt is made to apply the BE technique to perform a safety evaluation under research reactors operational conditions. In fact, this technique has been largely verified and validated for power reactors using coupled system thermal-hydraulic and three-dimensional neutron kinetics [1]. For this purpose, as typical representative of research reactors, the IAEA 10 MW MTR Research Reactors problem [3] is considered. The system thermal-hydraulic RELAP5 [4] code was developed to simulate transient scenarios in Power reactors such PWR, BWR, VVER, etc. However, only limited work was performed to access the applicability of the code to Research Reactors operating conditions (low pressure, mass flow rates, power, etc) [5]. Previous works performed in this field are reported in [5], [6] and [7]. In this framework, total and partial blockage of a single Fuel Assembly cooling channel are investigated. As a first attempt the calculations are performed by applying the BE thermal-hydraulic system code RELAP5 alone using its point kinetic model to derive the instantaneous core

  4. Recovery of reactor electrical assemblies using differential de-encapsulation to remove dielectric insulation systems

    International Nuclear Information System (INIS)

    Hubrig, J.G.; Hammerstone, E.B.

    1986-01-01

    State-of-the-art de-encapsulation technologies associated with the conventional dielectric insulation systems employed in the construction of electrical coils and power distribution systems do not allow for accurate fatigue/failure analysis or reliable recovery of costly assembly components. Differential de-encapsulation allows for the selective removal of contemporary thermoset resin based insulation systems to allow non-destructive penetration of insulation wall thicknesses to both examine critical areas and recover high performance metallic and non-metallic inserts for remanufacture; significantly reducing replacement costs and reactor downtime. The authors' analysis describes how the availability of engineering data from the selective and non-destructive removal of insulation materials will aid in the evaluation of original manufacture, materials and procedures; enabling redesign to enhance subsequent on line performance. They also discuss why the ability to recover coil and core assemblies for remanufacture will have a major economic impact on reactor management costs

  5. Near term feasibility of nuclear reactor for sea-water desalting: coupling of standard condensing nuclear power stations to low grade heat multieffect distillation plants

    International Nuclear Information System (INIS)

    Adar, J.; Manor, S.; Schaal, M.

    1977-01-01

    Commercial nuclear power reactors exist only in standard sizes and designs. No large nuclear back-pressure turbines are available today. Therefore, near term large scale nuclear desalination plants must be tailored to the NSSS sizes and available turbines and not the contrary. Standard condensing nuclear turbines could operate continuously with a back-presure of up to 5-7'' Hg (depending on the supplier). It means that they can exhaust huge amounts of steam at 56 0 C - 64 0 C with a loss of electricity production of 6% - 10% when compared to 2 1/2'' Hg normal condensing pressure. The horizontal aluminium tube multi-effect distillation process developed by ''Israel Desalination Engineering'' Ltd. is very suitable for the use of such low-grade heat: 4 to 9 effects can operate within these temperature ranges. A special flash-chamber constitutes a positive barrier against any possible contamination being carried over by the steam exhausted from the turbine to the desalination plant. Flow sheets, heat and mass balances have been prepared for two standard sizes of NSSS and turbines (1882sup(Mwth) and 2785sup(Mwth)), two ''back-pressures'' (5 1/2'' and 7'' Hg), and corresponding desalination plants. Only standard equipment is being used in the steam and electricity producing plant. The desalination plant consists of 6 to 12 parallel double lines, each of them similar to a large prototype now being designed and which is going to be coupled to an old fossil power station. Water production varies between 50 and 123 sup(us MGD) and water cost between 23 and 36 sup(cents)/M 3 . Total energy requirements of the desalination plant represent only 19 to 50% of the total water cost as against 75% for a single purpose plant. Costs are based on actual bids for the power plant and actual estimates for the desalination prototype. The operation is designed to be flexible so that the power plant can be operated either in conjunction with the desalination plant, or as a single purpose

  6. Inspection and replacement of baffle assembly screws inside American reactor vessels

    International Nuclear Information System (INIS)

    Neal, K.; Chaumont, J.C.

    1999-01-01

    The baffle assembly inside the vessel of a 900 MWe reactor designed by Framatome, is made up of 44 plates fixed on 8 horizontal supports by a system of about 1000 screws. These plates undergo high neutron flux and the problem of screw cracking appeared at the end of the eighties in the first-generation reactors. The first operation on a large scale concerning the screws of a Westinghouse type reactor, was performed on the Tihange-1 power plant where Framatome controlled 960 screws and replaced 91. In 1997 as a consequence of the Belgian and French feedback experience, American plant operators launched a vast program of preventive actions: material analysis, inspection of baffle plate screws and replacement of defective screws. This program was held in cooperation with EPRI (electric power research institute) and under the control of NRC (nuclear regulatory commission). Framatome Technologies Inc (FTI) was in charge of the in-situ inspection and replacement of the screws. FTI designed special tools and equipment adapted to the 2-loop American reactors but the basis ideas were those applied on the Tihange reactor. The successful experience of FTI has allowed the firm to be commissioned for 6 2-loops American reactors. (A.C.)

  7. Optimization of seed-blanket type fuel assembly for reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shelley, Afroza; Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu E-mail: okubo@hems.jaeri.go.jp; Iwamura, Takamichi

    2003-10-01

    Parametric studies have been performed for a PWR-type reduced-moderation water reactor (RMWR) with the seed-blanket type fuel assembles to achieve a high conversion ratio, negative void reactivity coefficient and a high burnup by using MOX fuel. From the viewpoint of reactor safety analysis, the fuel temperature coefficients were also studied. From the result of the burnup calculation, it has been seen that ratio of 40-50% of outer blanket in a seed-blanket assembly gives higher conversion ratio compared to the other combination of seed-blanket assembly. And the recommended number of (seed+blanket) layers is 20, in which the number of seed (S) layers is 15 (S15) and blanket (B) layers is 5 (B5). It was found that the conversion ratio of seed-blanket assembly decreases, when they are arranged looks like a flower shape (Hanagara). By the optimization of different parameters, S15B5 fuel assembly with the height of seed of 1000 mmx2, internal blanket of 150 mm and axial blanket of 400 mmx2 is recommended for a reactor of high conversion ratio. In this assembly, the gap of seed fuel rod is 1.0 mm and blanket fuel rod is 0.4 mm. In S15B5 assembly, the conversion ratio is 1.0 and the burnup is 38.18 GWd/t in (seed+internal blanket+outer blanket) region. However, the burnup is 57.45 GWd/t in (seed+internal blanket) region. The cycle length of the core is 16.46 effective full power in month (EFPM) by six batches and the enrichment of fissile Pu is 14.64 wt.%. The void coefficient is +21.82 pcm/%void, however, it is expected that the void coefficient will be negative if the radial neutron leakage is taken into account in the calculation. It is also possible to use S15B5 fuel assembly as a high burnup reactor 45 GWd/t in (seed+internal blanket+outer blanket) region, however, it is necessary to decrease the height of seed to 500 mmx2 to improve the void coefficient. In this reactor, the conversion ratio is 0.97 and void coefficient is +20.81 pcm/%void. The fuel temperature

  8. Electric power from near-term fusion reactors

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Deis, G.A.; Miller, L.G.

    1981-01-01

    This paper examines requirements and possbilities of electric power production on near-term fusion reactors using low temperature cycle technology similar to that used in some geothermal power systems. Requirements include the need for a working fluid with suitable thermodynamics properties and which is free of oxygen and hydrogen to facilitate tritium management. Thermal storage will also be required due to the short system thermal time constants on near-time reactors. It is possbile to use the FED shield in a binary power cycle, and results are presented of thermodynamic analyses of this system

  9. Thorium utilization in power reactors

    International Nuclear Information System (INIS)

    Saraceno; Marcos.

    1978-10-01

    In this work the recent (prior to Aug, 1976) literature on thorium utilization is reviewed briefly and the available information is updated. After reviewing the nuclear properties relevant to the thorium fuel cycle we describe briefly the reactor systems that have been proposed using thorium as a fertile material. (author) [es

  10. Bottom reflector for power reactors

    International Nuclear Information System (INIS)

    Elter, C.; Kissel, K.F.; Schoening, J.; Schwiers, H.G.

    1982-01-01

    In pebble bed reactors erosion and damage due fuel elements movement on the surface of the bottom reflector should be minimized. This can be achieved by chamfering and/or rounding the cover edges of the graphite blocks and the edges between the drilled holes and the surface of the graphite block. (orig.) [de

  11. Power supply with nuclear reactor

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated therewith is monitored by a set of four like sensors. A trip system normally operates on a 'two out of four' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the 'two out of four' configuration would be reduced to a 'one out of three' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a 'two out of three' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor

  12. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  13. Parliament votes against building fifth power reactor

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    After a heated three-day debate, Finland's parliament voted on September 24 to reject the proposal to build the country's fifth nuclear power reactor. As predicted, the vote was close: 107 voted against more nuclear power, 90 were in favor, two members of the 200-seat parliament were not present, and the speaker did not vote

  14. Nuclear reactors for space electric power

    International Nuclear Information System (INIS)

    Buden, D.

    1978-06-01

    The Los Alamos Scientific Laboratory is studying reactor power plants for space applications in the late 1980s and 1990s. The study is concentrating on high-temperature, compact, fast reactors that can be coupled with various radiation shielding systems and thermoelectric, dynamic, or thermionic electric power conversion systems, depending on the mission. Lifetimes of 7 to 10 yr at full power, at converter operating temperatures of 1275 to 1675 0 K, are being studied. The systems are being designed such that no single-failure modes exist that will cause a complete loss of power. In fact, to meet the long lifetimes, highly redundant design features are being emphasized. Questions have been raised about safety since the COSMOS 954 incident. ''Fail-safe'' means to prevent exposure of the population to radioactive material, meeting the environmental guidelines established by the U.S. Government have been and continue to be a necessary requirement for any space reactor program. The major safety feature to prevent prelaunch and launch radioactive material hazards is not operating the reactor before achieving the prescribed orbit. Design features in the reactor ensure that accidental criticality cannot occur. High orbits (above 400 to 500 nautical miles) have sufficient lifetimes to allow radioactive elements to decay to safe levels. The major proposed applications for satellites with reactors in Earth orbit are in geosynchronous orbit (19,400 nautical miles). In missions at geosynchronous orbit, where orbital lifetimes are practically indefinite, the safety considerations are negligible. Orbits below 400 to 500 nautical miles are the ones where a safety issue is involved in case of satellite malfunction. The potential missions, the question of why reactors are being considered as a prime power candidate, reactor features, and safety considerations will be discussed

  15. TerraPower, Bill Gates' reactor

    International Nuclear Information System (INIS)

    Guidez, J.

