WorldWideScience

Sample records for loop formation probability

  1. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.

    Science.gov (United States)

    Sloma, Michael F; Mathews, David H

    2016-12-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. © 2016 Sloma and Mathews; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Transition probability spaces in loop quantum gravity

    CERN Document Server

    Guo, Xiao-Kan

    2016-01-01

    We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is achieved by first checking such structures in covariant quantum mechanics, and then passing to spin foam models via the general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the Hilbert space of the canonical theory and the relevant quantum logical structure. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize property transitions and causality in this categorical context in connection with presheaves on quantaloids and respectively causal categories. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.

  3. Emptiness Formation Probability

    Science.gov (United States)

    Crawford, Nicholas; Ng, Stephen; Starr, Shannon

    2016-08-01

    We present rigorous upper and lower bounds on the emptiness formation probability for the ground state of a spin-1/2 Heisenberg XXZ quantum spin system. For a d-dimensional system we find a rate of decay of the order {exp(-c L^{d+1})} where L is the sidelength of the box in which we ask for the emptiness formation event to occur. In the {d=1} case this confirms previous predictions made in the integrable systems community, though our bounds do not achieve the precision predicted by Bethe ansatz calculations. On the other hand, our bounds in the case {d ≥ 2} are new. The main tools we use are reflection positivity and a rigorous path integral expansion, which is a variation on those previously introduced by Toth, Aizenman-Nachtergaele and Ueltschi.

  4. Probability of inflation in loop quantum cosmology

    Science.gov (United States)

    Ashtekar, Abhay; Sloan, David

    2011-12-01

    Inflationary models of the early universe provide a natural mechanism for the formation of large scale structure. This success brings to forefront the question of naturalness: Does a sufficiently long slow roll inflation occur generically or does it require a careful fine tuning of initial parameters? In recent years there has been considerable controversy on this issue (Hollands and Wald in Gen Relativ Gravit, 34:2043, 2002; Kofman et al. in J High Energy Phys 10:057, 2002); (Gibbons and Turok in Phys Rev D 77:063516, 2008). In particular, for a quadratic potential, Kofman et al. (J High Energy Phys 10:057, 2002) have argued that the probability of inflation with at least 65 e-foldings is close to one, while Gibbons and Turok (Phys Rev D 77:063516, 2008) have argued that this probability is suppressed by a factor of ~10-85. We first clarify that such dramatically different predictions can arise because the required measure on the space of solutions is intrinsically ambiguous in general relativity. We then show that this ambiguity can be naturally resolved in loop quantum cosmology (LQC) because the big bang is replaced by a big bounce and the bounce surface can be used to introduce the structure necessary to specify a satisfactory measure. The second goal of the paper is to present a detailed analysis of the inflationary dynamics of LQC using analytical and numerical methods. By combining this information with the measure on the space of solutions, we address a sharper question than those investigated in Kofman et al. (J High Energy Phys 10:057, 2002), Gibbons and Turok (Phys Rev D 77:063516, 2008), Ashtekar and Sloan (Phys Lett B 694:108, 2010): What is the probability of a sufficiently long slow roll inflation which is compatible with the seven year WMAP data? We show that the probability is very close to 1. The material is so organized that cosmologists who may be more interested in the inflationary dynamics in LQC than in the subtleties associated with

  5. The Black Hole Formation Probability

    CERN Document Server

    Clausen, Drew; Ott, Christian D

    2014-01-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. Using the observed BH mass distribution from Galactic X-ray binaries, we derive the probability that a star will make a BH as a function of its ZAMS mass, $P_{\\rm BH}(M_{\\rm ZAMS})$. We explore possible biases in the observed BH mass distribution and find that this sample is best suited for studying BH formation in stars with ZAMS masses in the range $12-...

