WorldWideScience

Sample records for loop frequency demodulators

  1. Frequency guided methods for demodulation of a single fringe pattern.

    Science.gov (United States)

    Wang, Haixia; Kemao, Qian

    2009-08-17

    Phase demodulation from a single fringe pattern is a challenging task but of interest. A frequency-guided regularized phase tracker and a frequency-guided sequential demodulation method with Levenberg-Marquardt optimization are proposed to demodulate a single fringe pattern. Demodulation path guided by the local frequency from the highest to the lowest is applied in both methods. Since critical points have low local frequency values, they are processed last so that the spurious sign problem caused by these points is avoided. These two methods can be considered as alternatives to the effective fringe follower regularized phase tracker. Demodulation results from one computer-simulated and two experimental fringe patterns using the proposed methods will be demonstrated. (c) 2009 Optical Society of America

  2. Radio-frequency transparent demodulation for broadband hybrid wireless-optical links

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Alemany, Ruben

    2010-01-01

    A novel demodulation technique which is transparent to radio-frequency (RF) carrier frequency is presented and experimentally demonstrated for multigigabit wireless signals. The presented demodulation technique employs optical single-sideband filtering, coherent detection, and baseband digital si...

  3. Demodulation Radio Frequency Interference Effects in Operational Amplifier Circuits

    Science.gov (United States)

    Sutu, Yue-Hong

    A series of investigations have been carried out to determine RFI effects in analog circuits using monolithic integrated operational amplifiers (op amps) as active devices. The specific RFI effect investigated is how amplitude-modulated (AM) RF signals are demodulated in op amp circuits to produce undesired low frequency responses at AM-modulation frequency. The undesired demodulation responses were shown to be characterized by a second-order nonlinear transfer function. Four representative op amp types investigated were the 741 bipolar op amp, the LM10 bipolar op amp, the LF355 JFET-Bipolar op amp, and the CA081 MOS-Bipolar op amp. Two op amp circuits were investigated. The first circuit was a noninverting unity voltage gain buffer circuit. The second circuit was an inverting op amp configuration. In the second circuit, the investigation includes the effects of an RFI suppression capacitor in the feedback path. Approximately 30 units of each op amp type were tested to determine the statistical variations of RFI demodulation effects in the two op amp circuits. The Nonlinear Circuit Analysis Program, NCAP, was used to simulate the demodulation RFI response. In the simulation, the op amp was replaced with its incremental macromodel. Values of macromodel parameters were obtained from previous investigations and manufacturer's data sheets. Some key results of this work are: (1) The RFI demodulation effects are 10 to 20 dB lower in CA081 and LF355 FET-bipolar op amp than in 741 and LM10 bipolar op amp except above 40 MHz where the LM10 RFI response begins to approach that of CA081. (2) The experimental mean values for 30 741 op amps show that RFI demodulation responses in the inverting amplifier with a 27 pF feedback capacitor were suppressed from 10 to 35 dB over the RF frequency range 0.1 to 150 MHz except at 0.15 MHz where only 3.5 dB suppression was observed. (3) The NCAP program can predict RFI demodulation responses in 741 and LF355 unity gain buffer circuits

  4. Wideband FM Demodulation and Multirate Frequency Transformations

    Science.gov (United States)

    2016-12-15

    Noble identities to extend the proposed approach to larger wideband to narrowband conversion factors and more practical implementations. We further...framework . . . . . . . . . . . . . . . . . . . . . 8 2 Block diagrams of the alternative MFT system for large conversion factors (a) and the Noble Identity ...of both MFT frameworks with conversion factor R = 128 and normalized radian frequency shift wd = 0.1π under the extreme senario with modulation index

  5. Tracking performance of unbalanced QPSK demodulators. I - Biphase Costas loop with passive arm filters

    Science.gov (United States)

    Simon, M. K.; Alem, W. K.

    1978-01-01

    Unbalanced quadriphase-shift-keying (QPSK) is an attractive means for transmitting two digital data streams which in general have different average powers, data rates, and data formats. Previous analyses of the tracking performance of Costas loop demodulators of unbalanced QPSK have accounted only for the filtering effect produced by the loop's two arm filters on the equivalent additive noise perturbing the loop. When the bandwidth of these filters is selected on the basis of the order of the data rate, as is typical of optimum Costas loop design, the filtering degradations of the data modulations themselves and the cross-modulation noise produced by their multiplication in the loop often cannot be neglected. The purpose of this paper is to incorporate these additional filtering effects into the analysis. Many of the results obtained herein are in the form of closed-form expressions which can easily be evaluated numerically for design and performance prediction purposes.

  6. An assessment of envelope-based demodulation in case of proximity of carrier and modulation frequencies

    Science.gov (United States)

    Shahriar, Md Rifat; Borghesani, Pietro; Randall, R. B.; Tan, Andy C. C.

    2017-11-01

    Demodulation is a necessary step in the field of diagnostics to reveal faults whose signatures appear as an amplitude and/or frequency modulation. The Hilbert transform has conventionally been used for the calculation of the analytic signal required in the demodulation process. However, the carrier and modulation frequencies must meet the conditions set by the Bedrosian identity for the Hilbert transform to be applicable for demodulation. This condition, basically requiring the carrier frequency to be sufficiently higher than the frequency of the modulation harmonics, is usually satisfied in many traditional diagnostic applications (e.g. vibration analysis of gear and bearing faults) due to the order-of-magnitude ratio between the carrier and modulation frequency. However, the diversification of the diagnostic approaches and applications shows cases (e.g. electrical signature analysis-based diagnostics) where the carrier frequency is in close proximity to the modulation frequency, thus challenging the applicability of the Bedrosian theorem. This work presents an analytic study to quantify the error introduced by the Hilbert transform-based demodulation when the Bedrosian identity is not satisfied and proposes a mitigation strategy to combat the error. An experimental study is also carried out to verify the analytical results. The outcome of the error analysis sets a confidence limit on the estimated modulation (both shape and magnitude) achieved through the Hilbert transform-based demodulation in case of violated Bedrosian theorem. However, the proposed mitigation strategy is found effective in combating the demodulation error aroused in this scenario, thus extending applicability of the Hilbert transform-based demodulation.

  7. Complex demodulation in VLBI estimation of high frequency Earth rotation components

    Science.gov (United States)

    Böhm, S.; Brzeziński, A.; Schuh, H.

    2012-12-01

    The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of

  8. High-speed clock recovery and demodulation using short pulse sources and phase-locked loop techniques

    DEFF Research Database (Denmark)

    Zibar, Darko

    2007-01-01

    clocktiming jitter, i.e. 3.5 ps at 40 Gb/s and 0.5 ps at 160 Gb/s. In the last part of the thesis, a novel phase-locked coherent optical phase demodulator with feedback and sampling, to be used in phase-modulated radio-over-fibre optical links, is also presented, theoretically investigated and experimentally...... demonstrated. It is experimentally shown that the proposed approach results in 18 dB of spur-free-dynamic range improve- ment compared to a traditional demodulator without feedback. A new time-domain, large signal, numerical model of the phase locked coherent demodulator is developed and shown...... loop with noise at a bit-rate of 160 Gb/s. It has been shown that it is important to reduce the time delay in the loop since it results in the increased timing jitter of the recovered clock signal. We also investigate the requirement for the free-running timing jitter of the local electrical...

  9. Demodulation effect is observed in neurones by exposure to low frequency modulated microwaves

    International Nuclear Information System (INIS)

    Perez-Bruzon, R N; Figols, T; Azanza, M J; Moral, A del

    2010-01-01

    Neurones exposure to a microwave (carrier f c =13.6 GHz; power P ≅ 5 mW; H o ≅ 0.10 Am -1 = 1.25 mOe; E 0 ≅ 3.5 V/m; ΔT ≅ 0.01 0 C; SAR: 3.1x10 -3 - 5.8x10 -3 W/Kg) EMF amplitude modulated by ELF-AC field (frequency, f m = 0-100 Hz) shows no electrophysiological effect under the carrier MF alone, but f requency resonances: at 2, 4, 8, 12, 16, 50, 100 Hz: demodulation effect. Resonances appear when applied ELF-MF is close to a dominant characteristic frequency of the neurone impulse Fourier spectrum. This is an interesting result considering that ELF-MF modulating RF or MW in the range of human EEG could induce frequency-resonant effects on exposed human brain.

  10. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    Science.gov (United States)

    Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.

  11. Demodulation effect is observed in neurones by exposure to low frequency modulated microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bruzon, R N; Figols, T; Azanza, M J [Laboratorio de Magnetobiologia, Departamento de Anatomia e Histologia Humanas, Facultad de Medicina, Universidad de Zaragoza (Spain); Moral, A del, E-mail: naogit@yahoo.co [Laboratorio de Magnetismo de Solidos, Departamento de Fisica de Materia Condensada and Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza and CSIC (Spain)

    2010-01-01

    Neurones exposure to a microwave (carrier f{sub c}=13.6 GHz; power P {approx_equal} 5 mW; H{sub o} {approx_equal} 0.10 Am{sup -1} = 1.25 mOe; E{sub 0} {approx_equal} 3.5 V/m; {Delta}T {approx_equal} 0.01{sup 0}C; SAR: 3.1x10{sup -3} - 5.8x10{sup -3} W/Kg) EMF amplitude modulated by ELF-AC field (frequency, f{sub m}= 0-100 Hz) shows no electrophysiological effect under the carrier MF alone, but {sup f}requency resonances: at 2, 4, 8, 12, 16, 50, 100 Hz: demodulation effect. Resonances appear when applied ELF-MF is close to a dominant characteristic frequency of the neurone impulse Fourier spectrum. This is an interesting result considering that ELF-MF modulating RF or MW in the range of human EEG could induce frequency-resonant effects on exposed human brain.

  12. Time-frequency analysis of time-varying modulated signals based on improved energy separation by iterative generalized demodulation

    Science.gov (United States)

    Feng, Zhipeng; Chu, Fulei; Zuo, Ming J.

    2011-03-01

    Energy separation algorithm is good at tracking instantaneous changes in frequency and amplitude of modulated signals, but it is subject to the constraints of mono-component and narrow band. In most cases, time-varying modulated vibration signals of machinery consist of multiple components, and have so complicated instantaneous frequency trajectories on time-frequency plane that they overlap in frequency domain. For such signals, conventional filters fail to obtain mono-components of narrow band, and their rectangular decomposition of time-frequency plane may split instantaneous frequency trajectories thus resulting in information loss. Regarding the advantage of generalized demodulation method in decomposing multi-component signals into mono-components, an iterative generalized demodulation method is used as a preprocessing tool to separate signals into mono-components, so as to satisfy the requirements by energy separation algorithm. By this improvement, energy separation algorithm can be generalized to a broad range of signals, as long as the instantaneous frequency trajectories of signal components do not intersect on time-frequency plane. Due to the good adaptability of energy separation algorithm to instantaneous changes in signals and the mono-component decomposition nature of generalized demodulation, the derived time-frequency energy distribution has fine resolution and is free from cross term interferences. The good performance of the proposed time-frequency analysis is illustrated by analyses of a simulated signal and the on-site recorded nonstationary vibration signal of a hydroturbine rotor during a shut-down transient process, showing that it has potential to analyze time-varying modulated signals of multi-components.

  13. Investigation of homodyne demodulation of RZ-BPSK signal based on an optical Costas loop

    Science.gov (United States)

    Zhou, Haijun; Zhu, Zunzhen; Xie, Weilin; Dong, Yi

    2018-01-01

    We demonstrate the coherent detection of 10 Gb/s return-to-zero (RZ) binary phase-shift keying (BPSK) signal based on a homodyne Costas optical phase-locked loop (OPLL). It demonstrates time misalignment tolerance of +/- 10% of the transmitted RZ-BPSK signal, i.e. -20 to +20 ps between the pulse carver and the phase modulator for 5 Gb/s RZ-BPSK signal, -10 to +10 ps or 10 Gb/s RZ-BPSK signal. Besides, the Costas coherent receiver shows a 2.5 dB sensitivity improvement over conventional 5 Gb/s NRZ-BPSK and a 1.4 dB over 10 Gb/s NRZ-BPSK only at the cost of slightly higher residual phase error. Those merits of sufficient tolerance to misalignment, higher receiver sensitivity, and low residual phase error of RZ-BPSK modulation are beneficial to be applied in free space optical (FSO) communication to achieve higher link budget, longer transmission distance.

  14. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  15. Note: Demodulation of spectral signal modulated by optical chopper with unstable modulation frequency.

    Science.gov (United States)

    Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong

    2017-10-01

    When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.

  16. Self-Mixing Demodulation for Coherent Phase-Sensitive OTDR System

    Directory of Open Access Journals (Sweden)

    Haijun He

    2016-05-01

    Full Text Available Phase-sensitive optical time domain reflectometry (Ф-OTDR attracts much attention due to its capability of telling the type and position of an intrusion simultaneously. In recent decades, coherent Ф-OTDR has been demonstrated to realize long-distance detection. For coherent Ф-OTDR, there are three typical demodulation schemes in the reported studies. However, they still cannot realize real-time monitoring to satisfy practical demands. A simple and effective demodulation method based on self-mixing has been put forward to demodulate the beat signal in coherent Ф-OTDR. It not only saves a local electrical oscillator and frequency locked loop, but also demodulates the beat signal without residual frequency. Several vibrations with different frequency were separately applied at the same location of a 42.5 km fiber. The spatial resolution of 10 m and frequency response range from 8 Hz to 980 Hz have been achieved. The precise location with signal-to-noise ratio of 21.4 dB and broadband measurement demonstrate the self-mixing scheme can demodulate the coherent Ф-OTDR signal effectively.

  17. High frequency characterization of Galfenol minor flux density loops

    Directory of Open Access Journals (Sweden)

    Ling Weng

    2017-05-01

    Full Text Available This paper presents the first measurement of ring-shaped Galfenol’s high frequency-dependent minor flux density loops. The frequencies of applied AC magnetic field are 1k, 5k, 10k, 50k, 100k, 200k, 300k, 500 kHz. The measurements show that the cycle area between the flux density and magnetic field curves increase with increasing frequency. High frequency-dependent characterization, including coercivity, specific power loss, residual induction, and maximum relative permeability are discussed. Minor loops for different max induction are also measured and discussed at the same frequency 100 kHz. Minor loops with the same max induction 0.05 T for different frequencies 50, 100, 200, 300, 400 kHz are measured and specific power loss are discussed.

  18. A Fast Kurtogram Demodulation Method in Rolling Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Li Li

    2016-01-01

    Full Text Available Targeting at the problem of finding the best demodulation band when applying envelope analysis in rolling bearing fault diagnosis, this paper proposes a novel Fast Kurtogram Demodulation Method (FKDM to solve the problem. FKDM is established based on the theory of spectrum kurtosis and the short-time Fourier Transform. It determines the best demodulation band firstly, which is also known as the central frequency and frequency resolution. Then, the fault signals can be demodulated in the obtained frequency band by using envelope demodulation algorithm. The FKDM method ensures the fault diagnosis correction by solving the problem of demodulation band selection. Applied FKDM in rolling bearing fault diagnosis and compared with conventional envelope analysis, the results demonstrate FKDM can achieve a better performance.

  19. Digital demodulator for wide bandwidth SAR

    DEFF Research Database (Denmark)

    Jørgensen, Jørn Hjelm

    2000-01-01

    A novel approach to the design of efficient digital quadrature demodulators for wide bandwidth SAR systems is described. Efficiency is obtained by setting the intermediate frequency to 1/4 the ADC sampling frequency. One channel is made filter-free by synchronizing the local oscillator...

  20. New digital demodulator with matched filters and curve segmentation techniques for BFSK demodulation: Analytical description

    Directory of Open Access Journals (Sweden)

    Jorge Torres Gómez

    2015-09-01

    Full Text Available The present article relates in general to digital demodulation of Binary Frequency Shift Keying (BFSK. The objective of the present research is to obtain a new processing method for demodulating BFSK-signals in order to reduce hardware complexity in comparison with other methods reported. The solution proposed here makes use of the matched filter theory and curve segmentation algorithms. This paper describes the integration and configuration of a Sampler Correlator and curve segmentation blocks in order to obtain a digital receiver for a proper demodulation of the received signal. The proposed solution is shown to strongly reduce hardware complexity. In this part a presentation of the proposed solution regarding the analytical expressions is addressed. The paper covers in detail the elements needed for properly configuring the system. In a second part it is presented the implementation of the system for FPGA technology and the simulation results in order to validate the overall performance.

  1. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide

    2018-01-12

    In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  2. A low-power ASK demodulator for inductively coupled implantable electronics

    DEFF Research Database (Denmark)

    Gudnason, Gunnar

    2000-01-01

    An amplitude shift keying (ASK) demodulator is presented which is suitable for implantable electronic devices that are powered through an inductive link. The demodulator has been tested with carrier frequencies in the range 1-15 MHz, covering most commonly used frequencies. Data rates up to several...

  3. LOOP- SIMULATION OF THE AUTOMATIC FREQUENCY CONTROL SUBSYSTEM OF A DIFFERENTIAL MINIMUM SHIFT KEYING RECEIVER

    Science.gov (United States)

    Davarian, F.

    1994-01-01

    The LOOP computer program was written to simulate the Automatic Frequency Control (AFC) subsystem of a Differential Minimum Shift Keying (DMSK) receiver with a bit rate of 2400 baud. The AFC simulated by LOOP is a first order loop configuration with a first order R-C filter. NASA has been investigating the concept of mobile communications based on low-cost, low-power terminals linked via geostationary satellites. Studies have indicated that low bit rate transmission is suitable for this application, particularly from the frequency and power conservation point of view. A bit rate of 2400 BPS is attractive due to its applicability to the linear predictive coding of speech. Input to LOOP includes the following: 1) the initial frequency error; 2) the double-sided loop noise bandwidth; 3) the filter time constants; 4) the amount of intersymbol interference; and 5) the bit energy to noise spectral density. LOOP output includes: 1) the bit number and the frequency error of that bit; 2) the computed mean of the frequency error; and 3) the standard deviation of the frequency error. LOOP is written in MS SuperSoft FORTRAN 77 for interactive execution and has been implemented on an IBM PC operating under PC DOS with a memory requirement of approximately 40K of 8 bit bytes. This program was developed in 1986.

  4. Acoustic signal recovery by thermal demodulation

    Science.gov (United States)

    Boullosa, R. R.; Santillán, Arturo O.

    2006-10-01

    One operating mode of recently developed thermoacoustic transducers is as an audio speaker that uses an input superimposed on a direct current; as a result, the audio signal occurs at the same frequency as the input signal. To extend the potential applications of these kinds of sources, the authors propose an alternative driving mode in which a simple thermoacoustic device, consisting of a metal film over a substrate and a heat sink, is excited with a high frequency sinusoid that is amplitude modulated by a lower frequency signal. They show that the modulating signal is recovered in the radiated waves due to a mechanism that is inherent to this type of thermoacoustic process. If the frequency of the carrier is higher than 30kHz and any modulating signal (the one of interest) is in the audio frequency range, only this signal will be heard. Thus, the thermoacoustic device operates as an audio-band, self-demodulating speaker.

  5. Nanometer frequency synthesis beyond the phase-locked loop

    CERN Document Server

    Xiu, Liming

    2012-01-01

    This text presents a latest technology in frequency synthesis. The technology includes three key components: Time-Average-Frequency, Flying-Adder architecture, and Digital-to-Frequency converter. The coverage presents the case, through real application examples, that this Flying-Adder technology creates a new frontier for modern IC design. In so doing, it also discusses the weaknesses of current frequency synthesis techniques in dealing with certain problems in modern IC design. The result is a complete picture of this technology for professional design engineers, researchers, and advanced students.

  6. LOW-FREQUENCY MAGNETIC FIELD SHIELDING BY A CIRCULAR PASSIVE LOOP AND CLOSED SHELLS

    Directory of Open Access Journals (Sweden)

    V.S. Grinchenko

    2016-05-01

    Full Text Available Purpose. To analyze the shielding factors for a circular passive loop and conductive closed shells placed in a homogeneous low-frequency magnetic field. Methodology. We have obtained simplified expressions for the shielding factors for a circular passive loop and a thin spherical shell. In addition, we have developed the numerical model of a thin cubical shell in a magnetic field, which allows exploring its shielding characteristics. Results. We have obtained dependences of the shielding factors for passive loops and shells on the frequency of the external field. Analytically determined frequency of the external magnetic field, below which field shielding of a passive loop is expedient to use, above which it is advisable to use a shielding shell.

  7. Automatic NMR field-frequency lock-pulsed phase locked loop approach.

    Science.gov (United States)

    Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J

    1978-06-01

    A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.

  8. High Rate Digital Demodulator ASIC

    Science.gov (United States)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  9. Distributed acoustic sensing with Michelson interferometer demodulation

    Science.gov (United States)

    Liu, Xiaohui; Wang, Chen; Shang, Ying; Wang, Chang; Zhao, Wenan; Peng, Gangding; Wang, Hongzhong

    2017-09-01

    The distributed acoustic sensing (DAS) has been extensively studied and widely used. A distributed acoustic sensing system based on the unbalanced Michelson interferometer with phase generated carrier (PGC) demodulation was designed and tested. The system could directly obtain the phase, amplitude, frequency response, and location information of sound wave at the same time and measurement at all points along the sensing fiber simultaneously. Experiments showed that the system successfully measured the acoustic signals with a phase-pressure sensitivity about-148 dB (re rad/μPa) and frequency response ripple less than 1.5 dB. The further field experiment showed that the system could measure signals at all points along the sensing fiber simultaneously.

  10. Computerized J-H loop tracer for soft magnetic thick films in the audio frequency range

    Directory of Open Access Journals (Sweden)

    Loizos G.

    2014-07-01

    Full Text Available A computerized J-H loop tracer for soft magnetic thick films in the audio frequency range is described. It is a system built on a PXI platform combining PXI modules for control signal generation and data acquisition. The physiscal signals are digitized and the respective data strems are processed, presented and recorded in LabVIEW 7.0.

  11. Investigation of scaling laws in frequency-dependent minor hysteresis loops for ferromagnetic steels

    International Nuclear Information System (INIS)

    Kobayashi, S.; Tsukidate, S.; Kamada, Y.; Kikuchi, H.; Ohtani, T.

    2012-01-01

    Scaling laws in dynamical magnetic minor hysteresis loops have been investigated in the magnetizing frequency range of 0.05-300 Hz for various steels including Cr-Mo-V steel subjected to creep, cold rolled steels, and plastically deformed Ni. Although scaling laws in the medium magnetization range found previously fail in the high magnetization frequency regime owing to a significant contribution of eddy currents, a scaling power law of the relation between remanence and remanence work of minor loops, associated with a constant exponent of approximately 1.9, holds true in a very low magnetization regime, irrespective of magnetization frequency and investigated materials. The coefficient of the law is proportionally related to Vickers hardness over the wide frequency range. These observations demonstrate that the scaling analysis of dynamical minor loops enables us to evaluate materials degradation in a short measurement time with low measurement field and high sensitivity to defect density. - Highlights: → We performed hysteresis scaling for dynamical minor loops in ferromagnetic steels. → An universal scaling power law with an exponent of 1.9 was observed. → Coefficient of the scaling law reflects defect density due to creep and deformation. → This method is useful for on-line non-destructive evaluation.

  12. Noise immunity of optimal tracking demodulators

    Science.gov (United States)

    Uriadnikov, Iu. F.; Vasilev, N. A.

    1982-05-01

    The noise immunity of optimal discrete tracking demodulators, used in space communication systems, is analyzed in the case of an arbitrary relationship between the signal pulse repetition period and the interval of message correlation. Expressions are obtained which are then used to compare the noise immunities of discrete and continuous tracking demodulators, used for the transmission of messages with spectra approximated by Butterworth polynomials. It is shown that the noise immunity of the discrete demodulator significantly deteriorates

  13. An estimation of core damage frequency of a pressurized water reactor during mid-loop operation

    International Nuclear Information System (INIS)

    Chao, C.C.; Chen, C.T.; Lee, M.

    2004-01-01

    The core damage frequency during mid-loop operation of a Westinghouse designed 3-loop Pressurizer Water Reactor (PWR) due to loss of Residual Heat Removal (RHR) events was assessed. The assessment considers two types of outages (refueling and drained maintenance), and uses failure data collected specifically for shutdown condition. Event trees were developed for five categories of loss of RHR events. Human actions to mitigate the loss of RHR events was identified and human error probabilities were quantified using HCR and THERP model. The result showed that the core damage frequency due to loss of RHR events during mid-loop operation is 3.1x10 -5 per year. The results also showed that the core damage frequency can be reduced significantly by removing a pressurizer safety valve before entering mid-loop operation. The establishment of reflux cooling, i.e. decay heat removal through steam generator secondary side also plays important role in mitigating the loss of RHR events. (author)

  14. Development of scalable frequency and power Phase-Locked Loop in 130nm CMOS technology

    CERN Document Server

    Firlej, M; Idzik, M; Moron, J; Swientek, K

    2014-01-01

    The design and measurements results of a prototype very low power Phase-Locked Loop (PLL) ASIC for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in 130 nm CMOS technology. It was designed and simulated for frequency range 10 MHz–3.5 GHz. Four division factors i.e. 6, 8, 10 and 16 were implemented in the PLL feedback loop. The main PLL block-voltage controlled oscillator (VCO) should work in 16 frequency ranges/modes, switched either manually or automatically. Preliminary measurements done in frequency range 20 MHz–1.6 GHz showed that the ASIC is functional and generates proper clock signal. The automatic VCO mode switching, one of the main design goals, was positively verified. Power consumption of around 0.6mW was measured at 1 GHz for a division factor equal to 10.

  15. Development of scalable frequency and power Phase-Locked Loop in 130 nm CMOS technology

    International Nuclear Information System (INIS)

    Firlej, M; Fiutowski, T; Idzik, M; Moroń, J; Świentek, K

    2014-01-01

    The design and measurements results of a prototype very low power Phase-Locked Loop (PLL) ASIC for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in 130 nm CMOS technology. It was designed and simulated for frequency range 10 MHz–3.5 GHz. Four division factors i.e. 6, 8, 10 and 16 were implemented in the PLL feedback loop. The main PLL block-voltage controlled oscillator (VCO) should work in 16 frequency ranges/modes, switched either manually or automatically. Preliminary measurements done in frequency range 20 MHz–1.6 GHz showed that the ASIC is functional and generates proper clock signal. The automatic VCO mode switching, one of the main design goals, was positively verified. Power consumption of around 0.6 mW was measured at 1 GHz for a division factor equal to 10

  16. A closed-loop system for frequency tracking of piezoresistive cantilever sensors

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.

  17. 360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-11

    360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.

  18. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes

    Directory of Open Access Journals (Sweden)

    Peijian Huang

    2018-01-01

    Full Text Available In order to access the fretting damage of the steam generator tube (SGT, a fast fiber Fabry-Perot (F-P non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  19. Study on LOOP and SBO Frequency for Multi-Unit PSA

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kyung Ho; Heo, Gyun Young [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    In conventional single unit PSA, it was assumed that all accidents or events are independent and the risk of only one unit has been evaluated. In other words, the possibility that simultaneous events occur on multiple units was excluded because it was assumed that the probability of concurrent events were extremely low. After Fukushima accidents, however, it was found that external hazards such as tsunami may impact on multiple units; that means, for the sake of proper mitigation the risk of accidents in shared SSCs should be reevaluated. New risk metrics to improve conventional CDF (Core Damage frequency) based on reactor-year is needed to perform MUPSA (Multi-Unit Probabilistic Safety Assessment). IAEA suggested SCDF (Site CDF) as a risk metrics for MUPSA. The frequency based on reactor-year was converted to the frequency based on site-year. In addition, shared SSCs were modeled in single unit PSA as if those units have independent shared SSCs. Therefore, the risk of shared SSCs should be reevaluated. In this paper, the frequency of LOOP (Loss of Offsite Power), which is typically a multi-unit event, was evaluated and the frequency of SBO (Station Blackout) depending on LOOP frequency and emergency power systems such as EDG (Emergency Diesel Generator) and AAC (Alternate AC), that can mitigate SBO events, was modeled. This paper describes how to calculate LOOP and SBO frequency from the simple example for two-unit site with shared AAC. The events impacting on multiple units, which were excluded in conventional PSA, should be considered for MUPSA.

  20. Variable Sampling Composite Observer Based Frequency Locked Loop and its Application in Grid Connected System

    Directory of Open Access Journals (Sweden)

    ARUN, K.

    2016-05-01

    Full Text Available A modified digital signal processing procedure is described for the on-line estimation of DC, fundamental and harmonics of periodic signal. A frequency locked loop (FLL incorporated within the parallel structure of observers is proposed to accommodate a wide range of frequency drift. The error in frequency generated under drifting frequencies has been used for changing the sampling frequency of the composite observer, so that the number of samples per cycle of the periodic waveform remains constant. A standard coupled oscillator with automatic gain control is used as numerically controlled oscillator (NCO to generate the enabling pulses for the digital observer. The NCO gives an integer multiple of the fundamental frequency making it suitable for power quality applications. Another observer with DC and second harmonic blocks in the feedback path act as filter and reduces the double frequency content. A systematic study of the FLL is done and a method has been proposed to design the controller. The performance of FLL is validated through simulation and experimental studies. To illustrate applications of the new FLL, estimation of individual harmonics from nonlinear load and the design of a variable sampling resonant controller, for a single phase grid-connected inverter have been presented.

  1. Frequency-modulated laser ranging sensor with closed-loop control

    Science.gov (United States)

    Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin

    2018-02-01

    Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.

  2. EXPERIMENTAL COMPARISON OF HOMODYNE DEMODULATION ALGORITHMS FOR PHASE FIBER-OPTIC SENSOR

    Directory of Open Access Journals (Sweden)

    M. N. Belikin

    2015-11-01

    Full Text Available Subject of Research. The paper presents the results of experimental comparative analysis of homodyne demodulation algorithms based on differential cross multiplying method and on arctangent method under the same conditions. The dependencies of parameters for the output signals on the optical radiation intensity are studied for the considered demodulation algorithms. Method. The prototype of single fiber optic phase interferometric sensor has been used for experimental comparison of signal demodulation algorithms. Main Results. We have found that homodyne demodulation based on arctangent method provides greater (by 7 dB at average signal-to-noise ratio of output signals over the frequency band of acoustic impact from 100 Hz to 500 Hz as compared to differential cross multiplying algorithms. We have demonstrated that no change in the output signal amplitude occurs for the studied range of values of the optical pulses amplitudes. Obtained results indicate that the homodyne demodulation based on arctangent method is most suitable for application in the phase fiber-optic sensors. It provides higher repeatability of their characteristics than the differential cross multiplying algorithm. Practical Significance. Algorithms of interferometric signals demodulation are widely used in phase fiber-optic sensors. Improvement of their characteristics has a positive effect on the performance of such sensors.

  3. Hardware-in-the-loop (HIL) Test of Demand as Frequency Controlled Reserve (DFR)

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Zimmermann, K.; Østergaard, Jacob

    2016-01-01

    This paper presents the hardware-in-the-loop (HIL) test of the demand as frequency controlled reserve (DFR). The HIL test refers to a test in which parts of a pure simulation have been replaced by actual physical components. It is used to understand the behavior of a new device or controller....... The DFR has been tested by offline simulations to illustrate the efficacy of this technology. The DFR control logics have been implemented in the SmartBox. The HIL was conducted by having the SmartBox connected to the real time simulations and the performance of the SmartBox was tested with difference...

  4. FSD-HSO Optimization Algorithm for Closed Fringes Interferogram Demodulation

    Directory of Open Access Journals (Sweden)

    Ulises H. Rodriguez-Marmolejo

    2016-01-01

    Full Text Available Due to the physical nature of the interference phenomenon, extracting the phase of an interferogram is a known sinusoidal modulation problem. In order to solve this problem, a new hybrid mathematical optimization model for phase extraction is established. The combination of frequency guide sequential demodulation and harmony search optimization algorithms is used for demodulating closed fringes patterns in order to find the phase of interferogram applications. The proposed algorithm is tested in four sets of different synthetic interferograms, finding a range of average relative error in phase reconstructions of 0.14–0.39 rad. For reference, experimental results are compared with the genetic algorithm optimization technique, obtaining a reduction in the error up to 0.1448 rad. Finally, the proposed algorithm is compared with a very known demodulation algorithm, using a real interferogram, obtaining a relative error of 1.561 rad. Results are shown in patterns with complex fringes distribution.

  5. A parallel-pipelined architecture for a multi carrier demodulator

    Science.gov (United States)

    Kwatra, S. C.; Jamali, M. M.; Eugene, Linus P.

    1991-03-01

    Analog devices have been used for processing the information on board the satellites. Presently, digital devices are being used because they are economical and flexible as compared to their analog counterparts. Several schemes of digital transmission can be used depending on the data rate requirement of the user. An economical scheme of transmission for small earth stations uses single channel per carrier/frequency division multiple access (SCPC/FDMA) on the uplink and time division multiplexing (TDM) on the downlink. This is a typical communication service offered to low data rate users in commercial mass market. These channels usually pertain to either voice or data transmission. An efficient digital demodulator architecture is provided for a large number of law data rate users. A demodulator primarily consists of carrier, clock, and data recovery modules. This design uses principles of parallel processing, pipelining, and time sharing schemes to process large numbers of voice or data channels. It maintains the optimum throughput which is derived from the designed architecture and from the use of high speed components. The design is optimized for reduced power and area requirements. This is essential for satellite applications. The design is also flexible in processing a group of a varying number of channels. The algorithms that are used are verified by the use of a computer aided software engineering (CASE) tool called the Block Oriented System Simulator. The data flow, control circuitry, and interface of the hardware design is simulated in C language. Also, a multiprocessor approach is provided to map, model, and simulate the demodulation algorithms mainly from a speed view point. A hypercude based architecture implementation is provided for such a scheme of operation. The hypercube structure and the demodulation models on hypercubes are simulated in Ada.

