WorldWideScience

Sample records for los alamos county

  1. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Jarmie, N.; Rogers, F.J. [Mycology Associates, Los Alamos, NM (United States)

    1997-11-01

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  2. Investigation of excess thyroid cancer incidence in Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980`s. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report.

  3. Investigation of excess thyroid cancer incidence in Los Alamos County

    International Nuclear Information System (INIS)

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980's. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report

  4. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  5. Needs assessment for fire department services and resources for the Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-15

    This report has been developed in response to a request from the Los Alamos National Laboratory (LANL) to evaluate the need for fire department services so as to enable the Laboratory to plan effective fire protection and thereby: meet LANL`s regulatory and contractual obligations; interface with the Department of Energy (DOE) and other agencies on matters relating to fire and emergency services; and ensure appropriate protection of the community and environment. This study is an outgrowth of the 1993 Fire Department Needs Assessment (prepared for DOE) but is developed from the LANL perspective. Input has been received from cognizant and responsible representatives at LANL, DOE, Los Alamos County (LAC) and the Los Alamos Fire Department (LAFD).

  6. An analysis of background noise in selected canyons of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Huchton, K.; Koch, S.W.; Robinson, R.

    1997-10-01

    The authors recorded background noise levels in six canyons within Los Alamos County in order to establish a baseline for future comparisons and to discover what noises animals are exposed to. Noise level measurements were taken within each canyon, beginning at an established starting point and at one-mile intervals up to four miles. The primary source of noise above 55 dBA was vehicular traffic. One clap of thunder provided the highest recorded noise level (76 dBA). In general, the level of noise, once away from highways and parking lots, was well below 60 dBA.

  7. Environmental surveillance at Los Alamos during 1976

    International Nuclear Information System (INIS)

    1977-04-01

    This report documents the environmental monitoring program at the Los Alamos Scientific Laboratory (LASL) in 1976. Data are presented for concentrations of radioactivity measured in air, ground and surface waters, sediments, soils, and foodstuffs, and are compared with relevant U.S. Energy Research and Development Administration guides and/or data from other reporting periods. Levels of external penetrating radiation measured in the LASL environs are given. The average whole-body radiation dose to residents of Los Alamos County resulting from LASL operations is calculated. Chemical qualities of surface and ground waters in the LASL environs have been determined and compared to applicable standards. Results of related environmental studies are summarized

  8. Environmental surveillance at Los Alamos during 1974

    International Nuclear Information System (INIS)

    Apt, K.E.; Lee, V.J.

    1975-05-01

    The CY 1974 environmental monitoring program of the Los Alamos Scientific Laboratory (LASL) is documented. Data are presented for concentrations of radioactivity measured in air, ground, and surface waters, sediments, and soils, and those data are compared with relevant AEC guides and/or data from other reporting periods. Levels of external penetrating radiation measured in the LASL environs are given. The average whole-body radiation dose to residents of Los Alamos County resulting from LASL operations is calculated. Chemical and biological qualities of surface and ground waters of the LASL environs have been determined and are compared to applicable standards. Results of related environmental studies are provided. (U.S.)

  9. Environmental surveillance at Los Alamos during 1975

    International Nuclear Information System (INIS)

    Apt, K.E.; Lee, V.J.

    1976-04-01

    This report documents the CY 1975 environmental monitoring program of the Los Alamos Scientific Laboratory (LASL). Data are presented for concentrations of radioactivity measured in air, ground and surface waters, sediments, soils, and foodstuffs, and are compared with relevant U.S. Energy Research and Development Administration guides and/or data from other reporting periods. Levels of external penetrating radiation measured in the LASL environs are given. The average whole-body radiation dose to residents of Los Alamos County resulting from LASL operations is calculated. Chemical qualities of surface and ground waters in the LASL environs have been determined and compared to applicable standards. Results of related environmental studies are summarized

  10. Morbidity and mortality in Los Alamos County, New Mexico. I. Methodological issues and preliminary results

    International Nuclear Information System (INIS)

    Stebbings, J.H. Jr.; Voelz, G.L.

    1981-01-01

    Cancer among Los Alamos County, New Mexico, male residents, all of whom have worked in or have lived within a few kilometers of a major plutonium plant and other nuclear facilities, has been reviewed with respect to mortality between 1950 and 1969 and incidence between 1969 and 1974. Several potentially causal occupational exposures have existed. Higher than expected incidence, currently, of cancers of the colon and rectum appears to be explained better by socioeconomic than occupational factors. Healthy worker and healthy military effects, white ethnicity, and migration are discussed as intervening variables relevant to interpreting mortality data in counties dominated by a single major facility. The utility of county data bases in the study of single local area mortality rates is reviewed

  11. Los Alamos County Fire Department LAFD: TA-55 PF-4 Facility Familiarization Tour, OJT 55260

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Victor Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-13

    Los Alamos National Laboratory (LANL) will conduct familiarization tours for Los Alamos County Fire Department (LAFD) personnel at the Plutonium Facility (PF-4) at Technical Area (TA)-55. These familiarization tours are official LANL business; the purpose of these tours is to orient the firefighters to the facility so that they can respond efficiently and quickly to a variety of emergency situations. This orientation includes the ingress and egress of the area and buildings, layout and organization of the facility, evacuation procedures and assembly points, and areas of concern within the various buildings at the facility. LAFD firefighters have the skills and abilities to perform firefighting operations and other emergency response tasks that cannot be provided by other LANL personnel who have the required clearance level. This handout provides details of the information, along with maps and diagrams, to be presented during the familiarization tours. The handout will be distributed to the trainees at the time of the tour. A corresponding checklist will also be used as guidance during the familiarization tours to ensure that all required information is presented to LAFD personnel.

  12. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  13. LOS ALAMOS

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Following the historic observation of neutrinos in the mid-1950s by two Los Alamos scientists, Fred Reines and Clyde Cowan, Jr, using inverse beta decay, there has been a long and distinguished history of experimental neutrino physics at LAMPF, the Los Alamos Meson Physics Facility. LAMPF is the only meson factory to have had an experimental neutrino programme. In the late 1970s, the first LAMPF neutrino experiment used a 6-tonne water Cherenkov detector 7 metres from the beam stop. A collaboration of Yale, Los Alamos and several other institutions, this experiment searched for the forbidden decay of a muon into an electron and two neutrinos, and measured the reaction rate of a neutrino interacting with a deuteron to give two protons and an electron - the inverse of the reaction that drives the sun's primary energy source. The next LAMPF neutrino experiment, a UC Irvine/Maryland/Los Alamos collaboration, ran from 1982 through 1986 and measured the elastic scattering rate of electron neutrinos and protons, where both neutral and charged weak currents contribute. With its precision of about 15%, the experiment provided the first demonstration of (destructive) interference between the charged and neutral currents. More recent neutrino experiments at LAMPF have searched for neutrino oscillations, especially between muon- and electron-neutrinos. The newest experiment to pursue this physics (as well as oscillations in other channels) is LSND (July/ August, page 10 and cover). In addition to searching for these oscillations, LSND will measure neutrino-proton elastic scattering at low momentum transfer, providing a sensitive measure of the strange quark contribution to the proton spin. LSND began taking data in August. Los Alamos physicists have also been busy in neutrino physics experiments elsewhere. One such experiment looked at the beta decay of free molecular tritium to obtain an essentially model independent determination of the electron-neutrino mass. The

  14. Water supply at Los Alamos during 1996. Progress report

    International Nuclear Information System (INIS)

    McLin, S.G.; Purtymun, W.D.; Maes, M.N.; Longmire, P.A.

    1997-12-01

    Production of potable municipal water supplies during 1996 totaled about 1,368.1 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from either the spring gallery in Water Canyon or from Guaje Reservoir during 1996. About 2.6 million gallons of water from Los Alamos Reservoir was used for lawn irrigation. The total water usage in 1996 was about 1,370.7 million gallons, or about 131 gallons per day per person living in Los Alamos County. Groundwater pumpage was up about 12.0 million gallons in 1996 compared with the pumpage in 1995. This report fulfills requirements specified in US Department of Energy (DOE) Order 5400.1 (Groundwater Protection Management Program), which requires the Los Alamos National Laboratory (LANL) to monitor and document groundwater conditions below Pajarito Plateau and to protect the regional aquifer from contamination associated with Laboratory operations. Furthermore, this report also fulfills special conditions by providing information on hydrologic characteristics of the regional aquifer, including operating conditions of the municipal water supply system

  15. Los Alamos Climatology 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  16. Los Alamos offers Fellowships

    Science.gov (United States)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  17. The Los Alamos primer

    CERN Document Server

    Serber, Robert

    2018-01-01

    Unabridged declassified value reproduction of The Los Alamos Primer by Robert Serber, in full color with all censor markings. This is the booklet given to new workers at Los Alamos during World War II, to catch them up on how to build a practical fission bomb. The Primer was driven by Robert Oppenheimer asking his protégé Robert Serber to summarize all knowledge and possible solutions known as of April 1943 in a series of lectures. Serber did such an excellent job that the notes from the series was turned into The Los Alamos Primer. Serber was known as an expert that bridged theory and reality, and so was also chosen to be one of the first Americans to enter Hiroshima and Nagasaki to assess the atomic damage in 1945.

  18. Underground science initiatives at Los Alamos

    International Nuclear Information System (INIS)

    Simmons, L.M. Jr.

    1985-01-01

    Recently, the Los Alamos National Laboratory has proposed two major new initiatives in underground science. Following the dissolution of the original gallium solar neutrino collaboration, Los Alamos has formed a new North American collaboration. We briefly review the rationale for solar neutrino research, outline the proposal and new Monte Carlo simulations, and describe the candidate locations for the experiment. Because there is no dedicated deep underground site in North America suitable for a wide range of experiments, Los Alamos has conducted a survey of possible sites and developed a proposal to create a new National Underground Science Facility. This paper also reviews that proposal

  19. UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mariann R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clow, Shandra Deann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    The UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program (Pilot) for existing postdoctoral researchers at Los Alamos National Laboratory (Los Alamos) to gain skills in entrepreneurship and commercializing technology as part of their postdoctoral experience. This program will incorporate training and mentoring during the first 6-month period, culminating in a focused 6-month Fellowship aimed at creating a new business in Northern New Mexico.

  20. Los Alamos low-level waste performance assessment status

    International Nuclear Information System (INIS)

    Wenzel, W.J.; Purtymun, W.D.; Dewart, J.M.; Rodgers, J.E.

    1986-06-01

    This report reviews the documented Los Alamos studies done to assess the containment of buried hazardous wastes. Five sections logically present the environmental studies, operational source terms, transport pathways, environmental dosimetry, and computer model development and use. This review gives a general picture of the Los Alamos solid waste disposal and liquid effluent sites and is intended for technical readers with waste management and environmental science backgrounds but without a detailed familiarization with Los Alamos. The review begins with a wide perspective on environmental studies at Los Alamos. Hydrology, geology, and meteorology are described for the site and region. The ongoing Laboratory-wide environmental surveillance and waste management environmental studies are presented. The next section describes the waste disposal sites and summarizes the current source terms for these sites. Hazardous chemical wastes and liquid effluents are also addressed by describing the sites and canyons that are impacted. The review then focuses on the transport pathways addressed mainly in reports by Healy and Formerly Utilized Sites Remedial Action Program. Once the source terms and potential transport pathways are described, the dose assessment methods are addressed. Three major studies, the waste alternatives, Hansen and Rogers, and the Pantex Environmental Impact Statement, contributed to the current Los Alamos dose assessment methodology. Finally, the current Los Alamos groundwater, surface water, and environmental assessment models for these mesa top and canyon sites are described

  1. Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-03-09

    The ''National Environmental Policy Act of 1969'' (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE) follows the Council on Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an Environmental Assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact. In this case, the DOE decision to be made is whether to construct and operate a 19.5-mile (mi) (31-kilometer [km]) electric transmission line (power line) reaching from the Norton Substation, west across the Rio Grande, to locations within the Los Alamos National Laboratory (LANL) Technical Areas (TAs) 3 and 5 at Los Alamos, New Mexico. The construction of one electric substation at LANL would be included in the project as would the construction of two line segments less than 1,200 feet (ft) (366 meters [m]) long that would allow for the uncrossing of a portion of two existing power lines. Additionally, a fiber optics communications line would be included and installed concurrently as part of the required overhead ground conductor for the power line. The new power line would improve the reliability of electric service in the LANL and Los Aktrnos County areas as would the uncrossing of the crossed segments of the existing lines. Additionally, installation of the new power line would enable the LANL and the Los Alamos County electric grid, which is a shared resource, to be adapted to accommodate the future import of increased power when additional power service becomes available in the northern New Mexico area. Similarly, the fiber optics line would allow DOE to take advantage of

  2. Publications of Los Alamos Research, 1983

    International Nuclear Information System (INIS)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L.

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  3. Publications of Los Alamos Research 1982

    International Nuclear Information System (INIS)

    McClary, W.J.; Rodriguez, L.L.; Sheridan, C.J.

    1983-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1982. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassfiication of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  4. Publications of Los Alamos Research, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L. (comps.)

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  5. Publications of Los Alamos research 1980

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, C.A.; Willis, J.K. (comps.)

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  6. A Sailor in the Los Alamos Navy

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-12-20

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. To meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.

  7. Analysis results from the Los Alamos 2D/3D program

    International Nuclear Information System (INIS)

    Boyack, B.E.; Cappiello, M.W.; Stumpf, H.; Shire, P.; Gilbert, J.; Hedstrom, J.

    1986-01-01

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multidimensional nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During Fiscal Year 1986, Los Alamos conducted analytical assessment activities using data from the Cylindrical Core Test Facility and the Slab Core Test Facility. Los Alamos also continued to provide support analysis for the planning of Upper Plenum Test Facility experiments. Finally, Los Alamos either completed or is currently working on three areas of TRAC modeling improvement. In this paper, Los Alamos activities during Fiscal Year 1986 are summarized; several significant accomplishments are described in more detail to illustrate the work activities at Los Alamos

  8. Status of Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time

  9. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative

  10. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  11. Decommissioning the Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I)

    International Nuclear Information System (INIS)

    Harper, J.R.; Garde, R.

    1981-11-01

    The Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I) was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1980. The LAMPRE I was a sodium-cooled reactor built to develop plutonium fuels for fast breeder applications. It was retired in the mid-1960s. This report describes the decommissioning procedures, the health physics programs, the waste management, and the costs for the operation

  12. Analysis results from the Los Alamos 2D/3D program

    International Nuclear Information System (INIS)

    Boyack, B.E.; Cappiello, M.W.; Harmony, S.C.; Shire, P.R.; Siebe, D.A.

    1987-01-01

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos

  13. New Generation of Los Alamos Opacity Tables

    Science.gov (United States)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  14. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Roberts, N.J.

    1989-01-01

    This presentation gives an overview of the accounting system used at the Los Alamos National Laboratory by the Los Alamos Nuclear Material Accounting and Safeguards System (MASS). This system processes accounting data in real time for bulk materials, discrete items, and materials undergoing dynamic processing. The following topics are covered in this chapter: definitions; nuclear material storage; nuclear material storage; computer system; measurement control program; inventory differences; and current programs and future plans

  15. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  16. Publications of Los Alamos research, 1977-1981

    International Nuclear Information System (INIS)

    Sheridan, C.J.; Garcia, C.A.

    1983-03-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1977-1981. Papers published in those years are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  17. Publications of Los Alamos research, 1977-1981

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; Garcia, C.A. (comps.)

    1983-03-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1977-1981. Papers published in those years are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  18. Environmental Assessment for Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1997-10-07

    As part of its initiative to fulfill its responsibilities to provide support for the incorporated County of Los Alamos (the County) as an Atomic Energy Community, while simultaneously fulfilling its obligations to enhance the self-sufficiency of the County under authority of the Atomic Energy Community Act of 1955 and the Defense Authorization Act, the U.S. Department of Energy (DOE) proposes to lease undeveloped land in Los Alamos, New Mexico, to the County for private sector use as a research park. The Proposed Action is intended to accelerate economic development activities within the County by creating regional employment opportunities through offering federal land for private sector lease and use. As a result of the proposed land lease, any government expenditures for providing infrastructure to the property would be somewhat supplemented by tenant purchase of Los Alamos National Laboratory (LANL) expertise in research and development activities. The presence of a research park within LANL boundaries is expected to allow private sector tenants of the park to be able to quickly and efficiently call upon LANL scientific expertise and facility and equipment capabilities as part of their own research operations and LANL research personnel, in turn, would be challenged in areas complementary to their federally funded research. In this way a symbiotic relationship would be enjoyed by both parties while simultaneously promoting economic development for the County through new job opportunities at the Research Park and at LANL, new indirect support opportunities for the community at large, and through payment of the basic building space leases. A ''sliding-scale'' approach (DOE 1993) is the basis for the analysis of effects in this Environmental Assessment (EA). That is, certain aspects of the Proposed Action have a greater potential for creating adverse environmental effects than others; therefore, they are discussed in greater detail in this EA

  19. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-01-01

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents

  20. Ecological baseline studies in Los Alamos and Guaje Canyons County of Los Alamos, New Mexico. A two-year study

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T.S. [comp.

    1995-11-01

    During the summers of 1993 and 1994, the Biological Resource Evaluations Team (BRET) of the Environmental Protection Group (ESH-8) conducted baseline studies within two canyon systems, Los Alamos and Guaje Canyons. Biological data was collected within each canyon to provide background and baseline information for Ecological Risk models. Baseline studies included establishment of permanent vegetation plots within each canyon along the elevational gradient. Then, in association with the various vegetation types, surveys were conducted for ground dwelling insects, birds, and small mammals. The stream channels associated with the permanent vegetation plots were characterized and aquatic macroinvertebrates collected within the stream monthly throughout a six-month period. The Geographic Position System (GPS) in combination with ARC INFO was used to map the study areas. Considerable data was collected during these surveys and are summarized in individual chapters.

  1. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  2. High-energy density physics at Los Alamos

    International Nuclear Information System (INIS)

    Byrnes, P.; Younger, S.M.

    1993-03-01

    This brochure describes the facilities of the Above Ground Experiments II (AGEX II) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of th e United States. The mission of the AGEX II program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high Pressure and temperature.The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide-including our own Trident and Mercury lasers-to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. In addition to direct programmatic high-energy density physics is a nc scientific endeavor in itself. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in awide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures

  3. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  4. LOS ALAMOS: Hadron future

    International Nuclear Information System (INIS)

    Ernst, David J.

    1992-01-01

    At a Workshop on the Future of Hadron Facilities, held on 15-16 August at Los Alamos National Laboratory, several speakers pointed out that the US physics community carrying out fixed target experiments with hadron beam had not been as successful with funding as it deserved. To rectify this, they said, the community should be better organized and present a more united front

  5. LOS ALAMOS: Hadron future

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, David J.

    1992-11-15

    At a Workshop on the Future of Hadron Facilities, held on 15-16 August at Los Alamos National Laboratory, several speakers pointed out that the US physics community carrying out fixed target experiments with hadron beam had not been as successful with funding as it deserved. To rectify this, they said, the community should be better organized and present a more united front.

  6. Notes on Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-05

    In 1954 an unknown author drafted a report, reprinted below, describing the Laboratory and the community as they existed in late 1953. This report, perhaps intended to be crafted into a public relations document, is valuable because it gives us an autobiographical look at Los Alamos during the first half of the 1950s. It has been edited to enhance readability.

  7. Report of the Los Alamos accelerator automation application toolkit workshop

    International Nuclear Information System (INIS)

    Clout, P.; Daneels, A.

    1990-01-01

    A 5 day workshop was held in November 1988 at Los Alamos National Laboratory to address the viability of providing a toolkit optimized for building accelerator control systems. The workshop arose from work started independently at Los Alamos and CERN. This paper presents the discussion and the results of the meeting. (orig.)

  8. Los Alamos Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  9. Pre Incident Planning For The Los Alamos National Laboratory

    Science.gov (United States)

    2017-12-01

    laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides emergency response services to...Project: the newly established laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides...lower priority despite its importance to the responders’ scene safety.20 In a Carolina Fire Rescue EMS Journal article, retired New York City

  10. Direct-current proton-beam measurements at Los Alamos

    International Nuclear Information System (INIS)

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-01-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H 2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given

  11. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  12. Publications of Los Alamos research 1988

    International Nuclear Information System (INIS)

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A.

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index

  13. Publications of Los Alamos research 1988

    Energy Technology Data Exchange (ETDEWEB)

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A. (comps.)

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  14. The development of the atomic bomb, Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1993-11-01

    The historical presentation begins with details of the selection of Los Alamos as the site of the Army installation. Wartime efforts of the Army Corps of Engineers, and scientists to include the leader of Los Alamos, Robert Oppenheimer are presented. The layout and construction of the facilities are discussed. The monumental design requirements of the bombs are discussed, including but not limited to the utilization of the second choice implosion method of detonation, and the production of bomb-grade nuclear explosives. The paper ends with a philosophical discussion on the use of nuclear weapons.

  15. RFQ development at Los Alamos

    International Nuclear Information System (INIS)

    Wangler, T.P.; Crandall, K.R.; Stokes, R.H.

    1982-01-01

    The basic principles of the radio-frequency quadrupole (RFQ) linac are reviewed and a summary of past and present Los Alamos work is presented. Some beam-dynamics effects, important for RFQ design, are discussed. A design example is shown for xenon and a brief discussion of low-frequency RFQ structures is given

  16. Smart instrumentation development at Los Alamos

    International Nuclear Information System (INIS)

    Erkkila, B.

    1984-01-01

    For several years Los Alamos has incorporated microprocessors into instruments to expand the capability of portable survey type equipment. Beginning with portable pulse height analyzers, the developments have expanded to small dedicated instruments which handle the measurement and interpretation of various radiation fields. So far, instruments to measure gamma rays, neutrons, and beta particles have been produced. The computer capability built into these instruments provides significant computational power into the instruments. Capability unheard of a few years ago in small portable instruments is routine today. Large computer-based laboratory measurement systems which required much space and electrical power can now be incorporated in a portable hand-held instrument. The microprocessor developments at Los Alamos are now restricted to radiation monitoring equipment but can be expanded to chemical and biological applications as well. Applications for radiation monitoring equipment and others are discussed

  17. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1982-01-01

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine

  18. Los Alamos DP West Plutonium Facility decontamination project

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-01-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  19. Summary of environmental surveillance at Los Alamos during 1995

    International Nuclear Information System (INIS)

    1996-10-01

    Linking the Rio Grande Valley and the Jemez Mountains, New Mexico's Pajarito Plateau is home to a world-class scientific institution. Los Alamos National Laboratory (or the Laboratory), managed by the Regents of the University of California, is a government-owned, Department of Energy-supervised complex investigating all areas of modern science for the purposes of national defense, health, conservation, and ecology. The Laboratory was founded in 1943 as part of the Manhattan Project, whose members assembled to create the first nuclear weapon. Occupying the campus of the Los Alamos Ranch School, American and British scientists gathered on the isolated mesa tops to harness recently discovered nuclear power with the hope of ending World War II. In July 1945, the initial objective of the Laboratory, a nuclear device, was achieved in Los Alamos and tested in White Sands, New Mexico. Today the Laboratory continues its role in defense, particularly in nuclear weapons, including developing methods for safely handling weapons and managing waste. For the past twenty years, the Laboratory has published an annual environmental report. This pamphlet offers a synopsis that briefly explains important concepts, such as radiation and provides a summary of the monitoring results and regulatory compliance status that are explained at length in the document entitled Environmental Surveillance at Los Alamos during 1995

  20. Publications of Los Alamos research, 1985

    International Nuclear Information System (INIS)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Dussart, S.A.

    1986-11-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1985, including laboratory reports, papers released as non-laboratory reports, journal articles, books, conference papers, papers published in congrssional hearings, theses, and US patents

  1. Radioisotope research and development at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Peterson, E.J.

    1993-01-01

    Throughout its fifty year history, Los Alamos National Laboratory has conducted research and development in the production, isolation, purification, and application of radioactive isotopes. Initially this work supported the weapons development mission of the Laboratory. Over the years the work has evolved to support basic and applied research in many diverse fields, including nuclear medicine, biomedical studies, materials science, environmental research and the physical sciences. In the early 1970s people in the Medical Radioisotope Research Program began irradiating targets at the Los Alamos Meson Physics Facility (LAMPF) to investigate the production and recovery of medically important radioisotopes. Since then spallation production using the high intensity beam at LAMPF has become a significant source of many important radioisotopes. Los Alamos posesses other facilities with isotope production capabilities. Examples are the Omega West Reactor (OWR) and the Van de Graaf Ion Beam Facility (IBF). Historically these facilities have had limited availability for radioisotope production, but recent developments portend a significant radioisotope production mission in the future

  2. Flaws found in Los Alamos safety procedures

    Science.gov (United States)

    Gwynne, Peter

    2017-12-01

    A US government panel on nuclear safety has discovered a series of safety issues at the Los Alamos National Laboratory, concluding that government oversight of the lab's emergency preparation has been ineffective.

  3. Formerly utilized MED/AEC sites remedial action program. Removal of a contaminated industrial waste line, Los Alamos, New Mexico. Final report

    International Nuclear Information System (INIS)

    Gunderson, T.C.; Ahlquist, A.J.

    1979-04-01

    In 1977 parts of an abandoned industrial waste line (IWL) that carried laboratory or process chemical and radiochemical wastes were removed from Los Alamos Scientific Laboratory property and from the townsite of Los Alamos in north-central New Mexico. Most of the IWL was removed between 1964 and 1967. Some IWL segments in the townsite, which at that time were buried under newly paved roads, were left for removal during future construction projects involving these roads to minimize traffic problems and road damage, and because they posed no public health hazard. In 1977, prior to impending major road construction in several areas, 400 m (1300 ft) of IWL and two IWL manhole structures were removed from Laboratory and Los Alamos County property. Associated soil contamination was removed to levels considered to be as low as practicable. Contaminated or potentially contaminated material was removed to an approved radioactive waste disposal site on Department of Energy property. Full details of the methods, findings, and as-left conditions are documented in this report

  4. A physicists guide to The Los Alamos Primer

    International Nuclear Information System (INIS)

    Reed, B Cameron

    2016-01-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer , which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons. (invited comment)

  5. Estimated effective dose rates from radon exposure in workplaces and residences within Los Alamos county in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael [Los Alamos National Laboratory

    2009-01-01

    Many millions of office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the workplace are lacking. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were then used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about nine times greater exposure at home than while in the office (691 mrem yr{sup -1} versus 78 mrem yr{sup -1}). The estimated effective dose rate for a more homebound person was 896 mrem yr{sup -1}. These effective dose rates are contrasted against the 100 mrem yr{sup -1} threshold for regulation of a 'radiological worker' defined in the Department of Energy regulations occupational exposure and the 10 mrem yr{sup -1} air pathway effective public dose limit regulated by the Environmental Protection Agency.

  6. Los Alamos contribution to target diagnostics on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mack, J.M.; Baker, D.A.; Caldwell, S.E. [and others

    1994-07-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ``phase I diagnostics.`` Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given.

  7. Los Alamos contribution to target diagnostics on the National Ignition Facility

    International Nuclear Information System (INIS)

    Mack, J.M.; Baker, D.A.; Caldwell, S.E.

    1994-01-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ''phase I diagnostics.'' Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given

  8. Environmental surveillance at Los Alamos during 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  9. Environmental surveillance at Los Alamos during 1994

    International Nuclear Information System (INIS)

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance

  10. Monte Carlo code development in Los Alamos

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.; Everett, C.J.; Forest, C.A.; Schrandt, R.G.; Taylor, W.M.; Thompson, W.L.; Turner, G.D.

    1974-01-01

    The present status of Monte Carlo code development at Los Alamos Scientific Laboratory is discussed. A brief summary is given of several of the most important neutron, photon, and electron transport codes. 17 references. (U.S.)

  11. Neutron Scattering Activity at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bourke, M.A.M.

    2015-01-01

    The nondestructive and bulk penetrating aspects of neutron scattering techniques make them well suited to the study of materials from the nuclear energy sector (particularly those which are radioactive). This report provides a summary of the facility, LANSCE, which is used at Los Alamos National laboratory for these studies. It also provides a brief description of activities related to line broadening studies of radiation damage and recent imaging and offers observations about the outlook for future activity. The work alluded to below was performed during the period of the CRP by researchers that included but were not limited to; Sven Vogel and Don Brown of Los Alamos National Laboratory; and Anton Tremsin of the University of California, Berkeley. (author)

  12. Los Alamos National Lab: National Security Science

    Science.gov (United States)

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Museum New Hires Publications Research Library Mission Science & Innovation Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Lab Organizations Science Programs

  13. Multimedia contaminant environmental exposure assessment methodology as applied to Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Whelan, G.; Thompson, F.L.; Yabusaki, S.B.

    1983-02-01

    The MCEA (Multimedia Contaminant Environmental Exposure Assessment) methodology assesses exposures to air, water, soil, and plants from contaminants released into the environment by simulating dominant mechanisms of contaminant migration and fate. The methodology encompasses five different pathways (i.e., atmospheric, terrestrial, overland, subsurface, and surface water) and combines them into a highly flexible tool. The flexibility of the MCEA methodology is demonstrated by encompassing two of the pathways (i.e., overland and surface water) into an effective tool for simulating the migration and fate of radionuclides released into the Los Alamos, New Mexico region. The study revealed that: (a) the 239 Pu inventory in lower Los Alamos Canyon increased by approximately 1.1 times for the 50-y flood event; (b) the average contaminant 239 Pu concentrations (i.e., weighted according to the depth of the respective bed layer) in lower Los Alamos Canyon for the 50-y flood event decreased by 5.4%; (c) approx. 27% of the total 239 Pu contamination resuspended from the entire bed (based on the assumed cross sections) for the 50-y flood event originated from lower Pueblo Canyon; (d) an increase in the 239 Pu contamination of the bed followed the general deposition patterns experienced by the sediment in Pueblo-lower Los Alamos Canyon; likewise, a decrease in the 239 Pu contamination of the bed followed general sediment resuspension patterns in the canyon; (e) 55% of the 239 Pu reaching the San Ildefonso Pueblo in lower Los Alamos Canyon originated from lower Los Alamos Canyon; and (f) 56% of the 239 Pu contamination reaching the San Ildefonso Pueblo in lower Los Alamos Canyon was carried through towards the Rio Grande. 47 references, 41 figures, 29 tables

  14. Los Alamos Spheromak Program

    International Nuclear Information System (INIS)

    Knox, S.O.; Barnes, C.W.; Fernandez, J.C.

    1985-01-01

    The Los Alamos Spheromak Program consists of two experimental facilities. The confinement physics of sustained and decaying spheromaks are being studied in CTX, which has an extensive array of diagnostics. Experiments are directed towards extending the physics understanding of the spheromak as a magnetic confinement concept. Electrodes for the production of clean sustained spheromaks are developed on the Electrode Facility, which is more flexible in terms of experimental modifications. Improvements to helicity sources and elecrodes which are proven on the Electrode Facility are then considered for incorporation onto CTX

  15. Progress at LAMPF [Los Alamos Meson Physics Facility], January-December 1987

    International Nuclear Information System (INIS)

    Poelakker, K.