    2016-01-01

    TerraPower is a traveling wave reactor, it means that the reactor gradually converts non fissile material into the fuel it needs and the active part of the core progressively moves through the core leaving spent fuel behind. The last design of the TerraPower shows that it will use depleted uranium as fuel and that its core will need reloading every 10 years. Re-arrangement of the nuclear fuel will have to be made every 18 months to keep the core reactive. Metallic nuclear fuels will be used as they allow the highest breeding rates. It appears that apart from the very specific configuration of the core, the TerraPower is a reactor very similar to sodium-cooled fast reactors. Neutron transport inside traveling wave reactor core is complex and simulations show that the piling-up of fission product tends to kill the chain reaction and a continuous neutron addition may be necessary to keep the reactor going. A large part of the TerraPower feasibility studies concerns neutron transport inside its core. (A.C.)

  16. Safe Operation of Critical Assemblies and Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-05-15

    This Manual is provided as a guide to the safe operation of critical assemblies and small research reactors. It is intended that it should be used by all authorities and persons concerned with, or responsible for, the use of such equipment, in addition to the scientists and technologists who are actually working with, or operating it. It is suggested that it will be of use to those wishing to design and manufacture, or purchase, critical assemblies or research reactors, as well as those already in possession of them, and that it will prove particularly helpful to those users who have no direct access to other collected sources of information. This Manual is not a set of rules or a code of practice, but a series of recommendations which must be interpreted with scientific judgement in their application to any particular problem. The guiding principles are given from which good operational procedures may be established and improved. The promulgation of rigid standards is both impossible and undesirable at the present time, since the topics discussed form part of a rapidly growing science and technology. Therefore, any recommendations made should not be used to restrict or inhibit future developments. The Manual is intended mainly for use in those Member States where there has been little experience in the operation of critical assemblies and research reactors. It has been compounded from the best practices which exist in Member States having a large amount of such experience, so that nothing in it should conflict with the best practices to be encountered in the field of safe operation.

  17. Safe Operation of Critical Assemblies and Research Reactors

    International Nuclear Information System (INIS)

    1961-01-01

    This Manual is provided as a guide to the safe operation of critical assemblies and small research reactors. It is intended that it should be used by all authorities and persons concerned with, or responsible for, the use of such equipment, in addition to the scientists and technologists who are actually working with, or operating it. It is suggested that it will be of use to those wishing to design and manufacture, or purchase, critical assemblies or research reactors, as well as those already in possession of them, and that it will prove particularly helpful to those users who have no direct access to other collected sources of information. This Manual is not a set of rules or a code of practice, but a series of recommendations which must be interpreted with scientific judgement in their application to any particular problem. The guiding principles are given from which good operational procedures may be established and improved. The promulgation of rigid standards is both impossible and undesirable at the present time, since the topics discussed form part of a rapidly growing science and technology. Therefore, any recommendations made should not be used to restrict or inhibit future developments. The Manual is intended mainly for use in those Member States where there has been little experience in the operation of critical assemblies and research reactors. It has been compounded from the best practices which exist in Member States having a large amount of such experience, so that nothing in it should conflict with the best practices to be encountered in the field of safe operation.

  18. New advanced small and medium nuclear power reactors: possible nuclear power plants for Australia

    International Nuclear Information System (INIS)

    Dussol, R.J.

    2003-01-01

    In recent years interest has increased in small and medium sized nuclear power reactors for generating electricity and process heat. This interest has been driven by a desire to reduce capital costs, construction times and interest during construction, service remote sites and ease integration into small grids. The IAEA has recommended that the term 'small' be applied to reactors with a net electrical output less than 300 MWe and the term 'medium' to 300-700 MWe. A large amount of experience has been gained over 50 years in the design, construction and operation of small and medium nuclear power reactors. Historically, 100% of commercial reactors were in these categories in 1951-1960, reducing to 21% in 1991-2000. The technologies involved include pressurised water reactors, boiling water reactors, high temperature gas-cooled reactors, liquid metal reactors and molten salt reactors. Details will be provided of two of the most promising new designs, the South African Pebble Bed Modular Reactor (PBMR) of about 110 MWe, and the IRIS (International Reactor Innovative and Secure) reactor of about 335 MWe. Their construction costs are estimated to be about US$l,000/kWe with a generating cost for the PBMR of about US1.6c/kWh. These costs are lower than estimated for the latest designs of large reactors such as the European Pressurised Reactor (EPR) designed for 1,600 MWe for use in Europe in the next decade. It is concluded that a small or medium nuclear power reactor system built in modules to follow an increasing demand could be attractive for generating low cost electricity in many Australian states and reduce problems arising from air pollution and greenhouse gas emissions from burning fossil fuels

  19. Gripping means for fuel assemblies of nuclear reactor

    International Nuclear Information System (INIS)

    Batjukov, V.I.; Fadeev, A.I.; Shkhian, T.G.; Vjugov, O.N.

    1980-01-01

    The proposed gripping means for fuel assemblies of a nuclear reactor comprises a housing, whereupon there is movably mounted a slider provided with longitudinally extending slots to receive gripping jaws whose tails are pivotably secured to the housing of the gripping means. On one side, the end faces of the longitudinally extending slots are slanted with respect to the longitudinal axis of the gripping means and come in contact with the teeth of the gripping jaws provided on the end which is opposite to the tail, whereby the jaws open as the slider and housing of the gripping means moves relative to each other so that the teeth are received in an internal groove provided in the head of the fuel assembly

  20. Burnable poison rod for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Funk, C.E.; Oneufer, A.S.

    1984-01-01

    A burnable poison rod for use in a nuclear reactor fuel assembly which includes concentrically disposed rods having an annular space therebetween which extends the full length of the rods. The inner rod is hollow to permit circulation of coolant therethrough. Annular burnable poison pellets are positioned in the annular space which is closed at both ends by plugs. A spring clip is located in the plenum space above the pellet stack in the rods. The spring clip is of cylindrical configuration having a gap in the material which provides two ends adapted to be squeezed toward each other. A cross section of the clip shows that its ends contain alternating flat and round edges, the round edges conforming to the outer rod inner surface to provide a retentive force which is releasably applied to the pellet stack as it grows during operation in a reactor

  1. Assembly homogenization techniques for light water reactor analysis

    International Nuclear Information System (INIS)

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  2. Simulating the temperature noise in fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Pykhtina, T.V.; Tarasko, M.Z.

    1987-01-01

    Characteristics of temperature noise at various modes of coolant flow in fast reactor fuel assemblies (FA) and for different points of sensor installation are investigated. Stationary mode of coolant flow and mode with a partial overlapping of FA through cross section, resulting in local temperature increase and sodium boiling, are considered. Numerical simulation permits to evaluate time characteristicsof temperature noise and to formulate requirements for dynamic characteristics of the sensors, and also to clarify the dependence of coolant distribution parameters on the sensor location and peculiarities of stationary temperature profile

  3. Apparatus for securing structural tubes in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Kerry, J.S.

    1987-01-01

    This patent describes a nuclear reactor fuel assembly having a structural tube with a predetermined inside diameter, a generally cylindrical insert of an axial length substantially smaller than the axial length of the structural tube and having a generally cylindrical passageway of a predetermined diameter smaller than the predetermined inside diameter for providing an effectively reduced inside diameter for the structural tube. The insert comprises: means, having an outside diameter approximately equal to the predetermined inside diameter, for coaxially centering the insert within the structural tube; forming lobes, operable when expanded to locally deform against the structural tube thereby locking the insert within the structural tube

  4. Vectorization and parallelization of a production reactor assembly code

    International Nuclear Information System (INIS)

    Vujic, J.L.; Martin, W.R.; Michigan Univ., Ann Arbor, MI

    1991-01-01

    In order to use efficiently the new features of supercomputers, production codes, usually written 10 -20 years ago, must be tailored for modern computer architectures. We have chosen to optimize the CPM-2 code, a production reactor assembly code based on the collision probability transport method. Substantial speedup in the execution times was obtained with the parallel/vector version of the CPM-2 code. In addition, we have developed a new transfer probability method, which removes some of the modelling limitations of the collision probability method encoded in the CPM-2 code, and can fully utilize the parallel/vector architecture of a multiprocessor IBM 3090. (author)

  5. Fuel assembly for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Yellowlees, J.M.

    1976-01-01

    A fuel assembly is described for gas-cooled nuclear reactor which consists of a wrapper tube within which are positioned a number of spaced apart beds in a stack, with each bed containing spherical coated particles of fuel; each of the beds has a perforated top and bottom plate; gaseous coolant passes successively through each of the beds; through each of the beds also passes a bypass tube; part of the gas travels through the bed and part passes through the bypass tube; the gas coolant which passes through both the bed and the bypass tube mixes in the space on the outlet side of the bed before entering the next bed

  6. Vectorization and parallelization of a production reactor assembly code

    International Nuclear Information System (INIS)

    Vujic, J.L.; Martin, W.R.

    1991-01-01

    In order to efficiently use new features of supercomputers, production codes, usually written 10 - 20 years ago, must be tailored for modern computer architectures. We have chosen to optimize the CPM-2 code, a production reactor assembly code based on the collision probability transport method. Substantial speedups in the execution times were obtained with the parallel/vector version of the CPM-2 code. In addition, we have developed a new transfer probability method, which removes some of the modelling limitations of the collision probability method encoded in the CPM-2 code, and can fully utilize parallel/vector architecture of a multiprocessor IBM 3090. (author)

  7. Apparatus for removing and/or positioning fuel assemblies of a nuclear reactor

    International Nuclear Information System (INIS)

    Vuckovich, M.; Burkett, J.P.; Sallustio, J.

