WorldWideScience

Sample records for loop homology modeling

  1. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    Science.gov (United States)

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  2. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  3. MollDE: a homology modeling framework you can click with.

    Science.gov (United States)

    Canutescu, Adrian A; Dunbrack, Roland L

    2005-06-15

    Molecular Integrated Development Environment (MolIDE) is an integrated application designed to provide homology modeling tools and protocols under a uniform, user-friendly graphical interface. Its main purpose is to combine the most frequent modeling steps in a semi-automatic, interactive way, guiding the user from the target protein sequence to the final three-dimensional protein structure. The typical basic homology modeling process is composed of building sequence profiles of the target sequence family, secondary structure prediction, sequence alignment with PDB structures, assisted alignment editing, side-chain prediction and loop building. All of these steps are available through a graphical user interface. MolIDE's user-friendly and streamlined interactive modeling protocol allows the user to focus on the important modeling questions, hiding from the user the raw data generation and conversion steps. MolIDE was designed from the ground up as an open-source, cross-platform, extensible framework. This allows developers to integrate additional third-party programs to MolIDE. http://dunbrack.fccc.edu/molide/molide.php rl_dunbrack@fccc.edu.

  4. Diverse binding site structures revealed in homology models of polyreactive immunoglobulins

    Science.gov (United States)

    Ramsland, Paul A.; Guddat, Luke W.; Edmundson, Allen B.; Raison, Robert L.

    1997-09-01

    We describe here computer-assisted homology models of the combiningsite structure of three polyreactive immunoglobulins. Template-based modelsof Fv (VL-VH) fragments were derived forthe surface IgM expressed by the malignant CD5 positive B cells from threepatients with chronic lymphocytic leukaemia (CLL). The conserved frameworkregions were constructed using crystal coordinates taken from highlyhomologous human variable domain structures (Pot and Hil). Complementaritydetermining regions (CDRs) were predicted by grafting loops, taken fromknown immunoglobulin structures, onto the Fv framework models. The CDRtemplates were chosen, where possible, to be of the same length and of highresidue identity or similarity. LCDR1, 2 and 3 as well as HCDR1 and 2 forthe Fv were constructed using this strategy. For HCDR3 prediction, adatabase containing the Cartesian coordinates of 30 of these loops wascompiled from unliganded antibody X-ray crystallographic structures and anHCDR3 of the same length as that of the B CLL Fv was selected as a template.In one case (Yar), the resulting HCDR3 model gave unfavourable interactionswhen incorporated into the Fv model. This HCDR3 was therefore modelled usingan alternative strategy of construction of the loop stems, using apreviously described HCDR3 conformation (Pot), followed by chain closurewith a β-turn. The template models were subjected to positionalrefinement using energy minimisation and molecular dynamics simulations(X-PLOR). An electrostatic surface description (GRASP) did not reveal acommon structural feature within the binding sites of the three polyreactiveFv. Thus, polyreactive immunoglobulins may recognise similar and multipleantigens through a diverse array of binding site structures.

  5. Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Asif; Nagarajan, Shanthi; Doddareddy, Munikumar Reddy; Cho, Yong Seo; Pae, Ae Nim [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2011-06-15

    Serotonin or 5-hydroxytryptamine subtype 2C (5-HT{sub 2C}) receptor belongs to class A amine subfamily of Gprotein- coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (β2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification.

  6. HOMOLOGY MODELING AND MOLECULAR DYNAMICS STUDY OF MYCOBACTERIUM TUBERCULOSIS UREASE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2017-10-01

    Full Text Available Introduction. M. tuberculosis urease (MTU is an attractive target for chemotherapeutic intervention in tuberculosis by designing new safe and efficient enzyme inhibitors. A prerequisite for designing such inhibitors is an understanding of urease's three-dimensional (3D structure organization. 3D structure of M. tuberculosis urease is unknown. When experimental three-dimensional structure of a protein is not known, homology modeling, the most commonly used computational structure prediction method, is the technique of choice. This paper aimed to build a 3D-structure of M. tuberculosis urease by homology modeling and to study its stability by molecular dynamics simulations. Materials and methods. To build MTU model, five high-resolution X-ray structures of bacterial ureases with three-subunit composition (2KAU, 5G4H, 4UBP, 4СEU, and 4EPB have been selected as templates. For each template five stochastic alignments were created and for each alignment, a three-dimensional model was built. Then, each model was energy minimized and the models were ranked by quality Z-score. The MTU model with highest quality estimation amongst 25 potential models was selected. To further improve structure quality the model was refined by short molecular dynamics simulation that resulted in 20 snapshots which were rated according to their energy and the quality Z-score. The best scoring model having minimum energy was chosen as a final homology model of 3D structure for M. tuberculosis. The final model of MTU was also validated by using PDBsum and QMEAN servers. These checks confirmed good quality of MTU homology model. Results and discussion. Homology model of MTU is a nonamer (homotrimer of heterotrimers, (αβγ3 consisting of 2349 residues. In MTU heterotrimer, sub-units α, β, and γ tightly interact with each other at a surface of approximately 3000 Å2. Sub-unit α contains the enzyme active site with two Ni atoms coordinated by amino acid residues His347, His

  7. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  8. Near-native protein loop sampling using nonparametric density estimation accommodating sparcity.

    Science.gov (United States)

    Joo, Hyun; Chavan, Archana G; Day, Ryan; Lennox, Kristin P; Sukhanov, Paul; Dahl, David B; Vannucci, Marina; Tsai, Jerry

    2011-10-01

    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/.

  9. Near-native protein loop sampling using nonparametric density estimation accommodating sparcity.

    Directory of Open Access Journals (Sweden)

    Hyun Joo

    2011-10-01

    Full Text Available Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM. Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å, this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/.

  10. Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    Science.gov (United States)

    Day, Ryan; Lennox, Kristin P.; Sukhanov, Paul; Dahl, David B.; Vannucci, Marina; Tsai, Jerry

    2011-01-01

    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/. PMID:22028638

  11. Analysis of ultraviolet and X-ray observations of three homologous solar flares from SMM

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1987-01-01

    Three homologous flares observed in the UV lines of Fe XXI and O V and in X-rays from the SMM were studied. It was found that: (1) the homology of the flares was most noticeable in Fe XXI and soft X-ray emissions; (2) the three flares shared many of the same loop footprints which were located in O V bright kernals associated with hard X-ray bursts; and (3) in spite of the strong spatial homology, the temporal evolution in UV and X-ray emissions varied from flare to flare. A comparison between the UV observations and photospheric magnetograms revealed that the basic flare configuration was a complex loop system consisting of many loops or bundles of loops.

  12. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  13. Multi-loop PWR modeling and hardware-in-the-loop testing using ACSL

    International Nuclear Information System (INIS)

    Thomas, V.M.; Heibel, M.D.; Catullo, W.J.

    1989-01-01

    Westinghouse has developed an Advanced Digital Feedwater Control System (ADFCS) which is aimed at reducing feedwater related reactor trips through improved control performance for pressurized water reactor (PWR) power plants. To support control system setpoint studies and functional design efforts for the ADFCS, an ACSL based model of the nuclear steam supply system (NSSS) of a Westinghouse (PWR) was generated. Use of this plant model has been extended from system design to system testing through integration of the model into a Hardware-in-Loop test environment for the ADFCS. This integration includes appropriate interfacing between a Gould SEL 32/87 computer, upon which the plant model executes in real time, and the Westinghouse Distributed Processing family (WDPF) test hardware. A development program has been undertaken to expand the existing ACSL model to include capability to explicitly model multiple plant loops, steam generators, and corresponding feedwater systems. Furthermore, the program expands the ADFCS Hardware-in-Loop testing to include the multi-loop plant model. This paper provides an overview of the testing approach utilized for the ADFCS with focus on the role of Hardware-in-Loop testing. Background on the plant model, methodology and test environment is also provided. Finally, an overview is presented of the program to expand the model and associated Hardware-in-Loop test environment to handle multiple loops

  14. CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2010-01-01

    CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.......0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models.......3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is...

  15. A geometric model for Hochschild homology of Soergel bimodules

    DEFF Research Database (Denmark)

    Webster, Ben; Williamson, Geordie

    2008-01-01

    An important step in the calculation of the triply graded link homology of Khovanov and Rozansky is the determination of the Hochschild homology of Soergel bimodules for SL(n). We present a geometric model for this Hochschild homology for any simple group G, as B–equivariant intersection cohomology...... on generators whose degree is explicitly determined by the geometry of the orbit closure, and to describe its Hilbert series, proving a conjecture of Jacob Rasmussen....

  16. Mathematical Modeling of Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  17. Dynameomics: Data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction

    Science.gov (United States)

    Rysavy, Steven J; Beck, David AC; Daggett, Valerie

    2014-01-01

    Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. PMID:25142412

  18. Dynameomics: data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction.

    Science.gov (United States)

    Rysavy, Steven J; Beck, David A C; Daggett, Valerie

    2014-11-01

    Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. © 2014 The Protein Society.

  19. Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog*

    Science.gov (United States)

    Mulligan, Christopher; Mindell, Joseph A.

    2013-01-01

    Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process. PMID:24155238

  20. Prefiltering Model for Homology Detection Algorithms on GPU.

    Science.gov (United States)

    Retamosa, Germán; de Pedro, Luis; González, Ivan; Tamames, Javier

    2016-01-01

    Homology detection has evolved over the time from heavy algorithms based on dynamic programming approaches to lightweight alternatives based on different heuristic models. However, the main problem with these algorithms is that they use complex statistical models, which makes it difficult to achieve a relevant speedup and find exact matches with the original results. Thus, their acceleration is essential. The aim of this article was to prefilter a sequence database. To make this work, we have implemented a groundbreaking heuristic model based on NVIDIA's graphics processing units (GPUs) and multicore processors. Depending on the sensitivity settings, this makes it possible to quickly reduce the sequence database by factors between 50% and 95%, while rejecting no significant sequences. Furthermore, this prefiltering application can be used together with multiple homology detection algorithms as a part of a next-generation sequencing system. Extensive performance and accuracy tests have been carried out in the Spanish National Centre for Biotechnology (NCB). The results show that GPU hardware can accelerate the execution times of former homology detection applications, such as National Centre for Biotechnology Information (NCBI), Basic Local Alignment Search Tool for Proteins (BLASTP), up to a factor of 4.

  1. CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.

    Science.gov (United States)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole; Petersen, Thomas Nordahl

    2010-07-01

    CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models for 94% of the targets (117 out of 128), 74% were predicted as high reliability models (87 out of 117). These achieved an average RMSD of 4.6 A when superimposed to the 3D structure. The remaining 26% low reliably models (30 out of 117) could superimpose to the true 3D structure with an average RMSD of 9.3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is web server is available at http://www.cbs.dtu.dk/services/CPHmodels/.

  2. Rapid Simulation of Flat Knitting Loops Based On the Yarn Texture and Loop Geometrical Model

    Directory of Open Access Journals (Sweden)

    Lu Zhiwen

    2017-06-01

    Full Text Available In order to create realistic loop primitives suitable for the fast computer-aided design (CAD of the flat knitted fabric, we have a research on the geometric model of the loop as well as the variation of the loop surface. Establish the texture variation model based on the changing process from the normal yarn to loop that provides the realistic texture of the simulative loop. Then optimize the simulative loop based on illumination variation. This paper develops the computer program with the optimization algorithm and achieves the loop simulation of different yarns to verify the feasibility of the proposed algorithm. Our work provides a fast CAD of the flat knitted fabric with loop simulation, and it is not only more realistic but also material adjustable. Meanwhile it also provides theoretical value for the flat knitted fabric computer simulation.

  3. A detailed BWR recirculation loop model for RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Araiza-Martínez, Enrique, E-mail: enrique.araiza@inin.gob.mx; Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx; Castillo-Durán, Rogelio, E-mail: rogelio.castillo@inin.gob.mx

    2017-01-15

    Highlights: • A new detailed BWR recirculation loop model was developed for RELAP. • All jet pumps, risers, manifold, suction and control valves, and recirculation pump are modeled. • Model is tested against data from partial blockage of two jet pumps. • For practical applications, simulation results showed good agreement with available data. - Abstract: A new detailed geometric model of the whole recirculation loop of a BWR has been developed for the code RELAP. This detailed model includes the 10 jet pumps, 5 risers, manifold, suction and control valves, and the recirculation pump, per recirculation loop. The model is tested against data from an event of partial blockage at the entrance nozzle of one jet pump in both recirculation loops. For practical applications, simulation results showed good agreement with data. Then, values of parameters considered as figure of merit (reactor power, dome pressure, core flow, among others) for this event are compared against those from the common 1 jet pump per loop model. The results show that new detailed model led to a closer prediction of the reported power change. The detailed recirculation loop model can provide more reliable boundary condition data to a CFD models for studies of, for example, flow induced vibration, wear, and crack initiation.

  4. Flat Knitting Loop Deformation Simulation Based on Interlacing Point Model

    Directory of Open Access Journals (Sweden)

    Jiang Gaoming

    2017-12-01

    Full Text Available In order to create realistic loop primitives suitable for the faster CAD of the flat-knitted fabric, we have performed research on the model of the loop as well as the variation of the loop surface. This paper proposes an interlacing point-based model for the loop center curve, and uses the cubic Bezier curve to fit the central curve of the regular loop, elongated loop, transfer loop, and irregular deformed loop. In this way, a general model for the central curve of the deformed loop is obtained. The obtained model is then utilized to perform texture mapping, texture interpolation, and brightness processing, simulating a clearly structured and lifelike deformed loop. The computer program LOOP is developed by using the algorithm. The deformed loop is simulated with different yarns, and the deformed loop is applied to design of a cable stitch, demonstrating feasibility of the proposed algorithm. This paper provides a loop primitive simulation method characterized by lifelikeness, yarn material variability, and deformation flexibility, and facilitates the loop-based fast computer-aided design (CAD of the knitted fabric.

  5. Modeling Non-homologous End Joining

    Science.gov (United States)

    Li, Yongfeng

    2013-01-01

    Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several NHEJ proteins such as Ku, DNA-PKcs, XRCC4, Ligase IV and so on. Once DSBs are generated, Ku is first recruited to the DNA end, followed by other NHEJ proteins for DNA end processing and ligation. Because of the direct ligation of break ends without the need for a homologous template, NHEJ turns out to be an error-prone but efficient repair pathway. Some mechanisms have been proposed of how the efficiency of NHEJ repair is affected. The type of DNA damage is an important factor of NHEJ repair. For instance, the length of DNA fragment may determine the recruitment efficiency of NHEJ protein such as Ku [1], or the complexity of the DNA breaks [2] is accounted for the choice of NHEJ proteins and subpathway of NHEJ repair. On the other hand, the chromatin structure also plays a role of the accessibility of NHEJ protein to the DNA damage site. In this talk, some mathematical models of NHEJ, that consist of series of biochemical reactions complying with the laws of chemical reaction (e.g. mass action, etc.), will be introduced. By mathematical and numerical analysis and parameter estimation, the models are able to capture the qualitative biological features and show good agreement with experimental data. As conclusions, from the viewpoint of modeling, how the NHEJ proteins are recruited will be first discussed for connection between the classical sequential model [4] and recently proposed two-phase model [5]. Then how the NHEJ repair pathway is affected, by the length of DNA fragment [6], the complexity of DNA damage [7] and the chromatin structure [8], will be addressed

  6. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    Science.gov (United States)

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  7. Sigma models and renormalization of string loops

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1989-05-01

    An extension of the ''σ-model β-functions - string equations of motion'' correspondence to the string loop level is discussed. Special emphasis is made on how the renormalization group acts in string loops and, in particular, on the renormalizability property of the generating functional Z-circumflex for string amplitudes (related to the σ model partition function integrated over moduli). Renormalization of Z-circumflex at one and two loop order is analyzed in some detail. We also discuss an approach to renormalization based on operators of insertion of topological fixtures. (author). 70 refs

  8. Parametric representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo A.; Mattos, Joao R.L. de

    2015-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic quantities: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. The curves showing the relationships between these four variables are called the pump characteristic curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, this configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the parametric form appears as the simplest way to deal with the homologous curves. In this approach, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a pressurized water reactor (PWR) are transformed to the parametric form. (author)

  9. Conformational sampling in template-free protein loop structure modeling: an overview.

    Science.gov (United States)

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.

  10. CONFORMATIONAL SAMPLING IN TEMPLATE-FREE PROTEIN LOOP STRUCTURE MODELING: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Yaohang Li

    2013-02-01

    Full Text Available Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.

  11. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    Science.gov (United States)

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  12. A Looping-Based Model for Quenching Repression.

    Directory of Open Access Journals (Sweden)

    Yaroslav Pollak

    2017-01-01

    Full Text Available We model the regulatory role of proteins bound to looped DNA using a simulation in which dsDNA is represented as a self-avoiding chain, and proteins as spherical protrusions. We simulate long self-avoiding chains using a sequential importance sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain's termini reduces the probability of looping, even for chains much longer than the protrusion-chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. The reduced probability of looping can be explained via an eclipse-like model, which provides a novel inhibitory mechanism. We test the eclipse model on two possible transcription-factor occupancy states of the D. melanogaster eve 3/7 enhancer, and show that it provides a possible explanation for the experimentally-observed eve stripe 3 and 7 expression patterns.

  13. Homological Order in Three and Four dimensions: Wilson Algebra, Entanglement Entropy and Twist Defects

    Science.gov (United States)

    Roy, Abhishek; Chen, Xiao; Teo, Jeffrey

    2013-03-01

    We investigate homological orders in two, three and four dimensions by studying Zk toric code models on simplicial, cellular or in general differential complexes. The ground state degeneracy is obtained from Wilson loop and surface operators, and the homological intersection form. We compute these for a series of closed 3 and 4 dimensional manifolds and study the projective representations of mapping class groups (modular transformations). Braiding statistics between point and string excitations in (3+1)-dimensions or between dual string excitations in (4+1)-dimensions are topologically determined by the higher dimensional linking number, and can be understood by an effective topological field theory. An algorithm for calculating entanglemnent entropy of any bipartition of closed manifolds is presented, and its topological signature is completely characterized homologically. Extrinsic twist defects (or disclinations) are studied in 2,3 and 4 dimensions and are shown to carry exotic fusion and braiding properties. Simons Fellowship

  14. Loop equations for multi-cut matrix models

    International Nuclear Information System (INIS)

    Akemann, G.

    1995-03-01

    The loop equation for the complex one-matrix model with a multi-cut structure is derived and solved in the planar limit. An iterative scheme for higher genus contributions to the free energy and the multi-loop correlators is presented for the two-cut model, where explicit results are given up to and including genus two. The double-scaling limit is analyzed and the relation to the one-cut solution of the hermitian and complex one-matrix model is discussed. (orig.)

  15. Protein homology model refinement by large-scale energy optimization.

    Science.gov (United States)

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  16. Polar representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Mattos, Joao Roberto Loureiro de

    2008-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic parameters: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. Any one of these quantities can be expressed as a function of any two others. The curves showing the relationships between these four variables are called the pump characteristic curves, also referred to as four-quadrant curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, the four-quadrant configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the polar form appears as the simplest way to represent the homologous curves. In the polar method, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a

  17. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    Science.gov (United States)

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  18. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. GPCR-SSFE: A comprehensive database of G-protein-coupled receptor template predictions and homology models

    Directory of Open Access Journals (Sweden)

    Kreuchwig Annika

    2011-05-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs transduce a wide variety of extracellular signals to within the cell and therefore have a key role in regulating cell activity and physiological function. GPCR malfunction is responsible for a wide range of diseases including cancer, diabetes and hyperthyroidism and a large proportion of drugs on the market target these receptors. The three dimensional structure of GPCRs is important for elucidating the molecular mechanisms underlying these diseases and for performing structure-based drug design. Although structural data are restricted to only a handful of GPCRs, homology models can be used as a proxy for those receptors not having crystal structures. However, many researchers working on GPCRs are not experienced homology modellers and are therefore unable to benefit from the information that can be gleaned from such three-dimensional models. Here, we present a comprehensive database called the GPCR-SSFE, which provides initial homology models of the transmembrane helices for a large variety of family A GPCRs. Description Extending on our previous theoretical work, we have developed an automated pipeline for GPCR homology modelling and applied it to a large set of family A GPCR sequences. Our pipeline is a fragment-based approach that exploits available family A crystal structures. The GPCR-SSFE database stores the template predictions, sequence alignments, identified sequence and structure motifs and homology models for 5025 family A GPCRs. Users are able to browse the GPCR dataset according to their pharmacological classification or search for results using a UniProt entry name. It is also possible for a user to submit a GPCR sequence that is not contained in the database for analysis and homology model building. The models can be viewed using a Jmol applet and are also available for download along with the alignments. Conclusions The data provided by GPCR-SSFE are useful for investigating

  20. GPCR-SSFE: a comprehensive database of G-protein-coupled receptor template predictions and homology models.

    Science.gov (United States)

    Worth, Catherine L; Kreuchwig, Annika; Kleinau, Gunnar; Krause, Gerd

    2011-05-23

    G protein-coupled receptors (GPCRs) transduce a wide variety of extracellular signals to within the cell and therefore have a key role in regulating cell activity and physiological function. GPCR malfunction is responsible for a wide range of diseases including cancer, diabetes and hyperthyroidism and a large proportion of drugs on the market target these receptors. The three dimensional structure of GPCRs is important for elucidating the molecular mechanisms underlying these diseases and for performing structure-based drug design. Although structural data are restricted to only a handful of GPCRs, homology models can be used as a proxy for those receptors not having crystal structures. However, many researchers working on GPCRs are not experienced homology modellers and are therefore unable to benefit from the information that can be gleaned from such three-dimensional models. Here, we present a comprehensive database called the GPCR-SSFE, which provides initial homology models of the transmembrane helices for a large variety of family A GPCRs. Extending on our previous theoretical work, we have developed an automated pipeline for GPCR homology modelling and applied it to a large set of family A GPCR sequences. Our pipeline is a fragment-based approach that exploits available family A crystal structures. The GPCR-SSFE database stores the template predictions, sequence alignments, identified sequence and structure motifs and homology models for 5025 family A GPCRs. Users are able to browse the GPCR dataset according to their pharmacological classification or search for results using a UniProt entry name. It is also possible for a user to submit a GPCR sequence that is not contained in the database for analysis and homology model building. The models can be viewed using a Jmol applet and are also available for download along with the alignments. The data provided by GPCR-SSFE are useful for investigating general and detailed sequence-structure-function relationships

  1. Four-loop beta function in the Wess-Zumino model

    International Nuclear Information System (INIS)

    Avdeev, L.V.; Gorishny, S.G.

    1982-01-01

    A method for calculating momentum integrals, proposed by Chetyrkin and Tkachov, is applied to the foUr-loop calculations of the ν-function in the Wess-Zumino model. The main advantage of the used method is the existence of a relatively simple calculational algorithm that allows one to write an effective computer program on the system of analytical evaluations SCHOONSCHIP. Any three-loop integral with one external momentum can be computed by this program. The four-loop calculation in the WZ model is one of the first and simplest applications of the program

  2. Internal and External Reconnection Series Homologous Solar Flares

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  3. Comparison between two models of energy balance in coronal loops

    Science.gov (United States)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  4. Loop Corrections to Standard Model fields in inflation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics,60 Garden Street, Cambridge, MA 02138 (United States); Department of Physics, The University of Texas at Dallas,800 W Campbell Rd, Richardson, TX 75080 (United States); Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications, Harvard University,20 Garden Street, Cambridge, MA 02138 (United States)

    2016-08-08

    We calculate 1-loop corrections to the Schwinger-Keldysh propagators of Standard-Model-like fields of spin-0, 1/2, and 1, with all renormalizable interactions during inflation. We pay special attention to the late-time divergences of loop corrections, and show that the divergences can be resummed into finite results in the late-time limit using dynamical renormalization group method. This is our first step toward studying both the Standard Model and new physics in the primordial universe.

  5. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  6. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    Science.gov (United States)

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  7. Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview

    OpenAIRE

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increas...

  8. Closed-loop model identification of cooperative manipulators holding deformable objects

    Science.gov (United States)

    Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.

    2017-11-01

    This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.

  9. Structural Characterization of the Loop at the Alpha-Subunit C-Terminus of the Mixed Lineage Leukemia Protein Activating Protease Taspase1.

    Directory of Open Access Journals (Sweden)

    Johannes van den Boom

    Full Text Available Type 2 asparaginases, a subfamily of N-terminal nucleophile (Ntn hydrolases, are activated by limited proteolysis. This activation yields a heterodimer and a loop region at the C-terminus of the α-subunit is released. Since this region is unresolved in all type 2 asparaginase crystal structures but is close to the active site residues, we explored this loop region in six members of the type 2 asparaginase family using homology modeling. As the loop model for the childhood cancer-relevant protease Taspase1 differed from the other members, Taspase1 activation as well as the conformation and dynamics of the 56 amino acids loop were investigated by CD and NMR spectroscopy. We propose a helix-turn-helix motif, which can be exploited as novel anticancer target to inhibit Taspase1 proteolytic activity.

  10. Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.

    Science.gov (United States)

    Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J

    2005-05-27

    We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.

  11. Dilaton gravity, Poisson sigma models and loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Reyes, Juan D

    2009-01-01

    Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

  12. Gravity duals of half-BPS Wilson loops

    International Nuclear Information System (INIS)

    D'Hoker, Eric; Estes, John; Gutperle, Michael

    2007-01-01

    We explicitly construct the fully back-reacted half-BPS solutions in Type IIB supergravity which are dual to Wilson loops with 16 supersymmetries in N = 4 super Yang-Mills. In a first part, we use the methods of a companion paper to derive the exact general solution of the half-BPS equations on the space AdS 2 x S 2 x S 4 x Σ, with isometry group SO(2, 1) x SO(3) x SO(5) in terms of two locally harmonic functions on a Riemann surface Σ with boundary. These solutions, generally, have varying dilaton and axion, and non-vanishing 3-form fluxes. In a second part, we impose regularity and topology conditions. These non-singular solutions may be parametrized by a genus g ≥ 0 hyperelliptic surface Σ, all of whose branch points lie on the real line. Each genus g solution has only a single asymptotic AdS 5 x S 5 region, but exhibits g homology 3-spheres, and an extra g homology 5-spheres, carrying respectively RR 3-form and RR 5-form charges. For genus 0, we recover AdS 5 x S 5 with 3 free parameters, while for genus g ≥ 1, the solution has 2g+5 free parameters. The genus 1 case is studied in detail. Numerical analysis is used to show that the solutions are regular throughout the g = 1 parameter space. Collapse of a branch cut on Σ subtending either a homology 3-sphere or a homology 5-sphere is non-singular and yields the genus g-1 solution. This behavior is precisely expected of a proper dual to a Wilson loop in gauge theory

  13. Two-loop corrections for nuclear matter in the Walecka model

    International Nuclear Information System (INIS)

    Furnstahl, R.J.; Perry, R.J.; Serot, B.D.; Department of Physics, The Ohio State University, Columbus, Ohio 43210; Physics Department and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405)

    1989-01-01

    Two-loop corrections for nuclear matter, including vacuum polarization, are calculated in the Walecka model to study the loop expansion as an approximation scheme for quantum hadrodynamics. Criteria for useful approximation schemes are discussed, and the concepts of strong and weak convergence are introduced. The two-loop corrections are evaluated first with one-loop parameters and mean fields and then by minimizing the total energy density with respect to the scalar field and refitting parameters to empirical nuclear matter saturation properties. The size and nature of the corrections indicate that the loop expansion is not convergent at two-loop order in either the strong or weak sense. Prospects for alternative approximation schemes are discussed

  14. Robust Model-based Control of Open-loop Unstable Processes

    International Nuclear Information System (INIS)

    Emad, Ali

    1999-01-01

    This paper addresses the development of new formulations for estimating modeling errors or unmeasured disturbances to be used in Model Predictive Control (MPC) algorithms during open-loop prediction. Two different formulations were developed in this paper. One is used in MPC that directly utilizes linear models and the other in MPC that utilizes non-linear models. These estimation techniques were utilized to provide robust performance for MPC algorithms when the plant is open-loop unstable and under the influence of modeling error and/or unmeasured disturbances. For MPC that utilizes a non-linear model, the estimation technique is formulated as a fixed small size on-line optimization problem, while for linear MPC, the unmeasured disturbances are estimated via a proposed linear disturbance model. The disturbance model coefficients are identified on-line from historical estimates of plant-model mismatch. The effectiveness of incorporating these proposed estimation techniques into MPC is tested through simulated implementation on non-linear unstable exothermic fluidized bed reactor. Closed-loop simulations proved the capability of the proposed estimation methods to stabilize and, thereby, improve the MPC performance in such cases. (Author)

  15. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    Directory of Open Access Journals (Sweden)

    Hahnbeom Park

    Full Text Available Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  16. Enthalpy-Based Thermal Evolution of Loops: II. Improvements to the Model

    Science.gov (United States)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2011-01-01

    This paper further develops the zero-dimensional (0D) hydrodynamic coronal loop model "Enthalpy-based Thermal Evolution of Loops" (EBTEL) originally proposed by Klimchuk et al (2008), which studies the plasma response to evolving coronal heating. It has typically been applied to impulsive heating events. The basis of EBTEL is the modelling of mass exchange between the corona and transition region and chromosphere in response to heating variations, with the key parameter being the ratio of transition region to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. It is found that while the evolution of the loop temperature is rather insensitive to the details of the model, accurate tracking of the density requires the inclusion of our new features. In particular, we are able to now obtain highly over-dense loops in the late cooling phase and decreases to the coronal density arising due to stratification. The 0D results are compared to a 1D hydro code (Hydrad). The agreement is acceptable, with the exception of the flare case where some versions of Hydrad can give significantly lower densities. This is attributed to the method used to model the chromosphere in a flare. EBTEL is suitable for general use as a tool for (a) quick-look results of loop evolution in response to a given heating function and (b) situations where the modelling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  17. MHD modeling of coronal loops: the transition region throat

    Science.gov (United States)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-04-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  18. Homology modelling and docking analysis of L-lactate dehydrogenase from Streptococcus thermopilus

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir R.

    2016-01-01

    Full Text Available The aim of this research was to create a three-dimensional model of L-lactate dehydrogenase from the main yoghurt starter culture - Streptococcus thermopilus, to analyse its structural features and investigate substrate binding in the active site. NCBI BlastP was used against the Protein Data Bank database in order to identify the template for construction of homology models. Multiple sequence alignment was performed using the program MUSCULE within the UGENE 1.11.3 program. Homology models were constructed using the program Modeller v. 9.17. The obtained 3D model was verified by Ramachandran plots. Molecular docking simulations were performed using the program Surflex-Dock. The highest sequence similarity was observed with L-lactate dehydrogenase from Lactobacillus casei subsp. casei, with 69% identity. Therefore, its structure (PDB ID: 2ZQY:A was selected as a modelling template for homology modelling. Active residues are by sequence similarity predicted: S. thermophilus - HIS181 and S. aureus - HIS179. Binding energy of pyruvate to L-lactate dehydrogenase of S. thermopilus was - 7.874 kcal/mol. Pyruvate in L-lactate dehydrogenase of S. thermopilus makes H bonds with catalytic HIS181 (1.9 Å, as well as with THR235 (3.6 Å. Although our results indicate similar position of substrates between L-lactate dehydrogenase of S. thermopilus and S. aureus, differences in substrate distances and binding energy values could influence the reaction rate. Based on these results, the L-lactate dehydrogenase model proposed here could be used as a guide for further research, such as transition states of the reaction through molecular dynamics. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  19. [Preparation of monoclonal antibody against 4-amylphenol and homology modeling of its Fv fragment].

    Science.gov (United States)

    Cheng, Lei; Wu, Haizhen; Fei, Jing; Zhang, Lujia; Ye, Jiang; Zhang, Huizhan

    2017-03-01

    Objective To prepare and characterize a monoclonal antibody (mAb) against 4-amylphenol (4-AP), clone its cDNA sequence and make homology modeling for its Fv fragment. Methods A high-affinity anti-4-AP mAb was generated from a hybridoma cell line F10 using electrofusion between splenocytes from APA-BSA-immunized mouse and Sp2/0 myeloma cells. Then we extracted the mRNA of F10 cells and cloned the cDNA of mAb. The homology modeling and molecular docking of its Fv fragment was conducted with biological software. Results Under the optimum conditions, the ic-ELISA equation was y=A 2 +(A 1 -A 2 )/(1+(x/x 0 ) p ) (A 1 =1.28; A 2 =-0.066; x 0 =12560.75; p=0.74) with a correlation coefficient (R 2 ) of 0.997. The lowest detectable limit was 0.65 μg/mL. The heavy and light chains of mAb respectively belonged to IgG1 and Kappa. The homology modeling and molecular docking studies revealed that the binding of 4-Ap and mAb was attributed to the hydrogen bond and hydrophobic interactions. Conclusion The study successfully established a stable 4-AP mAb-secreting hybridoma cell line. The study on spatial structure of Fv fragment using homology modeling provided a reference for the development and design of single chain variable fragments.

  20. Hippocampal closed-loop modeling and implications for seizure stimulation design

    Science.gov (United States)

    Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.

    2015-10-01

    Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.

  1. Transient modelling of a natural circulation loop under variable pressure

    International Nuclear Information System (INIS)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian; Instituto de Engenharia Nuclear

    2017-01-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  2. Transient modelling of a natural circulation loop under variable pressure

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2017-07-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  3. Illustrating and homology modeling the proteins of the Zika virus [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2016-09-01

    Full Text Available The Zika virus (ZIKV is a flavivirus of the family Flaviviridae, which is similar to dengue virus, yellow fever and West Nile virus. Recent outbreaks in South America, Latin America, the Caribbean and in particular Brazil have led to concern for the spread of the disease and potential to cause Guillain-Barré syndrome and microcephaly. Although ZIKV has been known of for over 60 years there is very little in the way of knowledge of the virus with few publications and no crystal structures. No antivirals have been tested against it either in vitro or in vivo. ZIKV therefore epitomizes a neglected disease. Several suggested steps have been proposed which could be taken to initiate ZIKV antiviral drug discovery using both high throughput screens as well as structure-based design based on homology models for the key proteins. We now describe preliminary homology models created for NS5, FtsJ, NS4B, NS4A, HELICc, DEXDc, peptidase S7, NS2B, NS2A, NS1, E stem, glycoprotein M, propeptide, capsid and glycoprotein E using SWISS-MODEL. Eleven out of 15 models pass our model quality criteria for their further use. While a ZIKV glycoprotein E homology model was initially described in the immature conformation as a trimer, we now describe the mature dimer conformer which allowed the construction of an illustration of the complete virion. By comparing illustrations of ZIKV based on this new homology model and the dengue virus crystal structure we propose potential differences that could be exploited for antiviral and vaccine design. The prediction of sites for glycosylation on this protein may also be useful in this regard. While we await a cryo-EM structure of ZIKV and eventual crystal structures of the individual proteins, these homology models provide the community with a starting point for structure-based design of drugs and vaccines as well as a for computational virtual screening.

  4. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.

    Science.gov (United States)

    Du, Yu-Fan; He, Xin; Lan, Ning

    2010-01-01

    A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.

  5. Driver steering model for closed-loop steering function analysis

    Science.gov (United States)

    Bolia, Pratiksh; Weiskircher, Thomas; Müller, Steffen

    2014-05-01

    In this paper, a two level preview driver steering control model for the use in numerical vehicle dynamics simulation is introduced. The proposed model is composed of cascaded control loops: The outer loop is the path following layer based on potential field framework. The inner loop tries to capture the driver's physical behaviour. The proposed driver model allows easy implementation of different driving situations to simulate a wide range of different driver types, moods and vehicle types. The expediency of the proposed driver model is shown with the help of developed driver steering assist (DSA) function integrated with a conventional series production (Electric Power steering System with rack assist servo unit) system. With the help of the DSA assist function, the driver is prevented from over saturating the front tyre forces and loss of stability and controllability during cornering. The simulation results show different driver reactions caused by the change in the parameters or properties of the proposed driver model if the DSA assist function is activated. Thus, the proposed driver model is useful for the advanced driver steering and vehicle stability assist function evaluation in the early stage of vehicle dynamics handling and stability evaluation.

  6. Nonlinear model predictive control for chemical looping process

    Science.gov (United States)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    2017-08-22

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.

  7. DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.

    Science.gov (United States)

    Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T; McDougal, Owen M; Andersen, Timothy L

    2013-08-26

    DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.

  8. The Arabidopsis thaliana homolog of the helicase RTEL1 plays multiple roles in preserving genome stability.

    Science.gov (United States)

    Recker, Julia; Knoll, Alexander; Puchta, Holger

    2014-12-01

    In humans, mutations in the DNA helicase Regulator of Telomere Elongation Helicase1 (RTEL1) lead to Hoyeraal-Hreidarsson syndrome, a severe, multisystem disorder. Here, we demonstrate that the RTEL1 homolog in Arabidopsis thaliana plays multiple roles in preserving genome stability. RTEL1 suppresses homologous recombination in a pathway parallel to that of the DNA translocase FANCM. Cytological analyses of root meristems indicate that RTEL1 is involved in processing DNA replication intermediates independently from FANCM and the nuclease MUS81. Moreover, RTEL1 is involved in interstrand and intrastrand DNA cross-link repair independently from FANCM and (in intrastrand cross-link repair) parallel to MUS81. RTEL1 contributes to telomere homeostasis; the concurrent loss of RTEL1 and the telomerase TERT leads to rapid, severe telomere shortening, which occurs much more rapidly than it does in the single-mutant line tert, resulting in developmental arrest after four generations. The double mutant rtel1-1 recq4A-4 exhibits massive growth defects, indicating that this RecQ family helicase, which is also involved in the suppression of homologous recombination and the repair of DNA lesions, can partially replace RTEL1 in the processing of DNA intermediates. The requirement for RTEL1 in multiple pathways to preserve genome stability in plants can be explained by its putative role in the destabilization of DNA loop structures, such as D-loops and T-loops. © 2014 American Society of Plant Biologists. All rights reserved.

  9. ANALYSIS AND MODELING OF TWO FLARE LOOPS OBSERVED BY AIA AND EIS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-10-10

    We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in extreme ultraviolet (EUV) images. The UV 1600 A emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by the Atmospheric Imaging Assembly (AIA) and the EUV Imaging Spectrometer (EIS). Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed, we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops with cross-sectional area of 5'' by 5'', and compute the plasma evolution in the loops using the EBTEL model. We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and in observations.

  10. 3D MHD MODELING OF TWISTED CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F.; Peres, G. [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Guarrasi, M. [CINECA—Interuniversity consortium, via Magnanelli 6/3, I-40033, Casalecchio di Reno, Bologna (Italy); Mignone, A. [Dipartimento di Fisica Generale, Università di Torino, via Pietro Giuria 1, I-10125, Torino (Italy); Hood, A. W.; Priest, E. R., E-mail: fabio.reale@unipa.it [School of Mathematics and Statistics, University of St. Andrews, St. Andrews, KY16 9SS (United Kingdom)

    2016-10-10

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high- β chromosphere to the low- β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s{sup −1} fill the core of the flux tube to densities above 10{sup 9} cm{sup −3}. More heating is released in the low corona than the high corona and is finely structured both in space and time.

  11. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  12. Numerical modeling of supercritical CO{sub 2} natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Archana, V., E-mail: archanav@barc.gov.in [Homi Bhabha National Institute, Mumbai, Maharashtra 400 094 (India); Vaidya, A.M., E-mail: avaidya@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India); Vijayan, P.K., E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India)

    2015-11-15

    Highlights: • Supercritical CO{sub 2} natural circulation loop is modeled by in-house developed 1D and 2D axi-symmetric CFD codes. • Steady state characteristics of VHVC configuration of supercritical CO{sub 2} natural circulation loop are studied over a range of power. • Improved accuracy of predictions by 2D axi-symmetric formulation over 1D formulation is demonstrated. • The validity of correlations used in 1D model such as friction factor and heat transfer correlations is analyzed. • Simulation results shows normal, enhanced and deteriorated heat transfer regimes in supercritical CO{sub 2} natural circulation loop. - Abstract: The objective of this research project is to estimate steady state characteristics of supercritical natural circulation loop (SCNCL) using computational methodology and to compliment on-going experimental investigation of the same at the authors’ organization. For computational investigation, a couple of in-house codes are developed. At first, formulation and a corresponding computer program for the SCNCL based on conservation equations written in 1D framework is developed. Comparison of 1D code results with experimental data showed that, under some operating conditions, there is deviation between computed results and experimental data. To improve predictive capability, it was thought to model the SCNCL using conservation equations in 2D axi-symmetric framework. An existing 2D axi-symmetric code (named NAFA), which was developed and validated for supercritical fluid flow in pipes, is modified for natural circulation loop (NCL) geometry. The modified code, named NAFA-Loop, is subsequently used to compute the steady state characteristics of the SCNCL. These results are compared with experimental data. The steady state characteristics such as the variation of mass flow rate with power, velocity and temperature profiles in heater and cooler are studied using NAFA-Loop. The computed velocity and temperature fields show that the

  13. Improved Application of Local Models to Steel Corrosion in Lead-Bismuth Loops

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Li Ning

    2003-01-01

    The corrosion of steels exposed to flowing liquid metals is influenced by local and global conditions of flow systems. The present study improves the previous local models when applied to closed loops by incorporating some global condition effects. In particular the bulk corrosion product concentration is calculated based on balancing the dissolution and precipitation in the entire closed loop. Mass transfer expressions developed in aqueous medium and an analytical expression are tested in the liquid-metal environments. The improved model is applied to a pure lead loop and produces results closer to the experimental data than the previous local models do. The model is also applied to a lead-bismuth eutectic (LBE) test loop. Systematic studies illustrate the effects of the flow rate, the oxygen concentration in LBE, and the temperature profile on the corrosion rate

  14. Homology in Electromagnetic Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Pellikka Matti

    2010-01-01

    Full Text Available We discuss how homology computation can be exploited in computational electromagnetism. We represent various cellular mesh reduction techniques, which enable the computation of generators of homology spaces in an acceptable time. Furthermore, we show how the generators can be used for setting up and analysis of an electromagnetic boundary value problem. The aim is to provide a rationale for homology computation in electromagnetic modeling software.