    1988-09-01

    This report is the annual progress report of MP Division of the Los Alamos National Laboratory. Included are brief reports on research done at LAMPF by researchers from other institutions and other Los Alamos Divisions. These reports included the following topics: Nuclear and particle physics; Atomic and molecular physics; Materials science; Radiation-effects studies; Biomedical research and instrumentation; Nuclear chemistry; Radioisotope production and accelerator facilities development and operation

  16. Penetrating radiation: applications at Los Alamos National Laboratory

    Science.gov (United States)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  17. Proceedings of the Los Alamos neutrino workshop

    International Nuclear Information System (INIS)

    Boehm, F.; Stephenson, G.J. Jr.

    1982-08-01

    A workshop on neutrino physics was held at Los Alamos from June 8 to 12, 1981. The material presented has been provided in part by the organizers, in part by the chairmen of the working sessions. Closing date for contributions was October 1981

  18. Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1981-06-01

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of 235 U, 233 U, and 239 Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented

  19. Los Alamos Before and After the Fire

    Science.gov (United States)

    2002-01-01

    On May 4, 2000, a prescribed fire was set at Bandelier National Monument, New Mexico, to clear brush and dead and dying undergrowth to prevent a larger, subsequent wildfire. Unfortunately, due to high winds and extremely dry conditions in the surrounding area, the prescribed fire quickly raged out of control and, by May 10, the blaze had spread into the nearby town of Los Alamos. In all, more than 20,000 people were evacuated from their homes and more than 200 houses were destroyed as the flames consumed about 48,000 acres in and around the Los Alamos area. The pair of images above were acquired by the Enhanced Thematic Mapper Plus (ETM+) sensor, flying aboard NASA's Landsat 7 satellite, shortly before the Los Alamos fire (top image, acquired April 14) and shortly after the fire was extinguished (lower image, June 17). The images reveal the extent of the damage caused by the fire. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false-color image where vegetation appears as bright to dark green. Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. In the lower image, the areas recently burned appear bright red. Landsat 7 data courtesy United States Geological Survey EROS DataCenter. Images by Robert Simmon, NASA GSFC.

  20. Lujan at Los Alamos Neutron Science Center (LANSCE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Lujan Neutron Scattering Center (Lujan Center) at Los Alamos National Laboratory is an intense pulsed neutrons source operating at a power level of 80 -100 kW....

  1. The Pajarito Site operating procedures for the Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-12-01

    Operating procedures consistent with DOE Order 5480.6, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Los Alamos Critical Experiments Facility (LACEF) of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1983 and apply to any criticality experiment performed at the facility. 11 refs

  2. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    Energy Technology Data Exchange (ETDEWEB)

    McAlpine, Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  3. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    International Nuclear Information System (INIS)

    McAlpine, Bradley

    2015-01-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  4. Cygnus experiment at Los Alamos

    International Nuclear Information System (INIS)

    Dingus, B.L.; Goodman, J.A.; Gupta, S.K.

    1986-01-01

    The Cygnus experiment at Los Alamos National Laboratory has been designed to study, with high angular accuracy, point sources of gamma rays of energy above 10 14 eV. The experimental detector consists of an air shower array to observe gamma-ray showers and a shielded, large-area track detector to study the muon content of the showers. In this paper we present preliminary data from the array and describe its performance. 9 refs., 3 figs

  5. Target/blanket conceptual design for the Los Alamos ATW concept

    International Nuclear Information System (INIS)

    Ames, K.; Cappiello, M.; Ireland, J.; Sapir, J.; Farnum, G.

    1992-01-01

    The Los Alamos Accelerator Transmutation of Waste (ATW) concept has many potential applications that include defense waste transmutation, defense material production (i.e., tritium and 238 Pu), and the transmutation of hazardous nuclear wastes from commercial nuclear reactors (fission products and actinides). A more advanced long-term Los Alamos effort is investigating the potential of an accelerator- driven system to produce fission energy with a minimal nuclear waste stream. All applications employ a high-energy (800- to 1600-MeV), high-current (25--250 mA) proton linear accelerator as the driver. In this report, we discuss only the target/blanket conceptual design for the commercial nuclear waste application. A conceptual design for the target/blanket of the Los Alamos ATW concept has been presented. The neutronics, mechanical design, and heat transfer have been investigated in some detail for the base-case design. Much more work needs to be done, but at this point it appears that the design is feasible and will approach the design goal of supporting two commercial power reactors with each target/blanket module

  6. History of Los Alamos Participation in Active Experiments in Space

    Energy Technology Data Exchange (ETDEWEB)

    Pongratz, Morris B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-06

    Beginning with the Teak nuclear test in 1958, Los Alamos has a long history of participation in active experiments in space. The last pertinent nuclear tests were the five explosions as part of the Dominic series in 1962. The Partial Test Ban Treaty signed in August 1963 prohibited all test detonations of nuclear weapons except for those conducted underground. Beginning with the “Apple” thermite barium release in June 1968 Los Alamos has participated in nearly 100 non-nuclear experiments in space, the last being the NASA-sponsored “AA-2” strontium and europium doped barium thermite releases in the Arecibo beam in July of 1992. The rationale for these experiments ranged from studying basic plasma processes such as gradientdriven structuring and velocity-space instabilities to illuminating the convection of plasmas in the ionosphere and polar cap to ionospheric depletion experiments to the B.E.A.R. 1-MeV neutral particle beam test in 1989. This report reviews the objectives, techniques and diagnostics of Los Alamos participation in active experiments in space.

  7. Los Alamos high-power proton linac designs

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  8. Los Alamos National Laboratory Yucca Mountain Site Characterization Project: 1991 quality program status report

    International Nuclear Information System (INIS)

    1992-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project's (YMP) quality assurance program for calendar year 1991. The report is divided into three Sections: Program Activities, Verification Activities, and Trend Analysis

  9. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  10. High-energy particle Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    Prael, R.E.

    1985-01-01

    A major computational effort at Los Alamos has been the development of a code system based on the HETC code for the transport of nucleons, pions, and muons. The Los Alamos National Laboratory version of HETC utilizes MCNP geometry and interfaces with MCNP for the transport of neutrons below 20 MeV and photons at any energy. A major recent effort has been the development of the PHT code for treating the gamma cascade in excited nuclei (the residual nuclei from an HETC calculation) by the Monte Carlo method to generate a photon source for MCNP. The HETC/MCNP code system has been extensively used for design studies of accelerator targets and shielding, including the design of LAMPF-II. It is extensively used for the design and analysis of accelerator experiments. Los Alamos National Laboratory has been an active member of the International Collaboration on Advanced Neutron Sources; as such we engage in shared code development and computational efforts. In the past few years, additional effort has been devoted to the development of a Chen-model intranuclear cascade code (INCA1) featuring a cluster model for the nucleus and deuteron pickup reactions. Concurrently, the INCA2 code for the breakup of light, excited nuclei using the Fermi breakup model has been developed. Together, they have been used for the calculation of neutron and proton cross sections in the energy ranges appropriate to medical accelerators, and for the computation of tissue kerma factors

  11. Use of screening action levels in risk management at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Beck, J.R.; Hueske, K.L.; Dorries, A.M.

    1994-01-01

    The screening assessment approach used at Los Alamos National Laboratory has proved to be a valuable risk management tool in making decisions that are cost-effective, efficient, and defensible. Los Alamos has successfully used screening action levels to prioritize RFI activities, streamline data evaluation, and insure analytical methods are adequately sensitive to be protective of human health

  12. The Controlled-Air Incinerator at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Newmyer, J.N.

    1994-04-01

    The Controlled-Air Incinerator (CAI) at Los Alamos is being modified and upgraded to begin routine operations treating low-level mixed waste (LLMW), radioactively contaminated polychlorinated biphenyl (PCB) wastes, low-level liquid wastes, and possibly transuranic (TRU) wastes. This paper describes those modifications. Routine waste operations should begin in late FY95.

  13. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  14. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  15. The Los Alamos accelerator code group

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Billen, J.H.; Ryne, R.D.; Takeda, Harunori; Young, L.M.

    1995-01-01

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG's activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET

  16. General developments in the Los Alamos Nuclear Physics group (T-16)

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.

    2000-01-01

    Nuclear physics activities in support of nuclear data development by the newly formed ''Nuclear Physics'' group (T-16) at Los Alamos are summarized. Activities such as the development of a new Hauser-Feshbach/preequilibrium reaction theory code, improvements to and reissue of the existing GNASH reaction theory code, nuclear cross section evaluation in the context of ENDF/B-VI, development of a new medium-energy optical model potential, new fission neutron spectrum calculations with the Los Alamos model, and development of new 6-group delayed neutron constants for ENDF/B-VI are described. (author)

  17. Early history of NMR at Los Alamos

    International Nuclear Information System (INIS)

    Jackson, J.A.

    1985-11-01

    Nuclear magnetic resonance (NMR) spectroscopy has developed into an important research tool in chemistry. More recently, NMR imaging and in vivo spectroscopy promise to produce a revolution in medicine and biochemistry. Early experiments at Los Alamos led to DOE programs involving stable isotopes of importance to biology and to medicine. These events are briefly recounted. 2 refs

  18. Los Alamos waste drum shufflers users manual

    International Nuclear Information System (INIS)

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-01-01

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of 235 U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual

  19. Los Alamos science. Volume 4, No. 7

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1983-01-01

    A history of the Los Alamos National Laboratory over its 40 years is presented. The evolution of the laboratory is broken down into the Oppenheimer years, the Bradbury years, the Agnew years and the Kerr years. The weapons program is described including nuclear data, early reactors, computing and computers, plutonium, criticality, weapon design and field testing

  20. Glovebox glove change program at Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Olivas, J.D.; Burkett, B.O.; Weier, D.R.

    1992-01-01

    A formal glovebox glove change program is planned for the the gloveboxes in technical area 55 at the Los Alamos National laboratory. The program will increase worker safety by reducing the chance of having worn out gloves in service. The Los Alamos program is based on a similar successful program at the Rocky Flats Plant in Golden, Colorado. Glove change frequencies at Rocky Flats were determined statistically, and are based on environmental factors the glovebox gloves are subjected to

  1. The Los Alamos accelerator code group

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk, F.L.; Billen, J.H.; Ryne, R.D.; Takeda, Harunori; Young, L.M.

    1995-05-01

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG`s activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET.

  2. Spent-fuel verification with the Los Alamos fork detector

    International Nuclear Information System (INIS)

    Rinard, P.M.; Bosler, G.E.

    1987-01-01

    The Los Alamos fork detector for the verification of spent-fuel assemblies has generated precise, reproducible data. The data analyses have now evolved to the point of placing tight restrictions on a diverter's actions

  3. Los Alamos National Laboratory Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    Woods, R.

    1981-01-01

    The Weapons Neutron Research (WNR) spallation neutron source utilizes 800-MeV protons from the Los Alamos Meson Physics linac. The proton beam transport system, the target systems, and the data acquisition and control system are described. Operating experience, present status, and planned improvements are discussed

  4. Mixed low-level waste minimization at Los Alamos

    International Nuclear Information System (INIS)

    Starke, T.P.

    1998-01-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL

  5. Mixed low-level waste minimization at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Starke, T.P.

    1998-12-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

  6. Brief history of the Los Alamos laser programs

    International Nuclear Information System (INIS)

    Boyer, K.

    1983-01-01

    The laser programs at Los Alamos began in 1969 to investigate the feasibility of laser-induced fusion. However, within a year they had been expanded to include a number of other applications including laser isotope separation. These programs now compose a substantial part of the Laboratory's research programs

  7. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plimpton, Kathryn D [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garcia, Kari L. M [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brunette, Jeremy Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McGehee, Ellen D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building to create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.

  8. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau

  9. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  10. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  11. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1991-11-01

    This report documents the Tiger Team Assessment of the Los Alamos National Laboratory (LANL) located in Los Alamos, New Mexico. LANL is operated for the US Department of Energy (DOE) by the University of California. The Tiger Team Assessment was conducted from September 23 to November 8, 1991, under the auspices of the DOE Office of Special Projects, Office of Assistant Secretary for Environment, Safety and Health. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal LANL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors' management of ES ampersand H/quality assurance programs was conducted. This volume discusses findings concerning the environmental assessment

  12. Los Alamos - A Short History

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-12

    At 5:45 am on the morning of July 16, 1945, the world’s first atomic bomb exploded over a remote section of the southern New Mexican desert known as the Jornada del Muerto, the Journey of Death. Three weeks later, the atomic bombs known as Little Boy and Fat Man brought World War II to an end. Working literally around the clock, these first atomic bombs were designed and built in just thirty months by scientists working at a secret scientific laboratory in the mountains of New Mexico known by its codename, Project Y, better known to the world as Los Alamos.

  13. Radionuclide concentrations in pinto beans, sweet corn, and zucchini squash grown in Los Alamos Canyon at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.; Armstrong, D.R.

    1997-05-01

    Pinto beans, sweet corn, and zucchini squash (Cucurbita pepo var. black beauty) were grown in a randomized complete-block field/pot experiment at a site that contained the highest observed levels of surface gross gamma radioactivity within Los Alamos Canyon (LAC) at Los Alamos National Laboratory. Soils as well as washed edible and nonedible crop tissues were analyzed for various radionuclides and heavy metals . Most radionuclides, with the exception of 3 H and tot U, in soil from LAC were detected in significantly higher concentrations (p -1 . This dose was below the International Commission on Radiological Protection permissible dose limit (PDL) of 100 mrem y -1 from all pathways; however, the addition of other internal and external exposure route factors may increase the overall dose over the PDL. Also, the risk of an excess cancer fatality, based on 74 mrem y -1 , was 3.7 x 10 -5 (37 in a million), which is above the Environmental Protection Agency's (acceptable) guideline of one in a million. 31 refs., 15 tabs

  14. Inertial confinement fusion at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lindman, E.; Baker, D.; Barnes, C.; Bauer, B.; Beck, J.B.

    1997-01-01

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed

  15. Los Alamos neutral particle transport codes: New and enhanced capabilities

    International Nuclear Information System (INIS)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Clark, B.A.; Koch, K.R.; Marr, D.R.

    1992-01-01

    We present new developments in Los Alamos discrete-ordinates transport codes and introduce THREEDANT, the latest in the series of Los Alamos discrete ordinates transport codes. THREEDANT solves the multigroup, neutral-particle transport equation in X-Y-Z and R-Θ-Z geometries. THREEDANT uses computationally efficient algorithms: Diffusion Synthetic Acceleration (DSA) is used to accelerate the convergence of transport iterations, the DSA solution is accelerated using the multigrid technique. THREEDANT runs on a wide range of computers, from scientific workstations to CRAY supercomputers. The algorithms are highly vectorized on CRAY computers. Recently, the THREEDANT transport algorithm was implemented on the massively parallel CM-2 computer, with performance that is comparable to a single-processor CRAY-YMP We present the results of THREEDANT analysis of test problems

  16. Fluctuations in three Los Alamos experiments

    International Nuclear Information System (INIS)

    Wright, B.L.

    1983-01-01

    We review results from three magnetic fusion experiments at Los Alamos: the ZT-40M, a reversed-field toroidal pinch; the CTX, a spheromak produced by a magnetized coaxial source; and the FRX-C, a field-reversed configuration generated by theta-pinch techniques. These experiments share the common feature that a major fraction of the confining magnetic field is associated with currents carried by the plasma. We emphasize here the important role that fluctuations play in the maintenance and evolution of these configurations

  17. Operational status and future plans for the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Jones, Kevin W.; Schoenberg, Kurt F.

    2008-01-01

    The Los Alamos Neutron Science Center (LANSCE) continues to be a signature experimental science facility at Los Alamos National Laboratory (LANL). The 800 MeV linear proton accelerator provides multiplexed beams to five unique target stations to produce medical radioisotopes, ultra-cold neutrons, thermal and high energy neutrons for material and nuclear science, and to conduct proton radiography of dynamic events. Recent operating experience will be reviewed and the role of an enhanced LANSCE facility in LANL's new signature facility initiative, Matter and Radiation in Extremes (MaRIE) will be discussed.

  18. Some history of liquid scintillator development at Los Alamos

    International Nuclear Information System (INIS)

    Ott, D.G.

    1979-01-01

    The early developments in liquid scintillation counting made at Los Alamos Scientific Laboratory are reviewed. Most of the work was under the direction of F.N. Hayes and included counter development and applications as well as synthesis and chemistry of liquid scintillators

  19. Towards an advanced hadron facility at Los Alamos

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1988-01-01

    In the 1987 workshop, it was pointed out that activation of the accelerator is a serious problem. At this workshop, it was suggested that a new type of slow extraction system is needed to reduce the activation. We report on the response to this need. The Los Alamos plan is reviewed including as elements the long lead-time R and D in preparation for a 1993 construction start, a menu of accelerator designs, improved losses at injection and extraction time, active participation in the development of PSR, and accelerated hardware R and D program, and close collaboration with TRIUMF. We review progress on magnets and power supplies, on ceramic vacuum chambers, and on ferrite-turned rf systems. We report on the plan for a joint TRIUMF-Los Alamos main-ring cavity to be tested in PSR in 1989. The problem of beam losses is discussed in detail and a recommendation for a design procedure for the injection system is made. This recommendation includes taking account of single Coulomb scattering, a painting scheme for minimizing foil hits, and a collimator and dump system for containing the expected spills. The slow extraction problem is reviewed and progress on an improved design is discussed. The problem of designing the accelerators for minimum operation and maintenance cost is briefly discussed. The question of the specifications for an advanced hadron facility is raised and it is suggested that the Los Alamos Proposal of a dual energy machine - 1.6 GeV and 60 GeV - is a better match to the needs of the science program than the single-energy proposals made elsewhere. It is suggested that design changes need be made in all of the world's hadron facility proposals to prepare for high-intensity operation

  20. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  1. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  2. Los Alamos Opacities: Transition from LEDCOP to ATOMIC

    International Nuclear Information System (INIS)

    Magee, N.H.; Abdallah, J.; Colgan, J.; Hakel, P.; Kilcrease, D.P.; Mazevet, S.; Sherrill, M.; Fontes, C.J.; Zhang, H.L.

    2004-01-01

    This paper discusses the development of the ATOMIC code, a new low to mid Z opacity code, which will replace the current Los Alamos low Z opacity code LEDCOP. The ATOMIC code is based on the FINE code, long used by the Los Alamos group for spectral comparisons in local thermodynamic equilibrium (LTE) and for non-LTE calculations, utilizing the extensive databases from the atomic physics suite of codes based on the work of R. D. Cowan. Many of the plasma physics packages in LEDCOP, such as line broadening and free-free absorption, are being transferred to the new ATOMIC code. A new equation of state (EOS) model is being developed to allow higher density calculations than were possible with either the FINE or LEDCOP codes. Extensive modernization for both ATOMIC and the atomic physics code suites, including conversion to Fortran 90 and parallelization, are under way to speed up the calculations and to allow the use of expanded databases for both the LTE opacity tables and the non-LTE calculations. Future plans will be outlined, including considerations for new generation opacity tables

  3. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    Briesmeister, A.; Harper, J.; Reich, B.; Warren, J.L.

    1982-01-01

    To facilitate disposal of transuranic (TRU) waste, Los Alamos National Laboratory designed and constructed the Size Reduction Facility (SRF) during the period 1977 to 1981. This report summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  4. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    Briesmeister, A.; Harper, J.; Reich, B.; Warren, J.L.

    1982-01-01

    A transuranic (TRU) Waste Size Reduction Facility (SRF) was designed and constructed at the Los Alamos National Laboratory during the period of 1977 to 1981. This paper summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  5. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  6. Plasma and ion beam processing at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Davis, H.A.; Henins, I.

    1994-01-01

    Efforts are underway at Los Alamos National Laboratory to utilize plasma and intense ion beam science and technology of the processing of advanced materials. A major theme involves surface modification of materials, e.g., etching, deposition, alloying, and implantation. In this paper, we concentrate on two programs, plasma source ion implantation and high-intensity pulsed ion beam deposition

  7. Los Alamos National Laboratory scientific interactions with the Former Soviet Union

    International Nuclear Information System (INIS)

    White, P.C.

    1995-01-01

    The Los Alamos National Laboratory has a wide-ranging set of scientific interactions with technical institutes in the Former Soviet Union (FSU). Many of these collaborations, especially those in pure science, began long before the end of the Cold War and the breakup of the Soviet Union. This overview will, however, focus for the most part on those activities that were initiated in the last few years. This review may also serve both to indicate the broad spectrum of US government interests that are served, at least in part, through these laboratory initiatives, and to suggest ways in which additional collaborations with the FSU may be developed to serve similar mutual interests of the countries involved. While most of the examples represent programs carried out by Los Alamos, they are also indicative of similar efforts by Lawrence Livermore National Laboratory and Sandia National Laboratories. There are indeed other Department of Energy (DOE) laboratories, and many of them have active collaborative programs with FSU institutes. However, the laboratories specifically identified above are those with special nuclear weapons responsibilities, and thus have unique technical capabilities to address certain issues of some importance to the continuing interests of the United States and the states of the Former Soviet Union. Building on pre-collapse scientific collaborations and contacts, Los Alamos has used the shared language of science to build institutional and personal relationships and to pursue common interests. It is important to understand that Los Alamos, and the other DOE weapons laboratories are federal institutions, working with federal funds, and thus every undertaking has a definite relationship to some national objective. The fertile areas for collaboration are obviously those where US and Russian interests coincide

  8. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the US with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW, long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the US. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide US scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe

  9. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R; Weinacht, D [Los Alamos National Lab., NM (United States)

    1995-11-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the U.S. with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the U.S. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE`s Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide U.S. scientists with a complementary pair of high-performance neutron sources to rival the world`s leading facilities in Europe. (author) 1 ref.

  10. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the U.S. with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the U.S. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide U.S. scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe. (author) 1 ref

  11. Overview of the Los Alamos National Laboratory Inertial Confinement Fusion Program

    International Nuclear Information System (INIS)

    Harris, D.B.

    1991-01-01

    The Los Alamos Inertial Confinement Fusion (ICF) Program is focused on preparing for a National Ignition Facility. Target physics research is addressing specific issues identified for the Ignition Facility target, and materials experts are developing target fabrication techniques necessary for the advanced targets. We are also working with Lawrence Livermore National Laboratory on the design of the National Ignition Facility target chamber. Los Alamos is also continuing to develop the KrF laser-fusion driver for ICF. We are modifying the Aurora laser to higher intensity and shorter pulses and are working with the Naval Research Laboratory on the development of the Nike KrF laser. 9 refs., 1 fig., 2 tabs

  12. Plutonium scrap processing at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Nixon, A.E.; McKerley, B.J.; Christensen, E.L.

    1980-01-01

    The Los Alamos Scientific Laboratory currently has the newest plutonium handling facility in the nation. Los Alamos has been active in the processing of plutonium almost since the discovery of this man-made element in 1941. One of the functions of the new facility is the processing of plutonium scrap generated at LASL and other sites. The feed for the scrap processing program is extremely varied, and a wide variety of contaminants are often encountered. Depending upon the scrap matrix and contaminants present, the majority of material receives a nitric acid/hydrofluoric acid or nitric acid/calcium fluoride leach. The plutonium nitrate solutions are then loaded onto an anion exchange column charged with DOWEX 1 x 4, 50 to 100 mesh, nitrate form resin. The column is eluted with 0.48 M hydroxyl amine nitrate. The Pu(NO 3 ) 3 is then precipitated as plutonium III oxalate which is calcined at 450 to 500 0 C to yield a purified PuO 2 product

  13. Los Alamos energetic particle sensor systems at geostationary orbit

    International Nuclear Information System (INIS)

    Baker, D.N.; Aiello, W.; Asbridge, J.R.; Belian, R.D.; Higbie, P.R.; Klebesadel, R.W.; Laros, J.G.; Tech, E.R.

    1985-01-01

    The Los Alamos National Laboratory has provided energetic particle sensors for a variety of spacecraft at the geostationary orbit (36,000 km altitude). The sensor system called the Charged Particle Analyzer (CPA) consists of four separate subsystems. The LoE and HiE subsystems measure electrons in the energy ranges 30 to 300 keV and 200 to 2000 keV, respectively. The LoP and HiP subsystems measure ions in the ranges 100 to 600 keV and 0.40 to 150 MeV, respectively. A separate sensor system called the spectrometer for energetic electrons (SEE) measures very high-energy electrons (2 to 15 MeV) using advanced scintillator design. In this paper we describe the relationship of operational anomalies and spacecraft upsets to the directly measured energetic particle environments at 6.6 R/sub E/. We also compare and contrast the CPA and SEE instrument design characteristics with the next generation of Los Alamos instruments to be flown at geostationary altitudes

  14. Los Alamos controlled air incinerator upgrade for TRU/mixed waste operations

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.; Hutchins, D.A.; Warner, C.L.; Thompson, T.K.

    1989-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is undergoing a major process upgrade to accept Laboratory-generated transuranic (TRU) and TRU mixed wastes on a production basis. In the interim,prior to the scheduled 1992 operation of a new on-site LLW/mixed waste incinerator, the CAI will also be accepting solid and liquid low-level mixed wastes. This paper describes major modifications that have been made to the process to enhance safety and ensure reliability for long-term, routine waste incineration operations. The regulatory requirements leading to operational status of the system are also briefly described. The CAI was developed in the mid-1970s as a demonstration system for volume reduction of TRU combustible solid wastes. It continues as a successful R and D system well into the 1980s during which incineration tests on a wide variety of radioactive and chemical waste forms were performed. In 1985, a DOE directive required Los Alamos to reduce the volume of its TRU waste prior to ultimate placement in the geological repository at the Waste Isolation Pilot Project (WIPP). With only minor modifications to the original process flowsheet, the Los Alamos CAI was judged capable of conversion to a TRU waste operations mode. 9 refs., 1 fig

  15. The Los Alamos foil implosion project

    International Nuclear Information System (INIS)

    Brownell, J.; Parker, J.; Bartsch, R.; Benage, J.; Bowers, R.; Cochrane, J.; Forman, P.; Goforth, J.; Greene, A.; Kruse, H.

    1993-01-01

    The goal of the Los Alamos foil implosion project is to produce an intense (>100 TW), multi-megajoule, laboratory soft x-ray source for material studies and fusion experiments. The concept involves the implosion of annular, current-carrying, cylindrical metallic plasmas via their self-magnetic forces. The project features inductive storage systems using both capacitor banks and high explosive-driven flux compression generators as prime energy sources. Fast opening switches are employed to shorten the electrical pulses. The program will be described and activities to date will be summarized

  16. Radiological survey and decontamination of the former main technical area (TA-1) at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Ahlquist, A.J.; Stoker, A.K.; Trocki, L.K.

    1977-12-01

    A radiological survey was conducted on the undeveloped portions of the site of the former Main Technical Area (TA-1) of the Los Alamos Scientific Laboratory in north-central New Mexico. Between 1943 and 1965, research work on nuclear weapons was carried out in TA-1. The area was decontaminated and demolished in stages, and beginning in 1966 the land was given to Los Alamos County or sold to private interests. The survey disclosed traces of radioactive contamination undetected or considered insignificant during original demolition in the 1950s and 1960s. The remaining contamination was removed in 1975 and 1976 to levels considered to pose no health or safety hazards and, further, to the lowest levels considered practicable. Methods used in the survey included measurement techniques for detecting alpha emitters such as uranium and plutonium, extensive surface and subsurface soil sampling, and use of conventional health physics instrumentation to provide detailed information on approximately 16 hectares (40 acres) of land. As a result of the decontamination efforts, approximately 15,000 m 3 of contaminated or potentially contaminated material was removed to an approved radioactive waste disposal site on ERDA property. Full details of the methods, findings, decision criteria, and as-left conditions are documented

  17. Comparative distribution of plutonium in contaminated ecosystems at Oak Ridge, Tennessee, and Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Garten, C.T. Jr.; Hakonson, T.E.

    1980-01-01

    The distribution of plutonium was compared in portions of forest ecosystems at Oak Ridge, TN, and Los Alamos, NM, which were contaminated by liquid effluents. Inventories of plutonium in soil at the two sites were generally similar, but a larger fraction of the plutonium was associated with biota at Los Alamos than at Oak Ridge. Most (99.7 to 99.9%) of the plutonium was present in the soil, and very little (0.1 to 0.3%) was in biotic components. Comparative differences in distributions within the two ecosystems appeared to be related to individual contamination histories and greater physical transport of plutonium in soil to biotic surfaces at Los Alamos

  18. Waste management at Los Alamos: Protecting our environment

    International Nuclear Information System (INIS)

    1993-01-01

    This report consists of a broad overview of activities at Los Alamos National Laboratory (LANL). The following topics are discussed: The growth of the waste management group; what we do today; the mission of the waste management group; the liquid waste treatment section; the radioactive liquid waste project office; the chemical waste section; the radioactive waste section; and the technical support section

  19. Equilibrium and stability of the Los Alamos spheromak

    International Nuclear Information System (INIS)

    Marklin, G.

    1984-01-01

    The open mesh flux conserver (MFC) on the Los Alamos spheromak (CTX) has been equipped with a large number of Rogowski loops measuring the current in the individual segments of the MFC, providing a complete picture of the surface current pattern induced by the equilibrium and oscillations of the confined plasma. An analysis was made of the data from these Rogowski loops

  20. Waste management at Los Alamos: Protecting our environment

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This report consists of a broad overview of activities at Los Alamos National Laboratory (LANL). The following topics are discussed: The growth of the waste management group; what we do today; the mission of the waste management group; the liquid waste treatment section; the radioactive liquid waste project office; the chemical waste section; the radioactive waste section; and the technical support section.

  1. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquatic habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.

  2. Evaluation of cancer incidence among employees at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Acquavella, J.F.; Wilkinson, G.S.; Wiggs, L.D.; Tietjen, G.L.; Key, C.R.

    1983-01-01

    As part of the National Plutonium Workers Study, cancer incidence for 1969 to 1978 among employees of the Los Alamos National Laboratory was investigated. Incident cancers were identified by a computer match of the Los Alamos employed roster against New Mexico Tumor Registry files. The resulting numbers of total and site-specific cancers were compared to the numbers expected based on incidence rates for the State of New Mexico, specific for age, sex, ethnicity, and calendar period. For Anglo males, significantly fewer cancers than expected (SIR = 0.60, 95% CI 0.44 to 0.79) were found. This resulted from marked deficits of smoking-related cancers, particularly lung (2 observed, 19.4 expected) and oral (1 observed, 6.5 expected) cancer. Similarly, no smoking-related cancers were detected among Anglo females, though they had a slight nonsignificant excess of breast cancer (14 observed, 9.1 expected) and a suggestive excess of cancer of the uterine corpus (2 observed, 0.25 expected). The pattern of cancerincidence among Anglo employees is typical of high social class populations and not likely related to the Los Alamos working environment

  3. Los Alamos racquetball contamination incident

    International Nuclear Information System (INIS)

    McAtee, J.L.; Stafford, R.G.; Dowdy, E.J.; Prestwood, R.J.