  6. A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication

    International Nuclear Information System (INIS)

    Kuang Lixue; Chi Baoyong; Chen Lei; Wang Zhihua; Jia Wen

    2014-01-01

    A 40-GHz phase-locked loop (PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator (VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector (PFD) and the charge pump (CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is −97.2 dBc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 mW, including all the buffers. (semiconductor integrated circuits)

  7. A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication

    Science.gov (United States)

    Lixue, Kuang; Baoyong, Chi; Lei, Chen; Wen, Jia; Zhihua, Wang

    2014-12-01

    A 40-GHz phase-locked loop (PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator (VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector (PFD) and the charge pump (CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is -97.2 dBc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 mW, including all the buffers.

  8. Analysis of Middle Frequency Resonance in DFIG System Considering Phase Locked Loop

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2018-01-01

    compensated weak network. Besides these two resonances, a Middle Frequency Resonance (MFR) between 200 Hz and 800 Hz may appear when the Phase Locked Loop (PLL) with fast control dynamics is applied. In order to analyze the MFR, the DFIG system impedance considering the PLL is studied based on the Vector...... Oriented Control (VOC) strategy in Rotor Side Converter (RSC) and Grid Side Converter (GSC). On the basis of the established impedance modeling of the DFIG system, it is found that the PLL with fast control dynamics may result in the occurrence of MFR due to a decreasing phase margin. The simulation...... results of both a 7.5 kW small scale DFIG system and a 2 MW large scale DFIG system are provided to validate the theoretical analysis of the MFR....

  9. OBTAINING HYSTERESIS LOOPS AT LOW FREQUENCY FOR CHARACTERIZATION OF MATERIALS TO BE USED IN BIOMEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Atika Arshad

    2015-05-01

    Full Text Available The promising development of magnetic sensors in biomedical field demands an appropriate level of understanding of the magnetic properties of the materials used in their fabrication. To date only few of the types of magnetic materials are encountered where their magnetic properties, characterization techniques and magnetization behavior are yet to be explored more suitably in the light of their applications. This research work studies the characterization of materials by using a cost effective and simple circuit consisting of inductive transducer and an OP-AMP as a voltage integrator. In this approach the circuit was simulated using PSPICE and experiments have been conducted to achieve the desired results. The simulation and experimental results are obtained for three test materials namely iron, steel and plastic. The novelty lies in applying the simple circuit for material testing and characterization via obtaining simulation results and validating these results through experiment. The magnetic properties in low external magnetic field are studied with materials under test. The magnetization effect of a magneto-inductive sensor is detected in low frequency range for different magnetic core materials. The results have shown magnetization behaviour of magnetic materials due to the variation of permeability and magnetism. The resulted hysteresis loops appeared to have different shapes for different materials. The magnetic hysteresis loop found for iron core demonstrated a bigger coercive force and larger reversals of magnetism than these of steel core, thus obtaining its magnetic saturation at a larger magnetic field strength. The shape of the hysteresis loop itself is found to be varying upon the nature of the material in use. The resulted magnetization behaviors of the materials proved their possible applicability for use in sensing devices. The key concern of this work is found upon selecting the appropriate magnetic materials at the desired

  10. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  11. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  12. An improved synchronous reference frame phase-locked loop for stand-alone variable speed constant frequency power generation systems

    DEFF Research Database (Denmark)

    Liu, Yi; Xu, Wei; Ke, Longzhang

    2017-01-01

    The phase-locked loop (PLL) based on conventional synchronous reference frame, i.e. dqPLL, is usually employed in grid-connected variable speed constant frequency (VSCF) power generation systems (PGSs). However, the voltage amplitude drop of stand-alone PGSs is often greater than that of the grid...

  13. A Dual Stage Linear Prediction Approach Towards Wideband FM Demodulation With Multilevel and Partial Response Signaling

    Science.gov (United States)

    2018-01-19

    attributed to the inherent interpolation process in the MFT demodulation approach, which is more error-sensitive to discontinuous waveforms, such as...Multirate Frequency Transformations In the author’s recent work, frequency transformations enacted via multirate signal processing were used for wideband...FM to narrowband FM conversion to enable a wider range of wideband FM signals [9, 11]. The goal of the multirate processing module is to compress the

  14. Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis

    Science.gov (United States)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2017-12-01

    Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of

  15. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

    Science.gov (United States)

    Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen

    2018-05-01

    A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

  16. Closed fringe demodulation using phase decomposition by Fourier basis functions.

    Science.gov (United States)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2016-06-01

    We report a new technique for the demodulation of a closed fringe pattern by representing the phase as a weighted linear combination of a certain number of linearly independent Fourier basis functions in a given row/column at a time. A state space model is developed with the weights of the basis functions as the elements of the state vector. The iterative extended Kalman filter is effectively utilized for the robust estimation of the weights. A coarse estimate of the fringe density based on the fringe frequency map is used to determine the initial row/column to start with and subsequently the optimal number of basis functions. The performance of the proposed method is evaluated with several noisy fringe patterns. Experimental results are also reported to support the practical applicability of the proposed method.

  17. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    Science.gov (United States)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  18. Asymmetric propagation using enhanced self-demodulation in a chirped phononic crystal

    Directory of Open Access Journals (Sweden)

    A. Cebrecos

    2016-12-01

    Full Text Available Asymmetric propagation of acoustic waves is theoretically reported in a chirped phononic crystal made of the combination of two different nonlinear solids. The dispersion of the system is spatially dependent and allows the rainbow trapping inside the structure. Nonlinearity is used to activate the self-demodulation effect, which is enhanced due to the particular dispersion characteristics of the system. The performed numerical study reveals an efficient generation of the demodulated wave, up to 15% in terms of the pressure amplitude, as well as strong attenuation for undesired frequency components above the cut-off frequency. The obtained energy rectification ratio is in the order of 104 for the whole range of amplitudes employed in this work, indicating the robustness of the asymmetry and non-reciprocity of the proposed device for a wide operational range.

  19. Core damage frequency prespectives for BWR 3/4 and Westinghouse 4-loop plants based on IPE results

    International Nuclear Information System (INIS)

    Dingman, S.; Camp, S.; LaChance, J.; Mary Drouin

    1995-01-01

    This paper discusses the core damage frequency (CDF) insights gained by analyzing the results of the Individual Plant Examinations (IPES) for two groups of plants: boiling water reactor (BWR) 3/4 plants with Reactor Core Isolation Cooling systems, and Westinghouse 4-loop plants. Wide variability was observed for the plant CDFs and for the CDFs of the contributing accident classes. On average, transients-with loss of injection, station blackout sequences, and transients with loss of decay heat removal are important contributors for the BWR 3/4 plants, while transients, station blackout sequences, and loss-of-coolant accidents are important for the Westinghouse 4-loop plants. The key factors that contribute to the variability in the results are discussed. The results are often driven by plant-specific design and operational characteristics, but differences in modeling approaches are also important for some accident classes

  20. THE NOISE IMMUNITY OF THE DIGITAL DEMODULATOR MFM-AM SIGNAL USED IN DATA COMMUNICATIONS SYSTEMS OF AIR TRAFFIC CONTROL WITH AUTOMATIC DEPENDENT SURVEILLANCE AGAINST A NON-GAUSSIAN NOISE

    Directory of Open Access Journals (Sweden)

    A. L. Senyavskiy

    2015-01-01

    Full Text Available The article analyzes the robustness of the digital demodulator of the signal with the lowest frequency shift keying at a subcarrier frequency with respect to non-Gaussian interference type of atmospheric, industrial noise and interfering frequency -and phase-shift keyed signals. This type of demodulator is used for the transmission of navigation data in the systems of air traffic control with automatic dependent surveillance.

  1. A quadrature frequency converter in a feedback loop of high frequency cavities in the Proton Synchrotron at CERN.

    CERN Document Server

    Truszczynski, T

    This thesis presents the author’s work during the internship at the European Laboratory for Particle Physics (CERN). The quadrature frequency converter is one of the modules that has been developed to upgrade the Proton Synchrotron RF system. Basic information about accelerators, fundamentals of IQ signal representation, mixing and phase shifting techniques are introduced. The development process of the converter is presented with the design details and measurements of the prototype board.

  2. Multiresonant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Distorted Grid Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Candela, Ignacio

    2011-01-01

    This paper presents a new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmoni...

  3. Development of Digital Hysteresis Current Control with PLL Loop Gain Compensation Strategy for PWM Inverters with Constant Switching Frequency

    Directory of Open Access Journals (Sweden)

    N. Belhaouchet

    2008-03-01

    Full Text Available Hysteresis current control is one of the simplest techniques used to control the magnitude and phase angle of motor current for motor drives systems. However, this technique presents several disadvantages such as operation at variable switching frequency which can reveal problems of filtering, interference between the phases in the case of the three-phase systems with insulated neutral connection or delta connection, and irregularity of the modulation pulses which especially causes an acoustic noise on the level of the machine for the high power drive. In this paper, a new technique is proposed for a variable-hysteresis-band controller based on dead beat control applied to three phase voltage source PWM inverters feeding AC motors. Its main aim is firstly ensure a constant switching frequency and secondly the synchronization of modulation pulses using the phase-locked-loop with loop gain compensation in order to ensure a better stability. The behavior of the proposed technique is verified by simulation.

  4. Virtual unit delay for digital frequency adaptive T/4 delay phase-locked loop system

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    /processor with a fixed sampling rate considering the cost and complexity, where the number of unit delays that have been adopted should be an integer. For instance, in conventional digital control systems, a single-phase T/4 Delay Phase-Locked Loop (PLL) system takes 50 unit delays (i.e., in a 50-Hz system...... Delay PLL system should be done in its implementation. This process will result in performance degradation in the digital control system, as the exactly required number of delays is not realized. Hence, in this paper, a Virtual Unit Delay (VUD) has been proposed to address such challenges to the digital......Digital micro-controllers/processors enable the cost-effective control of grid-connected power converter systems in terms of system monitoring, signal processing (e.g., grid synchronization), control (e.g., grid current and voltage control), etc. Normally, the control is implemented in a micro-controller...

  5. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    International Nuclear Information System (INIS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-01-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz–3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz)

  6. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    Science.gov (United States)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-12-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz-3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz).

  7. Singular-value demodulation of phase-shifted holograms.

    Science.gov (United States)

    Lopes, Fernando; Atlan, Michael

    2015-06-01

    We report on phase-shifted holographic interferogram demodulation by singular-value decomposition. Numerical processing of optically acquired interferograms over several modulation periods was performed in two steps: (1) rendering of off-axis complex-valued holograms by Fresnel transformation of the interferograms; and (2) eigenvalue spectrum assessment of the lag-covariance matrix of hologram pixels. Experimental results in low-light recording conditions were compared with demodulation by Fourier analysis, in the presence of random phase drifts.

  8. A closed loop control strategy for a frequency-only converter with high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Benaboud, A.; Rufer, A. [Ecole Polytechnique Federale de Lausanne (Switzerland). Industrial Electronics Lab

    2007-07-01

    Three-level neutral point clamped (NPC) inverters are used for medium voltage applications. They allow the output voltage to spread on 3 levels, thus increasing it above the voltage limits of classical semiconductors. This paper presented an efficient new control strategy for a three-level NPC inverter that can be used for high power applications. Many electric power generators use gas turbines as power sources, coupled through a mechanical gearbox in order to adapt their synchronous speed to the optimal rotation speed of the turbine. Replacing the mechanical gearbox with a flexible electronic solution would be more efficient. The efficiency of the new control strategy can be attributed to the use of square-wave modulation, whose key advantage is the quasi absence of switching losses. In this modulation, only the frequency can be adapted between the input and the output voltages. However, their magnitudes are not freely controllable. The active and reactive powers produced can be controlled by the generator's excitation, as well as both the angle shift between the generator's and rectifier's voltages and between the inverter's and network's voltages. The capabilities of the proposed control strategy were highlighted during simulation of different operating points. 7 refs., 18 figs.

  9. Energy Demodulation Algorithm for Flow Velocity Measurement of Oil-Gas-Water Three-Phase Flow

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available Flow velocity measurement was an important research of oil-gas-water three-phase flow parameter measurements. In order to satisfy the increasing demands for flow detection technology, the paper presented a gas-liquid phase flow velocity measurement method which was based on energy demodulation algorithm combing with time delay estimation technology. First, a gas-liquid phase separation method of oil-gas-water three-phase flow based on energy demodulation algorithm and blind signal separation technology was proposed. The separation of oil-gas-water three-phase signals which were sampled by conductance sensor performed well, so the gas-phase signal and the liquid-phase signal were obtained. Second, we used the time delay estimation technology to get the delay time of gas-phase signals and liquid-phase signals, respectively, and the gas-phase velocity and the liquid-phase velocity were derived. At last, the experiment was performed at oil-gas-water three-phase flow loop, and the results indicated that the measurement errors met the need of velocity measurement. So it provided a feasible method for gas-liquid phase velocity measurement of the oil-gas-water three-phase flow.

  10. Statistics for demodulation RFI in inverting operational amplifier circuits

    Science.gov (United States)

    Sutu, Y.-H.; Whalen, J. J.

    An investigation was conducted with the objective to determine statistical variations for RFI demodulation responses in operational amplifier (op amp) circuits. Attention is given to the experimental procedures employed, a three-stage op amp LED experiment, NCAP (Nonlinear Circuit Analysis Program) simulations of demodulation RFI in 741 op amps, and a comparison of RFI in four op amp types. Three major recommendations for future investigations are presented on the basis of the obtained results. One is concerned with the conduction of additional measurements of demodulation RFI in inverting amplifiers, while another suggests the employment of an automatic measurement system. It is also proposed to conduct additional NCAP simulations in which parasitic effects are accounted for more thoroughly.

  11. On optimal soft-decision demodulation. [in digital communication system

    Science.gov (United States)

    Lee, L.-N.

    1976-01-01

    A necessary condition is derived for optimal J-ary coherent demodulation of M-ary (M greater than 2) signals. Optimality is defined as maximality of the symmetric cutoff rate of the resulting discrete memoryless channel. Using a counterexample, it is shown that the condition derived is generally not sufficient for optimality. This condition is employed as the basis for an iterative optimization method to find the optimal demodulator decision regions from an initial 'good guess'. In general, these regions are found to be bounded by hyperplanes in likelihood space; the corresponding regions in signal space are found to have hyperplane asymptotes for the important case of additive white Gaussian noise. Some examples are presented, showing that the regions in signal space bounded by these asymptotic hyperplanes define demodulator decision regions that are virtually optimal.

  12. Michelson interferometer vibrometer using self-correcting synthetic-heterodyne demodulation.

    Science.gov (United States)

    Connelly, Michael J; Galeti, José Henrique; Kitano, Cláudio

    2015-06-20

    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is a Michelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.

  13. Nonlinear demodulation and channel coding in EBPSK scheme.

    Science.gov (United States)

    Chen, Xianqing; Wu, Lenan

    2012-01-01

    The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding.

  14. [Absorption spectrum of Quasi-continuous laser modulation demodulation method].

    Science.gov (United States)

    Shao, Xin; Liu, Fu-Gui; Du, Zhen-Hui; Wang, Wei

    2014-05-01

    A software phase-locked amplifier demodulation method is proposed in order to demodulate the second harmonic (2f) signal of quasi-continuous laser wavelength modulation spectroscopy (WMS) properly, based on the analysis of its signal characteristics. By judging the effectiveness of the measurement data, filter, phase-sensitive detection, digital filtering and other processing, the method can achieve the sensitive detection of quasi-continuous signal The method was verified by using carbon dioxide detection experiments. The WMS-2f signal obtained by the software phase-locked amplifier and the high-performance phase-locked amplifier (SR844) were compared simultaneously. The results show that the Allan variance of WMS-2f signal demodulated by the software phase-locked amplifier is one order of magnitude smaller than that demodulated by SR844, corresponding two order of magnitude lower of detection limit. And it is able to solve the unlocked problem caused by the small duty cycle of quasi-continuous modulation signal, with a small signal waveform distortion.

  15. Novel birefringence interrogation for Sagnac loop interferometer sensor with unlimited linear measurement range.

    Science.gov (United States)

    He, Haijun; Shao, Liyang; Qian, Heng; Zhang, Xinpu; Liang, Jiawei; Luo, Bin; Pan, Wei; Yan, Lianshan

    2017-03-20

    A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.

  16. Evaluation of very low frequencies of ATWS and PLOHS in a loop-type FBR plant by making use of inherently safe features

    International Nuclear Information System (INIS)

    Sakata, K.; Koyama, K.; Aoi, S.; Simonelli, R.B.; Wallace, I.T.

    1987-01-01

    Frequencies of ATWS (Anticipated Transient Without Scram) and PLOHS (Protected Loss of Heat Sink) for a large loop-type FBR plant were evaluated by applying PSA methodologies. The frequencies were found to be so low that ATWS and PLOHS could be excluded from candidates of the design basis events. Furthermore, the inherently safe features introduced to the system design were verified to be very effective for reduction of the Probability of CCF (Common Cause Failure), which deteriorates reliability of both the reactor shutdown and the decay heat removal systems. (orig.)

  17. An improved phase-locked loop method for automatic resonance frequency tracing based on static capacitance broadband compensation for a high-power ultrasonic transducer.

    Science.gov (United States)

    Dong, Hui-juan; Wu, Jian; Zhang, Guang-yu; Wu, Han-fu

    2012-02-01

    The phase-locked loop (PLL) method is widely used for automatic resonance frequency tracing (ARFT) of high-power ultrasonic transducers, which are usually vibrating systems with high mechanical quality factor (Qm). However, a heavily-loaded transducer usually has a low Qm because the load has a large mechanical loss. In this paper, a series of theoretical analyses is carried out to detail why the traditional PLL method could cause serious frequency tracing problems, including loss of lock, antiresonance frequency tracing, and large tracing errors. The authors propose an improved ARFT method based on static capacitance broadband compensation (SCBC), which is able to address these problems. Experiments using a generator based on the novel method were carried out using crude oil as the transducer load. The results obtained have demonstrated the effectiveness of the novel method, compared with the conventional PLL method, in terms of improved tracing accuracy (±9 Hz) and immunity to antiresonance frequency tracing and loss of lock.

  18. Chip design of a 5.8-GHz fractional-N frequency synthesizer with a tunable Gm−C loop filter

    International Nuclear Information System (INIS)

    Huang Jhin-Fang; Lai Wen-Cheng; Shin Chun-Wei; Hsu Chien-Ming; Liu Ron-Yi

    2012-01-01

    This paper proposes a novel G m −C loop filter instead of a conventional passive loop filter used in a phase-locked loop. The innovative advantage of the proposed architecture is tunable loop filter bandwidth and hence the process variations of passive elements of resistance R and capacitance C can be overcome and the chip area is greatly reduced. Furthermore, the MASH 1-1-1 sigma-delta (ΣΔ) modulator is adopted for performing the fractional division number and hence improves the phase noise as well. Measured results show that the locked phase noise is −114.1 dBc/Hz with lower G m −C bandwidth and −111.7 dBm/C with higher G m −C bandwidth at 1 MHz offset from carrier of 5.68 GHz. Including pads and built-in G m −C filter, the chip area of the proposed frequency synthesizer is 1.06 mm 2 . The output power is −8.69 dBm at 5.68 GHz and consumes 56 mW with an off-chip buffer from 1.8-V supply voltage. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay

    Science.gov (United States)

    He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong

    2017-09-01

    A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.

  20. A Critical Examination of Frequency-Fixed Second-Order Generalized Integrator-Based Phase-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Mousazadeh Mousavi, Seyyed-Yousef; Guerrero, Josep M.

    2017-01-01

    The implementation of a large number of single-phase phase-locked loops (PLLs) involves creating a fictitious quadrature signal. A popular approach for this purpose is using a second-order generalized integrator-based quadrature signal generator (SOGIQSG) because it results in an acceptable speed......-based PLLs (FFSOGI-PLLs) to highlight their real advantages and disadvantages....

  1. Iterative demodulation and decoding of coded non-square QAM

    Science.gov (United States)

    Li, L.; Divsalar, D.; Dolinar, S.

    2003-01-01

    Simulation results show that, with iterative demodulation and decoding, coded NS-8QAM performs 0.5 dB better than standard 8QAM and 0.7 dB better than 8PSK at BER= 10(sup -5), when the FEC code is the (15, 11) Hamming code concatenated with a rate-1 accumulator code, while coded NS-32QAM performs 0.25 dB better than standard 32QAM.

  2. Modulation/demodulation techniques for satellite communications. Part 1: Background

    Science.gov (United States)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  3. Experimental study of very low frequency radiation of the loop antenna installed aboard the Mir-Progress-28-Soyuz TM-2 orbital complex in the Earth ionosphere

    International Nuclear Information System (INIS)

    Armand, N.A.; Semenov, Yu.P.; Chertok, B.E.

    1988-01-01

    The cosmic experiment on studying electromagnetic waves of very low frequency (VLF) (5kHz) in the Earth ionosphere, using two loop antennas, each 20 m in diameter, unfolded aboard the Progress-28 cargoship, and a reception of these waves aboard the Mir orbital station is carried out for the first time from the 26th to 28th of March, 1987. Characteristics of such antennas in the ionosphere are invesigated experimentally; VLF signal recording at distances from 1 to 40 km from the radiation is carried out. The reactance of the electrically small loop antenna in the ionospheric plasma under conditions of the experiment out (the antenna current does not exceed 80A) is established to have practically no difference from the reactance in free space. Analysis of experimental data obtained has shown that they agree satsfactorily with the results of calculations carried out on the basis of the linear theory for a cold plasma model

  4. Sensitivity of coronal loop sausage mode frequencies and decay rates to radial and longitudinal density inhomogeneities: a spectral approach

    Science.gov (United States)

    Cally, Paul S.; Xiong, Ming

    2018-01-01

    Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.

  5. The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis

    Science.gov (United States)

    Moshrefzadeh, Ali; Fasana, Alessandro

    2018-05-01

    Envelope analysis is one of the most advantageous methods for rolling element bearing diagnostics but finding a suitable frequency band for demodulation has been a substantial challenge for a long time. Introduction of the Spectral Kurtosis (SK) and Kurtogram mostly solved this problem but in situations where signal to noise ratio is very low or in presence of non-Gaussian noise these methods will fail. This major drawback may noticeably decrease their effectiveness and goal of this paper is to overcome this problem. Vibration signals from rolling element bearings exhibit high levels of second-order cyclostationarity, especially in the presence of localized faults. The autocovariance function of a 2nd order cyclostationary signal is periodic and the proposed method, named Autogram, takes advantage of this property to enhance the conventional Kurtogram. The method computes the kurtosis of the unbiased Autocorrelation (AC) of the squared envelope of the demodulated signal, rather than the kurtosis of the filtered time signal. Moreover, to take advantage of unique features of the lower and upper portions of the AC, two modified forms of kurtosis are introduced and the resulting colormaps are called Upper and Lower Autogram. In addition, a thresholding method is also proposed to enhance the quality of the frequency spectrum analysis. A new indicator, Combined Squared Envelope Spectrum, is employed to consider all the frequency bands with valuable diagnostic information and to improve the fault detectability of the Autogram. The proposed method is tested on experimental data and compared with literature results so to assess its performances in rolling element bearing diagnostics.

  6. An energy kurtosis demodulation technique for signal denoising and bearing fault detection

    International Nuclear Information System (INIS)

    Wang, Wilson; Lee, Hewen

    2013-01-01

    Rolling element bearings are commonly used in rotary machinery. Reliable bearing fault detection techniques are very useful in industries for predictive maintenance operations. Bearing fault detection still remains a very challenging task especially when defects occur on rotating bearing components because the fault-related features are non-stationary in nature. In this work, an energy kurtosis demodulation (EKD) technique is proposed for bearing fault detection especially for non-stationary signature analysis. The proposed EKD technique firstly denoises the signal by using a maximum kurtosis deconvolution filter to counteract the effect of signal transmission path so as to highlight defect-associated impulses. Next, the denoised signal is modulated over several frequency bands; a novel signature integration strategy is proposed to enhance feature characteristics. The effectiveness of the proposed EKD fault detection technique is verified by a series of experimental tests corresponding to different bearing conditions. (paper)

  7. A novel polarization demodulation method using polarization beam splitter (PBS) for dynamic pressure sensor

    Science.gov (United States)

    Su, Yang; Zhou, Hua; Wang, Yiming; Shen, Huiping

    2018-03-01

    In this paper we propose a new design to demodulate polarization properties induced by pressure using a PBS (polarization beam splitter), which is different with traditional polarimeter based on the 4-detector polarization measurement approach. The theoretical model is established by Muller matrix method. Experimental results confirm the validity of our analysis. Proportional relationships and linear fit are found between output signal and applied pressure. A maximum sensitivity of 0.092182 mv/mv is experimentally achieved and the frequency response exhibits a <0.14 dB variation across the measurement bandwidth. The sensitivity dependence on incident SOP (state of polarization) is investigated. The simple and all-fiber configuration, low-cost and high speed potential make it promising for fiber-based dynamic pressure sensing.

  8. Loop kinematics

    International Nuclear Information System (INIS)

    Migdal, A.A.

    1982-01-01

    Basic operators acting in the loop space are introduced. The topology of this space and properties of the Stokes type loop functionals are discussed. The parametrically invariant loop calculus developed here is used in the loop dynamics

  9. Frequency modulator. Transmission of meteorological signals in LVC

    International Nuclear Information System (INIS)

    Rivero G, P.T.; Ramirez S, R.; Gonzalez M, J.L.; Rojas N, P.; Celis del Angel, L.

    2007-01-01

    The development of the frequency modulator and demodulator circuit for transmission of meteorological signals by means of fiber optics of the meteorology station to the nuclear reactor unit 1 in the Laguna Verde Central in Veracruz is described. (Author)

  10. Self-demodulation effect on subharmonic response of ultrasound contrast agent

    Science.gov (United States)

    Daeichin, V.; Faez, T.; Needles, A.; Renaud, G.; Bosch, J. G.; van der Steen, A. F. W.; de Jong, N.

    2012-03-01

    In this work the use of the self-demodulation (S-D) signal as a mean of microbubble excitation at the subharmonic (SH) frequency to enhance the SH emission of ultrasound contrast agent (UCA) is studied. SH emission from the UCA is of interest since it is produced only by the UCA and is free of the artifacts produced in harmonic imaging modes. The S-D wave is a low-frequency signal produced by nonlinear propagation of an ultrasound wave in the medium. Single element transducer experiments and numerical simulations were conducted at 10 MHz to study the effect of the S-D signal on the SH response of the UCA by modifying the envelope of the excitation bursts. For 6 and 20 transmitted cycles, the SH response is increased up to 25 dB and 22 dB because of the S-D stimulation for a burst with a rectangular envelope compared with a Gaussian envelope burst. Such optimized excitations were used in an array-based micro-ultrasound system (Vevo 2100, VisualSonics Inc., Toronto, ON, Canada) at 18 MHz for in vitro validation of SH imaging. This study suggests that a suitable design of the envelope of the transmit excitation to generate a S-D signal at the SH frequency can enhance the SH emission of UCA and real-time SH imaging is feasible with shorter transmit burst (6- cycle) and low acoustic pressure (~150 KPa) at high frequencies (>15 MHz).

  11. A demodulating approach based on local mean decomposition and its applications in mechanical fault diagnosis

    International Nuclear Information System (INIS)

    Chen, Baojia; He, Zhengjia; Chen, Xuefeng; Cao, Hongrui; Cai, Gaigai; Zi, Yanyang

    2011-01-01

    Since machinery fault vibration signals are usually multicomponent modulation signals, how to decompose complex signals into a set of mono-components whose instantaneous frequency (IF) has physical sense has become a key issue. Local mean decomposition (LMD) is a new kind of time–frequency analysis approach which can decompose a signal adaptively into a set of product function (PF) components. In this paper, a modulation feature extraction method-based LMD is proposed. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. The computed IF and IA are displayed together in the form of time–frequency representation (TFR). Modulation features can be extracted from the spectrum analysis of the IA and IF. In order to make the IF have physical meaning, the phase-unwrapping algorithm and IF processing method of extrema are presented in detail along with a simulation FM signal example. Besides, the dependence of the LMD method on the signal-to-noise ratio (SNR) is also investigated by analyzing synthetic signals which are added with Gaussian noise. As a result, the recommended critical SNRs for PF decomposition and IF extraction are given according to the practical application. Successful fault diagnosis on a rolling bearing and gear of locomotive bogies shows that LMD has better identification capacity for modulation signal processing and is very suitable for failure detection in rotating machinery

  12. Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.

    Science.gov (United States)

    Padilla, J M; Servin, M; Estrada, J C

    2011-09-26

    Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5harmonics. © 2011 Optical Society of America

  13. Frequency dependence of the magnetostrictive phenomenon in Metglas® 2605SA1 ribbon: A minor-loop case

    Directory of Open Access Journals (Sweden)

    S. U. Jen

    2014-12-01

    Full Text Available Frequency dependence of magnetostrictive phenomenon of as-cast 2605SA1 ribbon was studied. We applied a sinusoidal sweeping field (H, with a fixed frequency (f, along length (L of the ribbon, and simultaneously recorded the longitudinal magnetostriction (λ∥ and the transverse magnetostriction (λ⊥ as a function of time (t, respectively. f was varied from 0.07 to 122 Hz. In the low-f case (f =0.07 Hz, we observed the frequency-doubling (FD feature in λ∥(t and λ⊥(t curves; i.e., only even harmonic magnetostrictive signals showed up. In the high-f case (f = 122 Hz, we observed the no-frequency-doubling (NFD feature; i.e., both odd and even harmonic magnetostrictive signals showed up. A theory, based on the balance among various torques acting on magnetization, is developed to explain the f dependence of the magnetostriction phenomenon observed. From this theory, we conclude that only when the reflection symmetry of the system is reserved, i.e., when the equivalent easy axis (EEA is perpendicular to L, will λ∥(t and λ⊥(t have the true-frequency-doubling (TFD feature. However, for the as-cast 2605SA1 ribbon, EEA is not perpendicular to L. Thus, strictly speaking, we should observe the NFD feature only. Nevertheless, in the low-f limit, we can show that the FD feature is somewhat allowed under the condition, b/α being close to 1, where b and α are the two parameters used in the theory. From experimental data, this condition is met for as-cast 2605SA1. To make a distinction from TFD, this low-f feature is called close-frequency-doubling (CFD in this paper. In general, the theory explains all the experimental results fairly well.

  14. Investigation and reduction of excess low-frequency noise in rf superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Mueck, M.; Heiden, C.; Clarke, J.

    1994-01-01

    A detailed study has been made of the low-frequency excess noise of rf superconducting quantum interference devices (SQUIDs), fabricated from thin niobium films and operated at 4.2 K, with rf bias frequencies of 0.15, 1.7, and 3 GHz. When the SQUIDs were operated in an open-loop configuration in the absence of low-frequency flux modulation, the demodulated rf voltage exhibited a substantial level 1/f noise, which was essentially independent of the rf bias frequency. As the rf bias frequency was increased, the crossover frequency at which the 1/f noise power was equal to the white noise power moved to higher frequencies, because of the reduction in white noise. On the other hand, when the SQUID was flux modulated at 50 kHz and operated in a flux locked loop, no 1/f noise was observed at frequencies above 0.5 Hz. A detailed description of how the combination of rf bias and flux modulation removes 1/f noise due to critical current fluctuations is given. Thus, the results demonstrate that the 1/f noise observed in these SQUIDs is generated by critical current fluctuations, rather than by the hopping of flux vortices in the niobium films

  15. On the mechanisms of interference between mobile phones and pacemakers: parasitic demodulation of GSM signal by the sensing amplifier

    International Nuclear Information System (INIS)

    Barbaro, V; Bartolini, P; Calcagnini, G; Censi, F; Beard, B; Ruggera, P; Witters, D

    2003-01-01

    The aim of this study was to investigate the mechanisms by which the radiated radiofrequency (RF) GSM (global system for mobile communication) signal may affect pacemaker (PM) function. We measured the signal at the output of the sensing amplifier of PMs with various configurations of low-pass filters. We used three versions of the same PM model: one with a block capacitor which short circuits high-frequency signals; one with a ceramic feedthrough capacitor, a hermetically sealed mechanism connecting the internal electronics to the external connection block, and one with both. The PMs had been modified to have an electrical shielded connection to the output of the sensing amplifier. For each PM, the output of the sensing amplifier was monitored under exposure to modulated and non-modulated RF signals, and to GSM signals (900 and 1800 MHz). Non-modulated RF signals did not alter the response of the PM sensing amplifier. Modulated RF signals showed that the block capacitor did not succeed in short circuiting the RF signal, which is somehow demodulated by the PM internal non-linear circuit elements. Such a demodulation phenomenon poses a critical problem because digital cellular phones use extremely low-frequency modulation (as low as 2 Hz), which can be mistaken for normal heartbeat

  16. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  17. Implementace OFDM demodulátoru v obvodu FPGA

    OpenAIRE

    Solar, Pavel

    2010-01-01

    Diplomová práce stručně rozebírá princip OFDM modulace, možnosti synchronizace a odhadu frekvenční charakteristiky kanálu v OFDM. Je vytvořen jednoduchý model OFDM systému v programu MATLAB. Kombinací schématického popisu a popisu v jazyce VHDL je vytvořen ve vývojovém prostředí ISE behaviorální popis OFDM demodulátoru pro implementaci do FPGA. The master's thesis briefly analyses the principle of OFDM modulation, possibilities of the synchronization and channel estimation in OFDM. The sim...

  18. Silicon-photonic interferometric biosensor using active phase demodulation

    Science.gov (United States)

    Marin, Y.; Toccafondo, V.; Velha, P.; Scarano, S.; Tirelli, S.; Nottola, A.; Jeong, Y.; Jeon, H. P.; Minunni, M.; Di Pasquale, F.; Oton, C. J.