    1983-01-01

    Apparatus for positioning fuel assemblies of a nuclear reactor includes a control for a crane comprising a strain gauge connected to the crane line which raises and lowers the load. The signal from the strain gauge is compared with setpoints; which if the strain gauge signal exceeds a high-level setpoint, indicating that the movement of a fuel assembly is obstructed, the line drive is disabled. The line drive is also disabled if the strain gauge signal is less than a low-level setpoint, indicating that a fuel being deposited contacts the bottom of its slot or an obstruction. To preclude lateral movement of the fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge signal exceeds the low-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than a slack-line setpoint. (author)

  8. Apparatus for removing and/or positioning fuel assemblies of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vuckovich, M; Burkett, J P; Sallustio, J

    1981-11-30

    Apparatus for positioning fuel assemblies of a nuclear reactor includes a control for a crane comprising a strain gauge connected to the crane line which raises and lowers the load. The signal from the strain gauge is compared with setpoints; which if the strain gauge signal exceeds a high-level setpoint, indicating that the movement of a fuel assembly is obstructed, the line drive is disabled. The line drive is also disabled if the strain gauge signal is less than a low-level setpoint, indicating that a fuel being deposited contacts the bottom of its slot or an obstruction. To preclude lateral movement of the fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge signal exceeds the low-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than a slack-line setpoint.

  9. Advanced fuel assemblies for economic and flexible operation of light water reactors

    International Nuclear Information System (INIS)

    Urban, P.; Bender, D.

    2001-01-01

    Increasing competition in the electricity market sets up a corresponding competition between the different electricity producing technologies. This makes further improvements in the economics of nuclear power generation a vital item for the future of nuclear energy. Though the costs for development, design and fabrication of fuel assemblies contribute only about 10% to the fuel cycle costs, the design and the performance of the fuel assemblies considerably influences total electricity generation cost. By the recent creation of Framatome ANP the nuclear activities of Framatome and Siemens were combined into one company. In the past, both had made considerable achievements in the development of fuel assemblies and related services supporting the goal of safe and economic electricity generation by light water reactors. The examples described in this paper cover former Siemens products and experience. In the future, our combined experience bases will be an ideal platform to offer further substantial improvements to our customers. (author)

  10. Central Reactivity Measurements on Assemblies 1 and 3 of the Fast Reactor FR0

    International Nuclear Information System (INIS)

    Londen, S.O.

    1966-01-01

    The reactivity effects of small samples of various materials have been measured, by the period method at the core centre of Assemblies 1 and 3 of the fast zero power reactor FR0. For some materials the reactivity change as a function of sample size has also been determined experimentally. The core of Assembly 1 consisted only of uranium enriched to 20 % whereas the core of Assembly 3 was diluted with 30 % graphite. The results have been compared with calculated values obtained with a second-order transport-theoretical perturbation model and using differently shielded cross sections depending upon sample size. Qualitative agreement has generally been found, although discrepancies still exist. The spectrum perturbation caused by the experimental arrangement has been analyzed and found to be rather important

  11. Central Reactivity Measurements on Assemblies 1 and 3 of the Fast Reactor FR0

    Energy Technology Data Exchange (ETDEWEB)

    Londen, S O

    1966-01-15

    The reactivity effects of small samples of various materials have been measured, by the period method at the core centre of Assemblies 1 and 3 of the fast zero power reactor FR0. For some materials the reactivity change as a function of sample size has also been determined experimentally. The core of Assembly 1 consisted only of uranium enriched to 20 % whereas the core of Assembly 3 was diluted with 30 % graphite. The results have been compared with calculated values obtained with a second-order transport-theoretical perturbation model and using differently shielded cross sections depending upon sample size. Qualitative agreement has generally been found, although discrepancies still exist. The spectrum perturbation caused by the experimental arrangement has been analyzed and found to be rather important.

  12. Analysis of the rotation accident of assemblies in boiling water reactors

    International Nuclear Information System (INIS)

    Becerril-Gonzalez M, J. J.; Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia de Cueto, R.

    2012-10-01

    For this work was analyzed the impact that would cause the load of a rotated fuel assembly in the behaviour of the core in the Cycle 14 of the Unit 1 of the nuclear power plant of Laguna Verde. To carry out this analysis the code Simulate-3 was used, with which was possible to analyze the behavior of the effective multiplication factor and the thermal limits (MAPRAT, MFLPD and MFLCPR). The rotation of fuel assemblies to 90, 180 and 270 grades was analyzed with regard to the design position, with 0, 1, 2 and 3 burnt cycles for these assemblies. The results show that the thermal limits remain inside the allowed values, therefore if this accident type happened the reactor could continue operating in a sure way. (Author)

  13. Fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Vold, E.L.; Conn, R.W.

    1986-01-01

    Methods to operate a tokamak fusion reactor at fractions of its rated power, identify the more effective control knobs and assess the impact of the requirements of fractional power operation on full power reactor design are explored. In particular, the role of burn control in maintaining the plasma at thermal equilibrium throughout these operations is studied. As a prerequisite to this task, the critical physics issues relevant to reactor performance predictions are examined and some insight into their impact on fractional power operation is offered. The basic tool of analysis consists of a zero-dimensional (0-D) time-dependent plasma power balance code which incorporates the most advanced data base and models in transport and burn plasma physics relevant to tokamaks. Because the plasma power balance is dominated by the transport loss and given the large uncertainty in the confinement model, the authors have studied the problem for a wide range of energy confinement scalings. The results of this analysis form the basis for studying the temporal behavior of the plasma under various thermal control mechanisms. Scenarios of thermally stable full and fractional power operations have been determined for a variety of transport models, with either passive or active feedback burn control. Important power control parameters, such as gas fueling rate, auxiliary power and other plasma quantities that affect transport losses, have also been identified. The results of these studies vary with the individual transport scaling used and, in particular, with respect to the effect of alpha heating power on confinement

  14. Power control device in nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Kazuaki.

    1981-01-01

    Purpose: To enable smooth power changes in power conditioning systems by calculating forecast values for the neutron flux distribution and power distribution and by controlling the driving speed of control rods so as to correspond the forecast values with aimed values. Constitution: Control rod position is detected by a position detector and sent to a control computer as the position information. At the same time, the neutron flux distribution information is obtained by the neutron monitors, the power distribution information is obtained by a reactor power computer and they are outputted to the control computer. The control computer calculates the forecast values for the neutron flux distribution and the reactor power distribution from the information, and compares them with the aimed values from a setter and then outputs control signals so as to correspond the forecast values with the aimed values. The control rods can be inserted in appropriate velocity by the control signals. (Horiuchi, T.)

  15. Major accident analyses for experimental zero-power fast reactor assemblies; Analyse des accidents graves pouvant survenir dans les reacteurs experimentaux a neutrons rapides de puissance zero; Analiz krupnoj avarii dlya ehksperimental'ny kh reaktornykh ustanovok nulevoj moshchnosti na bystrykh nejtronakh; Analisis de los accidentes graves que pueden producirse en los reactores experimentales rapidos de potencia cero

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Barts, E. W.; Kapil, S.; Tomabechi, K. [Argonne National Laboratory, Argonne, IL (United States)

    1962-03-15

    A study has been made of the possibility, mechanism, and consequence of melt-down and other major nuclear accidents for a ZPR-III type experimental zero-power fast reactor of the two-half type. This study has been supplemented by an evaluation of the importance of the Doppler effect for a wide range of nuclear reactor assemblies for such a reactor. A melt-down event is highly improbable because of the restricted sequence of events which must be postulated. A discussion of the mechanism of the collapse is followed by the results of coupled neutronics-hydrodynamic s calculations for two zero-power assemblies. A 1200-l core has been examined because it represents a relatively large reactor of common core composition. A smaller core with a high-void fraction has been examined as a potentially more dangerous system. Very different time-wise behaviour has been found for the two systems. For sharp accidents in zero-power assemblies, the U{sup 235}-atoms, separated as plates of enriched uranium, will heat very rapidly while the remainder of the core remains essentially cold, so that a gas of U{sup 235}-vapour will provide the disassembly pressure. The adaption of the neutronics-hydrodynamic s code AX-I to the use of a Van der Waals gas is described. Another important change in the equation of state used in the code is to employ a Mie-Griineisen type equation derivable from solid state theory. This change provides a more satisfactory way to evaluate the pressure term for cores of variable composition. Because the highly enriched U{sup 235} plates of a zero-power assembly will heat much more rapidly than the depleted uranium plates, the possibility of a net positive Doppler effect is much larger for an experimental assembly than for the equivalent power breeder reactor. This hazard has been examined for a range of possible assemblies. These calculations indicate that the Doppler coefficient for a zero-power assembly does not become important as a hazard until one approaches

  16. Advances in ICF power reactor design

    International Nuclear Information System (INIS)

    Hogan, W.J.; Kulcinski, G.L.

    1985-01-01

    Fifteen ICF power reactor design studies published since 1980 are reviewed to illuminate the design trends they represent. There is a clear, continuing trend toward making ICF reactors inherently safer and environmentally benign. Since this trend accentuates inherent advantages of ICF reactors, we expect it to be further emphasized in the future. An emphasis on economic competitiveness appears to be a somewhat newer trend. Lower cost of electricity, smaller initial size (and capital cost), and more affordable development paths are three of the issues being addressed with new studies

  17. Containment and surveillance techniques at power reactors

    International Nuclear Information System (INIS)

    Stirling, A.J.

    1982-01-01

    This session will provide participants with an understanding of the functions of safeguards equipment at power reactors, including equipment for fuel accounting, video and film surveillance, diversion monitoring, and containment and surveillance of irradiated fuel in storage. In addition, some appreciation of the impact that reactor safeguards have on the plant operator will be gained. From this, participants will be able to ensure that a reactor safeguards system meets their nation's international and national nonproliferation objectives with a minimum of interference to plant operations

  18. Different types of power reactors and provenness

    International Nuclear Information System (INIS)

    Goodman, E.I.

    1977-01-01

    The lecture guides the potential buyer in the selection of a reactor type. Recommended criteria regarding provenness, licensability, and contractual arrangements are defined and discussed. Tabular data summarizing operating experience and commercial availability of units are presented and discussed. The status of small and medium power reactors which are of interest to many developing countries is presented. It is stressed that each prospective buyer will have to establish his own criteria based on specific conditions which will be applied to reactor selection. In all cases it will be found that selection, either pre-selection of bidders or final selection of supplier, will be a fairly complex evaluation. (orig.) [de

  19. Safety of next generation power reactors

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address

  20. Gas-cooled reactor for space power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors

  1. Space nuclear reactor power plants

    International Nuclear Information System (INIS)

    Buden, D.; Ranken, W.A.; Koenig, D.R.