    1985-01-01

    Several employees of the Los Alamos Plutonium Facility were found to have low levels of radioactivity on their hands and clothing when they arrived for work one morning. The initial concern was that the stringent contamination or material controls at the facility had failed, and that one or more of the employees had either accidentally or intentionally removed plutonium from the Laboratory premises. Fortunately, however, an investigation revealed that the source of the radioactivity was radon daughters electrostatically collected upon the surface of the racquetball and transferred by physical contact to the employees during an early morning racquetball game. This paper describes the events leading to the discovery of this phenomenon. 1 figure

  4. Water supply at Los Alamos during 1977

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1978-08-01

    The Los Alamos water supply for 1977 consisted of 1474 x 10 6 gal from wells in three fields and 57 x 10 6 gal from the gallery in Water Canyon. The production from the well fields was at its lowest volume since 1970. Water-level trends were as anticipated under current production practices. Well rehabilitation should be continued to ensure an adequate and reliable supply from wells that are 10 to over 25 yr old

  5. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1993 Quality Program status report

    International Nuclear Information System (INIS)

    Boliver, S.L.

    1995-05-01

    This status report is for calendar year 1993. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, we establish a baseline that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify long term trends and to evaluate improvements. This is the third annual status report (Bolivar, 1992; Bolivar, 1994). This report is divided into two primary sections: Program Activities and Trend Analysis. Under Program Activities, programmatic issues occurring in 1993 are discussed. The goals for 1993 are also listed, followed by a discussion of their status. Lastly, goals for 1994 are identified. The Trend Analysis section is a summary of 1993 quarterly trend reports and provides a good overview of the quality assurance issues of the Los Alamos YMP

  6. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1993 Quality Program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1995-05-01

    This status report is for calendar year 1993. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, we establish a baseline that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify long term trends and to evaluate improvements. This is the third annual status report (Bolivar, 1992; Bolivar, 1994). This report is divided into two primary sections: Program Activities and Trend Analysis. Under Program Activities, programmatic issues occurring in 1993 are discussed. The goals for 1993 are also listed, followed by a discussion of their status. Lastly, goals for 1994 are identified. The Trend Analysis section is a summary of 1993 quarterly trend reports and provides a good overview of the quality assurance issues of the Los Alamos YMP.

  7. Reclamation of greater than Class C sealed sources at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Behrens, R.G.; Jones, S.W.

    1995-01-01

    One of the important overriding themes of the Los Alamos National Laboratory as a world-class scientific institution is to utilize its expertise in enhancing the long-term welfare of society by minimizing negative side effects of nuclear technology over the past five decades. The Los Alamos National Laboratory is therefore committed to the use of its technical competencies and nuclear facilities, developed through programs in the areas of defense and civilian nuclear research, to support activities which will benefit the United States as a whole. As such, this paper discusses the organizational details and requirements of the Neutron Source Reclamation Program at Los Alamos. This program has as its mission the retrieval, interim storage, and chemical reprocessing of 238 PuBe, 239 PuBe and 24l AmBe neutron sources residing in the hands of private companies and industries, academic institutions, and various state and Federal government agencies

  8. CICE, The Los Alamos Sea Ice Model

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-12

    The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of the ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.

  9. Tritium concentrations in bees and honey at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

    1994-12-01

    Los Alamos National Laboratory (LANL) has maintained a network of honey bee colonies at LANL, perimeter (Los Alamos townsite and White Rock/Pajarito Acres) and regional (background) areas for over 15 years; the main objective of this honey bee network was to help determine the bioavailability of certain radionuclides in the environment. Of all the radionuclides studied ( 3 H, 57 Co, 7 Be, 22 Na, 54 Mn, 83 Rb, 137 Cs, 238 Pu, 239 Pu, 90 Sr and total U), tritium was consistently detected in bees and was most readily transferred to the honey. In fact, honey collected from hives located at TA-21, TA-33, TA-50, TA-53, and TA-54 and from White Rock/Pajarito Acres contained significantly higher concentrations of 3 H than regional background hives. Based on the average concentration of all radionuclides measured over the years, the effective dose equivalent (EDE) from consuming 5 kg (11 lb) of honey collected from Los Alamos (townsite) and White Rock/Pajarito Acres, after regional background has been subtracted, was 0.0186 (±0.0507) and 0.0016 (±0.0010) mrem/yr, respectively. The highest EDE, based on the mean + 2SD (95% confidence level), was 0.1200 mrem/y; this was <0.2% of the International Commission on Radiological Protection permissible dose limit of 100 mrem/yr from all pathways

  10. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  11. Experience with confirmation measurement at Los Alamos

    International Nuclear Information System (INIS)

    Marshall, R.S.; Wagner, R.P.; Hsue, F.

    1985-01-01

    Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountibility and for support of both at 235 U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilitis using similar instruments. A description of confirmation measurement techniques used in support of 235 U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given

  12. Experience with confirmation measurement at Los Alamos

    International Nuclear Information System (INIS)

    Marshall, R.S.; Wagner, R.P.

    1985-01-01

    Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountability and for support of both 235 U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilities using similar instruments. A description of confirmation measurement techniques used in support of 235 U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given

  13. Mercury: The Los Alamos ICF KrF laser system

    International Nuclear Information System (INIS)

    Czuchlewski, S.J.; York, G.W.; Bigio, I.J.; Brucker, J.; Hanson, D.; Honig, E.M.; Kurnit, N.; Leland, W.; McCown, A.W.; McLeod, J.; Rose, E.; Thomas, S.; Thompson, D.

    1993-01-01

    The Mercury KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora system. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a tested for a variety of advanced KrF technology concepts

  14. Nuclear criticality safety aspects of emergency response at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Baker, J.S.

    2003-01-01

    Emergency response at Los Alamos National Laboratory (LANL) is handled through a graded approach depending on the specific emergency situation . LANL maintains a comprehensive capability to respond to events ranging from minor facility events (alerts) through major community events (general emergencies), including criticality accidents . Criticality safety and emergency response apply to all activities involving significant quantities of fissile material at LANL, primarily at Technical Area 18 (TA-18, the Los Alamos Critical Experiments Facility) and Technical Area 55 (TA-55, the Plutonium Facility). This discussion focuses on response to a criticality accident at TA-55; the approach at TA-18 is comparable .

  15. WLS software for the Los Alamos geophysical instrumentation truck

    International Nuclear Information System (INIS)

    Ideker, C.D.; LaDelfe, C.M.

    1985-01-01

    Los Alamos National Laboratory's capabilities for special downhole geophysical well logging has increased steadily over the past few years. Software was developed originally for each individual tool as it became operational. With little or no standardization for tool software modules, software development became redundant, time consuming, and cost ineffective. With long-term use and the rapid evolution of well logging capacity in mind. Los Alamos and EG and G personnel decided to purchase a software system. The system was designed to offer: wide-range use and programming flexibility; standardization subroutines for tool module development; user friendly operation which would reduce training time; operator error checking and alarm activation; maximum growth capacity for new tools as they are added to the inventory; and the ability to incorporate changes made to the computer operating system and hardware. The end result is a sophisticated and flexible software tool and for transferring downhole geophysical measurement data to computer disk files. This paper outlines the need, design, development, and implementation of the WLS software for geophysical data acquisition. A demonstration and working examples are included in the presentation

  16. The Los Alamos suite of relativistic atomic physics codes

    International Nuclear Information System (INIS)

    Fontes, C J; Zhang, H L; Jr, J Abdallah; Clark, R E H; Kilcrease, D P; Colgan, J; Cunningham, R T; Hakel, P; Magee, N H; Sherrill, M E

    2015-01-01

    The Los Alamos suite of relativistic atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions. (paper)

  17. System requirements for the Los Alamos foil-implosion project

    International Nuclear Information System (INIS)

    Brownell, J.; Bowers, R.; Greene, A.; Lindemuth, I.; Nickel, G.; Oliphant, T.; Weiss, D.

    1983-01-01

    The goal of the Los Alamos imploding foil project is the development of an intense source of soft x rays and hot plasma produced from the thermalization of 1 to 10 MJ of plasma kinetic energy. The source will be used for material studies and fusion experiments. Specifically, thin, current-carrying cylindrical metallic plasmas are imploded via their self-magnetic forces. Features of this project are the use of high-explosive-driven flux-compression generators as the prime power source to achieve very high energies and fast opening switches to shorten the electrical pulses. To reach a load kinetic energy of 10 MJ, it is expected that the foil-plasma must carry about 50 MA of current and must implode in less than 1/2 μsec. This imposes the requirements that switch opening times must be less than 1/2 μsec and the transmission line must withstand voltages of about 1 MV. The system being pursued at Los Alamos is described, and model calculations are presented

  18. Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  19. LOS ALAMOS: Winds of change

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-03-15

    The seventeenth annual Users' Group Meeting of the Los Alamos Meson Physics Facility (LAMPF) felt the winds of change. LAMPF Director Louis Rosen noted that recent progress at the 800 MeV proton linac should not hide the fact that these are difficult times. Extra funding for operations together with good luck in sustaining 800-900 μA beam for lengthy operating cycles have resulted in high utilization and effective running for difficult experiments such as neutrino scattering and the 'Crystal Box' measurement of rare muon decays. New impetus has been given to nuclear spectroscopy with the incorporation of a polarized target (partly from KEK) on the proton spectrometer, while the proton storage ring and beam areas will extend the LAMPF programme in 1985.

  20. Proton Radiography at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-28

    The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies in collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.

  1. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1997

    International Nuclear Information System (INIS)

    Lansford, R.R.; Nielsen, T.G.; Schultz, J.; Adcock, L.D.; Gentry, L.M.

    1998-01-01

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation's nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1997 (October 1, 1996, through September 30, 1997) and includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect respending by business, including induced effects (respending by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico. 5 figs., 12 tabs

  2. Management of nuclear materials in an R ampersand D environment at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Behrens, R.G.; Roth, S.B.; Jones, S.R.

    1991-01-01

    Los Alamos National Laboratory is a multidisciplinary R ampersand D organization and, as such, its nuclear materials inventory is diverse. Accordingly, major inventories of isotopes such as Pu-238, Pu-239, Pu-242, U-235, Th, tritium, and deuterium, and lesser amounts of isotopes of Am, Cm, Np and exotic isotopes such as berkelium must be managed in accordance with Department of Energy Orders and Laboratory policies. Los Alamos also acts as a national resource for many one-of-a-kind materials which are supplied to universities, industry, and other government agencies within the US and throughout the world. Management of these materials requires effective interaction and communication with many nuclear materials custodians residing in over forty technical groups as well as effective interaction with numerous outside organizations. This paper discusses the role, philosophy, and organizational structure of Nuclear Materials Management at Los Alamos and also briefly presents results of two special nuclear materials management projects: 1- Revision of Item Description Codes for use in the Los Alamos nuclear material data base and 2- The recommendation of new economic discard limits for Pu-239. 2 refs., 1 fig

  3. Los Alamos, Hiroshima, Nagasaki - a personal recollection

    International Nuclear Information System (INIS)

    Morrison, P.

    1995-01-01

    The author, a physicist participating in the Manhattan Project, recalls his experiences and work in the laboratories at the time which marked the onset of the nuclear era, the construction of the first uranium and plutonium bombs in Los Alamos, and the hidious effects shown to the world by the nuclear bombing of Japan. His thoughts and memories presented 50 years after the nuclear destruction of Hiroshima and Nagasaki, and now that the Cold War has ended, call for a global ban of nuclear weapons. (orig.) [de

  4. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists of three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.

  5. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    International Nuclear Information System (INIS)

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.; Romero, R.P.

    1999-01-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane

  6. Critical assembly: a technical history of Los Alamos during the Oppenheimer years, 1943-1945

    International Nuclear Information System (INIS)

    Hoddeson, Lillian; Henriksen, P.W.; Meade, R.A.; Westfall, Catherine.

    1993-01-01

    This book sets out the history of the technical developments at the Los Alamos Laboratory which produced the first atomic bombs. Based on both classified and unclassified material it looks at the methodology of the research at Los Alamos. The research and development which led to the implosion and gun weapons, the research that enabled physics, chemistry and metallurgy that enabled scientists to design the weapons and to conceive the idea of the thermonuclear bomb are all chronicled. The methodology of the 'big science' carried out in national laboratories is studied. (UK)

  7. Critical assembly: a technical history of Los Alamos during the Oppenheimer years, 1943-1945

    Energy Technology Data Exchange (ETDEWEB)

    Hoddeson, Lillian; Henriksen, P.W.; Meade, R.A.; Westfall, Catherine.

    1993-01-01

    This book sets out the history of the technical developments at the Los Alamos Laboratory which produced the first atomic bombs. Based on both classified and unclassified material it looks at the methodology of the research at Los Alamos. The research and development which led to the implosion and gun weapons, the research that enabled physics, chemistry and metallurgy that enabled scientists to design the weapons and to conceive the idea of the thermonuclear bomb are all chronicled. The methodology of the 'big science' carried out in national laboratories is studied. (UK).

  8. Los Alamos Controlled Air Incinerator for radioactive waste. Volume II. Engineering design reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-10-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  9. Los Alamos Controlled Air Incinerator for radioactive waste. Volume II. Engineering design reference manual

    International Nuclear Information System (INIS)

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-10-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities

  10. Radonuclide concentrations in bees and honey in the vicinity of Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Armstrong, D.R.

    1996-01-01

    Honeybees are effective monitors of environmental pollution; they forage for P len and nectar over a large area (congruent 7 km 2 ), accumulate contaminants from air, water, plants, and soil, and return to a fixed location (the hive) for sampling. Los Alamos National Laboratory (LANL), in fact, has maintained a network of honeybee colonies within and around LANL for 16 years (1979 to 1994); the objectives for maintaining this honeybee network were to (1) determine the bioavailability of radionuclides in the environment, and (2) the committed effective dose equivalent (CEDE) to people who may consume honey from these beehives (Los Alamos and White Rock/Pajarito Acres lownsites). Of all the radionuclides studied over the years, tritium (314) was consistently picked up by the bees and was most readily transferred to the honey. Tritium in honey collected from hives located within LANL, for example, ranged in concentration from 0.07 Bq mL -1 (1.9 pCi mL -1 ) to 27.75 Bq mL -1 (749.9 pCi mL -1 ) (LANL Neutron Science Center); the average concentration of 3 H in honey Collected from hives located around the LANL area (perimeter) ranged in concentration from 0.34 Bq mL -1 (9.3 pCi mL -1 ) (White Rock/Pajarito Acres townsite) to 3.67 Bq mL -1 (99.3 pCi mL -1 ) (Los Alamos townsite). Overall, the CEDE-based on the average concentration of all radionuclides measured over the years-from consuming 5 kg (11 lbs) of honey collected from hives located within the townsites of Los Alamos and White Rock/Pajarito Acres, after regional (background) as been subtracted, was 0.074 μSv y -1 (0.0074 mrem y -1 ) and 0.024 pSv y -1 (0.0024 mrem y -1 ), respectively. The highest CEDE, based on the mean + 2 standard deviations (95% confidence level), was 0.334 fiSv y -1 (0.0334 mrem y -1 ) (Los Alamos townsitc)

  11. Optics code development at Los Alamos

    International Nuclear Information System (INIS)

    Mottershead, C.T.; Lysenko, W.P.

    1988-01-01

    This paper is an overview of part of the beam optics code development effort in the Accelerator Technology Division at Los Alamos National Laboratory. The aim of this effort is to improve our capability to design advanced beam optics systems. The work reported is being carried out by a collaboration of permanent staff members, visiting consultants, and student research assistants. The main components of the effort are: building a new framework of common supporting utilities and software tools to facilitate further development; research and development on basic computational techniques in classical mechanics and electrodynamics; and evaluation and comparison of existing beam optics codes, and support for their continuing development. 17 refs

  12. Optics code development at Los Alamos

    International Nuclear Information System (INIS)

    Mottershead, C.T.; Lysenko, W.P.

    1988-01-01

    This paper is an overview of part of the beam optics code development effort in the Accelerator Technology Division at Los Alamos National Laboratory. The aim of this effort is to improve our capability to design advanced beam optics systems. The work reported is being carried out by a collaboration of permanent staff members, visiting consultants, and student research assistants. The main components of the effort are building a new framework of common supporting utilities and software tools to facilitate further development. research and development on basic computational techniques in classical mechanics and electrodynamics, and evaluation and comparison of existing beam optics codes, and support for their continuing development

  13. Variable star research at Los Alamos

    International Nuclear Information System (INIS)

    Davis, C.G.; Cox, A.N.; Adams, T.F.

    1978-01-01

    Three major areas of variable star research at Los Alamos are carried out: (1) a study using improved Cepheid light curves in order to define more precisely the Hertzsprung sequence, in collaboration with John Castor and John Cox; (2) the suggestion by A. Cox that helium enrichment occurs in the stellar envelope, by a stellar wind, which may explain many of the mass anomalies, this work being with G. Michaud, D. King, R. Deupree, and S. Hodson; and (3) the study of Cepheid and RR Lyrae colors to compare directly to the observations. A brief discussion of the present status of each of these research programs will be given. 25 references

  14. Los Alamos National Laboratory Site Integrated Management plan, uranium 233 storage and disposition. Volume 1: Project scope and description

    International Nuclear Information System (INIS)

    Nielsen, J.B.; Erickson, R.

    1997-01-01

    This Site Integration Management plan provides the Los Alamos Response to the Defense Nuclear Facility Safety Board (DNFSB) Recommendation 97-1. This recommendation addresses the safe storage and management of the Departments uranium 233 ( 233 U) inventory. In the past, Los Alamos has used 233 U for a variety of different weapons related projects. The material was used at a variety of sites in varying quantities. Now, there is a limited need for this material and the emphasis has shifted from use to storage and disposition of the material. The Los Alamos program to address the DNFSB Recommendation 97-1 has two emphases. First, take corrective action to address near term deficiencies required to provide safe interim storage of 233 U. Second, provide a plan to address long term storage and disposition of excess inventory at Los Alamos

  15. Compact free-electron laser at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Meier, K.L.; Nguyen, D.; Sheffield, R.L.; Wang, Tai-Sen F.; Warren, R.W.; Wilson, W.L.; Young, L.M.

    1991-01-01

    The design and construction of second-generation free-electron laser (FEL) system at Los Alamos will be described. comprising state-of-the art components, this FEL system will be sufficiently compact, robust and user-friendly for application in industry, medicine, and research. 11 refs., 11 figs., 2 tabs

  16. Weapons Engineering Tritium Facility, Building 205, Technical Area 16: Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1991-04-01

    The Weapons Engineering Tritium Facility (WETF) was planned by the US Department of Energy (DOE) to retain at Los Alamos National Laboratory the capability of repackaging small quantities of tritium to exacting specifications. Small quantities of tritium are required for energy research and development activities and for research on nuclear weapons test devices carried out as part of the laboratory mission. The WETF is an improved design proposed to replace an aging Los Alamos facility where tritium has been repackaged for many years. This Environmental Assessment evaluates the environmental consequences to be expected from operating the new facility, for which construction was completed in 1984, compared with those from continuing to operate the old facility. The document was prepared for compliance with NEPA. In operation, the WETF will incorporate state-of-the-art systems for containing tritium in glove boxes and capturing any tritium released into the glove box exhaust system and the laboratory atmosphere. Liquid discharges from the WETF would contain less than 1% of the tritium found in effluents from the present facility. Effluent streams would be surface discharges and would not enter the aquifer from which municipal water supplies are drawn. The quantity of solid radioactive waste generated at the WETF would be approximately the same as that generated at the present facility. The risk to the public from normal tritium-packaging operations would be significantly less from the WETF than from the present facility. The proposed action will reduce the adverse environmental impacts caused by tritium repackaging by substantially reducing the amount of tritium that escapes to the environment. 35 refs., 3 figs., 21 tabs

  17. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1998; TOPICAL

    International Nuclear Information System (INIS)

    Lansford, R.R.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.

    1999-01-01

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation's nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998). It includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect responding by business, including induced effects (responding by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico

  18. Safety analysis of the Los Alamos Critical Experiments Facility. Volume II

    International Nuclear Information System (INIS)

    Paxton, H.C.

    1976-04-01

    The Los Alamos critical assembly layout is designed to facilitate personnel protection by means of remote operation and stringent procedural controls during nonoperating periods. Public protection is straightforward because of the small fission-product inventory, essentially ambient pressures, and moderate temperatures

  19. Summary of recent studies of soil plutonium in the Los Alamos and Trinity Site environs

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Hakonson, T.E.

    1976-01-01

    The first plutonium was sent to the Los Alamos Scientific Laboratory (LASL) in 1944 from the Oak Ridge and Hanford reactors for use in synthesizing the first atomic bomb, which was subsequently detonated at Trinity Site in New Mexico. During the last 32 years the LASL has developed an outstanding capability in many scientific fields required to support research in weapons technology and in other uses of nuclear energy. The fabrication and experimental activities required for this effort have resulted in additions of plutonium in industrial effluents to Los Alamos soils, just as the Trinity soils received fallout plutonium after the 1945 Trinity detonation. Formal radioecology-soils studies relative to soil-actinide relationships has been mainly field-oriented and complements transuranic research dealing with the biota of several study areas. The current soil actinide research performed within three liquid effluent-receiving areas at Los Alamos and along the fallout pathway of Trinity, the first nuclear detonation, are summarized

  20. Review of epidemiologic studies at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Voelz, G.L.; Wilkinson, G.S.; Acquavella, J.F.; Reyes, M.; McInroy, J.F.

    1982-01-01

    Epidemiologic studies at Los Alamos are directed toward understanding potential health risks associated with activities pertaining to national energy and defense needs. Currently this research focuses on evaluating the effects of plutonium exposure in man. The major programs consist of (1) epidemiologic studies of the incidence of disease and mortality among plutonium and other workers at six Department of Energy (DOE) contractor facilities (Los Alamos, Rocky Flats, Mound, Savannah River, Hanford, and Oak Ridge), and (2) measurement of plutonium and other radionuclides in human tissues. Currently, investigations of mortality for Pantex workers and the surrounding general population are also being conducted for DOE in support of an Environment Impact Statement. This paper places emphasis on the activities of the national epidemiologic study of plutonium workers. The purpose of the plutonium workers study is to: (1) investigate whether adverse health effects are associated with exposures to plutonium, (2) explore whether adverse health effects are associated with exposure to transuranic elements, other radioisotopes, and hazardous substances that are found in nuclear facilities making routine use of plutonium, and (3) to describe in detail the nature of such health effects should they be discovered

  1. High-precision geologic mapping to evaluate the potential for seismic surface rupture at TA-55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Gardner, J.N.; Lavine, A.; Vaniman, D.; WoldeGabriel, G.

    1998-06-01

    In this report the authors document results of high-precision geologic mapping in the vicinity of TA-55 that has been done to identify parts of the southern portion of the Rendija Canyon Fault, or any other faults, with the potential for seismic surface rupture. To assess the potential for surface rupture at TA-55, an area of approximately 3 square miles that includes the Los Alamos County Landfill and Twomile, Mortandad, and Sandia Canyons has been mapped in detail. Map units are mostly cooling or flow units within the Tshirege Member (1.2 Ma) of the Bandelier Tuff. Stratigraphic markers that are useful for determining offsets in the map area include a distinct welding break at or near the cooling Unit 2-Unit 3 contact, and the Unit 3-Unit 4 contact. At the County Landfill the contact between the Tshirege Member of the Bandelier Tuff and overlying Quaternary alluvium has also been mapped. The mapping indicates that there is no faulting in the near-surface directly below TA-55, and that the closest fault is about 1500 feet west of the Plutonium Facility. Faulting is more abundant on the western edge of the map area, west of TA-48 in uppermost Mortandad Canyon, upper Sandia Canyon, and at the County Landfill. Measured vertical offsets on the faults range from 1 to 8 feet on mapped Bandelier Tuff contacts. Faulting exposed at the Los Alamos County Landfill has deformed a zone over 1000 feet wide, and has a net vertical down-to-the-west displacement of at least 15 feet in the Bandelier Tuff. Individual faults at the landfill have from less than 1 foot to greater than 15 feet of vertical offset on the Bandelier Tuff. Most faults in the landfill trend N-S, N20W, or N45E. Results of the mapping indicate that the Rendija Canyon Fault does not continue directly south to TA-55. At present, the authors have insufficient data to connect faulting they have mapped to areas of known faulting to the north or south of the study area

  2. Customer service model for waste tracking at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.; Montoya, Andrew J.; Ashbaugh, Andrew E.

    2010-01-01

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  3. Recent results in the Los Alamos compact torus program

    International Nuclear Information System (INIS)

    Tuszewski, M.; Armstrong, W.T.; Barnes, C.W.

    1983-01-01

    A Compact Toroid is a toroidal magnetic-plasma-containment geometry in which no conductors or vacuum-chamber walls pass through the hole in the torus. Two types of compact toroids are studied experimentally and theoretically at Los Alamos: spheromaks that are oblate in shape and contain both toroidal and poloidal magnetic fields, and field-reversed configurations (FRC) that are very prolate and contain poloidal field only

  4. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  5. Evolution of the Field of Statistics at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Picard, Richard Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-24

    Through years of technological improvements, cultural change, advances in statistical theory, revisions of federal government structure and policies, Laboratory re-organizations, offce re-locations, and so on, the practice of statistics at Los Alamos has evolved from its origins in the early 1950s, with a handful of statisticians working in LASL group T-1, to present-day group CCS-6. This report chronicles that history.

  6. Department of Energy: Opportunities Exist to Improve Los Alamos' Equipment Purchasing Practices

    National Research Council Canada - National Science Library

    2001-01-01

    In fiscal year 2000, the Department of Energy (DOE) received $13.2 million in supplemental funding to replace equipment lost in the May 2000 Cerro Grande fire that damaged the Los Alamos National Laboratory...

  7. The Los Alamos Intense Neutron Source

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Bollman, R.; Eden, G.; Morrison, L.; Pickrell, M.M.; Reass, W.

    1997-01-01

    The Intense Neutron Source (INS) is an Inertial Electrostatic Confinement (IEC) fusion device presently under construction at Los Alamos National Laboratory. It is designed to produce 10 11 neutrons per second steady-state using D-T fuel. Phase 1 operation of this device will be as a standard three grid IEC ion focus device. Expected performance has been predicted by scaling from a previous IEC device. Phase 2 operation of this device will utilize a new operating scheme, the Periodically Oscillating Plasma Sphere (POPS). This scheme is related to both the Spherical Reflect Diode and the Oscillating Penning Trap. With this type of operation the authors hope to improve plasma neutron production to about 10 13 neutrons/second

  8. Los Alamos advanced free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Kraus, R. H.; Ledford, J.; Meier, K. L.; Meyer, R. E.; Nguyen, D.; Sheffield, R. L.; Sigler, F. L.; Young, L. M.; Wang, T. S.; Wilson, W. L.; Wood, R. L.

    1992-07-01

    Los Alamos researchers are building a free-electron laser (FEL) for industrial, medical, and research applications. This FEL, which will incorporate many of the new technologies developed over the last decade, will be compact, robust, and user-friendly. Electrons produced by a photocathode will be accelerated to 20 MeV by a high-brightness accelerator and transported by permanent-magnet quadrupoles and dipoles. The resulting electron beam will have an excellent instantaneous beam quality of 10πmm mrad in transverse emittance and 0.3% in energy spread at a peak current up to 300 A. Including operation at higher harmonics, the laser wavelength extends from 3.7 μm to 0.4 μm.

  9. Testing capabilities of Los Alamos National Laboratory for irradiated materials

    International Nuclear Information System (INIS)

    Maloy, S.A.; James, M.R.; Sommer, W.F.

    1999-01-01

    Spallation neutron sources expose materials to high energy (>100 MeV) proton and neutron spectra. Although numerous studies have investigated the effects of radiation damage in a lower energy neutron flux from fission or fusion reactors on the mechanical properties of materials, very little work has been performed on the effects that exposure to a spallation neutron spectrum has on the mechanical properties of materials. These effects can be significantly different than those observed in a fission or fusion reactor spectrum because exposure to high energy protons and neutrons produces more He and H along with the atomic displacement damage. Los Alamos National Laboratory has unique facilities to study the effects of spallation radiation damage on the mechanical properties of materials. The Los Alamos Neutron Science Center (LANSCE) has a pulsed linear accelerator which operates at 800 MeV and 1 mA. The Los Alamos Spallation Radiation Effect Facility (LASREF) located at the end of this accelerator is designed to allow the irradiation of components in a proton beam while water cooling these components and measuring their temperature. After irradiation, specimens can be investigated at hot cells located at the Chemical Metallurgy Research Building. Wing 9 of this facility contains 16 hot cells set up in two groups of eight, each having a corridor in the center to allow easy transfer of radioactive shipments into and out of the hot cells. These corridors have been used to prepare specimens for shipment to collaborating laboratories such as PNNL, ORNL, BNL, and the Paul Scherrer Institute to perform specialized testing at their hot cells. The LANL hot cells contain capabilities for opening radioactive components and testing their mechanical properties as well as preparing specimens from irradiated components

  10. Compliance program for 40 CFR 61, Subpart H at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    McNamara, E.A.

    1997-01-01

    Effective on March 15, 1990, the Environmental Protection Agency established regulations controlling the emission of radionuclides to the air from Department of Energy facilities to limit the dose to the public to 10 mrem/yr. These regulations are detailed in 40 CFR 61, Subpart H, open-quotes National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilitiesclose quotes. Part of these regulations require the operation of sampling systems on stacks meeting certain requirements. Although Los Alamos National Laboratory has a long history of stack sampling, the systems in place at the time the regulation became effective did not meet the specific design requirements of the new regulation. In addition, certain specific program elements did not exist or were not adequately documented. The Los Alamos National Laboratory has undertaken a major effort to upgrade its compliance program to meet the requirements of USEPA. This effort involved: developing new and technically superior sampling methods and obtaining approval from the Environmental Protection Agency for their use; negotiating specific methodologies with the Environmental Protection Agency to implement certain requirements of the regulation: implementing a complete, quality assured, compliance program; and upgrading sampling systems. After several years of effort, Los Alamos National Laboratory now meets all requirements of the USEPA

  11. Fuels Inventories in the Los Alamos National Laboratory Region: 1997

    International Nuclear Information System (INIS)

    Balice, R.G.; Oswald, B.P.; Martin, C.

    1999-01-01

    Fifty-four sites were surveyed for fuel levels, vegetational structures, and topographic characteristics. Most of the surveyed sites were on Los Alamos National Laboratory property, however, some surveys were also conducted on U.S. Forest Service property. The overall vegetation of these sites ranged from pinon-juniper woodlands to ponderosa pine forests to mixed conifer forests, and the topographic positions included canyons, mesas, and mountains. The results of these surveys indicate that the understory fuels are the greatest in mixed conifer forests and that overstory fuels are greatest in both mixed conifer forests and ponderosa pine forests on mesas. The geographic distribution of these fuels would suggest a most credible wildfire scenario for the Los Alamos region. Three major fires have occurred since 1954 and these fires behaved in a manner that is consistent with this scenario. The most credible wildfire scenario was also supported by the results of BEHAVE modeling that used the fuels inventory data as inputs. Output from the BEHAVE model suggested that catastrophic wildfires would continue to occur during any season with sufficiently dry, windy weather

  12. In-vivo assessment of whole-body radioisotope burdens at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Vasilik, D.G.; Aikin, I.C.