    2018-02-01

    Silicon photonics is becoming a consolidated technology, mainly in the telecom/datacom sector, but with a great potential in the chemical and biomedical sensor market too, mainly due to its CMOS compatibility, which allows massfabrication of huge numbers of miniaturized devices at a very low cost per chip. Integrated photonic sensors, typically based on resonators, interferometers, or periodic structures, are easy to multiplex as the light is confined in optical waveguides. In this work, we present a silicon-photonic sensor capable of measuring refractive index and chemical binding of biomolecules on the surface, using a low-cost phase interrogation scheme. The sensor consists of a pair of balanced Mach-Zehnder interferometers with interaction lengths of 2.5 mm and 22 mm, wound to a sensing area of only 500 μm x500 μm. The phase interrogation is performed with a fixed laser and an active phase demodulation approach based on a phase generated carrier (PGC) technique using a phase demodulator integrated within the chip. No laser tuning is required, and the technique can extract the univocal phase value with no sensitivity fading. The detection only requires a photo-receiver per interferometer, analog-to-digital conversion, and simple processing performed in real-time. We present repeatable and linear refractive index measurements, with a detection limit down to 4.7·10-7 RIU. We also present sensing results on a chemically-functionalized sample, where anti-BSA to BSA (bovine serum albumin) binding curves are clearly visible for concentrations down to 5 ppm. Considering the advantages of silicon photonics, this device has great potential over several applications in the chemical/biochemical sensing industry.

  19. Note: innovative demodulation scheme for coherent detectors in cosmic microwave background experiments.

    Science.gov (United States)

    Ishidoshiro, K; Chinone, Y; Hasegawa, M; Hazumi, M; Nagai, M; Tajima, O

    2012-05-01

    We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.

  20. Performance analysis of demodulation with diversity -- A combinatorial approach I: Symmetric function theoretical methods

    Directory of Open Access Journals (Sweden)

    Jean-Louis Dornstetter

    2002-12-01

    Full Text Available This paper is devoted to the presentation of a combinatorial approach, based on the theory of symmetric functions, for analyzing the performance of a family of demodulation methods used in mobile telecommunications.

  1. Performance analysis of demodulation with diversity -- A combinatorial approach I: Symmetric function theoretical methods

    OpenAIRE

    Jean-Louis Dornstetter; Daniel Krob; Jean-Yves Thibon; Ekaterina A. Vassilieva

    2002-01-01

    This paper is devoted to the presentation of a combinatorial approach, based on the theory of symmetric functions, for analyzing the performance of a family of demodulation methods used in mobile telecommunications.

  2. Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications.

    Science.gov (United States)

    Chen, Chia-Wei; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung

    2017-10-02

    Recently even the low-end mobile-phones are equipped with a high-resolution complementary-metal-oxide-semiconductor (CMOS) image sensor. This motivates using a CMOS image sensor for visible light communication (VLC). Here we propose and demonstrate an efficient demodulation scheme to synchronize and demodulate the rolling shutter pattern in image sensor based VLC. The implementation algorithm is discussed. The bit-error-rate (BER) performance and processing latency are evaluated and compared with other thresholding schemes.

  3. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    Science.gov (United States)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  4. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    International Nuclear Information System (INIS)

    Zhang, Yan; Tang, Baoping; Chen, Rengxiang; Liu, Ziran

    2016-01-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  5. Measurement of epithermal neutrons by a coherent demodulation technique

    CERN Document Server

    Horiuchi, N; Takahashi, H; Kobayashi, H; Harasawa, S

    2000-01-01

    Epithermal neutrons have been measured using a neutron dosimeter via a coherent demodulation technique. This dosimeter consists of CsI(Tl)-photodiode scintillation detectors, four of which are coupled to neutron-gamma converting foils of various sizes. Neutron-gamma converting foils of In, Au and Co materials were used, each of which has a large capture cross section which peaks in the epithermal neutron energy region. The type of foil was selected according to the material properties that best correspond to the energy of the epithermal neutrons to be measured. In addition, the proposed technique was applied using Au-foils in order to measure the Cd ratio. The validity of the proposed technique was examined using an sup 2 sup 4 sup 1 Am-Be source placed in a testing stack of polyethylene blocks, and the results were compared with the theoretical values calculated by the Monte Carlo calculation. Finally, the dosimeter was applied for measuring epithermal neutrons and the Cd ratio in an experimental beam-tube o...

  6. The Design of Phase-Locked-Loop Circuit for Precision Capacitance Micrometer

    Directory of Open Access Journals (Sweden)

    Li Shujie

    2016-01-01

    Full Text Available High precision non-contact micrometer is normally divided into three categories: inductance micrometer, capacitance micrometer and optical interferometer micrometer. The capacitance micrometer is widely used because it has high performance to price ratio. With the improvement of automation level, precision of capacitance micrometer is required higher and higher. Generally, capacitance micrometer consists of the capacitance sensor, capacitance/voltage conversion circuit, and modulation and demodulation circuits. However, due to the existing of resistors, capacitors and other components in the circuit, the phase shift of the carrier signal and the modulated signal might occur. In this case, the specific value of phase shift cannot be determined. Therefore, error caused by the phase shift cannot be eliminated. This will reduce the accuracy of micrometer. In this design, in order to eliminate the impact of the phase shift, the phase-locked-loop (PLL circuit is employed. Through the experiment, the function of tracking the input signal phase and frequency is achieved by the phase-locked-loop circuit. This signal processing method can also be applied to tuber electrical resistance tomography system and other precision measurement circuit.

  7. [Research on demodulation system for human body temperature measurement of intelligent clothing based on arrayed waveguide grating].

    Science.gov (United States)

    Yu, Xiao-gang; Miao, Chang-yun; Li, Hong-qiang; Li, En-bang; Liu, Zhi-hui; Wei, Ke-jia

    2012-08-01

    A system for demodulating distributed fiber Bragg grating sensors of the intelligent clothing was researched and realized, which is based on arrayed waveguide grating. The principle of demodulation method based on arrayed waveguide grating was analyzed, intensity--demodulating method was used to interrogate the wavelength of the fiber Bragg grating based on the building up of an experimental platform, and demodulation experiment of pre and post series of fiber Bragg grating was completed. The results show that the wavelength demodulation of the system has high linearity for fiber Bragg grating, the system gives a wavelength accuracy of 0.001 nm, and demodulation error caused by crosstalk between different sensors is 0.0005 nm. The measurement error of human body temperature is +/- 0.16 degrees C. It can be applied to the human body temperature measurement.

  8. 3 GHz digital rf control at the superconducting Darmstadt electron linear accelerator: First results from the baseband approach and extensions for other frequencies

    Directory of Open Access Journals (Sweden)

    A. Araz

    2010-08-01

    Full Text Available The low level rf system for the superconducting Darmstadt electron linear accelerator (S-DALINAC developed 20 years ago and operating since converts the 3 GHz signals from the cavities down to the baseband and not to an intermediate frequency. While designing the new, digital rf control system this concept was kept: the rf module does the I/Q and amplitude modulation/demodulation while the low frequency board, housing an field programmable gate array analyzes and processes the signals. Recently, the flexibility of this concept was realized: By replacing the modulator/demodulators on the rf module, cavities operating at frequencies other than the one of the S-DALINAC can be controlled with only minor modifications: A 6 GHz version, needed for a harmonic bunching system at the S-DALINAC and a 324 MHz solution to be used on a room temperature cavity at GSI, are currently under design. This paper reviews the concept of the digital low level rf control loops in detail and reports on the results gained during first operation with a superconducting cavity.

  9. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.

    Science.gov (United States)

    He, A; Deepan, B; Quan, C

    2017-09-01

    A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

  10. Experimental 2.5-Gb/s QPSK WDM phase-modulated radio-over-fiber link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Highest reported bit rate of 2.5 Gb/s for optically phase modulated radio-over-fiber (RoF) link, employing digital coherent detection, is demonstrated. Demodulation of 3$,times,$ 2.5 Gb/s quadrature phase-shift keying modulated wavelength-division-multiplexed RoF channels is achieved after 79 km ...... of transmission through deployed fiber. Error-free performance (bit-error rate corresponding to $10^{{-}4}$) is achieved using a digital coherent receiver in combination with a $K$-means algorithm for radio-frequency phase recovery....

  11. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal floods during mid-loop operations. Volume 4

    International Nuclear Information System (INIS)

    Kohut, P.

    1994-07-01

    The major objective of the Surry internal flood analysis was to provide an improved understanding of the core damage scenarios arising from internal flood-related events. The mean core damage frequency of the Surry plant due to internal flood events during mid-loop operations is 4.8E-06 per year, and the 5th and 95th percentiles are 2.2E-07 and 1.8E-05 per year, respectively. Some limited sensitivity calculations were performed on three plant improvement options. The most significant result involves modifications of intake-level structure on the canal, which reduced core damage frequency contribution from floods in mid-loop by about 75%

  12. Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity

    Science.gov (United States)

    Pham, Xuantung; Si, Jinhai; Chen, Tao; Wang, Ruize; Yan, Lihe; Cao, Houjun; Hou, Xun

    2018-05-01

    In this paper, we propose a demodulation method for refractive index (RI) sensing with tilted fiber Bragg gratings (TFBGs). It operates by monitoring the TFBG cladding mode resonance "cut-off wavelengths." The idea of a "cut-off wavelength" and its determination method are introduced. The RI sensitivities of TFBGs are significantly enhanced in certain RI ranges by using our demodulation method. The temperature-induced cross sensitivity is eliminated. We also demonstrate a parallel-double-angle TFBG (PDTFBG), in which two individual TFBGs are inscribed in the fiber core in parallel using a femtosecond laser and a phase mask. The RI sensing range of the PDTFBG is significantly broader than that of a conventional single-angle TFBG. In addition, its RI sensitivity can reach 1023.1 nm/refractive index unit in the 1.4401-1.4570 RI range when our proposed demodulation method is used.

  13. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm

    Science.gov (United States)

    Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang

    2018-05-01

    A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.

  14. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    Directory of Open Access Journals (Sweden)

    Laura eRay

    2015-09-01

    Full Text Available A spindle detection method was developed that: 1 extracts the signal of interest (i.e., spindle-related phasic changes in sigma relative to ongoing background sigma activity using complex demodulation, 2 accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and 3 employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile. Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles.

  15. Frequency modulator. Transmission of meteorological signals in LVC; Modulador de frecuencia. Transmision de senales meteorologicas en CLV

    Energy Technology Data Exchange (ETDEWEB)

    Rivero G, P.T.; Ramirez S, R.; Gonzalez M, J.L.; Rojas N, P.; Celis del Angel, L. [ININ, 52750 La marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The development of the frequency modulator and demodulator circuit for transmission of meteorological signals by means of fiber optics of the meteorology station to the nuclear reactor unit 1 in the Laguna Verde Central in Veracruz is described. (Author)

  16. Experimental demonstration of a ferroelectric liquid crystal tunable filter for fast demodulation of FBG sensors

    Science.gov (United States)

    Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald

    2009-05-01

    A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.

  17. Comparison of high temperature, high frequency core loss and dynamic B-H loops of two 50 Ni-Fe crystalline alloys and an iron-based amorphous alloy

    International Nuclear Information System (INIS)

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-01-01

    The availability of experimental data that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency is almost non-existent. An experimental investigation was conducted over the temperature range of 23 to 300 C and frequency range of 1 to 50 kHz to determine the effects of temperature and frequency on the core loss and dynamic B-H loops of three different soft magnetic materials; an oriented-grain 50Ni-50Fe alloy, a nonoriented-grain 50Ni-50Fe alloy, and an iron-based amorphous material (Metglas 2605SC). A comparison of these materials show that the nonoriented-grain 50Ni-50Fe alloy tends to have either the lowest or next lowest core loss for all temperatures and frequencies investigated

  18. Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning

    Science.gov (United States)

    Kilpatrick, J. I.; Gannepalli, A.; Cleveland, J. P.; Jarvis, S. P.

    2009-02-01

    Frequency modulation atomic force microscopy (FM-AFM) is rapidly evolving as the technique of choice in the pursuit of high resolution imaging of biological samples in ambient environments. The enhanced stability afforded by this dynamic AFM mode combined with quantitative analysis enables the study of complex biological systems, at the nanoscale, in their native physiological environment. The operational bandwidth and accuracy of constant amplitude FM-AFM in low Q environments is heavily dependent on the cantilever dynamics and the performance of the demodulation and feedback loops employed to oscillate the cantilever at its resonant frequency with a constant amplitude. Often researchers use ad hoc feedback gains or instrument default values that can result in an inability to quantify experimental data. Poor choice of gains or exceeding the operational bandwidth can result in imaging artifacts and damage to the tip and/or sample. To alleviate this situation we present here a methodology to determine feedback gains for the amplitude and frequency loops that are specific to the cantilever and its environment, which can serve as a reasonable "first guess," thus making quantitative FM-AFM in low Q environments more accessible to the nonexpert. This technique is successfully demonstrated for the low Q systems of air (Q ˜40) and water (Q ˜1). In addition, we present FM-AFM images of MC3T3-E1 preosteoblast cells acquired using the gains calculated by this methodology demonstrating the effectiveness of this technique.

  19. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    Science.gov (United States)

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  20. Analog direct-modulation behavior of semiconductor laser transmitters using optical FM demodulation

    NARCIS (Netherlands)

    Yabre, G.S.

    1998-01-01

    In this paper, we report a theoretical investigation of the analog modulation performance of a semiconductor laser transmitter which employs the direct optical FM demodulation. This analysis is based on the rate equations in which Langevin noise functions are included. The optical FM response has

  1. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    Directory of Open Access Journals (Sweden)

    Alessandro Sabato

    2014-09-01

    Full Text Available Recent advances in the Micro Electro-Mechanical System (MEMS technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM of civil engineering structures. To date, sensors’ low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor’s analog signals are converted to digital signals before radio-frequency (RF wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F instead of the conventional Analog to Digital Conversion (ADC. In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  2. Frequency Synthesiser

    NARCIS (Netherlands)

    Drago, Salvatore; Sebastiano, Fabio; Leenaerts, Dominicus M.W.; Breems, Lucien J.; Nauta, Bram

    2016-01-01

    A low power frequency synthesiser circuit (30) for a radio transceiver, the synthesiser circuit comprising: a digital controlled oscillator configured to generate an output signal having a frequency controlled by an input digital control word (DCW); a feedback loop connected between an output and an

  3. Frequency synthesiser

    NARCIS (Netherlands)

    Drago, S.; Sebastiano, Fabio; Leenaerts, Dominicus Martinus Wilhelmus; Breems, Lucien Johannes; Nauta, Bram

    2010-01-01

    A low power frequency synthesiser circuit (30) for a radio transceiver, the synthesiser circuit comprising: a digital controlled oscillator configured to generate an output signal having a frequency controlled by an input digital control word (DCW); a feedback loop connected between an output and an

  4. Design of a fully-fiber multi-chord interferometer and a new phase-shift demodulation method for field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Dongfan, E-mail: fangdongfan1208@126.com; Sun, Qizhi; Zhao, Xiaoming; Jia, Yuesong [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAEP, P. O. Box 919-108, Mianyang, Sichuan 621999 (China)

    2014-05-15

    A 633 nm laser interferometer has been designed based on a novel concept, which, without the acousto-optic modulator or the demodulator circuit, adopts the fibers to connect all elements except photodetectors and oscilloscope in this system to make it more compact, portable, and efficient. The noteworthy feature is to mathematically compare the two divided interference signals, which have the same phase-shift caused by the electron density but possess the different initial phase and low angular frequencies. It is possible to read the plasma density directly on the oscilloscope by our original mathematic demodulation method without a camera. Based on the Abel inversion algorithm, the radial electron density profiles versus time can be obtained by using the multi-chord system. The designed measurable phase shift ranges from 0 to 2π rad corresponding to the maximum line integral of electron density less than 3.5 × 10{sup 17} cm{sup −2}, and the phase accuracy is about 0.017 rad corresponding to the line integral of electron density accuracy of 1 × 10{sup 15} cm{sup −2}. After the construction of eight-chord interferometer, it will provide the detailed time resolved information of the spatial distribution of the electron density in the field-reversed configuration (FRC) plasma target produced by the “Yingguang-1” programmed-discharge device, which is being constructed in the Key Laboratory of Pulsed Power, China Academy of Engineering Physics.

  5. Up to 40 Gb/s wireless signal generation and demodulation in 75-110 GHz band using photonic techniques

    DEFF Research Database (Denmark)

    Sambaraju, R.; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Record wireless signal capacity of up to 40 Gb/s is demonstrated in the 75-110 GHz band. All-optical OFDM and photonic up-conversion are used for generation and digital coherent detection for demodulation....

  6. Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop

    Science.gov (United States)

    Wildeman, Sander

    2018-06-01

    A quantitative synthetic Schlieren imaging (SSI) method based on fast Fourier demodulation is presented. Instead of a random dot pattern (as usually employed in SSI), a 2D periodic pattern (such as a checkerboard) is used as a backdrop to the refractive object of interest. The range of validity and accuracy of this "Fast Checkerboard Demodulation" (FCD) method are assessed using both synthetic data and experimental recordings of patterns optically distorted by small waves on a water surface. It is found that the FCD method is at least as accurate as sophisticated, multi-stage, digital image correlation (DIC) or optical flow (OF) techniques used with random dot patterns, and it is significantly faster. Efficient, fully vectorized, implementations of both the FCD and DIC/OF schemes developed for this study are made available as open source Matlab scripts.

  7. Application of genetic algorithm in quasi-static fiber grating wavelength demodulation technology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A modified genetic algorithm (GA) has been proposed, which was used to wavelength demodulation in quasi-static fiber grating sensing system. The modification method of GA has been introduced and the relevant mathematical model has been established. The objective function and individual fitness evaluation strategy interrelated with GA are also established. The influence of population size, chromosome size, generations, crossover probability and mutation probability on the GA has been analyzed, and the optimal parameters of modified GA have been obtained. The simulations and experiments, show that the modified GA can be applied to quasi-static fiber grating sensing system, and the wavelength demodulation precision is equal to or less than 3 pm.

  8. Design of a digital PAD based on I/Q demodulation principle

    International Nuclear Information System (INIS)

    Geng Zheqiao; Cui Yanyan; Hou Mi; Pei Guoxi

    2005-01-01

    Conventional analog I/Q demodulator suffers from phase and amplitude imbalance and DC offset, which cause big error into the measurement. A digital PAD is designed. Based on I/Q demodulation principle, using digital algorithms, such as digital filter and Hilbert transform, the conventional measurement error can basically be removed. Measuremental results show that the digital PAD has a maximum phase error of ±0.5 degree and a resolution of 0.2 degree. Its temperature coefficient is -0.1 degree/degree C. Its dynamic ranges for phase-measurement and amplitude-measurement are -1825 dBm and -2020 dBm, respectively. The digital PAD can meet the need of the BEPC II phasing system. (authors)

  9. An adaptive synchronization strategy based on active control for demodulating message hidden in chaotic signals

    International Nuclear Information System (INIS)

    Tang Fang

    2008-01-01

    In the field of secure communication, it is very important to demodulate the message hidden in chaotic signals. In this paper, an adaptive synchronization strategy based on active control is proposed, which is used to design an active controller and an appropriate adaptive demodulator at the receiver to recover the transmitted message hidden in chaotic signals of a drive system. Based on Lyapunov stability theory, it is shown that the transmitted message can be theoretically recovered by using the proposed strategy. Numerical simulations based on the Chua's circuit are also presented to verify the effectiveness of the proposed strategy. In addition, it is shown via simulations that, by increasing the gain of the active controller the message error caused by the external noise and the discontinuous property of the message can be reduced

  10. Intensity-demodulated torsion sensor based on thin-core polarization-maintaining fiber.

    Science.gov (United States)

    Kang, Xuexue; Zhang, Weigang; Zhang, Yanxin; Yang, Jiang; Chen, Lei; Kong, Lingxin; Zhang, Yunshan; Yu, Lin; Yan, Tieyi; Geng, Pengcheng

    2018-05-01

    An intensity-demodulated torsion sensor is designed and realized, which consists of a polarization ring as the sensing part and a section of thin-core polarization-maintaining fiber as the demodulation part. An intensity map of a sinusoidal change can be obtained at some specific wavelengths, and the experimental results correspond to the theoretical analysis well. The maximum sensitivity is about 0.29 dB/deg at the wavelength of 1584.6 nm, and the minimum sensitivity is about 0.10 dB/deg at the wavelength of 1510.2 nm. Meanwhile, the temperature characteristic is measured in the experiment. More broadly, the proposed structure can be used in an integrated smart device for loose-screw detection in devices in aeronautics and astronautics.

  11. Simple lock-in detection technique utilizing multiple harmonics for digital PGC demodulators.

    Science.gov (United States)

    Duan, Fajie; Huang, Tingting; Jiang, Jiajia; Fu, Xiao; Ma, Ling

    2017-06-01

    A simple lock-in detection technique especially suited for digital phase-generated carrier (PGC) demodulators is proposed in this paper. It mixes the interference signal with rectangular waves whose Fourier expansions contain multiple odd or multiple even harmonics of the carrier to recover the quadrature components needed for interference phase demodulation. In this way, the use of a multiplier is avoided and the efficiency of the algorithm is improved. Noise performance with regard to light intensity variation and circuit noise is analyzed theoretically for both the proposed technique and the traditional lock-in technique, and results show that the former provides a better signal-to-noise ratio than the latter with proper modulation depth and average interference phase. Detailed simulations were conducted and the theoretical analysis was verified. A fiber-optic Michelson interferometer was constructed and the feasibility of the proposed technique is demonstrated.

  12. Investigation of Continuously Variable Slope Delta Modulator/Demodulator Compatability.

    Science.gov (United States)

    1980-12-01

    20 d,"mO Test Signal) 4 stp Ize Pratio -J-l Li] c4 u FnoR~e mx -,cli - td 32k/ I’.’: (2 .Bm’ et i~ l z s tep g ize Ratio MJismatc(_h Bd FREQUENCY (HZJ...Ste~p Size it-tio flisriatch ’ F] - ,a tc he d 0 - 2 dB [: L’\\- 4 dB 4Bd B 0’ 0 0 b l - FREQUENCY (HZ) Figure 49a. CVSD Encoder/Decoder Back-to-Back...APPENDIX rl Total t’,ar-onic i tor’i w’. -r -,,,t ,ntl Po’..’r PROGRAM DTHD(I PUT,OUTPUT,TAPES-INPUT.TAPE6-OUTPUT,PLOT) CT_---- -- - TD US. INPUT POER

  13. Demodulation of acoustic telemetry binary phase shift keying signal based on high-order Duffing system

    International Nuclear Information System (INIS)

    Yan Bing-Nan; Liu Chong-Xin; Ni Jun-Kang; Zhao Liang

    2016-01-01

    In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. (paper)

  14. An FPGA-based DS-CDMA multiuser demodulator employing adaptive multistage parallel interference cancellation

    Science.gov (United States)

    Li, Xinhua; Song, Zhenyu; Zhan, Yongjie; Wu, Qiongzhi

    2009-12-01

    Since the system capacity is severely limited, reducing the multiple access interfere (MAI) is necessary in the multiuser direct-sequence code division multiple access (DS-CDMA) system which is used in the telecommunication terminals data-transferred link system. In this paper, we adopt an adaptive multistage parallel interference cancellation structure in the demodulator based on the least mean square (LMS) algorithm to eliminate the MAI on the basis of overviewing various of multiuser dectection schemes. Neither a training sequence nor a pilot signal is needed in the proposed scheme, and its implementation complexity can be greatly reduced by a LMS approximate algorithm. The algorithm and its FPGA implementation is then derived. Simulation results of the proposed adaptive PIC can outperform some of the existing interference cancellation methods in AWGN channels. The hardware setup of mutiuser demodulator is described, and the experimental results based on it demonstrate that the simulation results shows large performance gains over the conventional single-user demodulator.

  15. A Single Chip VLSI Implementation of a QPSK/SQPSK Demodulator for a VSAT Receiver Station

    Science.gov (United States)

    Kwatra, S. C.; King, Brent

    1995-01-01

    This thesis presents a VLSI implementation of a QPSK/SQPSK demodulator. It is designed to be employed in a VSAT earth station that utilizes the FDMA/TDM link. A single chip architecture is used to enable this chip to be easily employed in the VSAT system. This demodulator contains lowpass filters, integrate and dump units, unique word detectors, a timing recovery unit, a phase recovery unit and a down conversion unit. The design stages start with a functional representation of the system by using the C programming language. Then it progresses into a register based representation using the VHDL language. The layout components are designed based on these VHDL models and simulated. Component generators are developed for the adder, multiplier, read-only memory and serial access memory in order to shorten the design time. These sub-components are then block routed to form the main components of the system. The main components are block routed to form the final demodulator.

  16. Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case.

    Science.gov (United States)

    Ebeling, Daniel; Solares, Santiago D

    2013-01-01

    We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in which the higher eigenmode is driven with constant frequency and constant excitation amplitude. General as well as particular characteristics of the different driving schemes are highlighted from theoretical and experimental points of view, revealing the advantages and disadvantages of each. This study provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way.

  17. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix E (Sections E.9-E.16), Volume 2, Part 3B

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Wong, S.M. [Brookhaven National Lab., Upton, NY (United States); Bley, D.; Johnson, D. [PLG Inc., Newport Beach, CA (United States)] [and others

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. The scope of the level-1 study includes plant damage state analysis, and uncertainty analysis. Volume 1 summarizes the results of the study. Internal events analysis is documented in Volume 2. It also contains an appendix that documents the part of the phase 1 study that has to do with POSs other than mid-loop operation. Internal fire and internal flood analyses are documented in Volumes 3 and 4. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. Volume 6 documents the accident progression, source terms, and consequence analysis.

  18. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit-1: Analysis of core damage frequency from internal events during mid-loop operations. Appendices F-H, Volume 2, Part 4

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Bley, D.; Johnson, D.; Holmes, B.

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. The scope of the level-1 study includes plant damage state analysis, and uncertainty analysis. Volume 1 summarizes the results of the study. Internal events analysis is documented in Volume 2. It also contains an appendix that documents the part of the phase 1 study that has to do with POSs other than mid-loop operation. Internal fire and internal flood analyses are documented in Volumes 3 and 4. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. Volume 6 documents the accident progression, source terms, and consequence analysis

  19. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix E (Sections E.9-E.16), Volume 2, Part 3B

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Wong, S.M.; Bley, D.; Johnson, D.

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. The scope of the level-1 study includes plant damage state analysis, and uncertainty analysis. Volume 1 summarizes the results of the study. Internal events analysis is documented in Volume 2. It also contains an appendix that documents the part of the phase 1 study that has to do with POSs other than mid-loop operation. Internal fire and internal flood analyses are documented in Volumes 3 and 4. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. Volume 6 documents the accident progression, source terms, and consequence analysis

  20. Analysis and optimization of the battery energy storage systems for frequency control in autonomous microgrids, by means of hardware-in-the-loop simulations

    DEFF Research Database (Denmark)

    Serban, I.; Teodorescu, Remus; Marinescu, C.

    2012-01-01

    . The focus is on autonomous MGs that dynamically should perform similarly to the conventional power systems. During MG autonomous operation, the generators should accomplish the frequency control process, by means of their automatic generation control. However, RES-based generators have poor controllability...

  1. An Improved Flux Observer for Field-Oriented Control of Induction Motors Based on Dual Second-Order Generalized Integrator Frequency-Locked Loop

    DEFF Research Database (Denmark)

    Xin, Zhen; Zhao, Rende; Blaabjerg, Frede

    2017-01-01

    with the conventional low-pass filter based method, the SOGI-FLL does not need compensation and can effectively attenuate the high-order harmonics in the back ElectroMotive Force (EMF). However, the dynamic performance of this method is not satisfactory because the back-EMF frequency estimated by FLL suffers from...

  2. AC bias characterization of low noise bolometers for SAFARI using an open-loop frequency domain SQUID-based multiplexer operating between 1 and 5 MHz

    NARCIS (Netherlands)

    Gottardi, L.; Bruijn, M.; Gao, J.R.; Den Hartog, R.; Hijmering, R.; Hoevers, H.; Khosropanah, P.; De Korte, P.; Van der Kuur, J.; Lindeman, M.; Ridder, M.

    2012-01-01

    SRON is developing the Frequency Domain Multiplexing (FDM) read-out and the ultra low NEP TES bolometers array for the infra-red spectrometer SAFARI on board of the Japanese space mission SPICA. The FDM prototype of the instrument requires critical and complex optimizations. For single pixel

  3. Electrothermal frequency reference

    NARCIS (Netherlands)

    Makinwa, K.A.A.; Kashmiri, S.M.

    2011-01-01

    An electrothermal frequency-locked loop (EFLL) circuit is described. This EFLL circuit includes an oscillator in a feedback loop. A drive circuit in the EFLL circuit generates a first signal having a fundamental frequency, and an electrothermal filter (ETF) in the EFLL circuit provides a second

  4. On second order effects in a galvanic cell : Part I. Polarization by a sine wave modulated high frequency current

    NARCIS (Netherlands)

    Pol, F. van der; Sluyters-Rehbach, M.; Sluyters, J.H.

    1975-01-01

    A theoretical study is presented concerning the application of a high-frequency alternating current, amplitude modulated by a low-frequency sine wave, to a galvanic cell. Based on the correlation with the faradaic rectification technique, expressions are given for the low-frequency demodulation

  5. Development of a suspended-mass RSE interferometer using third harmonic demodulation

    CERN Document Server

    Miyakawa, O; Heinzel, G; Kawamura, S

    2002-01-01

    The most important point of a resonant sideband extraction (RSE) experiment is the signal extraction for control of the interferometer. We proposed a new signal-sensing method for the single modulation scheme. This method uses the third harmonic demodulation (THD) with a particular asymmetry in the interferometer which makes the third-order sidebands vanish at the detecting port. We have successfully locked a suspended-mass RSE interferometer for the first time by the THD method. The transfer function of the interferometer was measured to confirm the RSE effect.

  6. Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.

    Science.gov (United States)

    Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu

    2018-03-10

    This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.

  7. Development of a suspended-mass RSE interferometer using third harmonic demodulation

    International Nuclear Information System (INIS)

    Miyakawa, Osamu; Somiya, Kentaro; Heinzel, Gerhard; Kawamura, Seiji

    2002-01-01

    The most important point of a resonant sideband extraction (RSE) experiment is the signal extraction for control of the interferometer. We proposed a new signal-sensing method for the single modulation scheme. This method uses the third harmonic demodulation (THD) with a particular asymmetry in the interferometer which makes the third-order sidebands vanish at the detecting port. We have successfully locked a suspended-mass RSE interferometer for the first time by the THD method. The transfer function of the interferometer was measured to confirm the RSE effect

  8. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report

  9. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Main report (Chapters 7--12). Volume 2, Part 1B

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specific shutdown accidents would be useful

  10. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal fires during mid-loop operations. Volume 3, Part 1, Main report

    International Nuclear Information System (INIS)

    Musicki, Z.; Chu, T.L.; Yang, J.; Ho, V.; Hou, Y.M.; Lin, J.; Siu, N.

    1994-07-01

    During l989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than fun power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in ' the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few. procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful

  11. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices E (Sections E.1--E.8). Volume 2, Part 3A

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. The authors recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful

  12. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Main report (Chapters 1--6). Volume 2, Part 1A

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1992-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown written specifically for shutdown accidents would be useful. This document presents Chapters 1--6 of the report

  13. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.; Musicki, Z.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.

  14. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  15. Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis.

    Science.gov (United States)

    Trusiak, Maciej; Służewski, Łukasz; Patorski, Krzysztof

    2016-02-22

    Hybrid single shot algorithm for accurate phase demodulation of complex fringe patterns is proposed. It employs empirical mode decomposition based adaptive fringe pattern enhancement (i.e., denoising, background removal and amplitude normalization) and subsequent boosted phase demodulation using 2D Hilbert spiral transform aided by the Principal Component Analysis method for novel, correct and accurate local fringe direction map calculation. Robustness to fringe pattern significant noise, uneven background and amplitude modulation as well as local fringe period and shape variations is corroborated by numerical simulations and experiments. Proposed automatic, adaptive, fast and comprehensive fringe analysis solution compares favorably with other previously reported techniques.

  16. Fundamental and Harmonic Oscillations in Neighboring Coronal Loops

    Science.gov (United States)

    Li, Hongbo; Liu, Yu; Vai Tam, Kuan

    2017-06-01

    We present observations of multimode (fundamental and harmonic) oscillations in a loop system, which appear to be simultaneously excited by a GOES C-class flare. Analysis of the periodic oscillations reveals that (1) the primary loop with a period of P a ≈ 4 minutes and a secondary loop with two periods of P a ≈ 4 minutes and P b ≈ 2 minutes are detected simultaneously in closely spaced loop strands; (2) both oscillation components have their peak amplitudes near the loop apex, while in the second loop the low-frequency component P a dominates in a loop segment that is two times larger than the high-frequency component P b ; (3) the harmonic mode P b shows the largest deviation from a sinusoidal loop shape at the loop apex. We conclude that multiple harmonic modes with different displacement profiles can be excited simultaneously even in closely spaced strands, similar to the overtones of a violin string.

  17. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    International Nuclear Information System (INIS)

    Shoupeng, Song; Zhou, Jiang

    2017-01-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry. (paper)

  18. Phase unwrapping algorithm based on multi-frequency fringe projection and fringe background for fringe projection profilometry

    International Nuclear Information System (INIS)

    Zhang, Chunwei; Zhao, Hong; Gu, Feifei; Ma, Yueyang

    2015-01-01

    A phase unwrapping algorithm specially designed for the phase-shifting fringe projection profilometry (FPP) is proposed. It combines a revised dual-frequency fringe projectionalgorithm and a proposed fringe background based quality guided phase unwrapping algorithm (FB-QGPUA). Phase demodulated from the high-frequency fringe patterns is partially unwrapped by that demodulated from the low-frequency ones. Then FB-QGPUA is adopted to further unwrap the partially unwrapped phase. Influences of the phase error on the measurement are researched. Strategy to select the fringe pitch is given. Experiments demonstrate that the proposed method is very robust and efficient. (paper)

  19. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  20. Phase Noise and Intensity Noise of the Pulse Train Generated from Mode-locked Lasers in the Demodulation Measurement

    OpenAIRE

    Wu, Kan; Shum, Ping

    2010-01-01

    The phase noise and intensity noise of a pulse train are theoretically analyzed in the demodulation measurement. The effect of pulse asymmetry is discussed for the first time using Fourier series. Experimentally, photodetectors with different bandwidth and incident power levels are compared to achieve minimum pulse distortion.