  15. Description of the two-loop RELAP5 model of the L-Reactor at the Savannah River Site

    International Nuclear Information System (INIS)

    Cozzuol, J.M.; Davis, C.B.

    1989-12-01

    A two-loop RELAP5 input model of the L-Reactor at the Savannah River Site (SRS) was developed to support thermal-hydraulic analysis of SRS reactors. The model was developed to economically evaluate potential design changes. The primary simplifications in the model were in the number of loops and the detail in the moderator tank. The six loops in the reactor were modeled with two loops, one representing a single loop and the other representing five combined loops. The model has undergone a quality assurance review. This report describes the two-loop model, its limitations, and quality assurance. 29 refs., 18 figs., 10 tabs

  16. One-loop Yukawa Couplings in Local Models

    CERN Document Server

    Conlon, Joseph P; Palti, Eran; 10.1007

    2010-01-01

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops.

  17. One-loop Yukawa couplings in local models

    International Nuclear Information System (INIS)

    Conlon, Joseph P.; Goodsell, Mark; Palti, Eran

    2010-07-01

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)

  18. One-loop Yukawa couplings in local models

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2010-07-15

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)

  19. On equivalent radius of curvature for PWL geometrical modeling a loop antenna

    CSIR Research Space (South Africa)

    Lysko, AA

    2012-11-01

    Full Text Available A circular loop antenna is often numerically modeled using a regular polygon. This approach is simple and robust, yet it alters the circumference of the loop and may thus shift the resonance frequency in the numerical model. This letter introduces a...

  20. Internal and External reconnection in a Series of Homologous Solar Flares

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in NOAA AR 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X-rays. In EIT, each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approximately 20 km/s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the. time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions, but modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a CME. External reconnection, first occurring between the escaping CME and the coronal hole field, and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions [Antiochos, 1998], although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively, are released primarily by the internal reconnection.

  1. Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption

    International Nuclear Information System (INIS)

    Chehade, Ali; Louahlia-Gualous, Hasna; Le Masson, Stéphane; Lépinasse, Eric

    2015-01-01

    This paper presents an analytical model for a thermosyphon loop developed for cooling air inside a telecommunication cabinet. The proposed model is based on the combination of thermal and hydraulic management of two-phase flow in the loop. Experimental tests on a closed thermosyphon loop are conducted with different working fluids that could be used for electronic cooling. Correlations for condensation and evaporation heat transfer in the thermosyphon loop are proposed. They are used in the model to calculate condenser and evaporator thermal resistances in order to predict the cabinet operating temperature, the loop's mass flow rate and pressure drops. Furthermore, various figures of merit proposed in the previous works are evaluated in order to be used for selection of the best loop's working fluid. The comparative studies show that the present model well predicts the experimental data. The mean deviation between the predictions of the theoretical model with the measurements for operating temperature is about 6%. Besides, the model is used to define an optimal liquid and vapor lines diameters and the effect of the ambient temperature on the fluid's mass flow rate and pressure drop. - Highlights: • Modeling of thermosyphon loop for cooling telecommunication cabinet. • The cooling system operates with zero electrical consumption. • The new correlations are proposed for condensation and evaporation heat transfer. • FOM equation is defined for selecting the best working fluid. • The proposed model well predicts the experimental data and operating temperature

  2. A Statistical Model of Current Loops and Magnetic Monopoles

    International Nuclear Information System (INIS)

    Ayyer, Arvind

    2015-01-01

    We formulate a natural model of loops and isolated vertices for arbitrary planar graphs, which we call the monopole-dimer model. We show that the partition function of this model can be expressed as a determinant. We then extend the method of Kasteleyn and Temperley-Fisher to calculate the partition function exactly in the case of rectangular grids. This partition function turns out to be a square of a polynomial with positive integer coefficients when the grid lengths are even. Finally, we analyse this formula in the infinite volume limit and show that the local monopole density, free energy and entropy can be expressed in terms of well-known elliptic functions. Our technique is a novel determinantal formula for the partition function of a model of isolated vertices and loops for arbitrary graphs

  3. The Arabidopsis thaliana Homolog of the Helicase RTEL1 Plays Multiple Roles in Preserving Genome Stability[C][W

    Science.gov (United States)

    Recker, Julia; Knoll, Alexander; Puchta, Holger

    2014-01-01

    In humans, mutations in the DNA helicase Regulator of Telomere Elongation Helicase1 (RTEL1) lead to Hoyeraal-Hreidarsson syndrome, a severe, multisystem disorder. Here, we demonstrate that the RTEL1 homolog in Arabidopsis thaliana plays multiple roles in preserving genome stability. RTEL1 suppresses homologous recombination in a pathway parallel to that of the DNA translocase FANCM. Cytological analyses of root meristems indicate that RTEL1 is involved in processing DNA replication intermediates independently from FANCM and the nuclease MUS81. Moreover, RTEL1 is involved in interstrand and intrastrand DNA cross-link repair independently from FANCM and (in intrastrand cross-link repair) parallel to MUS81. RTEL1 contributes to telomere homeostasis; the concurrent loss of RTEL1 and the telomerase TERT leads to rapid, severe telomere shortening, which occurs much more rapidly than it does in the single-mutant line tert, resulting in developmental arrest after four generations. The double mutant rtel1-1 recq4A-4 exhibits massive growth defects, indicating that this RecQ family helicase, which is also involved in the suppression of homologous recombination and the repair of DNA lesions, can partially replace RTEL1 in the processing of DNA intermediates. The requirement for RTEL1 in multiple pathways to preserve genome stability in plants can be explained by its putative role in the destabilization of DNA loop structures, such as D-loops and T-loops. PMID:25516598

  4. All-loop anomalous dimensions in integrable λ-deformed σ-models

    Directory of Open Access Journals (Sweden)

    George Georgiou

    2015-12-01

    Full Text Available We calculate the all-loop anomalous dimensions of current operators in λ-deformed σ-models. For the isotropic integrable deformation and for a semi-simple group G we compute the anomalous dimensions using two different methods. In the first we use the all-loop effective action and in the second we employ perturbation theory along with the Callan–Symanzik equation and in conjunction with a duality-type symmetry shared by these models. Furthermore, using CFT techniques we compute the all-loop anomalous dimension of bilinear currents for the isotropic deformation case and a general G. Finally we work out the anomalous dimension matrix for the cases of anisotropic SU(2 and the two couplings, corresponding to the symmetric coset G/H and a subgroup H, splitting of a group G.

  5. Equipment for fully homologous bulb turbine model testing in Laval University

    International Nuclear Information System (INIS)

    Fraser R; Vallée D; Jean Y; Deschênes C

    2014-01-01

    Within the context of liberalisation of the energy market, hydroelectricity remains a first class source of clean and renewable energy. Combining the growing demand of energy, its increasing value and the appreciation associated to the sustainable development, low head sites formerly considered as non-profitable are now exploitable. Bulb turbines likely to equip such sites are traditionally developed on model using right angle transmission leading to piers enlargement for power take off shaft passage, thus restricting possibilities to have fully homologous hydraulic passages. Aiming to sustain good quality development on fully homologous scale model of bulb turbines, the Hydraulic Machines Laboratory (LAMH) of Laval University has developed a brake with an enhanced power to weight ratio. This powerful brake is small enough to be located in the bulb shell while dissipating power without mandatory test head reduction. This paper first presents the basic technology of this brake and its application. Then both its main performance capabilities and dimensional characteristics will be detailed. The instrumentation used to perform accurate measurements will be finally presented

  6. Homology modeling of the serotonin transporter: Insights into the primary escitalopram-binding Site

    DEFF Research Database (Denmark)

    Jørgensen, Anne Marie; Tagmose, L.; Jørgensen, A.M.M.

    2007-01-01

    -ray structure of the closely related amino acid transporter, Aquifex aeolicus leucine transporter (LeuT), provides an opportunity to develop a three-dimensional model of the structure of SERT. We present herein a homology model of SERT using LeuT as the template and containing escitalopram as a bound ligand...

  7. Detection of no-model input-output pairs in closed-loop systems.

    Science.gov (United States)

    Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio

    2017-11-01

    The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Jordan cells of periodic loop models

    International Nuclear Information System (INIS)

    Morin-Duchesne, Alexi; Saint-Aubin, Yvan

    2013-01-01

    Jordan cells in transfer matrices of finite lattice models are a signature of the logarithmic character of the conformal field theories that appear in their thermodynamical limit. The transfer matrix of periodic loop models, T N , is an element of the periodic Temperley–Lieb algebra EPTL N (β,α), where N is the number of sites on a section of the cylinder, and β = −q − q −1 = 2cos λ and α the weights of contractible and non-contractible loops. The thermodynamic limit of T N is believed to describe a conformal field theory of central charge c = 1 − 6λ 2 /(π(λ − π)). The abstract element T N acts naturally on (a sum of) spaces V-tilde N d , similar to those upon which the standard modules of the (classical) Temperley–Lieb algebra act. These spaces known as sectors are labeled by the numbers of defects d and depend on a twist parameter v that keeps track of the winding of defects around the cylinder. Criteria are given for non-trivial Jordan cells of T N both between sectors with distinct defect numbers and within a given sector. (paper)

  9. Closing the loop: modelling of heart failure progression from health to end-stage using a meta-analysis of left ventricular pressure-volume loops.

    Science.gov (United States)

    Warriner, David R; Brown, Alistair G; Varma, Susheel; Sheridan, Paul J; Lawford, Patricia; Hose, David R; Al-Mohammad, Abdallah; Shi, Yubing

    2014-01-01

    The American Heart Association (AHA)/American College of Cardiology (ACC) guidelines for the classification of heart failure (HF) are descriptive but lack precise and objective measures which would assist in categorising such patients. Our aim was two fold, firstly to demonstrate quantitatively the progression of HF through each stage using a meta-analysis of existing left ventricular (LV) pressure-volume (PV) loop data and secondly use the LV PV loop data to create stage specific HF models. A literature search yielded 31 papers with PV data, representing over 200 patients in different stages of HF. The raw pressure and volume data were extracted from the papers using a digitising software package and the means were calculated. The data demonstrated that, as HF progressed, stroke volume (SV), ejection fraction (EF%) decreased while LV volumes increased. A 2-element lumped parameter model was employed to model the mean loops and the error was calculated between the loops, demonstrating close fit between the loops. The only parameter that was consistently and statistically different across all the stages was the elastance (Emax). For the first time, the authors have created a visual and quantitative representation of the AHA/ACC stages of LVSD-HF, from normal to end-stage. The study demonstrates that robust, load-independent and reproducible parameters, such as elastance, can be used to categorise and model HF, complementing the existing classification. The modelled PV loops establish previously unknown physiological parameters for each AHA/ACC stage of LVSD-HF, such as LV elastance and highlight that it this parameter alone, in lumped parameter models, that determines the severity of HF. Such information will enable cardiovascular modellers with an interest in HF, to create more accurate models of the heart as it fails.

  10. Closing the loop: modelling of heart failure progression from health to end-stage using a meta-analysis of left ventricular pressure-volume loops.

    Directory of Open Access Journals (Sweden)

    David R Warriner

    Full Text Available INTRODUCTION: The American Heart Association (AHA/American College of Cardiology (ACC guidelines for the classification of heart failure (HF are descriptive but lack precise and objective measures which would assist in categorising such patients. Our aim was two fold, firstly to demonstrate quantitatively the progression of HF through each stage using a meta-analysis of existing left ventricular (LV pressure-volume (PV loop data and secondly use the LV PV loop data to create stage specific HF models. METHODS AND RESULTS: A literature search yielded 31 papers with PV data, representing over 200 patients in different stages of HF. The raw pressure and volume data were extracted from the papers using a digitising software package and the means were calculated. The data demonstrated that, as HF progressed, stroke volume (SV, ejection fraction (EF% decreased while LV volumes increased. A 2-element lumped parameter model was employed to model the mean loops and the error was calculated between the loops, demonstrating close fit between the loops. The only parameter that was consistently and statistically different across all the stages was the elastance (Emax. CONCLUSIONS: For the first time, the authors have created a visual and quantitative representation of the AHA/ACC stages of LVSD-HF, from normal to end-stage. The study demonstrates that robust, load-independent and reproducible parameters, such as elastance, can be used to categorise and model HF, complementing the existing classification. The modelled PV loops establish previously unknown physiological parameters for each AHA/ACC stage of LVSD-HF, such as LV elastance and highlight that it this parameter alone, in lumped parameter models, that determines the severity of HF. Such information will enable cardiovascular modellers with an interest in HF, to create more accurate models of the heart as it fails.

  11. New class of two-loop neutrino mass models with distinguishable phenomenology

    Science.gov (United States)

    Cao, Qing-Hong; Chen, Shao-Long; Ma, Ernest; Yan, Bin; Zhang, Dong-Ming

    2018-04-01

    We discuss a new class of neutrino mass models generated in two loops, and explore specifically three new physics scenarios: (A) doubly charged scalar, (B) dark matter, and (C) leptoquark and diquark, which are verifiable at the 14 TeV LHC Run-II. We point out how the different Higgs insertions will distinguish our two-loop topology with others if the new particles in the loop are in the simplest representations of the SM gauge group.

  12. Challenges in LCA modelling of multiple loops for aluminium cans

    DEFF Research Database (Denmark)

    Niero, Monia; Olsen, Stig Irving

    considered the case of closed-loop recycling for aluminium cans, where body and lid are different alloys, and discussed the abovementioned challenge. The Life Cycle Inventory (LCI) modelling of aluminium processes is traditionally based on a pure aluminium flow, therefore neglecting the presence of alloying...... elements. We included the effect of alloying elements on the LCA modelling of aluminium can recycling. First, we performed a mass balance of the main alloying elements (Mn, Fe, Si, Cu) in aluminium can recycling at increasing levels of recycling rate. The analysis distinguished between different aluminium...... packaging scrap sources (i.e. used beverage can and mixed aluminium packaging) to understand the limiting factors for multiple loop aluminium can recycling. Secondly, we performed a comparative LCA of aluminium can production and recycling in multiple loops considering the two aluminium packaging scrap...

  13. RTEL1 maintains genomic stability by suppressing homologous recombination.

    Science.gov (United States)

    Barber, Louise J; Youds, Jillian L; Ward, Jordan D; McIlwraith, Michael J; O'Neil, Nigel J; Petalcorin, Mark I R; Martin, Julie S; Collis, Spencer J; Cantor, Sharon B; Auclair, Melissa; Tissenbaum, Heidi; West, Stephen C; Rose, Ann M; Boulton, Simon J

    2008-10-17

    Homologous recombination (HR) is an important conserved process for DNA repair and ensures maintenance of genome integrity. Inappropriate HR causes gross chromosomal rearrangements and tumorigenesis in mammals. In yeast, the Srs2 helicase eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has been elusive. Here, we identify C. elegans RTEL-1 as a functional analog of Srs2 and describe its vertebrate counterpart, RTEL1, which is required for genome stability and tumor avoidance. We find that rtel-1 mutant worms and RTEL1-depleted human cells share characteristic phenotypes with yeast srs2 mutants: lethality upon deletion of the sgs1/BLM homolog, hyperrecombination, and DNA damage sensitivity. In vitro, purified human RTEL1 antagonizes HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control after deregulation of RTEL1 may be a critical event that drives genome instability and cancer.

  14. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium)

    2016-04-15

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses, and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.

  15. Loop algorithms for quantum simulations of fermion models on lattices

    International Nuclear Information System (INIS)

    Kawashima, N.; Gubernatis, J.E.; Evertz, H.G.

    1994-01-01

    Two cluster algorithms, based on constructing and flipping loops, are presented for world-line quantum Monte Carlo simulations of fermions and are tested on the one-dimensional repulsive Hubbard model. We call these algorithms the loop-flip and loop-exchange algorithms. For these two algorithms and the standard world-line algorithm, we calculated the autocorrelation times for various physical quantities and found that the ordinary world-line algorithm, which uses only local moves, suffers from very long correlation times that makes not only the estimate of the error difficult but also the estimate of the average values themselves difficult. These difficulties are especially severe in the low-temperature, large-U regime. In contrast, we find that new algorithms, when used alone or in combinations with themselves and the standard algorithm, can have significantly smaller autocorrelation times, in some cases being smaller by three orders of magnitude. The new algorithms, which use nonlocal moves, are discussed from the point of view of a general prescription for developing cluster algorithms. The loop-flip algorithm is also shown to be ergodic and to belong to the grand canonical ensemble. Extensions to other models and higher dimensions are briefly discussed

  16. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies.

    Science.gov (United States)

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V; Pavlyukovets, Vladimir A; Blumberg, Peter M; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  17. Two-loop effective potential for Wess-Zumino model using superfields

    International Nuclear Information System (INIS)

    Santos, R.P. dos; Srivastava, P.P.

    1989-01-01

    For the case of several interacting chiral superfields the propagators for the unconstrained superfield potentials in the 'shifted' theory, where the supersymmetry is explicity broken, are derived in a compact form. They are used to compute the one-loop effective potential in the general case, while a superfield calculation of the renormalized effective potential to two loops for the Wess-Zumino models is performed. (authors) [pt

  18. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel; Lepore, Rosalba; Tramontano, Anna

    2015-01-01

    ) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has

  19. Homotopic Chain Maps Have Equal s-Homology and d-Homology

    Directory of Open Access Journals (Sweden)

    M. Z. Kazemi-Baneh

    2016-01-01

    Full Text Available The homotopy of chain maps on preabelian categories is investigated and the equality of standard homologies and d-homologies of homotopic chain maps is established. As a special case, if X and Y are the same homotopy type, then their nth d-homology R-modules are isomorphic, and if X is a contractible space, then its nth d-homology R-modules for n≠0 are trivial.

  20. Two-loop renormalization in the standard model, part I. Prolegomena

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Ferroglia, A. [Albert-Ludwigs-Univ., Freiburg (Germany). Fakultat fur Phys.]|[Zuerich Univ. (Switzerland). Inst. fuer Theoretische Physik; Passera, M. [Padua Univ. (Italy). Dipt. di Fisica]|[INFN, Sezione di Padova (Italy); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica]|[INFN, Sezione di Torino (Italy)

    2006-12-15

    In this paper the building blocks for the two-loop renormalization of the Standard Model are introduced with a comprehensive discussion of the special vertices induced in the Lagrangian by a particular diagonalization of the neutral sector and by two alternative treatments of the Higgs tadpoles. Dyson resummed propagators for the gauge bosons are derived, and two-loop Ward-Slavnov-Taylor identities are discussed. In part II, the complete set of counterterms needed for the two-loop renormalization will be derived. In part III, a renormalization scheme will be introduced, connecting the renormalized quantities to an input parameter set of (pseudo-)experimental data, critically discussing renormalization of a gauge theory with unstable particles. (orig.)

  1. Two loop effective Kahler potential of (non)-renormalizable supersymmetric models

    International Nuclear Information System (INIS)

    Groot Nibbelink, S.; Nyawelo, T.S.

    2005-10-01

    We perform a supergraph computation of the effective Kahler potential at one and two loops for general four dimensional N=1 supersymmetric theories described by arbitrary Kahler potential, superpotential and gauge kinetic function. We only insist on gauge invariance of the Kahler potential and the superpotential as we heavily rely on its consequences in the quantum theory. However, we do not require gauge invariance for the gauge kinetic functions, so that our results can also be applied to anomalous theories that involve the Green-Schwarz mechanism. We illustrate our two loop results by considering a few simple models: the (non-)renormalizable Wess-Zumino model and Super Quantum Electrodynamics. (author)

  2. Two-loop neutrino model with exotic leptons

    Science.gov (United States)

    Okada, Hiroshi; Orikasa, Yuta

    2016-01-01

    We propose a two-loop induced neutrino mass model, in which we show some bench mark points to satisfy the observed neutrino oscillation, the constraints of lepton flavor violations, and the relic density in the coannihilation system satisfying the current upper bound on the spin independent scattering cross section with nuclei. We also discuss new sources of muon anomalous magnetic moments.

  3. Nonplanar loops leave the Veneziano model photon massless

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    The absence of a pole at p2=0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found.

  4. Nonplanar loops leave the Veneziano model photon massless

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    The absence of a pole at p 2 =0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found. (orig.)

  5. Nonplanar loops leave the Veneziano model photon massless

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-04-16

    The absence of a pole at p/sup 2/=0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found.

  6. Modelling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects

    International Nuclear Information System (INIS)

    Morozovska, Anna N; Eliseev, Eugene A

    2004-01-01

    We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. We have modified the Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic values and the various hysteresis-loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films

  7. Fast loop modeling for protein structures

    Science.gov (United States)

    Zhang, Jiong; Nguyen, Son; Shang, Yi; Xu, Dong; Kosztin, Ioan

    2015-03-01

    X-ray crystallography is the main method for determining 3D protein structures. In many cases, however, flexible loop regions of proteins cannot be resolved by this approach. This leads to incomplete structures in the protein data bank, preventing further computational study and analysis of these proteins. For instance, all-atom molecular dynamics (MD) simulation studies of structure-function relationship require complete protein structures. To address this shortcoming, we have developed and implemented an efficient computational method for building missing protein loops. The method is database driven and uses deep learning and multi-dimensional scaling algorithms. We have implemented the method as a simple stand-alone program, which can also be used as a plugin in existing molecular modeling software, e.g., VMD. The quality and stability of the generated structures are assessed and tested via energy scoring functions and by equilibrium MD simulations. The proposed method can also be used in template-based protein structure prediction. Work supported by the National Institutes of Health [R01 GM100701]. Computer time was provided by the University of Missouri Bioinformatics Consortium.

  8. Determination and validation of mTOR kinase-domain 3D structure by homology modeling

    Directory of Open Access Journals (Sweden)

    Lakhlili W

    2015-07-01

    Full Text Available Wiame Lakhlili,1 Gwénaël Chevé,2 Abdelaziz Yasri,2 Azeddine Ibrahimi1 1Laboratoire de Biotechnologie (MedBiotech, Faculté de Médecine et de Pharmacie de Rabat, Université Mohammed V de Rabat, Rabat, Morroco; 2OriBase Pharma, Cap Gamma, Parc Euromédecine, Montpellier, France Abstract: The AKT/mammalian target of rapamycin (mTOR pathway is considered as one of the commonly activated and deregulated signaling pathways in human cancer. mTOR is associated with other proteins in two molecular complexes: mTOR complex 1/Raptor and the mTOR complex 2/Rictor. Using the crystal structure of the related lipid kinase PI3Kγ, we built a model of the catalytic region of mTOR. The modeling of the three-dimensional (3D structure of the mTOR was performed by homology modeling program SWISS-MODEL. The quality and validation of the obtained model were performed using PROCHECK and PROVE softwares. The overall stereochemical property of the protein was assessed by the Ramachandran plot. The model validation was also done by docking of known inhibitors. In this paper, we describe and validate a 3D model for the mTOR catalytic site.Keywords: mTOR, homology modeling, mTOR kinase-domain, docking

  9. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  10. Homological stabilizer codes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  11. Dynamic modelling and hardware-in-the-loop testing of PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas; Soehn, Matthias; Nicoloso, Norbert; Hartkopf, Thomas [Technische Universitaet Darmstadt/Institut fuer Elektrische Energie wand lung, Landgraf-Georg-Str. 4, D-64283 Darmstadt (Germany); Lemes, Zijad; Maencher, Hubert [MAGNUM Automatisierungstechnik GmbH, Bunsenstr. 22, D-64293 Darmstadt (Germany)

    2006-07-03

    Modelling and hardware-in-the-loop (HIL) testing of fuel cell components and entire systems open new ways for the design and advance development of FCs. In this work proton exchange membrane fuel cells (PEMFC) are dynamically modelled within MATLAB-Simulink at various operation conditions in order to establish a comprehensive description of their dynamic behaviour as well as to explore the modelling facility as a diagnostic tool. Set-up of a hardware-in-the-loop (HIL) system enables real time interaction between the selected hardware and the model. The transport of hydrogen, nitrogen, oxygen, water vapour and liquid water in the gas diffusion and catalyst layers of the stack are incorporated into the model according to their physical and electrochemical characteristics. Other processes investigated include, e.g., the membrane resistance as a function of the water content during fast load changes. Cells are modelled three-dimensionally and dynamically. In case of system simulations a one-dimensional model is preferred to reduce computation time. The model has been verified by experiments with a water-cooled stack. (author)

  12. Empirical potential and elasticity theory modelling of interstitial dislocation loops in UO2 for cluster dynamics application

    International Nuclear Information System (INIS)

    Le-Prioux, Arno

    2017-01-01

    During irradiation in reactor, the microstructure of UO 2 changes and deteriorates, causing modifications of its physical and mechanical properties. The kinetic models used to describe these changes such as cluster dynamics (CRESCENDO calculation code) consider the main microstructural elements that are cavities and interstitial dislocation loops, and provide a rather rough description of the loop thermodynamics. In order to tackle this issue, this work has led to the development of a thermodynamic model of interstitial dislocation loops based on empirical potential calculations. The model considers two types of interstitial dislocation loops on two different size domains: Type 1: Dislocation loops similar to Frank partials in F.C.C. materials which are stable in the smaller size domain. Type 2: Perfect dislocation loops of Burgers vector (a/2)(110) stable in the larger size domain. The analytical formula used to compute the interstitial dislocation loop formation energies is the one for circular loops which has been modified in order to take into account the effects of the dislocation core, which are significant at smaller sizes. The parameters have been determined by empirical potential calculations of the formation energies of prismatic pure edge dislocation loops. The effect of the habit plane reorientation on the formation energies of perfect dislocation loops has been taken into account by a simple interpolation method. All the different types of loops seen during TEM observations are thus accounted for by the model. (author) [fr

  13. The model of the thermal and hydraulic behaviour of a out-of-pile test loop; Model thermohidraulickog ponasanja vanreaktorskog exksperimentalnog cirkulacionog kola

    Energy Technology Data Exchange (ETDEWEB)

    Vehauc, A; Stosic, Z [Institut za nuklearne nauke Boris Kidric, Voinca, Belgrade (Yugoslavia)

    1988-07-01

    A complex circulation loop was modeled and a simulation program developed for the determination of the pressure, temperature, velocity and flow rate distribution in legs of the loop. The model was used to study the thermal and hydraulic behaviour of an out-of-pile test loop at IBK-ITE. For a given set of conditions in the test section, the model yields data on all the operating modes possible with the existing control system and in consequence on the optimum operating conditions for the loop as a whole. (author)

  14. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J. [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Rupasinghe, Sanjeewa G. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Tang Ming [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Harris, Jason; Baudry, Jerome [University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology (United States); Schuler, Mary A. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Rienstra, Chad M., E-mail: rienstra@illinois.edu [University of Illinois at Urbana-Champaign, Department of Chemistry (United States)

    2012-01-15

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., {sup 13}C-{sup 13}C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  15. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C [University of Illinois, Urbana-Champaign; Nesbitt, Anna E [University of Illinois, Urbana-Champaign; Hallock, Michael J [University of Illinois, Urbana-Champaign; Rupasinghe, Sanjeewa [University of Illinois, Urbana-Champaign; Tang, Ming [University of Illinois, Urbana-Champaign; Harris, Jason B [ORNL; Baudry, Jerome Y [ORNL; Schuler, Mary A [University of Illinois, Urbana-Champaign; Rienstra, Chad M [University of Illinois, Urbana-Champaign

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  16. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  17. In-the-loop simulation of electronic automatic temperature control systems: HVAC modeling

    Energy Technology Data Exchange (ETDEWEB)

    Domschke, R.; Matthes, M. [Visteon Deutschland GmbH, Kerpen (Germany)

    2006-07-01

    The Electronic Automatic Temperature Control (EATC) ensures the occupant comfort and provides safety features like rapid defrost and demist protection. Doing this, the EATC controller provides a direct interface to the end consumer and has a considerable impact on customer satisfaction. The In-the-loop (IL) simulation process is an integral part of Visteons model-based development process. It helps to design and calibrate the EATC controller. It consists of several IL simulation techniques like Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL). In this article, we will focus on MIL/SIL Simulations. MIL/SIL allows simulation of the EATC controller in a virtual vehicle environment from the early states of and throughout the development process. This ensures a rapid, high quality and robust development process. The MIL/SIL model contains a thermal vehicle model, a heating, ventilation and air conditioning (HVAC) unit model and a model of the EATC controller itself. The thermal vehicle model simulates transient temperature and humidity conditions in the passenger compartment of a vehicle, settings from the controller, heat fluxes through the vehicle shell and windows, solar load and several further boundary conditions. Whereas the thermal vehicle model of a specific vehicle can be adapted from a default data base, one has to pay special attention to the HVAC unit model. Visteon has developed a special, physically based HVAC unit model to be adapted and implemented into the MIL/SIL simulation. This HVAC model enables a straightforward implementation of different HVAC architectures into the MIL/SIL simulation. Moreover, changes in the HVAC settings (i.e. different blower/scroll assemblies) can be assessed and the influence on passenger comfort can be quantified. Examples of the MIL/SIL simulation demonstrate the benefits of this approach. Results are discussed and a further outlook provided. (orig.)

  18. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  19. Full cyclic coordinate descent: solving the protein loop closure problem in Cα space

    Directory of Open Access Journals (Sweden)

    Hamelryck Thomas

    2005-06-01

    Full Text Available Abstract Background Various forms of the so-called loop closure problem are crucial to protein structure prediction methods. Given an N- and a C-terminal end, the problem consists of finding a suitable segment of a certain length that bridges the ends seamlessly. In homology modelling, the problem arises in predicting loop regions. In de novo protein structure prediction, the problem is encountered when implementing local moves for Markov Chain Monte Carlo simulations. Most loop closure algorithms keep the bond angles fixed or semi-fixed, and only vary the dihedral angles. This is appropriate for a full-atom protein backbone, since the bond angles can be considered as fixed, while the (φ, ψ dihedral angles are variable. However, many de novo structure prediction methods use protein models that only consist of Cα atoms, or otherwise do not make use of all backbone atoms. These methods require a method that alters both bond and dihedral angles, since the pseudo bond angle between three consecutive Cα atoms also varies considerably. Results Here we present a method that solves the loop closure problem for Cα only protein models. We developed a variant of Cyclic Coordinate Descent (CCD, an inverse kinematics method from the field of robotics, which was recently applied to the loop closure problem. Since the method alters both bond and dihedral angles, which is equivalent to applying a full rotation matrix, we call our method Full CCD (FCDD. FCCD replaces CCD's vector-based optimization of a rotation around an axis with a singular value decomposition-based optimization of a general rotation matrix. The method is easy to implement and numerically stable. Conclusion We tested the method's performance on sets of random protein Cα segments between 5 and 30 amino acids long, and a number of loops of length 4, 8 and 12. FCCD is fast, has a high success rate and readily generates conformations close to those of real loops. The presence of constraints

  20. Loop groups, the Luttinger model, anyons, and Sutherland systems

    International Nuclear Information System (INIS)

    Langmann, E.; Carey, A.L.

    1998-01-01

    We discuss the representation theory of loop groups and examples of how it is used in physics. These examples include the construction and solution of the Luttinger model and other 1 + 1-dimensional interacting quantum field theories, the construction of anyon field operators on the circle, and the '2 nd quantization' of the Sutherland model using anyons

  1. Modeling a forced to natural convection boiling test with the program LOOP-W

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1984-01-01

    Extensive testing has been conducted in the Simulant Boiling Flow Visualization (SBFV) loop in which water is boiled in a vertical transparent tube by circulating hot glycerine in an annulus surrounding the tube. Tests ranged from nonboiling forced convection to oscillatory boiling natural convection. The program LOOP-W has been developed to analyze these tests. This program is a multi-leg, one-dimensional, two-phase equilibrium model with slip between the phases. In this study, a specific test, performed at low power where non-boiling forced convection was changed to boiling natural convection and then to non-boiling again, has been modeled with the program LOOP-W

  2. Closed Loop Brain Model of Neocortical Information Based Exchange

    Directory of Open Access Journals (Sweden)

    James eKozloski

    2016-01-01

    Full Text Available Here we describe an information based exchange' model of brain function that ascribes to neocortex, basal ganglia, and thalamus distinct network functions. The model allows us to analyze whole brain system set point measures, such as the rate and heterogeneity of transitions in striatum and neocortex, in the context of neuromodulation and other perturbations. Our closed-loop model is grounded in neuroanatomical observations, proposing a novel Grand Loop through neocortex, and invokes different forms of plasticity at specific tissue interfaces and their principle cell synapses to achieve these transitions. By implementing a system for maximum information based exchange of action potentials between modeled neocortical areas, we observe changes to these measures in simulation. We hypothesize that similar dynamic set points and modulations exist in the brain's resting state activity, and that different modifications to information based exchange may shift the risk profile of different component tissues, resulting in different neurodegenerative diseases. This model is targeted for further development using IBM's Neural Tissue Simulator, which allows scalable elaboration of networks, tissues, and their neural and synaptic components towards ever greater complexity and biological realism.

  3. A mathematical model for the simulation of thermal transients in the water loop of IPEN

    International Nuclear Information System (INIS)

    Pontedeiro, A.C.

    1980-01-01

    A mathematical model for simulation of thermal transients in the water loop at the Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brasil, is developed. The model is based on energy equations applied to the components of the experimental water loop. The non-linear system of first order diferencial equations and of non-linear algebraic equations obtained through the utilization of the IBM 'System/360-Continous System Modeling Program' (CSMP) is resolved. An optimization of the running time of the computer is made and a typical simulation of the water loop is executed. (Author) [pt

  4. Non centered minor hysteresis loops evaluation based on exponential parameters transforms of the modified inverse Jiles–Atherton model

    International Nuclear Information System (INIS)

    Hamimid, M.; Mimoune, S.M.; Feliachi, M.; Atallah, K.

    2014-01-01

    In this present work, a non centered minor hysteresis loops evaluation is performed using the exponential transforms (ET) of the modified inverse Jiles–Atherton model parameters. This model improves the non centered minor hysteresis loops representation. The parameters of the non centered minor hysteresis loops are obtained from exponential expressions related to the major ones. The parameters of minor loops are obtained by identification using the stochastic optimization method “simulated annealing”. The four parameters of JA model (a,α, k and c) obtained by this transformation are applied only in both ascending and descending branches of the non centered minor hysteresis loops while the major ones are applied to the rest of the cycle. This proposal greatly improves both branches and consequently the minor loops. To validate this model, calculated non-centered minor hysteresis loops are compared with measured ones and good agreements are obtained

  5. Model-Based Closed-Loop Glucose Control in Type 1 Diabetes: The DiaCon Experience

    DEFF Research Database (Denmark)

    Schmidt, Signe; Boiroux, Dimitri; Duun-Henriksen, Anne Katrine

    2013-01-01

    Background: To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient-specific......Background: To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient...... crossover studies. Study 1 compared CL with open-loop (OL) control. Study 2 compared glucose control after CL initiation in the euglycemic (CL-Eu) and hyperglycemic (CL-Hyper) ranges, respectively. Patients were studied from 22:00–07:00 on two separate nights. Results: Each study included six T1DM patients...

  6. Investigation of reflood models by coupling REFLA-1D and multi-loop system model

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Murao, Yoshio

    1983-09-01

    A system analysis code REFLA-1DS was developed by coupling reflood analysis code REFLA-1D and a multi-loop primary system model. The reflood models in the code were investigated for the development of the integral system analysis code. The REFLA-1D, which was developed with the small scale reflood experiment at JAERI, consists of one-dimensional core model and a primary system model with a constant loop resistance. The multi-loop primary system model was developed with the Cylindrical Core Test Facility of JAERI's large scale reflood tests. The components modeled in the code are the upper plenum, the steam generator, the coolant pump, the ECC injection port, the downcomer and the broken cold leg nozzle. The coupling between the two models in REFLA-1DS is accomplished by applying the equivalent flow resistance calculated with the multiloop model to the REFLA-1D. The characteristics of the code is its simplicity of the system model and the solution method which enables the fast running and the easy reflood analysis for the further model development. A fairly good agreement was obtained with the results of the Cylindrical Core Test Facility for the calculated water levels in the downcomer, the core and the upper plenum. A qualitatively good agreement was obtained concerning the parametric effects of the system pressure, the ECC flow rate and the initial clad temperature. Needs for further code improvements of the models, however, were pointed out. These include the problem concerning the generation rate of the steam and water droplets in the core in an early period, the effect of the flow oscillation on the core cooling, the heat release from the downcomer wall, and the stable system calculation. (author)

  7. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2017-02-01

    Full Text Available We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  8. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen, E-mail: liu-zhen@sjtu.edu.cn; Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn

    2017-02-15

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  9. Four loop wave function renormalization in the non-abelian Thirring model

    International Nuclear Information System (INIS)

    Ali, D.B.; Gracey, J.A.

    2001-01-01

    We compute the anomalous dimension of the fermion field with N f flavours in the fundamental representation of a general Lie colour group in the non-abelian Thirring model at four loops. The implications on the renormalization of the two point Green's function through the loss of multiplicative renormalizability of the model in dimensional regularization due to the appearance of evanescent four fermi operators are considered at length. We observe the appearance of one new colour group Casimir, d F abcd d F abcd , in the final four loop result and discuss its consequences for the relation of the Knizhnik-Zamolodchikov critical exponents in the Wess-Zumino-Witten-Novikov model to the non-abelian Thirring model. Renormalization scheme changes are also considered to ensure that the underlying Fierz symmetry broken by dimensional regularization is restored

  10. One-loop contributions to neutral minima in the inert doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, P.M. [Instituto Superior de Engenharia de Lisboa - ISEL,1959-007 Lisboa (Portugal); Centro de Física Teórica e Computacional - FCUL,Universidade de Lisboa, R. Ernesto de Vasconcelos, 1749-016 Lisboa (Portugal); Świeżewska, Bogumiła [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-15

    The vacuum structure of the inert doublet model is analysed at the one-loop level using the effective potential formalism, to verify the validity of tree-level predictions for the properties of the global minimum. An inert minimum (with massive fermions) and an inert-like minimum (with massless fermions) can coexist at tree level. But the one-loop analysis reveals that the allowed parameter space for the coexistence of more than one minimum is larger than the tree-level expected one. It is also shown that for some choices of parameters, the global minimum found at the one-loop level may be inert (or inert-like), contrary to what the tree-level analysis indicates.

  11. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker

    2016-09-01

    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  12. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at

    2016-09-15

    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  13. Discovery of a Dipeptide Epimerase Enzymatic Function Guided by Homology Modeling and Virtual Screening

    Energy Technology Data Exchange (ETDEWEB)

    Kalyanaraman, C.; Imker, H; Fedorov, A; Fedorov, E; Glasner, M; Babbitt, P; Almo, S; Gerlt, J; Jacobson, M

    2008-01-01

    We have developed a computational approach to aid the assignment of enzymatic function for uncharacterized proteins that uses homology modeling to predict the structure of the binding site and in silico docking to identify potential substrates. We apply this method to proteins in the functionally diverse enolase superfamily that are homologous to the characterized L-Ala-D/L-Glu epimerase from Bacillus subtilis. In particular, a protein from Thermotoga martima was predicted to have different substrate specificity, which suggests that it has a different, but as yet unknown, biological function. This prediction was experimentally confirmed, resulting in the assignment of epimerase activity for L-Ala-D/L-Phe, L-Ala-D/L-Tyr, and L-Ala-D/L-His, whereas the enzyme is annotated incorrectly in GenBank as muconate cycloisomerase. Subsequently, crystal structures of the enzyme were determined in complex with three substrates, showing close agreement with the computational models and revealing the structural basis for the observed substrate selectivity.

  14. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping

    2015-01-15

    A self-adaptive genetic algorithm for estimating Jiles–Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet’s hysteresis loops, and the results are in good agreement with published data. - Highlights: • We present a method to find JA parameters for both major and minor loops. • Fitness function is based on distances between key points of normalized loops. • The selection pressure is adjusted adaptively based on generations.

  15. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops

    International Nuclear Information System (INIS)

    Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping

    2015-01-01

    A self-adaptive genetic algorithm for estimating Jiles–Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet’s hysteresis loops, and the results are in good agreement with published data. - Highlights: • We present a method to find JA parameters for both major and minor loops. • Fitness function is based on distances between key points of normalized loops. • The selection pressure is adjusted adaptively based on generations

  16. Thermohaline loops, Stommel box models, and the Sandström theorem

    OpenAIRE

    Wunsch, Carl

    2005-01-01

    The Stommel two-box, two flow-regime box model is kinematically and dynamically equivalent to the flow in a onedimensional fluid loop, although one having awkward and extreme mixing coefficients. More generally, such a loop, when heated and cooled at the same geopotential, provides a simple example of the working of the Sandström theorem, with flow intensity capable of increasing or decreasing with growing diffusion. Stress dominates real oceanic flows, and its introduction into the purely th...