    1980-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on space nuclear power plant components has been initiated by the Department of Energy. The missions that are foreseen, the current power plant concept, the technology program plan, and early key results are described

  2. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  3. Transfer hood for handling fuel assemblies in nuclear reactors and especially fast reactors

    International Nuclear Information System (INIS)

    Aubert, M.; Merland, D.; Renaux, C.

    1975-01-01

    A description is given of a hood for transferring fuel assemblies between two or more separate guide ramps inclined to the vertical at the same angle of slope and extending respectively through a first passage into the reactor vessel and through a second passage into a fuel-assembly storage chamber. The hood comprises at least one shielded duct joined to a flanged rotating portion which is so arranged that the open lower end of the shielded duct is positioned in the line of extension of one guide ramp and then the other as a result of displacement of the rotating portion

  4. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  5. Reactor power cutback system test experience at YGN 4

    International Nuclear Information System (INIS)

    Chi, Sung Goo; Kim, Se Chang; Seo, Jong Tae; Eom, Young Meen; Wook, Jeong Dae; Choi, Young Boo

    1995-01-01

    YGN 3 and 4 are the nuclear power plants having System 80 characteristics with a rated thermal output of 2815 MWth and a nominal net electrical output of 1040 MWe. YGN 3 achieved commercial operation on March 31, 1995 and YGN 4 completed Power Ascension Test (PAT) at 20%, 50%, 80% and 100% power by September 23, 1995. YGN 3 and 4 design incorporates the Reactor POwer Cutback System (RPCS) which reduces plant trips caused by Loss of Load (LOL)/ Turbine Trip and Loss of One Main Feedwater Pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety systems. The RPCS is designed to rapidly reduce reactor power by dropping preselected Control Element Assemblies (CEAs) while other NSSS control systems maintain process parameters within acceptable ranges. Extensive RPCS related tests performed during the initial startup of YGN 4 demonstrated that the RPCS can maintain the reactor on-line without opening primary or secondary safety valves and without actuating the Engineered Safety Features Actuation System (ESFAS). It is expected that use of the RPCS at YGN will increase the overall availability of the units and reduce the number of challenges to plant safety systems

  6. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, W.H.

    1997-01-01

    Self-Powered Neutron Detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors world-wide. The basic properties of these radiation sensors are described including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs which are being effectively used in in-core instrumentation systems for pressurised water, heavy water and graphite moderated light water reactors. Examples are also shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurised water and heavy water reactors worldwide. This paper is a summary of a new IEC standard to be issued in 1996 describing the characteristics and test methods of self-powered detectors used in nuclear power reactors. (author)

  7. Manufacturing requirements of reactor assembly components for PFBR (Paper No. 041)

    International Nuclear Information System (INIS)

    Murty, C.G.K.; Bhoje, S.B.

    1987-02-01

    This paper enumerates the requirements of 500 MWe Prototype Fast Breeder Reactor (PFBR) components and considering the present state of art of Indian industry an analysis is made on the challenges to be faced in manufacture highlighting the areas needing development. The large sizes and weights of the components coupled with the limitations on shop facilities and ODC transport, demand part of the fabrication to be done at shop and balance assembly work as well as certain assembly machining operations to be done at site work shop. The stringent geometrical tolerances coupled with extensive destructive and non-destructive examinations call for balanced and low heat input welding techniques and special inspection equipment like electronic co-ordinate determination system. The present paper deals with the specific manufacturing problems of the main reactor components. (author)

  8. An inherently safe power reactor module

    International Nuclear Information System (INIS)

    Salerno, L.N.

    1985-01-01

    General Electric's long participation in liquid metal reactor technology has led to a Power Reactor Inherently Safe Module (PRISM) concept supported by DOE contract DE-AC06-85NE37937. The reactor module is sized to maximize inherent safety features. The small size allows factory fabrication, reducing field construction and field QA/QC labor, and allows safety to be demonstrated in full scale, to support a pre-licensed standard commercial product. The module is small enough to be placed underground, and can be combined with steam and electrical generating equipment to provide a complete electrical power producing plant in the range of 400-1200 MWe. Initial assessments are that the concept has the potential to be economically competitive with existing methods of power production used by the utility industry

  9. Corrosion control in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Lesurf, J.E.

    1974-01-01

    Corrosion control in CANDU reactors which use pressurized heavy water (PHW) and boiling light water (BLW) coolants is discussed. Discussions are included on pressure tubes, primary water chemistry, fuel sheath oxidation and hydriding, and crud transport. It is noted that corrosion has not been a significant problem in CANDU nuclear power reactors which is a tribute to design, material selection, and chemistry control. This is particularly notable at the Pickering Nuclear Generating Station which will have four CANDU-PHW reactors of 540 MWe each. The net capacity factor for Pickering-I from first full power (May 1971) to March 1972 was 79.5 percent, and for Pickering II (first full power November 1971) to March 1972 was 83.5 percent. Pickering III has just reached full power operation (May 1972) and Pickering IV is still under construction. Gentilly CANDU-BLW reached full power operation in May 1972 after extensive commissioning tests at lower power levels with no major corrosion or chemistry problems appearing. Experience and operating data confirm that the value of careful attention to all aspects of corrosion control and augur well for future CANDU reactors. (U.S.)

  10. Seismic Response Analysis of Assembled Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Je, Sang-Yun; Chang, Yoon-Suk; Kang, Sung-Sik

    2015-01-01

    RVIs (Reactor Vessel Internals) perform important safe-related functions such as upholding the nuclear fuel assembly as well as providing the coolant passage of the reactor core and supporting the control rod drive mechanism. Therefore, the components including RVIs have to be designed and constructed taking into account the structural integrity under various accident scenarios. The reliable seismic analysis is essentially demanded to maintain the safe-related functions of RVIs. In this study, a modal analysis was performed based on the previous researches to examine values of frequencies, mode shapes and participation factors. Subsequently, the structural integrity respecting to the earthquake was evaluated through a response spectrum analysis by using the output variables of modal analysis. In this study, the structural integrity of the assembled RVIs was carried out against the seismic event via the modal and response spectrum analyses. Even though 287MPa of the maximum stress value occurred at the connected region between UGS and CSA, which was lower than its allowable value. At present, fluid-structure interaction effects are being examined for further realistic simulation, which will be reported in the near future

  11. Reactors of different types in the world nuclear power

    International Nuclear Information System (INIS)

    Simonov, K.V.

    1991-01-01

    The status of the world nuclear power is briefly reviewed. It is noted that PWR reactors have decisive significance in the world power. The second place is related to gas-cooled graphite-moderated reactors. Channel-type heavy water moderated reactors are relatively important. Nuclear power future is associated with fast liquid-metal cooled breeder reactors

  12. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  13. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, A. (Politecnico di Milano (Italy). Centro Studi Nucleari E. Fermi)

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer.

  14. Power reactor events, May-June 1986

    International Nuclear Information System (INIS)

    Massaro, S.A.

    1986-12-01

    Power Reactor Events is a bi-monthly newsletter that compiles operating experience information about commercial nuclear power plants. This includes summaries of noteworthy events and listings and/or abstracts of USNRC and other documents that discuss safety-related or possible generic issues. It is intended to feed back some of the lessons learned from operational experience to the various plant personnel, i.e., managers, licensed reactor operators, training coordinators, and support personnel. Events at the following plants are reported: McGuire Unit 1; Susquehanna Units 1 and 2; Browns Ferry Units 1, 2, and 3; and River Bend Unit 1

  15. Survey of thorium utilization in power reactor systems

    International Nuclear Information System (INIS)

    Schwartz, M.H.; Schleifer, P.; Dahlberg, R.C.

    1976-01-01

    It is clear that thorium-fueled thermal power reactor systems based on current technology can play a vital role in serving present and long-term energy needs. Advanced thorium converters and thermal breeders can provide an expanded resource base from which the world's growing energy demands can be met. Utilization of a symbiotic system of fast breeders and thorium-fueled thermal reactors can be particularly effective in providing low cost power while conserving uranium resources. Breeder reactors are characterized by high capital costs and very low fuel costs since they produce more fuel than they consume. This excess fuel can be used to fuel thermal converter reactors whose capital costs are low. This symbiosis is optimized when 233 U is bred in the fast breeders and then used to fuel high-conversion-ratio thermal converter reactors operating on the thorium-uranium fuel cycle. The thorium-cycle HTGR, after undergoing more than fifteen years of development in both the United States and Europe, provides for the optimum utilization of our limited uranium resources. Other thermal reactor systems, previously operating on the uranium cycle, also show potential in their capability to utilize the thorium cycle effectively

  16. Optimization of the power distribution in a large power reactor core

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Nazaryan, V.G.; Postnikov, V.V.

    1978-01-01

    The reactor power distribution optimization problem is solved for the case of the RBMK-1000 reactor. The algorithm is written in terms of the linear programming method. The algorithm rests on two assumptions: 1) the relative power change of each fuel assembly is a linear function of reactivity increment caused by displacement of a regulating rod; 2) the change is an additive value. The algorithm is written in ALGOL for the BESM-6 computer. The optimum reactivity gain for the RBMK reactor has proved to equal the reactivity of 35-40 control rods. The results obtained confirm the validity of the assumptions. It is noted that the total computation time on the BESM-6 can be reduced to 20 min

  17. Systems aspects of a space nuclear reactor power system

    International Nuclear Information System (INIS)

    Jaffe, L.; Fujita, T.; Beatty, R.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: Power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, attitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly

  18. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyu; Lee, Jae Han; Kim, Hoe Woong; KIm, Sung Kyun; Kim, Jong Bum [Sodium-cooled Fast Reactor NSSS Design Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

  19. Fuel assembly for use in BWR type reactor

    International Nuclear Information System (INIS)

    Inaba, Yuzo.