  1. Chaos M-ary modulation and demodulation method based on Hamilton oscillator and its application in communication.

    Science.gov (United States)

    Fu, Yongqing; Li, Xingyuan; Li, Yanan; Yang, Wei; Song, Hailiang

    2013-03-01

    Chaotic communication has aroused general interests in recent years, but its communication effect is not ideal with the restriction of chaos synchronization. In this paper a new chaos M-ary digital modulation and demodulation method is proposed. By using region controllable characteristics of spatiotemporal chaos Hamilton map in phase plane and chaos unique characteristic, which is sensitive to initial value, zone mapping method is proposed. It establishes the map relationship between M-ary digital information and the region of Hamilton map phase plane, thus the M-ary information chaos modulation is realized. In addition, zone partition demodulation method is proposed based on the structure characteristic of Hamilton modulated information, which separates M-ary information from phase trajectory of chaotic Hamilton map, and the theory analysis of zone partition demodulator's boundary range is given. Finally, the communication system based on the two methods is constructed on the personal computer. The simulation shows that in high speed transmission communications and with no chaos synchronization circumstance, the proposed chaotic M-ary modulation and demodulation method has outperformed some conventional M-ary modulation methods, such as quadrature phase shift keying and M-ary pulse amplitude modulation in bit error rate. Besides, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-noise performance, and the system complexity is low and chaos signal is easy to generate.

  2. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1. Volume 5: Analysis of core damage frequency from seismic events during mid-loop operations

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1) and the other at Sandia National Laboratories studying a boiling water reactor (Grand Gulf). Both the Brookhaven and Sandia projects have examined only accidents initiated by internal plant faults--so-called ''internal initiators.'' This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling shutdown conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Surry Unit 1. All of the many systems modeling assumptions, component non-seismic failure rates, and human error rates that were used in the internal-initiator study at Surry have been adopted here, so that the results of the two studies can be as comparable as possible. Both the Brookhaven study and this study examine only two shutdown plant operating states (POSs) during refueling outages at Surry, called POS 6 and POS 10, which represent mid-loop operation before and after refueling, respectively. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POSs 6 and 10. The results of the analysis are that the core-damage frequency of earthquake-initiated accidents during refueling outages in POS 6 and POS 10 is found to be low in absolute terms, less than 10 -6 /year

  3. Self-adaptive demodulation for polarization extinction ratio in distributed polarization coupling.

    Science.gov (United States)

    Zhang, Hongxia; Ren, Yaguang; Liu, Tiegen; Jia, Dagong; Zhang, Yimo

    2013-06-20

    A self-adaptive method for distributed polarization extinction ratio (PER) demodulation is demonstrated. It is characterized by dynamic PER threshold coupling intensity (TCI) and nonuniform PER iteration step length (ISL). Based on the preset PER calculation accuracy and original distribution coupling intensity, TCI and ISL can be made self-adaptive to determine contributing coupling points inside the polarizing devices. Distributed PER is calculated by accumulating those coupling points automatically and selectively. Two different kinds of polarization-maintaining fibers are tested, and PERs are obtained after merely 3-5 iterations using the proposed method. Comparison experiments with Thorlabs commercial instrument are also conducted, and results show high consistency. In addition, the optimum preset PER calculation accuracy of 0.05 dB is obtained through many repeated experiments.

  4. Derivation of the point spread function for zero-crossing-demodulated position-sensitive detectors

    International Nuclear Information System (INIS)

    Nowlin, C.H.

    1976-07-01

    This work is a mathematical derivation of a high-quality approximation to the point spread function for position-sensitive detectors (PSDs) that use pulse-shape modulation and crossover-time demodulation. The approximation is determined as a general function of the input signals to the crossover detectors so as to enable later determination of optimum position-decoding filters for PSDs. This work is precisely applicable to PSDs that use either RC or LC transmission line encoders. The effects of random variables, such as charge collection time, in the encoding process are included. In addition, this work presents a new, rigorous method for the determination of upper and lower bounds for conditional crossover-time distribution functions (closely related to first-passage-time distribution functions) for arbitrary signals and arbitrary noise covariance functions

  5. Multi-Point Hermes Acoustic Modem for High-Speed, High-Frequency Acoustic Communications with Low-Frequency Acoustic Control Loop for Real-Time Transmission of AUV-Carried High-Resolution Images and Navigation Data in Support of Ship Hulls Inspection

    Science.gov (United States)

    2013-08-31

    13.3 µs) used in the data frame. The preamble uses direct-sequence spread spectrum (DSSS) to reduce the negative impact of fading. Three bits... ifr t covers one of the allocated hops of index  h i . The received reference symbol transmitted in hop   1,2,..., Hh i N is    ( )h...are recovered based on the phase difference between the constellation points demodulated from the sub-band m of the information symbol  ( ) ifr t

  6. A low power automatic gain control loop for a receiver

    Energy Technology Data Exchange (ETDEWEB)

    Li Guofeng; Geng Zhiqing; Wu Nanjian, E-mail: nanjian@red.semi.ac.c [State Key Laboratory for Super lattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2010-09-15

    This paper proposes a new structure to lower the power consumption of a variable gain amplifier (VGA) and keep the linearity of the VGA unchanged. The structure is used in a high rate amplitude-shift keying (ASK) based IF-stage. It includes an automatic gain control (AGC) loop and ASK demodulator. The AGC mainly consists of six-stage VGAs. The IF-stage is realized in 0.18 {mu}m CMOS technology. The measurement results show that the power consumption of the whole system is very low. The system consumes 730 {mu}A while operating at 1.8 V. The minimum ASK signal the system could detect is 0.7 mV (peak to peak amplitude). (semiconductor integrated circuits)

  7. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  8. CMOS switched current phase-locked loop

    NARCIS (Netherlands)

    Leenaerts, D.M.W.; Persoon, G.G.; Putter, B.M.

    1997-01-01

    The authors present an integrated circuit realisation of a switched current phase-locked loop (PLL) in standard 2.4 µm CMOS technology. The centre frequency is tunable to 1 MHz at a clock frequency of 5.46 MHz. The PLL has a measured maximum phase error of 21 degrees. The chip consumes

  9. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    Science.gov (United States)

    Wang, Avery Li-Chun

    This thesis summarizes several contributions to the areas of signal processing and auditory source separation. The philosophy of Frequency-Warped Signal Processing is introduced as a means for separating the AM and FM contributions to the bandwidth of a complex-valued, frequency-varying sinusoid p (n), transforming it into a signal with slowly-varying parameters. This transformation facilitates the removal of p (n) from an additive mixture while minimizing the amount of damage done to other signal components. The average winding rate of a complex-valued phasor is explored as an estimate of the instantaneous frequency. Theorems are provided showing the robustness of this measure. To implement frequency tracking, a Frequency-Locked Loop algorithm is introduced which uses the complex winding error to update its frequency estimate. The input signal is dynamically demodulated and filtered to extract the envelope. This envelope may then be remodulated to reconstruct the target partial, which may be subtracted from the original signal mixture to yield a new, quickly-adapting form of notch filtering. Enhancements to the basic tracker are made which, under certain conditions, attain the Cramer -Rao bound for the instantaneous frequency estimate. To improve tracking, the novel idea of Harmonic -Locked Loop tracking, using N harmonically constrained trackers, is introduced for tracking signals, such as voices and certain musical instruments. The estimated fundamental frequency is computed from a maximum-likelihood weighting of the N tracking estimates, making it highly robust. The result is that harmonic signals, such as voices, can be isolated from complex mixtures in the presence of other spectrally overlapping signals. Additionally, since phase information is preserved, the resynthesized harmonic signals may be removed from the original mixtures with relatively little damage to the residual signal. Finally, a new methodology is given for designing linear-phase FIR filters

  10. The instantaneous frequency rate spectrogram

    Science.gov (United States)

    Czarnecki, Krzysztof

    2016-01-01

    An accelerogram of the instantaneous phase of signal components referred to as an instantaneous frequency rate spectrogram (IFRS) is presented as a joint time-frequency distribution. The distribution is directly obtained by processing the short-time Fourier transform (STFT) locally. A novel approach to amplitude demodulation based upon the reassignment method is introduced as a useful by-product. Additionally, an estimator of energy density versus the instantaneous frequency rate (IFR) is proposed and referred to as the IFR profile. The energy density is estimated based upon both the classical energy spectrogram and the IFRS smoothened by the median filter. Moreover, the impact of an analyzing window width, additive white Gaussian noise and observation time is tested. Finally, the introduced method is used for the analysis of the acoustic emission of an automotive engine. The recording of the engine of a Lamborghini Gallardo is analyzed as an example.

  11. Osmotic mechanism of the loop extrusion process

    Science.gov (United States)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  12. The Brownian loop soup

    OpenAIRE

    Lawler, Gregory F.; Werner, Wendelin

    2003-01-01

    We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to ``chronologically add Brownian loops'' to simple curves in the plane.

  13. Profilometry of discontinuous solids by means of co-phased demodulation of projected fringes with RGB encoding

    Science.gov (United States)

    Padilla, J. M.; Servin, M.; Garnica, G.

    2015-05-01

    Here we describe a 2-projectors and 1-camera setup for profilometry of discontinuous solids by means of co-phased demodulation of projected fringes and red, green, and blue (RGB) multichannel operation. The dual projection configuration for this profilometer is proposed to solve efficiently specular regions and self-occluding shadows due to discontinuities, which are the main drawbacks for a 1-projector 1-camera configuration. This is because the regions where shadows and specular reflections are generated, and the fringe contrast drops to zero, are in general different for each projection direction; thus, the resulting fringe patterns will have complementary phase information. Multichannel RGB operation allows us to work simultaneously with both projectors and to record independently the complementary fringe patterns phase-modulated by the 3D profile of the object under study. In other words, color encoding/decoding reduces the acquisition time respect to one-at-a-time grayscale operation and, in principle, enables the study of dynamic phenomena. The co-phased demodulation method implemented in this work benefits from the complex (analytic) nature of the output signals estimated with most phase demodulation methods (such as the Fourier method, and temporal phaseshifting algorithms). This allowed us to straightforwardly generate a single phase-map well-defined for the entire area of interest. Finally we assessed our proposed profilometry setup by measuring a fractured spherical cap made of (uncoated) expanded polystyrene. The results were satisfactory but in the authors' opinion this must be considered a preliminary report.

  14. Towards the Realization of Graphene Based Flexible Radio Frequency Receiver

    Directory of Open Access Journals (Sweden)

    Maruthi N. Yogeesh

    2015-11-01

    Full Text Available We report on our progress and development of high speed flexible graphene field effect transistors (GFETs with high electron and hole mobilities (~3000 cm2/V·s, and intrinsic transit frequency in the microwave GHz regime. We also describe the design and fabrication of flexible graphene based radio frequency system. This RF communication system consists of graphite patch antenna at 2.4 GHz, graphene based frequency translation block (frequency doubler and AM demodulator and graphene speaker. The communication blocks are utilized to demonstrate graphene based amplitude modulated (AM radio receiver operating at 2.4 GHz.

  15. Symbol error rate performance evaluation of the LM37 multimegabit telemetry modulator-demodulator unit

    Science.gov (United States)

    Malek, H.

    1981-01-01

    The LM37 multimegabit telemetry modulator-demodulator unit was tested for evaluation of its symbol error rate (SER) performance. Using an automated test setup, the SER tests were carried out at various symbol rates and signal-to-noise ratios (SNR), ranging from +10 to -10 dB. With the aid of a specially designed error detector and a stabilized signal and noise summation unit, measurement of the SER at low SNR was possible. The results of the tests show that at symbol rates below 20 megasymbols per second (MS)s) and input SNR above -6 dB, the SER performance of the modem is within the specified 0.65 to 1.5 dB of the theoretical error curve. At symbol rates above 20 MS/s, the specification is met at SNR's down to -2 dB. The results of the SER tests are presented with the description of the test setup and the measurement procedure.

  16. Random demodulation for structural health monitoring excited by the five-cycle sine burst

    Directory of Open Access Journals (Sweden)

    Li Xing

    2017-01-01

    Full Text Available Nowadays, the Structural Health Monitoring (SHM has been paid more and more attention. The five-cycle sine burst is widely used as the exciting signal in SHM and the sensors’ responded signals are analyzed to research the damage. In the sensor network, there will be many sensors which mean many responded signals will be sampled, restored and sometimes transferred. In the traditional way which is known as Nyquist sampling theorem, the sampling rate must be more than twice the highest rate of the original signal. In this way, the amount of data will be huge. As the result, the costs will be very expensive and the equipment may be huge and heavy, which is especially unaccepted in the aircraft. It is necessary to do some research to compress the signal. The Compressing Sensing (CS theory provides new methods to compress the signals. The Random Demodulation (RD is a specific method which can accomplish the physical implementation of CS theory. In this paper, according to the structure of RD, we chose some chips to build a RD system. And we did some experiments to verify the method through the system. We chose the Orthogonal Matching Pursuit (OMP as the construct algorithm to recover the signal.

  17. Simultaneous measurement of refractive index and temperature based on intensity demodulation using matching grating method.

    Science.gov (United States)

    Qi, Liang; Zhao, Chun-Liu; Kang, Juan; Jin, Yongxing; Wang, Jianfeng; Ye, Manping; Jin, Shangzhong

    2013-07-01

    A solution refractive index (SRI) and temperature simultaneous measurement sensor with intensity-demodulation system based on matching grating method were demonstrated. Long period grating written in a photonic crystal fiber (LPG-PCF), provides temperature stable and wavelength dependent optical intensity transmission. The reflective peaks of two fiber Bragg gratings (FBGs), one of which is etched then sensitive to both SRI and temperature, another (FBG2) is only sensitive to temperature, were located in the same linear range of the LPG-PCF's transmission spectrum. An identical FBG with FBG2 was chosen as a matching FBG. When environments (SRI and temperature) change, the wavelength shifts of the FBGs are translated effectively to the reflection intensity changes. By monitoring output lights of unmatching and matching paths, the SRI and temperature were deduced by a signal processing unit. Experimental results show that the simultaneous refractive index and temperature measurement system work well. The proposed sensor system is compact and suitable for in situ applications at lower cost.

  18. Preliminary Investigation of an SOI-based Arrayed Waveguide Grating Demodulation Integration Microsystem

    Science.gov (United States)

    Li, Hongqiang; Zhou, Wenqian; Liu, Yu; Dong, Xiaye; Zhang, Cheng; Miao, Changyun; Zhang, Meiling; Li, Enbang; Tang, Chunxiao

    2014-05-01

    An arrayed waveguide grating (AWG) demodulation integration microsystem is investigated in this study. The system consists of a C-band on-chip LED, a 2 × 2 silicon nanowire-based coupler, a fiber Bragg grating (FBG) array, a 1 × 8 AWG, and a photoelectric detector array. The coupler and AWG are made from silicon-on-insulator wafers using electron beam exposure and response-coupled plasma technology. Experimental results show that the excess loss in the MMI coupler with a footprint of 6 × 100 μm2 is 0.5423 dB. The 1 × 8 AWG with a footprint of 267 × 381 μm2 and a waveguide width of 0.4 μm exhibits a central channel loss of -3.18 dB, insertion loss non-uniformity of -1.34 dB, and crosstalk level of -23.1 dB. The entire system is preliminarily tested. Wavelength measurement precision is observed to reach 0.001 nm. The wavelength sensitivity of each FBG is between 0.04 and 0.06 nm/dB.

  19. Renormalization of loop functions for all loops

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-01-01

    It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j

  20. Random walk loop soup

    OpenAIRE

    Lawler, Gregory F.; Ferreras, José A. Trujillo

    2004-01-01

    The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...

  1. On loop extensions and cohomology of loops

    OpenAIRE

    Benítez, Rolando Jiménez; Meléndez, Quitzeh Morales

    2015-01-01

    In this paper are defined cohomology-like groups that classify loop extensions satisfying a given identity in three variables for association identities, and in two variables for the case of commutativity. It is considered a large amount of identities. This groups generalize those defined in works of Nishigori [2] and of Jhonson and Leedham-Green [4]. It is computed the number of metacyclic extensions for trivial action of the quotient on the kernel in one particular case for left Bol loops a...

  2. Neutron transport in irradiation loops (IRENE loop)

    International Nuclear Information System (INIS)

    Sarsam, Maher.

    1980-09-01

    This thesis is composed of two parts with different aspects. Part one is a technical description of the loop and its main ancillary facilities as well as of the safety and operational regulations. The measurement methods on the model of the ISIS reactor and on the loop in the OSIRIS reactor are described. Part two deals with the possibility of calculating the powers dissipated by each rod of the fuel cluster, using appropriate computer codes, not only in the reflector but also in the core and to suggest a method of calculation [fr

  3. High Dynamic Optimized Carrier Loop Improvement for Tracking Doppler Rates

    Directory of Open Access Journals (Sweden)

    Amirhossein Fereidountabar

    2015-01-01

    Full Text Available Mathematical analysis and optimization of a carrier tracking loop are presented. Due to fast changing of the carrier frequency in some satellite systems, such as Low Earth Orbit (LEO or Global Positioning System (GPS, or some planes like Unmanned Aerial Vehicles (UAVs, high dynamic tracking loops play a very important role. In this paper an optimized tracking loop consisting of a third-order Phase Locked Loop (PLL assisted by a second-order Frequency Locked Loop (FLL for UAVs is proposed and discussed. Based on this structure an optimal loop has been designed. The main advantages of this approach are the reduction of the computation complexity and smaller phase error. The paper shows the simulation results, comparing them with a previous work.

  4. Water loop for training

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1983-02-01

    The procedures used to operate the water loop of the Institute of Nuclear Enginering (IEN) in Brazil are presented. The aim is to help future operators of the training water loop in the operation technique and in a better comprehension of the phenomena occured during the execution of an experience. (E.G.) [pt

  5. Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang pre-filtering.

    Science.gov (United States)

    Trusiak, Maciej; Patorski, Krzysztof

    2015-02-23

    Gram-Schmidt orthonormalization is a very fast and efficient method for the fringe pattern phase demodulation. It requires only two arbitrarily phase-shifted frames. Images are treated as vectors and upon orthogonal projection of one fringe vector onto another the quadrature fringe pattern pair is obtained. Orthonormalization process is very susceptible, however, to noise, uneven background and amplitude modulation fluctuations. The Hilbert-Huang transform based preprocessing is proposed to enhance fringe pattern phase demodulation by filtering out the spurious noise and background illumination and performing fringe normalization. The Gram-Schmidt orthonormalization process error analysis is provided and its filtering-expanded capabilities are corroborated analyzing DSPI fringes and performing amplitude demodulation of Bessel fringes. Synthetic and experimental fringe pattern analyses presented to validate the proposed technique show that it compares favorably with other pre-filtering schemes, i.e., Gaussian filtering and continuous wavelet transform.

  6. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  7. Probability safety assessment of LOOP accident to molten salt reactor

    International Nuclear Information System (INIS)

    Mei Mudan; Shao Shiwei; Yu Zhizhen; Chen Kun; Zuo Jiaxu

    2013-01-01

    Background: Loss of offsite power (LOOP) is a possible accident to any type of reactor, and this accident can reflect the main idea of reactor safety design. Therefore, it is very important to conduct a study on probabilistic safety assessment (PSA) of the molten salt reactor that is under LOOP circumstance. Purpose: The aim is to calculate the release frequency of molten salt radioactive material to the core caused by LOOP, and find out the biggest contributor to causing the radioactive release frequency. Methods: We carried out the PSA analysis of the LOOP using the PSA process risk spectrum, and assumed that the primary circuit had no valve and equipment reliability data based on the existing mature power plant equipment reliability data. Results: Through the PSA analysis, we got the accident sequences of the release of radioactive material to the core caused by LOOP and its frequency. The results show that the release frequency of molten salt radioactive material to the core caused by LOOP is about 2×10 -11 /(reactor ·year), which is far below that of the AP1000 LOOP. In addition, through the quantitative analysis, we obtained the point estimation and interval estimation of uncertainty analysis, and found that the biggest contributor to cause the release frequency of radioactive material to the core is the reactor cavity cooling function failure. Conclusion: This study provides effective help for the design and improvement of the following molten salt reactor system. (authors)

  8. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  9. Design and simulations of a spectral efficient optical code division multiple access scheme using alternated energy differentiation and single-user soft-decision demodulation

    Science.gov (United States)

    A. Garba, Aminata

    2017-01-01

    This paper presents a new approach to optical Code Division Multiple Access (CDMA) network transmission scheme using alternated amplitude sequences and energy differentiation at the transmitters to allow concurrent and secure transmission of several signals. The proposed system uses error control encoding and soft-decision demodulation to reduce the multi-user interference at the receivers. The design of the proposed alternated amplitude sequences, the OCDMA energy modulators and the soft decision, single-user demodulators are also presented. Simulation results show that the proposed scheme allows achieving spectral efficiencies higher than several reported results for optical CDMA and much higher than the Gaussian CDMA capacity limit.

  10. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  11. Gear Tooth Failure Detection by the Resonance Demodulation Technique and the Instantaneous Power Spectrum Method – A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemloonia

    2011-01-01

    Full Text Available The role of gears in industry for speed and torque variation purposes is obvious. The gearbox diagnostic methods have been improved quickly in recent years. In this paper, two of the newest methods, the resonance demodulation technique (R.D, and the instantaneous power spectrum technique (IPS are applied to gearbox vibration signals and their capabilities in fault detection are compared. Yet, the important role of time averaging should not be dispensed with, as it is the primary step for both techniques. In the present study, the mathematical method of these techniques, according to the mathematical vibration model of gears, is introduced, these techniques are applied to the test rig data, and finally the results of both methods are compared. The results indicate that in each method, the location of fault can be estimated and it is located in the same angular position in both methods. The IPS method is applicable to severe faults, whereas the resonance demodulation technique is a simple tool to recognize the fault at each severity and at the early stages of fault generation.

  12. Time Optimal Synchronization Procedure and Associated Feedback Loops

    CERN Document Server

    Angoletta, Maria Elena; CERN. Geneva. ATS Department

    2016-01-01

    A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.

  13. Diffusion of Wilson loops

    International Nuclear Information System (INIS)

    Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.

    2005-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory

  14. Blind loop syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001146.htm Blind loop syndrome To use the sharing features on ... Clinical Professor of Medicine, The George Washington University School of Medicine, Washington, DC. Also reviewed by David ...

  15. Mashup the OODA Loop

    National Research Council Canada - National Science Library

    Heier, Jeffrey E

    2008-01-01

    ...) processes via the Observe, Orient, Decide, and Act (OODA) Loop concept. As defined by Wikipedia, a mashup is a Website or application that combines the content from more than one source into an integrated presentation...

  16. Reactor loops at Chalk River

    International Nuclear Information System (INIS)

    Sochaski, R.O.

    1962-07-01

    This report describes broadly the nine in-reactor loops, and their components, located in and around the NRX and NRU reactors at Chalk River. First an introduction and general description is given of the loops and their function, supplemented with a table outlining some loop specifications and nine simplified flow sheets, one for each individual loop. The report then proceeds to classify each loop into two categories, the 'main loop circuit' and the 'auxiliary circuit', and descriptions are given of each circuit's components in turn. These components, in part, are comprised of the main loop pumps, the test section, loop heaters, loop coolers, delayed-neutron monitors, surge tank, Dowtherm coolers, loop piping. Here again photographs, drawings and tables are included to provide a clearer understanding of the descriptive literature and to include, in tables, some specifications of the more important components in each loop. (author)

  17. Dechanneling by dislocation loops

    International Nuclear Information System (INIS)

    Chalant, Gerard.

    1976-09-01

    Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr

  18. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    Science.gov (United States)

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-29

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

  19. Experimental 2.5 Gbit/s QPSK WDM coherent phase modulated radio-over-fibre link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Caballero Jambrina, Antonio; Amaya Fernández, Ferney Orlando

    2009-01-01

    Highest reported bit rate of 2.5 Gbit/s for optically phase modulated radio-over-fibre link employing coherent detection is demonstrated. Demodulation of 3·2.5 Gbit/s QPSK modulated WDM channels, is achieved after 79km of transmission through deployed fiber....

  20. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  1. Analysis of beam feedback loops of RF acceleration system at TARN II

    International Nuclear Information System (INIS)

    Katayama, Takeshi.

    1992-08-01

    Two beam-feedback-loops are prepared for the frequency control of RF acceleration system at cooler-synchrotron TARN II. One is the phase-loop and the other the radial-position-loop. In the present paper, the effects of these loops on the beam dynamics in the synchrotron are studied on the basis of Laplace transformation approach as well as the numerical values for the synchrotron acceleration at TARN II. (author)

  2. Multiband Radio Frequency Interconnect (MRFI) Technology For Next Generation Mobile/Airborne Computing Systems

    Science.gov (United States)

    2017-02-01

    between CPUs and memories , and then demodulated by the same frequency carriers to restore the data back to a parallel bus. This implies that one can...performance. With limited I/O pin count, higher bandwidth implies higher data rate per pin. As the data rate of double data rate (DDR) memory ...either expressed or implied , of Air Force Research Laboratory (AFRL) and the Defense Advanced Research Agency (DARPA) or the U.S. Government. Report

  3. Loop quantum gravity

    International Nuclear Information System (INIS)

    Pullin, J.

    2015-01-01

    Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)

  4. Blind Loop Syndrome

    Science.gov (United States)

    ... or scleroderma involving the small intestine History of radiation therapy to the abdomen Diabetes Diverticulosis of the small intestine Complications A blind loop can cause escalating problems, including: Poor absorption of fats. Bacteria in your small intestine break down the bile ...

  5. Improving Loop Dependence Analysis

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo; Karlsson, Sven

    2017-01-01

    Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve th...

  6. Cytokine loops driving senescence

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk; Lukáš, Jan

    2008-01-01

    Roč. 10, č. 8 (2008), s. 887-889 ISSN 1465-7392 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * cytokines * autocrine feedback loop Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 17.774, year: 2008

  7. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  8. Random walk loop soups and conformal loop ensembles

    NARCIS (Netherlands)

    van de Brug, T.; Camia, F.; Lis, M.

    2016-01-01

    The random walk loop soup is a Poissonian ensemble of lattice loops; it has been extensively studied because of its connections to the discrete Gaussian free field, but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of the Brownian loop soup of Lawler and Werner, a

  9. General n-dimensional quadrature transform and its application to interferogram demodulation.

    Science.gov (United States)

    Servin, Manuel; Quiroga, Juan Antonio; Marroquin, Jose Luis

    2003-05-01

    Quadrature operators are useful for obtaining the modulating phase phi in interferometry and temporal signals in electrical communications. In carrier-frequency interferometry and electrical communications, one uses the Hilbert transform to obtain the quadrature of the signal. In these cases the Hilbert transform gives the desired quadrature because the modulating phase is monotonically increasing. We propose an n-dimensional quadrature operator that transforms cos(phi) into -sin(phi) regardless of the frequency spectrum of the signal. With the quadrature of the phase-modulated signal, one can easily calculate the value of phi over all the domain of interest. Our quadrature operator is composed of two n-dimensional vector fields: One is related to the gradient of the image normalized with respect to local frequency magnitude, and the other is related to the sign of the local frequency of the signal. The inner product of these two vector fields gives us the desired quadrature signal. This quadrature operator is derived in the image space by use of differential vector calculus and in the frequency domain by use of a n-dimensional generalization of the Hilbert transform. A robust numerical algorithm is given to find the modulating phase of two-dimensional single-image closed-fringe interferograms by use of the ideas put forward.

  10. Current control loop of 3-phase grid-connected inverter

    International Nuclear Information System (INIS)

    Jabbar, A F; Mansor, M

    2013-01-01

    This paper presents a comparative study of current control loop in 3-phase inverter which is used to control the active and reactive output power. Generally, current control loop, power control loop and phase lock-loop are the conventional parameters that can be found in an inverter system controlled by the conventional linear control type, for instance proportional (P), integral (I) and derivative (D). If the grid remains stable throughout the day, PID control can be use. However variation of magnitude, frequency, voltage dips, transient, and other related power quality issues occur in a 3-phase grid often affects the control loop. This paper aims to provide an overall review on the available current control techniques used in grid connected system.

  11. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Science.gov (United States)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  12. Closing the loop.

    Science.gov (United States)

    Dassau, E; Atlas, E; Phillip, M

    2010-02-01

    The dream of closing the loop is actually the dream of creating an artificial pancreas and freeing the patients from being involved with the care of their own diabetes. Insulin-dependent diabetes (type 1) is a chronic incurable disease which requires constant therapy without the possibility of any 'holidays' or insulin-free days. It means that patients have to inject insulin every day of their life, several times per day, and in order to do it safely they also have to measure their blood glucose levels several times per day. Patients need to plan their meals, their physical activities and their insulin regime - there is only very small room for spontaneous activities. This is why the desire for an artificial pancreas is so strong despite the fact that it will not cure the diabetic patients. Attempts to develop a closed-loop system started in the 1960s but never got to a clinical practical stage of development. In recent years the availability of continuous glucose sensors revived those efforts and stimulated the clinician and researchers to believe that closing the loop might be possible nowadays. Many papers have been published over the years describing several different ideas on how to close the loop. Most of the suggested systems have a sensing arm that measures the blood glucose repeatedly or continuously, an insulin delivery arm that injects insulin upon command and a computer that makes the decisions of when and how much insulin to deliver. The differences between the various published systems in the literature are mainly in their control algorithms. However, there are also differences related to the method and site of glucose measurement and insulin delivery. SC glucose measurements and insulin delivery are the most studied option but other combinations of insulin measurements and glucose delivery including intravascular and intraperitoneal (IP) are explored. We tried to select recent publications that we believe had influenced and inspired people interested

  13. Loop Quantum Cosmology.

    Science.gov (United States)

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  14. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  15. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  16. Loop quantum gravity and black hole entropy quantization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using the spin networks and the asymptotic quasinormal mode frequencies of black holes given by loop quantum gravity,the minimum horizon area gap is obtained.Then the quantum area spectrum of black holes is derived and the black hole entropy is a realized quantization.The results show that the black hole entropy given by loop quantum gravity is in full accord with the Bekenstein-Hawking entropy with a suitable Immirzi.

  17. Coherent Phase Wide Band Demodulation Technique for Turbomachinery Cavitation Detection and Monitoring

    Science.gov (United States)

    1996-04-01

    levels were high a strong modulating frequency was recovered at the periodic vortex shedding rate. Experimental study of cavitation in hydroturbines ...of a Francis Model and Prototype Hydroturbine ," ASME Winter Annual Meeting, International Symposium on Bubble Noise Cavitation Erosion in Fluid Systems

  18. A Quasi-Type-1 Phase-Locked Loop Structure

    DEFF Research Database (Denmark)

    Golestan, Saeed; Fernandez, Francisco Daniel Freijedo; Vidal, Ana

    2014-01-01

    The grid voltage phase and frequency are crucial information in control of most grid connected power electronic based equipment. Most often, a phase-locked loop (PLL) is employed for this purpose. A PLL is a closed-loop feedback control system that the phase of its output signal is related...... to the phase of its input signal. Arguably, the simplest PLL is a type-1 PLL. The type-1 PLLs are characterized by having only one integrator in their control loop and therefore having a high stability margin. However, they suffer from a serious drawback: they cannot achieve zero average steady-state phase...

  19. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  20. Control-structure interaction in precision pointing servo loops

    Science.gov (United States)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  1. Wilson loops in minimal surfaces

    International Nuclear Information System (INIS)

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-01-01

    The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N = 4 supersymmetry in 4 dimensions is described by a minimal surface in AdS 5 x S 5 . The authors examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which the authors call BPS loops, whose expectation values are free from ultra-violet divergence. They formulate the loop equation for such loops. To the extent that they have checked, the minimal surface in AdS 5 x S 5 gives a solution of the equation. The authors also discuss the zig-zag symmetry of the loop operator. In the N = 4 gauge theory, they expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. They will show how this is realized for the minimal surface

  2. Wilson loops and minimal surfaces

    International Nuclear Information System (INIS)

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-01-01

    The AdS-CFT correspondence suggests that the Wilson loop of the large N gauge theory with N=4 supersymmetry in four dimensions is described by a minimal surface in AdS 5 xS 5 . We examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which we call BPS loops, whose expectation values are free from ultraviolet divergence. We formulate the loop equation for such loops. To the extent that we have checked, the minimal surface in AdS 5 xS 5 gives a solution of the equation. We also discuss the zigzag symmetry of the loop operator. In the N=4 gauge theory, we expect the zigzag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. We will show how this is realized for the minimal surface. (c) 1999 The American Physical Society

  3. On some properties of conjugacy closed loops

    International Nuclear Information System (INIS)

    Adeniran, John Olusola

    2002-07-01

    It is shown that central loops are not conjugacy closed loops but instead are loops of units in their loop algebras that are conjugacy closed. It is also shown that certain inner mappings of a conjugacy closed loop are nuclear. Some invariants of left conjugacy closed loops are obtained. (author)

  4. Fringe pattern demodulation using the one-dimensional continuous wavelet transform: field-programmable gate array implementation.

    Science.gov (United States)

    Abid, Abdulbasit

    2013-03-01

    This paper presents a thorough discussion of the proposed field-programmable gate array (FPGA) implementation for fringe pattern demodulation using the one-dimensional continuous wavelet transform (1D-CWT) algorithm. This algorithm is also known as wavelet transform profilometry. Initially, the 1D-CWT is programmed using the C programming language and compiled into VHDL using the ImpulseC tool. This VHDL code is implemented on the Altera Cyclone IV GX EP4CGX150DF31C7 FPGA. A fringe pattern image with a size of 512×512 pixels is presented to the FPGA, which processes the image using the 1D-CWT algorithm. The FPGA requires approximately 100 ms to process the image and produce a wrapped phase map. For performance comparison purposes, the 1D-CWT algorithm is programmed using the C language. The C code is then compiled using the Intel compiler version 13.0. The compiled code is run on a Dell Precision state-of-the-art workstation. The time required to process the fringe pattern image is approximately 1 s. In order to further reduce the execution time, the 1D-CWT is reprogramed using Intel Integrated Primitive Performance (IPP) Library Version 7.1. The execution time was reduced to approximately 650 ms. This confirms that at least sixfold speedup was gained using FPGA implementation over a state-of-the-art workstation that executes heavily optimized implementation of the 1D-CWT algorithm.