  6. Probability current tornado loops in three-dimensional scattering

    CERN Document Server

    Exner, P; Exner, Pavel; Seba, Petr

    1998-01-01

    We consider scattering of a three-dimensional particle on a finite family of delta potentials. For some parameter values the scattering wavenctions exhibit nodal lines in the form of closed loops, which may touch but do not entangle. The corresponding probability current forms vortical singularities around these lines; if the scattered particle is charged, this gives rise to magnetic flux loops. The conclusions extend to scattering on hard obstacles or smooth potentials.

  7. Looping probabilities of elastic chains: a path integral approach.

    Science.gov (United States)

    Cotta-Ramusino, Ludovica; Maddocks, John H

    2010-11-01

    We consider an elastic chain at thermodynamic equilibrium with a heat bath, and derive an approximation to the probability density function, or pdf, governing the relative location and orientation of the two ends of the chain. Our motivation is to exploit continuum mechanics models for the computation of DNA looping probabilities, but here we focus on explaining the novel analytical aspects in the derivation of our approximation formula. Accordingly, and for simplicity, the current presentation is limited to the illustrative case of planar configurations. A path integral formalism is adopted, and, in the standard way, the first approximation to the looping pdf is obtained from a minimal energy configuration satisfying prescribed end conditions. Then we compute an additional factor in the pdf which encompasses the contributions of quadratic fluctuations about the minimum energy configuration along with a simultaneous evaluation of the partition function. The original aspects of our analysis are twofold. First, the quadratic Lagrangian describing the fluctuations has cross-terms that are linear in first derivatives. This, seemingly small, deviation from the structure of standard path integral examples complicates the necessary analysis significantly. Nevertheless, after a nonlinear change of variable of Riccati type, we show that the correction factor to the pdf can still be evaluated in terms of the solution to an initial value problem for the linear system of Jacobi ordinary differential equations associated with the second variation. The second novel aspect of our analysis is that we show that the Hamiltonian form of these linear Jacobi equations still provides the appropriate correction term in the inextensible, unshearable limit that is commonly adopted in polymer physics models of, e.g. DNA. Prior analyses of the inextensible case have had to introduce nonlinear and nonlocal integral constraints to express conditions on the relative displacement of the end

  8. Nucleosome repositioning via loop formation

    CERN Document Server

    Kulic, M L

    2002-01-01

    Active (catalysed) and passive (intrinsic) nucleosome repositioning is known to be a crucial event during the transcriptional activation of certain eucaryotic genes. Here we consider theoretically the intrinsic mechanism and study in detail the energetics and dynamics of DNA-loop-mediated nucleosome repositioning, as previously proposed by Schiessel et al. (H. Schiessel, J. Widom, R. F. Bruinsma, and W. M. Gelbart. 2001. {\\it Phys. Rev. Lett.} 86:4414-4417). The surprising outcome of the present study is the inherent nonlocality of nucleosome motion within this model -- being a direct physical consequence of the loop mechanism. On long enough DNA templates the longer jumps dominate over the previously predicted local motion, a fact that contrasts simple diffusive mechanisms considered before. The possible experimental outcome resulting from the considered mechanism is predicted, discussed and compared to existing experimental findings.

  9. Formation of Chromosomal Domains by Loop Extrusion

    Directory of Open Access Journals (Sweden)

    Geoffrey Fudenberg

    2016-05-01

    Full Text Available Topologically associating domains (TADs are fundamental structural and functional building blocks of human interphase chromosomes, yet the mechanisms of TAD formation remain unclear. Here, we propose that loop extrusion underlies TAD formation. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. Using polymer simulations, we show that this model produces TADs and finer-scale features of Hi-C data. Each TAD emerges from multiple loops dynamically formed through extrusion, contrary to typical illustrations of single static loops. Loop extrusion both explains diverse experimental observations—including the preferential orientation of CTCF motifs, enrichments of architectural proteins at TAD boundaries, and boundary deletion experiments—and makes specific predictions for the depletion of CTCF versus cohesin. Finally, loop extrusion has potentially far-ranging consequences for processes such as enhancer-promoter interactions, orientation-specific chromosomal looping, and compaction of mitotic chromosomes.