    1983-08-01

    The Los Alamos National Laboratory program for in-vivo measurements includes the capability for the whole-body assessment of body burdens for x-ray or gamma-ray emitting radioisotopes. This capability is an important part of the health and safety program at Los Alamos where a wide variety of radioisotopes are utilized. This report addresses the whole body portion of our in-vivo measurement capabilities. Whole-body measurements at Los Alamos make use of a hyperpure germanium (HpGe) detector and a lithium-drifted germanium [Ge(Li)] detector for identification and quantification of radioisotopes. Analysis results are interpreted in terms of two basic statistical measures of detection limits. One measure is called the minimum significant measured activity (MSMA), which is interpreted as meaning that there is some activity in the body. The second measure is called the minimum detectable true activity (MDTA), which is defined as the smallest amount of activity required to be in the body in order that a measurement of an individual can be expected to imply correctly the presence of activity with a predetermined degree of confidence. 7 references, 8 figures

  13. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  14. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.; Kinman, William Scott; LaMont, Stephen Philip; Podlesak, David; Tandon, Lav

    2016-01-01

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  15. Availability of environmental radioactivity to honey bee colonies at Los Alamos

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Bostick, K.V.

    1976-01-01

    Data are presented on the availability of tritium, cesium 137, and plutonium to honey bee colonies foraging in the environment surrounding the Los Alamos Scientific Laboratory. Sources of these radionuclides in the laboratory environs include liquid and atmospheric effluents and buried solid waste. Honey bee colonies were placed in three canyon liquid waste disposal areas and were sampled frequently, along with honey, surface water, and surrounding vegetation, to qualitatively determine the availability of these radionuclides to bees (Apis mellifera) and to identify potential food chain sources of the elements. Tritium concentrations in bee and honey samples from the canyons increased rapidly from initial values of 137 Cs in the environs. The existence of at least three radionuclide sources in the Los Alamos Scientific Laboratory (LASL) environs complicates the interpretation of the data. However, it is apparent that honey bees can acquire 3 H, 137 Cs, and Pu from multiple sources in the environs

  16. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  17. Precision electroweak physics with neutrinos at Los Alamos

    International Nuclear Information System (INIS)

    Sanders, G.H.

    1989-01-01

    We review the status of current efforts at Los Alamos to measure the mass of /bar /nu///sub e/ with tritium beta decay and to search for oscillation of /bar /nu///sub μ/ to /bar /nu///sub e/. A new proposal to carry out a precision measurement of the electroweak mixing angle, θ/sub W/, using neutrino-electron scattering measured in a 7000-ton water /hacek C/erenkov detector, the Large /hacek C/erenkov Detector (LCD), is described. 17 refs., 6 figs., 1 tab

  18. Gamma-ray isotopic analysis development at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Sampson

    1999-11-01

    This report describes the development history and characteristics of software developed in the Safeguards Science and Technology group at Los Alamos for gamma-ray isotopic analysis. This software analyzes the gamma-ray spectrum from measurements performed on actinide samples (principally plutonium and uranium) of arbitrary size, geometry, and physical and chemical composition. The results are obtained without calibration using only fundamental tabulated nuclear constants. Characteristics of the current software versions are discussed in some detail and many examples of implemented measurement systems are shown.

  19. Recent progress in the Los Alamos KrF Program

    International Nuclear Information System (INIS)

    McDonald, T.E.; Cartwright, D.C.; Coggeshall, S.V.

    1988-01-01

    The goal of the Inertial Confinement Fusion Program (ICF) is to develop the ability to ignite and burn small masses of thermonuclear fuel. Although the present near-term objectives of the program are directed toward defense applications, ICF research continues to be carried out with a view to the longer term goal of commercial power production. The characteristics of a KrF laser make it an attractive candidate as an ICF driver. The KrF wavelength of 248 nm provides a target coupling that is very high at intensities of 10 14 w/cm 2 . In addition, the KrF laser can be repetitively operated at frequencies appropriate for a power reactor and has an intrinsically high efficiency, which allows projections to the long-term goal of energy production. The ICF program at Los Alamos consists of driver development, target design and fabrication, and target experimentation. The major effort at present is the investigation and development of KrF technology to determine its applicability for use in a laboratory driver at Los Alamos. Such a driver would be used in defense related technology studies and in areas of scientific study such as highly ionized materials and high-energy-density physics

  20. Environmental surveillance at Los Alamos

    International Nuclear Information System (INIS)

    1979-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1978. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1978 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and groundwater, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs

  1. Summary of environmental surveillance at Los Alamos during 1994

    International Nuclear Information System (INIS)

    1996-03-01

    Linking the Rio Grande Valley and the Jemez Mountains, New Mexico's Pajarito Plateau is home to a world-class scientific institution. Los Alamos National Laboratory (or the Laboratory), managed by the Regents of the University of California, is a government-owned, Department of Energy-supervised complex investigating all areas of modern science for the purposes of national defense, health, conservation, and ecology. This report briefly describes the environmental monitoring program for the Laboratory

  2. Fundamental symmetry studies at Los Alamos using epithermal neutrons

    International Nuclear Information System (INIS)

    Bowman, C.D.; Bowman, J.D.; Yuan, V.W.

    1988-01-01

    Fundamental symmetry studies using intense polarized beams of epithermal neutrons are underway at the LANSCE facility of the Los Alamos National Laboratory. Three classes of symmetry experiments can be explored: parity violation, and time reversal invariance violation for both parity-violating and parity-conserved observables. The experimental apparatus is described and performance illustrated with examples of recent measurements. Possible improvements in the facilities and prospective experiments are discussed. 15 refs., 10 figs

  3. Environmental surveillance at Los Alamos during 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.

  4. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Roberts, N.J.; Erkkila, B.H.; Kelso, H.F.

    1985-01-01

    The materials accounting system at Los Alamos has evolved from an ''80-column'' card system to a very sophisticated near-real-time computerized nuclear material accountability and safeguards system (MASS). The present hardware was designed and acquired in the late 70's and is scheduled for a major upgrade in Fiscal Year 1986. The history of the system from 1950 through the DYMAC of the late 70's up to the present will be discussed. The philosophy of the system along with the details of the system will be covered. This system has addressed the integrated problems of management, control, and accounting of nuclear material successfully

  5. Environmental Programs at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Patricia [Los Alamos National Laboratory

    2012-07-11

    Summary of this project is: (1) Teamwork, partnering to meet goals - (a) Building on cleanup successes, (b) Solving legacy waste problems, (c) Protecting the area's environment; (2) Strong performance over the past three years - (a) Credibility from four successful Recovery Act Projects, (b) Met all Consent Order milestones, (c) Successful ramp-up of TRU program; (3) Partnership between the National Nuclear Security Administration's Los Alamos Site Office, DOE Carlsbad Field Office, New Mexico Environment Department, and contractor staff enables unprecedented cleanup progress; (4) Continued focus on protecting water resources; and (5) All consent order commitments delivered on time or ahead of schedule.

  6. Innovations in Los Alamos alpha box design

    International Nuclear Information System (INIS)

    Ledbetter, J.M.; Dowler, K.E.; Cook, J.H.

    1985-01-01

    Destructive examinations of irradiated fuel pins containing plutonium fuel must be performed in shielded hot cells with strict provisions for containing the plutonium. Alpha boxes provide containment for the plutonium, toxic fission products, and other hazardous highly radioactive materials. The alpha box contains windows for viewing and a variety of transfer systems specially designed to allow transfers in and out of the alpha box without spread of the hazardous materials that are contained in the box. Alpha boxes have been in use in the Wing 9 hot cells at Los Alamos National Laboratory for more than 20 years. Features of the newly designed alpha boxes are presented

  7. Recent development in pyrochemistry at Los Alamos

    International Nuclear Information System (INIS)

    McNeese, J.A.; Fife, K.W.; Williams, J.D.

    1984-01-01

    Recent developments in pyrochemical processing at Los Alamos include the recovery of plutonium from anodes and impure metal by pyroredox and new molten salt handling and purification techniques. The anode is dissolved in a ZnCl 2 KCl salt to form PuCl 3 and a zinc and impurities button. Calcium reduction of the PuCl 3 yields 95 to 98% pure plutonium. New techniques for transferring molten salt from a purification or regeneration vessel to molds has been successfully developed and demonstrated. Additional salt work involving recycle of direct oxide reduction salts using anhydrous hydrogen chloride, phosgene, and chlorine gases is under way. 13 figures, 1 table

  8. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Anne C. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to

  9. Estimates of Radionuclide Loading to Cochiti Lake from Los Alamos Canyon Using Manual and Automated Sampling

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Christopher T. [Univ. of New Mexico, Albuquerque, NM (United States)

    2000-07-01

    Los Alamos National Laboratory has a long-standing program of sampling storm water runoff inside the Laboratory boundaries. In 1995, the Laboratory started collecting the samples using automated storm water sampling stations; prior to this time the samples were collected manually. The Laboratory has also been periodically collecting sediment samples from Cochiti Lake. This paper presents the data for Pu-238 and Pu-239 bound to the sediments for Los Alamos Canyon storm water runoff and compares the sampling types by mass loading and as a percentage of the sediment deposition to Cochiti Lake. The data for both manual and automated sampling are used to calculate mass loads from Los Alamos Canyon on a yearly basis. The automated samples show mass loading 200- 500 percent greater for Pu-238 and 300-700 percent greater for Pu-239 than the manual samples. Using the mean manual flow volume for mass loading calculations, the automated samples are over 900 percent greater for Pu-238 and over 1800 percent greater for Pu-239. Evaluating the Pu-238 and Pu-239 activities as a percentage of deposition to Cochiti Lake indicates that the automated samples are 700-1300 percent greater for Pu- 238 and 200-500 percent greater for Pu-239. The variance was calculated by two methods. The first method calculates the variance for each sample event. The second method calculates the variances by the total volume of water discharged in Los Alamos Canyon for the year.

  10. Los Alamos National Laboratory Economic Analysis Capability Overview

    Energy Technology Data Exchange (ETDEWEB)

    Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group

    2016-04-19

    Los Alamos National Laboratory has developed two types of models to compute the economic impact of infrastructure disruptions. FastEcon is a fast running model that estimates first-­order economic impacts of large scale events such as hurricanes and floods and can be used to identify the amount of economic activity that occurs in a specific area. LANL’s Computable General Equilibrium (CGE) model estimates more comprehensive static and dynamic economic impacts of a broader array of events and captures the interactions between sectors and industries when estimating economic impacts.

  11. Environmental surveillance of low-level radioactive waste management areas at Los Alamos during 1985

    International Nuclear Information System (INIS)

    1987-01-01

    This report was compiled as a part of the DOE-sponsored radioactive waste site surveillance program at Los Alamos National Laboratory. The report is a source document for data collected in 1985. However, an attempt is made to interpret the data as it relates to radionuclide transport to serve in guiding future waste site surveillance activities. This report contains information on one active and 11 inactive radioactive waste management areas at Los Alamos. Sections include the use history, current status, and future stabilization needs for all sites; the results of detailed surveillance activities at Areas G and C; and a dose evaluation based on the waste site and Laboratory environmental surveillance data. 9 refs., 30 figs., 13 tabs

  12. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    International Nuclear Information System (INIS)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory's primary mission during that era was the design and development of nuclear weapons and most of the Laboratory's funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory's internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos

  13. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.

  14. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bethany M [Los Alamos National Laboratory

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  15. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G., E-mail: dgm@lanl.gov; Kahler, A.C.

    2017-01-15

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. They are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integral cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributions in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.

  16. New directions in physics. The Los Alamos 40th anniversary

    International Nuclear Information System (INIS)

    Metropolis, N.; Kerr, D.M.; Rota, G.C.

    1987-01-01

    In 1983 the outstanding scientists gathered in Los Alamos to celebrate the 40th anniversary of the laboratory. This volume contains the papers presented in that meeting. It presents many of the important advances made in physics over the intervening forty years and provides an idea of the possibilities for the future. Among the contributors are eight Nobel Laureates. The contents include: Los Alamos in the 1980s; tiny computers obeying quantum mechanical laws; present, and future of nuclear magnetic resonance; experimental evidence that an asteroid impact led to the extinction of many species 65 million years ago; the lunar laboratory; the future of particle accelerators: Post WWII and now; models, hypotheses and approximations; comments on three thermonuclear paths for the synthesis of helium; and the sad augurs mock their own passage; experiments on time reversal symmetry and parity; on the course of our magnetic fusion energy enterprise; early days in the Lawrence Laboratory; nuclear charge distribution in fission; developing larger software systems; reflections on style in physics; tuning up the TPC; remarks on the future of particle physics; supernova theory; how well we meant; history and the hierarchy of structure

  17. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities

  18. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  19. 1993 Northern goshawk inventory on portions of Los Alamos National Laboratory, Los Alamos, NM. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, D.T.; Kennedy, P.L. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1994-06-01

    Northern goshawks (Accipiter gentilis) (hereafter referred to as goshawk) is a large forest dwelling hawk. Goshawks may be declining in population and reproduction in the southwestern United States. Reasons for the possible decline in goshawk populations include timber harvesting resulting in the loss of nesting habitat, toxic chemicals, and the effects of drought, fire, and disease. Thus, there is a need to determine their population status and assess impacts of management activities in potential goshawk habitat. Inventory for the goshawk was conducted on 2,254 ha of Los Alamos National Laboratory (LANL) to determine the presence of nesting goshawks on LANL lands. This information can be incorporated into LANL`s environmental management program. The inventory was conducted by Colorado State University personnel from May 12 to July 30, 1993. This report summarizes the results of this inventory.

  20. ICF research at Los Alamos

    International Nuclear Information System (INIS)

    Goldstone, P.D.; Ackerhalt, J.R.; Blair, L.S.

    1987-01-01

    It is apparent that short wavelength lasers (<500 nm) provide efficient coupling of laser energy into ICF target compression. KrF lasers (248 nm) operate at near-optimum wavelength and provide other potential benefits to ICF target coupling (e.g., bandwidth) and applications (high wallplug efficiency and relatively low cost). However, no driver technology has yet been shown to meet all of the requirements for a high-gain ICF capability at a currently acceptable cost, and there are still significant uncertainties in the driver-target coupling and capsule hydrodynamics that must be addressed. The Los Alamos research program is designed to assess the potential of KrF lasers for ICF and to determine the feasibility of achieving high gain in the laboratory with a KrF laser driver. Major efforts in KrF laser development and technology, target fabrication and materials development, and laser-matter interaction and hydrodynamics research are discussed. 27 refs., 10 figs

  1. Cleanup at the Los Alamos National Laboratory - The Challenges

    International Nuclear Information System (INIS)

    Stiger, S.G.; Hargis, K.; Graham, M.; Rael, G.

    2009-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup - the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: - Plans to retrieve buried waste at Material Disposal Area B, across the street from one of Los Alamos' commercial districts and the local newspaper; - Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; - Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; - Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; - A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and - A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL. (authors)

  2. Environmental surveillance at Los Alamos during 2008

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallagher, Pat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.

  3. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  4. NDA [nondestructive assay] training for new IAEA inspectors at Los Alamos

    International Nuclear Information System (INIS)

    Stewart, J.E.; Reilly, T.D.; Belew, W.; Woelfl, E.; Fager, J.

    1987-01-01

    The history of the evolution of nondestructive assay (NDA) training for international inspectors at Los Alamos is described. The current NDA training course for International Atomic Energy Agency inspectors is presented in terms of structure, content, and rationale. Results of inspector measurement exercises are given along with projections for future developments in NDA inspector training. 3 refs

  5. Setting priorities for action plans at Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.C.

    1992-09-30

    This report summarizes work done by Applied Decision Analysis (ADA) for Los Alamos National Laboratory (LANL) under Subcontract Number 9-XQ2-Y3837-1 with the University of California. The purpose of this work was to develop a method of setting priorities for environmental, safety, and health (ES&H) deficiencies at Los Alamos. The deficiencies were identified by a DOE Tiger Team that visited LANL in the fall of 1991, and by self assessments done by the Laboratory. ADA did the work described here between October 1991 and the end of September 1992. The ADA staff working on this project became part of a Risk Management Team in the Laboratory`s Integration and Coordination Office (ICO). During the project, the Risk Management Team produced a variety of documents describing aspects of the action-plan prioritization system. Some of those documents are attached to this report. Rather than attempt to duplicate their contents, this report provides a guide to those documents, and references them whenever appropriate.

  6. Medical record automation at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Hogle, G.O.; Grier, R.S.

    1979-01-01

    With the increase in population at the Los Alamos Scientific Laboratory and the growing concern over employee health, especially concerning the effects of the work environment, the Occupational Medicine Group decided to automate its medical record keeping system to meet these growing demands. With this computer system came not only the ability for long-term study of the work environment verses employee health, but other benefits such as more comprehensive records, increased legibility, reduced physician time, and better records management

  7. Tritium handling facilities at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Anderson, J.L.; Damiano, F.A.; Nasise, J.E.

    1975-01-01

    A new tritium facility, recently activated at the Los Alamos Scientific Laboratory, is described. The facility contains a large drybox, associated gas processing system, a facility for handling tritium gas at pressures to approximately 100 MPa, and an effluent treatment system which removes tritium from all effluents prior to their release to the atmosphere. The system and its various components are discussed in detail with special emphasis given to those aspects which significantly reduce personnel exposures and atmospheric releases. (auth)

  8. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  9. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Roberts, N.J.; Erkkila, B.H.; Kelso, H.F.

    1985-01-01

    The materials accounting system at Los Alamos has evolved from an ''80-column'' card system to a very sophisticated near-real-time computerized nuclear material accountability and safeguards system (MASS). The present hardware was designed and acquired in the late 70's and is scheduled for a major upgrade in fiscal year 1986. The history of the system from 1950 through the DYMAC of the late 70's up to the present will be discussed. The philosophy of the system along with the details of the system will be covered. This system has addressed the integrated problems of management, control, and accounting of nuclear material successfully. 8 refs., 3 figs., 1 tab

  10. The Los Alamos National Laboratory Nuclear Vision Project

    International Nuclear Information System (INIS)

    Arthur, E.D.; Wagner, R.L. Jr.

    1996-01-01

    Los Alamos National Laboratory has initiated a project to examine possible futures associated with the global nuclear enterprise over the course of the next 50 years. All major components are included in this study--weapons, nonproliferation, nuclear power, nuclear materials, and institutional and public factors. To examine key issues, the project has been organized around three main activity areas--workshops, research and analyses, and development of linkages with other synergistic world efforts. This paper describes the effort--its current and planned activities--as well as provides discussion of project perspectives on nuclear weapons, nonproliferation, nuclear energy, and nuclear materials focus areas

  11. Mapping the future of CIC Division, Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report summarizes three scenario-based strategic planning workshops run for the CIC Division of the Los Alamos National Laboratory during November and December, 1995. Each of the two-day meetings was facilitated by Northeast Consulting Resources, Inc. (NCRI) of Boston, MA. using the Future Mapping{reg_sign} methodology.

  12. The current status and possible future of the Los Alamos spallation radiation effects facility

    Energy Technology Data Exchange (ETDEWEB)

    Borden, M.J.; Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The Los Alamos Spallation Radiation Effects Facility (LASREF) has been configured for both proton and spallation neutron irradiations since 1985. The facility makes use of the Los Alamos Meson Physics Facility 1 mA 800 MeV proton beam. Environment controlled proton and neutron irradiations have been demonstrated over the past nine years. The current copper beam stop configuration produces a maximum measured neutron flux of 4.6 x 10{sup 17} m{sup {minus}2}s{sup {minus}1} for energies greater than 1 KeV. The maximum proton flux at the center of Gaussian shaped beam is 1.2 x 10{sup 14} protons cm{sup {minus}2}s{sup {minus}1} with beam spot diameter of 3.5 cm at 2{sigma}. Previously published work has shown that the neutron flux can be increased by a factor of ten by changing the beam stop to tungsten and decreasing the diameter. Expertise exists at Los Alamos to further optimize this design to tailor neutron production and spectrum. Consideration and preliminary planning has also been done for increasing the LAMPF proton current from 1 mA to a few mA with a possible maximum of 10 mA. An upgrade of this type would produce current densities comparable to those proposed for the Accelerator-Driven Transmutation Technologies (ADTT) programs.

  13. Summary of safeguards interactions between Los Alamos and Chinese scientists

    International Nuclear Information System (INIS)

    Eccleston, G.W.

    1994-01-01

    Los Alamos has been collaborating since 1984 with scientists from the Chinese Institute of Atomic Energy (CIAE) to develop nuclear measurement instrumentation and safeguards systems technologies that will help China support implementation of the nonproliferation treaty (NPT). To date, four Chinese scientists have visited Los Alamos, for periods of six months to two years, where they have studied nondestructive assay instrumentation and learned about safeguards systems and inspection techniques that are used by International Atomic Energy Agency (IAEA) inspectors. Part of this collaboration involves invitations from the CIAE to US personnel to visit China and interact with a larger number of Institute staff and to provide a series of presentations on safeguards to a wider audience. Typically, CIAE scientists, Beijing Institute of Nuclear Engineering (BINE) staff, and officials from the Government Safeguards Office attend the lectures. The BINE has an important role in developing the civilian nuclear power fuel cycle. BINE is designing a reprocessing plant for spent nuclear fuel from Chinese nuclear Power reactors. China signed the nonproliferation treaty in 1992 and is significantly expanding its safeguards expertise and activities. This paper describes the following: DOE support for US and Chinese interactions on safeguards; Chinese safeguards; impacts of US-China safeguards interactions; and possible future safeguards interactions

  14. Mac configuration management at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Allan B [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos National Laboratory (LANL) had a need for central configuration management of non-Windows computers. LANL has three to five thousand Macs and an equal number of Linux based systems. The primary goal was to be able to inventory all non-windows systems and patch Mc OS X systems. LANL examined a number of commercial and open source solutions and ultimately selected Puppet. This paper will discuss why we chose Puppet, how we implemented it, and some lessons we learned along the way.

  15. Benchmark assemblies of the Los Alamos critical assemblies facility

    International Nuclear Information System (INIS)

    Dowdy, E.J.

    1986-01-01

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described. (author)

  16. Benchmark assemblies of the Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    Dowdy, E.J.

    1985-01-01

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described

  17. Benchmark assemblies of the Los Alamos critical assemblies facility

    International Nuclear Information System (INIS)

    Dowdy, E.J.

    1985-01-01

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described

  18. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  19. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    International Nuclear Information System (INIS)

    Becker, N.M.; Vanta, E.B.

    1995-01-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980's at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments

  20. Tritium operating safety seminar, Los Alamos, New Mexico, July 30, 1975

    International Nuclear Information System (INIS)

    1976-03-01

    A seminar for the exchange of information on tritium operating and safety problems was held at the Los Alamos Scientific Laboratory. The topics discussed are: (1) material use (tubing, lubricants, valves, seals, etc.); (2) hardware selection (valves, fittings, pumps, etc.); (3) biological effects; (4) high pressure; (5) operating procedures (high pressure tritium experiment at LLL); (6) incidents; and (7) emergency planning

  1. Operational health physics at the Los Alamos meson physics proton accelerator

    International Nuclear Information System (INIS)

    Engelke, M.J.

    1975-01-01

    The operational health physics practices and procedures at the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF), a medium energy, high intensity proton accelerator are reviewed. The operational philosophy used for the control of personnel exposures and radioactive materials is discussed. A particular operation involving the removal of a radioactive beam stop reading in excess of 1000 R/h is described

  2. Status of the expansion of the CYGNUS array at Los Alamos

    International Nuclear Information System (INIS)

    Berley, D.; Chang, C.Y.; Dingus, B.L.

    1989-01-01

    The CYGNUS air shower array, located in Los Alamos, New Mexico, has been operating since April, 1986. The expansion of the array from 108 to 200 counters is described along with the increase in muon detection area. The new array, to be fully operational by the end of 1989, will have three times the sensitivity to UHE sources. 5 refs., 2 figs

  3. Some results of applied spallation physics research at Los Alamos

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.

    1983-01-01

    At the Los Alamos National Laboratory, we have an active effort in the general area of Applied Spallation Physics Research. The main emphasis of this activity has been on obtaining basic data relevant to spallation neutron source development, accelerator breeder technology, and validation of computer codes used in these applications. We present here an overview of our research effort and show some measured and calculated results of differential and clean integral experiments

  4. Resource Management Technology: Los Alamos Technical Capabilities for Emergency Management,

    Science.gov (United States)

    1983-07-18

    phreatic activity at M4t. Baker, Washington, 1973, and Soufriere de Guadeloupe, 1976. * Contacts with veterinary schools, medical schools, and airline manu...others have deployed tiltmeter arrays to monitor the La Soufriere volcano and for monitoring coal mine subsidence. 4 1 -I See Appendix B,II.4. 11.4. C...these activities are present at Los Alamos. Laboratory personnel also have had long experience in working as a team, having contributed to Soufriere

  5. Site contractor participation in the DOE SWEIS process at Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, A.; Garvey, D.

    1997-12-01

    The U.S. Department of Energy (DOE) prepares site-wide environmental impact statements (SWEIS) on sites that are to remain in operation in order to provide an estimate of the cumulative environmental impacts from projected future operations at the site. DOE has relied on outside contractors rather than the site management and operating (M&O) contractors to prepare EISs, in order to preclude the potential for conflict of interest. The site M&O contractors, who know the potential for conflict of interest. The site M&O contractors, who know the site best and are most familiar with existing information, are critical support for the contractor. The University of California (UC) is the site M&O contractor for Los Alamos National Laboratory (LANL) in Los Alamos, NM. The role of LANL (UC) personnel in DOE`s preparation process for the LANL SWEIS is described. 3 refs.

  6. Zero-degree injection line for PILAC, the proposed Los Alamos Pion Linac

    International Nuclear Information System (INIS)

    Blind, B.

    1991-01-01

    In this paper, an optimized injection line for PILAC, the proposed Los Alamos Pion Linac, is presented. With the other optimized components (pion source, accelerator, and high-resolution beamline and spectrometer), the system is capable of delivering 10 9 920-MeV pions per second to the target. 3 refs., 2 figs

  7. Cleanup at Los Alamos National Laboratory - the challenges - 9493

    Energy Technology Data Exchange (ETDEWEB)

    Stiger, Susan G [Los Alamos National Laboratory; Hargis, Kenneth M [Los Alamos National Laboratory; Graham, Michael J [Los Alamos National Laboratory; Rael, George J [NNSL/LASO

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  8. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    International Nuclear Information System (INIS)

    Salmon, M.; Goen, L.K.

    1995-01-01

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper

  9. SNM holdup assessment of Los Alamos exhaust ducts

    International Nuclear Information System (INIS)

    Marshall, R.S.

    1994-02-01

    Fissile material holdup in glovebox and fume hood exhaust ducting has been quantified for all Los Alamos duct systems. Gamma-based, nondestructive measurements were used to quantify holdup. The measurements were performed during three measurement campaigns. The first campaign, Phase I, provided foot-by-foot, semiquantitative measurement data on all ducting. These data were used to identify ducting that required more accurate (quantitative) measurement. Of the 280 duct systems receiving Phase I measurements, 262 indicated less than 50 g of fissile holdup and 19 indicated fissile holdup of 50 or more grams. Seven duct systems were measured in a second campaign, called Series 1, Phase II. Holdup estimates on these ducts ranged from 421 g of 235 U in a duct servicing a shut-down uranium-machining facility to 39 g of 239 Pu in a duct servicing an active plutonium-processing facility. Measurements performed in the second campaign proved excessively laborious, so a third campaign was initiated that used more efficient instrumentation at some sacrifice in measurement quality. Holdup estimates for the 12 duct systems measured during this third campaign ranged from 70 g of 235 U in a duct servicing analytical laboratories to 1 g of 235 U and 1 g of 239 Pu in a duct carrying exhaust air to a remote filter building. These quantitative holdup estimates support the conclusion made at the completion of the Phase I measurements that only ducts servicing shut-down uranium operations contain about 400 g of fissile holdup. No ventilation ducts at Los Alamos contain sufficient fissile material holdup to present a criticality safety concern

  10. Double-shell target designs for the Los Alamos Scientific Laboratory eight-beam laser system

    International Nuclear Information System (INIS)

    Kindel, J.M.; Stroscio, M.A.

    1978-03-01

    We investigate two double-pusher laser fusion targets, one that incorporates an outer exploding pusher shell and another that uses velocity multiplication. Specific designs are presented for the Los Alamos Scientific Laboratory Eight-Beam Laser System

  11. Upgrade of the Los Alamos Plutonium Facility control system

    International Nuclear Information System (INIS)

    Pope, N.G.; Turner, W.J.; Brown, R.E.; Bibeau, R.A.; Davis, R.R.; Hogan, K.

    1996-01-01

    After 20 yrs service, the Los Alamos Plutonium Facility is undergoing an upgrade to its aging Facility Control System. The new system design includes a network of redundantly-paired programmable logic controllers that will interface with about 2200 field data points. The data communications network that has been designed includes a redundant, self-healing fiber optic data highway as well as a fiber optic ethernet. Commercially available human-machine interface software running on a UNIX-based system displays facility subsystem status operator X-terminals. Project design features, methods, costs, and schedule are discussed

  12. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  13. Recent advances in excimer laser technology at Los Alamos

    International Nuclear Information System (INIS)

    Bigio, I.J.; Czuchlewski, S.; McCown, A.W.; Taylor, A.J.

    1991-01-01

    This paper reports that current research in excimer laser technology at Los Alamos progresses in two major areas: In the Bright Source program, the development of ultra-high brightness (sub-piosecond) laser systems, based on discharge -pumped excimer laser amplifiers, continues Recently the authors have completed rigorous measurements of the saturation parameter for ultra-short pulses. In the laser fusion program, implementation of the large KrF laser fusion amplifiers have been accompanied by numerous studies of the laser physics and kinetics of large e-beam pumped devices

  14. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services

  15. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs

  16. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs.

  17. Status of the WNR/PSR at Los Alamos

    International Nuclear Information System (INIS)

    Silver, R.N.

    1982-01-01

    A proton storage ring is presently under construction at Los Alamos for initial operation in 1985 to provide the world's highest peak neutron flux for neutron scattering experiments. The operational WNR pulsed neutron source is in use for TOF instrument development and condensed matter research. Experimental results have been obtained in incoherent inelastic scattering, liquids and powder diffraction, single crystal diffraction and eV spectroscopy using nuclear resonances. Technical problems being addressed include chopper phasing, scintillator detector development, shielding and collimation. A crystal analyzer spectrometer in the constant Q configuration is being assembled. The long range plan for the WNR/PSR facility is described

  18. Using TLDs to monitor Los Alamos drillbacks at the Nevada test site

    International Nuclear Information System (INIS)

    Cucchiara, A.L.; Martin, A.

    1985-01-01

    Los Alamos National Laboratory uses LiF TLDs to measure the quantity of radiation in the environment during drilling, sampling and hole cementing operations following underground nuclear testing. The procedures for preparing the TLDs, placing the TLDs in the field and their subsequent analysis and dose evaluation are presented. 5 references, 4 figures, 1 table

  19. Recommendations for future low-level and mixed waste management practices at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Jennrich, E.A.; Klein, R.B.; Murphy, E.S.; Shuman, R.; Hickman, W.W.; Rutz, A.C.; Uhl, D.L.

    1989-01-01

    This report describes recommendations concerning the management of low-level radioactive wastes and mixtures at Los Alamos National Laboratory. Performance assessments, characterization, site disposal design, shipment, and storage are discussed

  20. Quality management in environmental programs: Los Alamos National Laboratory's approach

    International Nuclear Information System (INIS)

    Maassen, L.; Day, J.L.