  5. Two-loop polygon Wilson loops in N = 4 SYM

    International Nuclear Information System (INIS)

    Anastasiou, C.; Brandhuber, A.; Heslop, P.; Spence, B.; Travaglini, G.; Khoze, V.V.

    2009-01-01

    We compute for the first time the two-loop corrections to arbitrary n-gon lightlike Wilson loops in N = 4 supersymmetric Yang-Mills theory, using efficient numerical methods. The calculation is motivated by the remarkable agreement between the finite part of planar six-point MHV amplitudes and hexagon Wilson loops which has been observed at two loops. At n = 6 we confirm that the ABDK/BDS ansatz must be corrected by adding a remainder function, which depends only on conformally invariant ratios of kinematic variables. We numerically compute remainder functions for n = 7,8 and verify dual conformal invariance. Furthermore, we study simple and multiple collinear limits of the Wilson loop remainder functions and demonstrate that they have precisely the form required by the collinear factorisation of the corresponding two-loop n-point amplitudes. The number of distinct diagram topologies contributing to the n-gon Wilson loops does not increase with n, and there is a fixed number of 'master integrals', which we have computed. Thus we have essentially computed general polygon Wilson loops, and if the correspondence with amplitudes continues to hold, all planar n-point two-loop MHV amplitudes in the N = 4 theory.

  6. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  7. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  8. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit-1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix I, Volume 2, Part 5

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J. [Brookhaven National Lab., Upton, NY (United States); Bley, D.; Johnson, D. [PLG Inc., Newport Beach, CA (United States); Holmes, B. [AEA Technology, Dorset (United Kingdom)] [and others

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Lab. (BNL) and Sandia National Labs. (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this volume of the report is to document the approach utilized in the level-1 internal events PRA for the Surry plant, and discuss the results obtained. A phased approach was used in the level-1 program. In phase 1, which was completed in Fall 1991, a coarse screening analysis examining accidents initiated by internal events (including internal fire and flood) was performed for all plant operational states (POSs). The objective of the phase 1 study was to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenarios, and to provide a foundation for a detailed phase 2 analysis.

  9. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit-1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix I, Volume 2, Part 5

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Bley, D.; Johnson, D.; Holmes, B.

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Lab. (BNL) and Sandia National Labs. (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this volume of the report is to document the approach utilized in the level-1 internal events PRA for the Surry plant, and discuss the results obtained. A phased approach was used in the level-1 program. In phase 1, which was completed in Fall 1991, a coarse screening analysis examining accidents initiated by internal events (including internal fire and flood) was performed for all plant operational states (POSs). The objective of the phase 1 study was to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenarios, and to provide a foundation for a detailed phase 2 analysis

  10. Mirror symmetry and loop operators

    Energy Technology Data Exchange (ETDEWEB)

    Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)

    2015-11-09

    Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.

  11. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  12. Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer.

    Science.gov (United States)

    Lee, Jehyun; Park, Sooyoung; Seo, Dae Han; Yim, Sin Hyuk; Yoon, Seokchan; Cho, D

    2016-09-19

    We report on measurement of small displacements with sub-nanometer precision using an optoelectronic oscillator (OEO) with an intra-loop Michelson interferometer. In comparison with conventional homodyne and heterodyne detection methods, where displacement appears as a power change or a phase shift, respectively, in the OEO detection, the displacement produces a shift in the oscillation frequency. In comparison with typical OEO sensors, where the frequency shift is proportional to the OEO oscillation frequency in radio-frequency domain, the frequency shift in our method with an intra-loop interferometer is proportional to an optical frequency. We constructed a hybrid apparatus and compared characteristics of the OEO and heterodyne detection methods.

  13. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  14. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  15. Control Strategies for Islanded Microgrid using Enhanced Hierarchical Control Structure with Multiple Current-Loop Damping Schemes

    DEFF Research Database (Denmark)

    Han, Yang; Shen, Pan; Zhao, Xin

    2017-01-01

    In this paper, the modeling, controller design, and stability analysis of the islanded microgrid (MG) using enhanced hierarchical control structure with multiple current loop damping schemes is proposed. The islanded MG is consisted of the parallel-connected voltage source inverters using LCL...... output filters, and the proposed control structure includes: the primary control with additional phase-shift loop, the secondary control for voltage amplitude and frequency restoration, the virtual impedance loops which contains virtual positive- and negative-sequence impedance loops at fundamental...... frequency, and virtual variable harmonic impedance loop at harmonic frequencies, and the inner voltage and current loop controllers. A small-signal model for the primary and secondary controls with additional phase-shift loop is presented, which shows an over-damped feature from eigenvalue analysis...

  16. Vortex loops and Majoranas

    International Nuclear Information System (INIS)

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-01-01

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry

  17. Dynamic PID loop control

    International Nuclear Information System (INIS)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.

    2011-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  18. Frequency response of slow beam extraction process

    International Nuclear Information System (INIS)

    Toyama, Takeshi; Sato, Hikaru; Marutsuka, Katsumi; Shirakata, Masashi.

    1994-01-01

    A servo control system has been incorporated into the practical slow extraction system in order to stabilize the spill structure less than a few kHz. Frequency responses of the components of the servo-spill control system and the open-loop frequency response were measured. The beam transfer function of the slow extraction process was derived from the measured data and approximated using a simple function. This is utilized to improve the performance of the servo-loop. (author)

  19. Uranyl Nitrate Flow Loop

    International Nuclear Information System (INIS)

    Ladd-Lively, Jennifer L

    2008-01-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO 2 ), uranium tetrafluoride (UF 4 ), and uranium hexafluoride (UF 6 )] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF 6 product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by

  20. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  1. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  2. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  3. Research on fiber Bragg grating heart sound sensing and wavelength demodulation method

    Science.gov (United States)

    Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang

    2010-11-01

    Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.

  4. Coherent optical communication detection device based on modified balanced optical phase-locked loop

    Science.gov (United States)

    Zhang, Bo; Sun, Jianfeng; Xu, Mengmeng; Li, Guangyuan; Zhang, Guo; Lao, Chenzhe; He, Hongyu; Lu, Zhiyong

    2017-08-01

    In the field of satellite communication, space laser communication technology is famous for its high communication rate, good confidentiality, small size, low power consumption and so on. The design of coherent optical communication detection device based on modified balanced optical phase-locked loop (OPLL) is presented in the paper. It combined by local oscillator beam, modulator, voltage controlled oscillator, signal beam, optical filter, 180 degree hybrid, balanced detector, loop filter and signal receiver. Local oscillator beam and voltage controlled oscillator trace the phase variation of signal beam simultaneously. That taking the advantage of voltage controlled oscillator which responses sensitively and tunable local oscillator laser source with large tuning range can trace the phase variation of signal beam rapidly and achieve phase locking. The demand of the phase deviation is very low, and the system is easy to adjust. When the transmitter transmits the binary phase shift keying (BPSK) signal, the receiver can demodulate the baseband signal quickly, which has important significance for the free space coherent laser communication.

  5. A totally diverting loop colostomy.

    Science.gov (United States)

    Merrett, N. D.; Gartell, P. C.

    1993-01-01

    A technique is described where the distal limb of a loop colostomy is tied with nylon or polydioxanone. This ensures total faecal diversion and dispenses with the supporting rod, enabling early application of stoma appliances. The technique does not interfere with the traditional transverse closure of a loop colostomy. PMID:8379632

  6. Error analysis of acceleration control loops of a synchrotron

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Weng, W.T.

    1991-01-01

    For beam control during acceleration, it is conventional to derive the frequency from an external reference, be it a field marker or an external oscillator, to provide phase and radius feedback loops to ensure the phase stability, radial position and emittance integrity of the beam. The open and closed loop behaviors of both feedback control and their response under the possible frequency, phase and radius errors are derived from fundamental principles and equations. The stability of the loops is investigated under a wide range of variations of the gain and time delays. Actual system performance of the AGS Booster is analyzed and compared to commissioning experiences. Such analysis is useful for setting design criteria and tolerances for new proton synchrotrons. 4 refs., 13 figs

  7. Higher dimensional loop quantum cosmology

    International Nuclear Information System (INIS)

    Zhang, Xiangdong

    2016-01-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)

  8. A novel calibration method for phase-locked loops

    DEFF Research Database (Denmark)

    Cassia, Marco; Shah, Peter Jivan; Bruun, Erik

    2005-01-01

    A novel method to calibrate the frequency response of a Phase-Locked Loop is presented. The method requires just an additional digital counter to measure the natural frequency of the PLL; moreover it is capable of estimating the static phase offset. The measured value can be used to tune the PLL ...... response to the desired value. The method is demonstrated mathematically on a typical PLL topology and it is extended to SigmaDelta fractional-N PLLs. A set of simulations performed with two different simulators is used to verify the applicability of the method.......A novel method to calibrate the frequency response of a Phase-Locked Loop is presented. The method requires just an additional digital counter to measure the natural frequency of the PLL; moreover it is capable of estimating the static phase offset. The measured value can be used to tune the PLL...

  9. Automatic carrier acquisition system for phase-lock-loop receivers

    Science.gov (United States)

    Bunce, R. C.

    1973-01-01

    Programmable oscillator and zero-beat detector acquires phase-lock of carrier by frequency scanning. Generation of high-level dc pulse at instant of zero crossing provides positive trigger for decision gate to stop search and close loop for phase-coherent tracking.

  10. Waveguide and loop coupling to fast MHD toroidal eigenmodes

    International Nuclear Information System (INIS)

    Paoloni, F.J.

    1975-12-01

    Heating of plasmas by wave techniques requires an effective method of coupling rf energy to the plasma. In cavities the presence of weakly damped eigenmodes will enhance the loading of antennas when the wave frequency equals an eigenmode frequency. This report considers two methods of coupling to fast MHD eigenmodes in a toroidal cavity: one is by a waveguide mounted perpendicular to the vacuum vessel wall; and the other by a loop placed within the cavity

  11. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel; Lepore, Rosalba; Tramontano, Anna

    2015-01-01

    ) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has

  12. On equivalent radius of curvature for PWL geometrical modeling a loop antenna

    CSIR Research Space (South Africa)

    Lysko, AA

    2012-11-01

    Full Text Available A circular loop antenna is often numerically modeled using a regular polygon. This approach is simple and robust, yet it alters the circumference of the loop and may thus shift the resonance frequency in the numerical model. This letter introduces a...

  13. Composite cavity based fiber optic Fabry–Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    International Nuclear Information System (INIS)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Yuan, Libo; Jin, Wencai; Peng, G D

    2008-01-01

    A composite cavity based fiber optic Fabry–Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry–Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure

  14. Rogowski Loop design for NSTX

    International Nuclear Information System (INIS)

    McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.

    2000-01-01

    The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies

  15. Two-loop hard-thermal-loop thermodynamics with quarks

    International Nuclear Information System (INIS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-01-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for N f =2 and with exact numerical results obtained in the large-N f limit

  16. String breaking with Wilson loops?

    CERN Document Server

    Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de

    2003-01-01

    A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.

  17. BMN correlators by loop equations

    International Nuclear Information System (INIS)

    Eynard, Bertrand; Kristjansen, Charlotte

    2002-01-01

    In the BMN approach to N=4 SYM a large class of correlators of interest are expressible in terms of expectation values of traces of words in a zero-dimensional gaussian complex matrix model. We develop a loop-equation based, analytic strategy for evaluating such expectation values to any order in the genus expansion. We reproduce the expectation values which were needed for the calculation of the one-loop, genus one correction to the anomalous dimension of BMN-operators and which were earlier obtained by combinatorial means. Furthermore, we present the expectation values needed for the calculation of the one-loop, genus two correction. (author)

  18. Optical loop framing

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system

  19. Basic EMC (Electromagnetic Compatibility) Technology Advancement for C3 Systems. Volume 1B. Demodulation Radio Frequency Interference Effects in Operational Amplifier Circuits.

    Science.gov (United States)

    1985-02-01

    Then it follows that H2 (fl,-f 2) (-flf Thus, the total amplitude of the intermodulation signal at fre- quency fAF is given by6 V = V +I mA2 III(fl 1-f...RFI suppression in the manner described. 229 . * . ... ..... 4 -*.-., ,e ’ - ."..~ REFERENCES 1. G. Kaplan , "Computer Aided Design," IEEE Spectrum, Vol

  20. Optimum phase shift in the self-oscillating loop for piezoelectric transformer-based power converters

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.

    2017-01-01

    A new method is implemented in designing of self-oscillating loop for driving piezoelectric transformers. The implemented method is based on combining both analog and digital control systems. Digitally controlled time delay through the self-oscillating loop results in very precise frequency control...... and ensures optimum operation of the piezoelectric transformer in terms of gain and efficiency. Time delay is implemented digitally for the first time through a 16 bit digital-to-analog converter in the self-oscillating loop. The new design of the delay circuit provides 45 ps time resolution, enabling fine......-grained control of phase in the self-oscillating loop. This allows the control loop to dynamically follow frequency changes of the transformer in each resonant cycle. Ultimately, by selecting the optimum phase shift, maximum efficiency under the load and temperature condition is achievable....

  1. Thermal-Diffusivity-Based Frequency References in Standard CMOS

    NARCIS (Netherlands)

    Kashmiri, S.M.

    2012-01-01

    In recent years, a lot of research has been devoted to the realization of accurate integrated frequency references. A thermal-diffusivity-based (TD) frequency reference provides an alternative method of on-chip frequency generation in standard CMOS technology. A frequency-locked loop locks the

  2. Dual fiber Bragg gratings configuration-based fiber acoustic sensor for low-frequency signal detection

    Science.gov (United States)

    Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming

    2014-11-01

    We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.

  3. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Mao, Yao; Ren, Ge

    2017-08-01

    In the optical stabilization control system (OSCS) control system based on a charge-coupled device (CCD), stabilization performance of the line-of-sight is severely limited by the mechanical resonance and the low sampling rate of the CCD. An approach to improve the stabilization performance of the OSCS control system with load restriction based on three loops, including an acceleration loop, a virtual velocity loop, and a position loop, by using MEMS accelerometers and a CCD is proposed. The velocity signal is obtained by accelerators instead of gyro sensors. Its advantages are low power, low cost, small size, and wide measuring range. A detailed analysis is provided to show how to design the virtual velocity loop and correct virtual velocity loop drift. Experimental results show that the proposed multiloop feedback control method with virtual velocity loop in which the disturbance suppression performance is better than that of the dual loop control with only an acceleration loop and a position loop at low frequency.

  4. Loop equations in the theory of gravitation

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Voronov, N.A.

    1981-01-01

    Loop-space variables (matrices of parallel transport) for the theory of gravitation are described. Loop equations, which are equivalent to the Einstein equations, are derived in the classical case. Loop equations are derived for gravity with cosmological constant as well. An analogy with the loop-space approach in Yang-Mills theory is discussed [ru

  5. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  6. A type of loop algebra and the associated loop algebras

    International Nuclear Information System (INIS)

    Tam Honwah; Zhang Yufeng

    2008-01-01

    A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out

  7. Multi-User Interference Cancellation Scheme(s) for Muliple Carrier Frequency Offset Compensation in Uplink OFDMA

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Carvalho, Elisabeth De; Prasad, Ramjee

    2006-01-01

    (ICI) and degrade the system performance considerably. In this paper, we propose a novel Multi-User Interference (MUI) cancellation scheme for uplink OFDMA, which utilizes multiple OFDM-demodulators architecture to correct and then compensate the negative effects of multiple CFOs at the receiver's side......We consider the uplink of an Orthogonal Frequency Division Multiple Access (OFDMA)-based system, where each Mobile Station (MS) experiences a different Carrier Frequency Offset (CFO). Uncorrected CFO destroy the orthogonality among subcarriers, which could cause severe Inter-Carrier Interference...

  8. Effective state metamorphosis in semi-classical loop quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Parampreet [Institute for Gravitational Physics and Geometry, Pennsylvania State University, University Park, PA 16802 (United States)

    2005-10-21

    Modification to the behaviour of geometrical density at short scales is a key result of loop quantum cosmology, responsible for an interesting phenomenology in the very early universe. We demonstrate the way matter with arbitrary scale factor dependence in Hamiltonian incorporates this change in its effective dynamics in the loop-modified phase. For generic matter, the equation of state starts varying near a critical scale factor, becomes negative below it and violates the strong energy condition. This opens a new avenue to generalize various phenomenological applications in loop quantum cosmology. We show that different ways to define energy density may yield radically different results, especially for the case corresponding to classical dust. We also discuss implications for frequency dispersion induced by modification to geometric density at small scales.

  9. Closing the loop of deep brain stimulation.

    Science.gov (United States)

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-12-20

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

  10. Closing the loop of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Romain eCARRON

    2013-12-01

    Full Text Available High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfils these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

  11. Closing the loop of deep brain stimulation

    Science.gov (United States)

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-01-01

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555

  12. Tritium Management Loop Design Status

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)

    2017-12-01

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.

  13. Criteria for saturated magnetization loop

    International Nuclear Information System (INIS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.

    2016-01-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  14. Criteria for saturated magnetization loop

    Energy Technology Data Exchange (ETDEWEB)

    Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2016-03-15

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  15. Thermodynamics in Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Li, L.F.; Zhu, J.Y.

    2009-01-01

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  16. Digital limiter for a self-excited loop

    International Nuclear Information System (INIS)

    Joshi, G.; Singh, P.; Agarwal, V.; Kumar, G.

    2015-01-01

    Limiter is one of the main signal processing modules of a self-excited loop (SEL). It plays a crucial role in initiating and stabilizing the amplitude of the RF field in a free running SEL. In a recently reported implementation of a self excited loop in digital domain, the limiter has been realized at based band in the form of a feedback loop. This feedback loop stabilizes the amplitude of the RF phasor present at its input without affecting its phase. In the present work we study the suitability of this implementation of limiter through analysis and simulations. An approximate equivalent model of an SEL, incorporating the digital limiter, is created in analog domain. It is demonstrated that even in the presence for large transients, such as, at the start up of oscillations, SEL continues to exhibit smooth and predictable response. In free running mode of operation the coupling from loop oscillation frequency change to resonator field amplitude change is absent, thus avoiding instability due to electro-mechanical coupling. In the locked mode, the transmission of amplitude jitter through the limiter is far exceeded by that through the controller gain thereby keeping the behavior of the digital SEL close to its analog counterpart. (author)

  17. Operational characteristics of miniature loop heat pipe with flat evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Dongxing; Liu, Zhichun; Liu, Wei; Yang, Jinguo [Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan, Hubei (China)

    2009-12-15

    Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2 C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail. (orig.)

  18. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  19. Integrable systems and loop coproducts

    International Nuclear Information System (INIS)

    Musso, Fabio

    2010-01-01

    We present a generalization of a framework for the construction of classical integrable systems that we call loop coproduct formulation (Musso 2010 J. Phys. A: Math. Theor. 43 434026). In this paper, the loop coproduct formulation includes systems of Gelfand-Tsetlin type, the linear r-matrix formulation, the Sklyanin algebras, the reflection algebras, the coalgebra symmetry approach and some of its generalizations as particular cases, showing that all these apparently different approaches have a common algebraic origin. On the other hand, all these subcases do not exhaust the domain of applicability of this new technique, so that new possible directions of investigation do naturally emerge in this framework.

  20. Perturbations in loop quantum cosmology

    International Nuclear Information System (INIS)

    Nelson, W; Agullo, I; Ashtekar, A

    2014-01-01

    The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB

  1. LISA Pathfinder: OPD loop characterisation

    Science.gov (United States)

    Born, Michael; LPF Collaboration

    2017-05-01

    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.

  2. LOOP: engineering marvel, economic calamity

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, E B

    1985-01-01

    The Louisiana Offshore Oil Port (LOOP) is the first superport built in the Lower 48. The United States was the only major oil-importing country that did not have a superport, and therefore, could not offload very large crude carriers (VLCCs). Unfortunately, a number of factors changed after it was decided to build LOOP, and these, plus the onerous provisions of the Deepwater Ports Act of 1974, which authorized superports, prevented LOOP from operating economically. LOOP's facilities consist of an offshore platform complex with three single-point-mooring (SPM) system buoys, 19 miles offshore in 110 feet of water, as well as a 32-million-barrel storage terminal 31 miles inland at Clovelly Salt Dome, and connecting pipelines offshore and onshore. By the time LOOP was started-up in May 1981, demand for oil had declined, because of rises in the price of oil, and the source of US oil imports had shifted back to the western hemisphere, away from the eastern hemisphere, closer to the US. The refinery mix in the US also changed, because of up-grading of a number of big refineries, which further reduced demand and made heavier crudes from countries like Mexico and Venezuela more economical. Because of reduced oil imports and shorter hauls, oil shippers started using or continued to use smaller tankers. Smaller tankers are not economical for LOOP, nor do they need LOOP. The start-up of the Trans-Alaska Pipeline System (TAPS) in mid-1977 backed out 1.5 million bd/sup -1/ of foreign imports. TAPS' capacity coincides with LOOP's offloading capacity of 1.4 million bd/sup -1/. US decontrol of domestic crude in 1981 and increased drilling, plus general energy conservation further reduced US oil imports. US consumption declined to 15.1 million bd/sup -1/ in 1983, from 18.8 million bd/sup -1/ in 1978. This award-winning superport needed federal decontrol and increased oil imports along with more VLCCs, in order to operate economically.

  3. Two-Loop Splitting Amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  4. Two-loop splitting amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  5. Fermions and loops on graphs: I. Loop calculus for determinants

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Chertkov, Michael

    2008-01-01

    This paper is the first in a series devoted to evaluation of the partition function in statistical models on graphs with loops in terms of the Berezin/fermion integrals. The paper focuses on a representation of the determinant of a square matrix in terms of a finite series, where each term corresponds to a loop on the graph. The representation is based on a fermion version of the loop calculus, previously introduced by the authors for graphical models with finite alphabets. Our construction contains two levels. First, we represent the determinant in terms of an integral over anti-commuting Grassmann variables, with some reparametrization/gauge freedom hidden in the formulation. Second, we show that a special choice of the gauge, called the BP (Bethe–Peierls or belief propagation) gauge, yields the desired loop representation. The set of gauge fixing BP conditions is equivalent to the Gaussian BP equations, discussed in the past as efficient (linear scaling) heuristics for estimating the covariance of a sparse positive matrix

  6. Robust fault detection in open loop vs. closed loop

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.

    1997-01-01

    The robustness aspects of fault detection and isolation (FDI) for uncertain systems are considered. The FDI problem is considered in a standard problem formulation. The FDI design problem is analyzed both in the case where the control input signal is considered as a known external input signal (o...... (open loop) and when the input signal is generated by a feedback controller...

  7. A virtual closed loop method for closed loop identification

    NARCIS (Netherlands)

    Agüero, J.C.; Goodwin, G.C.; Hof, Van den P.M.J.

    2011-01-01

    Indirect methods for the identification of linear plant models on the basis of closed loop data are based on the use of (reconstructed) input signals that are uncorrelated with the noise. This generally requires exact (linear) controller knowledge. On the other hand, direct identification requires

  8. High-Capacity Wireless Signal Generation and Demodulation in 75- to 110-GHz Band Employing All-Optical OFDM

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio

    2011-01-01

    We present a radio-frequency (RF) and bit-rate scalable technique for multigigabit wireless signal generation based on all-optical orthogonal frequency-division multiplexing (OFDM) and photonic up-conversion. Coherent detection supported by digital signal processing is used for signal demodulatio...

  9. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    Science.gov (United States)

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  10. Free loop spaces and cyclohedra

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin

    2003-01-01

    Roč. 71, - (2003), s. 151-157 R&D Projects: GA AV ČR IAA1019203 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : cyclohedron * free loop space * recognition Subject RIV: BA - General Mathematics

  11. Feedback - closing the loop digitally

    International Nuclear Information System (INIS)

    Zagel, J.; Chase, B.

    1992-01-01

    Many feedback and feedforward systems are now using microprocessors within the loop. We describe the wide range of possibilities and problems that arise. We also propose some ideas for analysis and testing, including examples of motion control in the Flying Wire systems in Main Ring and Tevatron and Low Level RF control now being built for the Fermilab Linac upgrade. (author)

  12. Morbidity of temporary loop ileostomies

    NARCIS (Netherlands)

    Bakx, R.; Busch, O. R. C.; Bemelman, W. A.; Veldink, G. J.; Slors, J. F. M.; van Lanschot, J. J. B.

    2004-01-01

    Background/Aims: A temporary loop ileostomy is constructed to protect a distal colonic anastomosis. Closure is usually performed not earlier than 8 - 12 weeks after the primary operation. During this period, stoma-related complications can occur and enhance the adverse effect on quality of life. The

  13. Wilson loops in Kerr gravitation

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1981-01-01

    The ordered integrals for several paths in Kerr gravitation is computed in a compact form. When the path is closed its relation with the angular parallel displacement is discussed and the corresponding Wilson loop is calculated. The validity of Mandelstam relations for gauge fields is also explicitly verified. (Author) [pt

  14. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    Aspects of the full theory of loop quantum gravity can be studied in a simpler .... group) 1-forms and vector fields and Λ is an SO(3)-matrix indicating the internal ... are p and c which are related to the more familiar scale factor by the relations.

  15. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  16. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  17. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  18. Independent SU(2)-loop variables

    International Nuclear Information System (INIS)

    Loll, R.

    1991-04-01

    We give a reduction procedure for SU(2)-trace variables and introduce a complete set of indepentent, gauge-invariant and almost local loop variables for the configuration space of SU(2)-lattice gauge theory in 2+1 dimensions. (orig.)

  19. An experimental study of dislocation loop nucleation

    International Nuclear Information System (INIS)

    Bounaud, J.Y.; Leteurtre, J.

    1975-01-01

    The nucleation of dislocation loops is experimentally studied by observing the demixion of the Burgers vectors of dislocation loops nucleated in copper whiskers irradiated in flexion by fission fragments at room temperature. The demixion of Burgers vectors is observed by the dimensional effects of dislocation loops: after irradiation, the applied stress is removed; the whisker shows a residual strain that is due to loops because, after an annealing treatment to evaporate dislocation loops, each whisker recovers its initial straight shape. Everywhere along the whisker, the radius of curvature is measured and plotted vs the max. applied stress. Estimations of the interstitial and vacancy dislocation loop nuclei are derived [fr

  20. One-loop dimensional reduction of the linear σ model

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Silva-Neto, M.B.; Svaiter, N.F.

    1997-05-01

    We perform the dimensional reduction of the linear σ model at one-loop level. The effective of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum instability of the model for large N. (author)

  1. Compressive sensing-based wideband capacitance measurement with a fixed sampling rate lower than the highest exciting frequency

    International Nuclear Information System (INIS)

    Xu, Lijun; Ren, Ying; Sun, Shijie; Cao, Zhang

    2016-01-01

    In this paper, an under-sampling method for wideband capacitance measurement was proposed by using the compressive sensing strategy. As the excitation signal is sparse in the frequency domain, the compressed sampling method that uses a random demodulator was adopted, which could greatly decrease the sampling rate. Besides, four switches were used to replace the multiplier in the random demodulator. As a result, not only the sampling rate can be much smaller than the signal excitation frequency, but also the circuit’s structure is simpler and its power consumption is lower. A hardware prototype was constructed to validate the method. In the prototype, an excitation voltage with a frequency up to 200 kHz was applied to a capacitance-to-voltage converter. The output signal of the converter was randomly modulated by a pseudo-random sequence through four switches. After a low-pass filter, the signal was sampled by an analog-to-digital converter at a sampling rate of 50 kHz, which was three times lower than the highest exciting frequency. The frequency and amplitude of the signal were then reconstructed to obtain the measured capacitance. Both theoretical analysis and experiments were carried out to show the feasibility of the proposed method and to evaluate the performance of the prototype, including its linearity, sensitivity, repeatability, accuracy and stability within a given measurement range. (paper)

  2. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.

    Science.gov (United States)

    Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M

    2007-03-01

    We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.

  3. Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15

    Science.gov (United States)

    Nickerson, J. A.; Cox, D. G.; Smith, H. K.; Engel, J. H.; Ahlstrom, H. G.

    1986-01-01

    The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified.

  4. Two- and three-loop amplitudes in covariant loop calculus

    International Nuclear Information System (INIS)

    Roland, K.

    1988-04-01

    We study 2- and 3-loop vacuum-amplitudes for the closed bosonic string. We compare two sets of expressions for the corresponding density on moduli space: One, based on the covariant Reggeon loop calculus (where modular invariance is not manifest). The other, based on analytic geometry. We want to prove identity between the two sets of expressions. Quite apart from demonstrating modular invariance of the Reggeon results, this would in itself be a remarkable mathematical feature. Identity is established to 'high' order in some moduli and exactly in others. The expansions reveal an essentially number-theoretical structure. Agreement is found only by exploiting the connection between the 4 Jacobi θ-functions and number theory. (orig.)

  5. Two- and three-loop amplitudes in covariant loop calculus

    International Nuclear Information System (INIS)

    Roland, K.

    1989-01-01

    We study two- and three-loop vacuum amplitudes for the closed bosonic string. We compare two sets of expressions for the corresponding density on moduli space. One is based on the covariant reggeon loop calculus (where modular invariance is not manifest). The other is based on analytic geometry. We want to prove identity between the two sets of expressions. Quite apart from demonstrating modular invariance of the reggeon results, this would in itself be a remarkable mathematical feature. Identity is established to ''high'' order in some moduli and exactly in others. The expansions reveal an essentially number-theoretic structure. Agreement is found only by exploiting the connection between the four Jacobi θ-functions and number theory. (orig.)

  6. Multi-Phase Sub-Sampling Fractional-N PLL with soft loop switching for fast robust locking

    NARCIS (Netherlands)

    Liao, Dongyi; Dai, FA Foster; Nauta, Bram; Klumperink, Eric A.M.

    2017-01-01

    This paper presents a low phase noise sub-sampling PLL (SSPLL) with multi-phase outputs. Automatic soft switching between the sub-sampling phase loop and frequency loop is proposed to improve robustness against perturbations and interferences that may cause a traditional SSPLL to lose lock. A

  7. Background noise of acoustic emission signals in sodium piping loop

    International Nuclear Information System (INIS)

    Mori, Y.; Aoki, K.; Kuribayashi, K.; Kishi, T.; Sakakibara, Y.

    1985-01-01

    Background noise measurement in the frequency range of acoustic emission (AE) signals was made on the sodium piping loops of a 50 MW steam generator test facility in the Power Reactor and Nuclear Fuel Development Corporation (PNC). During the dynamic characteristics test of the steam generator over a wide range of operating conditions, the background noise generated on the pipe surface was measured using wideband AE sensor externally mounted with waveguide. Data were obtained for the effect of power loads of steam generator on both amplitude and frequency spectra of background noise signals. Source and nature of background noise were established

  8. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    International Nuclear Information System (INIS)

    Liu, Hao; Mertsch, Philipp; Sarkar, Subir

    2014-01-01

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation

  9. UF6 test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-06-01

    A functional test loop capable of simulating UF 6 flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. Purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized

  10. Growth kinetics of dislocation loops in irradiated ceramic materials

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Kinoshita, C.

    2002-01-01

    Ceramic materials are expected to be applied in the future fusion reactor as radio frequency (RF) windows, toroidal insulating breaks and diagnostic probes. The radiation resistance of ceramic materials, degradation of the electrical properties and radiation induced conductivity of these materials under neutron irradiation are determined by the kinetics of the accumulation of point defects in the matrix and point defect cluster formation (dislocation loops, voids, etc.). Under irradiation, due to the ionization process, excitation of electronic subsystem and covalent type of interaction between atoms the point defects in ceramic materials are characterized by the charge state (e.g. an F + center, an oxygen vacancy with a single trapped electron) and the effective charge. For the investigation of radiation resistance of ceramic materials for future fusion applications it is very important to understand the physical mechanisms of formation and growth of dislocation loops and voids under irradiation taking into account in this system the effective charge of point defects. In the present paper the physical mechanisms of dislocation loop growth in ceramic material are investigated. For this aim a theoretical model is suggested for the description of the kinetics of point defect accumulation in the matrix taking into account the charge state of the point defects and the effect of an electric field on diffusion migration process of charged point defects. A self-consistent system of kinetic equations describing the generation of electrical fields near dislocation loops and diffusion migration of charged point defects in elastic and electrical fields is formulated. The solution of the kinetic equations allows to find the growth rate of dislocation loops in ceramic materials under irradiation taking into account the charge state of the point defects and the effect of electric and elastic stress fields near dislocation loop on the diffusion processes

  11. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  12. A True Open-Loop Synchronization Technique

    DEFF Research Database (Denmark)

    Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.

    2016-01-01

    Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....

  13. Digitized self-oscillating loop for piezoelectric transformer-based power converters

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Andersen, Thomas; Zhang, Zhe

    2016-01-01

    A new method is implemented in designing of self-oscillating loop for driving piezoelectric transformers. The implemented method is based on combining both analog and digital control systems. Digitized delay, or digitized phase shift through the self-oscillating loop results in a very precise...... frequency control and ensures an optimum operation of the piezoelectric transformer in terms of voltage gain and efficiency. In this work, additional time delay is implemented digitally for the first time through 16 bit digital-to-analog converter to the self-oscillating loop. Delay control setpoints...... updates at a rate of 417 kHz. This allows the control loop to dynamically follow frequency changes of the transformer in each resonant cycle. The operation principle behind self-oscillating is discussed in this paper. Moreover, experimental results are reported....

  14. Automation of loop amplitudes in numerical approach

    International Nuclear Information System (INIS)

    Fujimoto, J.; Ishikawa, T.; Shimizu, Y.; Kato, K.; Nakazawa, N.; Kaneko, T.

    1997-01-01

    An automatic calculating system GRACE-L1 of one-loop Feynman amplitude is reviewed. This system can be applied to 2 to 2-body one-loop processes. A sample calculation of 2 to 3-body one-loop amplitudes is also presented. (orig.)

  15. Fluctuation current in superconducting loops

    International Nuclear Information System (INIS)

    Berger, Jorge

    2012-01-01

    A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.