  10. Spontaneous fluxoid formation in superconducting loops

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Rivers, R.

    2009-01-01

    a scaling relation on the quenching time τQ, as one would expect if the transition took place as fast as causality permits. However, the observed Zurek-Kibble scaling exponent σ=0.62±0.15 is two times larger than anticipated for large loops. Assuming Gaussian winding number densities we show......We report on the experimental verification of the Zurek-Kibble scenario in an isolated superconducting ring over a wide parameter range. The probability of creating a single flux quantum spontaneously during the fast normal-superconducting phase transition of a wide Nb loop clearly follows...

  11. Pattern formation, logistics, and maximum path probability

    Science.gov (United States)

    Kirkaldy, J. S.

    1985-05-01

    The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are

  12. Exciton-Dependent Pre-formation Probability of Composite Particles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Shang; WANG Ji-Min; DUAN Jun-Feng

    2007-01-01

    In Iwamoto-Harada model the whole phase space is full of fermions. When the momentum distributions of the exciton states are taken into account, the pre-formation probability of light composite particles could be improved,and the exciton state-dependent pre-formation probability has been proposed. The calculated results indicate that the consideration of the momentum distribution enhances the pre-formation probability of [1,m] configuration, and suppresses that of [l > 1, m] configurations seriously.

  13. Hardware-in-the-Loop Simulation for Spacecraft Formation Flying

    Directory of Open Access Journals (Sweden)

    Jinjun Shan

    2010-01-01

    Full Text Available This paper presents a hardware-in-the-loop (HITL simulation approach for multiple spacecraft formation flying. Considering a leader-follower formation flying configuration, a Fuzzy Logic controller is developed first to maintain the desired formation shape under external perturbations and the initial position offsets. Cold-gas on/off thrusters are developed to be introduced to the simulation loop, and the HITL simulations are conducted to validate the effectiveness of the proposed simulation configuration and Fuzzy Logic control.

  14. The Role of Entropic Effects on DNA Loop Formation

    Science.gov (United States)

    Wilson, David; Tkachenko, Alexei; Lillian, Todd; Perkins, Noel; Meiners, Jens Christian

    2009-03-01

    The formation of protein mediated DNA loops often regulates gene expression. Typically, a protein is simultaneously bound to two DNA operator sites. An example is the lactose repressor which binds to the Lac operon of E. coli. We characterize the mechanics of this system by calculating the free energy cost of loop formation. We construct a Hamiltonian that describes the change in DNA bending energy due to linear perturbations about the looped and open states, starting from a non-linear mechanical rod model that determines the shape and bending energy of the inter-operator DNA loop while capturing the intrinsic curvature and sequence-dependent elasticity of the DNA. The crystal structure of the LacI protein provides the boundary conditions for the DNA. We then calculate normal modes of the open and closed loops to account for the thermal fluctuations. The ratio of determinants of the two Hamiltonians yields the partition function, and the enthalphic and entropic cost of looping. This calculation goes beyond standard elastic energy models because it fully accounts for the substantial entropic differences between the two states. It also includes effects of sequence dependent curvature and stiffness and allows anisotropic variations in persistence length. From the free energy we then calculate the J-factor and ratio of loop lifetimes.

  15. Formation of chromosomal domains in interphase by loop extrusion

    Science.gov (United States)

    Fudenberg, Geoffrey

    While genomes are often considered as one-dimensional sequences, interphase chromosomes are organized in three dimensions with an essential role for regulating gene expression. Recent studies have shown that Topologically Associating Domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes. Despite observations that architectural proteins, including CTCF, demarcate and maintain the borders of TADs, the mechanisms underlying TAD formation remain unknown. Here we propose that loop extrusion underlies the formation TADs. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops, but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. This process dynamically forms loops of various sizes within but not between TADs. Using polymer simulations, we find that loop extrusion can produce TADs as determined by our analyses of the highest-resolution experimental data. Moreover, we find that loop extrusion can explain many diverse experimental observations, including: the preferential orientation of CTCF motifs and enrichments of architectural proteins at TAD boundaries; TAD boundary deletion experiments; and experiments with knockdown or depletion of CTCF, cohesin, and cohesin-loading factors. Together, the emerging picture from our work is that TADs are formed by rapidly associating, growing, and dissociating loops, presenting a clear framework for understanding interphase chromosomal organization.