    1998-03-01

    Since its inception in 1943, Los Alamos National Laboratory's (LANL's) primary mission has been nuclear weapons research and development, which involved the use of hazardous and radioactive materials, some of which were disposed of onsite. LANL has established an extensive Environmental Restoration Project (Project) to investigate and remediate those hazardous and radioactive waste disposal sites. This paper describes LANL's identification and resolution of critical issues associated with the integration and management of quality in the Project

  1. Erosion of earth covers used in shallow land burial at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Depoorter, G.L.; Drennon, B.J.; Simanton, J.R.; Foster, G.R.

    1984-01-01

    The Los Alamos National Laboratory and the USDA-ARS examined soil erosion and water balance relationships for a trench cap used for the shallow land burial of low-level radioactive waters at Los Alamos, NM. Eight 3.05 by 10.7 m plots were installed with bare soil, tilled, and vegetated surface treatments on a 15 by 63 m trench cap constructed from soil and crushed tuff layers. A rotating boom rain simulator was used to estimate the soil erodibility and cover-management factors of the Universal Soil Loss Equation (USLE) for this trench cap and for two undisturbed plots with natural vegetative cover. The implications of the results of this study are discussed relative to the management of infiltration and erosion processes at waste burial sites and compared with similar USDA research performed throughout the USA

  2. Summary of research for the Inertial Confinement Fusion Program at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Cartwright, D.C.

    1985-03-01

    The information presented in this report is a summary of the status of the Inertial Confinement Fusion (ICF) program at the Los Alamos National Laboratory as of February 1985. This report contains material on the existing high-power CO 2 laser driver (Antares), the program to determine the potential of KrF as an ICF driver, heavy-ion accelerators as drivers for ICF, target fabrication for ICF, and a summary of our understanding of laser-plasma interactions. A classified companion report contains material on our current understanding of capsule physics and lists the contributions to the Laboratory's weapons programs made by the ICF program. The information collected in these two volumes is meant to serve as a report on the status of some of the technological components of the Los Alamos ICF program rather than a detailed review of specific technical issues

  3. Some nuclear safety aspects of the Los Alamos accelerator based converion concept

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Moeller, E. [Royal Institute of Technology, Stockholm (Sweden); Venneri, F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The detailed analysis of the few parameters important for the safety of the accelerator-driven plutonium burner concept developed at Los Alamos National Laboratory was performed. The plutonium load, optimal thermalization of the neutron spectrum and temperature reactivity coefficients were investigated. The calculations revealed the strong positive temperature reactivity coeffecient. The ways to solve this problem are suggested.

  4. Cleanup at the Los Alamos National Laboratory - the challenges - 9493

    International Nuclear Information System (INIS)

    Stiger, Susan G.; Hargis, Kenneth M.; Graham, Michael J.; Rael, George J.

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  5. Environmental surveillance at Los Alamos during 2009

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poff, Ben [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salzman, Sonja [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2009. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (air in Chapter 4; water and sediments in Chapters 5 and 6; soils in Chapter 7; and foodstuffs and biota in Chapter 8) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. The new Chapter 10 describes the Laboratory’s environmental stewardship efforts and provides an overview of the health of the Rio Grande. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical

  6. Use of ecotoxicological screening action levels in ecological risk assessment at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Ferenbauah, R.; Ebinger, M.; Gallegos, A.; Hansen, W.; Myers, O.; Wenzel, W.

    1995-01-01

    Regulatory drivers found in several environmental statutes require that ecological risk assessment and Natural Resource Damage Assessment be performed to assess potential environmental impact from contaminated sites and from proposed remedial alternatives. At Los Alamos National Laboratory, the initial phase of the ecological risk assessment process required preliminary evaluation of contaminated sites to determine whether potential for ecological impact exists. The preliminary evaluations were made using Ecotoxicological Screening Action Levels (ESALS) calculated as a function of reference toxicity dose, body weight, food/water/air intake, and fraction of soil intake with food. Reference toxicity doses were derived from the Environmental Protection Agency Integrated Risk Information System (IRIS) and Health Effects Assessment Summary Tables (HEAST) toxicology databases. Other parameters required for ESAL calculations were derived from physiological, metabolic, and behavioral data available in the literature. The Los Alamos ESALs were derived for guilds of animals with similar behavioral patterns, which were identified from natural resource survey data collected at Los Alamos. Subsequent to development of Ecotoxicological Screening Action Levels, Hazard Quotients, which are ratios of soil concentrations to Ecotoxicological Screening Action Levels, were calculated for potential contaminants of concern. The Hazard Quotients were used to identify which potential contaminants of concern should be evaluated further for ecological impact. There is potential for ecological impact when the Hazard Quotient is equal to or greater than one

  7. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project's (YMP's) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis

  8. Environmental surveillance at Los Alamos during 1992

    International Nuclear Information System (INIS)

    Kohen, K.; Stoker, A.; Stone, G.

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment

  9. Environmental surveillance at Los Alamos during 1986

    International Nuclear Information System (INIS)

    1987-04-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1986. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit eartly identification of potentially undesirable trends. Results and interpertation of data for 1986 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparison with appropriate standards, regulations, and backgound levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not impact the public, Laboratory employees, or the environment. 52 refs., 32 figs., 117 tabs

  10. Environmental surveillance at Los Alamos during 1991

    International Nuclear Information System (INIS)

    Dewart, J.; Kohen, K.L.

    1993-08-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1991. Routine monitoring for radiation and for radioactive and chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1991 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment

  11. Environmental surveillance at Los Alamos during 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.

  12. Environmental surveillance at Los Alamos during 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kohen, K.; Stoker, A.; Stone, G. [and others

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.

  13. Environmental surveillance at Los Alamos during 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment

  14. Environmental surveillance at Los Alamos during 1990

    International Nuclear Information System (INIS)

    1992-03-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1990. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1990 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment

  15. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  16. Laser protective eyewear program at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Winburn, D.C.

    1980-01-01

    The proliferation of lasers at Los Alamos focused considerable attention on providing adequate eye protection for experimenters involved in the use of a wide variety of nonionizing radiation. Experiments with fast-pulsed lasers (Nd:YAG, HF, and CO 2 ) were performed to gain biological threshold data on ocular damage. In parallel, eye protection devices were evaluated, which resulted in the development of lightweight, comfortable spectacles of colored glass filters that can be ground to prescription specifications. Goggle styles are employed in specific applications

  17. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  18. Los Alamos KrF laser program

    International Nuclear Information System (INIS)

    Jensen, R.J.; Cartwright, D.C.

    1985-01-01

    Los Alamos is currently developing the krypton fluoride (KrF) laser - a highly efficient laser able to emit very intense bursts of short-wavelength photons - as a research tool for the general study of high-density matter, as well as for use in laser fusion. The KrF laser operates at 1/4 μm, close to the short-wavelength limit for conventional optical material, but still in the region where standard optical techniques can be used. The excited-state lifetime of the KrF lasing medium is short - as a result of both spontaneous emission and deactivation from collisions - making it impossible to store energy within the lasing medium for times significant to electrical pumping. However, an optical multiplexing scheme is being developed that will generate short, intense pulses of 1/4-μm light by overcoming the short storage time of the laser and taking advantage of the high gain of the KrF medium

  19. NIST--Los Alamos racetrack microtron status

    International Nuclear Information System (INIS)

    Wilson, M.A.; Ayres, R.L.; Cutler, R.I.; Debenham, P.H.; Lindstrom, E.R.; Mohr, D.L.; Penner, S.; Rose, J.E.; Young, L.M.

    1988-01-01

    The NIST-Los Alamos Racetrack Microtron (RTM) is designed to deliver a low-emittance electron beam of up to 0.5 mA cw over an energy range of 17 MeV to 185 MeV. Fed by a 5 MeV injector, the RTM contains two 180 degree end magnets that recirculate the beam up to 15 times through a 12 MeV RF linac. The linac, which operates in a standing-wave mode at 2380 MHz, has been tested to nearly full RF power. At present, the injector has undergone beam tests, and the beam transport system is complete through the 12 MeV linac. A temporary beam line has been installed at the exit of one end magnet to measure the beam energy, energy spread, and emittance after one pass through the accelerator. Preliminary results indicate that the accelerated beam energy spread and emittance are within design goals. 4 refs., 7 figs

  20. Los Alamos controlled-air incineration studies

    International Nuclear Information System (INIS)

    Koenig, R.A.; Warner, C.L.

    1983-01-01

    Current regulations of the Environmental Protection Agency (EPA) require that PCBs in concentrations greater than 500 ppM be disposed of in EPA-permitted incinerators. Four commercial incineration systems in the United States have EPA operating permits for receiving and disposing of concentrated PCBs, but none can accept PCBs contaminated with nuclear materials. The first section of this report presents an overview of an EPA-sponsored program for studying PCB destruction in the large-scale Los Alamos controlled-air incinerator. A second major FY 1983 program, sponsored by the Naval Weapons Support Center, Crane, Indiana, is designed to determine operating conditions that will destroy marker smoke compounds without also forming polycyclic aromatic hydrocarbons (PAHs), some of which are known or suspected to be carcinogenic. We discuss the results of preliminary trial burns in which various equipment and feed formulations were tested. We present qualitative analyses for PAHs in the incinerator offgas as a result of these tests

  1. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  2. Water supply at Los Alamos: Current status of wells and future water supply

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Stoker, A.K.

    1988-08-01

    The municipal and industrial use of groundwater at the Los Alamos National Laboratory and Los Alamos County was about 1.5 billion gallons during 1986. From a total of 19 wells that range in age from 5 to 41 years, the water was pumped from 3 well fields. The life expectancy of a well in the area ranges from 30 to 50 years, dependent on the well construction and rate of corrosion of the casing and screen. Twelve of the wells are more than 30-years old and, of these, four cannot be used for production, three because of well damage and one because the quality of water is not suitable for use. Eight of the twelve oldest wells are likely to be unsuitable for use in the next 10 years because of well deterioration and failure. The remaining 7 wells include 2 that are likely to fail in the next 20 years. Five of the younger wells in the Pajarito well field are in good condition and should serve for another two or three decades. The program of maintenance and rehabilitation of pumps and wells has extended production capabilities for short periods of time. Pumps may be effectively repaired or replaced; however, rehabilitation of the well is only a short-term correction to increase the yield before it starts to decline again. The two main factors that prevent successful well rehabilitation are: (1) chemicals precipitated in the gravel pack and screen restrict or reduce the entrance of water to the well, which reduces the yield of the well, and (2) the screen and casing become corroded to a point of losing structural strength and subsequent failure allows the gravel pack and formation sand to enter the well. Both factors are due to long-term use and result in extensive damage to the pump and reduce the depth of the well, which in turn causes the yield to decline. Once such well damage occurs, rehabilitation is unlikely to be successful and the ultimate result is loss of the well. Two wells were lost in 1987 because of such damage. 29 refs., 15 figs., 15 tabs

  3. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project`s (YMP`s) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis.

  4. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  5. Applications of the Los Alamos High Energy Transport code

    International Nuclear Information System (INIS)

    Waters, L.; Gavron, A.; Prael, R.E.

    1992-01-01

    Simulation codes reliable through a large range of energies are essential to analyze the environment of vehicles and habitats proposed for space exploration. The LAHET monte carlo code has recently been expanded to track high energy hadrons with FLUKA, while retaining the original Los Alamos version of HETC at lower energies. Electrons and photons are transported with EGS4, and an interface to the MCNP monte carlo code is provided to analyze neutrons with kinetic energies less than 20 MeV. These codes are benchmarked by comparison of LAHET/MCNP calculations to data from the Brookhaven experiment E814 participant calorimeter

  6. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  7. Arid-site SLB technology development at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1981-01-01

    The program goal for shallow land burial (SLB) Technology Development at the Los Alamos National Laboratory is to field test new disposal concepts and strategies for all aspects of arid SLB on an accelerated basis and on a reasonable scale. The major accomplishments during FY-1981 were the development of the Los Alamos Experimental Engineered Test Facility, the emplacement of the biointrusion barrier testing experiments, the design and emplacement of the moisture cycling experiments, the design and construction of the experiment clusters, and the planning for the experiments to be emplaced in these units. This paper will describe the site development work, the design and construction of the experiment clusters, and the experiments planned for these units. The experimental Engineered Test Facility was brought from idea to reality and two experiments were emplaced (biointrusion barrier and moisture cycling). The experiment clusters were designed and constructed, and are now available for experimentation. These units are reusable. After an experiment is complete it can be removed and another experiment put in its place. Several of the experiments were planned and designed while some of the other experiments are still in the planning stage. Based on the work done in FY-1981, significant progress toward Milestones, C, D, and E should be made in FY-1982

  8. Comparison of background gamma-ray spectra between Los Alamos, New Mexico and Austin, Texas

    International Nuclear Information System (INIS)

    Horne, S.; Jackman, K.R.; Landsberger, S.

    2013-01-01

    Background counts in gamma-ray spectrometry are caused by a variety of sources. Among these are naturally occurring radioactive materials (NORM) in the environment, interactions from cosmic radiation, and contamination within the laboratory. High-purity germanium detectors were used to acquire long background spectra in Los Alamos, NM (elevation ∼7,300 feet) and Austin, TX (elevation ∼500 feet). This difference in elevation has a sizeable effect on background spectra due to cosmic interactions, such as (n,n') and (n,γ). Los Alamos also has a fairly high NORM concentration in the soil relative to Austin, and this gives way to various spectral interferences. When analyzing nuclear forensics samples, these background sources can have non-trivial effects on detection limits of low-level fission products. By accurately determining the influence that elevation and environment have on background spectra, interferences within various laboratory environments can be more accurately characterized. (author)

  9. Los Alamos compact toroid, fast-liner, and high-density Z-pinch programs

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.; Sherwood, A.R.; Hammel, J.E.

    1981-03-01

    The Compact Toroid (CT) and High Density Z-Pinch (HDZP) are two of the plasma configurations presently being studied at Los Alamos. The purpose of these two programs, plus the recently terminated (May 1979) Fast Liner (FL) program, is summarized in this section along with a brief description of the experimental facilities. The remaining sections summarize the recent results and the experimental status.

  10. Electron cloud diagnostics in use at the Los Alamos PSR

    International Nuclear Information System (INIS)

    Macek, R. J.; Browman, A.; Borden, M.; Fitzgerald, D.; Wang, T. S.; Zaugg, T.; Harkay, K.; Rosenberg, R.

    2003-01-01

    A variety of electron cloud diagnostics have been deployed at the Los Alamos Proton Storage Ring (PSR) to detect, measure, and characterize the electron cloud generated in this high intensity, long bunch accumulator ring. These include a version of the ANL-developed retarding field analyzers (RFA) augmented with LANL-developed electronics, a variant of the RFA denoted as the electron sweeping diagnostic (ESD), biased collection plates, and gas pulse measuring devices. The designs and experience with the performance and applicability to PSR are discussed

  11. Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)

    International Nuclear Information System (INIS)

    Bowker, L.M.; Espinosa, M.L.; Klein, S.H.

    1995-11-01

    This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  12. A Handbook for Derivative Classifiers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinkula, Barbara Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-23

    The Los Alamos Classification Office (within the SAFE-IP group) prepared this handbook as a resource for the Laboratory’s derivative classifiers (DCs). It contains information about United States Government (USG) classification policy, principles, and authorities as they relate to the LANL Classification Program in general, and to the LANL DC program specifically. At a working level, DCs review Laboratory documents and material that are subject to classification review requirements, while the Classification Office provides the training and resources for DCs to perform that vital function.

  13. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.J. (comp.)

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  14. Ion source development for the Los Alamos heavy ion fusion injector

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Oona, H.; Meyer, E.A.; Shurter, R.P.; Engelhardt, L.S.; Humphries, S. Jr.

    1985-01-01

    A multi-beam injector is being designed and built at Los Alamos for the US Heavy Ion Fusion Program. As part of this program, development of an aluminum-spark, pulsed plasma source is being carried out. Faraday cup diagnostics are used to study current emission and to map the current profile. An aluminum oxide scintillator with photographic film is used in conjunction with a pepper-pot to obtain time integrated emittance values

  15. Basic and Applied Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    2003-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science. At present LANSCE has two experimental areas primarily using neutrons generated by 800-MeV protons striking tungsten target systems. A third area uses the proton beam for radiography. This paper describes the three LANSCE experimental areas, gives highlights of the past operating period, and discusses plans for the future

  16. Publications of Los Alamos Research, 1977-1981: formerly Publications of LASL Research. Volume II

    International Nuclear Information System (INIS)

    Sheridan, C.J.; Garcia, C.A.

    1983-03-01

    This volume is a bibliography of Los Alamos publications during the specified period in the following areas: general physics; nuclear physics; particles and fields; radioisotope and radiation applications; nuclear materials security safeguards; solar energy; theoretical plasma physics; and transportation of property and nuclear materials

  17. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1996-01-01

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL's sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL's outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE's purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives

  18. Stormwater Pollution Prevention Plan for the TA-60-02 Salvage Warehouse, Los Alamos National Laboratory, Revision 3, January 2018

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-08

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. The applicable stormwater discharge permit is EPA General Permit Registration Number NMR053915 (Los Alamos National Security (LANS) (U.S. EPA, June 2015). Contents of the June 4, 2015 Multi-sector General Permit can be viewed at: https://www.epa.gov/sites/production/files/2015- 10/documents/msgp2015_finalpermit.pdf This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-02 Salvage and Warehouse facility at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60-02 Salvage/ Warehouse and associated areas. The current permit expires at midnight on June 4, 2020. A copy of the facility NOI and LANS Delegation of Authority Letter are located in Appendix C of this SWPPP.

  19. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    International Nuclear Information System (INIS)

    1997-01-01

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste

  20. Dosimetry at the Los Alamos Critical Experiments Facility: Past, present, and future

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1993-10-01

    Although the primary reason for the existence of the Los Alamos Critical Experiments Facility is to provide basic data on the physics of systems of fissile material, the physical arrangements and ability to provide sources of radiation have led to applications for all types of radiation dosimetry. In the broad definition of radiation phenomena, the facility has provided sources to evaluate biological effects, radiation shielding and transport, and measurements of basic parameters such as the evaluation of delayed neutron parameters. Within the last 15 years, many of the radiation measurements have been directed to calibration and intercomparison of dosimetry related to nuclear criticality safety. Future plans include (1) the new applications of Godiva IV, a bare-metal pulse assembly, for dosimetry (including an evaluation of neutron and gamma-ray room return); (2) a proposal to relocate the Health Physics Research Reactor from the Oak Ridge National Laboratory to Los Alamos, which will provide the opportunity to continue the application of a primary benchmark source to radiation dosimetry; and (3) a proposal to employ SHEBA, a low-enrichment solution assembly, for accident dosimetry and evaluation

  1. Environmental surveillance at Los Alamos during 1983

    International Nuclear Information System (INIS)

    1984-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos National Laboratory during 1983. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of data for 1983 are included on external penetrating radiation; on the chemical and radiochemical quality of ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and on the quantities of airborne emissions and liquid effluents. Comparisons with appropriate standards, regulations, and background levels from natural or other non-Laboratory sources provide a basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area of Laboratory employees. 61 references, 34 figures, 22 tables

  2. Environmental surveillance at Los Alamos during 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs

  3. Environmental surveillance at Los Alamos during 1985

    International Nuclear Information System (INIS)

    1986-04-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1985. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of possible undesirable trends. Results and interpretation of data for 1985 cover: external penetrating radiation; chemical and radiochemical quality of ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; quantities of airborne emissions and liquid effluents; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels from natural or other non-Laboratory sources provide the basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area or Laboratory employees

  4. Environmental surveillance at Los Alamos during 1984

    International Nuclear Information System (INIS)

    1985-04-01

    This report describes the environmental surveillance program conducted by the Los Alamos National Laboratory during 1984. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of data for 1984 are included on external penetrating radiation; on the chemical and radiochemical quality of ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and on the quantities of airborne emissions and liquid effluents. Comparisons with appropriate standards, regulations, and background levels from natural or other non-Laboratory sources provide a basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area or Laboratory employees. 8 refs., 38 figs., 57 tabs

  5. Environmental surveillance at Los Alamos during 1989

    International Nuclear Information System (INIS)

    1990-12-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1989. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1989 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment. 58 refs., 31 figs., 39 tabs

  6. Environmental surveillance at Los Alamos during 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.

  7. Optical engineering at Los Alamos: a history

    International Nuclear Information System (INIS)

    Brixner, B.

    1983-01-01

    Optical engineering at Los Alamos, which began in 1943, has continued because scientific researchers usually want more resolving power than commercially available optical instruments provide. In addition, in-house engineering is often advantageous - when the technology for designing and making improved instrumentation is available locally - because of our remote location and the frequent need for accurate data. As a consequence, a number of improved research cameras and lens systems have been developed locally - especially for explosion and implosion photography, but even for oscilloscope photography. The development of high-speed cameras led to the ultimate in practical high-speed rotating mirrors and to the invention of a rapid, precise, and effective lens design procedure that has produced more than a hundred lens system that gives improved imaging in special conditions of use. Representative examples of this work are described

  8. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1979-05-01

    A detailed consideration of the Skua burst assembly is presented, thereby supplementing the facility safety analysis report covering the operation of other critical assemblies at Los Alamos. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  9. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Tandon, Lav; Kuhn, Kevin J.; Drake, Lawrence R.; Decker, Diana L.; Walker, Laurie F.; Colletti, Lisa M.; Spencer, Khalil J.; Peterson, Dominic S.; Herrera, Jaclyn A.; Wong, Amy S.

    2010-01-01

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  10. Feral Cattle in the White Rock Canyon Reserve at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hansen, Leslie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-27

    At the request of the Los Alamos Field Office (the Field Office), Los Alamos National Security (LANS) biologists placed remote-triggered wildlife cameras in and around the mouth of Ancho Canyon in the White Rock Canyon Reserve (the Reserve) to monitor use by feral cattle. The cameras were placed in October 2012 and retrieved in January 2013. Two cameras were placed upstream in Ancho Canyon away from the Rio Grande along the perennial flows from Ancho Springs, two cameras were placed at the north side of the mouth to Ancho Canyon along the Rio Grande, and two cameras were placed at the south side of the mouth to Ancho Canyon along the Rio Grande. The cameras recorded three different individual feral cows using this area as well as a variety of local native wildlife. This report details our results and issues associated with feral cattle in the Reserve. Feral cattle pose significant risks to human safety, impact cultural and biological resources, and affect the environmental integrity of the Reserve. Regional stakeholders have communicated to the Field Office that they support feral cattle removal.

  11. Formerly utilized MED/AEC sites Remedial Action Program: radiological survey of the Bayo Canyon, Los Alamos, New Mexico. Final report

    International Nuclear Information System (INIS)

    Mayfield, D.L.; Stoker, A.K.; Ahlquist, A.J.

    1979-06-01

    A portion of Bayo Canyon, located in Los Alamos County in north-central New Mexico, was used between 1944 and 1961 as a site for experiments employing conventional high explosives in conjunction with research on nuclear weapons development. Radiochemistry operations conducted at the site resulted in the generation of liquid and solid radioactive wastes, which were disposed into subsurface pits and leaching fields. The site was decommissioned by 1963. The resurvey utilized information from a number of routine and special environmental surveillance studies as well as extensive new instrumental measurements, soil sampling, and radiochemical analyses. Results showed that residual surface contamination due to 90 Sr averaged about 1.4 pCi/g or approximately 3 times the level attributable to worldwide fallout. Surface uranium averaged about 4.9 μg/g or about 1.5 times the amount naturally present in the volcanic-derived soils of the area. Subsurface contamination associated with the former waste disposal locations is largely confined within a total area of about 10,000 m 2 and down to depths of about 5 m. Of 378 subsurface samples, fewer than 12% exceeded 13 pCi/g of gross beta activity, which is comparable to the upper range of activities for uncontaminated local soils. Health physics interpretation of the data indicates that the present population of Los Alamos living on mesas adjacent to Bayo Canyon is not receiving any incremental radiation doses due to the residual contamination. Potential future land uses of Bayo Canyon include development of a residential area

  12. Waste Processing Cost Recovery at Los Alamos National Laboratory-Analysis and Recommendations

    International Nuclear Information System (INIS)

    Booth, St. R.

    2009-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit of waste. Therefore, the fixed cost ends at the point just before waste begins to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  13. Initial electron-beam characterizations for the Los Alamos APEX Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O' Shea, P.G. (Los Alamos National Lab., NM (United States)); Fiorito, R.B.; Rule, D.W. (Naval Surface Warfare Center, Silver Spring, MD (United States))

    1991-01-01

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus minus} 0.2%), and drive laser phase stability (< 2 ps (rms)). 10 refs.

  14. Initial electron-beam characterizations for the Los Alamos APEX Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O`Shea, P.G. [Los Alamos National Lab., NM (United States); Fiorito, R.B.; Rule, D.W. [Naval Surface Warfare Center, Silver Spring, MD (United States)

    1991-12-31

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus_minus} 0.2%), and drive laser phase stability (< 2 ps [rms]). 10 refs.

  15. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    International Nuclear Information System (INIS)

    Ruhala, E.R.; Klein, S.H.

    1997-06-01

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  16. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  17. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  18. Environmental safety and health vulnerabilities of plutonium at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    A national effort to assess the environmental safety and health issues of plutonium at nuclear facilities included an assessment of such vulnerabilities at the Los Alamos National Laboratory (LANL). LANL was well below the most serious problem sites, however, the problems are serious enough to require immediate attention and resources are being sought to address the most serious vulnerabilities

  19. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1980-12-01

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  20. Stormwater Pollution Prevention Plan for the TA-60-01 Heavy Equipment Shop, Los Alamos National Laboratory, Revision 3, January 2018

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-01 Heavy Equipment Shop at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60-01 Heavy Equipment Shop and associated areas. The current permit expires at midnight on June 4, 2020.

  1. Stormwater Pollution Prevention Plan for the TA-03-38 Metals Fabrication Shop, Los Alamos National Laboratory, Revision 3, January 2018

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector AA-Fabricated Metal Products as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-38 Metals Fabrication Shop at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-38 Metals Fabrication Shop and associated areas. The current permit expires at midnight on June 4, 2020.

  2. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  3. Decommissioning of surplus facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stout, D.S.

    1995-01-01

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ''observational approach,'' in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses

  4. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos

  5. Partnering with Pueblos: Involving American Indians in environmental restoration activities at Los Alamos National Laboratory, New Mexico

    International Nuclear Information System (INIS)

    Shaner, M.H.; Naranjo, L. Jr.

    1995-01-01

    Many communities in the area surrounding Los Alamos are very concerned about the environmental impact past and current Laboratory operations have on their communities. Their main concerns are contamination of water, soil and air as well as the hazardous and radioactive wastes stored at the Laboratory site. Environmental surveillance results show that contamination may have migrated off-site through the canyons of the Pajarito Plateau to the Rio Grande. San Ildefonso Pueblo and Cochiti Pueblo are located downstream from the canyons that drain the Los Alamos town site and Laboratory lands. Several other pueblos are also located downstream from the Laboratory. The Pueblos located upstream from the laboratory indicated that contamination of air and worry about the contamination of the animals they hunt for food is a more important concern to them. There are many canyons that drain the areas where Los Alamos and Laboratory property are located. To be able to characterize those canyons that are known or suspected to have received contamination, the ER Project needs to prepare RCRA Facility Investigation (RFI) work plans for approval by the Environmental Protection Agency (EPA). Once EPA approves the work plant, characterization activities can start for the specific areas identified in the work plan

  6. Environmental Surveillance at Los Alamos during 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information. In printed copies of this report or Executive Summary, we have

  7. Basis and objectives of the Los Alamos accelerator driven transmutation technology project

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1997-01-01

    The paper describes a new accelerator-based nuclear technology developed at Los Alamos National Laboratory which offers total destruction of the weapons Plutonium inventory, a solution to the commercial nuclear waste problem which greatly reduces or eliminates the requirement for geologic waste storage, and a system which generates potentially unlimited energy from Thorium fuel while destroying its own waste and operating in a new regime of nuclear safety

  8. Automatic beam position control at Los Alamos Spallation Radiation Effects Facility (LASREF)

    International Nuclear Information System (INIS)

    Oothoudt, M.; Pillai, C.; Zumbro, M.

    1997-01-01

    Historically the Los Alamos Spallation Radiation Effects Facility (LASREF) has used manual methods to control the position of the 800 kW, 800 MeV proton beam on targets. New experiments, however, require more stringent position control more frequently than can be done manually for long periods of time. Data from an existing harp is used to automatically adjust steering magnets to maintain beam position to required tolerances

  9. Environmental surveillance at Los Alamos during 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1979. Routine monitoring for radiation and radioactive or chemical substances was conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1979 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs.

  10. Environmental surveillance at Los Alamos during 1981

    International Nuclear Information System (INIS)

    1982-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos National Laboratory during 1981. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of data for 1981 are included on penetrating radiation; on the chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soil and sediments, and food; and on the quantities of airborne emissions and liquid effluents. Comparisons with appropriate standards and regulations or with background levels from natural or other non-Laboratory sources provide a basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area. Results of several special studies describe some unique environmental conditions in the Laboratory environs

  11. Los Alamos Transuranic Waste Size Reduction Facility

    International Nuclear Information System (INIS)

    Harper, J.; Warren, J.

    1987-06-01

    The Los Alamos Transuranic (TRU) Waste Size Reduction Facility (SRF) is a production oriented prototype. The facility is operated to remotely cut and repackage TRU contaminated metallic wastes (e.g., glove boxes, ducting and pipes) for eventual disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The resulting flat sections are packaged into a tested Department of Transportation Type 7A metal container. To date, the facility has successfully processed stainless steel glove boxes (with and without lead shielding construction) and retention tanks. We have found that used glove boxes generate more cutting fumes than do unused glove boxes or metal plates - possibly due to deeply embedded chemical residues from years of service. Water used as a secondary fluid with the plasma arc cutting system significantly reduces visible fume generation during the cutting of used glove boxes and lead-lined glove boxes. 2 figs., 1 tab

  12. Environmental surveillance at Los Alamos during 1979

    International Nuclear Information System (INIS)

    1980-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1979. Routine monitoring for radiation and radioactive or chemical substances was conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1979 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs

  13. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  14. A history of the working group to address Los Alamos community health concerns - A case study of community involvement and risk communication

    Energy Technology Data Exchange (ETDEWEB)

    Harry Otway; Jon Johnson

    2000-01-01

    In May 1991, at a Department of Energy (DOE) public hearing at Los Alamos, New Mexico, a local artist claimed there had been a recent brain tumor cluster in a small Los Alamos neighborhood. He suggested the cause was radiation from past operations of Los Alamos National Laboratory. Data from the Laboratory's extensive environmental monitoring program gave no reason to believe this charge to be true but also could not prove it false. These allegations, reported in the local and regional media, alarmed the community and revealed an unsuspected lack of trust in the Laboratory. Having no immediate and definitive response, the Laboratory offered to collaborate with the community to address this concern. The Los Alamos community accepted this offer and a joint Community-Laboratory Working Group met for the first time 29 days later. The working group set as its primary goal the search for possible carcinogens in the local environment. Meanwhile, the DOE announced its intention to fund the New Mexico Department of Health to perform a separate and independent epidemiological study of all Los Alamos cancer rates. In early 1994, after commissioning 17 environmental studies and meeting 34 times, the working group decided that the public health concerns had been resolved to the satisfaction of the community and voted to disband. This paper tells the story of the artist and the working group, and how the media covered their story. It summarizes the environmental studies directed by the working group and briefly reviews the main findings of the epidemiology study. An epilogue records the present-day recollections of some of the key players in this environmental drama.