  16. Loop connectors in dentogenic diastema

    Directory of Open Access Journals (Sweden)

    Sanjna Nayar

    2015-01-01

    Full Text Available Patients with a missing tooth along with diastema have limited treatment options to restore the edentulous space. The use of a conventional fixed partial denture (FPD to replace the missing tooth may result in too wide anterior teeth leading to poor esthetics. Loss of anterior teeth with existing diastema may result in excess space available for pontic. This condition presents great esthetic challenge for prosthodontist. If implant supported prosthesis is not possible because of inadequate bone support, FPD along with loop connector may be a treatment option to maintain the diastema and provide optimal esthetic restoration. Here, we report a clinical case where FPD along with loop connector was used to achieve esthetic rehabilitation in maxillary anterior region in which midline diastema has been maintained.

  17. In pile helium loop ''COMEDIE''

    International Nuclear Information System (INIS)

    Abassin, J.J.; Blanchard, R.J.; Gentil, J.

    1981-01-01

    The SR1 test in the COMEDIE loop has permitted to demonstrate particularly the device operation reliability with a fuel loading. The post-irradiation examinations have pointed out the good filter efficiency and have enabled to determine the deposition profiles either for the activation products (e.g.: 51 Cr, 60 Co) or for the fission products (e.g.: sup(110m)Ag, 131 I, 134 Cs, 137 Cs). (author)

  18. Frequency standards

    CERN Document Server

    Riehle, Fritz

    2006-01-01

    Of all measurement units, frequency is the one that may be determined with the highest degree of accuracy. It equally allows precise measurements of other physical and technical quantities, whenever they can be measured in terms of frequency.This volume covers the central methods and techniques relevant for frequency standards developed in physics, electronics, quantum electronics, and statistics. After a review of the basic principles, the book looks at the realisation of commonly used components. It then continues with the description and characterisation of important frequency standards

  19. Dispersion relations in loop calculations

    International Nuclear Information System (INIS)

    Kniehl, B.A.

    1996-01-01

    These lecture notes give a pedagogical introduction to the use of dispersion relations in loop calculations. We first derive dispersion relations which allow us to recover the real part of a physical amplitude from the knowledge of its absorptive part along the branch cut. In perturbative calculations, the latter may be constructed by means of Cutkosky's rule, which is briefly discussed. For illustration, we apply this procedure at one loop to the photon vacuum-polarization function induced by leptons as well as to the γf anti-f vertex form factor generated by the exchange of a massive vector boson between the two fermion legs. We also show how the hadronic contribution to the photon vacuum polarization may be extracted from the total cross section of hadron production in e + e - annihilation measured as a function of energy. Finally, we outline the application of dispersive techniques at the two-loop level, considering as an example the bosonic decay width of a high-mass Higgs boson. (author)

  20. A High Performance Frequency Standard and Distribution System for Cassini Ka-Band Experiment

    National Research Council Canada - National Science Library

    Wang, R. T; Calhoun, M. D; Kirk, A; Diener, W. A; Dick, G. J; Tjoelker, R. L

    2005-01-01

    ...), and 10 Kelvin Cryocooled Sapphire Oscillator (10K CSO) and frequency-lock-loop, are integrated to achieve the very high performance, ground based frequency reference at a remote antenna site located 16 km from the hydrogen maser...

  1. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  2. Modular invariance and covariant loop calculus

    International Nuclear Information System (INIS)

    Petersen, J.L.; Roland, K.O.; Sidenius, J.R.

    1988-01-01

    The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)

  3. Algorithm for counting large directed loops

    Energy Technology Data Exchange (ETDEWEB)

    Bianconi, Ginestra [Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Gulbahce, Natali [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, NM 87545 (United States)

    2008-06-06

    We derive a Belief-Propagation algorithm for counting large loops in a directed network. We evaluate the distribution of the number of small loops in a directed random network with given degree sequence. We apply the algorithm to a few characteristic directed networks of various network sizes and loop structures and compare the algorithm with exhaustive counting results when possible. The algorithm is adequate in estimating loop counts for large directed networks and can be used to compare the loop structure of directed networks and their randomized counterparts.

  4. Functional Fourier transforms and the loop equation

    International Nuclear Information System (INIS)

    Bershadskii, M.A.; Vaisburd, I.D.; Migdal, A.A.

    1986-01-01

    The Migdal-Makeenko momentum-space loop equation is investigated. This equation is derived from the ordinary loop equation by taking the Fourier transform of the Wilson functional. A perturbation theory is constructed for the new equation and it is proved that the action of the loop operator is determined by vertex functions which coincide with those of the previous equation. It is shown how the ghost loop arises in direct iterations of the momentum-space equation with respect to the coupling constant. A simple example is used to illustrate the mechanism of appearance of an integration in the interior loops in transition to observables

  5. Modular invariance and covariant loop calculus

    International Nuclear Information System (INIS)

    Petersen, J.L.; Roland, K.O.; Sidenius, J.R.

    1988-01-01

    The covariant loop calculus provides an efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit two- and three-loop results derived using analytic geometry (one loop is known to be okay). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various nontrivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)

  6. Development of a heterodyne laser interferometer for very small high frequency displacements detection

    International Nuclear Information System (INIS)

    Baarmann, P.

    1992-10-01

    A heterodyne laser interferometer with detection electronics has been developed for measuring very small amplitude high frequency vibrations. A laser beam from HeNe-laser is focused and reflected in the vibrating surface and the generated phase shifts are after interference with a reference beam detected with a photo detector and evaluated in a demodulation system. The set-up is a prototype and techniques to improve the accuracy and sensitivity of the system are presented. The present system can detect vibration amplitude from around 1 Angstrom and is linear up to 250 Angstrom (±4%). Frequencies from a few tens of kHz up to tens of MHz are covered. The low frequency region can be greatly improved. The minimum detectable displacement may be improved by narrowing the bandwidth of the detection system to the region of interest

  7. Two dimensional microcirculation mapping with real time spatial frequency domain imaging

    Science.gov (United States)

    Zheng, Yang; Chen, Xinlin; Lin, Weihao; Cao, Zili; Zhu, Xiuwei; Zeng, Bixin; Xu, M.

    2018-02-01

    We present a spatial frequency domain imaging (SFDI) study of local hemodynamics in the human finger cuticle of healthy volunteers performing paced breathing and the forearm of healthy young adults performing normal breathing with our recently developed Real Time Single Snapshot Multiple Frequency Demodulation - Spatial Frequency Domain Imaging (SSMD-SFDI) system. A two-layer model was used to map the concentrations of deoxy-, oxy-hemoglobin, melanin, epidermal thickness and scattering properties at the subsurface of the forearm and the finger cuticle. The oscillations of the concentrations of deoxy- and oxy-hemoglobin at the subsurface of the finger cuticle and forearm induced by paced breathing and normal breathing, respectively, were found to be close to out-of-phase, attributed to the dominance of the blood flow modulation by paced breathing or heartbeat. Our results suggest that the real time SFDI platform may serve as one effective imaging modality for microcirculation monitoring.

  8. Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC

    International Nuclear Information System (INIS)

    Vernik, Igor V; Kirichenko, Dmitri E; Dotsenko, Vladimir V; Miller, Robert; Webber, Robert J; Shevchenko, Pavel; Talalaevskii, Andrei; Gupta, Deepnarayan; Mukhanov, Oleg A

    2007-01-01

    We have demonstrated a digital receiver performing direct digitization of radio-frequency signals over a wide frequency range from kilohertz to gigahertz. The complete system, consisting of a cryopackaged superconductor all-digital receiver (ADR) chip followed by room-temperature interface electronics and a field programmable gate array (FPGA) based post-processing module, has been developed. The ADR chip comprises a low-pass analog-to-digital converter (ADC) delta modulator with phase modulation-demodulation architecture together with digital in-phase and quadrature mixer and a pair of digital decimation filters. The chip is fabricated using a 4.5 kA cm -2 process and is cryopackaged using a commercial-off-the-shelf cryocooler. Experimental results in HF, VHF, UHF and L bands and their analysis, proving consistent operation of the cryopackaged ADR chip up to 24.32 GHz clock frequency, are presented and discussed

  9. A New Wide Frequency Band Capacitance Transducer with Application to Measuring Metal Fill Time

    Directory of Open Access Journals (Sweden)

    Wael DEABES

    2009-01-01

    Full Text Available A novel low cost, high frequency circuit for measuring capacitance is proposed in this paper. This new capacitance measuring circuit is able to measure small coupling capacitance variations with high stray-immunity. Hence, it could be used in many potential applications such as measuring the metal fill time in the Lost Foam Casting (LFC process and Electrical Capacitive Tomography (ECT system. The proposed circuit is based on differential charging/discharging method using current feedback amplifier and a synchronous demodulation stage. The circuit has a wide high frequency operating range with zero phase shift; hence multiple circuits can work at different frequencies simultaneously to measure the capacitance. The non-ideal characteristic of the circuit has been analyzed and the results verified through LTSpice simulation. Results from the tests on a prototype and a simulation elucidate the practicality of the proposed circuit.

  10. Hyperstaticity and loops in frictional granular packings

    Science.gov (United States)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  11. Concept of frequency separation in life prediction for time-dependent fatigue

    International Nuclear Information System (INIS)

    Coffin, L.F.

    1976-01-01

    Two methods are described to improve the predictive capability of the frequency-modified fatigue equations for time-dependent fatigue. These built-on the earlier approach and are applicable to severely unbalanced hysteresis loops. Comparisons made with various wave-shape investigations show favorable results. A new form of hysteresis loop is introduced utilizing frequency separation concepts. 4 tables, 11 fig

  12. Performance Evaluation of Type-3 PLLs Under Wide Variation in Input Voltage and Frequency

    DEFF Research Database (Denmark)

    Aravind, C. K.; Rani, B.Indu; Chakkarapani, M.

    2017-01-01

    This paper presents a detailed analysis of Type-3 PLL under wide variation in input voltage and frequency. Using small signal modeling, the performance of both single loop and dual loop type-3 PLL for variation in input voltage and frequency is studied. The analysis shows that for the same bandwi...... verified by implementing in ALTERA cyclone II FPGA board....

  13. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    Science.gov (United States)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  14. Two frequency ICRF operation on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Majeski, R.; Wilson, J.R.; Hosea, J.C.; Schilling, G.; Stevens, J.; Phillips, C.K.

    1993-01-01

    Modifications have been made recently to allow two of the ICRF antennas (bays L and M) on TFTR to operate at either of two frequencies, 43 MHz or 64 MHz. This was accomplished by lengthening the resonant loops (2Λ at 43 MHz, 3Λ at 64 MHz) and replacing the conventional quarter wave impedance transformers with a tapered impedance design. The other two antennas (bays K and N) will operate at a fixed frequency, 43 MHz. The two frequency operation will allow a combination of 3 He-minority and H-minority heating at near full field on TFTR. The higher frequency, 64 MHz, may also be useful in direct electron heating and current drive experiments at lower toroidal fields. Models of the antenna, resonant loops and impedance matching system are presented

  15. Loop diagrams without γ matrices

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Rebhan, A.

    1993-01-01

    By using a quantum-mechanical path integral to compute matrix elements of the form left-angle x|exp(-iHt)|y right-angle, radiative corrections in quantum-field theory can be evaluated without encountering loop-momentum integrals. In this paper we demonstrate how Dirac γ matrices that occur in the proper-time ''Hamiltonian'' H lead to the introduction of a quantum-mechanical path integral corresponding to a superparticle analogous to one proposed recently by Fradkin and Gitman. Direct evaluation of this path integral circumvents many of the usual algebraic manipulations of γ matrices in the computation of quantum-field-theoretical Green's functions involving fermions

  16. Perturbation calculations with Wilson loop

    International Nuclear Information System (INIS)

    Peixoto Junior, L.B.

    1984-01-01

    We present perturbative calculations with the Wilson loop (WL). The dimensional regularization method is used with a special attention concerning to the problem of divergences in the WL expansion in second and fourth orders, in three and four dimensions. We show that the residue in the pole, in 4d, of the fourth order graphs contribution sum is important for the charge renormalization. We compute up to second order the exact expression of the WL, in three-dimensional gauge theories with topological mass as well as its assimptotic behaviour for small and large distances. the author [pt

  17. Gauge theory loop operators and Liouville theory

    International Nuclear Information System (INIS)

    Drukker, Nadav; Teschner, Joerg

    2009-10-01

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S 4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  18. Gauge theory loop operators and Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-10-15

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  19. Closed-loop waveform control of boost inverter

    DEFF Research Database (Denmark)

    Zhu, Guo Rong; Xiao, Cheng Yuan; Wang, Haoran

    2016-01-01

    The input current of single-phase inverter typically has an AC ripple component at twice the output frequency, which causes a reduction in both the operating lifetime of its DC source and the efficiency of the system. In this paper, the closed-loop performance of a proposed waveform control method...... to eliminate such a ripple current in boost inverter is investigated. The small-signal stability and the dynamic characteristic of the inverter system for input voltage or wide range load variations under the closed-loop waveform control method are studied. It is validated that with the closedloop waveform...... control, not only was stability achieved, the reference voltage of the boost inverter capacitors can be instantaneously adjusted to match the new load, thereby achieving improved ripple mitigation for a wide load range. Furthermore, with the control and feedback mechanism, there is minimal level of ripple...

  20. A digital closed loop control system for automatic phase locking of superconducting cavities of IUAC Linac

    International Nuclear Information System (INIS)

    Dutt, R.N.; Rai, A.; Pandey, A.; Sahu, B.K.; Patra, P.; Karmakar, J.; Chaudhari, G.K.; Mathur, Y.; Ghosh, S.; Kanjilal, D.

    2013-01-01

    A closed loop digital control system has been designed and tested to automate the tuning process of superconducting resonators of LINAC at Inter-University Accelerator Centre, New Delhi. The mechanism controls the proportional valves of the He gas based pneumatic tuner in response to the phase and frequency errors of the cavity RF field. The main RF phase lock loop (PLL) is automatically closed once the resonant frequency is within locking range of the resonator PLL. The digital control scheme was successfully tested on few resonators of LINAC cryostat 1. A high stability of phase lock was observed. The details of the digital automation system are presented in the paper. (author)

  1. Foundry fabricated photonic integrated circuit optical phase lock loop.

    Science.gov (United States)

    Bałakier, Katarzyna; Fice, Martyn J; Ponnampalam, Lalitha; Graham, Chris S; Wonfor, Adrian; Seeds, Alwyn J; Renaud, Cyril C

    2017-07-24

    This paper describes the first foundry-based InP photonic integrated circuit (PIC) designed to work within a heterodyne optical phase locked loop (OPLL). The PIC and an external electronic circuit were used to phase-lock a single-line semiconductor laser diode to an incoming reference laser, with tuneable frequency offset from 4 GHz to 12 GHz. The PIC contains 33 active and passive components monolithically integrated on a single chip, fully demonstrating the capability of a generic foundry PIC fabrication model. The electronic part of the OPLL consists of commercially available RF components. This semi-packaged system stabilizes the phase and frequency of the integrated laser so that an absolute frequency, high-purity heterodyne signal can be generated when the OPLL is in operation, with phase noise lower than -100 dBc/Hz at 10 kHz offset from the carrier. This is the lowest phase noise level ever demonstrated by monolithically integrated OPLLs.

  2. A High-Resolution Demodulation Algorithm for FBG-FP Static-Strain Sensors Based on the Hilbert Transform and Cross Third-Order Cumulant

    Directory of Open Access Journals (Sweden)

    Wenzhu Huang

    2015-04-01

    Full Text Available Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs. However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs. The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.

  3. Loop quantization as a continuum limit

    International Nuclear Information System (INIS)

    Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A

    2006-01-01

    We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques

  4. Quantum chromodynamics as dynamics of loops

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Migdal, A.A.

    1981-01-01

    QCD is entirely reformulated in terms of white composite fields - the traces of the loop products. The 1/N expansion turns out to be the WKB (Hartree-Fock) approximation for these fields. The 'classical' equation describing the N = infinite case is reduced tp a bootstrap form. New, manifestly gauge-invariant perturbation theory in the loop space, reproducing asymptotic freedom, is developed by iterations of this equation. The area law appears to be a self-consistent solution at large loops. (orig.)

  5. Lattice QED in the loop space

    International Nuclear Information System (INIS)

    Fort, H.

    1994-01-01

    We present a survey on the state of the art in the formulation of lattice compact QED in the space of loops. In a first part we review our most recent Hamiltonian results which signal a second order transition for (3+1) compact QED. We devote the second part to the Lagrangian loop formalism, showing the equivalence of the recently proposed loop action with the Villain form. (orig.)

  6. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  7. Frequency spirals

    International Nuclear Information System (INIS)

    Ottino-Löffler, Bertrand; Strogatz, Steven H.

    2016-01-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  8. Frequency spirals

    Energy Technology Data Exchange (ETDEWEB)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu [Center for Applied Mathematics, Cornell University, Ithaca, New York 14853 (United States)

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  9. Bearing faults identification and resonant band demodulation based on wavelet de-noising methods and envelope analysis

    Science.gov (United States)

    Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali

    2017-07-01

    The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.

  10. Soft Neutrosophic Loops and Their Generalization

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali

    2014-06-01

    Full Text Available Soft set theory is a general mathematical tool for dealing with uncertain, fuzzy, not clearly defined objects. In this paper we introduced soft neutrosophic loop,soft neutosophic biloop, soft neutrosophic N -loop with the discuission of some of their characteristics. We also introduced a new type of soft neutrophic loop, the so called soft strong neutrosophic loop which is of pure neutrosophic character. This notion also found in all the other corresponding notions of soft neutrosophic thoery. We also given some of their properties of this newly born soft structure related to the strong part of neutrosophic theory.

  11. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  12. Quantum chromodynamics as dynamics of loops

    International Nuclear Information System (INIS)

    Makeenko, Yu.; Migdal, A.A.

    1980-01-01

    The problem of a possibility of reformulating quantum chromodynamics (QCD) in terms of colourless composite fields instead of coloured quarks and gluons is considered. The role of such fields is played by the gauge invariant loop functionals. The Shwinger equations of motion is derived in the loop space which completely describe dynamics of the loop fields. New manifestly gauge invariant diagram technique in the loop space is developed. These diagrams reproduce asymptotic freedom in the ultraviolet range and are consistent with the confinement law in the infrared range

  13. In pile helium loop ''Comedie''

    International Nuclear Information System (INIS)

    Blanchard, R.J.

    1985-01-01

    The loop is located in the SILOE reactor at Centre d'Etudes Nucleaires de Grenoble. The purpose and objectives are divided into two groups, principal and secondary. The primary objective was to provide basic data on the deposition behavior of important condensable fission products on a variety of steel surfaces, i.e. temperature (sorption isotherms) and mass transfer (physical adsorption) dependencies; to provide information concerning the degree of penetration of important fission products into the metals comprising the heat exchanger-recuperator tubes as a function of alloy type and/or metal temperature; to provide complementary information on the reentrainment (liftoff) of important fission and activation products by performing out-of-pile blowdown experiments on tube samples representative of the alloy types used in the heat exchanger-recuperator and of the surface temperatures experienced during plateout. The secondary objective was to provide information concerning the migration of important fission products through graphite. To this end, concentration profiles in the web between the fuel rods containing the fission product source and the coolant channels and in the graphite diffusion sample will be measured to study the corrosion of metallic specimens placed in the conditions of high temperature gas cooled reactor. The first experiment SRO enables to determine the loop characteristics and possibilities related to thermal, thermodynamic, chemical and neutronic properties. The second experiment has been carried out in high temperature gas cooled reactor operating conditions. It enables to determine in particular the deposition axial profile of activation and fission products in the plateout section constituting the heat exchanger, the fission products balance trapped in the different filter components, and the cumulated released fraction of solid fission products. The SR1 test permits to demonstrate in particular the Comedie loop operation reliability, either

  14. Open-loop control of quasiperiodic thermoacoustic oscillations

    Science.gov (United States)

    Guan, Yu; Gupta, Vikrant; Kashinath, Karthik; Li, Larry K. B.

    2017-11-01

    The open-loop application of periodic acoustic forcing has been shown to be a potentially effective strategy for controlling periodic thermoacoustic oscillations, but its effectiveness on aperiodic thermoacoustic oscillations is less clear. In this experimental study, we apply periodic acoustic forcing to a ducted premixed flame oscillating quasiperiodically at two incommensurate natural frequencies, f1 and f2. We find that (i) above a critical forcing amplitude, the system locks into the forcing by oscillating only at the forcing frequency ff, producing a closed periodic orbit in phase space with no evidence of the original T2 torus attractor; (ii) the critical forcing amplitude required for lock-in decreases as ff approaches either f1 or f2, resulting in characteristic ∨-shaped lock-in boundaries around the two natural modes; and (iii) for a wide range of forcing frequencies, the system's oscillation amplitude can be reduced to less than 20% of that of the unforced system. These findings show that the open-loop application of periodic acoustic forcing can be an effective strategy for controlling aperiodic thermoacoustic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  15. Rapid Simulation of Flat Knitting Loops Based On the Yarn Texture and Loop Geometrical Model

    Directory of Open Access Journals (Sweden)

    Lu Zhiwen

    2017-06-01

    Full Text Available In order to create realistic loop primitives suitable for the fast computer-aided design (CAD of the flat knitted fabric, we have a research on the geometric model of the loop as well as the variation of the loop surface. Establish the texture variation model based on the changing process from the normal yarn to loop that provides the realistic texture of the simulative loop. Then optimize the simulative loop based on illumination variation. This paper develops the computer program with the optimization algorithm and achieves the loop simulation of different yarns to verify the feasibility of the proposed algorithm. Our work provides a fast CAD of the flat knitted fabric with loop simulation, and it is not only more realistic but also material adjustable. Meanwhile it also provides theoretical value for the flat knitted fabric computer simulation.

  16. Lose Your Loops with Numpy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Developing in python is fast. Computation, however, can often be another story. Or at least that is how it may seem. When working with arrays and numerical datasets one can subvert many of python’s computational limitations by utilizing numpy. Numpy is python’s standard matrix computation library. Many python users only use numpy to store and generate arrays, failing to utilize one of python’s most powerful computational tools. By leveraging numpy’s ufuncs, aggregation, broadcasting and slicing/masking/indexing functionality one can cut back on slow python loops and increase the speed of their programs by as much as 100x. This talk aims at teaching attendees how to use these tools through toy examples.

  17. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  18. The Inverse Optimal Control Problem for a Three-Loop Missile Autopilot

    Science.gov (United States)

    Hwang, Donghyeok; Tahk, Min-Jea

    2018-04-01

    The performance characteristics of the autopilot must have a fast response to intercept a maneuvering target and reasonable robustness for system stability under the effect of un-modeled dynamics and noise. By the conventional approach, the three-loop autopilot design is handled by time constant, damping factor and open-loop crossover frequency to achieve the desired performance requirements. Note that the general optimal theory can be also used to obtain the same gain as obtained from the conventional approach. The key idea of using optimal control technique for feedback gain design revolves around appropriate selection and interpretation of the performance index for which the control is optimal. This paper derives an explicit expression, which relates the weight parameters appearing in the quadratic performance index to the design parameters such as open-loop crossover frequency, phase margin, damping factor, or time constant, etc. Since all set of selection of design parameters do not guarantee existence of optimal control law, explicit inequalities, which are named the optimality criteria for the three-loop autopilot (OC3L), are derived to find out all set of design parameters for which the control law is optimal. Finally, based on OC3L, an efficient gain selection procedure is developed, where time constant is set to design objective and open-loop crossover frequency and phase margin as design constraints. The effectiveness of the proposed technique is illustrated through numerical simulations.

  19. Numerical investigation of closed-loop control for Hall accelerators

    International Nuclear Information System (INIS)

    Barral, S.; Miedzik, J.

    2011-01-01

    Low frequency discharge current oscillations in Hall accelerators are conventionally damped with external inductor-capacitor (LC) or resistor-inductor-capacitor (RLC) networks. The role of such network in the stabilization of the plasma discharge is investigated with a numerical model and the potential advantages of proportional-integral-derivative (PID) closed-loop control over RLC networks are subsequently assessed using either discharge voltage or magnetic field modulation. Simulations confirm the reduction of current oscillations in the presence of a RLC network, but suggest that PID control could ensure nearly oscillation-free operation with little sensitivity toward the PID settings.

  20. Neocortical electrical stimulation for epilepsy : Closed-loop versus open-loop

    NARCIS (Netherlands)

    Vassileva, Albena; van Blooijs, Dorien; Leijten, Frans; Huiskamp, Geertjan

    2018-01-01

    The aim of this review is to evaluate whether open-loop or closed-loop neocortical electrical stimulation should be the preferred approach to manage seizures in intractable epilepsy. Twenty cases of open-loop neocortical stimulation with an implanted device have been reported, in 5 case studies.

  1. Study of CMOS micromachined self-oscillating loop utilizing a phase-locked loop-driving circuit

    International Nuclear Information System (INIS)

    Li, Hsin-Chih; Tseng, Sheng-Hsiang; Lu, Michael S.-C.; Huang, Po-Chiun

    2012-01-01

    This work describes the design and characterization of integrated CMOS (complementary metal oxide semiconductor) oscillators comprising a capacitively transduced micromechanical resonator and a phase-locked loop (PLL) driving circuit. Three oscillator schemes are studied and compared, including direct feedback, direct feedback containing a PLL and hybrid direct feedback plus a PLL. PLL is known for its capability in automatic tuning and tracking of a reference signal. Inclusion of a PLL is beneficial for sustaining oscillations at resonant frequencies within its capture range. The micromechanical resonator has a measured resonant frequency of 117.3 kHz. The CMOS PLL circuit has a closed-loop bandwidth of 1.8 kHz with a capture range between 111 kHz and 118.4 kHz. The start-up times for oscillation are shortened in the two schemes utilizing a PLL, since it provides an initial driving signal at its free-running frequency. The lock-in time is also reduced by increasing the proportion of PLL drive in the hybrid scheme. The measured noises for the three oscillator schemes are similar with a value of −75 dB below the resonant peak at a 10 Hz offset. (paper)

  2. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  3. Holonomy loops, spectral triples and quantum gravity

    DEFF Research Database (Denmark)

    Johannes, Aastrup; Grimstrup, Jesper Møller; Nest, Ryszard

    2009-01-01

    We review the motivation, construction and physical interpretation of a semi-finite spectral triple obtained through a rearrangement of central elements of loop quantum gravity. The triple is based on a countable set of oriented graphs and the algebra consists of generalized holonomy loops...

  4. Conformal anomaly of super Wilson loop

    Energy Technology Data Exchange (ETDEWEB)

    Belitsky, A.V., E-mail: andrei.belitsky@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2012-09-11

    Classically supersymmetric Wilson loop on a null polygonal contour possesses all symmetries required to match it onto non-MHV amplitudes in maximally supersymmetric Yang-Mills theory. However, to define it quantum mechanically, one is forced to regularize it since perturbative loop diagrams are not well defined due to presence of ultraviolet divergences stemming from integration in the vicinity of the cusps. A regularization that is adopted by practitioners by allowing one to use spinor helicity formalism, on the one hand, and systematically go to higher orders of perturbation theory is based on a version of dimensional regularization, known as Four-Dimensional Helicity scheme. Recently it was demonstrated that its use for the super Wilson loop at one loop breaks both conformal symmetry and Poincare supersymmetry. Presently, we exhibit the origin for these effects and demonstrate how one can undo this breaking. The phenomenon is alike the one emerging in renormalization group mixing of conformal operators in conformal theories when one uses dimensional regularization. The rotation matrix to the diagonal basis is found by means of computing the anomaly in the Ward identity for the conformal boost. Presently, we apply this ideology to the super Wilson loop. We compute the one-loop conformal anomaly for the super Wilson loop and find that the anomaly depends on its Grassmann coordinates. By subtracting this anomalous contribution from the super Wilson loop we restore its interpretation as a dual description for reduced non-MHV amplitudes which are expressed in terms of superconformal invariants.

  5. Feedback loop compensates for rectifier nonlinearity

    Science.gov (United States)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  6. Loop calculus for lattice gauge theories

    International Nuclear Information System (INIS)

    Gambini, R.; Leal, L.; Trias, A.; Departamento de Fisica Aplicada, Facultad de Ingenieria, Universidad Central de Venezuela, Apartado 47724, Caracas 1051, Venezuela; Departament de Matematiques, Universitat Politecnica de Catalunya, Escuela Tecnica Superior de Enginyers de Telecomunicaciones, Barcelona 08034, Spain)

    1989-01-01

    Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(N) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2

  7. Design Principles for Closed Loop Supply Chains

    NARCIS (Netherlands)

    H.R. Krikke (Harold); C.P. Pappis (Costas); G.T. Tsoulfas; J.M. Bloemhof-Ruwaard (Jacqueline)

    2001-01-01

    textabstractIn this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the

  8. Excitation and damping of transversal oscillation in coronal loops by wake phenomena

    Directory of Open Access Journals (Sweden)

    A abedini

    2018-02-01

    Full Text Available Transversal oscillation of coronal loops that are interpreted as signatures of magneto hydrodynamics (MHD waves are observed frequently in active region corona loops. The amplitude of this oscillation has been found to be strongly attenuated. The damping of transverse oscillation may be produced by the dissipation mechanism and the wake of the traveling disturbance. The damping of transversal loop oscillations with wake phenomena is not related to any dissipation mechanism. Also, these kinds of coronal loop oscillations are not related to the kink mode, although this mode can be occurred after the attenuation process by the energy of the wave packet deposited in the loop.  In this paper the excitation and damping of transversal coronal loop oscillations with wake of traveling wave packet is discussed in detail, both theoretically and observationally. Here, the transversal coronal loop oscillations is modeled with a one dimensional simple line-tied. The dynamics of the loop and the coronal is governed by the Klein–Gordon differential equation. A localized disturbance that can be generated by nearby flare produces a perturbation that undergoes dispersion as it propagates toward the loop. As a consequence, the amplitudes of oscillates decay with time roughly t-1/2 at the external cutoff frequency. These observed data on 2016-Dec-4 by Atmospheric Imaging Assembly (AIA onboard Solar Dynamic Observatory (SDO observations data, consisting of 560 images with an interval of 24 seconds in the 171 A0 pass band is analyzed for evidence of excitation and damping of transverse oscillations of coronal loop that is situated near a flare. In this analyzed signatures of transverse oscillations that are damped rapidly were found, with periods in the range of P=18.5-23.85 minutes. Furthermore, oscillation of loop segments attenuate with time roughly as t-α that average values of α for 4 different loops change form 0.65-0.80. The magnitude values of α are in

  9. Implementation of Close Loop Speed Control with VVVF Control and Slip Regulation on LIM

    Directory of Open Access Journals (Sweden)

    K. Aditya

    2014-04-01

    Full Text Available Open loop VVVF control has the disadvantage of low output torque when working at low frequency and poor speed precision at different load conditions.Various performance-improving schemes have been proposed for the basic VVVF control by compensating slips occurring in the low frequency range and slips caused by changing loads. Numerous papers have been published on the close loop speed control of rotary induction motor. In this paper a close loop speed control with VVVF control and slip regulation has been implemented for LIM based conveyor belt test Rig which compensates the disadvantages of traditional Volts/Hz control. SIMULINK results are presented to validate the effectiveness of proposed scheme.

  10. Design of Small CRPA Arrays with Circular Microstrip Loops for Electromagnetically Coupled Feed

    Directory of Open Access Journals (Sweden)

    Jun Hur

    2018-04-01

    Full Text Available This paper proposes a design of small controlled reception pattern antenna (CRPA arrays using circular microstrip loops with frequencyinsensitive characteristics. The proposed array consists of seven identical upper and lower circular loops that are electromagnetically coupled, which results in a frequency-insensitive behavior. To demonstrate the feasibility of the proposed feeding mechanism, the proposed array is fabricated, and its antenna characteristics are measured in a full-anechoic chamber. The operating principle of the proposed feeding mechanism is then interpreted using an equivalent circuit model, and the effectiveness of the circular loop shape is demonstrated by calculating near electromagnetic fields in proximity to the radiator. The results confirm that the proposed feeding mechanism is suitable to have frequency-insensitive behavior and induces strong electric and magnetic field strengths for higher radiation gain in extremely small antenna arrays.

  11. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai; Lu Xuanhui [Physics Department, Zhejiang University, Hangzhou, 310027 (China)

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  12. Employing optical code division multiple access technology in the all fiber loop vibration sensor system

    Science.gov (United States)

    Tseng, Shin-Pin; Yen, Chih-Ta; Syu, Rong-Shun; Cheng, Hsu-Chih

    2013-12-01

    This study proposes a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) framework to access the vibration frequency of a test object on the all fiber loop vibration sensor (AFLVS). Each user possesses an individual SAC, and fiber Bragg grating (FBG) encoders/decoders using multiple FBG arrays were adopted, providing excellent orthogonal properties in the frequency domain. The system also mitigates multiple access interference (MAI) among users. When an optical fiber is bent to a point exceeding the critical radius, the fiber loop sensor becomes sensitive to external physical parameters (e.g., temperature, strain, and vibration). The AFLVS involves placing a fiber loop with a specific radius on a designed vibration platform.

  13. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    Science.gov (United States)

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  14. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2016-01-01

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B_0. The other antenna is an elongated loop with dipole moment parallel to B_0. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  15. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  16. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    Science.gov (United States)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  17. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.

    Science.gov (United States)

    Lee, Byunghun; Kiani, Mehdi; Ghovanloo, Maysam

    2016-02-01

    A triple-loop wireless power transmission (WPT) system equipped with closed-loop global power control, adaptive transmitter (Tx) resonance compensation (TRC), and automatic receiver (Rx) resonance tuning (ART) is presented. This system not only opposes coupling and load variations but also compensates for changes in the environment surrounding the inductive link to enhance power transfer efficiency (PTE) in applications such as implantable medical devices (IMDs). The Tx was built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader, operating at 13.56 MHz. A local Tx loop finds the optimal capacitance in parallel with the Tx coil by adjusting a varactor. A global power control loop maintains the received power at a desired level in the presence of changes in coupling distance, coil misalignments, and loading. Moreover, a local Rx loop is implemented inside a power management integrated circuit (PMIC) to avoid PTE degradation due to the Rx coil surrounding environment and process variations. The PMIC was fabricated in a 0.35- μm 4M2P standard CMOS process with 2.54 mm(2) active area. Measurement results show that the proposed triple-loop system improves the overall PTE by up to 10.5% and 4.7% compared to a similar open- and single closed-loop system, respectively, at nominal coil distance of 2 cm. The added TRC and ART loops contribute 2.3% and 1.4% to the overall PTE of 13.5%, respectively. This is the first WPT system to include three loops to dynamically compensate for environment and circuit variations and improve the overall power efficiency all the way from the driver output in Tx to the load in Rx.