  16. Solving the puzzle of interstitial loop formation in bcc Iron.

    Science.gov (United States)

    Xu, Haixuan; Stoller, Roger E; Osetsky, Yury N; Terentyev, Dmitry

    2013-06-28

    The interstitial loop is a unique signature of radiation damage in structural materials for nuclear and other advanced energy systems. Unlike other bcc metals, two types of interstitial loops, 1/2 and , are formed in bcc iron and its alloys. However, the mechanism by which interstitial dislocation loops are formed has remained undetermined since they were first observed more than fifty years ago. We describe our atomistic simulations that have provided the first direct observation of loop formation. The process was initially observed using our self-evolving atomistic kinetic Monte Carlo method, and subsequently confirmed using molecular dynamics simulations. Formation of loops involves a distinctly atomistic interaction between two 1/2 loops, and does not follow the conventional assumption of dislocation theory, which is Burgers vector conservation between the reactants and the product. The process observed is different from all previously proposed mechanisms. Thus, our observations might provide a direct link between experiments and simulations and new insights into defect formation that may provide a basis to increase the radiation resistance of these strategic materials.

  17. Formation and Evolution of Structure in Loop Cosmology

    CERN Document Server

    Bojowald, M; Kagan, M; Singh, P; Skirzewski, A; Bojowald, Martin; Hernandez, Hector; Kagan, Mikhail; Singh, Parampreet; Skirzewski, Aureliano

    2006-01-01

    Inhomogeneous cosmological perturbation equations are derived in loop quantum gravity, taking into account corrections in particular in gravitational parts. This provides a framework for calculating the evolution of modes in structure formation scenarios related to inflationary or bouncing models. Applications here are corrections to the Newton potential and to the evolution of large scale modes which imply non-conservation of curvature perturbations possibly noticeable in a running spectral index. These effects are sensitive to quantization procedures and test the characteristic behavior of correction terms derived from quantum gravity.

  18. Wave-like Formation of Hot Loop Arcades

    CERN Document Server

    Reva, Anton; Zimovets, Ivan; Bogachev, Sergey; Kuzin, Sergey

    2015-01-01

    We present observations of hot arcades made with the Mg XII spectroheliograph onboard the CORONAS-F mission, which provides monochromatic images of hot plasma in the Mg XII 8.42 A resonance line. The arcades were observed to form above the polarity inversion line between Active Regions NOAA 09847 and 09848 at four successive episodes: at 09:18, 14:13, and 22:28 UT on 28 February 2002, and at 00:40 UT on 1 March 2002. The arcades all evolved in the same way: a) a small flare (precursor) appeared near the edge of the still invisible arcade, b) the arcade brightened in a wave-like manner - closer loops brightened earlier, and c) the arcade intensity gradually decreased in $\\approx$ 1 h. The estimated wave speed was $\\approx$ 700 km s$^{-1}$, and the distance between the hot loops was $\\approx$ 50 Mm. The arcades formed without visible changes in their magnetic structure. The arcades were probably heated up by the instabilities of the current sheet above the arcade, which were caused by an MHD wave excited by the...

  19. probably

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    【说词】1. He can probably tell us the truth.2. Will it rain this afternoong ? Probably【解语】作副词,意为“大概、或许”,表示可能性很大,通常指根据目前情况作出积极推测或判断;

  20. Shrunk loop theorem for the topology probabilities of closed Brownian (or Feynman) paths on the twice punctured plane

    Science.gov (United States)

    Giraud, O.; Thain, A.; Hannay, J. H.