  15. A history of the working group to address Los Alamos community health concerns. A case study of community involvement and risk communication

    International Nuclear Information System (INIS)

    Harry Otway; Jon Johnson

    2000-01-01

    In May 1991, at a Department of Energy (DOE) public hearing at Los Alamos, New Mexico, a local artist claimed there had been a recent brain tumor cluster in a small Los Alamos neighborhood. He suggested the cause was radiation from past operations of Los Alamos National Laboratory. Data from the Laboratory's extensive environmental monitoring program gave no reason to believe this charge to be true but also could not prove it false. These allegations, reported in the local and regional media, alarmed the community and revealed an unsuspected lack of trust in the Laboratory. Having no immediate and definitive response, the Laboratory offered to collaborate with the community to address this concern. The Los Alamos community accepted this offer and a joint Community-Laboratory Working Group met for the first time 29 days later. The working group set as its primary goal the search for possible carcinogens in the local environment. Meanwhile, the DOE announced its intention to fund the New Mexico Department of Health to perform a separate and independent epidemiological study of all Los Alamos cancer rates. In early 1994, after commissioning 17 environmental studies and meeting 34 times, the working group decided that the public health concerns had been resolved to the satisfaction of the community and voted to disband. This paper tells the story of the artist and the working group, and how the media covered their story. It summarizes the environmental studies directed by the working group and briefly reviews the main findings of the epidemiology study. An epilogue records the present-day recollections of some of the key players in this environmental drama

  16. Pinon Pine Tree Study, Los Alamos National Laboratory: Source document

    International Nuclear Information System (INIS)

    Gonzales, G.J.; Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.

    2000-01-01

    One of the dominant tree species growing within and around Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis) tree. Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3 H, 137 Cs, 90 Sr, tot U, 238 Pu, 239,240 Pu, and 241 Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) concentrations of radionuclides in PPN collected in 1977 to present data, (3) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (4) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3 H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 microSv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables

  17. Los Alamos National Laboratory progress and path to inertial confinement fusion commercialization

    International Nuclear Information System (INIS)

    Harris, D.B.; Dudziak, D.J.

    1989-01-01

    KrF lasers appear to be an attractive driver for inertial confinement fusion commercial applications such as electric power production. Los Alamos National Laboratory is working to develop the technology required to demonstrate that KrF lasers can satisfy all of the driver requirements. The latest experimental and theoretical results indicate that cost currently appears to be the main issue for KrF lasers. The Los Alamos program is working to reduce the cost of KrF laser systems by developing damage-resistant optical coatings, low-cost optical blanks, high-intrinsic-efficiency gas mixtures, low-cost and high-efficiency pulsed power, and optimized system architectures. Other potential issues may cause problems after the 5 kJ Aurora KrF laser system becomes operational, such as amplified spontaneous emission, cross talk or temporal pulse distortion. Design solutions to issues such as these have been identified and will be experimentally demonstrated on Aurora. Issues specific to commercial-application drivers, such as cost, gas flow, repetively pulsed power, and high reliability cannot be experimentally addressed at this time. Projections will be made on the ability of KrF lasers to satisfy these requirements. The path to commercialization of inertial fusion for KrF lasers is also described. (orig.)

  18. The Role of Non-Destructive Testing in the Los Alamos Reactor Programme; Role des Essais Non Destructifs dans le Programme de Reacteurs de los Alamos; Rol' nedestruktivnykh ispytanij materialov v Los-Alamosskoj reaktornoj programme; Papel de los Metodos de Ensayo No Destructivo en el Programa de Reactores de Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, G. H. [University of California, Los Alamos Scientific Laboratory, Los Alamos, NM (United States)

    1965-10-15

    The Los Alamos scientific Laboratory, operated Dy me University of california for me united states Atomic Energy Commission, has been active for more than twenty years in developing, designing, and building nuclear reactors of four general types: research, power, rocket propulsion, and critical assembly. The Non-destructive Testing Group serves practically all the activities and projects of the Laboratory; this paper describes some of the unique non-destructive testing techniques and applications developed for and used in the reactor programme. LAPRE (Los Alamos Power Reactor Experiment) was based on the use of a uranium phosphate solution at high temperature. This solution is very corrosive, and all parts in contact with it were clad with gold. Special radiographic techniques were used to inspect the gold during the process of producing rolled sheet from cast ingot. The welded seams were similarly inspected. An electrode-potential inspection method was developed for checking the gold surfaces for imbedded impurities. The fundamental concept of LAMPRE (Los Alamos Molten Plutonium Reactor Experiment) is the use of liquid - rather than solid - plutonium metal as fuel. Tantalum capsules contained the fuel. Novel nondestructive testing methods were used to check the soundness of base metal and welds during the production of the capsules, and to study the plutonium-loaded capsules before, during, and after melt-freeze tests. A molten plutonium pump experiment was followed with radiographic techniques, including a gamma-ray closed television circuit. For UHTREX (Ultra High Temperature Reactor Experiment), now under construction, micro radiographic and electron microscopic studies have been made on 150-{mu}m-diam. pyrocarbon-coated uranium carbide beads, to evaluate uranium migration as a function of temperature. The amount, and uniformity, of the uranium loading in the UHTREX graphite elements are determined with specially designed scintillation counters. About 90% of

  19. Erosion and Deposition Monitoring Using High-Density Aerial Lidar and Geomorphic Change Detection Software Analysis at Los Alamos National Laboratory, Los Alamos New Mexico, LA-UR-17-26743

    Science.gov (United States)

    Walker, T.; Kostrubala, T. L.; Muggleton, S. R.; Veenis, S.; Reid, K. D.; White, A. B.

    2017-12-01

    The Los Alamos National Laboratory storm water program installed sediment transport mitigation structures to reduce the migration of contaminants within the Los Alamos and Pueblo (LA/P) watershed in Los Alamos, NM. The goals of these structures are to minimize storm water runoff and erosion, enhance deposition, and reduce mobility of contaminated sediments. Previous geomorphological monitoring used GPS surveyed cross-sections on a reach scale to interpolate annual geomorphic change in sediment volumes. While monitoring has confirmed the LA/P watershed structures are performing as designed, the cross-section method proved difficult to estimate uncertainty and the coverage area was limited. A new method, using the Geomorphic Change Detection (GCD) plugin for ESRI ArcGIS developed by Wheaton et al. (2010), with high-density aerial lidar data, has been used to provide high confidence uncertainty estimates and greater areal coverage. Following the 2014 monsoon season, airborne lidar data has been collected annually and the resulting DEMs processed using the GCD method. Additionally, a more accurate characterization of low-amplitude geomorphic changes, typical of low-flow/low-rainfall monsoon years, has been documented by applying a spatially variable error to volume change calculations using the GCD based fuzzy inference system (FIS). The FIS method allows for the calculation of uncertainty based on data set quality and density e.g. point cloud density, ground slope, and degree of surface roughness. At the 95% confidence level, propagated uncertainty estimates of the 2015 and 2016 lidar DEM comparisons yielded detectable changes greater than 0.3 m - 0.46 m. Geomorphic processes identified and verified in the field are typified by low-amplitude, within-channel aggradation and incision and out of channel bank collapse that over the course of a monsoon season result in localized and dectetable change. While the resulting reach scale volume change from 2015 - 2016 was often

  20. Progress in inertial fusion research at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Perkins, R.B.

    1981-01-01

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO 2 laser system delivering up to 6kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO 2 experiments in the tens-of-kJ regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40kJ of CO 2 laser light on target. (author)

  1. Recent developments in the Los Alamos radiation transport code system

    International Nuclear Information System (INIS)

    Forster, R.A.; Parsons, K.

    1997-01-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results

  2. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  3. Applications of industrial computed tomography at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Kruger, R.P.; Morris, R.A.; Wecksung, G.W.

    1980-01-01

    A research and development program was begun three years ago at the Los Alamos Scientific Laboratory (LASL) to study nonmedical applications of computed tomography. This program had several goals. The first goal was to develop the necessary reconstruction algorithms to accurately reconstruct cross sections of nonmedical industrial objects. The second goal was to be able to perform extensive tomographic simulations to determine the efficacy of tomographic reconstruction with a variety of hardware configurations. The final goal was to construct an inexpensive industrial prototype scanner with a high degree of design flexibility. The implementation of these program goals is described

  4. Plans for a new pulsed spallation source at Los Alamos

    International Nuclear Information System (INIS)

    Pynn, R.

    1993-01-01

    Los Alamos National Laboratory has proposed to change the emphasis of research at its Meson Physics Facility (LAWF) by buabg a new pulsed spallation source for neutron scattering research. The new source would have a beam power of about one megawatt shared between two neutron production targets, one operating at 20 Hz and the other at 40 Hz. It would make use of much of the existing proton linac and would be designed to accommodate a later upgrade to a beam power of 5 MW or so. A study of technical feasibility is underway and will be published later this year

  5. Trends in instrumentation for environmental radiation measurements at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Hiebert, R.D.; Wolf, M.A.

    1980-01-01

    Recent instruments developed to fulfill radiation monitoring needs at Los Alamos Scientific Laboratory are described. Laboratory instruments that measure tritium gas effluents alone, or in the presence of activated air from D-T fusion reactors are discussed. Fully portable systems for gamma, x-ray, and alpha analyses in the field are described. Also included are descriptions of survey instruments that measure low levels of transuranic contaminants and that measure pulsed-neutron dose rates

  6. Status of the Los Alamos tritium beta decay experiment

    International Nuclear Information System (INIS)

    Robertson, R.G.H.; Bowles, T.J.; Wark, D.L.; Wilkerson, J.F.; Knapp, D.A.

    1989-01-01

    The Los Alamos tritium experiment employs a gaseous tritium source and a magnetic spectrometer to determine the mass of the electron antineutrino from the shape of the tritium beta spectrum. Since publication of the first result from this apparatus (m/sub nu/ < 27 eV at 95% confidence), work has concentrated on improving the data rates. A 96-element Si microstrip array detector has been installed to replace the single proportional counter at the spectrometer focus, resulting in greatly increased efficiency. Measurements of the 1s photoionization spectrum of Kr now obviate the need for reliance on the theoretical shakeup and shakeoff spectrum of Kr in determining the spectrometer resolution. 19 refs., 3 figs

  7. Los Alamos National Laboratory Develops ''Quick to WIPP'' Strategy

    International Nuclear Information System (INIS)

    Jones, R.; Allen, G.; Kosiewicz, S.; Martin, B.; LANL; Nunz, J.; Biedscheid, J.; Sellmer, T.; Willis, J.; Orban, J.; Liekhus, K.; Djordjevic, S.

    2003-01-01

    The Cerro Grande forest fire in May of 2000 and the terrorist events of September 11, 2001 precipitated concerns of the vulnerability of legacy contact-handled (CH), high-wattage transuranic (TRU) waste stored at Los Alamos National Laboratory (LANL). An analysis of the 9,100 cubic meters of stored CH-TRU waste revealed that 400 cubic meters or 4.5% of the inventory represented 61% of the risk. The analysis further showed that this 400 cubic meters was contained in only 2,000 drums. These facts and the question ''How can the disposition of this waste to the Waste Isolation Pilot Plant (WIPP) be accelerated?'' formed the genesis of LANL's Quick to WIPP initiative

  8. Measurements in Los Alamos benchmark criticals and the central reactivity discrepancy

    International Nuclear Information System (INIS)

    Davey, W.G.; Hansen, G.E.; Koelling, J.J.; McLaughlin, T.P.

    1978-01-01

    Measurements in seven Los Alamos fast critical facilities are described; all are related to elucidating the causes of the central reactivity discrepancy in fast reactors. Specific capabilities of these specialized assemblies permit measurements well-above delayed critical and these confirm the validity of the delayed neutron data used for calibration; there is therefore no reactivity-scale error. Reactivity measurements in these homogeneous assemblies exhibit no discrepancy. It is concluded that nuclear data should not be adjusted to eliminate the discrepancy found in other, heterogeneous assemblies

  9. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1992 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Burningham, A.; Chavez, P.

    1994-03-01

    This status report summarizes the activities and accomplishments of the Los Alamos Yucca Mountain Site Characterization Project's quality assurance program for calendar year 1992. The report includes major sections on Program Activities and Trend Analysis. Program Activities are discussed periodically at quality meetings. The most significant issue addressed in 1992 has been the timely revision of quality administrative procedures. The procedure revision process was streamlined from 55 steps to 7. The number of forms in procedures was reduced by 38%, and the text reduced by 29%. This allowed revision in 1992 of almost half of all implementing procedures. The time necessary to complete the revision process (for a procedure) was reduced from 11 months to 3 months. Other accomplishments include the relaxation of unnecessarily strict training requirements, requiring quality assurance reviews only from affected organizations, and in general simplifying work processes. All members of the YMP received training to the new Orientation class Eleven other training classed were held. Investigators submitted 971 records to the Project and only 37 were rejected. The software program has 115 programs approved for quality-affecting work. The Project Office conducted 3 audits and 1 survey of Los Alamos activities. We conducted 14 audits and 4 surveys. Eight corrective action reports were closed, leaving only one open. Internally, 22 deficiencies were recognized. This is a decrease from 65 in 1991. Since each deficiency requires about 2 man weeks to resolve, the savings are significant. Problems with writing acceptable deficiency reports have essentially disappeared. Trend reports for 1992 were examined and are summarized herein. Three adverse trends have been closed; one remaining adverse trend will be closed when the affected procedures are revised. The number of deficiencies issued to Los Alamos compared to other participants is minimal

  10. Transportation of a 451 ton generator stator and a 234 ton generator rotor from Hartsville, TN, to Los Alamos, NM

    International Nuclear Information System (INIS)

    Boenig, H.J.; Rogers, J.D.; McLelland, G.R.; Pelts, C.T.

    1989-01-01

    A 1430 MVA steam turbine generator was acquired from a cancelled nuclear power plant in Tennessee to be used as the pulsed power and energy storage unit for the Confinement Physics Research Facility being built at Los Alamos, NM. The transportation from Hartsville, near Nashville, TN, to Los Alamos, NM, of the two largest single pieces of the generator, a 451 t stator and a 234 t rotor presented a special challenge. Details of the move, by barge from Hartsville to Catoosa, near Tulsa, OK, by rail from Catoosa to Lamy, near Santa Fe, NM, and by road from Lamy to Los Alamos are described. The greatest difficulty of the successful move was the crossing of the Rio Grande river on an existing reinforced concrete bridge. The two-lane wide road transporters for the stator and rotor were fitted with outriggers to provide a four-lane wide vehicle, thus spreading the load over the entire bridge width and meeting acceptable load distribution and bridge safety factors. 2 refs., 6 figs

  11. Los Alamos Transuranic Waste Size Reduction Facility

    International Nuclear Information System (INIS)

    Harper, J.; Warren, J.

    1987-01-01

    The Los Alamos Transuranic (TRU) Waste Size Reduction Facility (SRF) is a production oriented prototype completed in 1981 and later modified during 1986 to enhance production. The facility is operated to remotely cut (with a plasma arc torch) and repackage TRU contaminated metallic wastes (e.g., glove boxes, ducting and pipes) for eventual disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The resulting flat sections are packaged into a tested Department of Transportation Type 7A metal container. To date, the facility has successfully processed stainless steel glove boxes (with and without lead shielding construction) and retention tanks. It was found that used glove boxes generate more cutting fumes than do unused glove boxes or metal plates - possibly due to deeply embedded chemical residues from years of service. Water used as a secondary fluid with the plasma arc cutting system significantly reduces visible fume generation during the cutting of used glove boxes and lead-lined glove boxes

  12. Development of a prototype plan for the effective closure of a waste disposal site in Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.; Barnes, F.

    1989-02-01

    The purpose of this study was to develop a prototype plan for the effective closure and stabilization of a semiarid low-level waste disposal site. This prototype plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos based on previous shallow land burial (SLB) field research both at the Los Alamos Experimental Engineered Test Facility (EETF), and at a waste disposal area at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems at Waste Disposal Area B having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that one of the two models tested represented soil moisture more accurately than the second model. The accuracy of modeling all of the parameters of the water balance equation was then evaluated using field data from the Integrated Systems Demonstration plots at the EETF. Optimized parameters were developed for one model to describe observed values of deep percolation, evapotranspiration, and runoff from the field plots containing an SLB trench cap configuration

  13. Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977

    International Nuclear Information System (INIS)

    Mullins, L.J.; Morgan, A.N.

    1981-12-01

    This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed

  14. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs

  15. Fuel particle coating data. [Detailed information on coating runs at Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hollabaugh, C.M.; Wagner, P.; Wahman, L.A.; White, R.W.

    1977-01-01

    Development of coating on nuclear fuel particles for the High-Temperature Fuels Technology program at the Los Alamos Scientific Laboratory included process studies for low-density porous and high-density isotropic carbon coats, and for ZrC and ''alloy'' C/ZrC coats. This report documents the data generated by these studies.

  16. Los Alamos National Laboratory Meteorology Monitoring Program: 2016 Data Completeness/ Quality Report

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-15

    This report summarizes data completeness by tower and by instrument for 2016 and compares that data with the Los Alamos National Laboratory (LANL) and American National Standards Institute (ANSI) 2015 standards. This report is designed to make data users aware of data completeness and any data quality issues. LANL meteorology monitoring goals include 95% completeness for all measurements. The ANSI 2015 standard requires 90% completeness for all measurements. This report documents instrument/tower issues as they impact data completeness.

  17. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Michael Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  18. The Los Alamos Science Pillars The Science of Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Joshua E. [Los Alamos National Laboratory; Peterson, Eugene J. [Los Alamos National Laboratory

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  19. Los Alamos National Laboratory DOE M441.1-1 implementation

    International Nuclear Information System (INIS)

    Worl, Laura A.; Veirs, D. Kirk; Smith, Paul H.; Yarbro, Tresa F.; Stone, Timothy A.

    2010-01-01

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Materials Packaging Manual on March 7, 2008 in response to the Defense Nuclear Facilities Safety Board Recommendation 2005-1. The Manual directs DOE facilities to follow detailed packaging requirements to protect workers from exposure to nuclear materials stored outside of approved engineered-contamination barriers. Los Alamos National Laboratory has identified the activities that will be performed to bring LANL into compliance with DOE M 441.1-1. These include design, qualification and procurement of new containers, repackaging based on a risk-ranking methodology, surveillance and maintenance of containers, and database requirements. The primary purpose is to replace the out-dated nuclear material storage containers with more robust containers that meet present day safety and quality standards. The repackaging campaign is supported by an integrated risk reduction methodology to prioritize the limited resources to the highest risk containers. This methodology is systematically revised and updated based on the collection of package integrity data. A set of seven nested packages with built-in filters have been designed. These range in size from 1 qt. to 10 gallon. Progress of the testing to meet Manual requirements will be given. Due to the number of packages at LANL, repackaging to achieve full compliance will take five to seven years.

  20. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    International Nuclear Information System (INIS)

    Parkin, D.M.; Boring, A.M.

    1991-01-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory's defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location

  1. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  2. The Characterization of Biotic and Abiotic Media Upgradient and Downgradient of the Los Alamos Canyon Weir

    International Nuclear Information System (INIS)

    P.R. Fresquez

    2006-01-01

    As per the Mitigation Action Plan for the Special Environmental Analysis of the actions taken in response to the Cerro Grande Fire, sediments, vegetation, and small mammals were collected directly up- and downgradient of the Los Alamos Canyon weir, a low-head sediment control structure located on the northeastern boundary of Los Alamos National Laboratory, to determine contaminant impacts, if any. All radionuclides ( 3 H, 137 Cs, 238 Pu, 239,240 Pu, 90 Sr, 241 Am, 234 U, 235 U and 238 U) and trace elements (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in these media were low and most were below regional upper level background concentrations (mean plus three sigma). The very few constituents that were above regional background concentrations were far below screening levels (set from State and Federal standards) for the protection of the human food chain and the terrestrial environment

  3. Characterization and immobilization of cesium-137 in soil at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lu, Ningping; Mason, C.F.V.; Turney, W.R.J.R.

    1996-01-01

    At Los Alamos National Laboratory, cesium-137 ( 137 Cs) is a major contaminant in soils of Technical Area 21 (TA-21) and is mainly associated with soil particles ≤2.00 mm. Cesium-137 was not leached by synthetic groundwater or acid rainwater. Soil erosion is a primary mechanism of 137 Cs transport in TA-21. The methodology that controls soil particle runoff can prevent the transport of 137 Cs

  4. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  5. Lasing attempts with a microwiggler on the Los Alamos FEL

    International Nuclear Information System (INIS)

    Warren, R.W.; O'Shea, P.G.; Bender, S.C.; Carlsten, B.E.; Early, J.W.; Feldman, D.W.; Fortgang, C.M.; Goldstein, J.C.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.; Newnam, B.E.; Sheffield, R.L.

    1992-01-01

    The APEX FEL normally lases near a wavelength of 3μm using a permanent magnet wiggler with a 2.7-cm period and a linear accelerator of 40-MeV energy. Los Alamos National Laboratory is conducting a series of experiments with the goal of lasing at significantly shorter wavelengths with the same accelerator and the same kind of near-concentric resonator, but using a novel pulsed microwiggler of 0.5-cm period capable of generating a peak field of several tesla. We plan to lase on a fundamental wavelength of ∼0.8 μm and on the third harmonic at 0.25 μm

  6. Computer-assisted estimating for the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Spooner, J.E.

    1976-02-01

    An analysis is made of the cost estimating system currently in use at the Los Alamos Scientific Laboratory (LASL) and the benefits of computer assistance are evaluated. A computer-assisted estimating system (CAE) is proposed for LASL. CAE can decrease turnaround and provide more flexible response to management requests for cost information and analyses. It can enhance value optimization at the design stage, improve cost control and change-order justification, and widen the use of cost information in the design process. CAE costs are not well defined at this time although they appear to break even with present operations. It is recommended that a CAE system description be submitted for contractor consideration and bid while LASL system development continues concurrently

  7. Scheduling at the Los Alamos Neutron Science Center (LANSCE)

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1999-01-01

    The centerpieces of the Los Alamos Neutron Science Center (LANSCE) are a half-mile long 800-MeV proton linear accelerator and proton storage ring. The accelerator, storage ring, and target stations provide the protons and spallation neutrons that are used in the numerous basic research and applications experimental programs supported by the US Department of Energy. Experimental users, facility maintenance personnel, and operations personnel must work together to achieve the most program benefit within defined budget and resource constraints. In order to satisfy the experimental users programs, operations must provide reliable and high quality beam delivery. Effective and efficient scheduling is a critical component to achieve this goal. This paper will detail how operations scheduling is presently executed at the LANSCE accelerator facility

  8. IMPACTS OF DRILLING ADDITIVES ON DATA OBTAINED FROM HYDROGEOLOGIC CHARACTERIZATION WELLS AT LOS ALAMOS NATIONAL LABORATORY

    Science.gov (United States)

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to evaluate the impacts of well drilling practices at the Los Alamos National Laboratory (LANL). The focus of this review involved analysis of the impacts of bentonite- a...

  9. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    International Nuclear Information System (INIS)

    O'Leary, Gerald A.

    2007-01-01

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of

  10. Stormwater Pollution Prevention Plan for the TA-03-22 Power and Steam Plant, Los Alamos National Laboratory, Revision 3, January 2018

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector O-Steam Electric Generating Facilities as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-22 Power and Steam Plant at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-22 Power and Steam Plant and associated areas. The current permit expires at midnight on June 4, 2020.

  11. Stormwater Pollution Prevention Plan for the TA-03-38 Carpenter's Shop, Los Alamos National Laboratory, Revision 3, January 2018

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector A–Timber Products, Subsector A4 (Wood Products Facilities not elsewhere classified) as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-38 Carpenter’s Shop at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-38 Carpenter’s Shop and associated areas. The current permit expires at midnight on June 4, 2020.

  12. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga [Los Alamos National Laboratory

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  13. The Characterization of Biotic and Abiotic Media Upgradient and Downgradient of the Los Alamos Canyon Weir

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez

    2006-01-15

    As per the Mitigation Action Plan for the Special Environmental Analysis of the actions taken in response to the Cerro Grande Fire, sediments, vegetation, and small mammals were collected directly up- and downgradient of the Los Alamos Canyon weir, a low-head sediment control structure located on the northeastern boundary of Los Alamos National Laboratory, to determine contaminant impacts, if any. All radionuclides ({sup 3}H, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 234}U, {sup 235}U and {sup 238}U) and trace elements (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in these media were low and most were below regional upper level background concentrations (mean plus three sigma). The very few constituents that were above regional background concentrations were far below screening levels (set from State and Federal standards) for the protection of the human food chain and the terrestrial environment.

  14. Codes maintained by the LAACG [Los Alamos Accelerator Code Group] at the NMFECC

    International Nuclear Information System (INIS)

    Wallace, R.; Barts, T.

    1990-01-01

    The Los Alamos Accelerator Code Group (LAACG) maintains two groups of design codes at the National Magnetic Fusion Energy Computing Center (NMFECC). These codes, principally electromagnetic field solvers, are used for the analysis and design of electromagnetic components for accelerators, e.g., magnets, rf structures, pickups, etc. In this paper, the status and future of the installed codes will be discussed with emphasis on an experimental version of one set of codes, POISSON/SUPERFISH

  15. Characterization and immobilization of cesium-137 in soil at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ningping; Mason, C.F.V.; Turney, W.R.J.R.

    1996-06-01

    At Los Alamos National Laboratory, cesium-137 ({sup 137}Cs) is a major contaminant in soils of Technical Area 21 (TA-21) and is mainly associated with soil particles {<=}2.00 mm. Cesium-137 was not leached by synthetic groundwater or acid rainwater. Soil erosion is a primary mechanism of {sup 137}Cs transport in TA-21. The methodology that controls soil particle runoff can prevent the transport of {sup 137}Cs.

  16. Summary of New Los Alamos National Laboratory Groundwater Data Loaded in July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Steven M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-07

    This report provides information concerning groundwater monitoring data obtained by the Los Alamos National Laboratory under its interim monitoring plan and contains results for chemical constituents that meet seven screening criteria laid out in the Compliance Order on Consent. Tables are included in the report to organize the findings from the samples. The report covers groundwater samples taken from wells or springs that provide surveillance of the groundwater zones indicated in the table.

  17. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    International Nuclear Information System (INIS)

    Young, P.G.

    1994-01-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, 3 He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei

  18. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    International Nuclear Information System (INIS)

    Young, P.G.

    1998-01-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, 3 He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions in direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH, FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei. (author)

  19. Recent results from the Los Alamos CTX spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Knox, S.O.; Linford, R.K.; Platts, D.A.; Sherwood, A.R.

    1982-01-01

    Continued discharge cleaning, improved vacuum practices, and optimized plasma formation operation have resulted in the Los Alamos CTX spheromak experiment achieving 1 millisecond plasma lifetimes with average temperatures of 20 to 40 eV. Impurity radiation power loss has been reduced significantly and the plasma behavior appears to be dominated by pressure-driven instabilities causing increased particle loss. The major advance in operation has been the use of a constant, uniform background of 5 to 20 mTorr of H/sub 2/ filling the vacuum tank, flux conserver, and plasma source. This fill operation directly reduces the impurities generated in the plasma source, allows operation of the source at parameters resulting in fewer impurities, and provides a neutral source to maintain the density for long lifetimes. In this paper we present data on the improved operation of CTX, and present evidence for its ..beta..-limited operation.

  20. Recent results from the Los Alamos CTX spheromak

    International Nuclear Information System (INIS)

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Knox, S.O.; Linford, R.K.; Platts, D.A.; Sherwood, A.R.

    1982-01-01

    Continued discharge cleaning, improved vacuum practices, and optimized plasma formation operation have resulted in the Los Alamos CTX spheromak experiment achieving 1 millisecond plasma lifetimes with average temperatures of 20 to 40 eV. Impurity radiation power loss has been reduced significantly and the plasma behavior appears to be dominated by pressure-driven instabilities causing increased particle loss. The major advance in operation has been the use of a constant, uniform background of 5 to 20 mTorr of H 2 filling the vacuum tank, flux conserver, and plasma source. This fill operation directly reduces the impurities generated in the plasma source, allows operation of the source at parameters resulting in fewer impurities, and provides a neutral source to maintain the density for long lifetimes. In this paper we present data on the improved operation of CTX, and present evidence for its β-limited operation

  1. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Leslie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Ecology and Air Quality Group

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects of ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.

  2. The economic impact of Los Alamos National Laboratory on North-Central New Mexico and the state of New Mexico. Fiscal Year 1995

    International Nuclear Information System (INIS)

    Lansford, R.R.; Ben-David, S.

    1996-08-01

    Los Alamos National Laboratory is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation's nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote U.S. industrial competitiveness by working with U.S. companies in technology transfer and technology development partnerships. Los Alamos has provided technical assistance to over 70 small New Mexico businesses enabling economic development activities in the region and state

  3. Addressing the Highest Risk: Environmental Programs at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Elaine E [Los Alamos National Laboratory

    2012-06-08

    Report topics: Current status of cleanup; Shift in priorities to address highest risk; Removal of above-ground waste; and Continued focus on protecting water resources. Partnership between the National Nuclear Security Administration's Los Alamos Site Office, DOE Carlsbad Field Office, New Mexico Environment Department, and contractor staff has enabled unprecedented cleanup progress. Progress on TRU campaign is well ahead of plan. To date, have completed 130 shipments vs. 104 planned; shipped 483 cubic meters of above-ground waste (vs. 277 planned); and removed 11,249 PE Ci of material at risk (vs. 9,411 planned).

  4. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  5. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  6. Expanded recycling at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Betschart, J.F.; Malinauskas, L.; Burns, M.

    1996-01-01

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory's (LANL's) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of open-quotes asset management,open-quotes the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators

  7. Space Science at Los Alamos National Laboratory

    Science.gov (United States)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  8. Design of the Los Alamos generator installation

    International Nuclear Information System (INIS)

    Boenig, H.J.; Schillig, J.B.; Rogers, J.D.; Huddleston, S.W.; Konkel, H.E.; Rosev, B.J.

    1989-01-01

    A 1430 MVA synchronous generator from a cancelled nuclear power plant is being installed at Los Alamos to be used as the pulsed power generator for the Confinement Physics Research Facility. The generator is mounted on a spring foundation to avoid dynamic forces from being transmitted to the substructure and the ground. A 6 MW load-commutated inverter drive will accelerate the machine from standstill to the maximum operating speed of 1800 rpm and from 1260 rpm to 1800 rpm between load pulses. The generator cooling method is being changed from hydrogen to air cooling. A current limiting fuse, with a fuse clearing current of 80 kA, will protect the generator output against short circuit currents. Changes in the excitation system are described. A status report of the installation and an approximate schedule for completing the installation are presented. The paper also addresses results of special studies and tests undertaken to evaluate the condition of the generator and to predict the behavior of some critical mechanical generator components under pulsed loading conditions. 1 ref., 4 figs., 2 tabs

  9. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1992-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long-pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle energy distributions in large, dense, ignited tokamaks such as ITER

  10. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1993-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle distributions in large, dense, ignited tokamaks such as ITER

  11. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  12. A data automation system at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Betts, S.E.; Schneider, C.M.; Pickrell, M.M.