  17. Development of a transient calculation model for a closed sodium natural circulation loop

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Heo, Sun; Lee, Yong Bum

    2003-09-01

    A natural circulation loop has usually adopted for a Liquid Metal Reactor (LMR) because of its high reliability. Up-rating of the current KALIMER capacity requires an additional PDRC to the existing PVCS to remove its decay heat under an accident. As the system analysis code currently used for LMR in Korea does not feature a stand alone capability to simulate a closed natural circulation loop, it is not eligible to be applied to PDRC. To supplement its limitation, a steady state calculation model had been developed during the first phase, and development of the transient model has successively carried out to close the present study. The developed model will then be coupled with the system analysis code, SSC-K to assess a long term cooling for the new conceptual design. The incompressibility assumption of sodium which allows the circuit to be modeled with a single loop flow, makes the model greatly simplified comparing with LWR. Some thermal-hydraulic models developed during this study can be effectively applied to other system analysis codes which require such component models, and the present development will also contribute to establishment of a code system for the LMR analysis

  18. The implementation of a mid-loop model for Doel 1/2 training simulator

    International Nuclear Information System (INIS)

    Houte, U. Van; Damme, M. Van

    1999-01-01

    To cope with upgrade requirements of the Full Scope training simulator of Doel 1/2 (Belgium), a 5-equation model has been implemented for mid-loop operation training. This model will permit to simulate the following conditions: (a) Normal operating conditions; Draining of the primary circuit at vacuum conditions; Venting of the primary loop with the help of a vacuum pump; Filling-up of the primely circuit, (2) Incident and Accident conditions; Loss of RHR (Cavitation of RHR pumps); Reactor heat-up and boiling. In order to simulate the pressurizer water hold-up and loss of steam generator reflux cooling, flooding correlations are used predicting steam generator U-tube and pressurizer surgeline flooding. Loss of horizontal stratification in the hot leg has been taken into account. A steam generator piston model for heat transfer has been implemented. This paper describes the mid-loop model specifications, its implementation and testing in the simulator environment. Special attention is given on how the model has been integrated within the existing simulator. (author)

  19. Matrix factorizations and homological mirror symmetry on the torus

    International Nuclear Information System (INIS)

    Knapp, Johanna; Omer, Harun

    2007-01-01

    We consider matrix factorizations and homological mirror symmetry on the torus T 2 using a Landau-Ginzburg description. We identify the basic matrix factorizations of the Landau-Ginzburg superpotential and compute the full spectrum taking into account the explicit dependence on bulk and boundary moduli. We verify homological mirror symmetry by comparing three-point functions in the A-model and the B-model

  20. Four-loop critical exponents for the Gross-Neveu-Yukawa models

    International Nuclear Information System (INIS)

    Zerf, Nikolai; Mihaila, Luminita N.; Herbut, Igor F.; Scherer, Michael M.

    2017-09-01

    We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε 4 ). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.

  1. Four-loop critical exponents for the Gross-Neveu-Yukawa models

    Energy Technology Data Exchange (ETDEWEB)

    Zerf, Nikolai; Mihaila, Luminita N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Herbut, Igor F. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Physics; Scherer, Michael M. [Koeln Univ. (Germany). Inst. for Theoretical Physics

    2017-09-15

    We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε{sup 4}). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.

  2. Structural insights into a high affinity nanobody:antigen complex by homology modelling.

    Science.gov (United States)

    Skottrup, Peter Durand

    2017-09-01

    Porphyromonas gingivalis is a major periodontitis-causing pathogens. P. gingivalis secrete a cysteine protease termed RgpB, which is specific for Arg-Xaa bonds in substrates. Recently, a nanobody-based assay was used to demonstrate that RgpB could represent a novel diagnostic target, thereby simplifying. P. gingivalis detection. The nanobody, VHH7, had a high binding affinity and was specific for RgpB, when tested towards the highly identical RgpA. In this study a homology model of VHH7 was build. The complementarity determining regions (CDR) comprising the paratope residues responsible for RgpB binding were identified and used as input to the docking. Furthermore, residues likely involved in the RgpB epitope was identified based upon RgpB:RgpA alignment and analysis of residue surface accessibility. CDR residues and putitative RgpB epitope residues were used as input to an information-driven flexible docking approach using the HADDOCK server. Analysis of the VHH7:RgpB model demonstrated that the epitope was found in the immunoglobulin-like domain and residue pairs located at the molecular paratope:epitope interface important for complex stability was identified. Collectively, the VHH7 homology model and VHH7:RgpB docking supplies knowledge of the residues involved in the high affinity interaction. This information could prove valuable in the design of an antibody-drug conjugate for specific RgpB targeting. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  4. Gravity loop corrections to the standard model Higgs in Einstein gravity

    International Nuclear Information System (INIS)

    Yugo Abe; Masaatsu Horikoshi; Takeo Inami

    2016-01-01

    We study one-loop quantum gravity corrections to the standard model Higgs potential V(φ) à la Coleman-Weinberg and examine the stability question of V(φ) in the energy region of Planck mass scale, μ ≃ M_P_l (M_P_l = 1.22x10"1"9 GeV). We calculate the gravity one-loop corrections to V(φ) in Einstein gravity by using the momentum cut-off Λ. We have found that even small gravity corrections compete with the standard model term of V(φ) and affect the stability argument of the latter part alone. This is because the latter part is nearly zero in the energy region of M_P_l. (author)

  5. Modeling Loop Reorganization Free Energies of Acetylcholinesterase: A Comparison of Explicit and Implicit Solvent Models

    National Research Council Canada - National Science Library

    Olson, Mark

    2004-01-01

    ... screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy difference between two loop conformations in acetylcholinesterase...

  6. On-line leak detection method for OWL-1 loop by ARX modeling using dewpoint signals

    International Nuclear Information System (INIS)

    Oguma, Ritsuo; Hayashi, Koji; Kitajima, Toshio.

    1981-01-01

    Model identification technique based on ARX (autoregressive model with exogenous variable) process was applied to dewpoint data recorded at OWL-1 (Oarai Water Loop No. 1) loop cubicle in JMTR (Japan Materials Testing Reactor) and the dynamical interrelationship between the supply and exhaust dewpoints in the ventilation system of the cubicle was empirically determined. It was shown that the information so derived on the dewpoint dynamics can assist to enhance the sensitivity of leak detection, if it was incorporated into a leak monitoring system for the OWL-1 loop. A simple digital filter incorporating the dewpoint dynamics was designed in an attempt to develop an efficient leak monitor for the OWL-1 loop. This filter was applied to the dewpoint data recordings during an abnormal leak that had occurred at the OWL-1 loop in the 43 rd cycle of JMTR operation, which demonstrated the effectiveness of the present method for leak detection at its early stage. (author)

  7. Color superconductivity in the Nambu-Jona-Lasinio model complemented by a Polyakov loop

    Energy Technology Data Exchange (ETDEWEB)

    Blanquier, Eric

    2017-06-15

    The color superconductivity is studied with the Nambu and Jona-Lasinio (NJL) model. This one is coupled to a Polyakov loop, to form the PNJL model. A μ-dependent Polyakov loop potential is also considered (μPNJL model). An objective is to detail the analytical calculations that lead to the equations to be solved, in all of the treated cases. They are the normal quark (NQ), 2-flavor color-superconducting (2SC) and color-flavor-locked (CFL) phases, in an SU(3){sub f} x SU(3){sub c} description. The calculations are performed according to the temperature T, the chemical potentials μ{sub f} or the densities ρ{sub f}, with or without the isospin symmetry. The relation between the μ{sub f} and ρ{sub f} results is studied. The influence of the color superconductivity and the Polyakov loop on the found data is analyzed. A triple coincidence is observed at low T between the chiral restoration, the deconfinement transition described by the Polyakov loop and the NQ/2SC phase transition. Furthermore, an sSC phase is identified in the ρ{sub q}, ρ{sub s} plane. Possible links between certain of the obtained results and physical systems are pointed out. (orig.)

  8. Statistical Inference for Porous Materials using Persistent Homology.

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chul [Univ. of Georgia, Athens, GA (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability, anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.

  9. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Aiying; Zhang, Huai [Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, Chaowei [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 518055 (China); Hu, Qiang; Gary, G. Allen; Wu, S. T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn [School of Space and Environment, Beihang University, Beijing 100191 (China)

    2017-06-20

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  10. Construction and validation of a homology model of the human voltage-gated proton channel hHV1.

    Science.gov (United States)

    Kulleperuma, Kethika; Smith, Susan M E; Morgan, Deri; Musset, Boris; Holyoake, John; Chakrabarti, Nilmadhab; Cherny, Vladimir V; DeCoursey, Thomas E; Pomès, Régis

    2013-04-01

    The topological similarity of voltage-gated proton channels (H(V)1s) to the voltage-sensing domain (VSD) of other voltage-gated ion channels raises the central question of whether H(V)1s have a similar structure. We present the construction and validation of a homology model of the human H(V)1 (hH(V)1). Multiple structural alignment was used to construct structural models of the open (proton-conducting) state of hH(V)1 by exploiting the homology of hH(V)1 with VSDs of K(+) and Na(+) channels of known three-dimensional structure. The comparative assessment of structural stability of the homology models and their VSD templates was performed using massively repeated molecular dynamics simulations in which the proteins were allowed to relax from their initial conformation in an explicit membrane mimetic. The analysis of structural deviations from the initial conformation based on up to 125 repeats of 100-ns simulations for each system reveals structural features consistently retained in the homology models and leads to a consensus structural model for hH(V)1 in which well-defined external and internal salt-bridge networks stabilize the open state. The structural and electrostatic properties of this open-state model are compatible with proton translocation and offer an explanation for the reversal of charge selectivity in neutral mutants of Asp(112). Furthermore, these structural properties are consistent with experimental accessibility data, providing a valuable basis for further structural and functional studies of hH(V)1. Each Arg residue in the S4 helix of hH(V)1 was replaced by His to test accessibility using Zn(2+) as a probe. The two outermost Arg residues in S4 were accessible to external solution, whereas the innermost one was accessible only to the internal solution. Both modeling and experimental data indicate that in the open state, Arg(211), the third Arg residue in the S4 helix in hH(V)1, remains accessible to the internal solution and is located near the

  11. One-loop dimensional reduction of the linear σ model

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Silva-Neto, M.B.; Svaiter, N.F.

    1997-05-01

    We perform the dimensional reduction of the linear σ model at one-loop level. The effective of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum instability of the model for large N. (author)

  12. Reactor design, cold-model experiment and CFD modeling for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Ma, Jinchen; Hu, Xintao; Zhao, Haibo; Wang, Baowen; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Chemical looping combustion (CLC) is an efficient, clean and cheap technology for CO{sub 2} capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out cold-model experiment of the system, and model fuel reactor using commercial CFD software. As for the CLC system, the air reactor (AR) is designed as a fast fluidized bed while the fuel reactor (FR) is a bubbling bed; a cyclone is used for solid separation of the AR exit flow. The AR and FR are separated by two U-type loop seals to remain gas sealed. Considered the chemical kinetics of oxygen carrier, fluid dynamics, pressure balance and mass balance of the system simultaneously, some key design parameters of a CH{sub 4}-fueled and Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-based CLC reactor (thermal power of 50 kWth) are determined, including key geometric parameters (reactor cross-sectional area and reactor height) and operation parameters (bed material quantity, solid circulation rate, apparent gas velocity of each reactor). A cold-model bench having same geometric parameters with its prototype is built up to study the effects of various operation conditions (including gas velocity in the reactors and loop seals, and bed material height, etc.) on the solids circulation rate, gas leakage, and pressure balance. It is witnessed the cold-model system is able to meet special requirements for CLC system such as gas sealing between AR and FR, the circulation rate and particles residence time. Furthermore, the thermal FR reactor with oxygen carrier of Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} and fuel of CH{sub 4} is simulated by commercial CFD solver FLUENT. It is found that for the design case the combustion efficiency of CH{sub 4} reaches 88.2%. A few part of methane is unburned due to fast, large bubbles rising through the reactor.

  13. Fermions and loops on graphs: I. Loop calculus for determinants

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Chertkov, Michael

    2008-01-01

    This paper is the first in a series devoted to evaluation of the partition function in statistical models on graphs with loops in terms of the Berezin/fermion integrals. The paper focuses on a representation of the determinant of a square matrix in terms of a finite series, where each term corresponds to a loop on the graph. The representation is based on a fermion version of the loop calculus, previously introduced by the authors for graphical models with finite alphabets. Our construction contains two levels. First, we represent the determinant in terms of an integral over anti-commuting Grassmann variables, with some reparametrization/gauge freedom hidden in the formulation. Second, we show that a special choice of the gauge, called the BP (Bethe–Peierls or belief propagation) gauge, yields the desired loop representation. The set of gauge fixing BP conditions is equivalent to the Gaussian BP equations, discussed in the past as efficient (linear scaling) heuristics for estimating the covariance of a sparse positive matrix

  14. One-loop corrections for e+e- annihilation into μ+μ- in the Weinberg model

    NARCIS (Netherlands)

    Veltman, M.J.G.; Passarino, G.

    1979-01-01

    Analytical expressions for the cross section including all the one-loop radiative corrections in the context of the Weinberg model are presented. The systematic calculation of one-loop diagrams has been carried out using a recently proposed scheme. Numerical results are shown in a region from

  15. Monodromy relations in higher-loop string amplitudes

    Directory of Open Access Journals (Sweden)

    S. Hohenegger

    2017-12-01

    Full Text Available New monodromy relations of loop amplitudes are derived in open string theory. We particularly study N-point (planar and non-planar one-loop amplitudes described by a world-sheet cylinder and derive a set of relations between subamplitudes of different color orderings. Various consistency checks are performed by matching α′-expansions of planar and non-planar amplitudes involving elliptic iterated integrals with the resulting periods giving rise to two sets of multiple elliptic zeta values. The latter refer to the two homology cycles on the once-punctured complex elliptic curve and the monodromy equations provide relations between these two sets of multiple elliptic zeta values. Furthermore, our monodromy relations involve new objects for which we present a tentative interpretation in terms of open string scattering amplitudes in the presence of a non-trivial gauge field flux. Finally, we provide an outlook on how to generalize the new monodromy relations to the non-oriented case and beyond the one-loop level. Comparing a subset of our results with recent findings in the literature we find therein several serious issues related to the structure and significance of monodromy phases and the relevance of missed contributions from contour integrations.

  16. The 1-loop effective potential for the Standard Model in curved spacetime

    Science.gov (United States)

    Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen

    2018-06-01

    The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.

  17. Pure homology of algebraic varieties

    OpenAIRE

    Weber, Andrzej

    2003-01-01

    We show that for a complete complex algebraic variety the pure component of homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce "image homology" for noncomplete varieties.

  18. Modeling and Analysis of a Closed-Loop System for High-Q MEMS Accelerometer Sensor

    Directory of Open Access Journals (Sweden)

    Wang Yalin

    2018-01-01

    Full Text Available High-Q sensing element is desirable for high performance while makes the loop control a great challenge. This paper presents a closed-loop system for high-Q capacitive MEMS accelerometer which has achieved loop control effectively. The proportional-derivative(PDcontrol is developed in the system to improve the system stability. In addition, pulse width modulation (PWM electrostatic force feedback is designed in the loop to overcome the nonlinearity. Furthermore, a sigma-delta (ΣΔ modulator with noise shaping is built to realize digital output. System model is built in Matlab/Simulink. The simulation results indicate that equivalent Q value is reduced to 1.5 to ensure stability and responsiveness of the system. The effective number of bits of system output is 14.7 bits. The system nonlinearity is less than 5‰. The equivalent linear model including main noise factors is built, and then a complete theory of noise and linearity analysis is established to contribute to common MEMS accelerometer research.

  19. 3D DD modelling of the prismatic loops and dislocations interaction in pure iron

    International Nuclear Information System (INIS)

    Novokshanov, R.; Roberts, S.

    2007-01-01

    Full text of publication follows: Neutron irradiation can increase the yield stress and reduce the ductility of metals. These effects are mainly caused by the interaction of dislocations with damage produced during irradiation. In iron irradiated with fast neutrons the damage takes the form of 1/2 and 1/2 prismatic dislocation loops (the size of the loops varies from 2 nm to 20 nm depending on the dose of irradiation). The interaction between such loops and dislocations is the subject of this research. 3D dislocation dynamics simulations have been carried out to model the interaction between prismatic loops and dis- locations in pure iron subject to uniaxial loading conditions. The primary goal was to understand the mechanism of interaction of a a/2 loop and a mobile dislocation. The simulations have shown a complicated 3D interaction resulting in either bowing around an obstacle (prismatic loop, Orowan mechanism) or cutting it through, carrying part of the loop away and leaving the other part behind. Cross-slip can be important, in a manner depending on the type of mobile dislocation, size, type and orientation of prismatic loop. The secondary goal was to investigate the dependence of the critical stress needed for dislocations to overcome the obstacles as a function of: size of loops, initial separation between loops, the direction of motion of the mobile dislocation and its type (pure edge or screw), and type of a loop (interstitial or vacancy). Many different configurations have been simulated. The size of the loops was varied from 10 nm to 100 nm; the separation between the loops in a row was varied from one to four loop diameters; the distance between the glide plane and the loop plane was varied from 0 to 20 nm. The glide plane of the mobile dislocation was either perpendicular to and or inclined to the loop plane. The results show a strong dependence of the critical stress on the size of the loops and the initial configuration. (authors)

  20. A time-dependent stop operator for modeling a class of singular hysteresis loops in a piezoceramic actuator

    International Nuclear Information System (INIS)

    Al Janaideh, Mohammad

    2013-01-01

    We present a time-dependent stop operator-based Prandtl–Ishlinskii model to characterize singular hysteresis loops in a piezoceramic actuator. The model is constructed based on the time-dependent threshold. The inverse time-dependent stop operator-based Prandtl–Ishlinskii model is obtained analytically and it can be applied as a feedforward compensator to compensate for singular hysteresis loops in a class of smart-material-based actuators. The objective of this study is to present an invertible Prandtl–Ishlinskii model that can be applied as a feedforward compensator to compensate for singular hysteresis loops without inserting a feedback control system

  1. A time-dependent stop operator for modeling a class of singular hysteresis loops in a piezoceramic actuator

    Energy Technology Data Exchange (ETDEWEB)

    Al Janaideh, Mohammad, E-mail: aljanaideh@gmail.com [Department of Mechatronics Engineering, The University of Jordan, 11942 Amman (Jordan)

    2013-03-15

    We present a time-dependent stop operator-based Prandtl–Ishlinskii model to characterize singular hysteresis loops in a piezoceramic actuator. The model is constructed based on the time-dependent threshold. The inverse time-dependent stop operator-based Prandtl–Ishlinskii model is obtained analytically and it can be applied as a feedforward compensator to compensate for singular hysteresis loops in a class of smart-material-based actuators. The objective of this study is to present an invertible Prandtl–Ishlinskii model that can be applied as a feedforward compensator to compensate for singular hysteresis loops without inserting a feedback control system.

  2. Two-point boundary correlation functions of dense loop models

    Directory of Open Access Journals (Sweden)

    Alexi Morin-Duchesne, Jesper Lykke Jacobsen

    2018-06-01

    Full Text Available We investigate six types of two-point boundary correlation functions in the dense loop model. These are defined as ratios $Z/Z^0$ of partition functions on the $m\\times n$ square lattice, with the boundary condition for $Z$ depending on two points $x$ and $y$. We consider: the insertion of an isolated defect (a and a pair of defects (b in a Dirichlet boundary condition, the transition (c between Dirichlet and Neumann boundary conditions, and the connectivity of clusters (d, loops (e and boundary segments (f in a Neumann boundary condition. For the model of critical dense polymers, corresponding to a vanishing loop weight ($\\beta = 0$, we find determinant and pfaffian expressions for these correlators. We extract the conformal weights of the underlying conformal fields and find $\\Delta = -\\frac18$, $0$, $-\\frac3{32}$, $\\frac38$, $1$, $\\tfrac \\theta \\pi (1+\\tfrac{2\\theta}\\pi$, where $\\theta$ encodes the weight of one class of loops for the correlator of type f. These results are obtained by analysing the asymptotics of the exact expressions, and by using the Cardy-Peschel formula in the case where $x$ and $y$ are set to the corners. For type b, we find a $\\log|x-y|$ dependence from the asymptotics, and a $\\ln (\\ln n$ term in the corner free energy. This is consistent with the interpretation of the boundary condition of type b as the insertion of a logarithmic field belonging to a rank two Jordan cell. For the other values of $\\beta = 2 \\cos \\lambda$, we use the hypothesis of conformal invariance to predict the conformal weights and find $\\Delta = \\Delta_{1,2}$, $\\Delta_{1,3}$, $\\Delta_{0,\\frac12}$, $\\Delta_{1,0}$, $\\Delta_{1,-1}$ and $\\Delta_{\\frac{2\\theta}\\lambda+1,\\frac{2\\theta}\\lambda+1}$, extending the results of critical dense polymers. With the results for type f, we reproduce a Coulomb gas prediction for the valence bond entanglement entropy of Jacobsen and Saleur.

  3. Computational stability appraisal of rectangular natural circulation loop: Effect of loop inclination

    International Nuclear Information System (INIS)

    Krishnani, Mayur; Basu, Dipankar N.

    2017-01-01

    Highlights: • Computational model developed for single-phase rectangular natural circulation loop. • Role of loop inclination to vertical on thermalhydraulic stability is explored. • Inclination has strong stabilizing effect due to lower effective gravitation force. • Increase in tilt angle reduces settling time and highest amplitude of oscillation. • An angle of 15° is suggested for the selected loop geometry. - Abstract: Controlling stability behavior of single-phase natural circulation loops, without significantly affecting its steady-state characteristics, is a topic of wide research interest. Present study explores the role of loop inclination on a particular loop geometry. Accordingly a 3D computational model of a rectangular loop is developed and transient conservation equations are solved to obtain the temporal variation in flow parameters. Starting from the quiescent state, simulations are performed for selected sets of operating conditions and also with a few selected inclination angles. System experiences instability at higher heater powers and also with higher sink temperatures. Inclination is found to have a strong stabilizing influence owing to the reduction in the effective gravitational acceleration and subsequent decline in local buoyancy effects. The settling time and highest amplitude of oscillations substantially reduces for a stable system with a small inclination. Typically-unstable systems can also suppress the oscillations, when subjected to tilting, within a reasonable period of time. It is possible to stabilize the loop within shorter time span by increasing the tilt angle, but at the expense of reduction in steady-state flow rate. Overall a tilt angle of 15° is suggested for the selected geometry. Results from the 3D model is compared with the predictions from an indigenous 1D code. While similar qualitative influence of inclination is observed, the 1D model predicts early appearance of the stability threshold and hence hints

  4. Lectures on functor homology

    CERN Document Server

    Touzé, Antoine

    2015-01-01

    This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurélien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament’s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko’s unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert’s fourteenth problem and its solution to the context of cohomology. The focus here is o...

  5. Homologous Basal Ganglia Network Models in Physiological and Parkinsonian Conditions

    Directory of Open Access Journals (Sweden)

    Jyotika Bahuguna

    2017-08-01

    Full Text Available The classical model of basal ganglia has been refined in recent years with discoveries of subpopulations within a nucleus and previously unknown projections. One such discovery is the presence of subpopulations of arkypallidal and prototypical neurons in external globus pallidus, which was previously considered to be a primarily homogeneous nucleus. Developing a computational model of these multiple interconnected nuclei is challenging, because the strengths of the connections are largely unknown. We therefore use a genetic algorithm to search for the unknown connectivity parameters in a firing rate model. We apply a binary cost function derived from empirical firing rate and phase relationship data for the physiological and Parkinsonian conditions. Our approach generates ensembles of over 1,000 configurations, or homologies, for each condition, with broad distributions for many of the parameter values and overlap between the two conditions. However, the resulting effective weights of connections from or to prototypical and arkypallidal neurons are consistent with the experimental data. We investigate the significance of the weight variability by manipulating the parameters individually and cumulatively, and conclude that the correlation observed between the parameters is necessary for generating the dynamics of the two conditions. We then investigate the response of the networks to a transient cortical stimulus, and demonstrate that networks classified as physiological effectively suppress activity in the internal globus pallidus, and are not susceptible to oscillations, whereas parkinsonian networks show the opposite tendency. Thus, we conclude that the rates and phase relationships observed in the globus pallidus are predictive of experimentally observed higher level dynamical features of the physiological and parkinsonian basal ganglia, and that the multiplicity of solutions generated by our method may well be indicative of a natural

  6. Higher dimensional loop quantum cosmology

    International Nuclear Information System (INIS)

    Zhang, Xiangdong

    2016-01-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)

  7. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms.

    Science.gov (United States)

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called "repeat-swap modeling" to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also

  8. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms

    Directory of Open Access Journals (Sweden)

    Cristina eFenollar Ferrer

    2015-09-01

    Full Text Available Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to either the outside or inside of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (asymmetry of these systems has been successfully used as a bioinformatic tool, called repeat-swap modeling to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that

  9. The Bianchi IX model in loop quantum cosmology

    International Nuclear Information System (INIS)

    Bojowald, Martin; Date, Ghanashyam; Hossain, Golam Mortuza

    2004-01-01

    The Bianchi IX model has been used often to investigate the structure close to singularities of general relativity. Its classical chaos is expected to have, via the BKL scenario, implications even for the approach to general inhomogeneous singularities. Thus, it is a popular model to test consequences of modifications to general relativity suggested by quantum theories of gravity. This paper presents a detailed proof that modifications coming from loop quantum gravity lead to a non-chaotic effective behaviour. The way this is realized, independently of quantization ambiguities, suggests a new look at initial and final singularities

  10. Matrix Solution of Coupled Differential Equations and Looped Car Following Models

    Science.gov (United States)

    McCartney, Mark

    2008-01-01

    A simple mathematical model for the behaviour of how vehicles follow each other along a looped stretch of road is described. The resulting coupled first order differential equations are solved using appropriate matrix techniques and the physical significance of the model is discussed. A number possible classroom exercises are suggested to help…

  11. Combined HQSAR, topomer CoMFA, homology modeling and docking studies on triazole derivatives as SGLT2 inhibitors.

    Science.gov (United States)

    Yu, Shuling; Yuan, Jintao; Zhang, Yi; Gao, Shufang; Gan, Ying; Han, Meng; Chen, Yuewen; Zhou, Qiaoqiao; Shi, Jiahua

    2017-06-01

    Sodium-glucose cotransporter 2 (SGLT2) is a promising target for diabetes therapy. We aimed to develop computational approaches to identify structural features for more potential SGLT2 inhibitors. In this work, 46 triazole derivatives as SGLT2 inhibitors were studied using a combination of several approaches, including hologram quantitative structure-activity relationships (HQSAR), topomer comparative molecular field analysis (CoMFA), homology modeling, and molecular docking. HQSAR and topomer CoMFA were used to construct models. Molecular docking was conducted to investigate the interaction of triazole derivatives and homology modeling of SGLT2, as well as to validate the results of the HQSAR and topomer CoMFA models. The most effective HQSAR and topomer CoMFA models exhibited noncross-validated correlation coefficients of 0.928 and 0.891 for the training set, respectively. External predictions were made successfully on a test set and then compared with previously reported models. The graphical results of HQSAR and topomer CoMFA were proven to be consistent with the binding mode of the inhibitors and SGLT2 from molecular docking. The models and docking provided important insights into the design of potent inhibitors for SGLT2.

  12. A reduced fidelity model for the rotary chemical looping combustion reactor

    KAUST Repository

    Iloeje, Chukwunwike O.; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2017-01-01

    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate

  13. Heteronuclear multidimensional NMR and homology modelling studies of the C-terminal nucleotide-binding domain of the human mitochondrial ABC transporter ABCB6

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima-Ito, Kaori [RIKEN, Cellular and Molecular Biology Laboratory (Japan); Ikeya, Teppei [National Institute of Advanced Industrial Science and Technology (AIST), (Japan); Senbongi, Hiroshi [Mitochondrial Diseases Group, MRC Dunn Human NutritionUnit (United Kingdom); Tochio, Hidehito [International Graduate School of Arts and Sciences, Supramolecular Biology, Yokohama City University, Molecular Biophysics Laboratory (Japan); Mikawa, Tsutomu [RIKEN, Cellular and Molecular Biology Laboratory (Japan); Shibata, Takehiko [RIKEN, Shibata Distinguished Senior Scientist Laboratory (Japan); Ito, Yutaka [RIKEN, Cellular and Molecular Biology Laboratory (Japan)], E-mail: ito-yutaka@center.tmu.ac.jp

    2006-05-15

    Human ATP-binding cassette, sub-family B, member 6 (ABCB6) is a mitochondrial ABC transporter, and presumably contributes to iron homeostasis. Aimed at understanding the structural basis for the conformational changes accompanying the substrate-transportation cycle, we have studied the C-terminal nucleotide-binding domain of ABCB6 (ABCB6-C) in both the nucleotide-free and ADP-bound states by heteronuclear multidimensional NMR and homology modelling. A non-linear sampling scheme was utilised for indirectly acquired {sup 13}C and {sup 15}N dimensions of all 3D triple-resonance NMR experiments, in order to overcome the instability and the low solubility of ABCB6-C. The backbone resonances for approximately 25% of non-proline residues, which are mostly distributed around the functionally important loops and in the Helical domain, were not observed for nucleotide-free form of ABCB6-C. From the pH, temperature and magnetic field strength dependencies of the resonance intensities, we concluded that this incompleteness in the assignments is mainly due to the exchange between multiple conformations at an intermediate rate on the NMR timescale. These localised conformational dynamics remained in ADP-bound ABCB6-C except for the loops responsible for adenine base and {alpha}/{beta}-phosphate binding. These results revealed that the localised dynamic cooperativity, which was recently proposed for a prokaryotic ABC MJ1267, also exists in a higher eukaryotic ABC, and is presumably shared by all members of the ABC family. Since the Helical domain is the putative interface to the transmembrane domain, this cooperativity may explain the coupled functions between domains in the substrate-transportation cycle.

  14. Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon

    Science.gov (United States)

    Trzynadlowski, Bart

    The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source

  15. Simplified Models for Analysis and Design of the Control System Main Loops of CAREM Reactor

    International Nuclear Information System (INIS)

    Etchepareborda, Andres; Flury, Celso

    2000-01-01

    The target of this work is to show a few models developed for control analysis and design of the reactor CAREM's main control loops within a broad range of power (between 40 % and 100%).By one side, it is shown the main features of a analytic model programed in MATLAB.This model is based on fitting steady state points at different power levels of the CAREM's RETRAN model.By the other side, it is shown linear models of black-box type denoting the perturbed behavior of the system for each level power point.These models are identified from temporal responses of CAREM's RETRAN model to perturbed input signals over the different steady power level points.Then the dynamics of these models are verified contrasting the temporal responses of the RETRAN model versus the responses of the MATLAB model and the identified models, in each steady power level point.Also are contrasting the frequency response of the linearization of MATLAB model versus the frequency response of the identified models, in each steady power level point.Either the MATLAB model as the identified models are good enough for the control analysis and design of the three main control loops.The MATLAB model has a few differences against the RETRAN model in the primary pressure output variable, that it must be taken into account in the design of this control loop if this model is used.The aim of these models is to represent in a satisfactory way the dynamics of the plant for a later control analysis and design of the control loops in a frequency range between 0.01 rad/seg and 0.3 rad/seg, and a power range between 40 % and 100 %

  16. Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles

    International Nuclear Information System (INIS)

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amilcar

    2007-01-01

    We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically

  17. Twist operator correlation functions in O(n) loop models

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Cardy, John

    2009-01-01

    Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n = 0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c = 0. In this limit the twist operator plays the role of a 0-weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null states, we derive a new explicit result for the probabilities that an SLE 8/3 winds in various ways about two points in the upper half-plane, e.g. that the SLE passes to the left of both points. The collection of c = 0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We argue that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules

  18. Topological quantum information, virtual Jones polynomials and Khovanov homology

    International Nuclear Information System (INIS)

    Kauffman, Louis H

    2011-01-01

    In this paper, we give a quantum statistical interpretation of the bracket polynomial state sum 〈K〉, the Jones polynomial V K (t) and virtual knot theory versions of the Jones polynomial, including the arrow polynomial. We use these quantum mechanical interpretations to give new quantum algorithms for these Jones polynomials. In those cases where the Khovanov homology is defined, the Hilbert space C(K) of our model is isomorphic with the chain complex for Khovanov homology with coefficients in the complex numbers. There is a natural unitary transformation U:C(K) → C(K) such that 〈K〉 = Trace(U), where 〈K〉 denotes the evaluation of the state sum model for the corresponding polynomial. We show that for the Khovanov boundary operator ∂:C(K) → C(K), we have the relationship ∂U + U∂ = 0. Consequently, the operator U acts on the Khovanov homology, and we obtain a direct relationship between the Khovanov homology and this quantum algorithm for the Jones polynomial. (paper)

  19. WWER type reactor primary loop imitation on large test loop facility in MARIA reactor

    International Nuclear Information System (INIS)

    Moldysh, A.; Strupchevski, A.; Kmetek, Eh.; Spasskov, V.P.; Shumskij, A.M.

    1982-01-01

    At present in Poland in cooperation with USSR a nuclear water loop test facility (WL) in 'MARIA' reactor in Sverke is under construction. The program objective is to investigate processes occuring in WWER reactor under emergency conditions, first of all after the break of the mainprimary loop circulation pipe-line. WL with the power of about 600 kW consists of three major parts: 1) an active loop, imitating the undamaged loops of the WWER reactor; 2) a passive loop assignedfor modelling the broken loop of the WWER reactor; 3) the emergency core cooling system imitating the corresponding full-scale system. The fuel rod bundle consists of 18 1 m long rods. They were fabricated according to the standard WWER fuel technology. In the report some general principles of WWERbehaviour imitation under emergency conditions are given. They are based on the operation experience obtained from 'SEMISCALE' and 'LOFT' test facilities in the USA. A description of separate modelling factors and criteria effects on the development of 'LOCA'-type accident is presented (the break cross-section to the primary loop volume ratio, the pressure differential between inlet and outlet reactor chambers, the pressure drop rate in the loop, the coolant flow rate throuh the core etc.). As an example a comparison of calculated flow rate variations for the WWER-1000 reactor and the model during the loss-of-coolant accident with the main pipe-line break at the core inlet is given. Calculations have been carried out with the use of TECH'-M code [ru

  20. The Sustainability Cycle and Loop: models for a more unified understanding of sustainability.

    Science.gov (United States)

    Hay, Laura; Duffy, Alex; Whitfield, R I

    2014-01-15

    In spite of the considerable research on sustainability, reports suggest that we are barely any closer to a more sustainable society. As such, there is an urgent need to improve the effectiveness of human efforts towards sustainability. A clearer and more unified understanding of sustainability among different people and sectors could help to facilitate this. This paper presents the results of an inductive literature investigation, aiming to develop models to explain the nature of sustainability in the Earth system, and how humans can effectively strive for it. The major contributions are two general and complementary models, that may be applied in any context to provide a common basis for understanding sustainability: the Sustainability Cycle (S-Cycle), and the Sustainability Loop (S-Loop). Literature spanning multiple sectors is examined from the perspective of three concepts, emerging as significant in relation to our aim. Systems are shown to provide the context for human action towards sustainability, and the nature of the Earth system and its sub-systems is explored. Activities are outlined as a fundamental target that humans need to sustain, since they produce the entities both needed and desired by society. The basic behaviour of activities operating in the Earth system is outlined. Finally, knowledge is positioned as the driver of human action towards sustainability, and the key components of knowledge involved are examined. The S-Cycle and S-Loop models are developed via a process of induction from the reviewed literature. The S-Cycle describes the operation of activities in a system from the perspective of sustainability. The sustainability of activities in a system depends upon the availability of resources, and the availability of resources depends upon the rate that activities consume and produce them. Humans may intervene in these dynamics via an iterative process of interpretation and action, described in the S-Loop model. The models are briefly

  1. arXiv Cuts from residues: the one-loop case

    CERN Document Server

    Abreu, Samuel; Duhr, Claude; Gardi, Einan

    2017-06-14

    Using the multivariate residue calculus of Leray, we give a precise definition of the notion of a cut Feynman integral in dimensional regularization, as a residue evaluated on the variety where some of the propagators are put on shell. These are naturally associated to Landau singularities of the first type. Focusing on the one-loop case, we give an explicit parametrization to compute such cut integrals, with which we study some of their properties and list explicit results for maximal and next-to-maximal cuts. By analyzing homology groups, we show that cut integrals associated to Landau singularities of the second type are specific combinations of the usual cut integrals, and we obtain linear relations among different cuts of the same integral. We also show that all one-loop Feynman integrals and their cuts belong to the same class of functions, which can be written as parametric integrals.

  2. Neutron transport in irradiation loops (IRENE loop)

    International Nuclear Information System (INIS)

    Sarsam, Maher.

    1980-09-01

    This thesis is composed of two parts with different aspects. Part one is a technical description of the loop and its main ancillary facilities as well as of the safety and operational regulations. The measurement methods on the model of the ISIS reactor and on the loop in the OSIRIS reactor are described. Part two deals with the possibility of calculating the powers dissipated by each rod of the fuel cluster, using appropriate computer codes, not only in the reflector but also in the core and to suggest a method of calculation [fr

  3. Mod two homology and cohomology

    CERN Document Server

    Hausmann, Jean-Claude

    2014-01-01

    Cohomology and homology modulo 2 helps the reader grasp more readily the basics of a major tool in algebraic topology. Compared to a more general approach to (co)homology this refreshing approach has many pedagogical advantages: It leads more quickly to the essentials of the subject, An absence of signs and orientation considerations simplifies the theory, Computations and advanced applications can be presented at an earlier stage, Simple geometrical interpretations of (co)chains. Mod 2 (co)homology was developed in the first quarter of the twentieth century as an alternative to integral homology, before both became particular cases of (co)homology with arbitrary coefficients. The first chapters of this book may serve as a basis for a graduate-level introductory course to (co)homology. Simplicial and singular mod 2 (co)homology are introduced, with their products and Steenrod squares, as well as equivariant cohomology. Classical applications include Brouwer's fixed point theorem, Poincaré duality, Borsuk-Ula...

  4. A bag model calculation of the electroweak s → dγ loop

    International Nuclear Information System (INIS)

    Eeg, J.O.; Ruud, J.Aa.

    1990-10-01

    The CP-conservering electroweak transitions s → dγ have been considered. In order to include confinement effects below the charm scale, the loop calculations within the bag model were performed. According to the calculations, confinement effects are rather important and give amplitudes three orders of magnitude larger than those obtained from the free quark loop, which is ∼eG F m c 2 /M W 2 . Moreover, the amplitude is of the same order of magnitude as the perturbative two-loop amplitude ∼eG F α s ln(m c /μ). For the decay mode Ω - → γΞ - , a branching ratio 4.4 x 10 -5 was obtained. Other radiative decays of strange baryons are known to be dominated by pole diagrams. 14 refs., 1 fig

  5. Structural insights into a high affinity nanobody:antigen complex by homology modelling

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2017-01-01

    Porphyromonas gingivalis is a major periodontitis-causing pathogens. P. gingivalis secrete a cysteine protease termed RgpB, which is specific for Arg-Xaa bonds in substrates. Recently, a nanobody-based assay was used to demonstrate that RgpB could represent a novel diagnostic target, thereby...... simplifying. P. gingivalis detection. The nanobody, VHH7, had a high binding affinity and was specific for RgpB, when tested towards the highly identical RgpA. In this study a homology model of VHH7 was build. The complementarity determining regions (CDR) comprising the paratope residues responsible for Rgp...

  6. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen.

    Science.gov (United States)

    Collier, Thomas A; Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2018-02-15

    Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule's size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.

  7. Four-loop divergences of the two-dimensional (1,1) supersymmetric non-linear sigma model with a Wess-Zumino-Witten term

    International Nuclear Information System (INIS)

    Deriglazov, A.A.; Ketov, S.V.

    1991-01-01

    The four-loop divergences of the (1,1) supersymmetric two-dimensional non-linear σ-model with a Wess-Zumino-Witten term are analyzed. All the four-loop 1/ε-divergences in the general case (and an overall coefficient at the total four-loop contribution to the β-function) are shown to be reducible to only structures proportional to ζ(3). We explicitly calculate non-derivative contributions to the four-loop β-function from logarithmically divergent graphs. As a by-product, we obtain the complete four-loop β-function for the supersymmetric Wess-Zumino-Witten model. We use the partial results for the general four-loop β-function to shed some light on the structure of the (α') 3 -corrections to the superstring effective-action with antisymmetric-tensor field coupling. An inconsistency of the supersymmetrical dimensional regularisation via dimensional reduction in the presence of torsion is discovered at four loops, unless the string interpretation for the σ-model is adopted. (orig.)

  8. Optimal closed-loop identification test design for internal model control

    NARCIS (Netherlands)

    Zhu, Y.; Bosch, van den P.P.J.

    2000-01-01

    In this work, optimal closed-loop test design for control is studied. Simple design formulas are derived based on the asymptotic theory of Ljung. The control scheme used is internal model control (IMC) and the design constraint is the power of the process output or that of the reference signal. The

  9. Variable selection in near infrared spectroscopy for quantitative models of homologous analogs of cephalosporins

    Directory of Open Access Journals (Sweden)

    Yan-Chun Feng

    2014-07-01

    Full Text Available Two universal spectral ranges (4550–4100 cm-1 and 6190–5510 cm-1 for construction of quantitative models of homologous analogs of cephalosporins were proposed by evaluating the performance of five spectral ranges and their combinations, using three data sets of cephalosporins for injection, i.e., cefuroxime sodium, ceftriaxone sodium and cefoperazone sodium. Subsequently, the proposed ranges were validated by using eight calibration sets of other homologous analogs of cephalosporins for injection, namely cefmenoxime hydrochloride, ceftezole sodium, cefmetazole, cefoxitin sodium, cefotaxime sodium, cefradine, cephazolin sodium and ceftizoxime sodium. All the constructed quantitative models for the eight kinds of cephalosporins using these universal ranges could fulfill the requirements for quick quantification. After that, competitive adaptive reweighted sampling (CARS algorithm and infrared (IR–near infrared (NIR two-dimensional (2D correlation spectral analysis were used to determine the scientific basis of these two spectral ranges as the universal regions for the construction of quantitative models of cephalosporins. The CARS algorithm demonstrated that the ranges of 4550–4100 cm-1 and 6190–5510 cm-1 included some key wavenumbers which could be attributed to content changes of cephalosporins. The IR–NIR 2D spectral analysis showed that certain wavenumbers in these two regions have strong correlations to the structures of those cephalosporins that were easy to degrade.

  10. Polyglutamine Disease Modeling: Epitope Based Screen for Homologous Recombination using CRISPR/Cas9 System.

    Science.gov (United States)

    An, Mahru C; O'Brien, Robert N; Zhang, Ningzhe; Patra, Biranchi N; De La Cruz, Michael; Ray, Animesh; Ellerby, Lisa M

    2014-04-15

    We have previously reported the genetic correction of Huntington's disease (HD) patient-derived induced pluripotent stem cells using traditional homologous recombination (HR) approaches. To extend this work, we have adopted a CRISPR-based genome editing approach to improve the efficiency of recombination in order to generate allelic isogenic HD models in human cells. Incorporation of a rapid antibody-based screening approach to measure recombination provides a powerful method to determine relative efficiency of genome editing for modeling polyglutamine diseases or understanding factors that modulate CRISPR/Cas9 HR.