    2004-02-01

    The shrunk loop theorem proved here is an integral identity which facilitates the calculation of the relative probability (or probability amplitude) of any given topology that a free, closed Brownian (or Feynman) path of a given 'duration' might have on the twice punctured plane (plane with two marked points). The result is expressed as a 'scattering' series of integrals of increasing dimensionality based on the maximally shrunk version of the path. Physically, this applies in different contexts: (i) the topology probability of a closed ideal polymer chain on a plane with two impassable points, (ii) the trace of the Schrödinger Green function, and thence spectral information, in the presence of two Aharonov-Bohm fluxes and (iii) the same with two branch points of a Riemann surface instead of fluxes. Our theorem starts from the Stovicek scattering expansion for the Green function in the presence of two Aharonov-Bohm flux lines, which itself is based on the famous Sommerfeld one puncture point solution of 1896 (the one puncture case has much easier topology, just one winding number). Stovicek's expansion itself can supply the results at the expense of choosing a base point on the loop and then integrating it away. The shrunk loop theorem eliminates this extra two-dimensional integration, distilling the topology from the geometry.

  1. Freeze/thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation

    Directory of Open Access Journals (Sweden)

    Sanna eSevanto

    2012-06-01

    Full Text Available Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g. branches or outermost layer of the xylem. Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.

  2. Modulation of DNA loop lifetimes by the free energy of loop formation

    CERN Document Server

    Chen, Yi-Ju; Mulligan, Peter; Spakowitz, Andrew J; Phillips, Rob

    2015-01-01

    Storage and retrieval of the genetic information in cells is a dynamic process that requires the DNA to undergo dramatic structural rearrangements. DNA looping is a prominent example of such a structural rearrangement that is essential for transcriptional regulation in both prokaryotes and eukaryotes, and the speed of such regulations affects the fitness of individuals. Here, we examine the in vitro looping dynamics of the classic Lac repressor gene-regulatory motif. We show that both loop association and loop dissociation at the DNA-repressor junctions depend on the elastic deformation of the DNA and protein, and that both looping and unlooping rates approximately scale with the looping J factor, which reflects the system's deformation free energy. We explain this observation by transition state theory and model the DNA-protein complex as an effective worm-like chain with twist. We introduce a finite protein-DNA binding interaction length, in competition with the characteristic DNA deformation length scale, ...

  3. Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector

    Institute of Scientific and Technical Information of China (English)

    闫旭; 于淼; 韩文鹏; 犹明浩; 张君诚; 董瑞华; 张红娣; 龙云泽

    2016-01-01

    Electrospun nanofibers with designed or controlled structures have drawn much attention. In this study, we report an interesting new closed-loop structure in individual cerium nitrate/polyvinyl alcohol (Ce(NO3)3/PVA) and NaCl/PVA fibers, which are fabricated by electrospinning with a nail collector. The electrospinning parameters such as voltage and Ce(NO3)3 (or NaCl) concentration are examined for the formation of the closed-loop structure. The results suggest that the increase of the spinning voltage or addition of Ce(NO3)3 (or NaCl) is favorable for the formation of the closed-loop structure, and the increase of loop numbers and the decrease of loop size. Further analyses indicate that the formation mechanism of the closed-loop fibers can be predominantly attributed to the Coulomb repulsion in the charged jets.