    2001-01-01

    Idaho National Engineering and Environmental Laboratory (INEEL) has developed an automated computer program, Data Review Expert System (DRXS), for reviewing nondestructive assay (NDA) data. DRXS significantly reduces the data review time needed to meet characterization requirements for the Waste Isolation Pilot Plant (WIPP). Los Alamos National Laboratory (LANL) is in the process of developing a computer program, Software System Logic for Intelligent Certification (SSLIC), to automate other tasks associa ted with characterization of Transuranic Waste (TRU) samples. LANL has incorporated a version of DRXS specific to LANL's isotopic data into SSLIC. This version of SSLIC was audited by the National Transuranic Program on October, 24, 2001. This paper will present the results of the audit, and discuss future plans for SSLIC including the integration on the INEELLANL developed Rule Editor.

  13. Pajarito Plateau archaeological survey and excavations. [Los Alamos Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Steen, C.R.

    1977-05-01

    Los Alamos Scientific Laboratory lands were surveyed to locate pre-Columbian Indian ruins. The survey results will permit future construction to be planned so that most of the ancient sites in the area can be preserved. Indian occupation of the area occurred principally from late Pueblo III times (late 13th century) until early Pueblo V (about the middle of the 16th century). There are evidences of sporadic Indian use of the area for some 10,000 years. One Folsom point has been found, as well as many other archaic varieties of projectile points. Continued use of the region well into the historic period is indicated by pictographic art that portrays horses. In addition to an account of the survey, the report contains summaries of excavations made on Laboratory lands between 1950 and 1975.

  14. Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-01-01

    The Critical Experiments Facility of the Los Alamos National Laboratory has been in existence for 45 years. In that period of time, thousands of measurements have been made on assemblies containing every fissionable material in various configurations that included bare metal and compounds of the nitrate, sulfate, fluoride, carbide, and oxide. Techniques developed or applied include Rossi-α, source-jerk, rod oscillator, and replacement measurements. Many of the original measurements of delay neutrons were performed at the site, and a replica of the Hiroshima weapon was operated at steady state to assist in evaluating the relative biological effectiveness (RBE) of neutrons. Solid, liquid, and gas fissioning systems were run at critical. Operation of this original critical facility has demonstrated the margin of safety that can be obtained through remote operation. Eight accidental excursions have occurred on the site, ranging from 1.5 x 10 16 to 1.2 x 10 17 fissions, with no significant exposure to personnel or damage to the facility beyond the machines themselves -- and in only one case was the machine damaged beyond further use. The present status of the facility, operating procedures, and complement of machines will be described in the context of programmatic activity. New programs will focus on training, validation of criticality alarm systems, experimental safety assessment of process applications, and dosimetry. Special emphasis will be placed on the incorporation of experience from 45 years of operation into present procedures and programs. 3 refs

  15. Test results of the Los Alamos ferrite-tuned rf cavity

    International Nuclear Information System (INIS)

    Friedrichs, C.C.; Spalek, G.; Carlini, R.D.; Smythe, W.R.

    1987-03-01

    An rf accelerating cavity appropriate for use in a 20% frequency bandwidth synchrotron has been designed, fabricated, and is now being tested at Los Alamos. The cavity-amplifier system was designed to produce a peak rf gap voltage of 90 kV over the range from 50 to 60 MHz. Special features of the system are the transversely biased ferrite tuner, capacitive coupling of the amplifier to the cavity, and a 15-cm beam pipe. High-power rf testing of the cavity-amplifier system started in August 1986, using an adjustable dc power supply to bias the ferrite. This paper describes the cavity-amplifier circuit and the test results to the present time. Future plans are also discussed

  16. Los Alamos National Laboratory plans for a laboratory microfusion facility

    International Nuclear Information System (INIS)

    Harris, D.B.

    1988-01-01

    Los Alamos National Laboratory is actively participating in the National Laboratory Microfusion Facility (LMF) Scoping Study. We are currently performing a conceptual design study of a krypton-fluoride laser system that appears to meet all of the diver requirements for the LMF. A new theory of amplifier module scaling has been developed recently and it appears that KrF amplifier modules can be scaled up to output energies much larger than thought possible a few years ago. By using these large amplifier modules, the reliability and availability of the system is increased and its cost and complexity is decreased. Final cost figures will be available as soon as the detailed conceptual design is complete

  17. NBS/Los Alamos RTM. Progress report

    International Nuclear Information System (INIS)

    Penner, S.; Ayres, R.L.; Cutler, R.I.

    1985-01-01

    The NBS-Los Alamos 200 MeV Racetrack Microtron (RTM) is being built under a program aimed at developing the technology needed for high-current intermediate-energy CW electron accelerators. In this report we give an overview of the present status of the project. Recent progress includes: (1) completion of testing of the 100 keV chopper-buncher system demonstrating a normalized emittance well under the design goal of 2.6 π mm mrad at currents exceedings the design goal of 600 μA; (2) operation of the rf structures comprising the 5 MeV injector linac at power levels up to 50 kW/m, resulting in an accelerating gradient at β = 1 of 2 MV/m (compared to a design goal of 1.5 MV/m). The measured shunt impedance is 82.5 MΩ/m; (3) construction and installation of the 30 ton end magnets of the RTM. Field mapping of one magnet has been completed and its uniformity exceeds the design goal of +-2 parts in 10 4 ; (4) performance tests (with beam) of prototype rf beam monitors which measure current, relative phase, and beam position in both transverse plants; and (5) installation and initial operation of the primary control system

  18. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N. [and others

    1997-09-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade.

  19. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N.

    1997-01-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade

  20. Assessment of greater-than-Class C waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Shuman, R.; Jennrich, E.A.; Merrell, G.B.

    1991-02-01

    Department of Energy (DOE) Order 5820.2A regulates the onsite disposal of low-level radioactive waste (LLW) at all DOE facilities. Among its stipulations, the Order states that ''Disposition of wastes designated as greater-than-Class C, as defined in 10 CFR 61.55 must be handled as special cases. Disposal systems for such waste must be justified by a specific performance assessment.'' Los Alamos National Laboratory (LANL) personnel have undertaken a review and performance assessment of LLW disposal at its Area-G disposal facility, which is described in this report

  1. Surface Water Contamination and Los Alamos National Laboratory's Holistic Approach to Mitigation

    International Nuclear Information System (INIS)

    Katzman, D.; Veenis, S.; Reneau, S.

    2009-01-01

    A sediment and contaminant transport mitigation project is being implemented at Los Alamos National Laboratory. This effort is driven by a requirement from State of New Mexico regulators and is also in concert with efforts underway to support a surface-water diversion project by a Santa Fe, NM, public water utility. The effort is being implemented in a large geomorphically and hydrologically complex watershed. Rather than simply attempting to trap sediment in a retention basin, this effort uses a watershed-scale holistic approach with intent to promote watershed healing. (authors)

  2. Basic and Applied Science Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.

    2005-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science using four experimental areas. LANSCE has two areas that provide neutrons generated by the 800-MeV proton beam striking tungsten target systems. A third area uses the proton beam for radiography. The fourth area uses 100 MeV protons to produce medical radioisotopes. This paper describes the four LANSCE experimental areas, gives nuclear science highlights of the past operating period, and discusses plans for the future

  3. New facility for ion beam materials characterization and modification at Los Alamos

    International Nuclear Information System (INIS)

    Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.

    1988-01-01

    The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs

  4. Threatened and Endangered Species Habitat Management Plan for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thompson, Brent E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-16

    Los Alamos National Laboratory’s (LANL) Threatened and Endangered Species Habitat Management Plan (HMP) fulfills a commitment made to the U.S. Department of Energy (DOE) in the “Final Environmental Impact Statement for the Dual-Axis Radiographic Hydrodynamic Test Facility Mitigation Action Plan” (DOE 1996). The HMP received concurrence from the U.S. Fish and Wildlife Service (USFWS) in 1999 (USFWS consultation numbers 2-22-98-I-336 and 2-22-95-I-108). This 2017 update retains the management guidelines from the 1999 HMP for listed species, and updates some descriptive information.

  5. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    International Nuclear Information System (INIS)

    Martinez, B.; Montoya, A.; Klein, W.

    1999-01-01

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date

  6. Plan for increasing public participation in cleanup decisions for the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes a plan for involving the public in decisions related to cleaning up sites suspected of being contaminated with chemicals or radioactivity at Los Alamos National Laboratory. In this section we describe the purpose of the Environmental Remediation Project, our past efforts to communicate with the northern New Mexico community, and the events that brought about our realization that less traditional, more innovative approaches to public involvement are needed

  7. Plan for increasing public participation in cleanup decisions for the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This document describes a plan for involving the public in decisions related to cleaning up sites suspected of being contaminated with chemicals or radioactivity at Los Alamos National Laboratory. In this section we describe the purpose of the Environmental Remediation Project, our past efforts to communicate with the northern New Mexico community, and the events that brought about our realization that less traditional, more innovative approaches to public involvement are needed.

  8. Los Alamos National Laboratory TRU waste sampling projects

    International Nuclear Information System (INIS)

    Yeamans, D.; Rogers, P.; Mroz, E.

    1997-01-01

    The Los Alamos National Laboratory (LANL) has begun characterizing transuranic (TRU) waste in order to comply with New Mexico regulations, and to prepare the waste for shipment and disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Sampling consists of removing some head space gas from each drum, removing a core from a few drums of each homogeneous waste stream, and visually characterizing a few drums from each heterogeneous waste stream. The gases are analyzed by GC/MS, and the cores are analyzed for VOC's and SVOC's by GC/MS and for metals by AA or AE spectroscopy. The sampling and examination projects are conducted in accordance with the ''DOE TRU Waste Quality Assurance Program Plan'' (QAPP) and the ''LANL TRU Waste Quality Assurance Project Plan,'' (QAPjP), guaranteeing that the data meet the needs of both the Carlsbad Area Office (CAO) of DOE and the ''WIPP Waste Acceptance Criteria, Rev. 5,'' (WAC)

  9. HELIOSEISMIC TESTS OF THE NEW LOS ALAMOS OPACITIES

    Energy Technology Data Exchange (ETDEWEB)

    J. GUZIK; ET AL

    2001-01-01

    We compare the helioseismic properties of two solar models, one calibrated with the OPAL opacities and the other with the recent Los Alamos LEDCOP opacities. We show that, in the radiative interior of the Sun, the small differences between the two sets of opacities (up to 6% near the base of the convection zone) lead to noticeable differences in the solar structure (up to 0.4% in sound speed), with the OPAL model being the closest to the helioseismic data. More than half of the difference between the two opacity sets results from the interpolation scheme and from the relatively widely spaced temperature grids used in the tables. The remaining 3% intrinsic difference between the OPAL and the LEDCOP opacities in the radiative interior of the Sun is well within the error bars on the opacity calculations resulting from the uncertainties on the physics. We conclude that the OPAL and LEDCOP opacity sets do about as well in the radiative interior of the Sun.

  10. Coupled Weather and Wildfire Behavior Modeling at Los Alamos: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bossert, James E.; Harlow, Francis H.; Linn, Rodman R.; Reisner, Jon M.; White, Andrew B.; Winterkamp, Judith L.

    1997-12-31

    Over the past two years, researchers at Los Alamos National Laboratory (LANL) have been engaged in coupled weather/wildfire modeling as part of a broader initiative to predict the unfolding of crisis events. Wildfire prediction was chosen for the following reasons: (1) few physics-based wild-fire prediction models presently exist; (2) LANL has expertise in the fields required to develop such a capability; and (3) the development of this predictive capability would be enhanced by LANL`s strength in high performance computing. Wildfire behavior models have historically been used to predict fire spread and heat release for a prescribed set of fuel, slope, and wind conditions (Andrews 1986). In the vicinity of a fire, however, atmospheric conditions are constantly changing due to non-local weather influences and the intense heat of the fire itself. This non- linear process underscores the need for physics-based models that treat the atmosphere-fire feedback. Actual wildfire prediction with full-physics models is both time-critical and computationally demanding, since it must include regional- to local-scale weather forecasting together with the capability to accurately simulate both intense gradients across a fireline, and atmosphere/fire/fuel interactions. Los Alamos has recently (January 1997) acquired a number of SGI/Cray Origin 2000 machines, each presently having 32 to 64 processors. These high performance computing systems are part of the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). While offering impressive performance now, upgrades to the system promise to deliver over 1 Teraflop (10(12) floating point operations per second) at peak performance before the turn of the century.

  11. Science and Innovation at Los Alamos

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  12. Los Alamos Meson Physics Facility high-resolution-spectrometer dipole magnets: a summary report

    International Nuclear Information System (INIS)

    Kozlowski, T.; Madland, D.G.; Rolfe, R.; Smith, W.E.; Spencer, J.E.; Tanaka, N.; Thiessen, H.A.; Varghese, P.; Wilkerson, L.C.

    1982-12-01

    This report explains the design, fabrication, measurement, optimization, and installation of two 122 metric ton electromagnets for the High Resolution Proton Spectrometer at the Los Alamos Meson Physics Facility. These two magnets are the principal components of the proton spectrometer, which has an energy resolution of less than or equal to 10 - 4 FWHM. Many technical problems occurred during fabrication, measurement, and optimization, and the majority have been successfully solved. We hope that this report will help others planning similar projects

  13. The LANSCE (Los Alamos Neutron Scattering Center) target data collection system

    International Nuclear Information System (INIS)

    Kernodle, A.K.

    1989-01-01

    The Los Alamos Neutron Scattering Center (LANSCE) Target Data Collection System is the result of an effort to provide a base of information from which to draw conclusions on the performance and operational condition of the overall LANSCE target system. During the conceptualization of the system, several goals were defined. A survey was made of both custom-made and off-the-shelf hardware and software that were capable of meeting these goals. The first stage of the system was successfully implemented for the LANSCE run cycle 52. From the operational experience gained thus far, it appears that the LANSCE Target Data Collection System will meet all of the previously defined requirements

  14. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Kimberly M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hjeresen, Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Silverman, Josh [U.S. Dept. of Energy, Washington, DC (United States)

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retention issues, and more.

  15. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Management Subteam conducted a management and organization assessment of environment, safety, and health (ES H) activities performed by the Los Alamos National Laboratory (LANL) and onsite contractor personnel. The objectives of the assessment were to (1) evaluate the effectiveness of management systems and practices in terms of ensuring environmental compliance and the safety and health of workers and the general public, (2) identify key findings, and (3) identify root causes for all ES H findings and concerns. The scope of the assessment included examinations of the following from an ES H perspective: (1) strategic and program planning; (2) organizational structure and management configuration; (3) human resource management, including training and staffing; (4) management systems, including performance monitoring and assessment; (5) conduct of operations; (6) public and institutional interactions; and (7) corporate'' parent support.

  16. Misuse and intrusion detection at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1995-04-01

    An effective method for detecting computer misuse is the automatic auditing and analysis of on-line user activity. This activity is reflected in system audit records, in system vulnerability postures, and in other evidence found through active system testing. Since 1989 we have implemented a misuse and intrusion detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter, or NADIR. NADIR currently audits a Kerberos distributed authentication system, file activity on a mass, storage system, and four Cray supercomputers that run the UNICOS operating system. NADIR summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations, As NADIR is constantly evolving, this paper reports its development to date.

  17. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1995-02-01

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Los Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.

  18. Study of polyelectrolytes for Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    Labonne, N.

    1994-11-01

    To assess the safety of a potential radioactive waste repository, analysis of the fluid solution containing low levels of activity need to be performed. In some cases, the radioactivity would be so weak (3--30 pCi/L) that the solution must be concentrated for measurement. For this purpose, Los Alamos National Laboratory scientists are synthesizing some water soluble polyelectrolytes, which, because they are strong complexing agents for inorganic cations, can concentrate the radioelements in solution. To assist in characterization of these polyelectrolytes, the author has performed experiments to determine physico-chemical constants, such as pKa values and stability constants. The complexation constants between both polyelectrolytes and europium were determined by two methods: solvent extraction and ion exchange. Results are presented

  19. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  20. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report

  1. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report.

  2. Design and operation of a low-level solid-waste disposal site at Los Alamos

    International Nuclear Information System (INIS)

    Balo, K.A.; Wilson, N.E.; Warren, J.L.

    1982-01-01

    Since the mid-1940's, approximately 185000 m 3 of low-level and transuranic radioactive solid waste, generated in operations at the Los Alamos National Laboratory, have been disposed of by on-site shallow land burial. Procedures and facilities have been designed and evaluated in the areas of waste acceptance, treatment and storage, disposal, traffic control, and support systems. The methodologies assuring the proper management and disposal of radioactive solid waste are summarized

  3. 2003 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report, Revised September 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-04

    Annual Illness and Injury Surveillance Program report for 2003 for Los Alamos National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  4. The Los Alamos accelerator driven transmutation of nuclear waste (ATW) concept development of the ATW target/blanket system

    International Nuclear Information System (INIS)

    Venneri, F.; Williamson, M.A.; Ning, L.

    1997-01-01

    The studies carried out in the frame of the Accelerator Driven Transmutation Technology (ADTT) program developed at Los Alamos in order to solve the nuclear waste problem and to build a new generation of safer and non-proliferant nuclear power plants, are presented

  5. Los Alamos Scientific Laboratory building cost index

    International Nuclear Information System (INIS)

    Lemon, G.D.; Morris, D.W.; McConnell, P.H.

    1977-11-01

    The Controller's budget request for FY-1979 established guidance for escalation rates at 6 to 8 percent for construction projects beyond FY-1976. The Los Alamos Scientific Laboratory (LASL) has chosen to use an annual construction escalation rate of 10 percent. Results of this study should contribute toward the establishment of realistic construction cost estimate totals and estimates of annual construction funding requirements. Many methods were used to arrive at the LASL escalation rate recommendation. First, a computer program was developed which greatly expanded the number of materials previously analyzed. The program calculated the 1970 to 76 weighted averages for labor, materials, and equipment for the base line project. It also plotted graphs for each category and composite indexes for labor and material/equipment. Second, estimated increases for 1977 were obtained from several sources. The Zia Company provided labor cost estimates. Projected increases for material and equipment were obtained through conversations with vendors and analysis of trade publications. Third, economic forecast reports and the Wall Street Journal were used for source material, narrative, and forecast support. Finally, we compared LASL Building Cost Index with the effects of escalation associated with three recently developed projects at LASL

  6. Los Alamos Scientific Laboratory building cost index

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, G.D.; Morris, D.W.; McConnell, P.H.

    1977-11-01

    The Controller's budget request for FY-1979 established guidance for escalation rates at 6 to 8 percent for construction projects beyond FY-1976. The Los Alamos Scientific Laboratory (LASL) has chosen to use an annual construction escalation rate of 10 percent. Results of this study should contribute toward the establishment of realistic construction cost estimate totals and estimates of annual construction funding requirements. Many methods were used to arrive at the LASL escalation rate recommendation. First, a computer program was developed which greatly expanded the number of materials previously analyzed. The program calculated the 1970 to 76 weighted averages for labor, materials, and equipment for the base line project. It also plotted graphs for each category and composite indexes for labor and material/equipment. Second, estimated increases for 1977 were obtained from several sources. The Zia Company provided labor cost estimates. Projected increases for material and equipment were obtained through conversations with vendors and analysis of trade publications. Third, economic forecast reports and the Wall Street Journal were used for source material, narrative, and forecast support. Finally, we compared LASL Building Cost Index with the effects of escalation associated with three recently developed projects at LASL.

  7. A proposal for a Los Alamos international facility for transmutations (LIFT)

    International Nuclear Information System (INIS)

    Venneri, F.; Williamson, M.A.; Li, Ning; Doolen, G.

    1996-01-01

    The major groups engaged in transmutation research are converging towards a common objective and similar technology. It is now possible to envision an international program of research aimed at the destruction of reactor-generated (and other) nuclear waste using a series of multipurpose experimental facilities in the near future. Los Alamos National Laboratory, as the home of the highest power LINAC and a very active transmutation technology project, is the ideal host for the first of such facilities. The next step in the international program (a facility 10 times more powerful, for engineering-scale demonstrations) could be built in Europe, where there is substantial interest in the construction of such a device in the framework of international cooperation. A series of experiments at Las Alamos could explore the key transmutation technologies. Liquid lead loops, a liquid lead spallation target, and a large size liquid lead facility with provision for irradiation, cooling and diagnostics of several types of 'transmutation assemblies', where different transmutation concepts will be tested in different media and environments, from transmutation of fission products to destruction by fission of higher actinides, to other waste management applications. The engineering-scale facility, which will follow the initial testing phase, will extend the best concepts to full scale implementation

  8. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  9. 2015 Los Alamos Space Weather Summer School Research Reports

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yuxi [Univ. of Michigan, Ann Arbor, MI (United States); Desai, Ravindra [Univ. College London, Bloomsbury (United Kingdom); Hassan, Ehab [Univ. of Texas, Austin, TX (United States); Kalmoni, Nadine [Univ. College London, Bloomsbury (United Kingdom); Lin, Dong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Depascuale, Sebastian [Univ. of Iowa, Iowa City, IA (United States); Hughes, Randall Scott [Univ. of Southern California, Los Angeles, CA (United States); Zhou, Hong [Univ. of Colorado, Boulder, CO (United States)

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two

  10. 2015 Los Alamos Space Weather Summer School Research Reports

    International Nuclear Information System (INIS)

    Cowee, Misa; Chen, Yuxi; Desai, Ravindra; Hassan, Ehab; Kalmoni, Nadine; Lin, Dong; Depascuale, Sebastian; Hughes, Randall Scott; Zhou, Hong

    2015-01-01

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student's PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfv@@nic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a

  11. Transuranic waste assay instrumentation: new developments and directions at the Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Close, D.A.; Umbarger, C.J.; West, L.; Smith, W.J.; Cates, M.R.; Noel, B.W.; Honey, F.J.; Franks, L.A.; Pigg, J.L.; Trundle, A.S.

    1978-01-01

    The Los Alamos Scientific Laboratory is developing assay instrumentation for the quantitative analysis of transuranic materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. This also includes wastes generated in the decontamination and decommissioning of facilities and wastes generated during burial ground exhumation. The assay instrumentation will have a detection capability for the transuranics of less than 10 nCi of activity per gram of waste whenever practicable.

  12. Transuranic waste assay instrumentation: new developments and directions at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Close, D.A.; Umbarger, C.J.; West, L.; Smith, W.J.; Cates, M.R.; Noel, B.W.; Honey, F.J.; Franks, L.A.; Pigg, J.L.; Trundle, A.S.

    1978-01-01

    The Los Alamos Scientific Laboratory is developing assay instrumentation for the quantitative analysis of transuranic materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. This also includes wastes generated in the decontamination and decommissioning of facilities and wastes generated during burial ground exhumation. The assay instrumentation will have a detection capability for the transuranics of less than 10 nCi of activity per gram of waste whenever practicable

  13. Environmental surveillance and compliance at Los Alamos during 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report presents environmental data that characterize environmental performance and addresses compliance with environmental standards and requirements at Los Alamos National Laboratory (LANL or the Laboratory) during 1996. The Laboratory routinely monitors for radiation and for radioactive nonradioactive materials at Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1996 to assess external penetrating radiation; quantities of airborne emissions; and concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, the municipal water supply, soils and sediments, and foodstuffs. Using comparisons with standards and regulations, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment. Laboratory operations were in compliance with all major environmental regulations.

  14. Environmental surveillance and compliance at Los Alamos during 1996

    International Nuclear Information System (INIS)

    1997-09-01

    This report presents environmental data that characterize environmental performance and addresses compliance with environmental standards and requirements at Los Alamos National Laboratory (LANL or the Laboratory) during 1996. The Laboratory routinely monitors for radiation and for radioactive nonradioactive materials at Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1996 to assess external penetrating radiation; quantities of airborne emissions; and concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, the municipal water supply, soils and sediments, and foodstuffs. Using comparisons with standards and regulations, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment. Laboratory operations were in compliance with all major environmental regulations

  15. Los Alamos nuclear enterprise resource and infrastructure model (LA-NERIM)

    International Nuclear Information System (INIS)

    Li, Ning; Dale, Crystal; Kern, Kristen; Scott, Sara

    2009-01-01

    In this nascent global 'Nuclear Renaissance', potential shortages of human resources and supply chains have become the top concerns for the policymakers and industry leaders. A number of industry studies have examined the potential supply shortages in qualified labors for specific deployment scenarios, the general shortage in nuclear engineers, and ways to ramp up educational and training pipelines. A Los Alamos National Laboratory team has been developing a nuclear enterprise resource and infrastructure model (LA-NERIM) to provide a dynamic and versatile tool for the systematic study of resource needs and flows. LA-NERIM is built around a stock-and-flow model of the nuclear fuel cycle model using the iThinkTM software, with modules and connections describing all the front-end, reactor operation and back-end processes. It is driven by nuclear power demand growth. We are using LA-NERIM to study the human resource development (HRD) needs for a number of scenarios for US and Russia. The US study includes a comparison of three scenarios of maintaining current capacity, expansion at 500 MWe/yr and maintaining current market share. We are also examining the impact of the sharply peaked demographics of the ageing US nuclear workforce on future growth. LA-NERIM can be modularized with more detailed labor categories and customer defined boundary conditions to provide high fidelity projection of dynamic staffing needs for nuclear vendors, owner/operators and suppliers. With different kinds of inputs, LA-NERIM can be used to project needs of other resources, such as concrete, steels, capital outlays and manufacturing capacities. Coupled with data from NFCSim, another Los Alamos code that calculates the quantities and isotopic compositions in the flows of nuclear materials throughout the fuel cycles, LA-NERIM has the potential to become a powerful and versatile system tool for policymakers and industry leaders to examine and compare the feasibilities and impacts of various

  16. Wellness Center use at Los Alamos National Laboratory: a descriptive study

    Energy Technology Data Exchange (ETDEWEB)

    Wiggs, L.D.; Wilkinson, G.S.; Weber, C.

    1985-10-01

    This study describes employee participation during the first six months of the Los Alamos National Laboratory's corporate Wellness Program. We describe temporal patterns of use, preferred activities, frequency of use, and characteristics of employees participating in Wellness activities. Characteristics of Wellness participants are compared with characteristics of the Laboratory population. During this period the Wellness Center, a multi-use facility that houses Wellness Program activities, had 17,352 visits. Employees visiting the Wellness Center were typical of the Laboratory population in their racial and ethnic characteristics, but different in their sex and age composition. Wellness participants were younger and more likely to be female than the Laboratory population. 6 refs., 19 tabs.

  17. First results from the Los Alamos plasma source ion implantation experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Faehl, R.J.; Gribble, R.J.; Henins, I.; Kodali, P.; Nastasi, M.; Reass, W.A.; Tesmer, J.; Walter, K.C.; Wood, B.P.; Conrad, J.R.; Horswill, N.; Shamim, M.; Sridharan, K.

    1993-01-01

    A new facility is operational at Los Alamos to examine plasma source ion implantation on a large scale. Large workpieces can be treated in a 1.5-m-diameter, 4.6-m-long plasma vacuum chamber. Primary emphasis is directed towards improving tribological properties of metal surfaces. First experiments have been performed at 40 kV with nitrogen plasmas. Both coupons and manufactured components, with surface areas up to 4 m 2 , have been processed. Composition and surface hardness of implanted materials are evaluated. Implant conformality and dose uniformity into practical geometries are estimated with multidimensional particle-in-cell computations of plasma electron and ion dynamics, and Monte Carlo simulations of ion transport in solids

  18. Schlieren diagnostics of the Los Alamos hypersonic gas target neutron generator

    International Nuclear Information System (INIS)

    Haasz, A.A.; Lever, J.H.

    1981-01-01

    The gasdynamic behaviour of a planar model of the Los Alamos geometry hypersonic gas target neutron generator (GTNG) was investigated using Schlieren flow visualization photographs, static and total pressure and spill flow measurements. The model consisted of two symmetrical expansion nozzles with 220 μm throats producing a combined flow of about Mach 4 in the GTNG channel. Stagnation pressures of 100-800 kPa were used. Two basic flow configurations, spill line closed and spill line open, were studied in order to gain insight into the complex boundary layer development near the nozzle exit planes. Both flow configurations are discussed qualitatively, making use of the pressure measurements and theoretical analysis. (orig.)

  19. Operational status of the Los Alamos neutron science center (LANSCE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory; Erickson, John L [Los Alamos National Laboratory; Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  20. Environmental surveillance at Los Alamos during 1991. Environmental protection group

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, J.; Kohen, K.L. [comps.

    1993-08-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1991. Routine monitoring for radiation and for radioactive and chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1991 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment.

  1. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  2. Cancer incidence among workers at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Acquavella, J.J.; Wilkinson, G.S.; Wiggs, L.D.; Reyes-Waxweiler, M.; Key, C.R.; Tietjen, G.L.

    1985-01-01

    An analysis of cancer incidence among Los Alamos workers was reported at the Sixteenth Mid-Year Topical Symposium of the Health Physics Society. Cancer incidence was especially low among Anglo-American males for cancer of the lung and oral cancer, cancer sites commonly associated with cigarette smoking. No cases of cancer of the lung, oral cavity, pancreas, or bladder were observed among Anglo-American females in the population. Standardized incidence ratios for cancer of the breast and cancer of the uterine corpus exceeded one; however, these findings were not statistically significant. These findings are consistent with expectation for a population of high socioeconomic class, such as the Laboratory work force. Therefore, working conditions at the Laboratory do not appear to have affected cancer incidence in this population. 1 reference, 2 tables

  3. Status of the experimental studies of the electron cloud at the Los Alamos proton storage ring

    International Nuclear Information System (INIS)

    Macek, R.J.; Browman, A.A.; Borden, M.J.; Fitzgerald, D.H.; McCrady, R.C.; Spickermann, T.J.; Zaugg, T.J.

    2003-01-01

    The electron cloud (EC) at the Los Alamos Proton Storage Ring (PSR) has been studied extensively for the past several years with an overall aim to identify and measure its important characteristics, the factors that influence these characteristics, and to relate these to the two-stream (e-p) transverse instability long observed at PSR. Some new results since PAC2001 are presented.

  4. A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)

    International Nuclear Information System (INIS)

    1990-01-01

    This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee's review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues

  5. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  6. Los Alamos Scientific Laboratory long-range alarm system

    International Nuclear Information System (INIS)

    DesJardin, R.; Machanik, J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) Long-Range Alarm System is described. The last few years have brought significant changes in the Department of Energy regulations for protection of classified documents and special nuclear material. These changes in regulations have forced a complete redesign of the LASL security alarm system. LASL covers many square miles of varying terrain and consists of separate technical areas connected by public roads and communications. A design study over a period of 2 years produced functional specifications for a distributed intelligence, expandable alarm system that will handle 30,000 alarm points from hundreds of data concentrators spread over a 250-km 2 area. Emphasis in the design was on nonstop operation, data security, data communication, and upward expandability to incorporate fire alarms and the computer-aided dispatching of security and fire vehicles. All aspects of the alarm system were to be fault tolerant from the central computer system down to but not including the individual data concentrators. Redundant communications lines travel over public domain from the alarmed area to the central alarm station

  7. Systematic evaluation of options to avoid generation of noncertifiable transuranic (TRU) waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Boak, J.M.; Kosiewicz, S.T.; Triay, I.; Gruetzmacher, K.; Montoya, A.