    1988-01-01

    Purpose: To attain the reduction of neutron irradiation amount to control rods by the improvement in the reactor shutdown margin and the improvement of the control rod worth, by enhancing the arrangement of burnable poisons. Constitution: The number of burnable poison-incorporated fuel rods present in the outer two rows along the sides in adjacent with a control rod among the square lattice arrangement in a fuel assembly is decreased to less than 1/4 for that of total burnable poison-incorporated fuel rods, while the remaining burnable posion-incorporated fuel rods are arranged in the region other than above (that is, those regions not nearer to the control rod). Thus, even if a sufficient number of burnable poison to prolong the controlling effect for the reactivity with the burnable contents as the fuel assembly are disposed, only the burnable poison -incorporated fuel rods by the number less than 1/4 for that of the total burnable poison-incorporated fuel rods are present near the control rod of the fuel assembly. Accordingly, the control rod worth at the initial stage of the burning is increased at both high and normal temperatures. (Kawakami, Y.)

  20. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1987-01-01

    A heat exchanger and pump assembly comprising a heat exchanger including a housing for defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. A pump is disposed beneath the heat exchanger and is comprised of a plurality of flow couplers disposed in a circular array. Each flow coupler is comprised of a pump duct for receiving a first electrically conductive fluid, i.e. the primary liquid metal, from a pool thereof, and a generator duct for receiving a second electrically conductive fluid, i.e. the intermediate liquid metal. The primary liquid metal is introduced from the reactor pool into the top, inlet ends of the tubes, flowing downward therethrough to be discharged from the tubes' bottom ends directly into the reactor pool. The primary liquid metal is variously introduced into the pump ducts directly from the reactor pool, either from the bottom or top end of the flow coupler. The intermediate fluid introduced into the generator ducts via the inlet duct and inlet plenum and after leaving the generator ducts passes through the annular cavity of the exchanger to cool the primary liquid in the tubes. The annular magnetic field of the pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of the intermediate metal. (author)

  1. Time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1987-01-01

    Control laws that permit adjustments in reactor power to be made in minimum time and without overshoot have been formulated and demonstrated. These control laws which are derived from the standard and alternate dynamic period equations, are closed-form expressions of general applicability. These laws were deduced by noting that if a system is subject to one or more operating constraints, then the time-optimal response is to move the system along these constraints. Given that nuclear reactors are subject to limitations on the allowed reactor period, a time-optimal control law would step the period from infinity to the minimum allowed value, hold the period at that value for the duration of the transient, and then step the period back to infinity. The change in reactor would therefore be accomplished in minimum time. The resulting control laws are superior to other forms of time-optimal control because they are general-purpose, closed-form expressions that are both mathematically tractable and readily implanted. Moreover, these laws include provisions for the use of feedback. The results of simulation studies and actual experiments on the 5 MWt MIT Research Reactor in which these time-optimal control laws were used successfully to adjust the reactor power are presented

  2. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  3. TEMP-M program for thermal-hydraulic calculation of fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    Bogoslovskaya, C.P.; Sorokin, A.P.; Tikhomirov, B.B.; Titov, P.A.; Ushakov, P.A.

    1983-01-01

    TEMP-M program (Fortran, BESM-6 computer) for thermal-hydraulic calculation of fast reactor fuel assemblies is described. Results of calculation of temperature field in a 127 fuel element assembly of BN-600, reactor accomplished according to TEMP-N program are considered as an example. Algorithm, realized in the program, enables to calculate the distributions of coolant heating, fuel element temperature (over perimeter and length) and assembly shell temperature. The distribution of coolant heating in assembly channels is determined from a solution of the balance equation system which accounts for interchannel exchange, nonadiabatic conditions on the assembly shell. The TEMP-M program gives necessary information for calculation of strength, seviceability of fast reactor core elements, serves an effective instrument for calculations when projecting reactor cores and analyzing thermal-hydraulic characteristics of operating reactor fuel assemblies

  4. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay

    International Nuclear Information System (INIS)

    Dhami, P.S; Yadav, J.S; Agarwal, K.

    2017-01-01

    Exploitation of the abundant thorium resources to meet sustained energy demand forms the basis of the Indian nuclear energy programme. To gain reprocessing experience in thorium fuel cycle, thoria was irradiated in research reactor CIRUS in early sixties. Later in eighties, thoria bundles were used for initial flux flattening in some of the pressurized heavy water reactors (PHWRs). The research reactor irradiated thoria contained small content (∼ 2-3ppm) of "2"3"2U in "2"3"3U product, which did not pose any significant radiological problems during processing in Uranium Thorium Separation Facility (UTSF), Trombay. Thoria irradiated in PHWRs on discharge contained (∼ 0.5-1.5% "2"3"3U with significant "2"3"2U content (100-500 ppm) requiring special radiological attention. Based on the experience from UTSF, a new facility viz. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay was built which was hot commissioned in the year 2015

  5. Power control device for nuclear reactors

    International Nuclear Information System (INIS)

    Kagawa, Tatsuo

    1984-01-01

    Purpose: To eliminate for requirement of control rods and movable portions, as well as ensure the safety and reliability of the operation. Constitution: A plurality of control tubes are disposed within a reactor core instead of control rods. Tubes are connected from below the reactor core to the control tubes for supplying liquid poisons such as aqueous boric acid to the inside of the control tubes. Further, tubes are connected to the upper portion of the control tubes for guiding the liquid poisons from the reactor core to the outside. The tubes for supplying and discharging the liquid poisons are introduced externally through the flange disposed at the upper portion of a pressure vessel. At the outside of the pressure vessel, are disposed a liquid poison tank, a pressurizing source, a pressure control valve, a liquid level meter and the like. The control for the reactor power is conducted by controlling the level of the liquid poisons in the control tubes. (Ikeda, J.)

  6. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  7. Radiation streaming in power reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, G.P.; Lee, R.R.; Courtney, J.C. (eds.)

    1979-02-01

    Separate abstracts are included for each of the 14 papers given at a special session on Radiation Streaming in Power Reactors held on November 15 at the American Nuclear Society 1978 Winter Meeting in Washington, D.C. The papers describe the methods of calculation, the engineering of shields, and the measurement of radiation environments within the containments of light water power reactors. Comparisons of measured and calculated data are used to determine the accuracy of computer predictions of the radiation environment. Specific computational and measurement techniques are described and evaluated. Emphasis is on radiation streaming in the annular region between the reactor vesel and the primary shield and its resultant environment within the primary containment.

  8. An improved water cooled nuclear reactor and pressuriser assembly

    International Nuclear Information System (INIS)

    Gardner, F.J.; Strong, R.

    1991-01-01

    A water cooled nuclear reactor is described which comprises a reactor core, a primary water coolant circuit and a pressuriser arranged as an integral unit in a pressure vessel. The pressure vessel is divided into an upper and a lower chamber by a casing. The reactor core and primary water coolant circuit are arranged in the lower chamber and the pressuriser is arranged in the upper chamber. A plurality of spray pipes interconnect a steam space of the pressuriser with the downcomer of the primary water coolant circuit below a heat exchanger. A plurality of surge ports interconnect a water space of the pressuriser with the primary water coolant circuit. The surge ports have hydraulic diodes so that there is a low flow resistance for water from the water space of the pressuriser to the primary water coolant circuit and high flow resistance in the opposite direction. The spray pipes provide a desuperheating spray of cooled water into the pressuriser during positive volume surges of the primary water coolant. The pressuriser arrangement may also be applied to integral water cooled reactors with separate pressurisers and to dispersed pressurised water reactors. The surge ports also allow water to flow by gravity to the core in an emergency. (author)

  9. Parameter study toward economical magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Yoshida, Tomoaki; Okano, Kunihiko; Nanahara, Toshiya; Hatayama, Akiyoshi; Yamaji, Kenji; Takuma, Tadashi.

    1996-01-01

    Although the R and D of nuclear fusion reactors has made a steady progress as seen in ITER project, it has become of little doubt that fusion power reactors require hugeness and enormous amount of construction cost as well as surmounting the physics and engineering difficulties. Therefore, it is one of the essential issues to investigate the prospect of realizing fusion power reactors. In this report we investigated the effects of physics and engineering improvements on the economics of ITER-like steady state tokamak fusion reactors using our tokamak system and costing analysis code. With the results of this study, we considered what is the most significant factor for realizing economical competitive fusion reactors. The results show that with the conventional TF coil maximum field (12T), physics progress in β-value (or Troyon coefficient) has the most considerable effect on the reduction of fusion plant COE (Cost of Electricity) while the achievement of H factor = 2-3 and neutron wall load =∼5MW/m 2 is necessary. The results also show that with the improvement of TF coil maximum field, reactors with a high aspect ratio are economically advantageous because of low plasma current driving power while the improvement of current density in the conductors and yield strength of support structures is indispensable. (author)

  10. High Flux Isotope Reactor power upgrade status

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-01-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions

  11. The IAEA power reactor information system - PRIS

    International Nuclear Information System (INIS)

    Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The IAEA Power Reactor Information System, PRIS, is based on a collection of basic design data and operating experience data which the IAEA started in 1970. PRIS is used for annual publications on 'Power Reactors in Member States', 'Operating Experience with Nuclear Power Stations in Member States', which gives annual operating information for individual plants, and a 'Performance Analysis Report' summarizing each year's and earlier experience. Since 1973 information has been collected in a systematic manner on significant plant outages (= more than 10 full power hours). There is now information on more than 10,000 outages in the system which permits some conclusions to be drawn both in regard to individual plants and to categories of plants on the significance of different outage reasons and different types of equipment failures. PRIS has not been intended to be a component reliability information system as an international data collection must stop short of the level of detail which would be needed for that purpose. The objectives of PRIS have been to provide a factual background for assumptions on parameters which are essential for economic evaluations and for systems operation planning (load factor and availability). The outage information does, however, lend itself to conclusions about generic problems in different categories of plants and it can be used by an individual operator to find other plants where information about particular problems can be obtained. It would also now be possible to use PRIS for setting availability goals based on experience and not only on theoretical design considerations. The paper demonstrates the conclusions which can be drawn from 662 reactor years of operation of light and heavy water pressurized reactors and 390 reactor years of boiling water reactors and, in particular, the role that the main heat removal system and its components have played in the equipment failure category

  12. Power distribution monitoring and control in the RBMK type reactors

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Postnikov, V.V.; Volod'ko, Yu.I.