  18. The Wilson loop and some applications

    International Nuclear Information System (INIS)

    Bezerra, V.B.

    1983-04-01

    A simple relation between the classical Wilson loop and the angular deviation in the parallel displacement is found. An example of potentials which give field copies and which suplly the same classical Wilson loop for a particular trajectory is exhibited. The asymptotic behaviour of the Wilson loop for the BPST instanton and the meron, is discussed. By using the dimensional regularization technique to calculate the second order term of the quantum Wilson loop, the influence of geometrical factors for the residue in the pole due to contact points, cuspides and intersections, in function of the space-time ν, is investigated. Charge renormalization in Quantum electrodynamics is finally calculated by using the quantum Wilson loop. (L.C.) [pt

  19. The Wilson loop and some applications

    International Nuclear Information System (INIS)

    Bezerra, V.B.

    1983-01-01

    A simple relation between the classical Wilson loop and the angular deviation in the parallel shift is found. An example of potential which given field copies and which give the same classical Wilson loop for a given trajectory is exchibited. Afterwards, the asymptotic behaviour of the Wilson loop for the BPST instanton and meron is discussed. Using the dimensional regularization technique to calculate the second order term of Quantum Wilson loop, the influence of geometrical factors for the residue in the polo due to contact points, cusp and intersections, in function of the upsilon dimension of the space-time is investigated. Finally, the charge renormalization in Quantum Electrodynamics using Quantum Wilson loop is calculated. (L.C.) [pt

  20. Hydraulic loop: practices using open control systems

    International Nuclear Information System (INIS)

    Carrasco, J.A.; Alonso, L.; Sanchez, F.

    1998-01-01

    The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)

  1. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...

  2. A kinematic view of loop closure.

    Science.gov (United States)

    Coutsias, Evangelos A; Seok, Chaok; Jacobson, Matthew P; Dill, Ken A

    2004-03-01

    We consider the problem of loop closure, i.e., of finding the ensemble of possible backbone structures of a chain segment of a protein molecule that is geometrically consistent with preceding and following parts of the chain whose structures are given. We reduce this problem of determining the loop conformations of six torsions to finding the real roots of a 16th degree polynomial in one variable, based on the robotics literature on the kinematics of the equivalent rotator linkage in the most general case of oblique rotators. We provide a simple intuitive view and derivation of the polynomial for the case in which each of the three pair of torsional axes has a common point. Our method generalizes previous work on analytical loop closure in that the torsion angles need not be consecutive, and any rigid intervening segments are allowed between the free torsions. Our approach also allows for a small degree of flexibility in the bond angles and the peptide torsion angles; this substantially enlarges the space of solvable configurations as is demonstrated by an application of the method to the modeling of cyclic pentapeptides. We give further applications to two important problems. First, we show that this analytical loop closure algorithm can be efficiently combined with an existing loop-construction algorithm to sample loops longer than three residues. Second, we show that Monte Carlo minimization is made severalfold more efficient by employing the local moves generated by the loop closure algorithm, when applied to the global minimization of an eight-residue loop. Our loop closure algorithm is freely available at http://dillgroup. ucsf.edu/loop_closure/. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 510-528, 2004

  3. Shortest loops are pacemakers in random networks of electrically coupled axons

    Directory of Open Access Journals (Sweden)

    Nikita eVladimirov

    2012-04-01

    Full Text Available High-frequency oscillations (HFOs are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bidirectional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100-200 Hz are predicted to be caused by spontaneously spiking axons in a network with strong (high-conductance gap junctions. Type II oscillations (200-300 Hz require no spontaneous spiking and relatively weak (low-conductance gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network's loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate.The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples.

  4. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    Science.gov (United States)

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  5. Assisted closed-loop optimization of SSVEP-BCI efficiency

    Directory of Open Access Journals (Sweden)

    Jacobo eFernandez-Vargas

    2013-02-01

    Full Text Available We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain computer interfaces (BCI based on steady state visually evoked potentials (SSVEP. In traditional paradigms, the control over the BCI-performance completely depends on the subjects’ ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (i a closed-loop search for the best set of SSVEP flicker frequencies and (ii feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects’ state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g. under the new protocol, baseline resting state EEG measures predict subjects’ BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g. as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  6. Brain network dynamics in the human articulatory loop.

    Science.gov (United States)

    Nishida, Masaaki; Korzeniewska, Anna; Crone, Nathan E; Toyoda, Goichiro; Nakai, Yasuo; Ofen, Noa; Brown, Erik C; Asano, Eishi

    2017-08-01

    The articulatory loop is a fundamental component of language function, involved in the short-term buffer of auditory information followed by its vocal reproduction. We characterized the network dynamics of the human articulatory loop, using invasive recording and stimulation. We measured high-gamma activity 70-110 Hz recorded intracranially when patients with epilepsy either only listened to, or listened to and then reproduced two successive tones by humming. We also conducted network analyses, and analyzed behavioral responses to cortical stimulation. Presentation of the initial tone elicited high-gamma augmentation bilaterally in the superior-temporal gyrus (STG) within 40ms, and in the precentral and inferior-frontal gyri (PCG and IFG) within 160ms after sound onset. During presentation of the second tone, high-gamma augmentation was reduced in STG but enhanced in IFG. The task requiring tone reproduction further enhanced high-gamma augmentation in PCG during and after sound presentation. Event-related causality (ERC) analysis revealed dominant flows within STG immediately after sound onset, followed by reciprocal interactions involving PCG and IFG. Measurement of cortico-cortical evoked-potentials (CCEPs) confirmed connectivity between distant high-gamma sites in the articulatory loop. High-frequency stimulation of precentral high-gamma sites in either hemisphere induced speech arrest, inability to control vocalization, or forced vocalization. Vocalization of tones was accompanied by high-gamma augmentation over larger extents of PCG. Bilateral PCG rapidly and directly receives feed-forward signals from STG, and may promptly initiate motor planning including sub-vocal rehearsal for short-term buffering of auditory stimuli. Enhanced high-gamma augmentation in IFG during presentation of the second tone may reflect high-order processing of the tone sequence. The articulatory loop employs sustained reciprocal propagation of neural activity across a network of

  7. Effects of Load and Speed Variations in a Modified Closed Loop V/F ...

    African Journals Online (AJOL)

    This paper investigates the eects of load and reference speed variations in a modied closed loopv=f induction motor drive. A modied approach, involving the addition of a low frequency boostvoltage, is developed and adopted as an enhancement to the conventional closed loop v=f speedcontrol of a three phase squirrel ...

  8. One-turn stub-loaded loop patch antenna on a small ground plane

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2005-01-01

    A small 1.1-cm3 one-turn loop patch antenna located 2.5 mm above an 18 × 25 mm ground plane separated by a dielectric substrate with relative permittivity of 9.8 is presented. By varying the length of a thin quarter-wavelength matching line, it is possible to change the resonant frequency. An RLC...

  9. Parasitic excitation of ion Bernstein waves from a Faraday shielded fast wave loop antenna

    International Nuclear Information System (INIS)

    Skiff, F.; Ono, M.; Colestock, P.; Wong, K.L.

    1984-12-01

    Parasitic excitation of ion Bernstein waves is observed from a Faraday shielded fast wave loop antenna in the ion cyclotron frequency range. Local analysis of the Vlasov-Maxwell equations demonstrates the role of plasma density gradient in the coupling process. The effects of plasma density and of parallel wave number on the excitation process are investigated

  10. Measurements of loop antenna loading in RF heating experiments on the KT-5C tokamak

    International Nuclear Information System (INIS)

    Zhai Kan; Deng Bihe; Wen Yizhi; Wan Shude; Liu Wandong; Yu Wen; Yu Changxun

    1997-01-01

    A new method to measure the loop antenna loadings in the RF wave heating experiments (IBWH at reasonable RF power with relatively low frequency) on the KT-5C device is presented. The method is characterized by determining the RF current ratio only, so it eases the needs of instruments and simplifies the requirements for calibration and data processing in the experiments

  11. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    Science.gov (United States)

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  12. TS LOOP ALCOVE VENTILATION ANALYSIS

    International Nuclear Information System (INIS)

    T.M. Lahnalampi

    2000-01-01

    The scope of this analysis is to examine the existing, constructor installed, physical ventilation installations located in each of the Exploratory Studies Facility (ESF) Topopah Springs (TS) Loop Alcoves No.1, No.2, No.3, No.4, No.6, and No.7. Alcove No.5 is excluded from the scope of this analysis since it is an A/E design system. Each ventilation installation will be analyzed for the purpose of determining if requirements for acceptance into the A/E design technical baseline have been met. The ventilation installations will be evaluated using Occupational Safety and Health Administration (OSHA) standards and Exploratory Studies Facility Design Requirements (ESFDR) (YMP 1997) requirements. The end product will be a technical analysis that will define ventilation installation compliance issues, any outstanding field changes, and use-as-is design deviations that are required to bring the ventilation installations into compliance with requirements for acceptance into the A/E design technical baseline. The analysis will provide guidance for alcove ventilation component design modifications to be developed to correct any deficient components that do not meet minimum requirements and standards

  13. Loops in hierarchical channel networks

    Science.gov (United States)

    Katifori, Eleni; Magnasco, Marcelo

    2012-02-01

    Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  14. Towards conformal loop quantum gravity

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2006-01-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity

  15. Stability, structure, and evolution of cool loops

    International Nuclear Information System (INIS)

    Cally, P.S.; Robb, T.D.

    1991-01-01

    The criteria for the existence and stability of cool loops are reexamined. It is found that the stability of the loops strongly depends on the form of the heating and radiative loss functions and that if the Ly-alpha peak which appears in most calculations of the radiative loss function is real, cool loops are almost certainly unstable. Removing the hydrogen contribution from the recent loss function Q(T) by Cook et al. (1989) does not produce the much-used result, Q proportional to T-cubed, which is so favorable to cool loop stability. Even using the probably unrealistically favorable loss function Q1 of Cook et al. with the hydrogen contribution removed, the maximum temperature attainable in stable cool loops is a factor of 2-3 too small to account for the excess emission observed in lower transition region lines. Dynamical simulations of cool loop instabilities reveal that the final state of such a model is the hot loop equilibrium. 26 refs

  16. A Highly Robust Single-Loop Current Control Scheme for Grid-Connected Inverter with an Improved LCCL Filter Configuration

    DEFF Research Database (Denmark)

    Pan, Donghua; Ruan, Xinbo; Wang, Xiongfei

    2018-01-01

    Single-loop current control is an attractive scheme for the LCL-type grid-connected inverter due to its simplicity and low cost. However, conventional single-loop control schemes, which command either the inverter current or the grid current, are subject to the specific resonance frequency regions....... The weighted average current control, which splits the filter capacitor into two parts (in form of an LCCL filter) and commands the current flowing between these two parts, is independent of the resonance frequency, but on the other hand, it is limited by the poor sensitivity to the grid impedance variation...... and weak stability in the grid current. These limitations are comprehensively explained in this paper and then addressed by identifying that the single-loop weighted average current control is equivalent to the dual-loop grid current control with an inherent capacitor current active damping. By tuning...

  17. Loop-quantum-gravity vertex amplitude.

    Science.gov (United States)

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  18. Technical specification of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y

    1998-03-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. HANARO fuel test loop was designed in accordance with the same code and standards of nuclear power plant because HANARO FTL will be operated the high pressure and temperature same as nuclear power plant operation conditions. The objective of this study is to confirm the operation limit, safety limit, operation condition and checking points of HANARO fuel test loop. This results will become guidances for the planning of irradiation testing and operation of HANARO fuel test loop. (author). 13 refs., 13 tabs., 8 figs.

  19. Numerical approach to one-loop integrals

    International Nuclear Information System (INIS)

    Fujimoto, Junpei; Shimizu, Yoshimitsu; Kato, Kiyoshi; Oyanagi, Yoshio.

    1992-01-01

    Two numerical methods are proposed for the calculation of one-loop scalar integrals. In the first method, the singularity is cancelled by the symmetrization of the integrand and the integration is done by a Monte-Carlo method. In the second one, after the transform of the integrand into a standard form, the integral is reduced into a regular numerical integral. These methods provide us practical tools to evaluate one-loop Feynman diagrams with desired numerical accuracy. They are extended to the integral with numerator and the treatment of the one-loop virtual correction to the cross section is also presented. (author)

  20. Zero point energy of renormalized Wilson loops

    International Nuclear Information System (INIS)

    Hidaka, Yoshimasa; Pisarski, Robert D.

    2009-01-01

    The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term.

  1. Loop corrections to primordial non-Gaussianity

    Science.gov (United States)

    Boran, Sibel; Kahya, E. O.

    2018-02-01

    We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.

  2. Sigma models and renormalization of string loops

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1989-05-01

    An extension of the ''σ-model β-functions - string equations of motion'' correspondence to the string loop level is discussed. Special emphasis is made on how the renormalization group acts in string loops and, in particular, on the renormalizability property of the generating functional Z-circumflex for string amplitudes (related to the σ model partition function integrated over moduli). Renormalization of Z-circumflex at one and two loop order is analyzed in some detail. We also discuss an approach to renormalization based on operators of insertion of topological fixtures. (author). 70 refs

  3. Construction of the blowdown and condensation loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Song, Chul Kyung; Cho, Seok; Chun, S. Y.; Chung, Moon Ki

    1997-12-01

    The blowdown and condensation loop (B and C loop) has been constructed to get experimental data for designing the safety depressurization system (SDS) and steam sparger which are considered to implement in the Korea Next Generation Reactor (KNGR). In this report, system description on the B and C loop is given in detail, which includes the drawings and technical specification of each component, instrumentation and control system, and the operational procedures and the results of the performance testing. (author). 7 refs., 11 tabs., 48 figs.

  4. Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab

    International Nuclear Information System (INIS)

    Crisp, J.

    1990-01-01

    The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs

  5. ANALISYS OF FRACTIONAL-N FREQUENCY SYNTHESIZERS

    Directory of Open Access Journals (Sweden)

    Boris I. Shakhtarin

    2018-01-01

    Full Text Available Modern information and control systems cannot be imagined without synchronization subsystems. These are the basic elements that provide tracking of the frequency and phase of reference and information signals, the evaluation of information parameters, and the synthesis of reference and clock signals. Frequency synthesizers (FS are widely used due to the high speed of frequency setting, a wide range of frequency grids and minimal phase noise in the operating frequency range. Since with the mass appearance of specialized microprocessors and with the improvement of automatic design systems, the feasibility and repeatability of products has become simpler, digital FS are increasingly being used. The most widely used are FS with a frequency divider on digital elements, which serves to convert the signal of a reference oscillator and a controlled generator. For FS using a divisor with an integer division factor in the feedback loop, there are a number of limitations, such as the lower frequency of the FS and the frequency step of the FS. To solve this problem, divisors with fractional-variable division factors in the feedback loop are used, which allow to obtain the required range and the grid frequency step of the FS. The methods of improving the quality of spectral and dynamic characteristics of digital synthesizers in a given band of frequency detuning are analyzed. The principles of the FS operation with a divisor with a fractionalvariable fission coefficient are described, and structural schemes are given. The results of imitation simulation in the Simulink system of the software package MATLAB of frequency synthesizers with a divisor with a fractional-variable fission factor implemented in various ways are presented, and a comparative analysis of the spectral characteristics of the obtained models is carried out. 

  6. Limitations of Dower's inverse transform for the study of atrial loops during atrial fibrillation.

    Science.gov (United States)

    Guillem, María S; Climent, Andreu M; Bollmann, Andreas; Husser, Daniela; Millet, José; Castells, Francisco

    2009-08-01

    Spatial characteristics of atrial fibrillatory waves have been extracted by using a vectorcardiogram (VCG) during atrial fibrillation (AF). However, the VCG is usually not recorded in clinical practice and atrial loops are derived from the 12-lead electrocardiogram (ECG). We evaluated the suitability of the reconstruction of orthogonal leads from the 12-lead ECG for fibrillatory waves in AF. We used the Physikalisch-Technische Bundesanstalt diagnostic ECG database, which contains 15 simultaneously recorded signals (12-lead ECG and three Frank orthogonal leads) of 13 patients during AF. Frank leads were derived from the 12-lead ECG by using Dower's inverse transform. Derived leads were then compared to true Frank leads in terms of the relative error achieved. We calculated the orientation of AF loops of both recorded orthogonal leads and derived leads and measured the difference in estimated orientation. Also, we investigated the relationship of errors in derivation with fibrillatory wave amplitude, frequency, wave residuum, and fit to a plane of the AF loops. Errors in derivation of AF loops were 68 +/- 31% and errors in the estimation of orientation were 35.85 +/- 20.43 degrees . We did not find any correlation among these errors and amplitude, frequency, or other parameters. In conclusion, Dower's inverse transform should not be used for the derivation of orthogonal leads from the 12-lead ECG for the analysis of fibrillatory wave loops in AF. Spatial parameters obtained after this derivation may differ from those obtained from recorded orthogonal leads.

  7. Investigation of High-Efficiency Wireless Power Transfer Criteria of Resonantly-Coupled Loops and Dipoles through Analysis of the Figure of Merit

    Directory of Open Access Journals (Sweden)

    Charles Moorey

    2015-10-01

    Full Text Available The efficiency of a Wireless Power Transfer (WPT system is greatly dependent on both the geometry and operating frequency of the transmitting and receiving structures. By using Coupled Mode Theory (CMT, the figure of merit is calculated for resonantly-coupled loop and dipole systems. An in-depth analysis of the figure of merit is performed with respect to the key geometric parameters of the loops and dipoles, along with the resonant frequency, in order to identify the key relationships leading to high-efficiency WPT. For systems consisting of two identical single-turn loops, it is shown that the choice of both the loop radius and resonant frequency are essential in achieving high-efficiency WPT. For the dipole geometries studied, it is shown that the choice of length is largely irrelevant and that as a result of their capacitive nature, low-MHz frequency dipoles are able to produce significantly higher figures of merit than those of the loops considered. The results of the figure of merit analysis are used to propose and subsequently compare two mid-range loop and dipole WPT systems of equal size and operating frequency, where it is shown that the dipole system is able to achieve higher efficiencies than the loop system of the distance range examined.

  8. UF/sub 6/ test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-01-01

    A functional test loop capable of simulating UF/sub 6/ flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by the International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. The purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized. By giving the IAEA the in-house capability to evaluate LFUA inspection strategy approaches, to develop inspection procedures, to calibrate instrumentation, and to train inspectors, the UF/sub 6/ cascade header pipe test loop will contribute to the IAEA's success in implementing LFUA strategy inspections at gas centrifuge enrichment facilities subject to international safeguards inspections

  9. A DEMODULATOR OF PWM SIGNALS GENERATED FOR A DIGITAL ACCELEROMETER IS DEVELOPED USING A MICROCONTROLLER UN DEMODULADOR DE SEÑALES PWM GENERADAS POR UN ACELERÓMETRO DIGITAL ES DESARROLLADO USANDO UN MICROCONTROLADOR

    Directory of Open Access Journals (Sweden)

    Eduardo Pérez Lobato

    2006-08-01

    Full Text Available This paper presents the use of a microcontroller to demodulate two Pulse Width Modulated (PWM signals which are being generated by a digital accelerometer, to obtain their pulse widths and transmit them serially to a parallel port of a general purpose computer.Esta publicación presenta el uso de un microcontrolador para demodular dos señales PWM que están siendo generadas por un acelerómetro digital, obtener sus anchos y enviarlas en forma serial al puerto paralelo de un computador de propósitos generales.

  10. Eigenvalue distributions of Wilson loops

    International Nuclear Information System (INIS)

    Lohmayer, Robert

    2010-01-01

    In the first part of this thesis, we focus on the distribution of the eigenvalues of the unitary Wilson loop matrix in the two-dimensional case at arbitrary finite N. To characterize the distribution of the eigenvalues, we introduce three density functions (the ''symmetric'', the ''antisymmetric'', and the ''true'' eigenvalue density) which differ at finite N but possess the same infinite-N limit, exhibiting the Durhuus-Olesen phase transition. Using expansions of determinants and inverse determinants in characters of totally symmetric or totally antisymmetric representations of SU(N), the densities at finite N can be expressed in terms of simple sums involving only dimensions and quadratic Casimir invariants of certain irreducible representations of SU(N), allowing for a numerical computation of the densities at arbitrary N to any desired accuracy. We find that the true eigenvalue density, adding N oscillations to the monotonic symmetric density, is in some sense intermediate between the symmetric and the antisymmetric density, which in turn is given by a sum of N delta peaks located at the zeros of the average of the characteristic polynomial. Furthermore, we show that the dependence on N can be made explicit by deriving integral representations for the resolvents associated to the three eigenvalue densities. Using saddle-point approximations, we confirm that all three densities reduce to the Durhuus-Olesen result in the infinite-N limit. In the second part, we study an exponential form of the multiplicative random complex matrix model introduced by Gudowska-Nowak et al. Varying a parameter which can be identified with the area of the Wilson loop in the unitary case, the region of non-vanishing eigenvalue density of the N-dimensional complex product matrix undergoes a topological change at a transition point in the infinite-N limit. We study the transition by a detailed analysis of the average of the modulus square of the characteristic polynomial. Furthermore

  11. Eigenvalue distributions of Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Lohmayer, Robert

    2010-07-01

    In the first part of this thesis, we focus on the distribution of the eigenvalues of the unitary Wilson loop matrix in the two-dimensional case at arbitrary finite N. To characterize the distribution of the eigenvalues, we introduce three density functions (the ''symmetric'', the ''antisymmetric'', and the ''true'' eigenvalue density) which differ at finite N but possess the same infinite-N limit, exhibiting the Durhuus-Olesen phase transition. Using expansions of determinants and inverse determinants in characters of totally symmetric or totally antisymmetric representations of SU(N), the densities at finite N can be expressed in terms of simple sums involving only dimensions and quadratic Casimir invariants of certain irreducible representations of SU(N), allowing for a numerical computation of the densities at arbitrary N to any desired accuracy. We find that the true eigenvalue density, adding N oscillations to the monotonic symmetric density, is in some sense intermediate between the symmetric and the antisymmetric density, which in turn is given by a sum of N delta peaks located at the zeros of the average of the characteristic polynomial. Furthermore, we show that the dependence on N can be made explicit by deriving integral representations for the resolvents associated to the three eigenvalue densities. Using saddle-point approximations, we confirm that all three densities reduce to the Durhuus-Olesen result in the infinite-N limit. In the second part, we study an exponential form of the multiplicative random complex matrix model introduced by Gudowska-Nowak et al. Varying a parameter which can be identified with the area of the Wilson loop in the unitary case, the region of non-vanishing eigenvalue density of the N-dimensional complex product matrix undergoes a topological change at a transition point in the infinite-N limit. We study the transition by a detailed analysis of the average of the

  12. Heating mechanisms for intermittent loops in active region cores from AIA/SDO EUV observations

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J. [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Nigro, G. [Universita della Calabria, Dipartimento di Fisica and Centro Nazionale Interuniversitario Struttura della Materia, Unita di Cosenza, I-87030 Arcavacata di Rende (Italy)

    2014-11-01

    We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the 'warm' contributions to the emission. HMI/SDO data allow us to focus on 'inter-moss' regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min{sup –1} and 0.7 min{sup –1}. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D 'hybrid' shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.

  13. The Universal One-Loop Effective Action

    CERN Document Server

    Drozd, Aleksandra; Quevillon, Jérémie; You, Tevong

    2016-01-01

    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.

  14. The universal one-loop effective action

    International Nuclear Information System (INIS)

    Drozd, Aleksandra; Ellis, John; Quevillon, Jérémie; You, Tevong

    2016-01-01

    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.

  15. Mathematical Modeling of Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  16. CHY loop integrands from holomorphic forms

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Humberto [Facultad de Ciencias Basicas, Universidad Santiago de Cali,Calle 5 62-00 Barrio Pampalinda, Cali, Valle (Colombia); Perimeter Institute for Theoretical Physics,31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada); Mizera, Sebastian; Zhang, Guojun [Perimeter Institute for Theoretical Physics,31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada); Department of Physics & Astronomy, University of Waterloo,Waterloo, ON N2L 3G1 (Canada)

    2017-03-16

    Recently, the Cachazo-He-Yuan (CHY) approach for calculating scattering amplitudes has been extended beyond tree level. In this paper, we introduce a way of constructing CHY integrands for Φ{sup 3} theory up to two loops from holomorphic forms on Riemann surfaces. We give simple rules for translating Feynman diagrams into the corresponding CHY integrands. As a complementary result, we extend the L-algorithm, originally introduced in https://arxiv.org/abs/1604.05373, to two loops. Using this approach, we are able to analytically verify our prescription for the CHY integrands up to seven external particles at two loops. In addition, it gives a natural way of extending to higher-loop orders.

  17. Observing string breaking with Wilson loops

    CERN Document Server

    Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de

    2003-01-01

    An uncontroversial observation of adjoint string breaking is proposed, while measuring the static potential from Wilson loops only. The overlap of the Wilson loop with the broken-string state is small, but non-vanishing, so that the broken-string groundstate can be seen if the Wilson loop is long enough. We demonstrate this in the context of the (2+1)d SU(2) adjoint static potential, using an improved version of the Luscher-Weisz exponential variance reduction. To complete the picture we perform the more usual multichannel analysis with two basis states, the unbroken-string state and the broken-string state (two so-called gluelumps). As by-products, we obtain the temperature-dependent static potential measured from Polyakov loop correlations, and the fundamental SU(2) static potential with improved accuracy. Comparing the latter with the adjoint potential, we see clear deviations from Casimir scaling.

  18. Hardware-in-the-Loop Testing

    Data.gov (United States)

    Federal Laboratory Consortium — RTC has a suite of Hardware-in-the Loop facilities that include three operational facilities that provide performance assessment and production acceptance testing of...

  19. Loop Diuretics in the Treatment of Hypertension.

    Science.gov (United States)

    Malha, Line; Mann, Samuel J

    2016-04-01

    Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.

  20. Possible hysteresis loops of resonatorless optical bistability

    International Nuclear Information System (INIS)

    Nguyen Ba An; Le Thi Cat Tuong.

    1990-05-01

    We qualitatively show that hysteresis loops of intrinsic optical bistability phenomena without any additional feedback may be of various shapes including those of a butterfly and a three-winged bow. (author). 15 refs, 4 figs

  1. Closed loop solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-01-01

    The system used for the closed loop operation of the solar chemical heat pipe comprises a reformer, heated by the solar furnace, a methanator and a storage assembly containing a compressor and storage cylinders. (authors). 7 figs

  2. Nonequilibrium Chromosome Looping via Molecular Slip Links

    Science.gov (United States)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  3. A theory of desynchronisable closed loop system

    Directory of Open Access Journals (Sweden)

    Harsh Beohar

    2010-10-01

    Full Text Available The task of implementing a supervisory controller is non-trivial, even though different theories exist that allow automatic synthesis of these controllers in the form of automata. One of the reasons for this discord is due to the asynchronous interaction between a plant and its controller in implementations, whereas the existing supervisory control theories assume synchronous interaction. As a consequence the implementation suffer from the so-called inexact synchronisation problem. In this paper we address the issue of inexact synchronisation in a process algebraic setting, by solving a more general problem of refinement. We construct an asynchronous closed loop system by introducing a communication medium in a given synchronous closed loop system. Our goal is to find sufficient conditions under which a synchronous closed loop system is branching bisimilar to its corresponding asynchronous closed loop system.

  4. Basic study on safety conditions for MR imaging. Mechanism of burn injury associated with electrode loops during MR scanning

    International Nuclear Information System (INIS)

    Nakamura, Tatsuo; Fukuda, Koji; Hayakawa, Katsumi

    1994-01-01

    Reports of severe burns associated with the clinical use of MRI scanning have continued to appear. However, the precise mechanism responsible for these injuries has not yet been clarified. Since MR imaging exposes the human body not only to a strong H 0 magnetic field but also high-frequency RF pulses (microwave range), and since previously reported burns have occurred only in the area of attachment to monitor cables, the burns have been considered to be due to electro-magnetic induction in the cables caused by the RF pulses. In the study, therefore, using conventional monitor cables, a variety of loops were prepared and the electromagnetic induction within them by RF pulses was checked with an oscilloscope. For a single turn loop (S=0.124 m 2 ) and a 10-roll loop (S=1.24 m 2 ), the peak induced in these loops were 75 V and 45 V, respectively. When a 50 Ω resistance was connected to the ends of the loop to make it a closed circuit, the voltages across the 50 Ω load were 60 V and 30 V, respectively. Furthermore, even under conditions where a circuit was interrupted at the center of the loop, a similar voltage was observed at the ends of the loop. These results indicate that a simple model of electromagnetic induction in the loop of a monitor cable cannot alone explain the cause of the burns associated with MRI. (author)

  5. A multiple-pass ring oscillator based dual-loop phase-locked loop

    International Nuclear Information System (INIS)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning

    2009-01-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  6. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Energy Technology Data Exchange (ETDEWEB)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning, E-mail: dfchen@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-10-15

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-{mu}m RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  7. Selfdual strings and loop space Nahm equations

    International Nuclear Information System (INIS)

    Gustavsson, Andreas

    2008-01-01

    We give two independent arguments why the classical membrane fields should be take values in a loop algebra. The first argument comes from how we may construct selfdual strings in the M5 brane from a loop space version of the Nahm equations. The second argument is that there appears to be no infinite set of finite-dimensional Lie algebras (such as su(N) for any N) that satisfies the algebraic structure of the membrane theory

  8. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  9. FMFT. Fully massive four-loop tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Pikelner, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2017-07-15

    We present FMFT - a package written in FORM that evaluates four-loop fully massive tadpole Feynman diagrams. It is a successor of the MATAD package that has been successfully used to calculate many renormalization group functions at three-loop order in a wide range of quantum field theories especially in the Standard Model. We describe an internal structure of the package and provide some examples of its usage.

  10. Higgs Decay to Photons at Two Loops

    International Nuclear Information System (INIS)

    Fugel, F.

    2007-01-01

    The calculation of the two-loop corrections to the partial width of an intermediate-mass Higgs boson decaying into a pair of photons is reviewed. The main focus lies on the electroweak (EW) contributions. The sum of the EW corrections ranges from -4% to 0% for a Higgs mass between 100 GeV and 150 GeV, while the complete correction at two-loop order amounts to less than ± 1.5% in this regime. (author)

  11. Piles of dislocation loops in real crystals

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.; Yanovskij, V.V.

    1985-01-01

    Behaviour of piles of dislocation loops in crystals was studied in order to define metal swelling under irradiation. Energy of pile interaction with point defects and intrinsic pile energy are studied in the framework of the linear elasticity theory. Preference of dislocation pile calculated in the paper decreases with radiation dose hence, material swelling rate also decreases. Creation of conditions, which assume an existence of piles of dislocation loops being stable under irradiation, is of particular interest

  12. Zero Point Energy of Renormalized Wilson Loops

    OpenAIRE

    Hidaka, Yoshimasa; Pisarski, Robert D.

    2009-01-01

    The quark antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero wh...

  13. FMFT: fully massive four-loop tadpoles

    Science.gov (United States)

    Pikelner, Andrey

    2018-03-01

    We present FMFT - a package written in FORM that evaluates four-loop fully massive tadpole Feynman diagrams. It is a successor of the MATAD package that has been successfully used to calculate many renormalization group functions at three-loop order in a wide range of quantum field theories especially in the Standard Model. We describe an internal structure of the package and provide some examples of its usage.

  14. Quantum Kinematics of Bosonic Vortex Loops

    International Nuclear Information System (INIS)

    Goldin, G.A.; Owczarek, R.; Sharp, D.H.

    1999-01-01

    Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced

  15. Frequency position modulation using multi-spectral projections

    Science.gov (United States)

    Goodman, Joel; Bertoncini, Crystal; Moore, Michael; Nousain, Bryan; Cowart, Gregory

    2012-10-01

    In this paper we present an approach to harness multi-spectral projections (MSPs) to carefully shape and locate tones in the spectrum, enabling a new and robust modulation in which a signal's discrete frequency support is used to represent symbols. This method, called Frequency Position Modulation (FPM), is an innovative extension to MT-FSK and OFDM and can be non-uniformly spread over many GHz of instantaneous bandwidth (IBW), resulting in a communications system that is difficult to intercept and jam. The FPM symbols are recovered using adaptive projections that in part employ an analog polynomial nonlinearity paired with an analog-to-digital converter (ADC) sampling at a rate at that is only a fraction of the IBW of the signal. MSPs also facilitate using commercial of-the-shelf (COTS) ADCs with uniform-sampling, standing in sharp contrast to random linear projections by random sampling, which requires a full Nyquist rate sample-and-hold. Our novel communication system concept provides an order of magnitude improvement in processing gain over conventional LPI/LPD communications (e.g., FH- or DS-CDMA) and facilitates the ability to operate in interference laden environments where conventional compressed sensing receivers would fail. We quantitatively analyze the bit error rate (BER) and processing gain (PG) for a maximum likelihood based FPM demodulator and demonstrate its performance in interference laden conditions.

  16. Loop space representation of quantum general relativity and the group of loops

    International Nuclear Information System (INIS)

    Gambini, R.

    1991-01-01

    The action of the constraints of quantum general relativity on a general state in the loop representation is coded in terms of loop derivatives. These differential operators are related to the infinitesimal generators of the group of loops and generalize the area derivative first considered by Mandelstam. A new sector of solutions of the physical states space of nonperturbative quantum general relativity is found. (orig.)