    1998-03-01

    At present, >35% of the volume of newly generated transuranic (TRU) waste at Los Alamos National Laboratory is not certifiable for transport to the Waste Isolation Pilot Plant (WIPP). Noncertifiable waste would constitute 900--1,000 m 3 of the 2,600 m 3 of waste projected during the period of the Environmental Management (EM) Accelerated Cleanup: Focus on 2006 plan (DOE, 1997). Volume expansion of this waste to meet thermal limits would increase the shipped volume to ∼5,400 m 3 . This paper presents the results of efforts to define which TRU waste streams are noncertifiable at Los Alamos, and to prioritize site-specific options to reduce the volume of certifiable waste over the period of the EM Accelerated Cleanup Plan. A team of Los Alamos TRU waste generators and waste managers reviewed historic generation rates and thermal loads and current practices to estimate the projected volume and thermal load of TRU waste streams for Fiscal Years 1999--2006. These data defined four major problem TRU waste streams. Estimates were also made of the volume expansion that would be required to meet the permissible wattages for all waste. The four waste streams defined were: (1) 238 Pu-contaminated combustible waste from production of Radioactive Thermoelectric Generators (RTGs) with 238 Pu activity which exceeds allowable shipping limits by 10--100X. (2) 241 Am-contaminated cement waste from plutonium recovery processes (nitric and hydrochloric acid recovery) are estimated to exceed thermal limits by ∼3X. (3) 239 Pu-contaminated combustible waste, mainly organic waste materials contaminated with 239 Pu and 241 Am, is estimated to exceed thermal load requirements by a factor of ∼2X. (4) Oversized metal waste objects, (especially gloveboxes), cannot be shipped as is to WIPP because they will not fit in a standard waste box or drum

  8. Analysis of terminated TOP accidents in the FTR using the Los Alamos failure model

    International Nuclear Information System (INIS)

    Mast, P.K.; Scott, J.H.

    1978-01-01

    A new fuel pin failure model (the Los Alamos Failure Model), based on a linear life fraction rule failure criterion, has been developed and is reported herein. Excellent agreement between calculated and observed failure time and location has been obtained for a number of TOP TREAT tests. Because of the nature of the failure criterion used, the code has also been used to investigate the extent of cladding damage incurred in terminated as well as unterminated TOP transients in the FTR

  9. A review of acceptance testing of the Los Alamos, Canberra Alpha Sentry Continuous Air Monitor (CAM)

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1998-01-01

    Los Alamos National Laboratory (LANL) undertook the design and development of a new generation of alpha continuous air monitor (CAM) instrumentation that would incorporate advanced technologies in the design of the sampling inlet, multi-channel analyzer (MCA) electronics, solid state alpha detectors, radon background interference suppression, background interference compensation and based on spectral analysis, and microcomputer based data communication, processing, storage, and retrieval. The ANSI air monitoring instrument standards (Performance Specifications for Health Physics Instrumentation -- Occupational Airborne Radioactivity Monitoring Instrumentation, N42.17B) specify performance criteria and testing procedures for instruments and instrument systems designed to continuously sample and quantify airborne radioactivity in the workplace. Although the intent of the standard is to provide performance testing criteria for type testing, it is appropriate to evaluate the performance of a new instrument such as the Alpha Sentry against certain of these criteria for purposes of an acceptance test based on stated specifications and the Los Alamos CAM Requirements document. This report provides an overview of the results of these tests, as they pertain to instruments designed to detect alpha-emitting radionuclides in particulate form

  10. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  11. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  12. An environmentally benign plutonium processing future at Los Alamos

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    In recent years, the U.S. Department of Energy (DOE) has elevated environmental restoration and waste management to major mission areas, and it has established the reduction of wastes from DOE facilities as a major objective. The DOE facilities must now comply with all environmental regulations, including special regulations required of federal facilities. In recognition of this shift in philosophy, the plutonium processing facility at Los Alamos National Laboratory (LANL) has adopted the goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste. Becoming a facility with zero radionuclide and mixed-waste discharge is an extremely challenging goal and one that requires the technical contributions of a multidisciplinary team of experts. While all the technologies necessary to achieve this goal are not yet available, an extensive knowledge base does exist that can be applied to solving the remaining problems. Working toward this goal is a worthwhile endeavor, not only for LANL, but for the nuclear complex of the future

  13. The Los Alamos National Laboratory Transuranic Waste Retireval Project

    International Nuclear Information System (INIS)

    Montoya, G.M.; Christensen, D.V.; Stanford, A.R.

    1997-01-01

    This paper presents the status of the Los Alamos National Laboratory (LANL) project for remediation of transuranic (TRU) and TRU mixed waste from Pads 1, 2, and 4. Some of the TRU waste packages retrieved from Pad I are anticipated to be part of LANL's initial inventory to be shipped to the Waste Isolation Pilot Plant (WIPP) in April 1998. The TRU Waste Inspectable Storage Project (TWISP) was initiated in February 1993 in response to the New Mexico Environment Department's (NMED's) Consent Agreement for Compliance Order, ''New Mexico Hazardous Waste Agreement (NMHWA) 93-03.'' The TWISP involves the recovery of approximately 16,865 TRU and TRU-mixed waste containers currently under earthen cover on Pads 1, 2, and 4 at Technical Area 54, Area G, and placement of that waste into inspectable storage. All waste will be moved into inspectable storage by September 30, 2003. Waste recovery and storage operations emphasize protection of worker safety, public health, and the environment

  14. Atlas - a new pulsed power tool at Los Alamos

    CERN Document Server

    Scudder, D W; Ballard, E O; Barr, G W; Cochrane, J C; Davis, H A; Griego, J R; Hadden, E S; Hinckley, W B; Hosack, K W; Martínez, J E; Mills, D; Padilla, J N; Parker, J V; Parsons, W M; Reinovsky, R E; Stokes, J L; Thompson, M C; Tom, C Y; Wysocki, F J; Vigil, B N; Elizondo, J; Miller, R B; Anderson, H D; Campbell, T N; Owens, R S

    2001-01-01

    Summary form only given, as follows. The Atlas pulsed power driver has recently been commissioned at Los Alamos National Laboratory. The paper provides an overview of the Atlas facility, its initial experimental program and plans for the future. The reader desiring more detailed information is referred to papers in this conference by Keinigs et al. on materials studies, Cochrane et al. on machine performance and Ballard et al. on fabrication and assembly. Atlas is a high current generator capable of driving 30 megamps through a low- inductance load. It has been designed to require minimal maintenance, provide excellent diagnostic access, and rapid turnaround. Its capacitor bank stores 23.5 megajoules in a four-stage Marx configuration which erects to 240 kV at maximum charge. It has a quarter-cycle time of 4.5 microseconds. It will typically drive cylindrical aluminum liners in a z-pinch configuration to velocities up to 10 mm/msec while maintaining the inner surface in the solid state. Diagnostic access incl...

  15. The Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.; Schoenberg, Kurt F.

    2006-01-01

    The Los Alamos Neutron Science Center, or LANSCE, uses the first truly high-current medium-energy proton linear accelerator, which operated originally at a beam power of 1 MW for medium-energy nuclear physics. Today LANSCE continues operation as one of the most versatile accelerator-based user facilities in the world. During eight months of annual operation, scientists from around the world work at LANSCE to execute an extraordinarily broad program of defense and civilian research. Several areas operate simultaneously. The Lujan Neutron Scattering Center (Lujan Center) is a moderated spallation source (meV to keV), the Weapons Neutron Research Facility (WNR) is a bare spallation neutron source (keV to 800 MeV), and a new ultra-cold neutron source will be operational in 2005. These sources give LANSCE the ability to produce and use neutrons with energies that range over 14 orders of magnitude. LANSCE also supplies beam to WNR and two other areas for applications requiring protons. In a proton radiography (pRad) area, a sequence of narrow proton pulses is transmitted through shocked materials and imaged to study dynamic properties. In 2005, LANSCE began operating a facility that uses 100-MeV protons to produce medical radioisotopes. To sustain a vigorous program beyond this decade, LANSCE has embarked on a project to refurbish key elements of the facility and to plan capabilities beyond those that presently exist

  16. MANHATTAN: The View From Los Alamos of History's Most Secret Project

    International Nuclear Information System (INIS)

    Carr, Alan Brady

    2016-01-01

    This presentation covers the political and scientific events leading up to the creation of the Manhattan Project. The creation of the Manhattan Project's three most significant sites--Los Alamos, Oak Ridge, and Hanford--is also discussed. The lecture concludes by exploring the use of the atomic bombs at the end of World War II. The presentation slides include three videos. The first is a short clip of the 100-ton Test. The 100-Ton Test was history's largest measured blast at that point in time; it was a pre-test for Trinity, the world's first nuclear detonation. The second clip features views of Trinity followed a short statement by the Laboratory's first director, J. Robert Oppenheimer. The final clip shows Norris Bradbury talking about arms control.

  17. Common ground: An environmental ethic for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, F.L.

    1991-01-01

    Three predominant philosophies have characterized American business ethical thinking over the past several decades. The first phase is the ethics of self-interest'' which argues that maximizing self-interest coincidentally maximizes the common good. The second phase is legality ethics.'' Proponents argue that what is important is knowing the rules and following them scrupulously. The third phase might be called stake-holder ethics.'' A central tenant is that everyone affected by a decision has a moral hold on the decision maker. This paper will discuss one recent initiative of the Los Alamos National Laboratory to move beyond rules and regulations toward an environmental ethic that integrates the values of stakeholder ethics'' into the Laboratory's historical culture and value systems. These Common Ground Principles are described. 11 refs.

  18. New Mexicans` images and perceptions of Los Alamos National Laboratory. Winter, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    This report uses survey data to profile New Mexico residents` images and perceptions of Los Alamos National Laboratory (LANL). The survey results are the responses of a representative, stratified random sample of 992 New Mexico households to a set of questions asked in October, 1992. The data allow statistical inference to the general population`s responses to the same set of questions at the time the survey was administered. The results provide an overview of New Mexico residents` current images and perceptions of the Laboratory. The sample margin of error is plus or minus 3.5% at the 95% confidence level.

  19. Distribution of plutonium and cesium in alluvial soils of the Los Alamos environs

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Miera, F.R. Jr.; Peters, R.J.

    1976-01-01

    The alluvial soils of three liquid waste disposal areas at Los Alamos were sampled to determine plutonium and cesium distributional relationships and correlations with soil physical-chemical properties. Radionuclide concentrations were determined for soil samples as a function of soil depth and distance from the waste outfall. The cesium-plutonium data were correlated with levels of organic carbon, carbonates, exchangeable and water-soluble cations, pH, cation exchange capacity, bulk density, surface area and geometric particle size of these soils. The distribution patterns of soil plutonium and cesium were also compared to the waste use history of the three study areas

  20. Preparation of fused chloride salts for use in pyrochemical plutonium recovery operations at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Fife, K.W.; Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1986-07-01

    The Plutonium Metal Technology Group at Los Alamos routinely uses pyrochemical processes to produce and purify plutonium from impure sources. The basic processes (metal production, metal purification, and residue treatment) involve controlling oxidation and reduction reactions between plutonium and its compounds in molten salts. Current production methods are described, as well as traditional approaches and recent developments in the preparation of solvent salts for electrorefining, molten salt extraction, lean metal (pyroredox) purification, and direct oxide reduction.

  1. Preparation of fused chloride salts for use in pyrochemical plutonium recovery operations at Los Alamos

    International Nuclear Information System (INIS)

    Fife, K.W.; Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1986-07-01

    The Plutonium Metal Technology Group at Los Alamos routinely uses pyrochemical processes to produce and purify plutonium from impure sources. The basic processes (metal production, metal purification, and residue treatment) involve controlling oxidation and reduction reactions between plutonium and its compounds in molten salts. Current production methods are described, as well as traditional approaches and recent developments in the preparation of solvent salts for electrorefining, molten salt extraction, lean metal (pyroredox) purification, and direct oxide reduction

  2. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Monahan, S.P.; McLaughlin, T.P.

    1997-01-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory's Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ''Conduct of Business in the Nuclear Criticality Safety Group.'' There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets

  3. Progress report on the NBS/Los Alamos RTM

    International Nuclear Information System (INIS)

    Penner, S.; Ayres, R.L.; Biddle, R.

    1985-01-01

    The NBS-Los Alamos 200 MeV Racetrack Microtron (RTM) is being built under a program aimed at developing the technology needed for high-current intermediateenergy CW electron accelerators. In this report we give an overview of the present status of the project. Recent progress includes: complettion of testing of the 100 keV chopper-buncher system demonstrating a normalized emittance well under the design goal of 2.6 π mm mrad at currents exceeding the design goal of 600 μA; operation of the rf structures comprising the 5 MeV injector linac at power levels up to 50 kW/m, resulting in an accelerating gradient at β=1 of 2 MV/m (compared to a design goal of 1.5 MV/m). The measured shunt impedance is 82.5 MΩ/m; construction and installation of the 30 ton end magnets of the RTM. Field mapping of one magnet has been completed and its uniformity exceeds the design goal of + or - 2 parts in 10 4 ; performance tests (with beam) of prototype rf beam monitors which measure current, relative phase, and beam position in both transverse planes; and installation and initial operation of the primary control system

  4. Los Alamos National Laboratory 1995 self assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results.

  5. Los Alamos National Laboratory 1995 self assessment report

    International Nuclear Information System (INIS)

    1995-01-01

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results

  6. Facility model for the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line

  7. The RACER (risk analysis, communication, evaluation, and reduction) stakeholder environmental data transparency project for Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Echohawk, John Chris; Dorries, Alison M.; Eberhart, Craig F.; Werdel, Nancy

    2008-01-01

    The RACER (Risk Analysis, Communication, Evaluation, and Reduction) project was created in 2003, as an effort to enhance the Los Alamos National Laboratory's ability to effectively communicate the data and processes used to evaluate environmental risks to the public and the environment. The RACER project staff consists of members of Risk Assessment Corporation, Los Alamos National Laboratory (LANL), and the New Mexico Environment Department (NMED). RACER staff worked closely with members of the community, tribal governments, and others within NMED and LANL to create innovative tools and a process that could provide information to regulators, LANL and the community about the sources of public health risk and ecological impact from LAN L operations. The RACER Data Analysis Tool (DA T) provides the public with webbased access to environmental measurement data collected in and around the LANL site. Its purpose is to provide a 'transparent' view to the public of all data collected by LANL and NMED regarding the LANL site. The DAT is available to the public at 'www.racernm.com'.

  8. Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005

    International Nuclear Information System (INIS)

    Kathy Bennett; Sherri Sherwood; Rhonda Robinson

    2006-01-01

    As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample

  9. Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Kathy; Sherwood, Sherri; Robinson, Rhonda

    2006-08-15

    As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample

  10. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  11. Derivation of Authorized Limits for Land Transfer at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Perona, Ralph [Neptune and Company, Inc., Bellingham, WA (United States); Whicker, Jeffrey Jay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mirenda, Richard J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-14

    This report documents the calculation of Authorized Limits for radionuclides in soil to be used in the transfer of property by the Los Alamos National Laboratory (LANL). The Authorized Limits support the evaluation process to clear land for release under different uses even though the soil contains small residual amounts of radioactivity. The Authorized Limits are developed for four exposure scenarios: residential, commercial/industrial, construction worker, and recreational. Exposure to radionuclides in soil under these scenarios is assessed for exposure routes that include incidental ingestion of soil; inhalation of soil particulates; ingestion of homegrown produce (residential only); and external irradiation from soil. Inhalation and dermal absorption of tritiated water vapor in air are also assessed.

  12. Performance assessment of refractory samples in the Los Alamos Controlled Air Incinerator

    International Nuclear Information System (INIS)

    Hutchins, D.A.; Borduin, L.C.; Koenig, R.A.; Vavruska, J.S.; Warner, C.L.

    1986-01-01

    A refractory evaluation project was initiated in 1979 to study the performance of six selected refractory materials within the Los Alamos Controlled Air Incinerator (CAI). Determining refractory resistance to thermal shock, chemical attack, and plutonium uptake was of particular interest. The experimental refractories were subjected to a variety of waste materials, including transuranic (TRU) contaminated wastes, highly chlorinated compounds and alkaline metal salts of perchlorate, chlorate, nitrate and oxylate, over the six year period of this study. Results of this study to date indicate that the use of high alumina, and possibly specialty plastic refractories, is advisable for the lining of incinerators used for the thermal destruction of diverse chemical compounds. 12 refs., 4 tabs

  13. Shallow land burial: experience and developments at Oak Ridge and Los Alamos

    International Nuclear Information System (INIS)

    Warren, J.L.

    1979-01-01

    Since the mid-1940's, in excess of 250,000 m 3 of low- and intermediate-level radioactive solid waste, generated in operations at the Los Alamos Scientific Laboratory (LASL), has been disposed of by on-site shallow land burial and retrievable storage in dry volcanic tuff. Guidelines have been developed at LASL which regulate the construction of waste disposal facilities, burial and storage operations, disposal site maintenance and restoration, and documentation of all waste disposal activities. Monitoring programs at the past and current solid waste disposal sites have continued to show that, with the exception of low levels of tritium, no migration of contaminants away from their disposal location has been detected

  14. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoniette J [Los Alamos National Laboratory

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen

  15. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-01-01

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D and D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the

  16. Hydrologic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.

    1993-01-01

    The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15 and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated waterflow datalogging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system

  17. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    Science.gov (United States)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  18. Migration of Sr-20, Cs-137, and Pu-239/240 in Canyon below Los Alamos outfall

    International Nuclear Information System (INIS)

    Murphy, J.M.; Mason, C.F.V.; Boak, J.M.; Longmire, P.A.

    1996-01-01

    Technical Area-21 (TA-21) of Los Alamos National Laboratory (LANL) is on a mesa bordered by two canyons DP Canyon and Los Alamos (LA) Canyon. DP Canyon is a small semiarid watershed with a well defined channel system where the stream flow is ephemeral. TA-21 has had a complex history of waste disposal as research to determine the chemical and metallurgical properties of nuclear materials occurred here from 1945-1978. Due to these operations, the TA-21 mesa top and bordering canyons have been monitored and characterized by the LANL Environmental Restoration Program. Results identify radionuclide values at outfall. 21-011 (k) which exceed Screening Action Levels, and points along DP Canyon which exceed regional background levels. The radiocontaminants considered in this study are strontium-90, cesium-137, and plutonium-239. This research examines sediment transport and speciation of radionuclide contaminant migration from a source term named SWMU 21-011 (k) down DP Canyon. Three dimensional surface plots of data from 1977-1994 are used to portray the transport and redistribution of radioactive contaminants in an alluvial stream channel. An overall decrease in contamination concentration since 1983 has been observed which could be due to more stringent laboratory controls and also to the removal of main plutonium processing laboratories to another site

  19. Migration of Sr-20, Cs-137, and Pu-239/240 in Canyon below Los Alamos outfall

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J.M.; Mason, C.F.V.; Boak, J.M.; Longmire, P.A.

    1996-04-01

    Technical Area-21 (TA-21) of Los Alamos National Laboratory (LANL) is on a mesa bordered by two canyons DP Canyon and Los Alamos (LA) Canyon. DP Canyon is a small semiarid watershed with a well defined channel system where the stream flow is ephemeral. TA-21 has had a complex history of waste disposal as research to determine the chemical and metallurgical properties of nuclear materials occurred here from 1945-1978. Due to these operations, the TA-21 mesa top and bordering canyons have been monitored and characterized by the LANL Environmental Restoration Program. Results identify radionuclide values at outfall. 21-011 (k) which exceed Screening Action Levels, and points along DP Canyon which exceed regional background levels. The radiocontaminants considered in this study are strontium-90, cesium-137, and plutonium-239. This research examines sediment transport and speciation of radionuclide contaminant migration from a source term named SWMU 21-011 (k) down DP Canyon. Three dimensional surface plots of data from 1977-1994 are used to portray the transport and redistribution of radioactive contaminants in an alluvial stream channel. An overall decrease in contamination concentration since 1983 has been observed which could be due to more stringent laboratory controls and also to the removal of main plutonium processing laboratories to another site.

  20. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  1. Recent LAMPF [Los Alamos Meson Physics Facility] research using muons

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1987-01-01

    In addition to the core programs in nuclear and particle physics, diverse experiments have been carried out that address interdisciplinary and applied topics at the Los Alamos Meson Physics Facility (LAMPF). These include muon-spin-relaxation experiments to study magnetic dynamics in spin glasses and electronic structure in heavy-fermion superconductors; muon channeling experiments to provide information on pion stopping sites in crystals; tomographic density reconstruction studies using proton energy loss; and radiation-effects experiments to explore microstructure evolution and to characterize materials for fusion devices and high-intensity accelerators. Finally, the catalysis of the d-t fusion reaction using negative muons has been extensively investigated with some surprising results including a stronger than linear dependence of the mesomolecular formation rate on target density and the observation of 150 fusions per muon under certain conditions. Recent results in those programs involving pions and muons interacting with matter are discussed

  2. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Salazar, M.; Elder, J.

    1992-08-01

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program

  3. High-power RF controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddl, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kw cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference

  4. Radioactivity in soils and sediments in and adjacent to the Los Alamos area, 1974-1977

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Peters, R.J.; Stoker, A.K.

    1980-02-01

    Soils and sediments are analyzed for gross alpha, gross beta, 238 Pu, 239 Pu, 137 Cs, 90 Sr, and total uranium as part of the continuing Environmental Monitoring Program at the Los Alamos Scientific Laboratory. This report documents the levels of radioactivity of radionuclides in soils and sediments in northern New Mexico from natural sources and worldwide fallout as well as at seven on-site soil and sediment stations which contain radioactivity contributed by the Laboratory for the period 1974 through 1977

  5. Floodplain Assessment for the Middle Los Alamos Canyon Aggregate Area Investigations in Technical Area 02 at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-22

    The proposed action being assessed in this document occurs in TA-02 in the bottom of Los Alamos Canyon. The DOE proposes to conduct soil sampling at AOC 02-011 (d), AOC 02- 011(a)(ii), and SWMU 02-005, and excavate soils in AOC 02-011(a)(ii) as part of a corrective actions effort. Additional shallow surface soil samples (soil grab samples) will be collected throughout the TA-02 area, including within the floodplain, to perform ecotoxicology studies (Figures 1 and 2). The excavation boundaries in AOC 02-011(a)(ii) are slightly within the delineated 100-year floodplain. The project will use a variety of techniques for soil sampling and remediation efforts to include hand/digging, standard hand auger/sampling, excavation using machinery such as backhoe and front end loader and small drill rig. Heavy equipment will traverse the floodplain and spoils piles will be staged in the floodplain within developed or previously disturbed areas (e.g., existing paved roads and parking areas). The project will utilize and maintain appropriate best management practices (BMPs) to contain excavated materials, and all pollutants, including oil from machinery/vehicles. The project will stabilize disturbed areas as appropriate at the end of the project.

  6. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL's current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency's (EPA's) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL's existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility

  7. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-01-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  8. DAW structure for the NBS/Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Potter, J.M.

    1981-01-01

    The results of a testing program on the disk-and-washer (DAW) structure with tee supports are presented. These results have led to the design of a 2.4-m DAW linac for use as the preaccelerator section of the National Bureau of Standards (NBS)/Los Alamos racetrack microtron (RTM). This structure uses two tee supports for each pair of washers, instead of four, and the structure has a larger diameter than earlier test structures. Two properties of this structure, which make it appear to be ideal for the RTM application, are a high shunt impedance and a high cell-to-cell coupling factor. This coupling factor eases construction tolerances and reduces sensitivity to thermal effects from the high rf heating load that will be imposed upon it. The structure is designed to operate at a 100% duty factor with a 1.5-MV/m accelerating gradient at 2380 MHz. This load would detune most accelerating structures. The tuning procedures, the transverse modes, and their effect on the structures design also are presented

  9. Phase and amplitude feedback control system for the Los Alamos free-electron laser

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Higgins, E.F.

    1985-01-01

    Phase and amplitude feedback control systems for the Los Alamos free-electron laser (FEL) are described. Beam-driven voltages are very high in the buncher cavity because the electron gun is pulsed at the fifth subharmonic of the buncher resonant frequency. The high beam loading necessitated a novel feedback and drive configuration for the buncher. A compensation cirucit has been added to the gun/driver system to reduce observed drift. Extremely small variations in the accelerator gradients had dramatic effects on the laser output power. These problems and how they were solved are described and plans for improvements in the feedback control system are discussed. 5 refs., 7 figs

  10. Manually-Operated Crate Dismantlement System for Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Laffitte, John; Lagos, Leo; Morales, Miguel

    2002-01-01

    Los Alamos National Laboratory currently possesses between 500 and 800 fiberglass-reinforced plywood crates that contain hazardous materials that need to be decontaminated. To access the hazardous material, a system is needed to dismantle the crate. Currently, crates are dismantled by workers using hand-held tools. This technique has numerous disadvantages. One disadvantage is that it is difficult for a worker to hold the tool for an extended period of time in the awkward angles and positions necessary to fully size-reduce the crate. Other disadvantages of using hand tools include managing power cords and vacuum hoses, which become entangled or can act as tripping hazards. In order to improve the crate opening and size-reduction task, Florida International University's Hemispheric Center for Environmental Technology (HCET) is developing a manually operated crate dismantlement system. This versatile system is expected to greatly increase worker efficiency while decreasing fatigue and the possibility of accidents. (authors)

  11. Reassessment of seismic hazards at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Hemphill-Haley, M.A.; Kelson, K.I.; Gardner, J.N.; House, L.S.

    1991-01-01

    A comprehensive seismic hazards evaluation program has been initiated at the Los Alamos National Laboratory (LANL) to update the current seismic design criteria. In part, this program has been motivated by recent studies which suggest that faults of the nearby Pajarito fault system may be capable of generating a large magnitude earthquake (M > 7). The specific objectives of this program are to: (1) characterize the tectonic setting of the LANL area; (2) characterize the nature, amount, and timing of late Quaternary fault displacements; (3) reevaluate the recorded seismicity in the LANL region to allow for the evaluation of seismogenic faults and the tectonic state of stress; (4) characterize the subsurface geologic conditions beneath the LANL required for the estimation of strong ground motions and site response; (5) estimate potential strong ground shaking both deterministically and probabilistically; and (6) develop the appropriate seismic design criteria. The approach and initial results of this seismic hazards program are described in this paper

  12. British scientists and the Manhattan Project: the Los Alamos years

    International Nuclear Information System (INIS)

    Szasz, F.M.

    1992-01-01

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK)

  13. British scientists and the Manhattan Project: the Los Alamos years

    Energy Technology Data Exchange (ETDEWEB)

    Szasz, F.M. (New Mexico Univ., Albuquerque, NM (United States))

    1992-01-01

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK).

  14. Threatened and Endangered Species Habitat Management Plan for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David Charles [Los Alamos National Laboratory; Hathcock, Charles Dean [Los Alamos National Laboratory

    2015-11-17

    Los Alamos National Laboratory’s (LANL) Threatened and Endangered Species Habitat Management Plan (HMP) fulfills a commitment made to the U.S. Department of Energy (DOE) in the “Final Environmental Impact Statement for the Dual-Axis Radiographic Hydrodynamic Test Facility Mitigation Action Plan” (DOE 1996). The HMP received concurrence from the U.S. Fish and Wildlife Service (USFWS) in 1999 (USFWS consultation numbers 2-22-98-I-336 and 2-22-95-I-108). This 2015 update retains the management guidelines from the 1999 HMP for listed species, updates some descriptive information, and adds the New Mexico Meadow Jumping Mouse (Zapus hudsonius luteus) and Yellow-billed Cuckoo (Coccyzus americanus) which were federally listed in 2014 (Keller 2015: USFWS consultation number 02ENNM00- 2015-I-0538).

  15. Extrinsic and intrinsic complexities of the Los Alamos plutonium processing facility

    International Nuclear Information System (INIS)

    Bearse, R.C.; Roberts, N.J.; Longmire, V.L.

    1985-01-01

    Analysis of the data obtained in one year of plutonium accounting at Los Alamos reveals significant complexity. Much of this complexity arises from the complexity of the processes themselves. Additional complexity is induced by errors in the data entry process. It is important to note that there is no evidence that this complexity is adversely affecting the accounting in the plant. The authors have been analyzing transaction data from fiscal year 1983 processing. This study involved 62,595 transactions. The data have been analyzed using the relational database program INGRES on a VAX 11/780 computer. This software allows easy manipulation of the original data and subsets drawn from it. The authors have been attempting for several years to understand the global features of the TA-55 accounting data. This project has underscored several of the system's complexities

  16. Subharmonic buncher for the Los Alamos free-electron laser oscillator experiment

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1983-01-01

    A high efficiency free-electron laser oscillator experiment is being constructed at Los Alamos National Laboratory. A buncher system has been designed to deliver 30-ps, 5-nC electron bunches to a 20-MeV standing-wave linac at the 60th subharmonic of the 1300-MHz accelerator frequency. The first 108.3-MHz buncher cavity accepts a 5-ns, 5-A peak current pulse from a triode gun. Following a 120-cm drift space, a second 108.3-MHz cavity is used, primarily to enhance the bunching of the trailing half of the bunch. A 1300-MHz cavity with 20-cm drift spaces at the each end completes the beamline components. The bunching process continues into the linac's first three accelerating cells. Two thin iron-shielded lenses and several large-diameter solenoids provide axial magnetic fields for radial focusing

  17. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  18. Final report on the radiological surveys of designated DX firing sites at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    CHEMRAD was contracted by Los Alamos National Laboratory to perform USRADS reg-sign (UltraSonic Ranging And Data System) radiation scanning surveys at designated DX Sites at the Los Alamos National Laboratory. The primary purpose of these scanning surveys was to identify the presence of Depleted Uranium (D-38) resulting from activities at the DX Firing Sites. This effort was conducted to update the most recent surveys of these areas. This current effort was initiated with site orientation on August 12, 1996. Surveys were completed in the field on September 4, 1996. This Executive Summary briefly presents the major findings of this work. The detail survey results are presented in the balance of this report and are organized by Technical Area and Site number in section 2. This organization is not in chronological order. USRADS and the related survey methods are described in section 3. Quality Control issues are addressed in section 4. Surveys were conducted with an array of radiation detectors either mounted on a backpack frame for man-carried use (Manual mode) or on a tricycle cart (RadCart mode). The array included radiation detectors for gamma and beta surface near surface contamination as well as dose rate at 1 meter above grade. The radiation detectors were interfaced directly to an USRADS 2100 Data Pack

  19. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    International Nuclear Information System (INIS)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-01-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99 Mo, 95 Zr, 137 Cs, 140 Ba, 141,143 Ce, and 147 Nd. Modest incident-energy dependence exists for the 147 Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ∼5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except

  20. Tour of Los Alamos Safeguards R and D laboratories: demonstration and use of NDA instruments and material control and accounting simulation

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A description is presented of the nondestructive assay techniques and instrumentation for measuring the fissile content of fuel assemblies and fuel components. The course participants had a hands-on tour of this instrumentation and material accounting and control systems at Los Alamos National Laboratory