    1980-01-01

    Considered are the structures of monitoring and control systems for the RBMK-1000 reactor including three main systems with high independence: the control and safety system (CSS); the system for physical control of energy distribution (SPCED) as well as the Scala system for centralized control (SCC). Main functions and peculiarities of each system are discussed. Main attention is paid to new structural solutions and new equipment components used in these systems. Described are the RBMK operation software and routine of energy distribution control in it. It is noted that the set of reactor control and monitoring systems has a hierarchical structure, the first level of which includes analog systems (CSS and SPCED) normalizing and transmitting detector signals to the systems of the second level based on computers and realizing computer data processing, data representation to the operator, automatic (through CSS) control for energy distribution, diagnostics of equipment condition and local safety with provision for existing reserves with respect to crisis and thermal loading of fuel assemblies. The third level includes a power computer carrying out complex physical and optimization calculations and providing interconnections with the external computer of power system. A typical feature of the complex is the provision of local automatic safety of the reactor from erroneous withdrawal of any control rod. The complex is designed for complete automatization of energy distribution control in reactor in steady and transient operation conditions

  13. State system experience with safeguarding power reactors

    International Nuclear Information System (INIS)

    Roehnsch, W.

    1982-01-01

    This session describes the development and operation of the State System of Accountancy and Control in the German Democratic Republic, and summarizes operating experience with safeguards at power reactor facilities. Overall organization and responsibilities, containment and surveillance measures, materials accounting, and inspection procedures will be outlined. Cooperation between the IAEA, State system, facility, and supplier authorities will also be addressed

  14. Low-enrichment and long-life Scalable LIquid Metal cooled small Modular (SLIMM-1.2) reactor

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed S., E-mail: mgenk@unm.edu [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Department, University of New Mexico, Albuquerque, NM (United States); Chemical and Biological Engineering Department, University of New Mexico, Albuquerque, NM (United States); Palomino, Luis M.; Schriener, Timothy M. [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States)

    2017-05-15

    Highlights: • Developed low enrichment and natural circulation cooled SLIMM-1.2 SMR for generating 10–100 MW{sub th}. • Neutronics analyses estimate operation life and temperature reactivity feedback. • At 100 MW{sub th}, SLIMM-1.2 operates for 6.3 FPY without refueling. • SLIMM-1.2 has relatively low power peaking and maximum UN fuel temperature < 1400 K. - Abstract: The Scalable LIquid Metal cooled small Modular (SLIMM-1.0) reactor with uranium nitride fuel enrichment of 17.65% had been developed for generating 10–100 MW{sub th} continuously, without refueling for ∼66 and 5.9 full power years, respectively. Natural circulation of in-vessel liquid sodium (Na) cools the core of this fast energy spectrum reactor during nominal operation and after shutdown, with the aid of a tall chimney and an annular Na/Na heat exchanger (HEX) of concentric helically coiled tubes. The HEX at the top of the downcomer maximizes the static pressure head for natural circulation. In addition to the independent emergency shutdown (RSS) and reactor control (RC), the core negative temperature reactivity feedback safely decreases the reactor thermal power, following modest increases in the temperatures of UN fuel and in-vessel liquid sodium. The decay heat is removed from the core by natural circulation of in-vessel liquid sodium, with aid of the liquid metal heat pipes laid along the reactor vessel wall, and the passive backup cooling system (BCS) using natural circulation of ambient air along the outer surface of the guard vessel wall. This paper investigates modifying the SLIMM-1.0 reactor design to lower the UN fuel enrichment. To arrive at a final reactor design (SLIMM-1.2), the performed neutronics and reactivity depletion analyses examined the effects of various design and material choices on both the cold-clean and the hot-clean excess reactivity, the reactivity shutdown margin, the full power operation life at 100 MW{sub th}, the fissile production and depletion, the

  15. The program of reactors and nuclear power plants

    International Nuclear Information System (INIS)

    Calabrese, Carlos R.

    2001-01-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined

  16. Monitoring device for the reactor power distribution

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi; Tsuiki, Makoto

    1982-01-01

    Purpose: To enable accurate monitoring for the power distribution in a short time, as well as independent detection for in-core neutron flux detectors in abnormal operation due to failures or like other causes to thereby surely provide reliable substitute values. Constitution: Counted values are inputted from a reactor core present status data detector by a power distribution calculation device to calculate the in-core neutron flux density and the power distribution based on previously stored physical models. While on the other hand, counted value from the in-core neutron detectors and the neutron flux distribution and the power distribution calculated from the power distribution calculation device are inputted from a BCF calculation device to compensate the counting errors incorporated in the counted value from the in-core neutron flux detectors and the calculation errors incorporated in the power distribution calculated in the power distribution calculation device respectively and thereby calculate the power distribution in the reactor core. Further, necessary data are inputted to the power distribution calculation device by an input/output device and the results calculated in the BCF calculation device are displayed. (Aizawa, K.)

  17. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave ...... oven. The microwave powered sensor assembly is configured for harvesting energy from microwave radiation emitted by the microwave oven and energize the sensor by the harvested microwave energy.......The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  18. Assessment of the thorium fuel cycle in power reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled

  19. Self-powered detectors for power reactors: an overview

    International Nuclear Information System (INIS)

    Ma, J.

    2006-01-01

    In this paper, Self-Powered Detectors (SPDs) for applications in nuclear power reactors have been reviewed. Based on their responses to radiation, these detectors can be divided into delayed response Self-Powered Neutron Detector (SPND), prompt response SPND and Self-Powered Gamma Detector (SPGD). The operational principles of these detectors are presented and their distinctive characteristics are examined accordingly. The analytical models and Monte Carlo method to calculate the responses of these detectors to neutron flux and external gamma rays are reviewed. The paper has also considered some related signal processing techniques, such as detector calibrations and detector signal compensations. Furthermore, a couple of failure modes have also been analyzed. Finally, applications of SPD in nuclear power reactors are summarized. (author)

  20. Self-powered detectors for power reactors: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J. [Univ. of Western Ontario, Dept. of Mechanical and Materials Engineering, London, Ontario (Canada)]. E-mail: jma64@uwo.ca

    2006-07-01

    In this paper, Self-Powered Detectors (SPDs) for applications in nuclear power reactors have been reviewed. Based on their responses to radiation, these detectors can be divided into delayed response Self-Powered Neutron Detector (SPND), prompt response SPND and Self-Powered Gamma Detector (SPGD). The operational principles of these detectors are presented and their distinctive characteristics are examined accordingly. The analytical models and Monte Carlo method to calculate the responses of these detectors to neutron flux and external gamma rays are reviewed. The paper has also considered some related signal processing techniques, such as detector calibrations and detector signal compensations. Furthermore, a couple of failure modes have also been analyzed. Finally, applications of SPD in nuclear power reactors are summarized. (author)

  1. Transients in reactors for power systems compensation

    Science.gov (United States)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  2. Three-dimensional Core Design of a Super Fast Reactor with a High Power Density

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi; Ju, Haitao

    2010-01-01

    The SuperCritical Water-cooled Reactor (SCWR) pursues high power density to reduce its capital cost. The fast spectrum SCWR, called a super fast reactor, can be designed with a higher power density than thermal spectrum SCWR. The mechanism of increasing the average power density of the super fast reactor is studied theoretically and numerically. Some key parameters affecting the average power density, including fuel pin outer diameter, fuel pitch, power peaking factor, and the fraction of seed assemblies, are analyzed and optimized to achieve a more compact core. Based on those sensitivity analyses, a compact super fast reactor is successfully designed with an average power density of 294.8 W/cm 3 . The core characteristics are analyzed by using three-dimensional neutronics/thermal-hydraulics coupling method. Numerical results show that all of the design criteria and goals are satisfied

  3. Combined fuel assembly and thimble plug gripper for a nuclear reactor

    International Nuclear Information System (INIS)

    1977-01-01

    This invention relates to an apparatus for loading and unloading a fuel assembly into and from the core of a nuclear reactor and for removing and inserting control rod guide thimble plugs from and into the fuel assembly during a reactor refueling operation in substantially less time than that presently required and in a more reliable, safe and efficient manner. (UK)

  4. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  5. Conversion of research reactors to low-enrichment uranium fuels

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1983-01-01

    There are at present approximately 350 research reactors in 52 countries ranging in power from less than 1 watt to 100 Megawatt and over. In the 1970's, many people became concerned about the possibility that some fuels and fuel cycles could provide an easy route to the acquisition of nuclear weapons. Since enrichment to less than 20% is internationally recognized as a fully adequate barrier to weapons usability, certain Member States have moved to minimize the international trade in highly enriched uranium and have established programmes to develop the technical means to help convert research reactors to the use of low-enrichment fuels with minimum penalties. This could involve modifications in the design of the reactor and development of new fuels. As a result of these programmes, it is expected that most research reactors can be converted to the use of low-enriched fuel

  6. Method of estimating the reactor power distribution

    International Nuclear Information System (INIS)

    Mitsuta, Toru; Fukuzaki, Takaharu; Doi, Kazuyori; Kiguchi, Takashi.

    1984-01-01

    Purpose: To improve the calculation accuracy for the power distribution thereby improve the reliability of power distribution monitor. Constitution: In detector containing strings disposed within a reactor core, movable type neutron flux monitors are provided in addition to position fixed type neutron monitors conventionally disposed so far. Upon periodical monitoring, a power distribution X1 is calculated from a physical reactor core model. Then, a higher power position X2 is detected by position detectors and value X2 is sent to a neutron flux monitor driving device to displace the movable type monitors to a higher power position in each of the strings. After displacement, the value X1 is amended by an amending device using measured values from the movable type and fixed type monitors and the amended value is sent to a reactor core monitor device. Upon failure of the fixed type monitors, the position is sent to the monitor driving device and the movable monitors are displaced to that position for measurement. (Sekiya, K.)

  7. Reactor power distribution pattern judging device

    International Nuclear Information System (INIS)

    Ikehara, Tadashi.

    1992-01-01

    The judging device of the present invention comprises a power distribution readout system for intaking a power value from a fuel segment, a neural network having an experience learning function for receiving a power distribution value as an input variant, mapping it into a desirable property and self-organizing the map, and a learning date base storing a plurality of learnt samples. The read power distribution is classified depending on the similarity thereof with any one of representative learnt power distribution, and the corresponding state of the reactor core is outputted as a result of the judgement. When an error is found in the classified judging operation, erroneous cases are additionally learnt by using the experience and learning function, thereby improving the accuracy of the reactor core characteristic estimation operation. Since the device is mainly based on the neural network having a self-learning function and a pattern classification and judging function, a judging device having a human's intuitive pattern recognition performance and a pattern experience and learning performance is obtainable, thereby enabling to judge the state of the reactor core accurately. (N.H.)