  11. Oral Region Homologies in Paleozoic Crinoids and Other Plesiomorphic Pentaradial Echinoderms

    OpenAIRE

    Kammer, Thomas W.; Sumrall, Colin D.; Zamora, Samuel; Ausich, William I.; Deline, Bradley

    2013-01-01

    The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved ...

  12. Enforced neutrality and color-flavor unlocking in the three-flavor Polyakov-loop Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Abuki, H.; Ciminale, M.; Nardulli, G.; Ruggieri, M.; Gatto, R.

    2008-01-01

    We study how the charge neutrality affects the phase structure of the three-flavor Polyakov-loop Nambu-Jona-Lasinio (PNJL) model. We point out that, within the conventional PNJL model at finite density, the color neutrality is missing because the Wilson line serves as an external colored field coupled to dynamical quarks. In this paper we heuristically assume that the model may still be applicable. To get color neutrality, one has then to allow nonvanishing color chemical potentials. We study how the quark matter phase diagram in (T,m s 2 /μ)-plane is affected by imposing neutrality and by including the Polyakov-loop dynamics. Although these two effects are correlated in a nonlinear way, the impact of the Polyakov loop turns out to be significant in the T direction, while imposing neutrality brings a remarkable effect in the m s 2 /μ direction. In particular, we find a novel unlocking transition, when the temperature is increased, even in the chiral SU(3) limit. We clarify how and why this is possible once the dynamics of the colored Polyakov loop is taken into account. Also we succeed in giving an analytic expression for T c for the transition from two-flavor pairing (2SC) to unpaired quark matter in the presence of the Polyakov loop.

  13. Model-based closed-loop glucose control in type 1 diabetes

    DEFF Research Database (Denmark)

    Schmidt, Signe; Boiroux, Dimitri; Duun-Henriksen, Anne Katrine

    2013-01-01

    To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient-specific parameters......: insulin sensitivity factor, insulin action time, and basal insulin infusion rate. The stochastic part is identical for all patients but identified from data from a single patient. Results of the first clinical feasibility test of the algorithm are presented....

  14. Droop Control with an Adjustable Complex Virtual Impedance Loop based on Cloud Model Theory

    DEFF Research Database (Denmark)

    Li, Yan; Shuai, Zhikang; Xu, Qinming

    2016-01-01

    Droop control framework with an adjustable virtual impedance loop is proposed in this paper, which is based on the cloud model theory. The proposed virtual impedance loop includes two terms: a negative virtual resistor and an adjustable virtual inductance. The negative virtual resistor term...... sometimes. The cloud model theory is applied to get online the changing line impedance value, which relies on the relevance of the reactive power responding the changing line impedance. The verification of the proposed control strategy is done according to the simulation in a low voltage microgrid in Matlab....

  15. Anderson localization through Polyakov loops: Lattice evidence and random matrix model

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Schierenberg, Sebastian; Kovacs, Tamas G.

    2011-01-01

    We investigate low-lying fermion modes in SU(2) gauge theory at temperatures above the phase transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We show that the latter are trapped by local Polyakov loop fluctuations. Islands of such ''wrong'' Polyakov loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find strong similarities in the spatial profile of these localized staggered and overlap eigenmodes. We discuss possible interpretations of this finding and present a sparse random matrix model that reproduces these features.

  16. Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation

    Directory of Open Access Journals (Sweden)

    Bryce eBeverlin II

    2013-02-01

    Full Text Available Seizure control using deep brain stimulation (DBS provides an alternative therapy to patients with intractable and drug resistant epilepsy. This paper presents novel DBS stimulus protocols to disrupt seizures. Two protocols are presented: open-loop stimulation and a closed-loop feedback system utilizing measured firing rates to adjust stimulus frequency. Stimulation suppression is demonstrated in a computational model using 3000 excitatory Morris-Lecar model neurons connected with depressing synapses. Cells are connected using second order network topology to simulate network topologies measured in cortical networks. The network spontaneously switches from tonic to clonic as synaptic strengths and tonic input to the neurons decreases. To this model we add periodic stimulation pulses to simulate DBS. Periodic forcing can synchronize or desynchronize an oscillating population of neurons, depending on the stimulus frequency and amplitude. Therefore, it is possible to either extend or truncate the tonic or clonic phases of the seizure. Stimuli applied at the firing rate of the neuron generally synchronize the population while stimuli slightly slower than the firing rate prevent synchronization. We present an adaptive stimulation algorithm that measures the firing rate of a neuron and adjusts the stimulus to maintain a relative stimulus frequency to firing frequency and demonstrate it in a computational model of a tonic-clonic seizure. This adaptive algorithm can affect the duration of the tonic phase using much smaller stimulus amplitudes than the open-loop control.

  17. Tyrosine Phosphorylation of the Lyn Src Homology 2 (SH2) Domain Modulates Its Binding Affinity and Specificity*

    Science.gov (United States)

    Jin, Lily L.; Wybenga-Groot, Leanne E.; Tong, Jiefei; Taylor, Paul; Minden, Mark D.; Trudel, Suzanne; McGlade, C. Jane; Moran, Michael F.

    2015-01-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. PMID:25587033

  18. Phenomenological aspects of heterotic orbifold models at one loop

    International Nuclear Information System (INIS)

    Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.; Nelson, B.

    2003-01-01

    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon and the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly

  19. Molecular cloning, sequence analysis and homology modeling of the first caudata amphibian antifreeze-like protein in axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Zhang, Songyan; Gao, Jiuxiang; Lu, Yiling; Cai, Shasha; Qiao, Xue; Wang, Yipeng; Yu, Haining

    2013-08-01

    Antifreeze proteins (AFPs) refer to a class of polypeptides that are produced by certain vertebrates, plants, fungi, and bacteria and which permit their survival in subzero environments. In this study, we report the molecular cloning, sequence analysis and three-dimensional structure of the axolotl antifreeze-like protein (AFLP) by homology modeling of the first caudate amphibian AFLP. We constructed a full-length spleen cDNA library of axolotl (Ambystoma mexicanum). An EST having highest similarity (∼42%) with freeze-responsive liver protein Li16 from Rana sylvatica was identified, and the full-length cDNA was subsequently obtained by RACE-PCR. The axolotl antifreeze-like protein sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 93 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein were 10128.6 Da and 8.97, respectively. The molecular characterization of this gene and its deduced protein were further performed by detailed bioinformatics analysis. The three-dimensional structure of current AFLP was predicted by homology modeling, and the conserved residues required for functionality were identified. The homology model constructed could be of use for effective drug design. This is the first report of an antifreeze-like protein identified from a caudate amphibian.

  20. Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training

    Science.gov (United States)

    Zhang, Yili; Smolen, Paul; Alberini, Cristina M.; Baxter, Douglas A.; Byrne, John H.

    2016-01-01

    Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins…

  1. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA

    Directory of Open Access Journals (Sweden)

    Eric R. Gamache

    2017-04-01

    Full Text Available The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5′ terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT. To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1, a 1-nucleotide interhelical loop and an 8-bp stem (S2 that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.

  2. Two-loop renormalization in the standard model, part II. Renormalization procedures and computational techniques

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)

    2006-12-15

    In part I general aspects of the renormalization of a spontaneously broken gauge theory have been introduced. Here, in part II, two-loop renormalization is introduced and discussed within the context of the minimal Standard Model. Therefore, this paper deals with the transition between bare parameters and fields to renormalized ones. The full list of one- and two-loop counterterms is shown and it is proven that, by a suitable extension of the formalism already introduced at the one-loop level, two-point functions suffice in renormalizing the model. The problem of overlapping ultraviolet divergencies is analyzed and it is shown that all counterterms are local and of polynomial nature. The original program of 't Hooft and Veltman is at work. Finite parts are written in a way that allows for a fast and reliable numerical integration with all collinear logarithms extracted analytically. Finite renormalization, the transition between renormalized parameters and physical (pseudo-)observables, are discussed in part III where numerical results, e.g. for the complex poles of the unstable gauge bosons, are shown. An attempt is made to define the running of the electromagnetic coupling constant at the two-loop level. (orig.)

  3. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles

    Directory of Open Access Journals (Sweden)

    Maurer Till

    2005-04-01

    Full Text Available Abstract Background We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are calculated with an algorithm described earlier by Döker et al. (1999, BBRC, 257, 348–350. The overall long-range contacts are established via a small number of distance restraints between atoms involved in hydrogen bonds and backbone atoms of conserved residues. Employing the restraints generated by PERMOL three-dimensional structures are obtained using standard molecular dynamics programs such as DYANA or CNS. Results To test this modeling approach it has been used for predicting the structure of the histidine-containing phosphocarrier protein HPr from E. coli and the structure of the human peroxisome proliferator activated receptor γ (Ppar γ. The divergence between the modeled HPr and the previously determined X-ray structure was comparable to the divergence between the X-ray structure and the published NMR structure. The modeled structure of Ppar γ was also very close to the previously solved X-ray structure with an RMSD of 0.262 nm for the backbone atoms. Conclusion In summary, we present a new method for homology modeling capable of producing high-quality structure models. An advantage of the method is that it can be used in combination with incomplete NMR data to obtain reasonable structure models in accordance with the experimental data.

  4. Finding Positive Feedback Loops in Environmental Models: A Mathematical Investigation

    Science.gov (United States)

    Sheikholeslami, R.; Razavi, S.

    2016-12-01

    Dynamics of most earth and environmental systems are generally governed by interactions between several hydrological (e.g., soil moisture and precipitation), geological (e.g., and erosion), geochemical (e.g., nutrient loading), and atmospheric (e.g., temperature) processes which operate on a range of spatio-temporal scales. These interactions create numerous feedback mechanisms with complex behaviours, and their understanding and representation can vary depending on the scale in space and/or time at which the system is analyzed. One of the most crucial characteristics of such complex systems is the existence of positive feedback loops. The presence of positive feedbacks may increase complexity, accelerate change, or trigger multiple stable states in the underlying dynamical system. Furthermore, because of the inherent non-linearity, it is often very difficult to obtain a general idea of their complex dynamics. Feedback loops in environmental systems have been well recognized and qualitatively discussed. With a quantitative/mathematical view, in this presentation, we address the question of how the positive feedback loops can be identified/implemented in environmental models. We investigate the nature of different feedback mechanisms and dynamics of simple example case studies that underlie fundamental processes such as vegetation, precipitation and soil moisture. To do this, we apply the concept of "interaction graph" from mathematics which is built from the Jacobian matrix of the dynamical system. The Jacobian matrix contains information on how variations of one state variable depends on variations of other variables, and thus can be used to understand the dynamical possibilities of feedback mechanisms in the underlying system. Moreover, this study highlights that there are some situations where the existence of positive feedback loops can cause multiple stable states, and thereby regime shifts in environmental systems. Systems with multiple stable states are

  5. Closed-loop supply chain models with considering the environmental impact.

    Science.gov (United States)

    Mohajeri, Amir; Fallah, Mohammad

    2014-01-01

    Global warming and climate changes created by large scale emissions of greenhouse gases are a worldwide concern. Due to this, the issue of green supply chain management has received more attention in the last decade. In this study, a closed-loop logistic concept which serves the purposes of recycling, reuse, and recovery required in a green supply chain is applied to integrate the environmental issues into a traditional logistic system. Here, we formulate a comprehensive closed-loop model for the logistics planning considering profitability and ecological goals. In this way, we can achieve the ecological goal reducing the overall amount of CO2 emitted from journeys. Moreover, the profitability criterion can be supported in the cyclic network with the minimum costs and maximum service level. We apply three scenarios and develop problem formulations for each scenario corresponding to the specified regulations and investigate the effect of the regulation on the preferred transport mode and the emissions. To validate the models, some numerical experiments are worked out and a comparative analysis is investigated.

  6. Closed-Loop Supply Chain Models with Considering the Environmental Impact

    Directory of Open Access Journals (Sweden)

    Amir Mohajeri

    2014-01-01

    Full Text Available Global warming and climate changes created by large scale emissions of greenhouse gases are a worldwide concern. Due to this, the issue of green supply chain management has received more attention in the last decade. In this study, a closed-loop logistic concept which serves the purposes of recycling, reuse, and recovery required in a green supply chain is applied to integrate the environmental issues into a traditional logistic system. Here, we formulate a comprehensive closed-loop model for the logistics planning considering profitability and ecological goals. In this way, we can achieve the ecological goal reducing the overall amount of CO2 emitted from journeys. Moreover, the profitability criterion can be supported in the cyclic network with the minimum costs and maximum service level. We apply three scenarios and develop problem formulations for each scenario corresponding to the specified regulations and investigate the effect of the regulation on the preferred transport mode and the emissions. To validate the models, some numerical experiments are worked out and a comparative analysis is investigated.

  7. Knotted vs. unknotted proteins: evidence of knot-promoting loops.

    Directory of Open Access Journals (Sweden)

    Raffaello Potestio

    Full Text Available Knotted proteins, because of their ability to fold reversibly in the same topologically entangled conformation, are the object of an increasing number of experimental and theoretical studies. The aim of the present investigation is to assess, on the basis of presently available structural data, the extent to which knotted proteins are isolated instances in sequence or structure space, and to use comparative schemes to understand whether specific protein segments can be associated to the occurrence of a knot in the native state. A significant sequence homology is found among a sizeable group of knotted and unknotted proteins. In this family, knotted members occupy a primary sub-branch of the phylogenetic tree and differ from unknotted ones only by additional loop segments. These "knot-promoting" loops, whose virtual bridging eliminates the knot, are found in various types of knotted proteins. Valuable insight into how knots form, or are encoded, in proteins could be obtained by targeting these regions in future computational studies or excision experiments.

  8. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2012-12-01

    Full Text Available Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  9. Studies of solar flares: Homology and X-ray line broadening

    Science.gov (United States)

    Ranns, Neale David Raymond

    This thesis starts with an introduction to the solar atmosphere and the physics that governs its behaviour. The formation processes of spectral lines are presented followed by an explanation of employed plasma diagnostic techniques and line broadening mechanisms. The current understanding on some principle concepts of flare physics are reviewed and the topics of flare homology and non-thermal line broadening are introduced. The many solar satellites and instrumentation that were utilised during this thesis are described. Analysis techniques for some instruments are also presented. A series of solar flares that conform to the literature definition for homologous flares are examined. The apparent homology is shown to be caused by emerging flux rather than continual stressing of a single, or group of, magnetic structure's. The implications for flare homology are discussed. The analysis of a solar flare with a rise and peak in the observed non-thermal X-ray line broadening (Vnt) is then performed. The location of the hot plasma within the flare area is determined and consequently the source of Vnt is located to be within and above the flare loops. The flare footpoints are therefore discarded as a possible source location. Viable source locations are discussed with a view to determining the dominant mechanism for the generation of line broadening. The timing relationships between the hard X-ray (HXR) flux and Vnt in many solar flares are then examined. I show that there is a causal relationship between these two parameters and that the HXR rise time is related to the time delay between the maxima of HXR flux and Vnt. The temporal evolution of Vnt is shown to be dependent upon the shape of the HXR burst. The implications of these results are discussed in terms of determining the line broadening mechanism and the limitations of the data. A summary of the results in this thesis is then presented together with suggestions for future research.

  10. Comparative analysis of the simulation of the instantaneous closing of the discharge valve of a recirculation loop of a BWR with a model of recirculation loop with 2 jet pumps and another model with 20 jet pumps using RELAP5/SCDAPSIM Mod. 3.4

    International Nuclear Information System (INIS)

    Araiza M, E.; Ortiz V, J.; Martinez C, E.; Amador G, R.; Castillo D, R.

    2016-09-01

    This work presents the results of the simulation of the instantaneous closing of the water hammer, of a recirculation loop using two different arrangements in the loops. One of these arrangements corresponds to the traditional model that uses only two jet pumps to simulate the twenty pumps of the two recirculation loops of a BWR. The second nodalization models each of the ten jet pumps of each recirculation loop. The results obtained from the execution of both models are compared, using important variables such as pressures and mass costs for the same components of both models. In addition, the maximum pressure value generated on the pipe located upstream of the water hammer, relative to the design pressure of the pipe, is compared for each arrangement. (Author)

  11. Dynamic modelling and PID loop control of an oil-injected screw compressor package

    Science.gov (United States)

    Poli, G. W.; Milligan, W. J.; McKenna, P.

    2017-08-01

    A significant amount of time is spent tuning the PID (Proportional, Integral and Derivative) control loops of a screw compressor package due to the unique characteristics of the system. Common mistakes incurred during the tuning of a PID control loop include improper PID algorithm selection and unsuitable tuning parameters of the system resulting in erratic and inefficient operation. This paper details the design and development of software that aims to dynamically model the operation of a single stage oil injected screw compressor package deployed in upstream oil and gas applications. The developed software will be used to assess and accurately tune PID control loops present on the screw compressor package employed in controlling the oil pressures, temperatures and gas pressures, in a bid to improve control of the operation of the screw compressor package. Other applications of the modelling software will include its use as an evaluation tool that can estimate compressor package performance during start up, shutdown and emergency shutdown processes. The paper first details the study into the fundamental operational characteristics of each of the components present on the API 619 screw compressor package and then discusses the creation of a dynamic screw compressor model within the MATLAB/Simulink software suite. The paper concludes by verifying and assessing the accuracy of the created compressor model using data collected from physical screw compressor packages.

  12. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2018-02-01

    STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.

  13. Feedback loops and temporal misalignment in component-based hydrologic modeling

    Science.gov (United States)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  14. Chemical shift homology in proteins

    International Nuclear Information System (INIS)

    Potts, Barbara C.M.; Chazin, Walter J.

    1998-01-01

    The degree of chemical shift similarity for homologous proteins has been determined from a chemical shift database of over 50 proteins representing a variety of families and folds, and spanning a wide range of sequence homologies. After sequence alignment, the similarity of the secondary chemical shifts of C α protons was examined as a function of amino acid sequence identity for 37 pairs of structurally homologous proteins. A correlation between sequence identity and secondary chemical shift rmsd was observed. Important insights are provided by examining the sequence identity of homologous proteins versus percentage of secondary chemical shifts that fall within 0.1 and 0.3 ppm thresholds. These results begin to establish practical guidelines for the extent of chemical shift similarity to expect among structurally homologous proteins

  15. Activity build-up on the circulation loops of boiling water reactors: Basics for modelling of transport and deposition processes

    International Nuclear Information System (INIS)

    Covelli, B.; Alder, H.P.

    1988-03-01

    In the past 20 years the radiation field of nuclear power plant loops outside the core zone was the object of investigations in many countries. In this context test loops were built and basic research done. At our Institute PSI the installation of a LWR-contamination loop is planned for this year. This experimental loop has the purpose to investigate the complex phenomena of activity deposition from the primary fluid of reactor plants and to formulate analytical models. From the literature the following conclusions can be drawn: The principal correlations of the activity build-up outside the core are known. The plant specific single phenomena as corrosion, crud-transport, activation and deposit of cobalt in the oxide layer are complex and only partially understood. The operational experience of particular plants with low contaminated loops (BWR-recirculation loops) show that in principle the problem is manageable. The reduction of the activity build-up in older plants necessitates a combination of measures to modify the crud balance in the primary circuit. In parallel to the experimental work several simulation models in the form of computer programs were developed. These models have the common feature that they are based on mass balances, in which the exchange of materials and the sedimentation processes are described by global empirical transport coefficients. These models yield satisfactory results and allow parameter studies; the application however is restricted to the particular installation. All programs lack models that describe the thermodynamic and hydrodynamic mechanisms on the surface of deposition layers. Analytical investigations on fouling of process equipment led to models that are also applicable to the activity build-up in reactor loops. Therefore it seems appropriate to combine the nuclear simulation models with the fundamental equations for deposition. 10 refs., 18 figs., 3 tabs

  16. The paracrine feedback loop between vitamin D₃ (1,25(OH)₂D₃) and PTHrP in prehypertrophic chondrocytes

    NARCIS (Netherlands)

    Bach, Frances C; Rutten, Kirsten; Hendriks, Kristyanne; Riemers, Frank M; Cornelissen, Peter; de Bruin, Alain; Arkesteijn, Ger J; Wubbolts, Richard; Horton, William A; Penning, Louis C; Tryfonidou, Marianna A

    2014-01-01

    The endocrine feedback loop between vitamin D3(1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH-related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine

  17. Dose rates modeling of pressurized water reactor primary loop components with SCALE6.0

    International Nuclear Information System (INIS)

    Matijević, Mario; Pevec, Dubravko; Trontl, Krešimir

    2015-01-01

    Highlights: • Shielding analysis of the typical PWR primary loop components was performed. • FW-CADIS methodology was thoroughly investigated using SCALE6.0 code package. • Versatile ability of SCALE6.0/FW-CADIS for deep penetration models was proved. • The adjoint source with focus on specific material can improve MC modeling. - Abstract: The SCALE6.0 simulation model of a typical PWR primary loop components for effective dose rates calculation based on hybrid deterministic–stochastic methodology was created. The criticality sequence CSAS6/KENO-VI of the SCALE6.0 code package, which includes KENO-VI Monte Carlo code, was used for criticality calculations, while neutron and gamma dose rates distributions were determined by MAVRIC/Monaco shielding sequence. A detailed model of a combinatorial geometry, materials and characteristics of a generic two loop PWR facility is based on best available input data. The sources of ionizing radiation in PWR primary loop components included neutrons and photons originating from critical core and photons from activated coolant in two primary loops. Detailed calculations of the reactor pressure vessel and the upper reactor head have been performed. The efficiency of particle transport for obtaining global Monte Carlo dose rates was further examined and quantified with a flexible adjoint source positioning in phase-space. It was demonstrated that generation of an accurate importance map (VR parameters) is a paramount step which enabled obtaining Monaco dose rates with fairly uniform uncertainties. Computer memory consumption by the S N part of hybrid methodology represents main obstacle when using meshes with large number of cells together with high S N /P N parameters. Detailed voxelization (homogenization) process in Denovo together with high S N /P N parameters is essential for precise VR parameters generation which will result in optimized MC distributions. Shielding calculations were also performed for the reduced PWR

  18. Markov chain sampling of the O(n) loop models on the infinite plane

    Science.gov (United States)

    Herdeiro, Victor

    2017-07-01

    A numerical method was recently proposed in Herdeiro and Doyon [Phys. Rev. E 94, 043322 (2016), 10.1103/PhysRevE.94.043322] showing a precise sampling of the infinite plane two-dimensional critical Ising model for finite lattice subsections. The present note extends the method to a larger class of models, namely the O(n) loop gas models for n ∈(1 ,2 ] . We argue that even though the Gibbs measure is nonlocal, it is factorizable on finite subsections when sufficient information on the loops touching the boundaries is stored. Our results attempt to show that provided an efficient Markov chain mixing algorithm and an improved discrete lattice dilation procedure the planar limit of the O(n) models can be numerically studied with efficiency similar to the Ising case. This confirms that scale invariance is the only requirement for the present numerical method to work.

  19. Modeling and performance analysis of a closed-loop supply chain using first-order hybrid Petri nets

    Directory of Open Access Journals (Sweden)

    Imane Outmal

    2016-05-01

    Full Text Available Green or closed-loop supply chain had been the focus of many manufacturers during the last decade. The application of closed-loop supply chain in today’s manufacturing is not only due to growing environmental concerns and the recognition of its benefits in reducing greenhouse gas emissions, energy consumption, and meeting a more strict environmental regulations but it also offers economic competitive advantages if appropriately managed. First-order hybrid Petri nets represent a powerful graphical and mathematical formalism to map and analyze the dynamics of complex systems such as closed-loop supply chain networks. This article aims at illustrating the use of first-order hybrid Petri nets to model a closed-loop supply chain network and evaluate its operational, financial, and environmental performance measures under different management policies. Actual data from auto manufacturer in the United States are used to validate network’s performance under both tactical and strategic decision-making, namely, (1 tactical decision—production policies: increase of recovered versus new components and (2 strategic decision—closed-loop supply chain network structure: manufacturer internal recovery process or recovery process done by a third-party collection and recovery center. The work presented in this article is an extension of the use of first-order hybrid Petri nets as a modeling and performance analysis tool from supply chain to closed-loop supply chain. The modularity property of first-order hybrid Petri nets has been used in the modeling process, and the simulation and analysis of the modeled network are done in MATLAB® environment. The results of the experiments depict that first-order hybrid Petri nets are a powerful modeling and analysis formalism for closed-loop supply chain networks and can be further used as an efficient decision-making tool at both tactical and strategic levels. Unlike other researches on modeling supply chain

  20. A Mixed Integer Linear Programming Model for the Design of Remanufacturing Closed–loop Supply Chain Network

    Directory of Open Access Journals (Sweden)

    Mbarek Elbounjimi

    2015-11-01

    Full Text Available Closed-loop supply chain network design is a critical issue due to its impact on both economic and environmental performances of the supply chain. In this paper, we address the problem of designing a multi-echelon, multi-product and capacitated closed-loop supply chain network. First, a mixed-integer linear programming formulation is developed to maximize the total profit. The main contribution of the proposed model is addressing two economic viability issues of closed-loop supply chain. The first issue is the collection of sufficient quantity of end-of-life products are assured by retailers against an acquisition price. The second issue is exploiting the benefits of colocation of forward facilities and reverse facilities. The presented model is solved by LINGO for some test problems. Computational results and sensitivity analysis are conducted to show the performance of the proposed model.

  1. Bending and Twisting the Embryonic Heart: A Computational Model for C-Looping Based on Realistic Geometry

    Directory of Open Access Journals (Sweden)

    Yunfei eShi

    2014-08-01

    Full Text Available The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and contraction in the omphalomesenteric veins (primitive atria and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.

  2. Loop-quantum-gravity vertex amplitude.

    Science.gov (United States)

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  3. Hardware-in-the-loop vehicle system including dynamic fuel cell model

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Z.; Lenhart, T.; Braun, M.; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Darmstadt (Germany)

    2005-07-01

    In order to reduce costs and accelerate the development of fuel cells and systems the usage of hardware-in-the-loop (HIL) testing and dynamic modelling opens new possibilities. The dynamic model of a proton exchange membrane fuel cell (PEMFC) together with a vehicle model is used to carry out a comprehensive system investigation, which allows designing and optimising the behaviour of the components and the entire fuel cell system. The set-up of a HIL system enables real time interaction between the selected hardware and the model. (orig.)

  4. Modelling and simulation of a U-loop Reactor for Single Cell Protein Production

    DEFF Research Database (Denmark)

    Wu, Mengzhe; Huusom, Jakob Kjøbsted; Gernaey, Krist

    2016-01-01

    In this work, two approaches of modelling a one phase U-loop reactor are presented. A simple CSTR model consisting of first-principles dynamic process equations was implemented in Matlab. The results give a good indication of the basic understanding of the effect of changing operation conditions...

  5. A model for a stable coronal loop

    International Nuclear Information System (INIS)

    Hoven, G.V.; Chiuderi, C.; Giachetti, R.

    1977-01-01

    We present here a new plasma-physics model of a stable active-region arch which corresponds to the structure observed in the EUV. Pressure gradients are seen, so that the equilibrium magnetic field must depart from the force-free form valid in the surrounding corona. We take advantage of the data and of the approximate cylindrical symmetry to develop a modified form of the commonly assumed sheared-spiral structure. The dynamic MHD behavior of this new pressure/field model is then evaluated by the Newcomb criterion, taken from controlled-fusion physics, and the results show short-wavelength stability in a specific parameter range. Thus we demonstrate the possibility, for pressure profiles with widths of the order of the magnetic-field scale, that such arches can persist for reasonable periods. Finally, the spatial proportions and magnetic fields of a characteristic stable coronal loop are described

  6. Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB, target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB, it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  7. Two-phase Heating in Flaring Loops

    Science.gov (United States)

    Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.

    2018-03-01

    We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.

  8. Comments on the Updated Tetrapartite Pallium Model in the Mouse and Chick, Featuring a Homologous Claustro-Insular Complex.

    Science.gov (United States)

    Puelles, Luis

    2017-01-01

    This essay reviews step by step the conceptual changes of the updated tetrapartite pallium model from its tripartite and early tetrapartite antecedents. The crucial observations in mouse material are explained first in the context of assumptions, tentative interpretations, and literature data. Errors and the solutions offered to resolve them are made explicit. Next, attention is centered on the lateral pallium sector of the updated model, whose definition is novel in incorporating a claustro-insular complex distinct from both olfactory centers (ventral pallium) and the isocortex (dorsal pallium). The general validity of the model is postulated at least for tetrapods. Genoarchitectonic studies performed to check the presence of a claustro-insular field homolog in the avian brain are reviewed next. These studies have indeed revealed the existence of such a complex in the avian mesopallium (though stratified outside-in rather than inside-out as in mammals), and there are indications that the same pattern may be found in reptiles as well. Peculiar pallio-pallial tangential migratory phenomena are apparently shared as well between mice and chicks. The issue of whether the avian mesopallium has connections that are similar to the known connections of the mammalian claustro-insular complex is considered next. Accrued data are consistent with similar connections for the avian insula homolog, but they are judged to be insufficient to reach definitive conclusions about the avian claustrum. An aside discusses that conserved connections are not a necessary feature of field-homologous neural centers. Finally, the present scenario on the evolution of the pallium of sauropsids and mammals is briefly visited, as highlighted by the updated tetrapartite model and present results. © 2017 S. Karger AG, Basel.

  9. Thermal-hydraulic analyses for in-pile SCWR fuel qualification test loops and SCWR material loop

    Energy Technology Data Exchange (ETDEWEB)

    Vojacek, A.; Mazzini, G.; Zmitkova, J.; Ruzickova, M. [Research Centre Rez (Czech Republic)

    2014-07-01

    One of the R&D directions of Research Centre Rez is dedicated to the supercritical water-cooled reactor concept (SCWR). Among the developed experimental facilities and infrastructure in the framework of the SUSEN project (SUStainable ENergy) is construction and experimental operation of the supercritical water loop SCWL focusing on material tests. At the first phase, this SCWL loop is assembled and operated out-of-pile in the dedicated loop facilities hall. At this out-of-pile operation various operational conditions are tested and verified. After that, in the second phase, the SCWL loop will be situated in-pile, in the core of the research reactor LVR-15, operated at CVR. Furthermore, it is planned to carry out a test of a small scale fuel assembly within the SuperCritical Water Reactor Fuel Qualification Test (SCWR-FQT) loop, which is now being designed. This paper presents the results of the thermal-hydraulic analyses of SCWL loop out-of-pile operation using the RELAP5/MOD3.3. The thermal-hydraulic modeling and the performed analyses are focused on the SCWL loop model validation through a comparison of the calculation results with the experimental results obtained at various operation conditions. Further, the present paper focuses on the transient analyses for start-up and shut-down of the FQT loop, particularly to explore the ability of system codes ATHLET 3.0A to simulate the transient between subcritical conditions and supercritical conditions. (author)

  10. Simplicity constraints: A 3D toy model for loop quantum gravity

    Science.gov (United States)

    Charles, Christoph

    2018-05-01

    In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.

  11. Two-loop calculation of the effective potential for the Wess-Zumino model

    International Nuclear Information System (INIS)

    Fogleman, G.; Starkmann, G.D.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia

    1983-01-01

    The effective potential for the supersymmetric Wess-Zumino model is computed off-shell to two loops. A renormalization procedure which preserves positivity of the kinetic terms in the effective action is implemented. Supersymmetry is not broken to this order. (orig.)

  12. Systematic classification of two-loop realizations of the Weinberg operator

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, D. Aristizabal; Degee, A. [IFPA, Dep. AGO, Universite de Liege,Bat B5, Sart Tilman B-4000 Liege 1 (Belgium); Dorame, L.; Hirsch, M. [AHEP Group, Instituto de Fisica Corpuscular-C.S.I.C./Universitat de Valencia,Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia (Spain)

    2015-03-09

    We systematically analyze the d=5 Weinberg operator at 2-loop order. Using a diagrammatic approach, we identify two different interesting categories of neutrino mass models: (i) Genuine 2-loop models for which both, tree-level and 1-loop contributions, are guaranteed to be absent. And (ii) finite 2-loop diagrams, which correspond to the 1-loop generation of some particular vertex appearing in a given 1-loop neutrino mass model, thus being effectively 2-loop. From the large list of all possible 2-loop diagrams, the vast majority are infinite corrections to lower order neutrino mass models and only a moderately small number of diagrams fall into these two interesting classes. Moreover, all diagrams in class (i) are just variations of three basic diagrams, with examples discussed in the literature before. Similarly, we also show that class (ii) diagrams consists of only variations of these three plus two more basic diagrams. Finally, we show how our results can be consistently and readily used in order to construct two-loop neutrino mass models.

  13. Cooling Active Region Loops Observed With SXT and TRACE

    OpenAIRE

    Winebarger, Amy R.; Warren, Harry P.

    2005-01-01

    An Impulsive Heating Multiple Strand (IHMS) Model is able to reproduce the observational characteristics of EUV (~ 1 MK) active region loops. This model implies that some of the loops must reach temperatures where X-ray filters are sensitive (> 2.5 MK) before they cool to EUV temperatures. Hence, some bright EUV loops must be preceded by bright X-ray loops. Previous analysis of X-ray and EUV active region observations, however, have concluded that EUV loops are not preceded by X-ray loops. In...

  14. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  15. Protein Loop Structure Prediction Using Conformational Space Annealing.

    Science.gov (United States)

    Heo, Seungryong; Lee, Juyong; Joo, Keehyoung; Shin, Hang-Cheol; Lee, Jooyoung

    2017-05-22

    We have developed a protein loop structure prediction method by combining a new energy function, which we call E PLM (energy for protein loop modeling), with the conformational space annealing (CSA) global optimization algorithm. The energy function includes stereochemistry, dynamic fragment assembly, distance-scaled finite ideal gas reference (DFIRE), and generalized orientation- and distance-dependent terms. For the conformational search of loop structures, we used the CSA algorithm, which has been quite successful in dealing with various hard global optimization problems. We assessed the performance of E PLM with two widely used loop-decoy sets, Jacobson and RAPPER, and compared the results against the DFIRE potential. The accuracy of model selection from a pool of loop decoys as well as de novo loop modeling starting from randomly generated structures was examined separately. For the selection of a nativelike structure from a decoy set, E PLM was more accurate than DFIRE in the case of the Jacobson set and had similar accuracy in the case of the RAPPER set. In terms of sampling more nativelike loop structures, E PLM outperformed E DFIRE for both decoy sets. This new approach equipped with E PLM and CSA can serve as the state-of-the-art de novo loop modeling method.

  16. Fermion loops in the effective potential of N = 1 supergravity, with application to no-scale models

    International Nuclear Information System (INIS)

    Burton, J.W.

    1990-01-01

    Powerful and quite general arguments suggest that N = 1 supergravity, and in particular the superstring-inspired no-scale models, may describe the physics of the four-dimensional vacuum at energy densities below the Planck scale. These models are not renormalizable, since they arise as effective theories after the large masses have been integrated out of the fundamental theory; thus, they have divergences in their loop amplitudes that must be regulated by imposing a cutoff. Before physics at experimental energies can be extracted from these models, the true vacuum state or states must be identified: at tree level, the ground states of the effective theories are highly degenerate. Radiative corrections at the one-loop level have been shown to break the degeneracy sufficiently to identify the states of vanishing vacuum energy. As the concluding step in a program to calculate these corrections within a self-consistent cutoff prescription, all fermionic one-loop divergent corrections to the scalar effective potential are evaluated. (The corresponding bosonic contributions have been found elsewhere.) The total effective scalar Lagrange density for N = 1 supergravity is written down, and comments are made about cancellations between the fermionic and bosonic loops. Finally, the result is specialized to a toy no-scale model with a single generation of matter fields, and prospects for eventual phenomenological constraints on theories of this type are briefly discussed. 48 refs

  17. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models.

    Science.gov (United States)

    Bernardes, Juliana S; Carbone, Alessandra; Zaverucha, Gerson

    2011-03-23

    Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM). We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function. The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions.

  18. Two aspects of one loop structure: Unitarity delay in the Standard Model and modular invariance in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, C.

    1989-08-01

    We study two aspects of one loop structures in quantum field theories which describe two different areas of particle physics: the one loop unitarity behavior of the Standard Model of electroweak interactions and modular invariance of string model theory. Loop expansion has its importance in that it contains quantum fluctuations due to all physical states in the theory. Therefore, by studying the various models to one loop, we can understand how the contents of the theory can contribute to physically measurable quantities and how the consistency at quantum level restricts the physical states of the theory, as well. In the first half of the thesis, we study one loop corrections to the process {ital e}{sup +}{ital e}{sup {minus}} {yields} {ital W}{sup +}{ital W}{sup {minus}}. In this process, there is a delicate unitarity-saving cancellation between s-channel and t-channel tree level Feynman diagrams. If the one loop contribution due to heavy particles corrects the channels asymmetrically, the cancellation, hence unitarity, will be delayed up to the mass scale of these heavy particles. We refer to this phenomena as the unitarity delay effect. Due to this effect, cross section below these mass scales can have significant radiative corrections which may provide an appropriate window through which we can see the high energy structure of the Standard Model from relatively low energy experiments. In the second half, we will show how quantum consistency can restrict the physical states in string theory. 53 refs., 13 figs.

  19. Tritium Management Loop Design Status

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)

    2017-12-01

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.

  20. Efficient dynamic modeling of manipulators containing closed kinematic loops

    Science.gov (United States)

    Ferretti, Gianni; Rocco, Paolo

    An approach to efficiently solve the forward dynamics problem for manipulators containing closed chains is proposed. The two main distinctive features of this approach are: the dynamics of the equivalent open loop tree structures (any closed loop can be in general modeled by imposing some additional kinematic constraints to a suitable tree structure) is computed through an efficient Newton Euler formulation; the constraint equations relative to the most commonly adopted closed chains in industrial manipulators are explicitly solved, thus, overcoming the redundancy of Lagrange's multipliers method while avoiding the inefficiency due to a numerical solution of the implicit constraint equations. The constraint equations considered for an explicit solution are those imposed by articulated gear mechanisms and planar closed chains (pantograph type structures). Articulated gear mechanisms are actually used in all industrial robots to transmit motion from actuators to links, while planar closed chains are usefully employed to increase the stiffness of the manipulators and their load capacity, as well to reduce the kinematic coupling of joint axes. The accuracy and the efficiency of the proposed approach are shown through a simulation test.

  1. On the significance of the noise model for the performance of a linear MPC in closed-loop operation

    DEFF Research Database (Denmark)

    Hagdrup, Morten; Boiroux, Dimitri; Mahmoudi, Zeinab

    2016-01-01

    This paper discusses the significance of the noise model for the performance of a Model Predictive Controller when operating in closed-loop. The process model is parametrized as a continuous-time (CT) model and the relevant sampled-data filtering and control algorithms are developed. Using CT...... models typically means less parameters to identify. Systematic tuning of such controllers is discussed. Simulation studies are conducted for linear time-invariant systems showing that choosing a noise model of low order is beneficial for closed-loop performance. (C) 2016, IFAC (International Federation...

  2. MODELING OF REFLECTIVE PROPAGATING SLOW-MODE WAVE IN A FLARING LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Yuan, D.; Van Doorsselaere, T.; Keppens, R.; Xia, C. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)

    2015-11-01

    Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in extreme ultraviolet images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized Solar Dynamics Observatory/Atmospheric Imaging Assembly 131, 94 Å emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km s{sup −1} in an 80 Mm length loop with an average temperature of 9 MK. With the synthesized Doppler shift velocity and intensity maps of the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Fe xix line emission, we confirm that these reflected slow mode waves are propagating waves.

  3. Loop Corrections in Very Special Relativity Standard Model

    Science.gov (United States)

    Alfaro, Jorge

    2018-01-01

    In this talk we want to study one-loop corrections in VSRSM. In particular, we use the new Sim(2)-invariant dimensional regularization to compute one-loop corrections to the Effective Action in the subsector of the VSRSM that describe the interaction of photons with charged leptons. New stringent bounds for the masses of ve and vµ are obtained.

  4. A sensitive short read homology search tool for paired-end read sequencing data.

    Science.gov (United States)

    Techa-Angkoon, Prapaporn; Sun, Yanni; Lei, Jikai

    2017-10-16

    Homology search is still a significant step in functional analysis for genomic data. Profile Hidden Markov Model-based homology search has been widely used in protein domain analysis in many different species. In particular, with the fast accumulation of transcriptomic data of non-model species and metagenomic data, profile homology search is widely adopted in integrated pipelines for functional analysis. While the state-of-the-art tool HMMER has achieved high sensitivity and accuracy in domain annotation, the sensitivity of HMMER on short reads declines rapidly. The low sensitivity on short read homology search can lead to inaccurate domain composition and abundance computation. Our experimental results showed that half of the reads were missed by HMMER for a RNA-Seq dataset. Thus, there is a need for better methods to improve the homology search performance for short reads. We introduce a profile homology search tool named Short-Pair that is designed for short paired-end reads. By using an approximate Bayesian approach employing distribution of fragment lengths and alignment scores, Short-Pair can retrieve the missing end and determine true domains. In particular, Short-Pair increases the accuracy in aligning short reads that are part of remote homologs. We applied Short-Pair to a RNA-Seq dataset and a metagenomic dataset and quantified its sensitivity and accuracy on homology search. The experimental results show that Short-Pair can achieve better overall performance than the state-of-the-art methodology of profile homology search. Short-Pair is best used for next-generation sequencing (NGS) data that lack reference genomes. It provides a complementary paired-end read homology search tool to HMMER. The source code is freely available at https://sourceforge.net/projects/short-pair/ .