  4. Energetics of formation process of a <001> prismatic dislocation loop via the collision between two 1/2<111> loops in {alpha}-iron

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, K; Mori, H [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: arakawak@uhvem.osaka-u.ac.jp

    2009-05-01

    It has been proposed by Marian et al. [1] that a [001] interstitial-type dislocation loop can be formed in body-centered cubic iron via the collision between a 1/2[111] loop and 1/ 2[111] loop, which undergo one-dimensional glide diffusion, and the subsequent shear reaction. However, the formation of [001] loops through this reaction has not been reproduced by other works even though the two 1/2<111> loops collided with each other. In the present paper, the origin of the difficulty in this reaction is discussed within the framework of isotropic elasticity theory. The sign of the driving force for the reaction is heavily dependent on the reaction path. The two 1/2<111> loops colliding to form a [110] junction can transform to a single [001] loop when a shear loop generated within the 1/2[111] loop propagates in sync with the other shear loop within the 1/ 2[111] loop. However, unsynchronized motion of the two shear loops significantly suppresses the propagation of the shear loops, which might be caused by the thermal fluctuation at finite temperatures. This will be one of the origins of the difficulty in the formation of [001] loops through the collision between the two 1/2<111> loops.

  5. Generation of modified duobinary return-to-zero format using polarization-maintaining fiber loop mirror

    Institute of Scientific and Technical Information of China (English)

    Xin Wang; Xinliang Zhang

    2007-01-01

    Modified duobinary return-to-zero (MD-RZ) format is an improvement of optical duobinary (ODB) format.This paper proposes a novel, all-optical method to generate MD-RZ format by using a polarization maintaining fiber loop mirror (PMFLM). Operation principle for all-optical format conversion is theoretically analyzed and the output spectrum is simulated. 40-Gb/s MD-RZ data format generation is experimentally demonstrated.

  6. Cluster formation probability in the trans-tin and trans-lead nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P. [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India)], E-mail: drkpsanthosh@gmail.com; Biju, R.K.; Sahadevan, Sabina [P.G. Department of Physics and Research Centre, Payyanur College, Payyanur 670 327 (India)

    2010-07-01

    Within our fission model, the Coulomb and proximity potential model (CPPM) cluster formation probabilities are calculated for different clusters ranging from carbon to silicon for the parents in the trans-tin and trans-lead regions. It is found that in trans-tin region the {sup 12}C, {sup 16}O, {sup 20}Ne and {sup 24}Mg clusters have maximum cluster formation probability and lowest half lives as compared to other clusters. In trans-lead region the {sup 14}C, {sup 18,20}O, {sup 23}F, {sup 24,26}Ne, {sup 28,30}Mg and {sup 34}Si clusters have the maximum cluster formation probability and minimum half life, which show that alpha like clusters are most probable for emission from trans-tin region while non-alpha clusters are probable from trans-lead region. These results stress the role of neutron proton symmetry and asymmetry of daughter nuclei in these two cases.

  7. Cluster formation probability in the trans-tin and trans-lead nuclei

    CERN Document Server

    Santhosh, K P; Sahadevan, Sabina; 10.1016/j.nuclphysa.2010.03.004

    2010-01-01

    Within our fission model, the Coulomb and proximity potential model (CPPM) cluster formation probabilities are calculated for different clusters ranging from carbon to silicon for the parents in the trans-tin and trans- lead regions. It is found that in trans-tin region the 12^C, 16^O, 20^Ne and 24^Mg clusters have maximum cluster formation probability and lowest half lives as compared to other clusters. In trans-lead region the 14^C, 18, 20^O, 23^F, 24,26^Ne, 28,30^Mg and 34^Si clusters have the maximum cluster formation probability and minimum half life, which show that alpha like clusters are most probable for emission from trans-tin region while non-alpha clusters are probable from trans-lead region. These results stress the role of neutron proton symmetry and asymmetry of daughter nuclei in these two cases.

  8. GNSS Hardware-In-The-Loop Formation and Tracking Control

    OpenAIRE

    2016-01-01

    Formation and tracking control are critical for of today's vehicle applications in and this will be true for future vehicle technologies as well. Although the general function of these controls is for data collection and military applications, formation and tracking control may be applied to automobiles, drones, submarines, and spacecraft. The primary application here is the investigation of formation keeping and tracking solutions for realistic, real-time, and multi-vehicle simulations. This...