  8. Experimental development of power reactor intelligent control

    International Nuclear Information System (INIS)

    Edwards, R.M.; Garcia, H.E.; Lee, K.Y.

    1992-01-01

    The US nuclear utility industry initiated an ambitious program to modernize the control systems at a minimum of ten existing nuclear power plants by the year 2000. That program addresses urgent needs to replace obsolete instrumentation and analog controls with highly reliable state-of-the-art computer-based digital systems. Large increases in functionality that could theoretically be achieved in a distributed digital control system are not an initial priority in the industry program but could be logically considered in later phases. This paper discusses the initial development of an experimental sequence for developing, testing, and verifying intelligent fault-accommodating control for commercial nuclear power plant application. The sequence includes an ultra-safe university research reactor (TRIGA) and a passively safe experimental power plant (Experimental Breeder Reactor 2)

  9. The program of reactors and nuclear power plants; Programa de reactores y centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Centro Atomico Constituyentes

    2001-07-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined.

  10. Tandem mirror reactor power balance studies

    International Nuclear Information System (INIS)

    Gorker, G.E.; Perkins, L.J.

    1985-01-01

    A tandem mirror reactor (TMR) power plant balance model has been developed and is now being used as a computer aid for performing parametric studies. End-cell power injection into the plasma and the physics thermal Q are used to determine the fusion power. About 80% of the fusion power is transferred by high-energy neutrons to the blanket modules and structures. The other 20% of the fusion power in the high-energy alpha particles is used to heat the deuterium-tritium (D-T) plasma. Most of the plasma-ionized particles transfer their energy to the halo dumps and direct converters. The plant efficiency is calculated for three different system cycles: (1) the pressurized water/saturated steam cycle; (2) the superheated steam cycle; and (3) the more complex superheat/reheat cycle. There is a signficiant improvement in plant efficiency as the electrical power multiplication factor and steam cycle efficiency increases

  11. TRIGA research reactors with higher power density

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1994-01-01

    The recent trend in new or upgraded research reactors is to higher power densities (hence higher neutron flux levels) but not necessarily to higher power levels. The TRIGA LEU fuel with burnable poison is available in small diameter fuel rods capable of high power per rod (≅48 kW/rod) with acceptable peak fuel temperatures. The performance of a 10-MW research reactor with a compact core of hexagonal TRIGA fuel clusters has been calculated in detail. With its light water coolant, beryllium and D 2 O reflector regions, this reactor can provide in-core experiments with thermal fluxes in excess of 3 x 10 14 n/cm 2 ·s and fast fluxes (>0.1 MeV) of 2 x 10 14 n/cm 2 ·s. The core centerline thermal neutron flux in the D 2 O reflector is about 2 x 10 14 n/cm 2 ·s and the average core power density is about 230 kW/liter. Using other TRIGA fuel developed for 25-MW test reactors but arranged in hexagonal arrays, power densities in excess of 300 kW/liter are readily available. A core with TRIGA fuel operating at 15-MW and generating such a power density is capable of producing thermal neutron fluxes in a D 2 O reflector of 3 x 10 14 n/cm 2 ·s. A beryllium-filled central region of the core can further enhance the core leakage and hence the neutron flux in the reflector. (author)

  12. In core system mapping reactor power distribution

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Moreira, J.M.L.

    1989-01-01

    Based on the signals of SPND'S (Self Powered Neutron Detectors) distributed inside of a core, the spatial power distribution is obtained using the MAP program, developed in this work. The methodology applied in MAP program uses a least mean square technique to calculate expansion coefficients that depend on the SPND'S signals. The final power or neutron flux distribution is obtained by a combination of certains functions or expansion modes that are provided from diffusion calculation with the CITATION code. The MAP program is written in PASCAL language and will be used in IEA-R1 reactor for assisting its operation. (author) [pt

  13. Method of fueling for a nuclear reactor

    International Nuclear Information System (INIS)

    Igarashi, Takao.

    1983-01-01

    Purpose: To enable the monitoring of reactor power with sufficient accuracy, upon starting even without existence of neutron source in case of a low average burnup degree in the reactor core. Constitution: Each of fuel assemblies is charged such that neutron source region monitors for the start-up system in a reactor core neutron instrumentation system having nuclear fuel assemblies and a neutron instrumentation system are surrounded with 4 or 16 fuel assemblies of a low burnup degree. Then, the average burnup degree of the fuel assemblies surrounding the neutron source region monitors are increased than the reactor core burnup degree, whereby neutrons released from the peripheral fuels are increased, sufficient number of neutron counts can be obtained even with no neutron sources upon start-up and the reactor power can be monitored at a sufficient accuracy. (Sekiya, K.)

  14. Experimental studies of flow induced vibrations of the fuel assembly for the PEC reactor

    International Nuclear Information System (INIS)

    Pitimada, D.; Presaghi, M.; Tampone, O.; Cesari, F.

    1977-01-01

    The vibration behaviour of an assembly of seven mock-up fuel bundles of PEC reactor has been investigated. The assembly was excited by a parallel flow of water simulating sodium. The motion of the group (or of a single bundle in the group) has been measured in transverse sections detecting two orthogonal components of displacement. During the experiences the following parameters were varied: bundle foot and pads restraints, flow rate condition, coolant flow outlet conditions at the head of fuel bundles. Experimental data were processed in order to obtain: trajectories of three points of fuel bundle axis, power density spectra of measured vibration amplitudes, correlations between coolant flow rate and vibration amplitude R.M.S. (author)

  15. Artificial neural networks for spatial distribution of fuel assemblies in reload of PWR reactors

    International Nuclear Information System (INIS)

    Oliveira, Edyene; Castro, Victor F.; Velásquez, Carlos E.; Pereira, Claubia

    2017-01-01

    An artificial neural network methodology is being developed in order to find an optimum spatial distribution of the fuel assemblies in a nuclear reactor core during reload. The main bounding parameter of the modelling was the neutron multiplication factor, k ef f . The characteristics of the network are defined by the nuclear parameters: cycle, burnup, enrichment, fuel type, and average power peak of each element. These parameters were obtained by the ORNL nuclear code package SCALE6.0. As for the artificial neural network, the ANN Feedforward Multi L ayer P erceptron with various layers and neurons were constructed. Three algorithms were used and tested: LM (Levenberg-Marquardt), SCG (Scaled Conjugate Gradient) and BayR (Bayesian Regularization). Artificial neural network have implemented using MATLAB 2015a version. As preliminary results, the spatial distribution of the fuel assemblies in the core using a neural network was slightly better than the standard core. (author)

  16. Sodium-cooled fast reactor (SFR) fuel assembly design with graphite-moderating rods to reduce the sodium void reactivity coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Hyuck; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr; Park, Hae Min; Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr

    2014-12-15

    Highlights: • The graphite rod-inserted SFR fuel assembly is proposed to achieve low sodium void reactivity. • The neutronics/thermal-hydraulics analyses are performed for the proposed SFR cores. • The sodium void reactivity is improved about 960–1030 pcm compared to reference design. - Abstract: The concept of a graphite-moderating rod-inserted sodium-cooled fast reactor (SFR) fuel assembly is proposed in this study to achieve a low sodium void reactivity coefficient. Using this concept, two types of SFR cores are analyzed; the proposed SFR type 1 core has new SFR fuel assemblies at the inner/mid core regions while the proposed SFR type 2 core has a B{sub 4}C absorber sandwich in the middle of the active core region as well as new SFR fuel assemblies at the inner/mid core regions. For the proposed SFR core designs, neutronics and thermal-hydraulic analyses are performed using the DIF3D, REBUS3, and the MATRA-LMR codes. In the neutronics analysis, the sodium void reactivity coefficient is obtained in various void situations. The two types of proposed core designs reduce the sodium void reactivity coefficient by about 960–1030 pcm compared to the reference design. However, the TRU enrichment for the proposed SFR core designs is increased. In the thermal hydraulic analysis, the temperature distributions are calculated for the two types of proposed core designs and the mass flow rate is optimized to satisfy the design constraints for the highest power generating assembly. The results of this study indicate that the proposed SFR assembly design concept, which adopts graphite-moderating rods which are inserted into the fuel assembly, can feasibly minimize the sodium void reactivity coefficient. Single TRU enrichment and an identical fuel slug diameter throughout the SFR core are also achieved because the radial power peak can be flattened by varying the number of moderating rods in each core region.

  17. Basic training of nuclear power reactor personnel

    International Nuclear Information System (INIS)

    Palabrica, R.J.

    1981-01-01

    The basic training of nuclear power reactor personnel should be given very close attention since it constitutes the foundation of their knowledge of nuclear technology. Emphasis should be given on the thorough understanding of basic nuclear concepts in order to have reasonable assurance of successful assimilation by those personnel of more specialized and advanced concepts to which they will be later exposed. Basic training will also provide a means for screening to ensure that those will be sent for further spezialized training will perform well. Finally, it is during the basic training phase when nuclear reactor operators will start to acquire and develop attitudes regarding reactor operation and it is important that these be properly founded. (orig.)

  18. Safety Analysis for Power Reactor Protection System

    International Nuclear Information System (INIS)

    Eisawy, E.A.; Sallam, H.

    2012-01-01

    The main function of a Reactor Protection System (RPS) is to safely shutdown the reactor and prevents the release of radioactive materials. The purpose of this paper is to present a technique and its application for used in the analysis of safety system of the Nuclear Power Plant (NPP). A more advanced technique has been presented to accurately study such problems as the plant availability assessments and Technical Specifications evaluations that are becoming increasingly important. The paper provides the Markov model for the Reactor Protection System of the NPP and presents results of model evaluations for two testing policies in technical specifications. The quantification of the Markov model provides the probability values that the system will occupy each of the possible states as a function of time.

  19. Improvements in or relating to gripping means for handling nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Batjukov, V.I.; Vjugov, O.N.; Fadeev, A.I.; Shkhian, T.G.

    1980-01-01

    A gripping means for handling fuel assemblies, the heads of which are internally recessed to receive gripping jaws, forms part of a reactor refuelling machine and is telescopically accommodated within a manipulator tube of the machine. A through hole is provided to allow cooling medium to be passed through the fuel assemblies to remove afterheat when the gripping means is used to transfer assemblies from a reactor core to spent fuel storage sockets. (author)

  20. Low power constant fraction discriminator

    International Nuclear Information System (INIS)

    Krishnan, Shanti; Raut, S.M.; Mukhopadhyay, P.K.