  5. Divergent Roles of RPA Homologs of the Model Archaeon Halobacterium salinarum in Survival of DNA Damage.

    Science.gov (United States)

    Evans, Jessica J; Gygli, Patrick E; McCaskill, Julienne; DeVeaux, Linda C

    2018-04-20

    The haloarchaea are unusual in possessing genes for multiple homologs to the ubiquitous single-stranded DNA binding protein (SSB or replication protein A, RPA) found in all three domains of life. Halobacterium salinarum contains five homologs: two are eukaryotic in organization, two are prokaryotic and are encoded on the minichromosomes, and one is uniquely euryarchaeal. Radiation-resistant mutants previously isolated show upregulation of one of the eukaryotic-type RPA genes. Here, we have created deletions in the five RPA operons. These deletion mutants were exposed to DNA-damaging conditions: ionizing radiation, UV radiation, and mitomycin C. Deletion of the euryarchaeal homolog, although not lethal as in Haloferax volcanii , causes severe sensitivity to all of these agents. Deletion of the other RPA/SSB homologs imparts a variable sensitivity to these DNA-damaging agents, suggesting that the different RPA homologs have specialized roles depending on the type of genomic insult encountered.

  6. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  7. Two-loop corrections to the ρ parameter in Two-Higgs-Doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Hessenberger, Stephan; Hollik, Wolfgang [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany)

    2017-03-15

    Models with two scalar doublets are among the simplest extensions of the Standard Model which fulfill the relation ρ = 1 at lowest order for the ρ parameter as favored by experimental data for electroweak observables allowing only small deviations from unity. Such small deviations Δρ originate exclusively from quantum effects with special sensitivity to mass splittings between different isospin components of fermions and scalars. In this paper the dominant two-loop electroweak corrections to Δρ are calculated in the CP-conserving THDM, resulting from the top-Yukawa coupling and the self-couplings of the Higgs bosons in the gauge-less limit. The on-shell renormalization scheme is applied. With the assumption that one of the CP-even neutral scalars represents the scalar boson observed by the LHC experiments, with standard properties, the two-loop non-standard contributions in Δρ can be separated from the standard ones. These contributions are of particular interest since they increase with mass splittings between non-standard Higgs bosons and can be additionally enhanced by tanβ and λ{sub 5}, an additional free coefficient of the Higgs potential, and can thus modify the one-loop result substantially. Numerical results are given for the dependence on the various non-standard parameters, and the influence on the calculation of electroweak precision observables is discussed. (orig.)

  8. One-loop correlation functions in the model of noncritical fermionic strings

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Iofa, M.Z.

    1996-01-01

    In the model of noncritical fermionic strings, the David-Distler-Kawai ansatz is used to study one-loop n-point (n≤4) correlation functions for the vertex operators of massless bosonic states. The action functional of the model is the sum of super-Liouville action functional for the conformal mode and the action functional of d scalar supermultiplets. It is assumed that the total cosmological term is equal to zero. The amplitudes are calculated as the residues at the pole of the correlation function that corresponds to the conservation of Liouville momentum in the form Σβi=Q(1-h), where Q=√(9-d)/2 and h is the genus of the work sheet. In the one-loop approximation, the amplitudes can be obtained in the modular-invariant form, provided that the coefficients appearing in the sum over spin structures depend on moduli. In this case, the modular measure is defined up to a modular-invariant factor. This arbitrariness can be used to represent one-point correlation functions in the same functional form as for strings of critical dimension

  9. HOMOLOGOUS JET-DRIVEN CORONAL MASS EJECTIONS FROM SOLAR ACTIVE REGION 12192

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-05-10

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (∼200–300 km s{sup −1}) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  10. CD81 Receptor Regions outside the Large Extracellular Loop Determine Hepatitis C Virus Entry into Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Pia Banse

    2018-04-01

    Full Text Available Hepatitis C virus (HCV enters human hepatocytes using four essential entry factors, one of which is human CD81 (hCD81. The tetraspanin hCD81 contains a large extracellular loop (LEL, which interacts with the E2 glycoprotein of HCV. The role of the non-LEL regions of hCD81 (intracellular tails, four transmembrane domains, small extracellular loop and intracellular loop is poorly understood. Here, we studied the contribution of these domains to HCV susceptibility of hepatoma cells by generating chimeras of related tetraspanins with the hCD81 LEL. Our results show that non-LEL regions in addition to the LEL determine susceptibility of cells to HCV. While closely related tetraspanins (X. tropicalis CD81 and D. rerio CD81 functionally complement hCD81 non-LEL regions, distantly related tetraspanins (C. elegans TSP9 amd D. melanogaster TSP96F do not and tetraspanins with intermediate homology (hCD9 show an intermediate phenotype. Tetraspanin homology and susceptibility to HCV correlate positively. For some chimeras, infectivity correlates with surface expression. In contrast, the hCD9 chimera is fully surface expressed, binds HCV E2 glycoprotein but is impaired in HCV receptor function. We demonstrate that a cholesterol-coordinating glutamate residue in CD81, which hCD9 lacks, promotes HCV infection. This work highlights the hCD81 non-LEL regions as additional HCV susceptibility-determining factors.

  11. Studies on 16α-Hydroxylation of Steroid Molecules and Regioselective Binding Mode in Homology-Modeled Cytochrome P450-2C11

    Directory of Open Access Journals (Sweden)

    Hamed I. Ali

    2011-01-01

    Full Text Available We investigated the 16α-hydroxylation of steroid molecules and regioselective binding mode in homology-modeled cytochrome P450-2C11 to correlate the biological study with the computational molecular modeling. It revealed that there was a positive relationship between the observed inhibitory potencies and the binding free energies. Docking of steroid molecules into this homology-modeled CYP2C11 indicated that 16α-hydroxylation is favored with steroidal molecules possessing the following components, (1 a bent A-B ring configuration (5β-reduced, (2 C-3 α-hydroxyl group, (3 C-17β-acetyl group, and (4 methyl group at both the C-18 and C-19. These respective steroid components requirements were defined as the inhibitory contribution factor. Overall studies of the male rat CYP2C11 metabolism revealed that the above-mentioned steroid components requirements were essential to induce an effective inhibition of [3H]progesterone 16α-hydroxylation. As far as docking of homology-modeled CYP2C11 against investigated steroids is concerned, they are docked at the active site superimposed with flurbiprofen. It was also found that the distance between heme iron and C16α-H was between 4 to 6 Å and that the related angle was in the range of 180±45∘.

  12. A self-organizing algorithm for modeling protein loops.

    Directory of Open Access Journals (Sweden)

    Pu Liu

    2009-08-01

    Full Text Available Protein loops, the flexible short segments connecting two stable secondary structural units in proteins, play a critical role in protein structure and function. Constructing chemically sensible conformations of protein loops that seamlessly bridge the gap between the anchor points without introducing any steric collisions remains an open challenge. A variety of algorithms have been developed to tackle the loop closure problem, ranging from inverse kinematics to knowledge-based approaches that utilize pre-existing fragments extracted from known protein structures. However, many of these approaches focus on the generation of conformations that mainly satisfy the fixed end point condition, leaving the steric constraints to be resolved in subsequent post-processing steps. In the present work, we describe a simple solution that simultaneously satisfies not only the end point and steric conditions, but also chirality and planarity constraints. Starting from random initial atomic coordinates, each individual conformation is generated independently by using a simple alternating scheme of pairwise distance adjustments of randomly chosen atoms, followed by fast geometric matching of the conformationally rigid components of the constituent amino acids. The method is conceptually simple, numerically stable and computationally efficient. Very importantly, additional constraints, such as those derived from NMR experiments, hydrogen bonds or salt bridges, can be incorporated into the algorithm in a straightforward and inexpensive way, making the method ideal for solving more complex multi-loop problems. The remarkable performance and robustness of the algorithm are demonstrated on a set of protein loops of length 4, 8, and 12 that have been used in previous studies.

  13. A computational model clarifies the roles of positive and negative feedback loops in the Drosophila circadian clock

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junwei, E-mail: wangjunweilj@yahoo.com.c [Cisco School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhou Tianshou [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-06-14

    Previous studies showed that a single negative feedback structure should be sufficient for robust circadian oscillations. It is thus pertinent to ask why current cellular clock models almost universally have interlocked negative feedback loop (NFL) and positive feedback loop (PFL). Here, we propose a molecular model that reflects the essential features of the Drosophila circadian clock to clarify the different roles of negative and positive feedback loops. In agreement with experimental observations, the model can simulate circadian oscillations in constant darkness, entrainment by light-dark cycles, as well as phenotypes of per{sup 01} and clk{sup Jrk} mutants. Moreover, sustained oscillations persist when the PFL is removed, implying the crucial role of NFL for rhythm generation. Through parameter sensitivity analysis, it is revealed that incorporation of PFL increases the robustness of the system to regulatory processes in PFL itself. Such reduced models can aid understanding of the design principles of circadian clocks in Drosophila and other organisms with complex transcriptional feedback structures.

  14. A computational model clarifies the roles of positive and negative feedback loops in the Drosophila circadian clock

    International Nuclear Information System (INIS)

    Wang Junwei; Zhou Tianshou

    2010-01-01

    Previous studies showed that a single negative feedback structure should be sufficient for robust circadian oscillations. It is thus pertinent to ask why current cellular clock models almost universally have interlocked negative feedback loop (NFL) and positive feedback loop (PFL). Here, we propose a molecular model that reflects the essential features of the Drosophila circadian clock to clarify the different roles of negative and positive feedback loops. In agreement with experimental observations, the model can simulate circadian oscillations in constant darkness, entrainment by light-dark cycles, as well as phenotypes of per 01 and clk Jrk mutants. Moreover, sustained oscillations persist when the PFL is removed, implying the crucial role of NFL for rhythm generation. Through parameter sensitivity analysis, it is revealed that incorporation of PFL increases the robustness of the system to regulatory processes in PFL itself. Such reduced models can aid understanding of the design principles of circadian clocks in Drosophila and other organisms with complex transcriptional feedback structures.

  15. A novel heart rate control model provides insights linking LF-HRV behavior to the open-loop gain.

    Science.gov (United States)

    Dvir, Hila; Bobrovsky, Ben Zion; Gabbay, Uri

    2013-09-20

    Low-frequency heart rate variability (LF-HRV) at rest has already been successfully modeled as self-sustained oscillations in a nonlinear control loop, but these models fail to simulate LF-HRV decreases either during aerobic exercise or in heart failure patients. Following control engineering practices, we assume the existence of a biological excitation (dither) within the heart rate control loop that softens the nonlinearity and studied LF-HRV behavior in a dither-embedded model. We adopted the Ottesen model with some revisions and induced a dither of high-frequency stochastic perturbations. We simulated scenarios of a healthy subject at rest and during aerobic exercise (by decreasing peripheral vascular resistance) and a heart failure patient (by decreasing stroke volume). The simulations resembled physiological LF-HRV behavior, i.e., LF-HRV decreased during aerobic exercise and in the heart failure patient. The simulations exhibited LF-HRV dependency on the open-loop gain, which is related to the product of the feedback gain and the feed forward gain. We are the first to demonstrate that LF-HRV may be dependent on the open-loop gain. Accordingly, reduced open-loop gain results in decreased LF-HRV, and vice versa. Our findings explain a well-known but unexplained observed phenomenon of reduced LF-HRV both in heart failure patients and in healthy subjects performing aerobic exercise. These findings have implications on how changes in LF-HRV can be interpreted physiologically, a necessary step towards the clinical utilization of LF-HRV. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Coronal Heating: Testing Models of Coronal Heating by Forward-Modeling the AIA Emission of the Ansample of Coronal Loops

    Science.gov (United States)

    Malanushenko, A. V.

    2015-12-01

    We present a systemic exploration of the properties of coronal heating, by forward-modeling the emission of the ensemble of 1D quasi-steady loops. This approximations were used in many theoretical models of the coronal heating. The latter is described in many such models in the form of power laws, relating heat flux through the photosphere or volumetric heating to the strength of the magnetic field and length of a given field line. We perform a large search in the parameter space of these power laws, amongst other variables, and compare the resulting emission of the active region to that observed by AIA. We use a recently developed magnetic field model which uses shapes of coronal loops to guide the magnetic model; the result closely resembles observed structures by design. We take advantage of this, by comparing, in individual sub-regions of the active region, the emission of the active region and its synthetic model. This study allows us to rule out many theoretical models and formulate predictions for the heating models to come.

  17. Spatiotemporal Analysis of Coronal Loops Using Seismology of Damped Kink Oscillations and Forward Modeling of EUV Intensity Profiles

    Science.gov (United States)

    Pascoe, D. J.; Anfinogentov, S. A.; Goddard, C. R.; Nakariakov, V. M.

    2018-06-01

    The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the seismological determination of the transverse structure is inconclusive except when supplemented by additional spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both individually and simultaneously to our data and compare the results with numerical simulations. Combining the two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not possible for the same data when each method is applied individually. We demonstrate that the assumption of an exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with a Gaussian damping profile.

  18. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  19. THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, J. T. [USRA, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2016-11-10

    We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated from the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.

  20. BLM has early and late functions in homologous recombination repair in mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Chu, W K; Hanada, K; Kanaar, R

    2010-01-01

    function of BLM remains unclear. Multiple roles have been proposed for BLM in the homologous recombination (HR) repair pathway, including 'early' functions, such as the stimulation of resection of DNA double-strand break ends or displacement of the invading strand of DNA displacement loops, and 'late......' roles, such as dissolution of double Holliday junctions. However, most of the evidence for these putative roles comes from in vitro biochemical data. In this study, we report the characterization of mouse embryonic stem cells with disruption of Blm and/or Rad54 genes. We show that Blm has roles both...

  1. The Life Cycle Evaluation Model of External Diseconomy of Open-loop Supply Chain

    Science.gov (United States)

    Liu, Qian; Hu, Tianjun

    2017-08-01

    In recent years, with the continuous deterioration of pollution, resource space is gradually narrowed, the number of waste items increased, people began to use the method of recycling on waste products to ease the pressure on the environment. This paper adopted the external diseconomy of open-loop supply chain as the research object and constructed the model by the life cycle evaluation method, comparative analysis through the case. This paper also concludes that the key to solving the problem is to realize the closed-loop supply chain and building reverse logistics system is of great significance.

  2. GPCRM: a homology modeling web service with triple membrane-fitted quality assessment of GPCR models.

    Science.gov (United States)

    Miszta, Przemyslaw; Pasznik, Pawel; Jakowiecki, Jakub; Sztyler, Agnieszka; Latek, Dorota; Filipek, Slawomir

    2018-05-21

    Due to the involvement of G protein-coupled receptors (GPCRs) in most of the physiological and pathological processes in humans they have been attracting a lot of attention from pharmaceutical industry as well as from scientific community. Therefore, the need for new, high quality structures of GPCRs is enormous. The updated homology modeling service GPCRM (http://gpcrm.biomodellab.eu/) meets those expectations by greatly reducing the execution time of submissions (from days to hours/minutes) with nearly the same average quality of obtained models. Additionally, due to three different scoring functions (Rosetta, Rosetta-MP, BCL::Score) it is possible to select accurate models for the required purposes: the structure of the binding site, the transmembrane domain or the overall shape of the receptor. Currently, no other web service for GPCR modeling provides this possibility. GPCRM is continually upgraded in a semi-automatic way and the number of template structures has increased from 20 in 2013 to over 90 including structures the same receptor with different ligands which can influence the structure not only in the on/off manner. Two types of protein viewers can be used for visual inspection of obtained models. The extended sortable tables with available templates provide links to external databases and display ligand-receptor interactions in visual form.

  3. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity.

    Science.gov (United States)

    Jin, Lily L; Wybenga-Groot, Leanne E; Tong, Jiefei; Taylor, Paul; Minden, Mark D; Trudel, Suzanne; McGlade, C Jane; Moran, Michael F

    2015-03-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y(194) impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y(194) on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Scalar loops and the Higgs mass in the Salam-Weinberg-Glashow model

    International Nuclear Information System (INIS)

    Ghose, P.

    1982-08-01

    It is shown that spontaneous symmetry breaking is predominantly driven by scalar loops in the standard Salam-Weinberg-Glashow model if lambda approx.=0(e 2 ). The Higgs mass is predicted to be 0(64 GeV), which is considerably higher than the Coleman Weinberg prediction. (author)

  5. Feedback versus open-loop leader/fringe models of the oil supply market

    International Nuclear Information System (INIS)

    Pelot, R.P.; Fuller, J.D.

    1991-01-01

    A multiperiod feedback Stackelberg model of exhaustible resources is presented. The results of the feedback model are compared with those from a corresponding open-loop formulation to determine whether the solution to the latter, and much simpler, model produces the same or similar outcomes. An analysis of the world oil market with OPEC as leader dictating the price to a competitive fringe comprised of the remaining oil suppliers demonstrates the features of the model. It permits variable length periods and cumulative extraction cost functions

  6. Multiscale analysis of nonlinear systems using computational homology

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin Mischaikow; Michael Schatz; William Kalies; Thomas Wanner

    2010-05-24

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure

  7. Multiscale analysis of nonlinear systems using computational homology

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin Mischaikow, Rutgers University/Georgia Institute of Technology, Michael Schatz, Georgia Institute of Technology, William Kalies, Florida Atlantic University, Thomas Wanner,George Mason University

    2010-05-19

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure

  8. Automated one-loop calculations with GOSAM

    International Nuclear Information System (INIS)

    Cullen, Gavin; Greiner, Nicolas; Heinrich, Gudrun; Reiter, Thomas; Luisoni, Gionata

    2011-11-01

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)

  9. Automated one-loop calculations with GOSAM

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Gavin [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron, Zeuthen [DESY; Germany; Greiner, Nicolas [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinrich, Gudrun; Reiter, Thomas [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, Gionata [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, Giovanni [New York City Univ., NY (United States). New York City College of Technology; New York City Univ., NY (United States). The Graduate School and University Center; Tramontano, Francesco [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2011-11-15

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)

  10. Geometric homology revisited

    OpenAIRE

    Ruffino, Fabio Ferrari

    2013-01-01

    Given a cohomology theory, there is a well-known abstract way to define the dual homology theory using the theory of spectra. In [4] the author provides a more geometric construction of the homology theory, using a generalization of the bordism groups. Such a generalization involves in its definition the vector bundle modification, which is a particular case of the Gysin map. In this paper we provide a more natural variant of that construction, which replaces the vector bundle modification wi...

  11. Using structure to explore the sequence alignment space of remote homologs.

    Science.gov (United States)

    Kuziemko, Andrew; Honig, Barry; Petrey, Donald

    2011-10-01

    Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  12. The Universal One-Loop Effective Action

    CERN Document Server

    Drozd, Aleksandra; Quevillon, Jérémie; You, Tevong

    2016-01-01

    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.

  13. The universal one-loop effective action

    International Nuclear Information System (INIS)

    Drozd, Aleksandra; Ellis, John; Quevillon, Jérémie; You, Tevong

    2016-01-01

    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.

  14. Second and third stages of project for the implementation of two asymmetric cooling loops modeled by the ALMOD3 code

    International Nuclear Information System (INIS)

    Dominguez, L.; Camargo, C.T.M.

    1985-04-01

    The second and third steps of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 computer code are presented. These steps consists in activate the option for 2 loops already present in ALMOD3 original version and to introduce the GEVAP model for one of the two steam generators. In ALMOD3 original version the simulation of two non-symmetric loops was only possible using external functions, which provide the removed heat for each time step for one of the steam generators. With the introduction of GEVAP model, it is possible to obtain more accurate results. Due to its simplicity, the computer time required for execution is short. The results obtained in Angra 1 simulations are presented, analysed and compared with results obtained using one loop for simulating symmetric transients. (Author) [pt

  15. Model-based minimization algorithm of a supercritical helium loop consumption subject to operational constraints

    Science.gov (United States)

    Bonne, F.; Bonnay, P.; Girard, A.; Hoa, C.; Lacroix, B.; Le Coz, Q.; Nicollet, S.; Poncet, J.-M.; Zani, L.

    2017-12-01

    Supercritical helium loops at 4.2 K are the baseline cooling strategy of tokamaks superconducting magnets (JT-60SA, ITER, DEMO, etc.). This loops work with cryogenic circulators that force a supercritical helium flow through the superconducting magnets in order that the temperature stay below the working range all along their length. This paper shows that a supercritical helium loop associated with a saturated liquid helium bath can satisfy temperature constraints in different ways (playing on bath temperature and on the supercritical flow), but that only one is optimal from an energy point of view (every Watt consumed at 4.2 K consumes at least 220 W of electrical power). To find the optimal operational conditions, an algorithm capable of minimizing an objective function (energy consumption at 5 bar, 5 K) subject to constraints has been written. This algorithm works with a supercritical loop model realized with the Simcryogenics [2] library. This article describes the model used and the results of constrained optimization. It will be possible to see that the changes in operating point on the temperature of the magnet (e.g. in case of a change in the plasma configuration) involves large changes on the cryodistribution optimal operating point. Recommendations will be made to ensure that the energetic consumption is kept as low as possible despite the changing operating point. This work is partially supported by EUROfusion Consortium through the Euratom Research and Training Program 20142018 under Grant 633053.

  16. Homologous Recombination—Experimental Systems, Analysis and Significance

    Science.gov (United States)

    Kuzminov, Andrei

    2014-01-01

    Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in E. coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange) and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role, and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy. PMID:26442506

  17. p53 regulates the repair of DNA double-strand breaks by both homologous and non-homologous recombination

    International Nuclear Information System (INIS)

    Willers, H.; Powell, S.N.; Dahm-Daphi, J.

    2003-01-01

    Full text: p53 is known to suppress spontaneous homologous recombination (HR), while its role in non-homologous recombination (NHR) remains to be clarified. Here, we sought to determine the influence of p53 on the repair of chromosomal double-strand breaks (DSBs) by HR or NHR using specially designed recombination substrates that integrate into the genome. Isogenic mouse fibroblast pairs with or without expression of exogenous p53 protein were utilized. A reporter plasmid carrying a mutated XGPRT gene was chromosomally integrated and DSBs were generated within the plasmid by the I-SceI endonuclease. Subsequent homology-mediated repair from an episomal donor resulted in XGPRT reconstitution and cellular resistance to a selection antibiotic. Analogously, the repair of chromosomal I-SceI breaks by NHR using another novel reporter plasmid restored XGPRT translation. For p53-null cells, the mean frequency of I-SceI break repair via HR was 5.5 x 10 -4 . The p53-Val135 mutant, which previously has been shown to suppress spontaneous HR by 14-fold employing the same cell system and reporter gene, only caused a 2- to 3-fold suppression of break-induced HR. In contrast, a dramatic effect of p53 on repair via NHR was found. Preliminary sequence analysis indicated that there was at least a 1000-fold reduction of illegitimate repair events resulting in loss of sequence at the break sites. The observed effects were mediated by p53 mutants defective in regulation of the cell-cycle and apoptosis. The main findings were: (1) p53 virtually blocked illegitimate rejoining of chromosomal ends. (2) The suppression of homologous DSB repair was less pronounced than the inhibition of spontaneous HR. We hypothesize that p53 allows to a certain extent error-free homology-dependent repair to proceed, while blocking error-prone NHR. The data support and extent a previous model, in which p53 maintains genomic stability by regulating recombination independently of its transactivation function

  18. SCRINING IN SILICO ACTIVE COMPOUND OF Pachyrrhizus erosus AS ANTITIROSINASE ON Aspergillus oryzae (COMPUTATTIONAL STUDY WITH HOMOLOGY MODELING AND MOLECULAR DOCKING

    Directory of Open Access Journals (Sweden)

    Endang Lukitaningsih

    2015-11-01

    Full Text Available Bengkoang telah banyak digunakan dalam industri kosmetika sebagai whitening agent. Berdasarkan penelitian Lukitaningsih (2009, bengkoang mengandung 6 senyawa aktif yang mampu berperan sebagai whitening agent dengan menghambat aktivitas enzim tirosinase dari jamur Aspergillus oryzae (TyrAo. Namun interaksi senyawa aktif bengkoang dalam menghambat enzim tirosinase belum dapat diketahui. Interaksi senyawa-senyawa aktif bengkoang dengan enzim TyrAo dapat diketahui dengan studi komputasional (in silico. Pemodelan interaksi senyawa aktif bengkoang dengan enzim TyrAo dilakukan dengan metode homology modeling dan molecular docking. Homology modeling dilakukan untuk memodelkan struktur tiga dimensi (3D enzim tirosinase Aspergillus oryzae (TyrAo melalui template berupa protein homolog yang sudah diketahui struktur 3D-nya yaitu enzim TyrAb (PDBID: 2Y9X. Model TyrAo digunakan sebagai target makromolekul dalam metode molecular docking. Metode molecular docking merupakan metode untuk menggambarkan posisi ligan (senyawa-senyawa aktif bengkoang pada sisi aktif reseptor (model TyrAo. Berdasarkan docking yang dilakukan diketahui bahwa residu-residu yang banyak berpengaruh pada interaksi ligan pada sisi aktif adalah residu Thr275 yang berinteraksi secara ikatan hidrogen dengan ligan dan residu His294 yang berinteraksi secara hidrofobik pada cincin aromatik ligan. Penelitian in silico dan in vitro yang telah dilakukan memiliki korelasi (R2 sebesar -0,8366. Korelasi ini menandakan bahwa aktivitas senyawa-senyawa aktif pada bengkoang dalam menghambat enzim TyrAo memiliki hasil yang serupa pada penelitian yang  dilakukan secara in silico dan in vitro.

  19. Approximate Models for Closed-Loop Trajectory Tracking in Underactuated Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Control of robotic systems, as a field, spans both traditional closed-loop feedback techniques and modern machine learning strategies, which are primarily open-loop....

  20. Lectures on homology with internal symmetries

    International Nuclear Information System (INIS)

    Solovyov, Yu.

    1993-09-01

    Homology with internal symmetries is a natural generalization of cyclic homology introduced, independently, by Connes and Tsygan, which has turned out to be a very useful tool in a number of problems of algebra, geometry topology, analysis and mathematical physics. It suffices to say cycling homology and cohomology are successfully applied in the index theory of elliptic operators on foliations, in the description of the homotopy type of pseudoisotopy spaces, in the theory of characteristic classes in algebraic K-theory. They are also applied in noncommutative differential geometry and in the cohomology of Lie algebras, the branches of mathematics which brought them to life in the first place. Essentially, we consider dihedral homology, which was successfully applied for the description of the homology type of groups of homeomorphisms and diffeomorphisms of simply connected manifolds. (author). 27 refs

  1. Compositional Homology and Creative Thinking

    Directory of Open Access Journals (Sweden)

    Salvatore Tedesco

    2015-05-01

    Full Text Available The concept of homology is the most solid theoretical basis elaborated by the morphological thinking during its history. The enucleation of some general criteria for the interpretation of homology is today a fundamental tool for life sciences, and for restoring their own opening to the question of qualitative innovation that arose so powerfully in the original Darwinian project. The aim of this paper is to verify the possible uses of the concept of compositional homology in order to provide of an adequate understanding of the dynamics of creative thinking.

  2. On vanishing two loop cosmological constants in nonsupersymmetric strings

    International Nuclear Information System (INIS)

    Kachru, Shamit; Silverstein, Eva

    1998-01-01

    It has recently been suggested that in certain special nonsupersymmetric type II string compactifications, at least the first two perturbative contributions to the cosmological constant Λ vanish. Support for perturbative vanishing beyond 1-loop (as well as evidence for the absence of some nonperturbative contributions) has come from duality arguments. There was also a direct 2-loop computation which was incomplete; in this note we explain the deficiency of the previous 2-loop calculation and discuss the complete 2-loop computation in two different models. The corrected analysis yields a vanishing 2-loop contribution to Λ in these models

  3. On Vanishing Two Loop Cosmological Constants in Nonsupersymmetric Strings

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, S

    1998-10-22

    It has recently been suggested that in certain special nonsupersymmetric type II string compactifications, at least the first two perturbative contributions to the cosmological constant Lambda vanish. Support for perturbative vanishing beyond 1-loop (as well as evidence for the absence of some nonperturbative contributions) has come from duality arguments. There was also a direct 2-loop computation which was incomplete; in this note we explain the deficiency of the previous 2-loop calculation and discuss the complete 2-loop computation in two different models. The corrected analysis yields a vanishing 2-loop contribution to Lambda in these models.

  4. Rational Homological Stability for Automorphisms of Manifolds

    DEFF Research Database (Denmark)

    Grey, Matthias

    In this thesis we prove rational homological stability for the classifying spaces of the homotopy automorphisms and block di↵eomorphisms of iterated connected sums of products of spheres of a certain connectivity.The results in particular apply to the manifolds       Npg,q  = (#g(Sp x Sq)) - int...... with coefficients in the homology of the universal covering, which is studied using rational homology theory. The result for the block di↵eomorphisms is deduced from the homological stability for the homotopy automorphisms upon using Surgery theory. Themain theorems of this thesis extend the homological stability...

  5. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  6. Functional characterization of antibodies against Neisseria gonorrhoeae opacity protein loops.

    Directory of Open Access Journals (Sweden)

    Jessica G Cole

    2009-12-01

    Full Text Available The development of a gonorrhea vaccine is challenged by the lack of correlates of protection. The antigenically variable neisserial opacity (Opa proteins are expressed during infection and have a semivariable (SV and highly conserved (4L loop that could be targeted in a vaccine. Here we compared antibodies to linear (Ab(linear and cyclic (Ab(cyclic peptides that correspond to the SV and 4L loops and selected hypervariable (HV(2 loops for surface-binding and protective activity in vitro and in vivo.Ab(SV cyclic bound a greater number of different Opa variants than Ab(SV linear, including variants that differed by seven amino acids. Antibodies to the 4L peptide did not bind Opa-expressing bacteria. Ab(SV (cyclic and Ab(HV2 (cyclic, but not Ab(SV (linear or Ab(HV2 linear agglutinated homologous Opa variants, and Ab(HV2BD (cyclic but not Ab(HV2BD (linear blocked the association of OpaB variants with human endocervical cells. Only Ab(HV2BD (linear were bactericidal against the serum resistant parent strain. Consistent with host restrictions in the complement cascade, the bactericidal activity of Ab(HV2BD (linear was increased 8-fold when rabbit complement was used. None of the antibodies was protective when administered vaginally to mice. Antibody duration in the vagina was short-lived, however, with <50% of the antibodies recovered 3 hrs post-administration.We conclude that an SV loop-specific cyclic peptide can be used to induce antibodies that recognize a broad spectrum of antigenically distinct Opa variants and have agglutination abilities. HV(2 loop-specific cyclic peptides elicited antibodies with agglutination and adherence blocking abilities. The use of human complement when testing the bactericidal activity of vaccine-induced antibodies against serum resistant gonococci is also important.

  7. Chimeric Proton-Pumping Rhodopsins Containing the Cytoplasmic Loop of Bovine Rhodopsin

    Science.gov (United States)

    Sasaki, Kengo; Yamashita, Takahiro; Yoshida, Kazuho; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2014-01-01

    G-protein-coupled receptors (GPCRs) transmit stimuli to intracellular signaling systems. Rhodopsin (Rh), which is a prototypical GPCR, possesses an 11-cis retinal. Photoisomerization of 11-cis to all-trans leads to structural changes in the protein of cytoplasmic loops, activating G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. They possess an all-trans retinal, and photoisomerization to 13-cis triggers structural changes in protein. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. In this study, new chimeric proton-pumping rhodopsins, proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) were designed by replacing cytoplasmic loops with bovine Rh loops. Although G-protein was not activated by the PR chimeras, all 12 GR chimeras activated G-protein. The GR chimera containing the second cytoplasmic loop of bovine Rh did not activate G-protein. However, the chimera with a second and third double-loop further enhanced G-protein activation. Introduction of an E132Q mutation slowed the photocycle 30-fold and enhanced activation. The highest catalytic activity of the GR chimera was still 3,200 times lower than bovine Rh but only 64 times lower than amphioxus Go-rhodopsin. This GR chimera showed a strong absorption change of the amide-I band on a light-minus-dark difference FTIR spectrum which could represent a larger helical opening, important for G-protein activation. The light-dependent catalytic activity of this GR chimera makes it a potential optogenetic tool for enzymatic activation by light. PMID:24621599

  8. New Constraints on Dark Matter Effective Theories from Standard Model Loops

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2014-01-01

    We consider an effective field theory for a gauge singlet Dirac dark matter (DM) particle interacting with the Standard Model (SM) fields via effective operators suppressed by the scale $\\Lambda \\gtrsim 1$ TeV. We perform a systematic analysis of the leading loop contributions to spin-independent (SI) DM--nucleon scattering using renormalization group evolution between $\\Lambda$ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity-suppressed and spin-dependent can actually contribute to SI scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are comparable to LHC bounds, and will significantly improve in the near future. Interestingly, the loop contribution we find is maximally isospin violating even if the underlying theory is isospin conserving.

  9. Stepping out of homogeneity in loop quantum cosmology

    International Nuclear Information System (INIS)

    Rovelli, Carlo; Vidotto, Francesca

    2008-01-01

    We explore the extension of quantum cosmology outside the homogeneous approximation using the formalism of loop quantum gravity. We introduce a model where some of the inhomogeneous degrees of freedom are present, providing a tool for describing general fluctuations of quantum geometry near the initial singularity. We show that the dynamical structure of the model reduces to that of loop quantum cosmology in the Born-Oppenheimer approximation. This result corroborates the assumptions that ground loop cosmology sheds some light on the physical and mathematical relation between loop cosmology and full loop quantum gravity, and on the nature of the cosmological approximation. Finally, we show that the non-graph-changing Hamiltonian constraint considered in the context of algebraic quantum gravity provides a viable effective dynamics within this approximation

  10. Scalar loops and the Higgs mass in the Salam-Weinberg-Glashow model

    International Nuclear Information System (INIS)

    Ghose, P.

    1983-01-01

    It is shown that spontaneous symmetry breaking is predominantly driven by scalar loops in the standard Salam-Weinberg-Glashow model if lambdaapproximately equal to O(e 2 ). The Higgs mass is predicted to be O(64 GeV), which is considerably higher than the Coleman-Weinberg prediction (1973 Phys. Rev. D 7 1888). (author)

  11. Using structure to explore the sequence alignment space of remote homologs.

    Directory of Open Access Journals (Sweden)

    Andrew Kuziemko

    2011-10-01

    Full Text Available Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  12. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  13. Statistical alignment: computational properties, homology testing and goodness-of-fit

    DEFF Research Database (Denmark)

    Hein, J; Wiuf, Carsten; Møller, Martin

    2000-01-01

    The model of insertions and deletions in biological sequences, first formulated by Thorne, Kishino, and Felsenstein in 1991 (the TKF91 model), provides a basis for performing alignment within a statistical framework. Here we investigate this model.Firstly, we show how to accelerate the statistical...... alignment algorithms several orders of magnitude. The main innovations are to confine likelihood calculations to a band close to the similarity based alignment, to get good initial guesses of the evolutionary parameters and to apply an efficient numerical optimisation algorithm for finding the maximum...... analysis.Secondly, we propose a new homology test based on this model, where homology means that an ancestor to a sequence pair can be found finitely far back in time. This test has statistical advantages relative to the traditional shuffle test for proteins.Finally, we describe a goodness-of-fit test...

  14. High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Kim, Chan Soo; Hong, Seong Duk; Park, Hong Yoon

    2010-01-01

    PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype

  15. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Science.gov (United States)

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  16. A virtual closed loop method for closed loop identification

    NARCIS (Netherlands)

    Agüero, J.C.; Goodwin, G.C.; Hof, Van den P.M.J.

    2011-01-01

    Indirect methods for the identification of linear plant models on the basis of closed loop data are based on the use of (reconstructed) input signals that are uncorrelated with the noise. This generally requires exact (linear) controller knowledge. On the other hand, direct identification requires

  17. Simulation methods supporting homologation of Electronic Stability Control in vehicle variants

    Science.gov (United States)

    Lutz, Albert; Schick, Bernhard; Holzmann, Henning; Kochem, Michael; Meyer-Tuve, Harald; Lange, Olav; Mao, Yiqin; Tosolin, Guido

    2017-10-01

    Vehicle simulation has a long tradition in the automotive industry as a powerful supplement to physical vehicle testing. In the field of Electronic Stability Control (ESC) system, the simulation process has been well established to support the ESC development and application by suppliers and Original Equipment Manufacturers (OEMs). The latest regulation of the United Nations Economic Commission for Europe UN/ECE-R 13 allows also for simulation-based homologation. This extends the usage of simulation from ESC development to homologation. This paper gives an overview of simulation methods, as well as processes and tools used for the homologation of ESC in vehicle variants. The paper first describes the generic homologation process according to the European Regulation (UN/ECE-R 13H, UN/ECE-R 13/11) and U.S. Federal Motor Vehicle Safety Standard (FMVSS 126). Subsequently the ESC system is explained as well as the generic application and release process at the supplier and OEM side. Coming up with the simulation methods, the ESC development and application process needs to be adapted for the virtual vehicles. The simulation environment, consisting of vehicle model, ESC model and simulation platform, is explained in detail with some exemplary use-cases. In the final section, examples of simulation-based ESC homologation in vehicle variants are shown for passenger cars, light trucks, heavy trucks and trailers. This paper is targeted to give a state-of-the-art account of the simulation methods supporting the homologation of ESC systems in vehicle variants. However, the described approach and the lessons learned can be used as reference in future for an extended usage of simulation-supported releases of the ESC system up to the development and release of driver assistance systems.

  18. Mass inflation in the loop black hole

    International Nuclear Information System (INIS)

    Brown, Eric G.; Mann, Robert; Modesto, Leonardo

    2011-01-01

    In classical general relativity the Cauchy horizon within a two-horizon black hole is unstable via a phenomenon known as mass inflation, in which the mass parameter (and the spacetime curvature) of the black hole diverges at the Cauchy horizon. Here we study this effect for loop black holes - quantum gravitationally corrected black holes from loop quantum gravity - whose construction alleviates the r=0 singularity present in their classical counterparts. We use a simplified model of mass inflation, which makes use of the generalized Dray-'t Hooft relation, to conclude that the Cauchy horizon of loop black holes indeed results in a curvature singularity similar to that found in classical black holes. The Dray-'t Hooft relation is of particular utility in the loop black hole because it does not directly rely upon Einstein's field equations. We elucidate some of the interesting and counterintuitive properties of the loop black hole, and corroborate our results using an alternate model of mass inflation due to Ori.

  19. Causal Loop-based Modeling on System Dynamics for Risk Communication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Ju [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kang, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    It is true that a national policy should be based on public confidence, analyzing their recognition and attitude on life safety, since they have very special risk perception characteristics. For achieving effective public consensus regarding a national policy such as nuclear power, we have to utilize a risk communication (hereafter, calls RiCom) process. However, domestic research models on RiCom process do not provide a practical guideline, because most of them are still superficial and stick on an administrative aspect. Also, most of current models have no experience in terms of verification and validation for effective applications to diverse stake holders. This study focuses on public's dynamic mechanism through the modeling on system dynamics, basically utilizing casual loop diagram (CLD) and stock flow diagram (SFD), which regards as a critical technique for decision making in many industrial RiCom models.

  20. Causal Loop-based Modeling on System Dynamics for Risk Communication

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Kang, Kyung Min

    2009-01-01

    It is true that a national policy should be based on public confidence, analyzing their recognition and attitude on life safety, since they have very special risk perception characteristics. For achieving effective public consensus regarding a national policy such as nuclear power, we have to utilize a risk communication (hereafter, calls RiCom) process. However, domestic research models on RiCom process do not provide a practical guideline, because most of them are still superficial and stick on an administrative aspect. Also, most of current models have no experience in terms of verification and validation for effective applications to diverse stake holders. This study focuses on public's dynamic mechanism through the modeling on system dynamics, basically utilizing casual loop diagram (CLD) and stock flow diagram (SFD), which regards as a critical technique for decision making in many industrial RiCom models

  1. Loop kinematics

    International Nuclear Information System (INIS)

    Migdal, A.A.

    1982-01-01

    Basic operators acting in the loop space are introduced. The topology of this space and properties of the Stokes type loop functionals are discussed. The parametrically invariant loop calculus developed here is used in the loop dynamics

  2. Automated one-loop calculations with GoSam

    International Nuclear Information System (INIS)

    Cullen, Gavin; Greiner, Nicolas; Heinrich, Gudrun; Reiter, Thomas; Luisoni, Gionata; Mastrolia, Pierpaolo; Ossola, Giovanni; Tramontano, Francesco

    2012-01-01

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)

  3. Automated One-Loop Calculations with GoSam

    CERN Document Server

    Cullen, Gavin; Heinrich, Gudrun; Luisoni, Gionata; Mastrolia, Pierpaolo; Ossola, Giovanni; Reiter, Thomas; Tramontano, Francesco

    2012-01-01

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop.

  4. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification

    Directory of Open Access Journals (Sweden)

    Jeliazko R. Jeliazkov

    2018-03-01

    Full Text Available Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this evolution through cycles of mutation and selection leading to enhanced antibody specificity and affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the conformational flexibility of the antibody’s antigen-binding paratope to minimize entropic losses incurred upon binding. In recent years, computational and experimental approaches have tested this hypothesis on a small number of antibodies, often observing a decrease in the flexibility of the complementarity determining region (CDR loops that typically comprise the paratope and in particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, there were a few exceptions and previous studies were limited to a small handful of cases. Here, we determined the structural flexibility of the CDR-H3 loop for thousands of recent homology models of the human peripheral blood cell antibody repertoire using rigidity theory. We found no clear delineation in the flexibility of naïve and antigen-experienced antibodies. To account for possible sources of error, we additionally analyzed hundreds of human and mouse antibodies in the Protein Data Bank through both rigidity theory and B-factor analysis. By both metrics, we observed only a slight decrease in the CDR-H3 loop flexibility when comparing affinity matured antibodies to naïve antibodies, and the decrease was not as drastic as previously reported. Further analysis, incorporating molecular dynamics simulations, revealed a spectrum of changes in flexibility. Our results suggest that rigidification may be just one of many biophysical mechanisms for increasing affinity.

  5. Using Video Modeling with Substitutable Loops to Teach Varied Play to Children with Autism

    Science.gov (United States)

    Dupere, Sally; MacDonald, Rebecca P. F.; Ahearn, William H.

    2013-01-01

    Children with autism often engage in repetitive play with little variation in the actions performed or items used. This study examined the use of video modeling with scripted substitutable loops on children's pretend play with trained and untrained characters. Three young children with autism were shown a video model of scripted toy play that…

  6. An open-loop, physiologic model-based decision support system can provide appropriate ventilator settings

    DEFF Research Database (Denmark)

    Karbing, Dan Stieper; Spadaro, Savino; Dey, Nilanjan

    2018-01-01

    OBJECTIVES: To evaluate the physiologic effects of applying advice on mechanical ventilation by an open-loop, physiologic model-based clinical decision support system. DESIGN: Prospective, observational study. SETTING: University and Regional Hospitals' ICUs. PATIENTS: Varied adult ICU population...