  17. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    Energy Technology Data Exchange (ETDEWEB)

    Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  18. Liquid Lead-Bismuth Materials Test Loop

    International Nuclear Information System (INIS)

    Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith

    2002-01-01

    We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)

  19. Boost converter with combined control loop for a stand-alone photovoltaic battery charge system

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Knott, Arnold; Thomsen, Ole Cornelius

    2013-01-01

    frequency avoids perturbations in the load being propagated to the photovoltaic panel and thus deviating the operating point. Linearization of the photovoltaic panel and converter state-space modeling is performed. In order to achieve stable operation under all operating conditions, the photovoltaic panel......The converter control scheme plays an important role in the performance of maximum power point tracking (MPPT) algorithms. In this paper, an input voltage control with double loop for a stand-alone photovoltaic system is designed and tested. The inner current control loop with high crossover...

  20. Experimental and theoretical study on density wave instability in low quality natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hai Jun [Tsinghua Univ., Beijing, BJ (China); Song, Jin Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    A series of thermal-hydraulic experimental research has been performed at INET of Beijing University in two full scale test loops, HRTL-5 and HRTL-200 simulating the HR-5 and HR-200 district heating reactors. The homogeneous equilibrium flow model and the drift flux model are employed to analyze the flow in the HRTL-200 test loop. The frequency domain linear stability analysis program LINTAB has been developed based on the homogeneous equilibrium results from HRTL-200 test facility have been used to validate the LINTAB code. Analysis results using LINTAB showed a good agreement with the test results. (author). 20 refs., 24 figs.

  1. Experimental and theoretical study on density wave instability in low quality natural circulation loop

    International Nuclear Information System (INIS)

    Jia, Hai Jun; Song, Jin Ho

    1997-07-01

    A series of thermal-hydraulic experimental research has been performed at INET of Beijing University in two full scale test loops, HRTL-5 and HRTL-200 simulating the HR-5 and HR-200 district heating reactors. The homogeneous equilibrium flow model and the drift flux model are employed to analyze the flow in the HRTL-200 test loop. The frequency domain linear stability analysis program LINTAB has been developed based on the homogeneous equilibrium results from HRTL-200 test facility have been used to validate the LINTAB code. Analysis results using LINTAB showed a good agreement with the test results. (author). 20 refs., 24 figs

  2. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Science.gov (United States)

    Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang

    2011-08-01

    A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  3. Improved two-loop beam energy stabilizer for an FN tandem accelerator

    International Nuclear Information System (INIS)

    Trainor, T.A.

    1981-01-01

    A detailed analysis of the properties of various elements in a two-loop voltage regulator for a tandem accelerator enabled design of an optimum system which reduces effective accelerating voltage noise below 100 V. Essential features of the new system are high-quality slit preamplifiers, careful attention to removal of extraneous noise sources, and proper shaping of frequency responses to maximize stable gains and ensure compatibility of the two control loops. The resultant beam energy stabilizer system is easy to operate, has well defined indicators for proper adjustment of operating parameters, and recovers reliably from beam interruptions

  4. Distribution of sizes of erased loops for loop-erased random walks

    OpenAIRE

    Dhar, Deepak; Dhar, Abhishek

    1997-01-01

    We study the distribution of sizes of erased loops for loop-erased random walks on regular and fractal lattices. We show that for arbitrary graphs the probability $P(l)$ of generating a loop of perimeter $l$ is expressible in terms of the probability $P_{st}(l)$ of forming a loop of perimeter $l$ when a bond is added to a random spanning tree on the same graph by the simple relation $P(l)=P_{st}(l)/l$. On $d$-dimensional hypercubical lattices, $P(l)$ varies as $l^{-\\sigma}$ for large $l$, whe...

  5. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  6. Spurious in PLL-DDS frequency synthesizers

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Věnceslav František; Štursa, Jarmil

    2002-01-01

    Roč. 2, č. 1 (2002), s. 48-51 ISSN 1335-8243. [Digital Signal Processing and Multimedia Communications DSP-MCOM 2001 /5./. Košice, 27.11.2001-29.11.2001] R&D Projects: GA ČR GA102/00/0958 Institutional research plan: CEZ:AV0Z2067918 Keywords : frequency synthesizers * phase locked loops * direct digital synthesis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  7. Characterization of Inductive loop coupling in a Cyclotron Dee Structure

    Science.gov (United States)

    Carroll, Lewis

    Many of today's low to medium-energy cyclotrons apply RF power to the resonator structure (the dees) by inductive loop coupling through a feed-line driven by an RF transmitter employing a triode or tetrode power tube. The transmitter's output network transforms the tube's optimum load line (typically a few thousand ohms) down to Z0, typically 50 ohms. But the load-line is not a physical resistance, so one would not expect to see 50 ohms when looking back toward the transmitter. Moreover, if both the resonator's input and the transmitter's output are matched to Z0, then the coupled or working Q of the resonator is reduced to half that of the uncoupled Q, implying that half the power is being dissipated in the transmitter's output resistance- an inefficient and expensive solution for a high power RF application. More power is available if the transmitter's reverse-impedance is not matched to Z0, but this may result in misalignment between the frequency for correct forward match at the loop, versus the frequency for maximum power in the resonator. The misalignment can be eliminated, and the working Q maximized, by choosing the appropriate length of feed-line between the non-matched transmitter output and the matched resonator's input. In addition, the transmitter's output impedance may be complex, comprising resistance plus reactance, requiring a further process and means of measuring the output impedance so that an additional compensating length of feed-line can be incorporated. But a wrong choice of overall feed-line length- even though correctly load-matched at the resonator's operating frequency- can result in a curious degenerate condition, where the resonator's working Q appears to collapse, and the potential for transmitter overload increases substantially: a condition to be avoided!

  8. Analysis of Various Frequency Selective Shielding Glass by FDTD method

    OpenAIRE

    笠嶋, 善憲; Kasashima, Yoshinori

    2012-01-01

    A frequency Selective shielding (FSS) glass is a print of many same size antennas on a sheet of glass, and it has high shielding properties for one specific frequency. This time, the author analyzed characteristics of various FSSs whose antenna types are different by FDTD method. The antenna types are cross dipole, circular loop, square loop, circular patch, and square patch. As the result, the FSSs can be composed of the various types of the antennas, and the FSSs have broad-band shielding c...

  9. Generic Safety Issue (GSI) 171 -- Engineered Safety Feature (ESF) failure from a loop subsequent to LOCA: Assessment of plant vulnerability and CDF contributions

    International Nuclear Information System (INIS)

    Martinez-Guridi, G.; Samanta, P.; Chu, L.; Yang, J.

    1998-01-01

    Generic Safety Issue 171 (GSI-171), Engineered Safety Feature (ESF) from a Loss Of Offsite Power (LOOP) subsequent to a Loss Of Coolant Accident (LOCA), deals with an accident sequence in which a LOCA is followed by a LOOP. This issue was later broadened to include a LOOP followed by a LOCA. Plants are designed to handle a simultaneous LOCA and LOOP. In this paper, the authors address the unique issues that are involved i LOCA with delayed LOOP (LOCA/LOOP) and LOOP with delayed LOCA (LOOP/LOCA) accident sequences. LOCA/LOOP accidents are analyzed further by developing event-tree/fault-tree models to quantify their contributions to core-damage frequency (CDF) in a pressurized water reactor and a boiling water reactor (PWR and a BWR). Engineering evaluation and judgments are used during quantification to estimate the unique conditions that arise in a LOCA/LOOP accident. The results show that the CDF contribution of such an accident can be a dominant contributor to plant risk, although BWRs are less vulnerable than PWRs

  10. Incremental Closed-loop Identification of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2011-01-01

    , closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended...

  11. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  12. Two-phase Heating in Flaring Loops

    Science.gov (United States)

    Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.

    2018-03-01

    We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.

  13. Demodulation Processes in Auditory Perception

    National Research Council Canada - National Science Library

    Feth, Lawrence

    1997-01-01

    The long range goal of this project was the understanding of human auditory processing of information conveyed by complex, time varying signals such as speech, music or important environmental sounds...

  14. Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Cheong, Moon Ki; Park, Choon Kyeong; Won, Soon Yeon; Yang, Sun Kyu; Cheong, Jang Whan; Cheon, Se Young; Song, Chul Hwa; Jeon, Hyeong Kil; Chang, Suk Kyu; Jeong, Heung Jun; Cho, Young Ro; Kim, Bok Duk; Min, Kyeong Ho

    1994-12-01

    The objective of this project is to obtain the available experimental data and to develop the measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics department have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within fuel bundle and to understand the characteristic of pressure drop required for improving the nuclear fuel and to develop the advanced measuring techniques. RCS Loop, which is used to measure the CHF, is presently under design and construction. B and C Loop is designed and constructed to assess the automatic depressurization safety system behavior. 4 tabs., 79 figs., 7 refs. (Author) .new

  15. Mass inflation in the loop black hole

    International Nuclear Information System (INIS)

    Brown, Eric G.; Mann, Robert; Modesto, Leonardo

    2011-01-01

    In classical general relativity the Cauchy horizon within a two-horizon black hole is unstable via a phenomenon known as mass inflation, in which the mass parameter (and the spacetime curvature) of the black hole diverges at the Cauchy horizon. Here we study this effect for loop black holes - quantum gravitationally corrected black holes from loop quantum gravity - whose construction alleviates the r=0 singularity present in their classical counterparts. We use a simplified model of mass inflation, which makes use of the generalized Dray-'t Hooft relation, to conclude that the Cauchy horizon of loop black holes indeed results in a curvature singularity similar to that found in classical black holes. The Dray-'t Hooft relation is of particular utility in the loop black hole because it does not directly rely upon Einstein's field equations. We elucidate some of the interesting and counterintuitive properties of the loop black hole, and corroborate our results using an alternate model of mass inflation due to Ori.

  16. One-loop calculations with massive particles

    International Nuclear Information System (INIS)

    Oldenborgh, G.J. van.

    1990-01-01

    In this thesis some techniques for performing one-loop calculations with massive particles are presented. Numerical techniques are presented necessary for evaluating one-loop integrals which occur in one-loop calculations of photon-photon scattering. The algorithms have been coded in FORTRAN (to evaluate the scalar integrals) and the algebraic language FORM (to reduce the tensor integrals to scalar integrals). Applications are made in the theory of the strong interaction, QCD, i.e. in handling one-loop integrals with massive particles, in order to regulate the infinities by mass parameters encountered in this theory. However this simplifies the computation considerably, the description of the proton structure functions have to be renormalized in order to obtain physical results. This renormalization is different from the published results for the gluon and thus has to be redone. The first physics results that have been obtained with these new methods are presented. These concern heavy quark production in semi-leptonic interactions, for instance neutrino charm production and top production at the electron-proton (ep) collider HERA and the proposed LEP/LHC combination. Total and differential cross-sections for one-loop corrections to top production at the HERA and proposed LEP/HLC ep colliders are given and structure functions for charmed quark production are compared with previously published results. (author). 58 refs.; 18 figs.; 5 tabs

  17. Bootstrapping the Three-Loop Hexagon

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /CERN /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  18. Logical inference techniques for loop parallelization

    KAUST Repository

    Oancea, Cosmin E.

    2012-01-01

    This paper presents a fully automatic approach to loop parallelization that integrates the use of static and run-time analysis and thus overcomes many known difficulties such as nonlinear and indirect array indexing and complex control flow. Our hybrid analysis framework validates the parallelization transformation by verifying the independence of the loop\\'s memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S = Ø, where S is a set expression representing array indexes. Using a language instead of an array-abstraction representation for S results in a smaller number of conservative approximations but exhibits a potentially-high runtime cost. To alleviate this cost we introduce a language translation F from the USR set-expression language to an equally rich language of predicates (F(S) ⇒ S = Ø). Loop parallelization is then validated using a novel logic inference algorithm that factorizes the obtained complex predicates (F(S)) into a sequence of sufficient-independence conditions that are evaluated first statically and, when needed, dynamically, in increasing order of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECTCLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers. Copyright © 2012 ACM.

  19. Variational solution of the loop equation in QCD

    International Nuclear Information System (INIS)

    Agishtein, M.E.; Migdal, A.A.

    1988-01-01

    A new technique for the large N loop equation of QCD is worked out. The Wilson loop W(C) is approximated by a Gaussian functional. The parameters are fitted to the loop equation, after which the equation is statisfied up to 0.2%. The resulting Wilson loop corresponds to linearly rising Regge trajectories. The problem of tachyon is still present, but it could be cured by iteration of the loop equation starting from this variational solution. (orig.)

  20. Variational solution of the loop equation in QCD

    International Nuclear Information System (INIS)

    Agishtein, M.E.; Migdal, A.A.

    1988-01-01

    A new technique for the large N loop equation of QCD is worked out. The Wilson loop W(C) is approximated by a Gaussian functional. The parameters are fitted to the loop equation, after which the equation is satisfied up to 0.2%. The resulting Wilson loop corresponds to linearly rising Regge trajectories. The problem of tachyon is still present, but it could be cured by iteration of the loop equation starting from this variational solution

  1. BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marco S. [Institut für Physik, Humboldt-Universität zu Berlin,Newtonstraße 15, 12489 Berlin (Germany); Griguolo, Luca [Dipartimento di Fisica e Scienze della Terra, Università di Parmaand INFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Leoni, Matias [Physics Department, FCEyN-UBA & IFIBA-CONICETCiudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Penati, Silvia [Dipartimento di Fisica, Università di Milano-Bicoccaand INFN, Sezione di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenzeand INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)

    2014-06-19

    We study a family of circular BPS Wilson loops in N=6 super Chern-Simons-matter theories, generalizing the usual 1/2-BPS circle. The scalar and fermionic couplings depend on two deformation parameters and these operators can be considered as the ABJ(M) counterpart of the DGRT latitudes defined in N=4 SYM. We perform a complete two-loop analysis of their vacuum expectation value, discuss the appearance of framing-like phases and propose a general relation with cohomologically equivalent bosonic operators. We make an all-loop proposal for computing the Bremsstrahlung function associated to the 1/2-BPS cusp in terms of these generalized Wilson loops. When applied to our two-loop result it reproduces the known expression. Finally, we comment on the generalization of this proposal to the bosonic 1/6-BPS case.

  2. Autopilot for frequency-modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il [Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2015-10-15

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  3. Autopilot for frequency-modulation atomic force microscopy.

    Science.gov (United States)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  4. Hawking radiation from a spherical loop quantum gravity black hole

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Pullin, Jorge

    2014-01-01

    We introduce quantum field theory on quantum space-times techniques to characterize the quantum vacua as a first step toward studying black hole evaporation in spherical symmetry in loop quantum gravity and compute the Hawking radiation. We use as quantum space-time the recently introduced exact solution of the quantum Einstein equations in vacuum with spherical symmetry and consider a spherically symmetric test scalar field propagating on it. The use of loop quantum gravity techniques in the background space-time naturally regularizes the matter content, solving one of the main obstacles to back-reaction calculations in more traditional treatments. The discreteness of area leads to modifications of the quantum vacua, eliminating the trans-Planckian modes close to the horizon, which in turn eliminates all singularities from physical quantities, like the expectation value of the stress–energy tensor. Apart from this, the Boulware, Hartle–Hawking and Unruh vacua differ little from the treatment on a classical space-time. The asymptotic modes near scri are reproduced very well. We show that the Hawking radiation can be computed, leading to an expression similar to the conventional one but with a high frequency cutoff. Since many of the conclusions concern asymptotic behavior, where the spherical mode of the field behaves in a similar way as higher multipole modes do, the results can be readily generalized to non spherically symmetric fields. (paper)

  5. Measurement of the open loop plasma equilibrium response in TCV

    International Nuclear Information System (INIS)

    Coutlis, A.; Bandyopadhyay, I.; Lister, J.B.; Vyas, P.; Albanese, R.; Limebeer, D.J.N.; Villone, F.; Wainwright, J.P.

    1999-01-01

    A new technique and results are presented for the estimation of the open loop frequency response of the plasma on TCV. Voltages were applied to poloidal field coils and the resulting plasma current, position and shape related parameters were measured. The results are compared with the CREATE-L model, and good agreement is confirmed. The results are a significant advance on previous comparisons with closed loop data, which were limited by the role of feedback in the system. A simpler circuit equation model has also been developed in order to understand the reasons for the good agreement and identify which plasma properties are important in determining the response. The reasons for the good agreement with this model are discussed. An alternative modelling method has been developed, combining features of both the theoretical and experimental techniques. Its advantage is that it incorporates well defined knowledge of the electromagnetic properties of the tokamak with experimental data to derive plasma related parameters. This new model provides further insight into the plasma behaviour. (author)

  6. Close-loop Dynamic Stall Control on a Pitching Airfoil

    Science.gov (United States)

    Giles, Ian; Corke, Thomas

    2017-11-01

    A closed-loop control scheme utilizing a plasma actuator to control dynamic stall is presented. The plasma actuator is located at the leading-edge of a pitching airfoil. It initially pulses at an unsteady frequency that perturbs the boundary layer flow over the suction surface of the airfoil. As the airfoil approaches and enters stall, the amplification of the unsteady disturbance is detected by an onboard pressure sensor also located near the leading edge. Once detected, the actuator is switched to a higher voltage control state that in static airfoil experiments would reattach the flow. The threshold level of the detection is a parameter in the control scheme. Three stall regimes were examined: light, medium, and deep stall, that were defined by their stall penetration angles. The results showed that in general, the closed-loop control scheme was effective at controlling dynamic stall. The cycle-integrated lift improved in all cases, and increased by as much as 15% at the lowest stall penetration angle. As important, the cycle-integrated aerodynamic damping coefficient also increased in all cases, and was made to be positive at the light stall regime where it traditionally is negative. The latter is important in applications where negative damping can lead to stall flutter.

  7. Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation

    Directory of Open Access Journals (Sweden)

    Bryce eBeverlin II

    2013-02-01

    Full Text Available Seizure control using deep brain stimulation (DBS provides an alternative therapy to patients with intractable and drug resistant epilepsy. This paper presents novel DBS stimulus protocols to disrupt seizures. Two protocols are presented: open-loop stimulation and a closed-loop feedback system utilizing measured firing rates to adjust stimulus frequency. Stimulation suppression is demonstrated in a computational model using 3000 excitatory Morris-Lecar model neurons connected with depressing synapses. Cells are connected using second order network topology to simulate network topologies measured in cortical networks. The network spontaneously switches from tonic to clonic as synaptic strengths and tonic input to the neurons decreases. To this model we add periodic stimulation pulses to simulate DBS. Periodic forcing can synchronize or desynchronize an oscillating population of neurons, depending on the stimulus frequency and amplitude. Therefore, it is possible to either extend or truncate the tonic or clonic phases of the seizure. Stimuli applied at the firing rate of the neuron generally synchronize the population while stimuli slightly slower than the firing rate prevent synchronization. We present an adaptive stimulation algorithm that measures the firing rate of a neuron and adjusts the stimulus to maintain a relative stimulus frequency to firing frequency and demonstrate it in a computational model of a tonic-clonic seizure. This adaptive algorithm can affect the duration of the tonic phase using much smaller stimulus amplitudes than the open-loop control.

  8. Flat Knitting Loop Deformation Simulation Based on Interlacing Point Model

    Directory of Open Access Journals (Sweden)

    Jiang Gaoming

    2017-12-01

    Full Text Available In order to create realistic loop primitives suitable for the faster CAD of the flat-knitted fabric, we have performed research on the model of the loop as well as the variation of the loop surface. This paper proposes an interlacing point-based model for the loop center curve, and uses the cubic Bezier curve to fit the central curve of the regular loop, elongated loop, transfer loop, and irregular deformed loop. In this way, a general model for the central curve of the deformed loop is obtained. The obtained model is then utilized to perform texture mapping, texture interpolation, and brightness processing, simulating a clearly structured and lifelike deformed loop. The computer program LOOP is developed by using the algorithm. The deformed loop is simulated with different yarns, and the deformed loop is applied to design of a cable stitch, demonstrating feasibility of the proposed algorithm. This paper provides a loop primitive simulation method characterized by lifelikeness, yarn material variability, and deformation flexibility, and facilitates the loop-based fast computer-aided design (CAD of the knitted fabric.

  9. Transition probability spaces in loop quantum gravity

    Science.gov (United States)

    Guo, Xiao-Kan

    2018-03-01

    We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.

  10. Solar flare loops observations and interpretations

    CERN Document Server

    Huang, Guangli; Ji, Haisheng; Ning, Zongjun

    2018-01-01

    This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.

  11. Automatic Loop Parallelization via Compiler Guided Refactoring

    DEFF Research Database (Denmark)

    Larsen, Per; Ladelsky, Razya; Lidman, Jacob

    For many parallel applications, performance relies not on instruction-level parallelism, but on loop-level parallelism. Unfortunately, many modern applications are written in ways that obstruct automatic loop parallelization. Since we cannot identify sufficient parallelization opportunities...... for these codes in a static, off-line compiler, we developed an interactive compilation feedback system that guides the programmer in iteratively modifying application source, thereby improving the compiler’s ability to generate loop-parallel code. We use this compilation system to modify two sequential...... benchmarks, finding that the code parallelized in this way runs up to 8.3 times faster on an octo-core Intel Xeon 5570 system and up to 12.5 times faster on a quad-core IBM POWER6 system. Benchmark performance varies significantly between the systems. This suggests that semi-automatic parallelization should...

  12. Microwave emission from flaring magnetic loops

    International Nuclear Information System (INIS)

    Vlahos, L.

    1980-01-01

    The microwave emission from a flaring loop is considered. In particular the author examines the question: What will be the characteristics of the radio emission at centimeter wavelengths from a small compact flaring loop when the mechanism which pumps magnetic energy into the plasma in the form of heating and/or electron acceleration satisfies the conditions: (a) the magnetic energy is released in a small volume compared to the volume of the loop, and the rate at which magnetic energy is transformed into plasma energy is faster than the energy losses from the same volume. This causes a local enhancement of the temperature by as much as one or two orders of magnitude above the coronal temperature; (b) The bulk of the energy released goes into heating the plasma and heats primarily the electrons. (Auth.)

  13. Experimental loop for SH2 (LECS)

    International Nuclear Information System (INIS)

    Strehar, N.R.; Bruzzoni, Pablo; Moras, J.J.; Cogozzo, E.O.

    1981-01-01

    An experimental loop is described for circulation of SH 2 that operates at 2 x 10 6 Pascal and 33 deg C. It was designed and constructed with the purpose of experimentally studying the hydraulic instability phenomenon that can be detected in cold isotopic exchange columns in the Girdler-Sulfide (GS) process of heavy water production. The main features of the different components of the loop are described, as well as the materials, the measurement and control instruments and the auxiliary equipment used, and finally the measuring methods to qualify and quantify the formation of froth. Furthermore, the loop's transportable metallic container is described, which allows to transport and connect it to CNEA's experimental heavy water plant or to any other heavy water plants using the GS method. Some tests made with inert gases that intended to verify the equipment's performance and to select the most adequate sieve trays for its operation are discussed. (M.E.L.) [es

  14. Automated one-loop calculations with GOSAM

    International Nuclear Information System (INIS)

    Cullen, Gavin; Greiner, Nicolas; Heinrich, Gudrun; Reiter, Thomas; Luisoni, Gionata

    2011-11-01

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)

  15. Automated one-loop calculations with GOSAM

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Gavin [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron, Zeuthen [DESY; Germany; Greiner, Nicolas [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinrich, Gudrun; Reiter, Thomas [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, Gionata [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, Giovanni [New York City Univ., NY (United States). New York City College of Technology; New York City Univ., NY (United States). The Graduate School and University Center; Tramontano, Francesco [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2011-11-15

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)

  16. Covariant diagrams for one-loop matching

    International Nuclear Information System (INIS)

    Zhang, Zhengkang

    2016-10-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  17. Covariant diagrams for one-loop matching

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengkang [Michigan Center for Theoretical Physics (MCTP), University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany)

    2017-05-30

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  18. Defect networks and supersymmetric loop operators

    Energy Technology Data Exchange (ETDEWEB)

    Bullimore, Mathew [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2015-02-10

    We consider topological defect networks with junctions in A{sub N−1} Toda CFT and the connection to supersymmetric loop operators in N=2 theories of class S on a four-sphere. Correlation functions in the presence of topological defect networks are computed by exploiting the monodromy of conformal blocks, generalising the notion of a Verlinde operator. Concentrating on a class of topological defects in A{sub 2} Toda theory, we find that the Verlinde operators generate an algebra whose structure is determined by a set of generalised skein relations that encode the representation theory of a quantum group. In the second half of the paper, we explore the dictionary between topological defect networks and supersymmetric loop operators in the N=2{sup ∗} theory by comparing to exact localisation computations. In this context, the the generalised skein relations are related to the operator product expansion of loop operators.

  19. Covariant diagrams for one-loop matching

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-10-15

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  20. Covariant diagrams for one-loop matching

    International Nuclear Information System (INIS)

    Zhang, Zhengkang

    2017-01-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  1. Current-Loop Control for the Pitching Axis of Aerial Cameras via an Improved ADRC

    Directory of Open Access Journals (Sweden)

    BingYou Liu

    2017-01-01

    Full Text Available An improved active disturbance rejection controller (ADRC is designed to eliminate the influences of the current-loop for the pitching axis control system of an aerial camera. The improved ADRC is composed of a tracking differentiator (TD, an improved extended state observer (ESO, an improved nonlinear state error feedback (NLSEF, and a disturbance compensation device (DCD. The TD is used to arrange transient process. The improved ESO is utilized to observe the state extended by nonlinear dynamics, model uncertainty, and external disturbances. Overtime variation of the current-loop can be predicted by the improved ESO. The improved NLSEF is adopted to restrain the residual errors of the current-loop. The DCD is used to compensate the overtime variation of the current-loop in real time. The improved ADRC is designed based on a new nonlinear function newfal(·. This function exhibits enhanced continuity and smoothness compared to previously available nonlinear functions. Thus, the new nonlinear function can effectively decrease the high-frequency flutter phenomenon. The improved ADRC exhibits improved control performance, and disturbances of the current-loop can be eliminated by the improved ADRC. Finally, simulation experiments are performed. Results show that the improved ADRC displayed better performance than the proportional integral (PI control strategy and traditional ADRC.

  2. METAL:LIC target failure diagnostics by means of liquid metal loop vibrations monitoring

    International Nuclear Information System (INIS)

    Dementjevs, S.; Barbagallo, F.; Wohlmuther, M.; Thomsen, K.; Zik, A.; Nikoluskins, R.

    2014-01-01

    A target mock-up, developed as an European Spallation Source comparative solution, (METAL:LIC) has been tested in a dedicated lead bismuth eutectic (LBE) loop in the Institute of Physics at the University of Latvia. In particular, the feasibility of diagnostic vibration monitoring has been investigated. The loop parameters were: operation temperature 300°C; tubing ∅100 mm, overall length 8 m; electromagnetic pump based on permanent magnets, flow rate 180 kg/s. With sufficient static pressure of a few bars, cavitation was avoided. The vibrations in the loop were measured and analyzed. Several vibrational characteristics of the set-up were derived including resonance frequencies and the dependence of excited vibrations on flow conditions and the pump rotation speed. A high sensitivity to obstructions in the loop has been confirmed, and several indicators for target failure diagnostics were tested and compared. A problem in the electromagnetic pump's gear box has been detected in a very early state long before it manifested itself in the operation of the loop. The vibration monitoring has been demonstrated as a sensitive and reliable probe for the target failure diagnostics. (author)

  3. Proteins mediating DNA loops effectively block transcription.

    Science.gov (United States)

    Vörös, Zsuzsanna; Yan, Yan; Kovari, Daniel T; Finzi, Laura; Dunlap, David

    2017-07-01

    Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop-mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  4. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  5. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    Directory of Open Access Journals (Sweden)

    David LaBerge

    2017-06-01

    Full Text Available Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz. Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  6. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  7. Two-point functions in (loop) quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca; Oriti, Daniele [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Gielen, Steffen [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2011-07-01

    We discuss the path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions, with particular but non-exclusive reference to loop quantum cosmology (LQC). Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.

  8. Two-point functions in (loop) quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca; Gielen, Steffen; Oriti, Daniele, E-mail: calcagni@aei.mpg.de, E-mail: gielen@aei.mpg.de, E-mail: doriti@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany)

    2011-06-21

    The path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions is discussed, with particular but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.

  9. Two-point functions in (loop) quantum cosmology

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Gielen, Steffen; Oriti, Daniele

    2011-01-01

    The path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions is discussed, with particular but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.

  10. Hardware-in-the-loop grid simulator system and method

    Science.gov (United States)

    Fox, John Curtiss; Collins, Edward Randolph; Rigas, Nikolaos

    2017-05-16

    A hardware-in-the-loop (HIL) electrical grid simulation system and method that combines a reactive divider with a variable frequency converter to better mimic and control expected and unexpected parameters in an electrical grid. The invention provides grid simulation in a manner to allow improved testing of variable power generators, such as wind turbines, and their operation once interconnected with an electrical grid in multiple countries. The system further comprises an improved variable fault reactance (reactive divider) capable of providing a variable fault reactance power output to control a voltage profile, therein creating an arbitrary recovery voltage. The system further comprises an improved isolation transformer designed to isolate zero-sequence current from either a primary or secondary winding in a transformer or pass the zero-sequence current from a primary to a secondary winding.

  11. Accident analysis of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.; Chi, D. Y

    1998-03-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. The HANARO fuel test loop was designed to match the CANDU and PWR fuel operating conditions. The accident analysis was performed by RELAP5/MOD3 code based on FTL system designs and determined the detail engineering specification of in-pile test section and out-pile systems. The accident analysis results of FTL system could be used for the fuel and materials designer to plan the irradiation testing programs. (author). 23 refs., 20 tabs., 178 figs.

  12. A keyboard control method for loop measurement

    International Nuclear Information System (INIS)

    Gao, Z.W.

    1994-01-01

    This paper describes a keyboard control mode based on the DEC VAX computer. The VAX Keyboard code can be found under running of a program was developed. During the loop measurement or multitask operation, it ables to be distinguished from a keyboard code to stop current operation or transfer to another operation while previous information can be held. The combining of this mode, the author successfully used one key control loop measurement for test Dual Input Memory module which is used in a rearrange Energy Trigger system for LEP 8 Bunch operation

  13. Anomaly freedom in perturbative loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.

    2008-01-01

    A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.

  14. Logical inference techniques for loop parallelization

    DEFF Research Database (Denmark)

    Oancea, Cosmin Eugen; Rauchwerger, Lawrence

    2012-01-01

    the parallelization transformation by verifying the independence of the loop's memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S={}, where S is a set expression representing array indexes. Using...... of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECT-CLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers....

  15. Description of the sodium loop ML-3

    International Nuclear Information System (INIS)

    Torre, de la M.; Melches, I; Lapena, J.; Martinez, T.A.; Miguel, de D.; Duran, F.

    1979-01-01

    The sodium loop ML-3 is described. The main objective of this facility is to obtain mechanical property data for LMFBR materials in creep and low cycle fatigue testing in flowing sodium. ML-3 includes 10 test stations for creep and two for fatigue. It is possible to operate simultaneously at three different temperature levels. The maximum operating temperature is 650 deg C at flow velocities up to 5 m/s. The ML-3 loop has been located in a manner that permits the fill/dump tank cover gas and security systems to be shared with an earlier circuit, the ML-1. (author)

  16. Tuning OpenACC loop execution

    KAUST Repository

    Feki, Saber

    2017-01-07

    The purpose of this chapter is to help OpenACC developer who is already familiar with the basic and essential directives to further improve his code performance by adding more descriptive clauses to OpenACC loop constructs. At the end of this chapter the reader will: • Have a better understanding of the purpose of the OpenACC loop construct and its associated clauses illustrated with use cases • Use the acquired knowledge in practice to further improve the performance of OpenACC accelerated codes

  17. Topspin networks in loop quantum gravity

    International Nuclear Information System (INIS)

    Duston, Christopher L

    2012-01-01

    We discuss the extension of loop quantum gravity to topspin networks, a proposal which allows topological information to be encoded in spin networks. We will show that this requires minimal changes to the phase space, C*-algebra and Hilbert space of cylindrical functions. We will also discuss the area and Hamiltonian operators, and show how they depend on the topology. This extends the idea of ‘background independence’ in loop quantum gravity to include topology as well as geometry. It is hoped this work will confirm the usefulness of the topspin network formalism and open up several new avenues for research into quantum gravity. (paper)

  18. Loop quantum gravity in asymptotically flat spaces

    International Nuclear Information System (INIS)

    Arnsdorf, M.

    2000-01-01

    This thesis describes applications and extensions of the loop variable approach to non-perturbative quantum gravity. The common theme of the work presented, is the need to generalise loop quantum gravity to be applicable in cases where space is asymptotically flat, and no longer compact as is usually assumed. This is important for the study of isolated gravitational systems. It also presents a natural context in which to search for the semi-classical limit, one of the main outstanding problems in loop quantum gravity. In the first part of the thesis we study how isolated gravitational systems can be attributed particle-like properties. In particular, we show how spinorial states can arise in pure loop quantum gravity if spatial topology is non-trivial, thus confirming an old conjecture of Friedman and Sorkin. Heuristically, this corresponds to the idea that we can rotate isolated regions of spatial topology relative to the environment at infinity, and that only a 4π-rotation will take us back to the original configuration. To do this we extend the standard loop quantum gravity formalism by introducing a compactification of our non-compact spatial manifold, and study the knotting of embedded graphs. The second part of the thesis takes a more systematic approach to the study of loop quantum gravity on non-compact spaces. We look for new representations of the loop algebra, which give rise to quantum theories that are inequivalent to the standard one. These theories naturally describe excitations of a fiducial background state, which is specified via the choice of its vacuum expectation values. In particular, we can choose background states that describe the geometries of non-compact manifolds. We also discuss how suitable background states can be constructed that can approximate classical phase space data, in our case holonomies along embedded paths and geometrical quantities related to areas and volumes. These states extend the notion of the weave and provide a

  19. Automation of one-loop QCD corrections

    CERN Document Server

    Hirschi, Valentin; Frixione, Stefano; Garzelli, Maria Vittoria; Maltoni, Fabio; Pittau, Roberto

    2011-01-01

    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.

  20. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation.

    Science.gov (United States)

    Grant, Peadar F; Lowery, Madeleine M

    2013-07-01

    A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.