    2001-01-01

    This paper describes the design of a low power ultrafast constant fraction discriminator, which significantly reduces the power consumption. A conventional fast discriminator consumes about 1250 MW of power whereas this low power version consumes about 440 MW. In a multi detector system, where the number of discriminators is very large, reduction of power is of utmost importance. This low power discriminator is being designed for GRACE (Gamma Ray Atmospheric Cerenkov Experiments) telescope where 1000 channels of discriminators are required. A novel method of decreasing power consumption has been described. (author)

  1. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    International Nuclear Information System (INIS)

    John Darrell Bess

    2008-01-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for

  2. Reactor core cooling device for nuclear power plant

    International Nuclear Information System (INIS)

    Tsuda, Masahiko.

    1992-01-01

    The present invention concerns a reactor core cooling facility upon rupture of pipelines in a BWR type nuclear power plant. That is, when rupture of pipelines should occur in the reactor container, an releasing safety valve operates instantly and then a depressurization valve operates to depressurize the inside of a reactor pressure vessel. Further, an injection valve of cooling water injection pipelines is opened and cooling water is injected to cool the reactor core from the time when the pressure is lowered to a level capable of injecting water to the pressure vessel by the static water head of a pool water as a water source. Further, steams released from the pressure vessel and steams in the pressure vessel are condensed in a high pressure/low pressure emergency condensation device and the inside of the reactor container is depressurized and cooled. When the reactor is isolated, since the steams in the pressure vessel are condensed in the state that the steam supply valve and the return valve of a steam supply pipelines are opened and a vent valve is closed, the reactor can be maintained safely. (I.S.)

  3. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  4. Low resistance, low-inductance power connectors

    Science.gov (United States)

    Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony; Takken, Todd Edward

    2018-01-16

    An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, with the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.

  5. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  6. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    The feasibility of fusion devices operating in the semi-catalyzed deuterium (SCD) mode and of high energy proton accelerators to provide the neutron sources for driving subcritical breeding light water power reactors is assessed. The assessment is done by studying the energy balance of the resulting source driven light water reactors (SDLWR) and comparing it with the energy balance of the reference light water hybrid reactors (LWHR) driven by a D-T neutron source (DT-LWHR). The conditions the non-DT neutron sources should satisfy in order to make the SDLWR viable power reactors are identified. It is found that in order for a SCD-LWHR to have the same overall efficiency as a DT-LWHR, the fusion energy gain of the SCD device should be at least one half that the DT device. The efficienct of ADLWRs using uranium targets is comparable with that of DT-LWHRs having a fusion energy gain of unity. Advantages and disadvantages of the DT-LWHR, SCD-LWHR and ADLWR are discussed. (aurthor)

  7. Burnup analysis of the power reactor, 2

    International Nuclear Information System (INIS)

    Ezure, Hideo

    1975-09-01

    In burnup analysis of JPDR-1 with FLARE, it was found to have problems. The program FLORA was developed for solution of the problems. By their bench mark tests FLORA was found to be useful for three-dimensional thermal-hydro-dynamic analysis of BWRs. It was applied to analysis of the burnup of JPDR-1. The input data and option of FLORA were corrected on referring to the results of gammer probe tests for JPDR-1. The void, source and burnup distributions were calculated each month during the operation. The burnup distribution in three assemblies revealed by a destructive test agrees better with that by FLORA than by FLARE. It was shown that the distortion of power distribution around the control rods by FLORA was smaller and closer to that by the gammer probe tests than by FLARE, and the connector of fuel assemblies and the plugs in the reflector had much influence on the power distribution. (auth.)

  8. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misulovin, A.; Gilai, D.; Levin, P.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    Improvements in the performance of fission power reactors made possible by designing them subcritical driven by D-T neutron sources are investigated. Light-water thermal systems are found to be most promising, neutronically and energetically, for the source driven mode of operation. The range of performance characteristics expected from breeding Light Water Hybrid Reactors (LWHR) is defined. Several promising types of LWHR blankets are identified. Options opened for the nuclear energy strategy by four types of the LWHRs are examined, and the potential contribution of these LWHRs to the nuclear energy economy are discussed. The power systems based on these LWHRs are found to enable a high utilization of the energy content of the uranium resources in all forms available - including depleted uranium and spent fuel from LWRs, while being free from the need for uranium enrichment and plutonium separation capabilities. (author)

  9. Low power cryptography

    International Nuclear Information System (INIS)

    Kitsos, P; Koufopavlou, O; Selimis, G; Sklavos, N

    2005-01-01

    Today more and more sensitive data is stored digitally. Bank accounts, medical records and personal emails are some categories that data must keep secure. The science of cryptography tries to encounter the lack of security. Data confidentiality, authentication, non-reputation and data integrity are some of the main parts of cryptography. The evolution of cryptography drove in very complex cryptographic models which they could not be implemented before some years. The use of systems with increasing complexity, which usually are more secure, has as result low throughput rate and more energy consumption. However the evolution of cipher has no practical impact, if it has only theoretical background. Every encryption algorithm should exploit as much as possible the conditions of the specific system without omitting the physical, area and timing limitations. This fact requires new ways in design architectures for secure and reliable crypto systems. A main issue in the design of crypto systems is the reduction of power consumption, especially for portable systems as smart cards. (invited paper)

  10. Power conditioning for space nuclear reactor systems

    Science.gov (United States)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  11. Compact approach to fusion power reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1984-01-01

    The potential of the Reversed-Field Pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. These compact systems promise to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that largely substantiate these promising results have since been completed. This 1000-MWe(net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion

  12. Small and medium power reactors 1985

    International Nuclear Information System (INIS)

    1986-05-01

    This report is intended for designers and planners concerned with Small and Medium Power Reactors. It provides a record of the presentations during the meetings held on this subject at the Agency's General Conference in September 1985. This information should be useful as it indicates the principal findings and main conclusions and recommendations resulting from these meetings. A separate abstract was prepared for each of the 10 presentations in this report

  13. Leaching of nuclear power reactor wastes forms

    International Nuclear Information System (INIS)

    Endo, L.S.; Villalobos, J.P.; Miyamoto, H.

    1986-01-01

    The leaching tests for power reactor wastes carried out at IPEN/CNEN-SP are described. These waste forms consist mainly of spent resins and boric acid concentrates solidified in ordinary Portland cement. All tests were conducted according to the ISO and IAEA recommendations. 3 years leaching results are reported, determining cesium and strontium diffusivity coefficients for boric acid waste form and ion-exchange resins. (Author) [pt

  14. Nuclear piston engine and pulsed gaseous core reactor power systems

    International Nuclear Information System (INIS)

    Dugan, E.T.

    1976-01-01

    The investigated nuclear piston engines consist of a pulsed, gaseous core reactor enclosed by a moderating-reflecting cylinder and piston assembly and operate on a thermodynamic cycle similar to the internal combustion engine. The primary working fluid is a mixture of uranium hexafluoride, UF 6 , and helium, He, gases. Highly enriched UF 6 gas is the reactor fuel. The helium is added to enhance the thermodynamic and heat transfer characteristics of the primary working fluid and also to provide a neutron flux flattening effect in the cylindrical core. Two and four-stroke engines have been studied in which a neutron source is the counterpart of the sparkplug in the internal combustion engine. The piston motions which have been investigated include pure simple harmonic, simple harmonic with dwell periods, and simple harmonic in combination with non-simple harmonic motion. The results of the conducted investigations indicate good performance potential for the nuclear piston engine with overall efficiencies of as high as 50 percent for nuclear piston engine power generating units of from 10 to 50 Mw(e) capacity. Larger plants can be conceptually designed by increasing the number of pistons, with the mechanical complexity and physical size as the probable limiting factors. The primary uses for such power systems would be for small mobile and fixed ground-based power generation (especially for peaking units for electrical utilities) and also for nautical propulsion and ship power

  15. Renovating process for Pressurized Water Reactor control rod assemblies and corresponding control

    International Nuclear Information System (INIS)

    Jahnke, S.; Ple, P.

    1989-01-01

    In the first PWRs the control rods are moving by the intermediary of electromagnetic mechanisms where the power fed to the electromagnets is selected by a hard wired logic circuit connected to the controldesh by another logic control. For renovating the control rod assemblies each power assembly is replaced by an electronic assembly containing an ordinator and power supply interfaces [fr

  16. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the ..beta.. limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR (One Coil Low Aspect Toroidal Reactor).

  17. Critical Power Response to Power Oscillations in Boiling Water Reactors

    International Nuclear Information System (INIS)

    Farawila, Yousef M.; Pruitt, Douglas W.

    2003-01-01

    The response of the critical power ratio to boiling water reactor (BWR) power oscillations is essential to the methods and practice of mitigating the effects of unstable density waves. Previous methods for calculating generic critical power response utilized direct time-domain simulations of unstable reactors. In this paper, advances in understanding the nature of the BWR oscillations and critical power phenomena are combined to develop a new method for calculating the critical power response. As the constraint of the reactor state - being at or slightly beyond the instability threshold - is removed, the new method allows the calculation of sensitivities to different operation and design parameters separately, and thus allows tighter safety margins to be used. The sensitivity to flow rate and the resulting oscillation frequency change are given special attention to evaluate the extension of the oscillation 'detect-and-suppress' methods to internal pump plants where the flow rate at natural circulation and oscillation frequency are much lower than jet pump plants

  18. Saturated steam turbines for power reactors of WWER-type

    International Nuclear Information System (INIS)

    Czwiertnia, K.

    1978-01-01

    The publication deals with design problems of large turbines for saturated steam and with problem of output limitations of single shaft normal speed units. The possibility of unification of conventional and nuclear turbines, which creates the economic basis for production of both types of turbines by one manufacturer based on standarized elements and assemblies is underlined. As separate problems the distribution of nuclear district heating power systems are considered. The choice of heat diagram for district heating saturated steam turbines, the advantages of different diagrams and evaluaton for further development are presented. On this basis a program of unified turbines both condensing and district heating type suitable for Soviet reactors of WWER-440 and WWER-1000 type for planned development of nuclear power in Poland is proposed. (author)

  19. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  20. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...