  7. Generalized nucleation and looping model for epigenetic memory of histone modifications

    Science.gov (United States)

    Erdel, Fabian; Greene, Eric C.

    2016-01-01

    Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173

  8. Effects of design variables predicted by a steady - state thermal performance analysis model of a loop heat pipe

    International Nuclear Information System (INIS)

    Jung, Eui Guk; Boo, Joon Hong

    2008-01-01

    This study deals with a mathematical modeling for the steady-state temperature characteristics of an entire loop heat pipe. The lumped layer model was applied to each node for temperature analysis. The flat type evaporator and condenser in the model had planar dimensions of 40 mm (W) x 50 mm (L). The wick material was a sintered metal and the working fluid was methanol. The molecular kinetic theory was employed to model the phase change phenomena in the evaporator and the condenser. Liquid-vapor interface configuration was expressed by the thin film theories available in the literature. Effects of design factors of loop heat pipe on the thermal performance were investigated by the modeling proposed in this study

  9. Comments on two-loop Kac-Moody algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, L A; Gomes, J F; Zimerman, A H [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Schwimmer, A [Istituto Nazionale di Fisica Nucleare, Trieste (Italy)

    1991-10-01

    It is shown that the two-loop Kac-Moody algebra is equivalent to a two variable loop algebra and a decouple {beta}-{gamma} system. Similarly WZNW and CSW models having as algebraic structure the Kac-Moody algebra are equivalent to an infinity to versions of the corresponding ordinary models and decoupled Abelian fields. (author). 15 refs.

  10. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    Energy Technology Data Exchange (ETDEWEB)

    Kobelski, Adam R.; McKenzie, David E. [Department of Physics, P.O. Box 173840, Montana State University, Bozeman, MT 59717-3840 (United States); Donachie, Martin, E-mail: kobelski@solar.physics.montana.edu [University of Glasgow, Glasgow, G128QQ, Scotland (United Kingdom)

    2014-05-10

    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  11. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    International Nuclear Information System (INIS)

    Kobelski, Adam R.; McKenzie, David E.; Donachie, Martin

    2014-01-01

    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  12. Nonequilibrium Chromosome Looping via Molecular Slip Links

    Science.gov (United States)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  13. Homologous series of induced early mutants in indican rice. Pt.1. The production of homologous series of early mutants

    International Nuclear Information System (INIS)

    Chen Xiulan; Yang Hefeng; He Zhentian; Han Yuepeng; Liu Xueyu

    1999-01-01

    The percentage of homologous series of early mutants induced from the same Indican rice variety were almost the same (1.37%∼1.64%) in 1983∼1993, but the ones from the different eco-typical varieties were different. The early variety was 0.73%, the mid variety was 1.51%, and the late variety was 1.97%. The percentage of homologous series of early mutants from the varieties with the same pedigree and relationship were similar, but the one from the cog nation were lower than those from distant varieties. There are basic laws and characters in the homologous series of early mutants: 1. The inhibited phenotype is the basic of the homologous series of early mutants; 2. The production of the homologous series of early mutants is closely related with the growing period of the parent; 3. The parallel mutation of the stem and leaves are simultaneously happened with the variation of early or late maturing; 4. The occurrence of the homologous series of early mutants is in a state of imbalance. According to the law of parallel variability, the production of homologous series of early mutants can be predicted as long as the parents' classification of plant, pedigree and ecological type are identified. Therefore, the early breeding can be guided by the law of homologous series of early mutants

  14. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    Science.gov (United States)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  15. Zero point energy of renormalized Wilson loops

    International Nuclear Information System (INIS)

    Hidaka, Yoshimasa; Pisarski, Robert D.

    2009-01-01

    The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term.

  16. Role of the EHD2 unstructured loop in dimerization, protein binding and subcellular localization.

    Directory of Open Access Journals (Sweden)

    Kriti Bahl

    Full Text Available The C-terminal Eps 15 Homology Domain proteins (EHD1-4 play important roles in regulating endocytic trafficking. EHD2 is the only family member whose crystal structure has been solved, and it contains an unstructured loop consisting of two proline-phenylalanine (PF motifs: KPFRKLNPF. In contrast, despite EHD2 having nearly 70% amino acid identity with its paralogs, EHD1, EHD3 and EHD4, the latter proteins contain a single KPF or RPF motif, but no NPF motif. In this study, we sought to define the precise role of each PF motif in EHD2's homo-dimerization, binding with the protein partners, and subcellular localization. To test the role of the NPF motif, we generated an EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. We demonstrated that this mutant lost both its ability to dimerize and bind to Syndapin2. However, it continued to localize primarily to the cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants displayed normal dimerization and Syndapin2 binding, but exhibited markedly increased nuclear localization and reduced association with the plasma membrane. We then hypothesized that the single PF motif of EHD1 (that aligns with the KPF of EHD2 might be responsible for both binding and localization functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, interaction with MICAL-L1 and Syndapin2, as well as localization to tubular recycling endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. Overall, our data suggest that the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the plasma membrane, whereas the proline residue is essential for EHD2 dimerization and binding. These studies support the recently proposed model in which the EHD2 N-terminal region may regulate the availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus promoting

  17. Homology building as a means to define antigenic epitopes on dihydrofolate reductase (DHFR) from Plasmodium falciparum

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Christensen, Inge T; Jørgensen, Flemming S

    2004-01-01

    in the gene coding for Pf-DHFR. Furthermore, we wanted to study the potential use of homology models in general and of Pf-DHFR in particular in predicting antigenic malarial surface epitopes. METHODS: A homology model of Pf-DHFR domain was employed to define an epitope for the development of site...

  18. Improving model construction of profile HMMs for remote homology detection through structural alignment

    Directory of Open Access Journals (Sweden)

    Zaverucha Gerson

    2007-11-01

    Full Text Available Abstract Background Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the Twilight Zone, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance. Results We used the SCOP database to perform our experiments. Structural alignments were obtained using the 3DCOFFEE and MAMMOTH-mult tools; sequence alignments were obtained using CLUSTALW, TCOFFEE, MAFFT and PROBCONS. We performed leave-one-family-out cross-validation over super-families. Performance was evaluated through ROC curves and paired two tailed t-test. Conclusion We observed that pHMMs derived from structural alignments performed significantly better than pHMMs derived from sequence alignment in low-identity regions, mainly below 20%. We believe this is because structural alignment tools are better at focusing on the important patterns that are more often conserved through evolution, resulting in higher quality pHMMs. On the other hand, sensitivity of these tools is still quite low for these low-identity regions. Our results suggest a number of possible directions for improvements in this area.

  19. Improving model construction of profile HMMs for remote homology detection through structural alignment.

    Science.gov (United States)

    Bernardes, Juliana S; Dávila, Alberto M R; Costa, Vítor S; Zaverucha, Gerson

    2007-11-09

    Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs) are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the Twilight Zone, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance. We used the SCOP database to perform our experiments. Structural alignments were obtained using the 3DCOFFEE and MAMMOTH-mult tools; sequence alignments were obtained using CLUSTALW, TCOFFEE, MAFFT and PROBCONS. We performed leave-one-family-out cross-validation over super-families. Performance was evaluated through ROC curves and paired two tailed t-test. We observed that pHMMs derived from structural alignments performed significantly better than pHMMs derived from sequence alignment in low-identity regions, mainly below 20%. We believe this is because structural alignment tools are better at focusing on the important patterns that are more often conserved through evolution, resulting in higher quality pHMMs. On the other hand, sensitivity of these tools is still quite low for these low-identity regions. Our results suggest a number of possible directions for improvements in this area.

  20. Behavior of a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon

    2015-01-01

    A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....

  1. One loop beta functions and fixed points in higher derivative sigma models

    International Nuclear Information System (INIS)

    Percacci, Roberto; Zanusso, Omar

    2010-01-01

    We calculate the one loop beta functions of nonlinear sigma models in four dimensions containing general two- and four-derivative terms. In the O(N) model there are four such terms and nontrivial fixed points exist for all N≥4. In the chiral SU(N) models there are in general six couplings, but only five for N=3 and four for N=2; we find fixed points only for N=2, 3. In the approximation considered, the four-derivative couplings are asymptotically free but the coupling in the two-derivative term has a nonzero limit. These results support the hypothesis that certain sigma models may be asymptotically safe.

  2. Homology modeling of Homo sapiens lipoic acid synthase: Substrate docking and insights on its binding mode.

    Science.gov (United States)

    Krishnamoorthy, Ezhilarasi; Hassan, Sameer; Hanna, Luke Elizabeth; Padmalayam, Indira; Rajaram, Rama; Viswanathan, Vijay

    2017-05-07

    Lipoic acid synthase (LIAS) is an iron-sulfur cluster mitochondrial enzyme which catalyzes the final step in the de novo pathway for the biosynthesis of lipoic acid, a potent antioxidant. Recently there has been significant interest in its role in metabolic diseases and its deficiency in LIAS expression has been linked to conditions such as diabetes, atherosclerosis and neonatal-onset epilepsy, suggesting a strong inverse correlation between LIAS reduction and disease status. In this study we use a bioinformatics approach to predict its structure, which would be helpful to understanding its role. A homology model for LIAS protein was generated using X-ray crystallographic structure of Thermosynechococcus elongatus BP-1 (PDB ID: 4U0P). The predicted structure has 93% of the residues in the most favour region of Ramachandran plot. The active site of LIAS protein was mapped and docked with S-Adenosyl Methionine (SAM) using GOLD software. The LIAS-SAM complex was further refined using molecular dynamics simulation within the subsite 1 and subsite 3 of the active site. To the best of our knowledge, this is the first study to report a reliable homology model of LIAS protein. This study will facilitate a better understanding mode of action of the enzyme-substrate complex for future studies in designing drugs that can target LIAS protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Modelling of Wheat-Flour Dough Mixing as an Open-Loop Hysteretic Process

    Czech Academy of Sciences Publication Activity Database

    Anderssen, R.; Kružík, Martin

    2013-01-01

    Roč. 18, č. 2 (2013), s. 283-293 ISSN 1531-3492 R&D Projects: GA AV ČR IAA100750802 Keywords : Dissipation * Dough mixing * Rate-independent systems Subject RIV: BA - General Mathematics Impact factor: 0.628, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kruzik-modelling of wheat-flour dough mixing as an open-loop hysteretic process.pdf

  4. Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System

    Science.gov (United States)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.

    2016-01-01

    Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.

  5. Cumulative growth of minor hysteresis loops in the Kolmogorov model

    International Nuclear Information System (INIS)

    Meilikhov, E. Z.; Farzetdinova, R. M.

    2013-01-01

    The phenomenon of nonrepeatability of successive remagnetization cycles in Co/M (M = Pt, Pd, Au) multilayer film structures is explained in the framework of the Kolmogorov crystallization model. It is shown that this model of phase transitions can be adapted so as to adequately describe the process of magnetic relaxation in the indicated systems with “memory.” For this purpose, it is necessary to introduce some additional elements into the model, in particular, (i) to take into account the fact that every cycle starts from a state “inherited” from the preceding cycle and (ii) to assume that the rate of growth of a new magnetic phase depends on the cycle number. This modified model provides a quite satisfactory qualitative and quantitative description of all features of successive magnetic relaxation cycles in the system under consideration, including the surprising phenomenon of cumulative growth of minor hysteresis loops.

  6. The one loop calculation of the strong coupling β function in the Toy Model

    International Nuclear Information System (INIS)

    Bai Zhiming; Jiang Yuanfang

    1991-01-01

    The background field quantization is used to calculate the one-loop β function in the Toy Model which has the strong coupling and the SU(3) symmetry. The function obtained is consistent with the Appalquist-Carrazone theorem in the low energy condition

  7. Loop quantum cosmology of the Bianchi I model: complete quantization

    International Nuclear Information System (INIS)

    Martín-Benito, M; Garay, L J; Mena Marugán, G A; Wilson-Ewing, E

    2012-01-01

    We complete the canonical quantization of the vacuum Bianchi I model within the improved dynamics scheme of loop quantum cosmology, characterizing the Hilbert structure of the physical states and providing a complete set of observables acting on them. In order to achieve this task, it has been essential to determine the structure of the separable superselection sectors that arise owing to the polymeric quantization, and to prove that the initial value problem obtained when regarding the Hamiltonian constraint as an evolution equation, interpreting the volume as the evolution parameter, is well-posed.

  8. Loop quantum cosmology of k=1 FRW models

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet; Vandersloot, Kevin

    2007-01-01

    The closed, k=1, FRW model coupled to a massless scalar field is investigated in the framework of loop quantum cosmology using analytical and numerical methods. As in the k=0 case, the scalar field can be again used as emergent time to construct the physical Hilbert space and introduce Dirac observables. The resulting framework is then used to address a major challenge of quantum cosmology: resolving the big-bang singularity while retaining agreement with general relativity at large scales. It is shown that the framework fulfills this task. In particular, for states which are semiclassical at some late time, the big bang is replaced by a quantum bounce and a recollapse occurs at the value of the scale factor predicted by classical general relativity. Thus, the ''difficulties'' pointed out by Green and Unruh in the k=1 case do not arise in a more systematic treatment. As in k=0 models, quantum dynamics is deterministic across the deep Planck regime. However, because it also retains the classical recollapse, in contrast to the k=0 case one is now led to a cyclic model. Finally, we clarify some issues raised by Laguna's recent work addressed to computational physicists

  9. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Kalpana Mujoo

    2017-11-01

    Full Text Available The nitric oxide (NO-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1. Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18, which causes stem cell differentiation has no effect on double-strand break (DSB repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells.

  10. BMN correlators by loop equations

    International Nuclear Information System (INIS)

    Eynard, Bertrand; Kristjansen, Charlotte

    2002-01-01

    In the BMN approach to N=4 SYM a large class of correlators of interest are expressible in terms of expectation values of traces of words in a zero-dimensional gaussian complex matrix model. We develop a loop-equation based, analytic strategy for evaluating such expectation values to any order in the genus expansion. We reproduce the expectation values which were needed for the calculation of the one-loop, genus one correction to the anomalous dimension of BMN-operators and which were earlier obtained by combinatorial means. Furthermore, we present the expectation values needed for the calculation of the one-loop, genus two correction. (author)

  11. Two-loop polygon Wilson loops in N = 4 SYM

    International Nuclear Information System (INIS)

    Anastasiou, C.; Brandhuber, A.; Heslop, P.; Spence, B.; Travaglini, G.; Khoze, V.V.

    2009-01-01

    We compute for the first time the two-loop corrections to arbitrary n-gon lightlike Wilson loops in N = 4 supersymmetric Yang-Mills theory, using efficient numerical methods. The calculation is motivated by the remarkable agreement between the finite part of planar six-point MHV amplitudes and hexagon Wilson loops which has been observed at two loops. At n = 6 we confirm that the ABDK/BDS ansatz must be corrected by adding a remainder function, which depends only on conformally invariant ratios of kinematic variables. We numerically compute remainder functions for n = 7,8 and verify dual conformal invariance. Furthermore, we study simple and multiple collinear limits of the Wilson loop remainder functions and demonstrate that they have precisely the form required by the collinear factorisation of the corresponding two-loop n-point amplitudes. The number of distinct diagram topologies contributing to the n-gon Wilson loops does not increase with n, and there is a fixed number of 'master integrals', which we have computed. Thus we have essentially computed general polygon Wilson loops, and if the correspondence with amplitudes continues to hold, all planar n-point two-loop MHV amplitudes in the N = 4 theory.

  12. Stability, structure, and evolution of cool loops

    International Nuclear Information System (INIS)

    Cally, P.S.; Robb, T.D.

    1991-01-01

    The criteria for the existence and stability of cool loops are reexamined. It is found that the stability of the loops strongly depends on the form of the heating and radiative loss functions and that if the Ly-alpha peak which appears in most calculations of the radiative loss function is real, cool loops are almost certainly unstable. Removing the hydrogen contribution from the recent loss function Q(T) by Cook et al. (1989) does not produce the much-used result, Q proportional to T-cubed, which is so favorable to cool loop stability. Even using the probably unrealistically favorable loss function Q1 of Cook et al. with the hydrogen contribution removed, the maximum temperature attainable in stable cool loops is a factor of 2-3 too small to account for the excess emission observed in lower transition region lines. Dynamical simulations of cool loop instabilities reveal that the final state of such a model is the hot loop equilibrium. 26 refs

  13. Colored Kauffman homology and super-A-polynomials

    International Nuclear Information System (INIS)

    Nawata, Satoshi; Ramadevi, P.; Zodinmawia

    2014-01-01

    We study the structural properties of colored Kauffman homologies of knots. Quadruple-gradings play an essential role in revealing the differential structure of colored Kauffman homology. Using the differential structure, the Kauffman homologies carrying the symmetric tensor products of the vector representation for the trefoil and the figure-eight are determined. In addition, making use of relations from representation theory, we also obtain the HOMFLY homologies colored by rectangular Young tableaux with two rows for these knots. Furthermore, the notion of super-A-polynomials is extended in order to encompass two-parameter deformations of PSL(2,ℂ) character varieties

  14. A differential equation approach to minor loops in the Jiles-Atherton hysteresis model

    International Nuclear Information System (INIS)

    Carpenter, K.H.

    1991-01-01

    Jiles and Atherton, in a series of papers, present physically based differential equations for magnetization in ferromagnetic materials. however, if one directly solves their differential equations, the minor loops obtained can be negative slopes, which is a nonphysical behavior. Only one of their papers gives a method for obtaining minor loops, and the method does not use a differential equation, but requires a priori knowledge of the loop turning points in order to obtain a scale factor and offset which allow a portion of a major loop to serve as a portion of a minor one. In this paper, the reason for the failure of the differential equations to yield physical minor loops is explained, and a modified solution for minor loops is presented which retains the features of Jiles and Atherton's original minor loops, but only requires knowledge of the initial point on each portion of the loop to obtain the solution. This yields a general differential equation formulation for the Jiles-Atherton theory that can be used with circuit simulations having arbitrary excitations and initial conditions for ferromagnetic components

  15. Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE

    Science.gov (United States)

    Kuznetsov, N. V.; Leonov, G. A.; Yuldashev, M. V.; Yuldashev, R. V.

    2017-10-01

    During recent years it has been shown that hidden oscillations, whose basin of attraction does not overlap with small neighborhoods of equilibria, may significantly complicate simulation of dynamical models, lead to unreliable results and wrong conclusions, and cause serious damage in drilling systems, aircrafts control systems, electromechanical systems, and other applications. This article provides a survey of various phase-locked loop based circuits (used in satellite navigation systems, optical, and digital communication), where such difficulties take place in MATLAB and SPICE. Considered examples can be used for testing other phase-locked loop based circuits and simulation tools, and motivate the development and application of rigorous analytical methods for the global analysis of phase-locked loop based circuits.

  16. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery

    Directory of Open Access Journals (Sweden)

    Morrical Scott W

    2010-12-01

    Full Text Available Abstract Homologous recombination (HR, a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR. T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms.

  17. An HMM posterior decoder for sequence feature prediction that includes homology information

    DEFF Research Database (Denmark)

    Käll, Lukas; Krogh, Anders Stærmose; Sonnhammer, Erik L. L.

    2005-01-01

    Motivation: When predicting sequence features like transmembrane topology, signal peptides, coil-coil structures, protein secondary structure or genes, extra support can be gained from homologs. Results: We present here a general hidden Markov model (HMM) decoding algorithm that combines probabil......Motivation: When predicting sequence features like transmembrane topology, signal peptides, coil-coil structures, protein secondary structure or genes, extra support can be gained from homologs. Results: We present here a general hidden Markov model (HMM) decoding algorithm that combines......://phobius.cgb.ki.se/poly.html . An implementation of the algorithm is available on request from the authors....

  18. On the One Loop Corrections to Inflation II

    DEFF Research Database (Denmark)

    Sloth, Martin Snoager

    2006-01-01

    In this paper we extend our previous treatment of the one-loop corrections to inflation. Previously we calculated the one-loop corrections to the background and the two-point correlation function of inflaton fluctuations in a specific model of chaotic inflation. We showed that the loop correction...... model of chaotic inflation with a quadratic inflationary potential. We discuss the physical interpretation of the effect in terms of the tensor-to-scalar consistency relation. Finally, we discuss the relation to the work of Weinberg on quantum contributions to cosmological correlators....

  19. A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp. medellin Cry 11Bb toxin deduced by homology modelling

    Directory of Open Access Journals (Sweden)

    Gutierrez Pablo

    2001-01-01

    Full Text Available Cry11Bb is an insecticidal crystal protein produced by Bacillus thuringiensis subsp. medellin during its stationary phase; this ¶-endotoxin is active against dipteran insects and has great potential for mosquito borne disease control. Here, we report the first theoretical model of the tridimensional structure of a Cry11 toxin. The tridimensional structure of the Cry11Bb toxin was obtained by homology modelling on the structures of the Cry1Aa and Cry3Aa toxins. In this work we give a brief description of our model and hypothesize the residues of the Cry11Bb toxin that could be important in receptor recognition and pore formation. This model will serve as a starting point for the design of mutagenesis experiments aimed to the improvement of toxicity, and to provide a new tool for the elucidation of the mechanism of action of these mosquitocidal proteins.

  20. Homology modeling, molecular docking and DNA binding studies of nucleotide excision repair UvrC protein from M. tuberculosis.

    Science.gov (United States)

    Parulekar, Rishikesh S; Barage, Sagar H; Jalkute, Chidambar B; Dhanavade, Maruti J; Fandilolu, Prayagraj M; Sonawane, Kailas D

    2013-08-01

    Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.

  1. In silico predictive studies of mAHR congener binding using homology modelling and molecular docking.

    Science.gov (United States)

    Panda, Roshni; Cleave, A Suneetha Susan; Suresh, P K

    2014-09-01

    The aryl hydrocarbon receptor (AHR) is one of the principal xenobiotic, nuclear receptor that is responsible for the early events involved in the transcription of a complex set of genes comprising the CYP450 gene family. In the present computational study, homology modelling and molecular docking were carried out with the objective of predicting the relationship between the binding efficiency and the lipophilicity of different polychlorinated biphenyl (PCB) congeners and the AHR in silico. Homology model of the murine AHR was constructed by several automated servers and assessed by PROCHECK, ERRAT, VERIFY3D and WHAT IF. The resulting model of the AHR by MODWEB was used to carry out molecular docking of 36 PCB congeners using PatchDock server. The lipophilicity of the congeners was predicted using the XLOGP3 tool. The results suggest that the lipophilicity influences binding energy scores and is positively correlated with the same. Score and Log P were correlated with r = +0.506 at p = 0.01 level. In addition, the number of chlorine (Cl) atoms and Log P were highly correlated with r = +0.900 at p = 0.01 level. The number of Cl atoms and scores also showed a moderate positive correlation of r = +0.481 at p = 0.01 level. To the best of our knowledge, this is the first study employing PatchDock in the docking of AHR to the environmentally deleterious congeners and attempting to correlate structural features of the AHR with its biochemical properties with regards to PCBs. The result of this study are consistent with those of other computational studies reported in the previous literature that suggests that a combination of docking, scoring and ranking organic pollutants could be a possible predictive tool for investigating ligand-mediated toxicity, for their subsequent validation using wet lab-based studies. © The Author(s) 2012.

  2. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  3. Persistent homology and string vacua

    Energy Technology Data Exchange (ETDEWEB)

    Cirafici, Michele [Center for Mathematical Analysis, Geometry and Dynamical Systems,Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Institut des Hautes Études Scientifiques,Le Bois-Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette (France)

    2016-03-08

    We use methods from topological data analysis to study the topological features of certain distributions of string vacua. Topological data analysis is a multi-scale approach used to analyze the topological features of a dataset by identifying which homological characteristics persist over a long range of scales. We apply these techniques in several contexts. We analyze N=2 vacua by focusing on certain distributions of Calabi-Yau varieties and Landau-Ginzburg models. We then turn to flux compactifications and discuss how we can use topological data analysis to extract physical information. Finally we apply these techniques to certain phenomenologically realistic heterotic models. We discuss the possibility of characterizing string vacua using the topological properties of their distributions.

  4. Semiclassical analysis of loop quantum gravity

    International Nuclear Information System (INIS)

    Conrady, F.

    2005-01-01

    In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)

  5. Semiclassical analysis of loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Conrady, F.

    2005-10-17

    In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)

  6. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    Directory of Open Access Journals (Sweden)

    Yaroslav I Molkov

    Full Text Available Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2 exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient

  7. One-loop potential in the new string model with negative stiffness

    International Nuclear Information System (INIS)

    Kleinert, H.; Chervyakov, A.M.; Nesterenko, V.V.

    1996-01-01

    The color-electric flux tube between quarks has a finite thickness therefore also a finite curvature stiffness. Contrary to earlier rigid-string proposal by Polyakov and Kleinert and motivated by the properties of a magnetic flux tube in a type-II superconductor, we put forward the hypothesis that the stiffness is negative. We set up and study the properties of an idealized string model with such negative stiffness. In contrast to the rigid string, the propagator in the new model has no unphysical pole. One-loop calculations show that the model generates an interquark potential which does not contain the square root singularity even for moderate values of a negative stiffness. At large distances, the potential has usual linearly rising term with the universal Luescher correction

  8. Quark Loop Effects on Dressed Gluon Propagator in Framework of Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.

  9. Rigidification of the autolysis loop enhances Na+ binding to thrombin

    Science.gov (United States)

    Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei; Bah, Alaji; Di Cera, Enrico

    2011-01-01

    Binding of Na+ to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na+ is weak due to large heat capacity and enthalpy changes associated with binding, and the Kd=80 mM ensures only 64% saturation of the site at the concentration of Na+ in the blood (140 mM). Residues controlling Na+ binding and activation have been identified. Yet, attempts to improve the interaction of Na+ with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na+ affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na+ binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes. PMID:21536369

  10. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Directory of Open Access Journals (Sweden)

    Sha Lu

    Full Text Available In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  11. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daniel P Kane

    Full Text Available In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis.

  12. Rectangular amplitudes, conformal blocks, and applications to loop models

    Energy Technology Data Exchange (ETDEWEB)

    Bondesan, Roberto, E-mail: roberto.bondesan@cea.fr [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Jacobsen, Jesper L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, Hubert [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)

    2013-02-21

    In this paper we continue the investigation of partition functions of critical systems on a rectangle initiated in [R. Bondesan, et al., Nucl. Phys. B 862 (2012) 553-575]. Here we develop a general formalism of rectangle boundary states using conformal field theory, adapted to describe geometries supporting different boundary conditions. We discuss the computation of rectangular amplitudes and their modular properties, presenting explicit results for the case of free theories. In a second part of the paper we focus on applications to loop models, discussing in details lattice discretizations using both numerical and analytical calculations. These results allow to interpret geometrically conformal blocks, and as an application we derive new probability formulas for self-avoiding walks.

  13. Home-Based Risk of Falling Assessment Test Using a Closed-Loop Balance Model.

    Science.gov (United States)

    Ayena, Johannes C; Zaibi, Helmi; Otis, Martin J-D; Menelas, Bob-Antoine J

    2016-12-01

    The aim of this study is to improve and facilitate the methods used to assess risk of falling at home among older people through the computation of a risk of falling in real time in daily activities. In order to increase a real time computation of the risk of falling, a closed-loop balance model is proposed and compared with One-Leg Standing Test (OLST). This balance model allows studying the postural response of a person having an unpredictable perturbation. Twenty-nine volunteers participated in this study for evaluating the effectiveness of the proposed system which includes seventeen elder participants: ten healthy elderly ( 68.4 ±5.5 years), seven Parkinson's disease (PD) subjects ( 66.28 ±8.9 years), and twelve healthy young adults ( 28.27 ±3.74 years). Our work suggests that there is a relationship between OLST score and the risk of falling based on center of pressure measurement with four low cost force sensors located inside an instrumented insole, which could be predicted using our suggested closed-loop balance model. For long term monitoring at home, this system could be included in a medical electronic record and could be useful as a diagnostic aid tool.

  14. The second extracellular loop of the adenosine A1 receptor mediates activity of allosteric enhancers.

    Science.gov (United States)

    Kennedy, Dylan P; McRobb, Fiona M; Leonhardt, Susan A; Purdy, Michael; Figler, Heidi; Marshall, Melissa A; Chordia, Mahendra; Figler, Robert; Linden, Joel; Abagyan, Ruben; Yeager, Mark

    2014-02-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists.

  15. One-loop beta functions for the orientable non-commutative Gross Neveu model TH1"-->

    Science.gov (United States)

    Lakhoua, A.; Vignes-Tourneret, F.; Wallet, J.-C.

    2007-11-01

    We compute at the one-loop order the β-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The β-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.

  16. Random walk loop soups and conformal loop ensembles

    NARCIS (Netherlands)

    van de Brug, T.; Camia, F.; Lis, M.

    2016-01-01

    The random walk loop soup is a Poissonian ensemble of lattice loops; it has been extensively studied because of its connections to the discrete Gaussian free field, but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of the Brownian loop soup of Lawler and Werner, a

  17. Electron cyclotron wave acceleration outside a flaring loop

    Science.gov (United States)

    Sprangle, P.; Vlahos, L.

    1983-01-01

    A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.

  18. Electron cyclotron wave acceleration outside a flaring loop

    International Nuclear Information System (INIS)

    Sprangle, P.; Vlahos, L.

    1983-01-01

    We propose a model for the secondary acceleration of electrons outside a flaring loop. Our results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. We show that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations

  19. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  20. Renormalization of loop functions for all loops

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-01-01

    It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j

  1. Loop corrections to primordial non-Gaussianity

    Science.gov (United States)

    Boran, Sibel; Kahya, E. O.

    2018-02-01

    We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.

  2. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  3. Zero Point Energy of Renormalized Wilson Loops

    OpenAIRE

    Hidaka, Yoshimasa; Pisarski, Robert D.

    2009-01-01

    The quark antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero wh...

  4. Loop calculus for lattice gauge theories

    International Nuclear Information System (INIS)

    Gambini, R.; Leal, L.; Trias, A.; Departamento de Fisica Aplicada, Facultad de Ingenieria, Universidad Central de Venezuela, Apartado 47724, Caracas 1051, Venezuela; Departament de Matematiques, Universitat Politecnica de Catalunya, Escuela Tecnica Superior de Enginyers de Telecomunicaciones, Barcelona 08034, Spain)

    1989-01-01

    Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(N) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2

  5. On (co)homology of Frobenius Poisson algebras

    OpenAIRE

    Zhu, Can; Van Oystaeyen, Fred; ZHANG, Yinhuo

    2014-01-01

    In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisk...

  6. Order α'(two-loop) equivalence of the string equations of motion and the σ-model Weyl invariance conditions

    International Nuclear Information System (INIS)

    Metsaev, R.R.; Tseytlin, A.A.

    1987-01-01

    We prove the on-shell equivalence of the order α' terms in the string effective equations (for the graviton, dilaton and the antisymmetric tensor) to the vanishing of the corresponding (two-loop) terms in the Weyl anomaly coefficients for the general bosonic σ-model. We first determine the α' term in the string effective action starting with the known expression for the 3- and 4-point string amplitudes. Then we compute the two-loop β-function in the general σ-model with the antisymmetric tensor coupling. Special emphasis is made on the renormalization scheme dependence of the β-function. Our result disagrees with the previously known one and cannot be manifestly expressed in terms of the generalized curvature for the connection with torsion. We also prove (to the order α' 2 ) that the parallelizable spaces are solutions of the string equations of motion and establish the complete 3-loop expression for the 'central charge' coefficient. (orig.)

  7. A complex approach to the blue-loop problem

    Science.gov (United States)

    Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga

    2015-08-01

    The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.

  8. First step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 code

    International Nuclear Information System (INIS)

    Dominguez, L.; Camargo, C.T.M.

    1984-09-01

    The first step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 computer code is presented. This step consists of the introduction of a simplified model for simulating the steam generator. This model is the GEVAP computer code, integrant part of LOOP code, which simulates the primary coolant circuit of PWR nuclear power plants during transients. The ALMOD3 computer code has a model for the steam generator, called UTSG, which is very detailed. This model has spatial dependence, correlations for 2-phase flow, distinguished correlations for different heat transfer process. The GEVAP model has thermal equilibrium between phases (gaseous and liquid homogeneous mixture), no spatial dependence and uses only one generalized correlation to treat several heat transfer processes. (Author) [pt

  9. Ribonucleotide Reductases from Bifidobacteria Contain Multiple Conserved Indels Distinguishing Them from All Other Organisms: In Silico Analysis of the Possible Role of a 43 aa Bifidobacteria-Specific Insert in the Class III RNR Homolog

    Directory of Open Access Journals (Sweden)

    Seema Alnajar

    2017-07-01

    Full Text Available Bifidobacteria comprises an important group/order of bacteria whose members have widespread usage in the food and health industry due to their health-promoting activity in the human gastrointestinal tract. However, little is known about the underlying molecular properties that are responsible for the probiotic effects of these bacteria. The enzyme ribonucleotide reductase (RNR plays a key role in all organisms by reducing nucleoside di- or tri- phosphates into corresponding deoxyribose derivatives required for DNA synthesis, and RNR homologs belonging to classes I and III are present in either most or all Bifidobacteriales. Comparative analyses of these RNR homologs have identified several novel sequence features in the forms of conserved signature indels (CSIs that are exclusively found in bifidobacterial RNRs. Specifically, in the large subunit of the aerobic class Ib RNR, three CSIs have been identified that are uniquely found in the Bifidobacteriales homologs. Similarly, the large subunit of the anaerobic class III RNR contains five CSIs that are also distinctive characteristics of bifidobacteria. Phylogenetic analyses indicate that these CSIs were introduced in a common ancestor of the Bifidobacteriales and retained by all descendants, likely due to their conferring advantageous functional roles. The identified CSIs in the bifidobacterial RNR homologs provide useful tools for further exploration of the novel functional aspects of these important enzymes that are exclusive to these bacteria. We also report here the results of homology modeling studies, which indicate that most of the bifidobacteria-specific CSIs are located within the surface loops of the RNRs, and of these, a large 43 amino acid insert in the class III RNR homolog forms an extension of the allosteric regulatory site known to be essential for protein function. Preliminary docking studies suggest that this large CSI may be playing a role in enhancing the stability of the RNR

  10. Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive closure and loop skewing.

    Science.gov (United States)

    Palkowski, Marek; Bielecki, Wlodzimierz

    2017-06-02

    RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.

  11. Relative K-homology and normal operators

    DEFF Research Database (Denmark)

    Manuilov, Vladimir; Thomsen, Klaus

    2009-01-01

    -term exact sequence which generalizes the excision six-term exact sequence in the first variable of KK-theory. Subsequently we investigate the relative K-homology which arises from the group of relative extensions by specializing to abelian $C^*$-algebras. It turns out that this relative K-homology carries...

  12. Endo-β-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity.

    Science.gov (United States)

    Gonçalves, Ana Maria D; Silva, Catarina S; Madeira, Tânia I; Coelho, Ricardo; de Sanctis, Daniele; San Romão, Maria Vitória; Bento, Isabel

    2012-11-01

    The crystal structure of wild-type endo-β-D-1,4-mannanase (EC 3.2.1.78) from the ascomycete Chrysonilia sitophila (CsMan5) has been solved at 1.40 Å resolution. The enzyme isolated directly from the source shows mixed activity as both an endo-glucanase and an endo-mannanase. CsMan5 adopts the (β/α)(8)-barrel fold that is well conserved within the GH5 family and has highest sequence and structural homology to the GH5 endo-mannanases. Superimposition with proteins of this family shows a unique structural arrangement of three surface loops of CsMan5 that stretch over the active centre, promoting an altered topography of the binding cleft. The most relevant feature results from the repositioning of a long loop at the extremity of the binding cleft, resulting in a shortened glycone-binding region with two subsites. The other two extended loops flanking the binding groove produce a narrower cleft compared with the wide architecture observed in GH5 homologues. Two aglycone subsites (+1 and +2) are identified and a nonconserved tryptophan (Trp271) at the +1 subsite may offer steric hindrance. Taken together, these findings suggest that the discrimination of mannan substrates is achieved through modified loop length and structure.

  13. Shaping meiotic chromosomes with SUMO: a feedback loop controls the assembly of the synaptonemal complex in budding yeast

    Directory of Open Access Journals (Sweden)

    Hideo Tsubouchi

    2016-02-01

    Full Text Available The synaptonemal complex (SC is a meiosis-specific chromosomal structure in which homologous chromosomes are intimately linked through arrays of specialized proteins called transverse filaments (TF. Widely conserved in eukaryote meiosis, the SC forms during prophase I and is essential for accurate segregation of homologous chromosomes at meiosis I. However, the basic mechanism overlooking formation and regulation of the SC has been poorly understood. By using the budding yeast Saccharomyces cerevisiae, we recently showed that SC formation is controlled through the attachment of multiple molecules of small ubiquitin-like modifier (SUMO to a regulator of TF assembly. Intriguingly, this SUMOylation is activated by TF, implicating the involvement of a positive feedback loop in the control of SC assembly. We discuss the implication of this finding and possible involvement of a similar mechanism in regulating other processes.

  14. Dualities in persistent (co)homology

    International Nuclear Information System (INIS)

    De Silva, Vin; Morozov, Dmitriy; Vejdemo-Johansson, Mikael

    2011-01-01

    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establish algebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existing algorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. We present experimental evidence for the practical efficiency of the latter algorithm

  15. An sRNA and Cold Shock Protein Homolog-Based Feedforward Loop Post-transcriptionally Controls Cell Cycle Master Regulator CtrA.

    Science.gov (United States)

    Robledo, Marta; Schlüter, Jan-Philip; Loehr, Lars O; Linne, Uwe; Albaum, Stefan P; Jiménez-Zurdo, José I; Becker, Anke

    2018-01-01

    Adjustment of cell cycle progression is crucial for bacterial survival and adaptation under adverse conditions. However, the understanding of modulation of cell cycle control in response to environmental changes is rather incomplete. In α-proteobacteria, the broadly conserved cell cycle master regulator CtrA underlies multiple levels of control, including coupling of cell cycle and cell differentiation. CtrA levels are known to be tightly controlled through diverse transcriptional and post-translational mechanisms. Here, small RNA (sRNA)-mediated post-transcriptional regulation is uncovered as an additional level of CtrA fine-tuning. Computational predictions as well as transcriptome and proteome studies consistently suggested targeting of ctrA and the putative cold shock chaperone cspA5 mRNAs by the trans- encoded sRNA ( trans- sRNA) GspR (formerly SmelC775) in several Sinorhizobium species. GspR strongly accumulated in the stationary growth phase, especially in minimal medium (MM) cultures. Lack of the gspR locus confers a fitness disadvantage in competition with the wild type, while its overproduction hampers cell growth, suggesting that this riboregulator interferes with cell cycle progression. An eGFP-based reporter in vivo assay, involving wild-type and mutant sRNA and mRNA pairs, experimentally confirmed GspR-dependent post-transcriptional down-regulation of ctrA and cspA5 expression, which most likely occurs through base-pairing to the respective mRNA. The energetically favored secondary structure of GspR is predicted to comprise three stem-loop domains, with stem-loop 1 and stem-loop 3 targeting ctrA and cspA5 mRNA, respectively. Moreover, this work reports evidence for post-transcriptional control of ctrA by CspA5. Thus, this regulation and GspR-mediated post-transcriptional repression of ctrA and cspA5 expression constitute a coherent feed-forward loop, which may enhance the negative effect of GspR on CtrA levels. This novel regulatory circuit involving

  16. Zinc ion coordination as a modulating factor of the ZnuA histidine-rich loop flexibility: A molecular modeling and fluorescence spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Silvia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Stella, Lorenzo [Department of Chemical Sciences and Technologies, University of Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Neuromed, IRCCS, Pozzilli 86077 (Italy); Petrarca, Patrizia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Battistoni, Andrea [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Desideri, Alessandro [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Falconi, Mattia, E-mail: falconi@uniroma2.it [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Fluorescence data indicate that the His-loop of ZnuA interacts with Zn{sup +2} ions. Black-Right-Pointing-Pointer The ZnuA structural model proposed validates these spectroscopic findings. Black-Right-Pointing-Pointer It is proposed that a zinc loaded His-loop may facilitate the ZnuA-ZnuB recognition. -- Abstract: ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the ATP-binding cassette-type periplasmic Zn-binding proteins. The zinc transporter ZnuABC is composed by three proteins: ZnuB, the membrane permease, ZnuC, the ATPase component and ZnuA, the soluble periplasmic metal-binding protein which captures Zn and delivers it to ZnuB. The ZnuA protein contains a charged flexible loop, rich in histidines and acidic residues, showing significant species-specific differences. Various studies have established that this loop contributes to the formation of a secondary zinc binding site, which has been proposed to be important in the acquisition of periplasmic Zn for its delivery to ZnuB or for regulation of zinc uptake. Due to its high mobility the structure of the histidine-rich loop has never been solved by X-ray diffraction studies. In this paper, through a combined use of molecular modeling, mutagenesis and fluorescence spectroscopy, we confirm the presence of two zinc binding sites characterized by different affinities for the metal ion and show that the flexibility of the loop is modulated by the binding of the zinc ions to the protein. The data obtained by fluorescence spectroscopy have then be used to validate a 3D model including the unsolved histidine-rich loop.

  17. Modeling and Compensation Design for a Power Hardware-in-the-Loop Simulation of an AC Distribution System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainsworth, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baggu, Murali M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hariri, Ali [Formerly NREL

    2017-10-06

    Power hardware-in-the-loop (PHIL) simulation, where actual hardware under text is coupled with a real-time digital model in closed loop, is a powerful tool for analyzing new methods of control for emerging distributed power systems. However, without careful design and compensation of the interface between the simulated and actual systems, PHIL simulations may exhibit instability and modeling inaccuracies. This paper addresses issues that arise in the PHIL simulation of a hardware battery inverter interfaced with a simulated distribution feeder. Both the stability and accuracy issues are modeled and characterized, and a methodology for design of PHIL interface compensation to ensure stability and accuracy is presented. The stability and accuracy of the resulting compensated PHIL simulation is then shown by experiment.

  18. The OGCleaner: filtering false-positive homology clusters.

    Science.gov (United States)

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Snell, Quinn; Bybee, Seth M

    2017-01-01

    Detecting homologous sequences in organisms is an essential step in protein structure and function prediction, gene annotation and phylogenetic tree construction. Heuristic methods are often employed for quality control of putative homology clusters. These heuristics, however, usually only apply to pairwise sequence comparison and do not examine clusters as a whole. We present the Orthology Group Cleaner (the OGCleaner), a tool designed for filtering putative orthology groups as homology or non-homology clusters by considering all sequences in a cluster. The OGCleaner relies on high-quality orthologous groups identified in OrthoDB to train machine learning algorithms that are able to distinguish between true-positive and false-positive homology groups. This package aims to improve the quality of phylogenetic tree construction especially in instances of lower-quality transcriptome assemblies. https://github.com/byucsl/ogcleaner CONTACT: sfujimoto@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Heating and dynamics of two flare loop systems observed by AIA and EIS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J., E-mail: yingli@nju.edu.cn [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-02-01

    We investigate heating and evolution of flare loops in a C4.7 two-ribbon flare on 2011 February 13. From Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) imaging observations, we can identify two sets of loops. Hinode/EUV Imaging Spectrometer (EIS) spectroscopic observations reveal blueshifts at the feet of both sets of loops. The evolution and dynamics of the two sets are quite different. The first set of loops exhibits blueshifts for about 25 minutes followed by redshifts, while the second set shows stronger blueshifts, which are maintained for about one hour. The UV 1600 observation by AIA also shows that the feet of the second set of loops brighten twice. These suggest that continuous heating may be present in the second set of loops. We use spatially resolved UV light curves to infer heating rates in the few tens of individual loops comprising the two loop systems. With these heating rates, we then compute plasma evolution in these loops with the 'enthalpy-based thermal evolution of loops' model. The results show that, for the first set of loops, the synthetic EUV light curves from the model compare favorably with the observed light curves in six AIA channels and eight EIS spectral lines, and the computed mean enthalpy flow velocities also agree with the Doppler shift measurements by EIS. For the second set of loops modeled with twice-heating, there are some discrepancies between modeled and observed EUV light curves in low-temperature bands, and the model does not fully produce the prolonged blueshift signatures as observed. We discuss possible causes for the discrepancies.

  20. Control-structure interaction in precision pointing servo loops

    Science.gov (United States)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  1. A kinematic view of loop closure.

    Science.gov (United States)

    Coutsias, Evangelos A; Seok, Chaok; Jacobson, Matthew P; Dill, Ken A

    2004-03-01

    We consider the problem of loop closure, i.e., of finding the ensemble of possible backbone structures of a chain segment of a protein molecule that is geometrically consistent with preceding and following parts of the chain whose structures are given. We reduce this problem of determining the loop conformations of six torsions to finding the real roots of a 16th degree polynomial in one variable, based on the robotics literature on the kinematics of the equivalent rotator linkage in the most general case of oblique rotators. We provide a simple intuitive view and derivation of the polynomial for the case in which each of the three pair of torsional axes has a common point. Our method generalizes previous work on analytical loop closure in that the torsion angles need not be consecutive, and any rigid intervening segments are allowed between the free torsions. Our approach also allows for a small degree of flexibility in the bond angles and the peptide torsion angles; this substantially enlarges the space of solvable configurations as is demonstrated by an application of the method to the modeling of cyclic pentapeptides. We give further applications to two important problems. First, we show that this analytical loop closure algorithm can be efficiently combined with an existing loop-construction algorithm to sample loops longer than three residues. Second, we show that Monte Carlo minimization is made severalfold more efficient by employing the local moves generated by the loop closure algorithm, when applied to the global minimization of an eight-residue loop. Our loop closure algorithm is freely available at http://dillgroup. ucsf.edu/loop_closure/. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 510-528, 2004

  2. Covariant diagrams for one-loop matching

    International Nuclear Information System (INIS)

    Zhang, Zhengkang

    2016-10-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  3. Covariant diagrams for one-loop matching

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengkang [Michigan Center for Theoretical Physics (MCTP), University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany)

    2017-05-30

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  4. Covariant diagrams for one-loop matching

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-10-15

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  5. Covariant diagrams for one-loop matching

    International Nuclear Information System (INIS)

    Zhang, Zhengkang

    2017-01-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  6. Investigating homology between proteins using energetic profiles.

    Science.gov (United States)

    Wrabl, James O; Hilser, Vincent J

    2010-03-26

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  7. Investigating homology between proteins using energetic profiles.

    Directory of Open Access Journals (Sweden)

    James O Wrabl

    2010-03-01

    Full Text Available Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved

  8. Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative.

    Science.gov (United States)

    Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W

    2015-01-01

    We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.

  9. Two-loop renormalization group analysis of supersymmetric SO(10) models with an intermediate scale

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Brahmachari, B.

    1996-03-01

    Two-loop evolutions of the gauge couplings in a class of intermediate scale supersymmetric SO(10) models including the effect of third generation Yukawa couplings are studied. The unification scale, the intermediate scale and the value of the unification gauge coupling in these models are calculated and the gauge boson mediated proton decay rates are estimated. In some cases the predicted proton lifetime turns out to be in the border-line of experimental limit. The predictions of the top quark mass, the mass ratio m b (m b )/m τ (m τ ) from the two-loop evolution of Yukawa couplings and the mass of the left handed neutrino via see-saw mechanism are summarized. The lower bounds on the ratio of the VEVs of the two low energy doublets (tan β) from the requirement of the perturbative unitarity of the top quark Yukawa coupling up to the grand unification scale are also presented. All the predictions have been compared with those of the one-step unified theory. (author). 33 refs, 5 figs, 1 tab

  10. Polyakov loop and the hadron resonance gas model.

    Science.gov (United States)

    Megías, E; Arriola, E Ruiz; Salcedo, L L

    2012-10-12

    The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T)≈1/2[∑(α)g(α)e(-Δ(α)/T), where g(α) are the degeneracies and Δ(α) are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N(f)=2+1 for temperatures in the range 150 MeVmodels. For temperatures below 150 MeV different lattice results disagree. One set of data can be described if exotic hadrons are present in the QCD spectrum while other sets do not require such states.

  11. The free-energy cost of interaction between DNA loops.

    Science.gov (United States)

    Huang, Lifang; Liu, Peijiang; Yuan, Zhanjiang; Zhou, Tianshou; Yu, Jianshe

    2017-10-03

    From the viewpoint of thermodynamics, the formation of DNA loops and the interaction between them, which are all non-equilibrium processes, result in the change of free energy, affecting gene expression and further cell-to-cell variability as observed experimentally. However, how these processes dissipate free energy remains largely unclear. Here, by analyzing a mechanic model that maps three fundamental topologies of two interacting DNA loops into a 4-state model of gene transcription, we first show that a longer DNA loop needs more mean free energy consumption. Then, independent of the type of interacting two DNA loops (nested, side-by-side or alternating), the promotion between them always consumes less mean free energy whereas the suppression dissipates more mean free energy. More interestingly, we find that in contrast to the mechanism of direct looping between promoter and enhancer, the facilitated-tracking mechanism dissipates less mean free energy but enhances the mean mRNA expression, justifying the facilitated-tracking hypothesis, a long-standing debate in biology. Based on minimal energy principle, we thus speculate that organisms would utilize the mechanisms of loop-loop promotion and facilitated tracking to survive in complex environments. Our studies provide insights into the understanding of gene expression regulation mechanism from the view of energy consumption.

  12. One-loop analysis of the electroweak breaking in supersymmetric models and the fine-tuning problem

    CERN Document Server

    De Carlos, B

    1993-01-01

    We examine the electroweak breaking mechanism in the minimal supersymmetric standard model (MSSM) using the {\\em complete} one-loop effective potential $V_1$. First, we study what is the region of the whole MSSM parameter space (i.e. $M_{1/2},m_o,\\mu,...$) that leads to a succesful $SU(2)\\times U(1)$ breaking with an acceptable top quark mass. In doing this it is observed that all the one-loop corrections to $V_1$ (even the apparently small ones) must be taken into account in order to get reliable results. We find that the allowed region of parameters is considerably enhanced with respect to former "improved" tree level results. Next, we study the fine-tuning problem associated with the high sensitivity of $M_Z$ to $h_t$ (the top Yukawa coupling). Again, we find that this fine-tuning is appreciably smaller once the one-loop effects are considered than in previous tree level calculations. Finally, we explore the ambiguities and limitations of the ordinary criterion to estimate the degree of fine-tuning. As a r...

  13. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    Science.gov (United States)

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.

  14. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...

  15. A RECONNECTION-DRIVEN MODEL OF THE HARD X-RAY LOOP-TOP SOURCE FROM FLARE 2004 FEBRUARY 26

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, Dana; Qiu, Jiong; Brewer, Jasmine [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-12-20

    A compact X-class flare on 2004 February 26 showed a concentrated source of hard X-rays at the tops of the flare’s loops. This was analyzed in previous work and interpreted as plasma heated and compressed by slow magnetosonic shocks (SMSs) generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. These simulations corroborate the prior hypothesis that slow-mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, but at lower temperatures. X-ray light curves and spectra are synthesized by convolving the results from a single TFT simulation with the rate at which flux is reconnected, as measured through motion of flare ribbons, for example. These agree well with light curves observed by RHESSI and GOES and spectra from RHESSI . An image created from a superposition of TFT model runs resembles one produced from RHESSI observations. This suggests that the HXR loop-top source, at least the one observed in this flare, could be the result of SMSs produced in fast reconnection models like Petschek’s.

  16. FMFT. Fully massive four-loop tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Pikelner, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2017-07-15

    We present FMFT - a package written in FORM that evaluates four-loop fully massive tadpole Feynman diagrams. It is a successor of the MATAD package that has been successfully used to calculate many renormalization group functions at three-loop order in a wide range of quantum field theories especially in the Standard Model. We describe an internal structure of the package and provide some examples of its usage.

  17. FMFT: fully massive four-loop tadpoles

    Science.gov (United States)

    Pikelner, Andrey

    2018-03-01

    We present FMFT - a package written in FORM that evaluates four-loop fully massive tadpole Feynman diagrams. It is a successor of the MATAD package that has been successfully used to calculate many renormalization group functions at three-loop order in a wide range of quantum field theories especially in the Standard Model. We describe an internal structure of the package and provide some examples of its usage.

  18. A local homology theory for linearly compact modules

    International Nuclear Information System (INIS)

    Nguyen Tu Cuong; Tran Tuan Nam

    2004-11-01

    We introduce a local homology theory for linearly modules which is in some sense dual to the local cohomology theory of A. Grothendieck. Some basic properties of local homology modules are shown such as: the vanishing and non-vanishing, the noetherianness of local homology modules. By using duality, we extend some well-known results in theory of local cohomology of A. Grothendieck. (author)

  19. Transition probability spaces in loop quantum gravity

    Science.gov (United States)

    Guo, Xiao-Kan

    2018-03-01

    We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.

  20. Two-loop hard-thermal-loop thermodynamics with quarks

    International Nuclear Information System (INIS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-01-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for N f =2 and with exact numerical results obtained in the large-N f limit

  1. A photovoltaic source I/U model suitable for hardware in the loop application

    Directory of Open Access Journals (Sweden)

    Stala Robert

    2017-12-01

    Full Text Available This paper presents a novel, low-complexity method of simulating PV source characteristics suitable for real-time modeling and hardware implementation. The application of the suitable model of the PV source as well as the model of all the PV system components in a real-time hardware gives a safe, fast and low cost method of testing PV systems. The paper demonstrates the concept of the PV array model and the hardware implementation in FPGAs of the system which combines two PV arrays. The obtained results confirm that the proposed model is of low complexity and can be suitable for hardware in the loop (HIL tests of the complex PV system control, with various arrays operating under different conditions.

  2. On the Convergence in Effective Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose Antonio

    2010-01-01

    In Loop Quantum Cosmology (LQC) there is a discreteness parameter λ, that has been heuristically associated to a fundamental granularity of quantum geometry. It is also possible to consider λ as a regulator in the same spirit as that used in lattice field theory, where it specifies a regular lattice in the real line. A particular quantization of the k = 0 FLRW loop cosmological model yields a completely solvable model, known as solvable loop quantum cosmology(sLQC). In this contribution, we consider effective classical theories motivated by sLQC and study their λ-dependence, with a special interest on the limit λ→0 and the role of the evolution parameter in the convergence of such limit.

  3. Rigidification of the autolysis loop enhances Na(+) binding to thrombin.

    Science.gov (United States)

    Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei; Bah, Alaji; Di Cera, Enrico

    2011-11-01

    Binding of Na(+) to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na(+) is weak due to large heat capacity and enthalpy changes associated with binding, and the K(d)=80 mM ensures only 64% saturation of the site at the concentration of Na(+) in the blood (140 mM). Residues controlling Na(+) binding and activation have been identified. Yet, attempts to improve the interaction of Na(+) with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na(+) affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na(+) binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems. Phase I: Isothermal forced convection case

    International Nuclear Information System (INIS)

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific issues in the field of nuclear fuel cycle. The Task Force on Lead-Alloy-Cooled Advanced Nuclear Energy Systems (LACANES) was created in 2006 to study thermal-hydraulic characteristics of heavy liquid metal coolant loop. The objectives of the task force are to (1) validate thermal-hydraulic loop models for application to LACANES design analysis in participating organisations, by benchmarking with a set of well-characterised lead-alloy coolant loop test data, (2) establish guidelines for quantifying thermal-hydraulic modelling parameters related to friction and heat transfer by lead-alloy coolant and (3) identify specific issues, either in modelling and/or in loop testing, which need to be addressed via possible future work. Nine participants from seven different institutes participated in the first phase of the benchmark. This report provides details of the benchmark specifications, method and code characteristics and results of the preliminary study: pressure loss coefficient and Phase-I. A comparison and analysis of the results will be performed together with Phase-II

  5. Superspace description of the homologous series Ga2O3(ZnO)m.

    Science.gov (United States)

    Michiue, Yuichi; Kimizuka, Noboru

    2010-04-01

    A unified description for the structures of the homologous series Ga(2)O(3)(ZnO)(m), gallium zinc oxide, is presented using the superspace formalism. The structures were treated as a compositely modulated structure consisting of two subsystems. One is constructed with metal ions and the other with O ions. The ideal model is given, in which the displacive modulations of ions are well described by the zigzag function with large amplitudes. Alternative settings are also proposed which are analogous to the so-called modular structures. The validity of the model has been confirmed by refinements for phases with m = 6 and m = 9 in the homologous series. A few complex phenomena in real structures are taken into account by modifying the ideal model.

  6. Chemical looping reforming in packed-bed reactors : modelling, experimental validation and large-scale reactor design

    NARCIS (Netherlands)

    Spallina, V.; Marinello, B.; Gallucci, F.; Romano, M.C.; van Sint Annaland, M.

    This paper addresses the experimental demonstration and model validation of chemical looping reforming in dynamically operated packed-bed reactors for the production of H2 or CH3OH with integrated CO2 capture. This process is a combination of auto-thermal and steam methane reforming and is carried

  7. HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Jiong; Liu Wenjuan; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

    2012-06-20

    We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.

  8. Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1){sub B−L}

    Energy Technology Data Exchange (ETDEWEB)

    Corianò, Claudio [STAG Research Centre and Mathematical Sciences,University of Southampton, Southampton SO17 1BJ (United Kingdom); Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Università del Salento and INFN - Sezione di Lecce,Via Arnesano, 73100 Lecce (Italy); Rose, Luigi Delle; Marzo, Carlo [Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Università del Salento and INFN - Sezione di Lecce,Via Arnesano, 73100 Lecce (Italy)

    2016-02-19

    We present a renormalization group study of the scalar potential in a minimal U(1){sub B−L} extension of the Standard Model involving one extra heavier Higgs and three heavy right-handed neutrinos with family universal B-L charge assignments. We implement a type-I seesaw for the masses of the light neutrinos of the Standard Model. In particular, compared to a previous study, we perform a two-loop extension of the evolution, showing that two-loop effects are essential for the study of the stability of the scalar potential up to the Planck scale. The analysis includes the contribution of the kinetic mixing between the two abelian gauge groups, which is radiatively generated by the evolution, and the one-loop matching conditions at the electroweak scale. By requiring the stability of the potential up to the Planck mass, significant constraints on the masses of the heavy neutrinos, on the gauge couplings and the mixing in the Higgs sector are identified.

  9. Automated one-loop calculations with GoSam

    International Nuclear Information System (INIS)

    Cullen, G.; Greiner, N.; Heinrich, G.; Reiter, T.; Luisoni, G.; Mastrolia, P.; Padua Univ.; Ossola, G.; Tramontano, F.

    2012-01-01

    In this talk, the program package GOSAM is presented which can be used for the automated calculation of one-loop amplitudes for multi-particle processes. The integrands are generated in terms of Feynman diagrams and can be reduced by d-dimensional integrand-level decomposition, or tensor reduction, or a combination of both. Through various examples we show that GOSAM can produce one-loop amplitudes for both QCD and electroweak theory; model files for theories Beyond the Standard Model can be linked as well. (orig.)

  10. Automated one-loop calculations with GoSam

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, N.; Heinrich, G.; Reiter, T. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, G. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, G. [City Univ. of New York, NY (United States). New York City College of Technology; Tramontano, F. [CERN, Geneva (Switzerland). AS Div.

    2012-01-15

    In this talk, the program package GOSAM is presented which can be used for the automated calculation of one-loop amplitudes for multi-particle processes. The integrands are generated in terms of Feynman diagrams and can be reduced by d-dimensional integrand-level decomposition, or tensor reduction, or a combination of both. Through various examples we show that GOSAM can produce one-loop amplitudes for both QCD and electroweak theory; model files for theories Beyond the Standard Model can be linked as well. (orig.)

  11. Flare parameters inferred from a 3D loop model data base

    Science.gov (United States)

    Cuambe, Valente A.; Costa, J. E. R.; Simões, P. J. A.

    2018-06-01

    We developed a data base of pre-calculated flare images and spectra exploring a set of parameters which describe the physical characteristics of coronal loops and accelerated electron distribution. Due to the large number of parameters involved in describing the geometry and the flaring atmosphere in the model used, we built a large data base of models (˜250 000) to facilitate the flare analysis. The geometry and characteristics of non-thermal electrons are defined on a discrete grid with spatial resolution greater than 4 arcsec. The data base was constructed based on general properties of known solar flares and convolved with instrumental resolution to replicate the observations from the Nobeyama radio polarimeter spectra and Nobeyama radioheliograph (NoRH) brightness maps. Observed spectra and brightness distribution maps are easily compared with the modelled spectra and images in the data base, indicating a possible range of solutions. The parameter search efficiency in this finite data base is discussed. 8 out of 10 parameters analysed for 1000 simulated flare searches were recovered with a relative error of less than 20 per cent on average. In addition, from the analysis of the observed correlation between NoRH flare sizes and intensities at 17 GHz, some statistical properties were derived. From these statistics, the energy spectral index was found to be δ ˜ 3, with non-thermal electron densities showing a peak distribution ⪅107 cm-3, and Bphotosphere ⪆ 2000 G. Some bias for larger loops with heights as great as ˜2.6 × 109 cm, and looptop events were noted. An excellent match of the spectrum and the brightness distribution at 17 and 34 GHz of the 2002 May 31 flare is presented as well.

  12. Stem loop sequences specific to transposable element IS605 are found linked to lipoprotein genes in Borrelia plasmids.

    Directory of Open Access Journals (Sweden)

    Nicholas Delihas

    Full Text Available BACKGROUND: Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level. METHODOLOGY/PRINCIPAL FINDINGS: In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found "free-standing" and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3' ends of lipoprotein genes (PFam12 and PFam60, however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place. CONCLUSIONS/SIGNIFICANCE: Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in

  13. Analysis of severe accidents on fast reactor test loop

    International Nuclear Information System (INIS)

    Cenerini, R.; Verzelletti, G.; Curioni, S.

    1975-01-01

    The Pec reactor is a sodium cooled fast reactor which is being designed for the primary purpose of accomodating closed sodium cooled test loops for the developmental and proof testing of fast reactor fuel assemblies. The test loops are located in the central test region of reactor. The basic function for which the loop is designed is burn-up to failure testing of fuel under advanced performance conditions. It is therefore necessary to design the loop for failure conditions. Basically two types of accidents can occur within the loops: rupture of gas plenum in the fuel pins and coolant starvation. Explosive tests on Pec loop, whose first set is described in this report, are devoted to investigate the effects of an accidental energy release on loop containment. The loop model reproduces in the test section the prototype dimensions in radial scale 1:1. Using a wire explosive charge of 300mm, the height of test section is sufficient for determining the containment capability of the loop that has a nearly constant deformation in a length of. 3-4 time the diameter. The inertial effects of the coolant column are reproduced by two tubes at the extremities of test section, closed with top plugs. Some tests has been performed by wrapping around the test section four layers of steel wire in order to evaluate the influence on the containment of tungsten wire that is foreseen in prototype loop. The influence of the coolant around the loop was evaluated by inserting the model in water. Dummy sub-assemblies was used and explosive substitutes the central rods. Piezoelectric pressure transducers were mounted on the three plugs and radial deformation was measured directly at different height. From experiments performed it resulted the importance of harmonic wires and inertial reaction of external water on loop containment; maximum containable energy is about 50 Cal with E.1 explosive

  14. The endless tale of non-homologous end-joining.

    Science.gov (United States)

    Weterings, Eric; Chen, David J

    2008-01-01

    DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.

  15. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  16. Empirical Analysis of Closed-Loop Duopoly Advertising Strategies

    OpenAIRE

    Gary M. Erickson

    1992-01-01

    Closed-loop (perfect) equilibria in a Lanchester duopoly differential game of advertising competition are used as the basis for empirical investigation. Two systems of simultaneous nonlinear equations are formed, one from a general Lanchester model and one from a constrained model. Two empirical applications are conducted. In one involving Coca-Cola and Pepsi-Cola, a formal statistical testing procedure is used to detect whether closed-loop equilibrium advertising strategies are used by the c...

  17. Coronal Loop Evolution Observed with AIA and Hi-C

    Science.gov (United States)

    Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.; hide

    2012-01-01

    Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.

  18. Model experiments on simulation of the WWER water-chemical conditions at loop facilities of the MIR reactor

    International Nuclear Information System (INIS)

    Benderskaya, O.S.; Zotov, E.A.; Kuprienko, V.A.; Ovchinnikov, V.A.

    1999-01-01

    The experiments on simulation of the WWER type reactors water-chemical conditions have been started at the State Scientific Center RIAR. These experiments are being conducted at the multi-loop research MIR reactor at the PVK-2 loop facility. The dosage stand was created. It allows introduction of boric acid, potassium and lithium hydroxides, ammonia solutions and gaseous hydrogen. Corrosion tests of the Russian E-635 and E-110 alloys are being conducted at the PVK-2 loop under the WWER water-chemical conditions. If necessary, fuel elements are periodically extracted from the reactor to perform visual examination, to measure their length, diameter, to remove the deposits from the claddings, to measure the burnup and to distribute the fission products over the fuel element by gamma-spectrometry. The chemical analytical 'on line' equipment produced by the ORBISPHERE Laboratory (Switzerland) will be commissioned in the nearest future to measure concentration of the dissolved hydrogen and oxygen as well as pH and specific conductivity. The objective of the report is to familiarize the participants of the IAEA Technical Committee with the capabilities of performing the model water-chemical experiments under the MIR reactor loop facility conditions. (author)

  19. K-homology and K-cohomology constructions of relations

    International Nuclear Information System (INIS)

    Abd El-Sattar, A. Dabbour; Bayoumy, F.M.

    1990-08-01

    One of the important homology (cohomology) theories, based on systems of covering of the space, is the homology (cohomology) theory of relations. In the present work, by using the idea of K-homology and K-cohomology groups different varieties of the Dowker's theory are introduced and studied. These constructions are defined on the category of pairs of topological spaces and over a pair of coefficient groups. (author). 14 refs

  20. Chapter 5: Modeling and Control of Three-Phase AC/DC Converter Including Phase-Locked Loop

    DEFF Research Database (Denmark)

    Zhou, Dao; Song, Yipeng; Blaabjerg, Frede

    2018-01-01

    In this chapter, a mathematical model of the power circuit of a three-phase AC/DC converter is developed in the stationary and synchronous reference frames. Then, the operation principle of the phasor locked loop is addressed to exact the angle information of the power grid to realize the accurat...

  1. A RETRAN-02 model of the Sizewell B PCSR design - the Winfrith one-loop model, version 3.0

    International Nuclear Information System (INIS)

    Kinnersly, S.R.

    1983-11-01

    A one-loop RETRAN-02 model of the Sizewell B Pre Construction Safety Report (PCSR) design, set up at Winfrith, is described and documented. The model is suitable for symmetrical pressurised transients. Comparison with data from the Sizewell B PCSR shows that the model is a good representation of that design. Known errors, limitations and deficiencies are described. The mode of storage and maintenance at Winfrith using PROMUS (Program Maintenance and Update System) is noted. It is recommended that users modify the standard data by adding replacement cards to the end so as to aid in identification, use and maintenance of local versions. (author)

  2. Two-loop renormalization in the standard model, part III. Renormalization equations and their solutions

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)

    2006-12-15

    In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)

  3. Two-loop renormalization in the standard model, part III. Renormalization equations and their solutions

    International Nuclear Information System (INIS)

    Actis, S.; Passarino, G.

    2006-12-01

    In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)

  4. Penguin loops with confined quark propagators

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1984-12-01

    The ΔS = 1 penguin diagram is calculated by representing the internal quark lines in the loop by bag model wave functions. Because of the involved GIM-mecanism, only the lowest internal quark modes are kept in the loop. The result depends cruically on the values of the strong coupling constant and the quark energy of the bag model wave functions. With reasonable values of parameters, contributions corresponding to effective penguin coeffisient values of approximately two to five times the standard pertubative ones, have been found. Thus the theoretical value for the ratio between ΔI = 1/2 and ΔI = 3/2 amplitudes seems to be improved

  5. Modeling Open-Loop MEMS Tunneling Accelerometer Based on Circular Plate

    Directory of Open Access Journals (Sweden)

    Hossein Jodat Kordlar

    2007-04-01

    Full Text Available In this paper open-loop MEMS tunneling accelerometer was modeled based on a clamped micro circular plate with a tip tunneling at its centre. Mechanical behavior of the micro plate was studied deriving governing equation based on classic Kirchhoff thin plate theory and it was discretized using Galerkin method. Dynamic response of the proposed accelerometer due to step and harmonic external excitation was studied and the magnitude of the applied acceleration was identified by measuring of the changing of tunneling current. Obtained results show that the proposed tunneling accelerometer very sensitive and it can be measure acceleration with very high resolution but very small gap of tip tunneling limit the range of measurable acceleration.

  6. Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice

    Science.gov (United States)

    Guan, Ji-Huan; Zhang, Yan-Yang; Lu, Wei-Er; Xia, Yang; Li, Shu-Shen

    2018-05-01

    We theoretically investigate the barrier tunneling in the 3D model of the hyperhoneycomb lattice, which is a nodal-line semimetal with a Dirac loop at zero energy. In the presence of a rectangular potential, the scattering amplitudes for different injecting states around the nodal loop are calculated, by using analytical treatments of the effective model, as well as numerical simulations of the tight binding model. In the low energy regime, states with remarkable transmissions are only concentrated in a small range around the loop plane. When the momentum of the injecting electron is coplanar with the nodal loop, nearly perfect transmissions can occur for a large range of injecting azimuthal angles if the potential is not high. For higher potential energies, the transmission shows a resonant oscillation with the potential, but still with peaks being perfect transmissions that do not decay with the potential width. These strikingly robust transports of the loop-nodal semimetal can be approximately explained by a momentum dependent Dirac Hamiltonian.

  7. Molecular modeling used to evaluate CYP2C9-dependent metabolism: homology modeling, molecular dynamics and docking simulations.

    Science.gov (United States)

    Mendieta-Wejebe, Jessica E; Correa-Basurto, José; García-Segovia, Erika M; Ceballos-Cancino, Gisela; Rosales-Hernández, Martha C

    2011-07-01

    Cytochrome P450 (CYP) 2C9 is the principal isoform of the CYP2C subfamily in the human liver and is involved in the oxidation of several endogenous and xenobiotic compounds, including many therapeutic drugs. The metabolism of drugs by CYP2C9 can yield either safe or toxic products, which may be related to the recognition and binding modes of the substrates to this isoform. These interactions can be studied using in silico methods such as quantum chemistry, molecular dynamics and docking simulations, which can also be useful for predicting the structure of metabolites. In these types of studies, the ligand and the protein must be tridimensional models; thus, the protein can be built by homology modeling or retrieved from the Protein Data Bank. Therefore, the current review emphasizes the importance of using in silico methods to predict the metabolism of CYP2C9 because these computational tools have allowed the description of the principal characteristics of the active site of this isoform at the molecular level and the chemical properties of its ligands.

  8. How to Choose the Suitable Template for Homology Modelling of GPCRs: 5-HT7 Receptor as a Test Case.

    Science.gov (United States)

    Shahaf, Nir; Pappalardo, Matteo; Basile, Livia; Guccione, Salvatore; Rayan, Anwar

    2016-09-01

    G protein-coupled receptors (GPCRs) are a super-family of membrane proteins that attract great pharmaceutical interest due to their involvement in almost every physiological activity, including extracellular stimuli, neurotransmission, and hormone regulation. Currently, structural information on many GPCRs is mainly obtained by the techniques of computer modelling in general and by homology modelling in particular. Based on a quantitative analysis of eighteen antagonist-bound, resolved structures of rhodopsin family "A" receptors - also used as templates to build 153 homology models - it was concluded that a higher sequence identity between two receptors does not guarantee a lower RMSD between their structures, especially when their pair-wise sequence identity (within trans-membrane domain and/or in binding pocket) lies between 25 % and 40 %. This study suggests that we should consider all template receptors having a sequence identity ≤50 % with the query receptor. In fact, most of the GPCRs, compared to the currently available resolved structures of GPCRs, fall within this range and lack a correlation between structure and sequence. When testing suitability for structure-based drug design, it was found that choosing as a template the most similar resolved protein, based on sequence resemblance only, led to unsound results in many cases. Molecular docking analyses were carried out, and enrichment factors as well as attrition rates were utilized as criteria for assessing suitability for structure-based drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    } separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  10. Persistent homology of complex networks

    International Nuclear Information System (INIS)

    Horak, Danijela; Maletić, Slobodan; Rajković, Milan

    2009-01-01

    Long-lived topological features are distinguished from short-lived ones (considered as topological noise) in simplicial complexes constructed from complex networks. A new topological invariant, persistent homology, is determined and presented as a parameterized version of a Betti number. Complex networks with distinct degree distributions exhibit distinct persistent topological features. Persistent topological attributes, shown to be related to the robust quality of networks, also reflect the deficiency in certain connectivity properties of networks. Random networks, networks with exponential connectivity distribution and scale-free networks were considered for homological persistency analysis

  11. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  12. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  13. Detecting false positive sequence homology: a machine learning approach.

    Science.gov (United States)

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M

    2016-02-24

    Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.

  14. Neocortical electrical stimulation for epilepsy : Closed-loop versus open-loop

    NARCIS (Netherlands)

    Vassileva, Albena; van Blooijs, Dorien; Leijten, Frans; Huiskamp, Geertjan

    2018-01-01

    The aim of this review is to evaluate whether open-loop or closed-loop neocortical electrical stimulation should be the preferred approach to manage seizures in intractable epilepsy. Twenty cases of open-loop neocortical stimulation with an implanted device have been reported, in 5 case studies.

  15. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    Science.gov (United States)

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  16. Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.

    Science.gov (United States)

    Li, Yaohang; Rata, Ionel; Chiu, See-wing; Jakobsson, Eric

    2010-07-20

    Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of approximately 20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set.

  17. Loop equations and topological recursion for the arbitrary-$\\beta$ two-matrix model

    CERN Document Server

    Bergère, Michel; Marchal, Olivier; Prats-Ferrer, Aleix

    2012-01-01

    We write the loop equations for the $\\beta$ two-matrix model, and we propose a topological recursion algorithm to solve them, order by order in a small parameter. We find that to leading order, the spectral curve is a "quantum" spectral curve, i.e. it is given by a differential operator (instead of an algebraic equation for the hermitian case). Here, we study the case where that quantum spectral curve is completely degenerate, it satisfies a Bethe ansatz, and the spectral curve is the Baxter TQ relation.

  18. Electron acceleration and radiation signatures in loop coronal transients

    International Nuclear Information System (INIS)

    Vlahos, L.; Gergely, T.E.; Papadopoulos, K.

    1982-01-01

    A model for electron aceleration in loop coronal transients is suggested. We propose that in these transients an erupting loop moves away from the solar surface, with a velocity greater than the local Alfven speed, pushing against the overlying magnetic fields and driving a shock in the front of the moving part of the loop. We suggest that lower hybrid waves are excited at the shock front and propagate radially toward the center of the loop with phase velocity along the magnetic field which exceeds the thermal velocity. The lower hybrid waves stochastically accelerate the tail of the electron distribution inside the loop. We discuss how the accelerated electrons are trapped in the moving loop and give a rough estimate of their radiation signature. We find that plasma radiation can explain the power observed in stationary and moving type IV bursts. We discuss some of the conditions under which moving or stationary type IV bursts are expected to be associated with loop coronal transients

  19. On a family of (1+1)-dimensional scalar field theory models: Kinks, stability, one-loop mass shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada and IUFFyM, Universidad de Salamanca (Spain); Mateos Guilarte, J. [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca (Spain)

    2012-09-15

    In this paper we construct a one-parametric family of (1+1)-dimensional one-component scalar field theory models supporting kinks. Inspired by the sine-Gordon and {phi}{sup 4} models, we look at all possible extensions such that the kink second-order fluctuation operators are Schroedinger differential operators with Poeschl-Teller potential wells. In this situation, the associated spectral problem is solvable and therefore we shall succeed in analyzing the kink stability completely and in computing the one-loop quantum correction to the kink mass exactly. When the parameter is a natural number, the family becomes the hierarchy for which the potential wells are reflectionless, the two first levels of the hierarchy being the sine-Gordon and {phi}{sup 4} models. - Highlights: Black-Right-Pointing-Pointer We construct a family of scalar field theory models supporting kinks. Black-Right-Pointing-Pointer The second-order kink fluctuation operators involve Poeschl-Teller potential wells. Black-Right-Pointing-Pointer We compute the one-loop quantum correction to the kink mass with different methods.

  20. Hydrodynamical model and experimental results of a calcium looping cycle for CO2 capture

    International Nuclear Information System (INIS)

    Lisbona, Pilar; Martínez, Ana; Romeo, Luis M.

    2013-01-01

    Highlights: ► A scaled experimental cold flow model of a dual fluidized bed facility is presented. ► Two MATLAB models are developed for the single CFB and the dual CFB facility. ► Set of experiments are carried out and used to validate the mathematical model. ► Good agreement between model and experimental tests for sCFB. ► Further work required for validating dual CFB operation. -- Abstract: High temperature looping cycles involving solid circulation, such as carbonation–calcination, play an essential role among the CO 2 capture technologies under development. The low cost and high availability of Ca-based sorbents together with the feasibility of integration between these capture systems and existing power plants lead to very competitive potential costs of avoided CO 2 , below 20 €/tonne. Optimal configurations make use of several interconnected fluidized beds. One promising configuration for Ca-based sorbents looping systems relies on the use of two circulating beds (carbonator and calciner) and two bubbling beds acting as non-mechanical valves. Fluidized beds are well characterized when operating independently since they are extensively used in industrial applications, power and chemical plants. However, the operation when two or more fluidized beds exchange solid material through non-mechanical valves is still uncertain because of the more complex pressure balance of the system. Theoretical studies based on thermo-chemical simulations and experimental studies show that minimum CO 2 capture cost is attained with large solid circulation flow between reactors. The challenge is to reach the required particle circulation in a system with a complex configuration and be able to control it. Solid internal recirculation in any of these fluidized beds would provide flexibility in its control but it will also make harder the characterization of the whole system. The aim of this work is to analyse the hydrodynamics of the system and to generate a

  1. A multiple-pass ring oscillator based dual-loop phase-locked loop

    International Nuclear Information System (INIS)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning

    2009-01-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  2. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Energy Technology Data Exchange (ETDEWEB)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning, E-mail: dfchen@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-10-15

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-{mu}m RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  3. Estimation of Model Uncertainties in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    This paper describe a method for estimation of parameters or uncertainties in closed-loop systems. The method is based on an application of the dual YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all systems stabilized by a given controller. The dual YJBK transfer function...

  4. Low-energy effective action in two-dimensional SQED: a two-loop analysis

    Science.gov (United States)

    Samsonov, I. B.

    2017-07-01

    We study two-loop quantum corrections to the low-energy effective actions in N=(2,2) and N=(4,4) SQED on the Coulomb branch. In the latter model, the low-energy effective action is described by a generalized Kähler potential which depends on both chiral and twisted chiral superfields. We demonstrate that this generalized Kähler potential is one-loop exact and corresponds to the N=(4,4) sigma-model with torsion presented by Roček, Schoutens and Sevrin [1]. In the N=(2,2) SQED, the effective Kähler potential is not protected against higher-loop quantum corrections. The two-loop quantum corrections to this potential and the corresponding sigma-model metric are explicitly found.

  5. Conserved Functional Motifs and Homology Modeling to Predict Hidden Moonlighting Functional Sites

    KAUST Repository

    Wong, Aloysius Tze

    2015-06-09

    Moonlighting functional centers within proteins can provide them with hitherto unrecognized functions. Here, we review how hidden moonlighting functional centers, which we define as binding sites that have catalytic activity or regulate protein function in a novel manner, can be identified using targeted bioinformatic searches. Functional motifs used in such searches include amino acid residues that are conserved across species and many of which have been assigned functional roles based on experimental evidence. Molecules that were identified in this manner seeking cyclic mononucleotide cyclases in plants are used as examples. The strength of this computational approach is enhanced when good homology models can be developed to test the functionality of the predicted centers in silico, which, in turn, increases confidence in the ability of the identified candidates to perform the predicted functions. Computational characterization of moonlighting functional centers is not diagnostic for catalysis but serves as a rapid screening method, and highlights testable targets from a potentially large pool of candidates for subsequent in vitro and in vivo experiments required to confirm the functionality of the predicted moonlighting centers.

  6. Conserved Functional Motifs and Homology Modeling to Predict Hidden Moonlighting Functional Sites

    KAUST Repository

    Wong, Aloysius Tze; Gehring, Christoph A; Irving, Helen R.

    2015-01-01

    Moonlighting functional centers within proteins can provide them with hitherto unrecognized functions. Here, we review how hidden moonlighting functional centers, which we define as binding sites that have catalytic activity or regulate protein function in a novel manner, can be identified using targeted bioinformatic searches. Functional motifs used in such searches include amino acid residues that are conserved across species and many of which have been assigned functional roles based on experimental evidence. Molecules that were identified in this manner seeking cyclic mononucleotide cyclases in plants are used as examples. The strength of this computational approach is enhanced when good homology models can be developed to test the functionality of the predicted centers in silico, which, in turn, increases confidence in the ability of the identified candidates to perform the predicted functions. Computational characterization of moonlighting functional centers is not diagnostic for catalysis but serves as a rapid screening method, and highlights testable targets from a potentially large pool of candidates for subsequent in vitro and in vivo experiments required to confirm the functionality of the predicted moonlighting centers.

  7. Electromagnetic Modeling of the Passive Stabilization Loop at EAST

    International Nuclear Information System (INIS)

    Ji Xiang; Song Yuntao; Wu Songtao; Wang Zhibin; Shen Guang; Liu Xufeng; Cao Lei; Zhou Zibo; Peng Xuebing; Wang Chenghao

    2012-01-01

    A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.

  8. Electromagnetic Modeling of the Passive Stabilization Loop at EAST

    Science.gov (United States)

    Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao

    2012-09-01

    A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.

  9. ORIENTATION: KEY TO THE OODA LOOP – THE CULTURE FACTOR

    Directory of Open Access Journals (Sweden)

    Donald A. MACCUISH

    2012-01-01

    Full Text Available The late Colonel John Boyd developed what he called the OODA-Loop as both a learning and decision making model to help us better understand how we make decisions and learn. His OODA-Loop model consists of non-sequential elements: Observe – Orient – Decide – Action. He contended if one could cycle through these phases quicker and more accurately than one’s adversary you could then get inside your adversary’s OODA-Loop and “win”. The key to the OODA-Loop he noted is Orientation. He only drew one diagram of his OODA-Loop. Only in the Orientation phase did he elaborate component elements. These elements are: Cultural Traditions, Genetic Heritage, Analysis/Synthesis, New Information, and Previous Experience. All of these elements he contended are interconnected. Thus, the interaction of all these factors effects how we orient ourselves to the situation at hand. In this article I will share my view of the “Culture Factor” in Orientation.

  10. Gain Scheduling Control based on Closed-Loop System Identification

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    the first and a second operating point is identified in closed-loop using system identification methods with open-loop properties. Next, a linear controller is designed for this linearised model, and gain scheduling control can subsequently be achieved by interpolating between each controller...

  11. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors.

    Science.gov (United States)

    Melesina, Jelena; Robaa, Dina; Pierce, Raymond J; Romier, Christophe; Sippl, Wolfgang

    2015-11-01

    Histone deacetylases (HDACs) are promising epigenetic targets for the treatment of various diseases, including cancer and neurodegenerative disorders. There is evidence that they can also be addressed to treat parasitic infections. Recently, the first X-ray structure of a parasite HDAC was published, Schistosoma mansoni HDAC8, giving structural insights into its inhibition. However, most of the targets from parasites of interest still lack this structural information. Therefore, we prepared homology models of relevant parasitic HDACs and compared them to human and S. mansoni HDACs. The information about known S. mansoni HDAC8 inhibitors and compounds that affect the growth of Trypanosoma, Leishmania and Plasmodium species was used to validate the models by docking and molecular dynamics studies. Our results provide analysis of structural features of parasitic HDACs and should be helpful for selecting promising candidates for biological testing and for structure-based optimisation of parasite-specific inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Two-loop mass splittings in electroweak multiplets: Winos and minimal dark matter

    Science.gov (United States)

    McKay, James; Scott, Pat

    2018-03-01

    The radiatively-induced splitting of masses in electroweak multiplets is relevant for both collider phenomenology and dark matter. Precision two-loop corrections of O (MeV ) to the triplet mass splitting in the wino limit of the minimal supersymmetric standard model can affect particle lifetimes by up to 40%. We improve on previous two-loop self-energy calculations for the wino model by obtaining consistent input parameters to the calculation via two-loop renormalization-group running, and including the effect of finite light quark masses. We also present the first two-loop calculation of the mass splitting in an electroweak fermionic quintuplet, corresponding to the viable form of minimal dark matter (MDM). We place significant constraints on the lifetimes of the charged and doubly-charged fermions in this model. We find that the two-loop mass splittings in the MDM quintuplet are not constant in the large-mass limit, as might naively be expected from the triplet calculation. This is due to the influence of the additional heavy fermions in loop corrections to the gauge boson propagators.

  13. One-loop effective lagrangians after matching

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del; Santiago, J. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE, Granada (Spain); Kunszt, Z. [ETH Zuerich, Institute for Theoretical Physics, Zuerich (Switzerland)

    2016-05-15

    We discuss the limitations of the covariant derivative expansion prescription advocated to compute the one-loop Standard Model (SM) effective lagrangian when the heavy fields couple linearly to the SM. In particular, one-loop contributions resulting from the exchange of both heavy and light fields must be explicitly taken into account through matching because the proposed functional approach alone does not account for them. We review a simple case with a heavy scalar singlet of charge -1 to illustrate the argument. As two other examples where this matching is needed and this functional method gives a vanishing result, up to renormalization of the heavy sector parameters, we re-evaluate the one-loop corrections to the T-parameter due to a heavy scalar triplet with vanishing hypercharge coupling to the Brout-Englert-Higgs boson and to a heavy vector-like quark singlet of charged 2/3 mixing with the top quark, respectively. In all cases we make use of a new code for matching fundamental and effective theories in models with arbitrary heavy field additions. (orig.)

  14. Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop

    CERN Document Server

    Anastasiou, C; Bucherer, S; Daleo, A; Kunszt, Zoltán; Anastasiou, Charalampos; Beerli, Stefan; Bucherer, Stefan; Daleo, Alejandro; Kunszt, Zoltan

    2007-01-01

    We compute all two-loop master integrals which are required for the evaluation of next-to-leading order QCD corrections in Higgs boson production via gluon fusion. Many two-loop amplitudes for 2 -> 1 processes in the Standard Model and beyond can be expressed in terms of these integrals using automated reduction techniques. These integrals also form a subset of the master integrals for more complicated 2 -> 2 amplitudes with massive propagators in the loops. As a first application, we evaluate the two-loop amplitude for Higgs boson production in gluon fusion via a massive quark. Our result is the first independent check of the calculation of Spira, Djouadi, Graudenz and Zerwas. We also present for the first time the two-loop amplitude for gg -> h via a massive squark.

  15. Loop calculations for the non-commutative U*(1) gauge field model with oscillator term

    International Nuclear Information System (INIS)

    Blaschke, Daniel N.; Grosse, Harald; Kronberger, Erwin; Schweda, Manfred; Wohlgenannt, Michael

    2010-01-01

    Motivated by the success of the non-commutative scalar Grosse-Wulkenhaar model, a non-commutative U * (1) gauge field theory including an oscillator-like term in the action has been put forward in (Blaschke et al. in Europhys. Lett. 79:61002, 2007). The aim of the current work is to analyze whether that action can lead to a fully renormalizable gauge model on non-commutative Euclidean space. In a first step, explicit one-loop graph computations are hence presented, and their results as well as necessary modifications of the action are successively discussed. (orig.)

  16. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Singh, Vijai; Somvanshi, Pallavi

    2010-02-01

    DNA ligase is an important enzyme and it plays vital role in the replication and repair; also catalyzes nick joining between adjacent bases of DNA. The NAD(+) dependent DNA ligase is selectively present in eubacteria and few viruses; but missing in humans. Homology modeling was used to generate 3-D structure of NAD(+) dependent DNA ligase (LigA) of Mycobacterium tuberculosis using the known template (PDB: 2OWO). Furthermore, the stereochemical quality and torsion angle of 3-D structure was validated. Numerous effective drugs were selected and the active amino acid residue in LigA was targeted and virtual screening through molecular docking was done. In this analysis, four drugs Chloroquine, Hydroxychloroquine, Putrienscine and Adriamycin were found more potent in inhibition of M. tuberculosis through the robust binding affinity between protein-drug interactions in comparison with the other studied drugs. A phylogenetic tree was constructed and it was observed that homology of LigA in M. tuberculosis resembled with other Mycobacterium species. The conserved active amino acids of LigA may be useful to target these drugs. These findings could be used as the starting point of a rational design of novel antibacterial drugs and its analogs.

  17. The K-homology of nets of C∗-algebras

    Science.gov (United States)

    Ruzzi, Giuseppe; Vasselli, Ezio

    2014-12-01

    Let X be a space, intended as a possibly curved space-time, and A a precosheaf of C∗-algebras on X. Motivated by algebraic quantum field theory, we study the Kasparov and Θ-summable K-homology of A interpreting them in terms of the holonomy equivariant K-homology of the associated C∗-dynamical system. This yields a characteristic class for K-homology cycles of A with values in the odd cohomology of X, that we interpret as a generalized statistical dimension.

  18. Modelling and characterization of an airlift-loop bioreactor

    NARCIS (Netherlands)

    Verlaan, P.

    1987-01-01

    An airlift-loop reactor is a bioreactor for aerobic biotechnological processes. The special feature of the ALR is the recirculation of the liquid through a downcomer connecting the top and the bottom of the main bubbling section. Due to the high circulation-flow rate, efficient mixing and

  19. SPAR1/RTEL1 maintains genomic stability by suppressing homologous recombination

    Science.gov (United States)

    Barber, Louise J.; Youds, Jillian L.; Ward, Jordan D.; McIlwraith, Michael J.; O’Neil, Nigel J.; Petalcorin, Mark I.R.; Martin, Julie S.; Collis, Spencer J.; Cantor, Sharon B.; Auclair, Melissa; Tissenbaum, Heidi; West, Stephen C.; Rose, Ann M.; Boulton, Simon J.

    2013-01-01

    SUMMARY Inappropriate homologous recombination (HR) can cause gross chromosomal rearrangements that in mammalian cells may lead to tumorigenesis. In yeast, the Srs2 protein is an anti-recombinase that eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has proven to be elusive. In this work, we identify C. elegans SPAR-1 as a functional analogue of Srs2 and describe its vertebrate counterpart, SPAR1/RTEL1, which is required for genome stability and tumour avoidance. We find that spar-1 mutant worms and SPAR1 knockdown human cells share characteristic phenotypes with yeast srs2 mutants, including inviability upon deletion of the sgs1/BLM homologue, hyper-recombination, and DNA damage sensitivity. In vitro, purified human SPAR1 antagonises HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control following deregulation of SPAR1/RTEL1 may be a critical event that drives genome instability and cancer. PMID:18957201

  20. Design factors analyses of second-loop PRHRS

    Directory of Open Access Journals (Sweden)

    ZHANG Hongyan

    2017-05-01

    Full Text Available In order to study the operating characteristics of a second-loop Passive Residual Heat Removal System (PRHRS, the transient thermal analysis code RELAP5 is used to build simulation models of the main coolant system and second-loop PRHRS. Transient calculations and comparative analyses under station blackout accident and one-side feed water line break accident conditions are conducted for three critical design factors of the second-loop PRHRS:design capacity, emergency makeup tank and isolation valve opening speed. The impacts of the discussed design factors on the operating characteristics of the second-loop PRHRS are summarized based on calculations and analyses. The analysis results indicate that the system safety and cooling rate should be taken into consideration in designing PRHRS's capacity,and water injection from emergency makeup tank to steam generator can provide advantage to system cooling in the event of accident,and system startup performance can be improved by reducing the opening speed of isolation valve. The results can provide references for the design of the second-loop PRHRS in nuclear power plants.

  1. Wilson loops to 20th order numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Hotzel, G.; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Millo, R.; Rakow, P.E.L. [Liverpool Univ. (Germany). Theoretical Physics Div.; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to n=20 we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.

  2. Rigidification of the autolysis loop enhances Na[superscript +] binding to thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei; Bah, Alaji; Di Cera, Enrico (St. Louis-MED)

    2011-09-20

    Binding of Na{sup +} to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na{sup +} is weak due to large heat capacity and enthalpy changes associated with binding, and the K{sub d} = 80 mM ensures only 64% saturation of the site at the concentration of Na{sup +} in the blood (140 mM). Residues controlling Na{sup +} binding and activation have been identified. Yet, attempts to improve the interaction of Na{sup +} with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na{sup +} affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na{sup +} binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.

  3. Dynamical behaviour of natural convection in closed loops

    International Nuclear Information System (INIS)

    Ehrhard, P.

    1988-04-01

    A one dimensional model is presented together with experiments, which describe the natural convective flow in closed loops heated at the bottom and cooled in the upper semicircle. Starting from a single loop, mechanical and thermal coupling with a second loop is discussed. The experiments and the theoretical model both concurrently demonstrate that the investigated natural convection is clearly influenced by non-linear effects. Beside the variety of stable steady flows there are extensive subcritical ranges of convective flow. In these parameter ranges subcritical instabilities of the steady state flow could occur in the presence of finite amplitude disturbances. However, the supercritical, global unstable range is characterized by chaotic histories of the variables of state. Non-symmetric heating generates an imperfect bifurcation out of the steady solution with zero velocity in the loop. This effect stabilizes the flow in the preferred direction. The flow in the opposite direction only remains stable in a small isolated interval of the heating parameter. Furthermore the calculations with the model equations demonstrate that a stable periodic behaviour of the flow is possible in a small parameter window. However, it has not been possible to verify this particular effect in the experiments conducted to date. (orig./GL) [de

  4. Surface state decoherence in loop quantum gravity, a first toy model

    International Nuclear Information System (INIS)

    Feller, Alexandre; Livine, Etera R

    2017-01-01

    The quantum-to-classical transition through decoherence is a major facet of the semi-classical analysis of quantum models that are supposed to admit a classical regime, as quantum gravity should be. A particular problem of interest is the decoherence of black hole horizons and holographic screens induced by the bulk-boundary coupling with interior degrees of freedom. Here in this paper we present a first toy-model, in the context of loop quantum gravity, for the dynamics of a surface geometry as an open quantum system. We discuss the resulting decoherence and recoherence and compare the exact density matrix evolution to the commonly used master equation approximation à la Lindblad underlining its merits and limitations. The prospect of this study is to have a clearer understanding of the boundary decoherence of black hole horizons seen by outside observers. (paper)

  5. Quantum Gowdy model within the new loop quantum cosmology improved dynamics

    International Nuclear Information System (INIS)

    Martin-Benito, M; Garay, L J; Mena Marugan, G A

    2011-01-01

    The linearly polarized Gowdy T 3 model can be regarded as compact Bianchi I cosmologies with inhomogeneous modes allowed to travel in one direction. We study a hybrid quantization of this model that combines the loop quantization of the Bianchi I background, adopting the improved dynamics scheme put forward by Ashtekar and Wilson-Ewing, with a Fock quantization for the inhomogeneities. The Hamiltonian constraint operator provides a resolution of the cosmological singularity and superselects separable sectors. We analyze the complicated structure of these sectors. In any of them the Hamiltonian constraint provides an evolution equation with respect to the volume of the associated Bianchi I universe, with a well posed initial value problem. This fact allows us to construct the Hilbert space of physical states and to show that we recover the standard quantum field theory for the inhomogeneities.

  6. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  7. Evolution and homology of the astragalus in early amniotes: new fossils, new perspectives.

    Science.gov (United States)

    O'Keefe, F Robin; Sidor, Christian A; Larsson, Hans C E; Maga, Abdoudaye; Ide, Oumarou

    2006-04-01

    The reorganization of the ankle in basal amniotes has long been considered a key innovation allowing the evolution of more terrestrial and cursorial behavior. Understanding how this key innovation arose is a complex problem that largely concerns the homologizing of the amniote astragalus with the various ossifications in the anamniote tarsus. Over the last century, several hypotheses have been advanced homologizing the amniote astragalus with the many ossifications in the ankle of amphibian-grade tetrapods. There is an emerging consensus that the amniote astragalus is a complex structure emerging via the co-ossification of several originally separate elements, but the identities of these elements remain unclear. Here we present new fossil evidence bearing on this contentious question. A poorly ossified, juvenile astragalus of the large captorhinid Moradisaurus grandis shows clear evidence of four ossification centers, rather than of three centers or one center as posited in previous models of astragalus homology. Comparative material of the captorhinid Captorhinikos chozaensis is also interpretable as demonstrating four ossification centers. A new, four-center model for the homology of the amniote astragalus is advanced, and is discussed in the context of the phylogeny of the Captorhinidae in an attempt to identify the developmental transitions responsible for the observed pattern of ossification within this clade. Lastly, the broader implications for amniote phylogeny are discussed, concluding that the neomorphic pattern of astragalus ossification seen in all extant reptiles (including turtles) arose within the clade Diapsida.

  8. Loop Quantum Cosmology.

    Science.gov (United States)

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  9. Generalized modal analysis for closed-loop piezoelectric devices

    International Nuclear Information System (INIS)

    Giraud-Audine, Christophe; Giraud, Frédéric; Amberg, Michel; Lemaire-Semail, Betty

    2015-01-01

    Stress in a piezoelectric material can be controlled by imposing an electrical field. Thanks to feedback, this electrical field can be a function of some strain-related measurement so as to confer on the piezoelectric device a closed-loop macroscopic behaviour. In this paper we address the modelling of such a system by extending the modal decomposition methods to account for the closed loop. To do so, the boundary conditions are modified to include the electrical feedback circuit, hence allowing a closed-loop modal analysis. A case study is used to illustrate the theory and to validate it. The main advantage of the method is that design issues such as the coupling factor of the device and closed-loop stability are simultaneously captured. (paper)

  10. LOOP CALCULUS AND BELIEF PROPAGATION FOR Q-ARY ALPHABET: LOOP TOWER

    Energy Technology Data Exchange (ETDEWEB)

    CHERTKOV, MICHAEL [Los Alamos National Laboratory; CHERNYAK, VLADIMIR [Los Alamos National Laboratory

    2007-01-10

    Loop calculus introduced in [1], [2] constitutes a new theoretical tool that explicitly expresses symbol Maximum-A-Posteriori (MAP) solution of a general statistical inference problem via a solution of the Belief Propagation (BP) equations. This finding brought a new significance to the BP concept, which in the past was thought of as just a loop-free approximation. In this paper they continue a discussion of the Loop Calculus, partitioning the results into three Sections. In Section 1 they introduce a new formulation of the Loop Calculus in terms of a set of transformations (gauges) that keeping the partition function of the problem invariant. The full expression contains two terms referred to as the 'ground state' and 'excited states' contributions. The BP equations are interpreted as a special (BP) gauge fixing condition that emerges as a special orthogonality constraint between the ground state and excited states, which also selects loop contributions as the only surviving ones among the excited states. In Section 2 they demonstrate how the invariant interpretation of the Loop Calculus, introduced in Section 1, allows a natural extension to the case of a general q-ary alphabet, this is achieved via a loop tower sequential construction. The ground level in the tower is exactly equivalent to assigning one color (out of q available) to the 'ground state' and considering all 'excited' states colored in the remaining (q-1) colors, according to the loop calculus rule. Sequentially, the second level in the tower corresponds to selecting a loop from the previous step, colored in (q-1) colors, and repeating the same ground vs excited states splitting procedure into one and (q-2) colors respectively. The construction proceeds till the full (q-1)-levels deep loop tower (and the corresponding contributions to the partition function) are established. In Section 3 they discuss an ultimate relation between the loop calculus and the Bethe

  11. GoSam-2.0. A tool for automated one-loop calculations within the Standard Model and beyond

    International Nuclear Information System (INIS)

    Cullen, Gavin; Deurzen, Hans van; Greiner, Nicolas

    2014-05-01

    We present the version 2.0 of the program package GoSam for the automated calculation of one-loop amplitudes. GoSam is devised to compute one-loop QCD and/or electroweak corrections to multi-particle processes within and beyond the Standard Model. The new code contains improvements in the generation and in the reduction of the amplitudes, performs better in computing time and numerical accuracy, and has an extended range of applicability. The extended version of the ''Binoth-Les-Houches-Accord'' interface to Monte Carlo programs is also implemented. We give a detailed description of installation and usage of the code, and illustrate the new features in dedicated examples.

  12. Computational study of HIV gp120 as a target for polyanionic entry inhibitors: Exploiting the V3 loop region.

    Directory of Open Access Journals (Sweden)

    Louis R Hollingsworth

    Full Text Available Multiple approaches are being utilized to develop therapeutics to treat HIV infection. One approach is designed to inhibit entry of HIV into host cells, with a target being the viral envelope glycoprotein, gp120. Polyanionic compounds have been shown to be effective in inhibiting HIV entry, with a mechanism involving electrostatic interactions with the V3 loop of gp120 being proposed. In this study, we applied computational methods to elucidate molecular interactions between the repeat unit of the precisely alternating polyanion, Poly(4,4'-stilbenedicarboxylate-alt-maleic acid (DCSti-alt-MA and the V3 loop of gp120 from strains of HIV against which these polyanions were previously tested (IIIb, BaL, 92UG037, JR-CSF as well as two strains for which gp120 crystal structures are available (YU2, 2B4C. Homology modeling was used to create models of the gp120 proteins. Using monomers of the gp120 protein, we applied extensive molecular dynamics simulations to obtain dominant morphologies that represent a variety of open-closed states of the V3 loop to examine the interaction of 112 ligands of the repeating units of DCSti-alt-MA docked to the V3 loop and surrounding residues. Using the distance between the V1/V2 and V3 loops of gp120 as a metric, we revealed through MD simulations that gp120 from the lab-adapted strains (BaL and IIIb, which are more susceptible to inhibition by DCSti-alt-MA, clearly transitioned to the closed state in one replicate of each simulation set, whereas none of the replicates from the Tier II strains (92UG037 and JR-CSF did so. Docking repeat unit microspecies to the gp120 protein before and after MD simulation enabled identification of residues that were key for binding. Notably, only a few residues were found to be important for docking both before and after MD simulation as a result of the conformational heterogeneity provided by the simulations. Consideration of the residues that were consistently involved in interactions

  13. Statistical identification of the confidence limits of open loop transfer functions obtained by MAR analysis

    International Nuclear Information System (INIS)

    Antonopoulos-Domis, M.; Mourtzanos, K.

    1996-01-01

    Estimators of the confidence limits of open loop transfer functions via Multivariate Auto-Regressive (MAR) modelling are not available in the literature. The statistics of open loop transfer functions obtained by MAR modelling are investigated via numerical experiments. A system of known open loop transfer functions is simulated digitally and excited by random number series. The digital signals of the simulated system are then MAR modelled and the open loop transfer functions are estimated. Performing a large number of realizations, mean values and variances of the open loop transfer functions are estimated. It is found that if the record length N of each realization is long enough then the estimates of open loop transfer functions follow normal distribution. The variance of the open loop transfer functions is proportional to 1/N. For MAR processes the asymptotic covariance matrix of the estimate of open loop transfer functions was found in agreement with theoretical prediction. (author)

  14. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model

    International Nuclear Information System (INIS)

    Dong Qingshan; Shang Hongtao; Wu Wei; Chen Fulin; Zhang Junrui; Guo Jiaping; Mao Tianqiu

    2012-01-01

    The most important problem for the survival of thick 3-dimensional tissues is the lack of vascularization in the context of bone tissue engineering. In this study, a modified arteriovenous loop (AVL) was developed to prefabricate an axial vascularized tissue engineering coral bone in rabbit, with comparison of the arteriovenous bundle (AVB) model. An arteriovenous fistula between rabbit femoral artery and vein was anastomosed to form an AVL. It was placed in a circular side groove of the coral block. The complex was wrapped with an expanded-polytetrafluoroethylene membrane and implanted beneath inguinal skin. After 2, 4, 6 and 8 weeks, the degree of vascularization was evaluated by India ink perfusion, histological examination, vascular casts, and scanning electron microscopy images of vascular endangium. Newly formed fibrous tissues and vasculature extended over the surfaces and invaded the interspaces of entire coral block. The new blood vessels robustly sprouted from the AVL. Those invaginated cavities in the vascular endangium from scanning electron microscopy indicated vessel's sprouted pores. Above indexes in AVL model are all superior to that in AVB model, indicating that the modified AVL model could more effectively develop vascularization in larger tissue engineering bone. - Highlights: ► A modified arteriovenous loop (AVL) model in rabbit was developed in this study. ► Axial prevascularization was induced in a larger coral block by using the AVL. ► The prefabrication of axial vascularized coral bone is superior as vascular carrier.

  15. Identification of Oxa1 Homologs Operating in the Eukaryotic Endoplasmic Reticulum

    Directory of Open Access Journals (Sweden)

    S. Andrei Anghel

    2017-12-01

    Full Text Available Members of the evolutionarily conserved Oxa1/Alb3/YidC family mediate membrane protein biogenesis at the mitochondrial inner membrane, chloroplast thylakoid membrane, and bacterial plasma membrane, respectively. Despite their broad phylogenetic distribution, no Oxa1/Alb3/YidC homologs are known to operate in eukaryotic cells outside the endosymbiotic organelles. Here, we present bioinformatic evidence that the tail-anchored protein insertion factor WRB/Get1, the “endoplasmic reticulum (ER membrane complex” subunit EMC3, and TMCO1 are ER-resident homologs of the Oxa1/Alb3/YidC family. Topology mapping and co-evolution-based modeling demonstrate that Get1, EMC3, and TMCO1 share a conserved Oxa1-like architecture. Biochemical analysis of human TMCO1, the only homolog not previously linked to membrane protein biogenesis, shows that it associates with the Sec translocon and ribosomes. These findings suggest a specific biochemical function for TMCO1 and define a superfamily of proteins—the “Oxa1 superfamily”—whose shared function is to facilitate membrane protein biogenesis.

  16. Belief propagation and loop series on planar graphs

    International Nuclear Information System (INIS)

    Chertkov, Michael; Teodorescu, Razvan; Chernyak, Vladimir Y

    2008-01-01

    We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed

  17. Near BPS Wilson loop in β-deformed theories

    International Nuclear Information System (INIS)

    Chu, C-S; Giataganas, Dimitrios

    2007-01-01

    We propose a definition of the Wilson loop operator in the N = 1 β-deformed supersymmetric Yang-Mills theory. Although the operator is not BPS, it has a finite expectation value at least up to order (g 2 N) 2 . This does not happen generally for a generic non-BPS Wilson loop whose expectation value is UV divergent. For this reason we call this a near-BPS Wilson loop. We derive the general form of the boundary condition satisfied by the dual string worldsheet and find that it is deformed. Finiteness of the expectation value of the Wilson loop fixes the boundary condition to be one which is characterized by the vielbein of the deformed supergravity metric. The Wilson loop operators provide natural candidates as dual descriptions to some of the existing D-brane configurations in the Lunin-Maldacena background. We also construct the string dual configuration for a near-1/4 BPS circular Wilson loop operator. The string lies on a deformed three-sphere instead of a two-sphere as in the undeformed case. The expectation value of the Wilson loop operator is computed using the AdS/CFT correspondence and is found to be independent of the deformation. We conjecture that the exact expectation value of the Wilson loop is given by the same matrix model as in the undeformed case

  18. Binding site analysis of full-length α1a adrenergic receptor using homology modeling and molecular docking

    International Nuclear Information System (INIS)

    Pedretti, Alessandro; Elena Silva, Maria; Villa, Luigi; Vistoli, Giulio

    2004-01-01

    The recent availability of crystal structure of bovine rhodopsin offers new opportunities in order to approach the construction of G protein coupled receptors. This study focuses the attention on the modeling of full-length α 1a adrenergic receptor (α 1a -AR) due to its biological role and significant implications in pharmacological treatment of benign prostate hyperplasia. This work could be considered made up by two main steps: (a) the construction of full structure of α 1a -AR, through homology modeling methods; (b) the automated docking of an endogenous agonist, norepinephrine, and of an antagonist, WB-4101, using BioDock program. The obtained results highlight the key residues involved in binding sites of both agonists and antagonists, confirming the mutagenesis data and giving new suggestions for the rational design of selective ligands

  19. REFLECTION OF PROPAGATING SLOW MAGNETO-ACOUSTIC WAVES IN HOT CORONAL LOOPS: MULTI-INSTRUMENT OBSERVATIONS AND NUMERICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Banerjee, Dipankar; Pant, Vaibhav [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Yuan, Ding; Fang, Xia; Doorsselaere, Tom Van, E-mail: sudip@iiap.res.in, E-mail: xia.fang@wis.kuleuven.be [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, 3001, Leuven (Belgium)

    2016-09-10

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory /Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence. The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.

  20. Modelling and hardware-in-the-loop simulation of the blowout tract components for passenger compartment air conditioning of motor vehicles; Modellierung und Hardware-in-the-Loop-Simulation der Komponenten des Ausblastraktes zur Kraftfahrzeuginnenraumklimatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Michalek, David

    2009-07-01

    The author investigated the modelling and hardware-in-the-loop simulation of components of the blowout tract of motor car air conditioning systems. The control systems and air conditioning systems are gone into, from the air entering the car to the control systems and sensors for monitoring state variables. The function of the control equipment hardware and software was to be analyzed reproducibly in order to save time and cost. The models were verified using available data. Validation criteria were established for the hardware-in-the-loop simulator. On the basis of selected operating conditions, the performance of the air conditioning control unit inside the vehicle was compared with the simulation results and was evaluated on the basis of the established criteria. (orig.)

  1. Nucleation of dislocation loops during irradiation in binary FCC alloys with different alloy compositions

    International Nuclear Information System (INIS)

    Hashimoto, T.; Shigenaka, N.; Fuse, M.

    1992-01-01

    Dislocation loop nucleation is analyzed using a rate theory based model for face-centered cubic (fcc) binary alloys containing A- and B-atoms. In order to calculate the nucleation process in concentrated alloys, the model considers three types of interstitial dumbbells composed of A- and B-atoms, AA-, BB-, and AB-type dumbbells. Conversions between these interstitial dumbbells are newly introduced in the formulation in consideration of dumbbell configurations and movements. The model also includes reactions, such as point defect production by irradiation, mutual recombination of an interstitial and a vacancy, and dislocation loop nucleation and growth. Parameter values are chosen based on the atom size of the alloy component elements, and dislocation loop nucleation kinetics are investigated while varying alloy compositions. Two different types of kinetics are obtained in accordance with the dominant loop nucleus type. The migration energy difference of AA- and BB-type interstitial dumbbells is important in the determination of the dominant loop nucleus type. The present model predicts that the dislocation loop concentration decrease with increasing under sized atoms content, but defect production rate and temperature dependences of loop concentration are insensitive to alloy compositions. (author)

  2. The meson and the baryon in the one-loop dual model of the pomeron

    International Nuclear Information System (INIS)

    Pennington, M.R.; Gula, A.

    1975-01-01

    In the lowest order dual loop perturbation theory the crossing and factorisation properties of the pomeron are considered. It is shown that the baryon loop is the necessary complement of the single crossed meson loop in building the low-energy pomeron. Recent experimental indications that in this energy region the pomeron is different in MM, MB and BB processes are naturally explained. (Auth.)

  3. Evolution of pH buffers and water homeostasis in eukaryotes: homology between humans and Acanthamoeba proteins.

    Science.gov (United States)

    Baig, Abdul M; Zohaib, R; Tariq, S; Ahmad, H R

    2018-02-01

    This study intended to trace the evolution of acid-base buffers and water homeostasis in eukaryotes. Acanthamoeba castellanii  was selected as a model unicellular eukaryote for this purpose. Homologies of proteins involved in pH and water regulatory mechanisms at cellular levels were compared between humans and A. castellanii. Amino acid sequence homology, structural homology, 3D modeling and docking prediction were done to show the extent of similarities between carbonic anhydrase 1 (CA1), aquaporin (AQP), band-3 protein and H + pump. Experimental assays were done with acetazolamide (AZM), brinzolamide and mannitol to observe their effects on the trophozoites of  A. castellanii.  The human CA1, AQP, band-3 protein and H + -transport proteins revealed similar proteins in Acanthamoeba. Docking showed the binding of AZM on amoebal AQP-like proteins.  Acanthamoeba showed transient shape changes and encystation at differential doses of brinzolamide, mannitol and AZM.  Conclusion: Water and pH regulating adapter proteins in Acanthamoeba and humans show significant homology, these mechanisms evolved early in the primitive unicellular eukaryotes and have remained conserved in multicellular eukaryotes.

  4. Applications of an anti-symmetry loop algebra and its expanding forms

    International Nuclear Information System (INIS)

    Zhang Yufeng; Yan Qingyou

    2004-01-01

    Constructing an anti-symmetry subalgebra A-tilde 2 of loop algebra A-tilde 2 gives the well-known Jaulent-Miodek (JM) hierarchy, the JM equation and its new Lax pair. Further, the Darboux transformation of the JM equation is deduced by anstaz method. By making use of a high-order loop algebra and Tu scheme, an expanding integrable model of the JM hierarchy is obtained. A direct expansion A-macron 2 * of loop algebra A-tilde 2 by considering the definition of Lie algebra is presented, which is used to establish two isospectral problems. It follows that corresponding two new integrable systems are engendered, which possess bi-Hamiltonian structures, respectively. Furthermore, a scalar transformation is applied to turn the loop algebra A-bar 2 * into its equivalent subalgebra A-tilde 1 of loop algebra A-tilde 1 . With the help of A-tilde 1 , another new high-order loop algebra G-bar is constructed, which is used to obtain an expanding integrable model of one of two integrable systems presented

  5. Fuzzy logic controllers and chaotic natural convection loops

    International Nuclear Information System (INIS)

    Theler, German

    2007-01-01

    The study of natural circulation loops is a subject of special concern for the engineering design of advanced nuclear reactors, as natural convection provides an efficient and completely passive heat removal system. However, under certain circumstances thermal-fluid-dynamical instabilities may appear, threatening the reactor safety as a whole.On the other hand, fuzzy logic controllers provide an ideal framework to approach highly non-linear control problems. In the present work, we develop a software-based fuzzy logic controller and study its application to chaotic natural convection loops.We numerically analyse the linguistic control of the loop known as the Welander problem in such conditions that, if the controller were not present, the circulation flow would be non-periodic unstable.We also design a Taka gi-Sugeno fuzzy controller based on a fuzzy model of a natural convection loop with a toroidal geometry, in order to stabilize a Lorenz-chaotic behaviour.Finally, we show experimental results obtained in a rectangular natural circulation loop [es

  6. Collective estimation of multiple bivariate density functions with application to angular-sampling-based protein loop modeling

    KAUST Repository

    Maadooliat, Mehdi

    2015-10-21

    This paper develops a method for simultaneous estimation of density functions for a collection of populations of protein backbone angle pairs using a data-driven, shared basis that is constructed by bivariate spline functions defined on a triangulation of the bivariate domain. The circular nature of angular data is taken into account by imposing appropriate smoothness constraints across boundaries of the triangles. Maximum penalized likelihood is used to fit the model and an alternating blockwise Newton-type algorithm is developed for computation. A simulation study shows that the collective estimation approach is statistically more efficient than estimating the densities individually. The proposed method was used to estimate neighbor-dependent distributions of protein backbone dihedral angles (i.e., Ramachandran distributions). The estimated distributions were applied to protein loop modeling, one of the most challenging open problems in protein structure prediction, by feeding them into an angular-sampling-based loop structure prediction framework. Our estimated distributions compared favorably to the Ramachandran distributions estimated by fitting a hierarchical Dirichlet process model; and in particular, our distributions showed significant improvements on the hard cases where existing methods do not work well.

  7. Collective estimation of multiple bivariate density functions with application to angular-sampling-based protein loop modeling

    KAUST Repository

    Maadooliat, Mehdi; Zhou, Lan; Najibi, Seyed Morteza; Gao, Xin; Huang, Jianhua Z.

    2015-01-01

    This paper develops a method for simultaneous estimation of density functions for a collection of populations of protein backbone angle pairs using a data-driven, shared basis that is constructed by bivariate spline functions defined on a triangulation of the bivariate domain. The circular nature of angular data is taken into account by imposing appropriate smoothness constraints across boundaries of the triangles. Maximum penalized likelihood is used to fit the model and an alternating blockwise Newton-type algorithm is developed for computation. A simulation study shows that the collective estimation approach is statistically more efficient than estimating the densities individually. The proposed method was used to estimate neighbor-dependent distributions of protein backbone dihedral angles (i.e., Ramachandran distributions). The estimated distributions were applied to protein loop modeling, one of the most challenging open problems in protein structure prediction, by feeding them into an angular-sampling-based loop structure prediction framework. Our estimated distributions compared favorably to the Ramachandran distributions estimated by fitting a hierarchical Dirichlet process model; and in particular, our distributions showed significant improvements on the hard cases where existing methods do not work well.

  8. Reactor loops at Chalk River

    International Nuclear Information System (INIS)

    Sochaski, R.O.

    1962-07-01

    This report describes broadly the nine in-reactor loops, and their components, located in and around the NRX and NRU reactors at Chalk River. First an introduction and general description is given of the loops and their function, supplemented with a table outlining some loop specifications and nine simplified flow sheets, one for each individual loop. The report then proceeds to classify each loop into two categories, the 'main loop circuit' and the 'auxiliary circuit', and descriptions are given of each circuit's components in turn. These components, in part, are comprised of the main loop pumps, the test section, loop heaters, loop coolers, delayed-neutron monitors, surge tank, Dowtherm coolers, loop piping. Here again photographs, drawings and tables are included to provide a clearer understanding of the descriptive literature and to include, in tables, some specifications of the more important components in each loop. (author)

  9. Computing Homology Group Generators of Images Using Irregular Graph Pyramids

    OpenAIRE

    Peltier , Samuel; Ion , Adrian; Haxhimusa , Yll; Kropatsch , Walter; Damiand , Guillaume

    2007-01-01

    International audience; We introduce a method for computing homology groups and their generators of a 2D image, using a hierarchical structure i.e. irregular graph pyramid. Starting from an image, a hierarchy of the image is built, by two operations that preserve homology of each region. Instead of computing homology generators in the base where the number of entities (cells) is large, we first reduce the number of cells by a graph pyramid. Then homology generators are computed efficiently on...

  10. Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model

    Science.gov (United States)

    Al Janaideh, Mohammad; Aljanaideh, Omar

    2018-05-01

    Apart from the output-input hysteresis loops, the magnetostrictive actuators also exhibit asymmetry and saturation, particularly under moderate to large magnitude inputs and at relatively higher frequencies. Such nonlinear input-output characteristics could be effectively characterized by a rate-dependent Prandtl-Ishlinskii model in conjunction with a function of deadband operators. In this study, an inverse model is formulated to seek real-time compensation of rate-dependent and asymmetric hysteresis nonlinearities of a Terfenol-D magnetostrictive actuator. The inverse model is formulated with the inverse of the rate-dependent Prandtl-Ishlinskii model, satisfying the threshold dilation condition, with the inverse of the deadband function. The inverse model was subsequently applied to the hysteresis model as a feedforward compensator. The proposed compensator is applied as a feedforward compensator to the actuator hardware to study its potential for rate-dependent and asymmetric hysteresis loops. The experimental results are obtained under harmonic and complex harmonic inputs further revealed that the inverse compensator can substantially suppress the hysteresis and output asymmetry nonlinearities in the entire frequency range considered in the study.

  11. Protein Loop Dynamics Are Complex and Depend on the Motions of the Whole Protein

    Directory of Open Access Journals (Sweden)

    Michael T. Zimmermann

    2012-04-01

    Full Text Available We investigate the relationship between the motions of the same peptide loop segment incorporated within a protein structure and motions of free or end-constrained peptides. As a reference point we also compare against alanine chains having the same length as the loop. Both the analysis of atomic molecular dynamics trajectories and structure-based elastic network models, reveal no general dependence on loop length or on the number of solvent exposed residues. Rather, the whole structure affects the motions in complex ways that depend strongly and specifically on the tertiary structure of the whole protein. Both the Elastic Network Models and Molecular Dynamics confirm the differences in loop dynamics between the free and structured contexts; there is strong agreement between the behaviors observed from molecular dynamics and the elastic network models. There is no apparent simple relationship between loop mobility and its size, exposure, or position within a loop. Free peptides do not behave the same as the loops in the proteins. Surface loops do not behave as if they were random coils, and the tertiary structure has a critical influence upon the apparent motions. This strongly implies that entropy evaluation of protein loops requires knowledge of the motions of the entire protein structure.

  12. Loop optimization for tensor network renormalization

    Science.gov (United States)

    Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang

    We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.

  13. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2016-01-01

    This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... and complex space vectors, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect in the phase domain. Thus, the impedance models previously developed in the different domains can be unified. Moreover, the impedance shaping effects of PLL are structurally...... characterized for the current control in the rotating dq-frame and the stationary αβ-frame. Case studies based on the unified impedance model are presented, which are then verified in the time-domain simulations and experiments. The results closely correlate with the impedance-based analysis....

  14. Use of Main Loop Isolating Valves (GZZS) in WWER 440

    International Nuclear Information System (INIS)

    Stefanova, A.E.; Gencheva, R.V.; Groudev, P.P.

    2002-01-01

    This paper discusses the usage of Main Loop Isolation Valves in case of Steam Generator Tube Rupture accident in WWER440/V230. A double-ended single pipe break in SG-6 was chosen as representative. In the paper are investigated two cases. In the first one the operator isolates the affected loop by Main Loop Isolation Valves closing and after primary depressurization re-opens them to cooldown the damaged Steam Generator. The second case treats the situation, where Main Loop Isolation Valves fail to close with the necessary operator actions for managing plant recovery. RELAP5/MOD3.2 computer code has been used to simulate the Steam Generator Tube Rupture accident in WWER440 NPP model. This model was developed and validated at Institute for Nuclear Research and Nuclear Energy - Bulgarian Academy of Sciences. The results of analyses presented in this report demonstrate that in the both cases (with or without Main Loop Isolation Valves usage) the operator could bring the plant to stable and safety conditions (Authors)

  15. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  16. Open and Closed Loop Parametric System Identification in Compact Disk Players

    DEFF Research Database (Denmark)

    Vidal, Enrique Sanchez; Stoustrup, Jakob; Andersen, Palle

    2001-01-01

    By measuring the current through the coil of the actuators in the optical pick-up in a compact disk player, open loop parametric system identification can be performed. The parameters are identified by minimizing the least-squares loss function of the ARX model. The only parameter which cannot be...... be identified in open loop is the optical gain. This is therefore estimated in closed loop. Practical results are analyzed and show very accurate estimates of the real parameters.......By measuring the current through the coil of the actuators in the optical pick-up in a compact disk player, open loop parametric system identification can be performed. The parameters are identified by minimizing the least-squares loss function of the ARX model. The only parameter which cannot...

  17. Refinement of homology-based protein structures by molecular dynamics simulation techniques

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to

  18. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1.

    Science.gov (United States)

    Toczyski, D P; Steitz, J A

    1993-01-01

    EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function. Images PMID:8380232

  19. Can we observe open loop transfer functions in a stochastic feedback system ?

    International Nuclear Information System (INIS)

    Kishida, Kuniharu; Suda, Nobuhide.

    1991-01-01

    There are two kinds of problems concerning open loop and closed loop transfer functions in a feedback system. One is a problem even in the deterministic case, and the other is in the stochastic case. In the deterministic case it is guaranteed under a necessary and sufficient condition that total sum of degrees of sub-transfer functions coincides to the degree of the total system. In the stochastic case a systematic understanding of a physical state model, a theoretical innovation model and a data-oriented innovation model is indispensable for determination of open loop transfer functions from time series data. Undesirable factors appear in determination of open loop transfer functions, since a transfer function matrix from input noises to output variables has a redundancy factor of diagonal matrix. (author)

  20. Thumbs down: a molecular-morphogenetic approach to avian digit homology.

    Science.gov (United States)

    Capek, Daniel; Metscher, Brian D; Müller, Gerd B

    2014-01-01

    Avian forelimb digit homology remains one of the standard themes in comparative biology and EvoDevo research. In order to resolve the apparent contradictions between embryological and paleontological evidence a variety of hypotheses have been presented in recent years. The proposals range from excluding birds from the dinosaur clade, to assignments of homology by different criteria, or even assuming a hexadactyl tetrapod limb ground state. At present two approaches prevail: the frame shift hypothesis and the pyramid reduction hypothesis. While the former postulates a homeotic shift of digit identities, the latter argues for a gradual bilateral reduction of phalanges and digits. Here we present a new model that integrates elements from both hypotheses with the existing experimental and fossil evidence. We start from the main feature common to both earlier concepts, the initiating ontogenetic event: reduction and loss of the anterior-most digit. It is proposed that a concerted mechanism of molecular regulation and developmental mechanics is capable of shifting the boundaries of hoxD expression in embryonic forelimb buds as well as changing the digit phenotypes. Based on a distinction between positional (topological) and compositional (phenotypic) homology criteria, we argue that the identity of the avian digits is II, III, IV, despite a partially altered phenotype. Finally, we introduce an alternative digit reduction scheme that reconciles the current fossil evidence with the presented molecular-morphogenetic model. Our approach identifies specific experiments that allow to test whether gene expression can be shifted and digit phenotypes can be altered by induced digit loss or digit gain. © 2013 Wiley Periodicals, Inc.