  9. Transfer of Solutions to Conditional Probability Problems: Effects of Example Problem Format, Solution Format, and Problem Context

    Science.gov (United States)

    Chow, Alan F.; Van Haneghan, James P.

    2016-01-01

    This study reports the results of a study examining how easily students are able to transfer frequency solutions to conditional probability problems to novel situations. University students studied either a problem solved using the traditional Bayes formula format or using a natural frequency (tree diagram) format. In addition, the example problem…

  10. Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector

    Science.gov (United States)

    Xu, Yan; Miao, Yu; Wen-Peng, Han; Ming-Hao, You; Jun-Cheng, Zhang; Rui-Hua, Dong; Hong-Di, Zhang; Yun-Ze, Long

    2016-07-01

    Electrospun nanofibers with designed or controlled structures have drawn much attention. In this study, we report an interesting new closed-loop structure in individual cerium nitrate/polyvinyl alcohol (Ce(NO3)3/PVA) and NaCl/PVA fibers, which are fabricated by electrospinning with a nail collector. The electrospinning parameters such as voltage and Ce(NO3)3 (or NaCl) concentration are examined for the formation of the closed-loop structure. The results suggest that the increase of the spinning voltage or addition of Ce(NO3)3 (or NaCl) is favorable for the formation of the closed-loop structure, and the increase of loop numbers and the decrease of loop size. Further analyses indicate that the formation mechanism of the closed-loop fibers can be predominantly attributed to the Coulomb repulsion in the charged jets. Project supported by the National Natural Science Foundation of China (Grant Nos. 51373082 and 11404181), the Taishan Scholars Program of Shandong Province, China (Grant No. ts20120528), and the Postdoctoral Scientific Research Foundation of Qingdao City, China.

  11. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization

    Directory of Open Access Journals (Sweden)

    Vuthy Ea

    2015-07-01

    Full Text Available Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains’ organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization.

  12. Experiments on air entrainment into SCS by vortex formation during mid-loop operation

    Energy Technology Data Exchange (ETDEWEB)

    Chug, Moon Ki; Song, Chul Hwa; Jung, Heung Joon; Won, Soon Yeon; Min, Kyung Ho; Chang, Keun Sun [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-05-01

    In this final report, the phenomena of air entrainment into SCS suction nozzle by vortex formation during Mid-Loop operation condition are experimentally investigated. The critical submergence is determined for various types of suction nozzle, and the measurements of velocity distribution are performed in the flow fields near the T-shaped suction nozzle. 11 refs., 41 figs., 13 tabs.

  13. Most probable number - loop mediated isothermal amplification (MPN-LAMP) for quantifying waterborne pathogens in <25min.

    Science.gov (United States)

    Ahmad, Farhan; Stedtfeld, Robert D; Waseem, Hassan; Williams, Maggie R; Cupples, Alison M; Tiedje, James M; Hashsham, Syed A

    2017-01-01

    We are reporting a most probable number approach integrated to loop mediated isothermal technique (MPN-LAMP) focusing on Gram-negative Escherichia coli and Gram-positive Enterococcus faecalis bacterial cells without nucleic acids extraction. LAMP assays for uidA from E. coli and gelE from E. faecalis were successfully performed directly on cells up to single digit concentration using a commercial real time PCR instrument. Threshold time values of LAMP assays of bacterial cells, heat treated bacterial cells (95°C for 5min), and their purified genomic DNA templates were similar, implying that amplification could be achieved directly from bacterial cells at 63°C. Viability of bacterial cells was confirmed by using propidium monoazide in a LAMP assay with E. faecalis. To check its functionality on a microfluidic platform, MPN-LAMP assays targeting <10CFU of bacteria were also translated onto polymeric microchips and monitored by a low-cost fluorescence imaging system. The overall system provided signal-to-noise (SNR) ratios up to 800, analytical sensitivity of <10CFU, and time to positivity of about 20min. MPN-LAMP assays were performed for cell concentrations in the range of 10(5)CFU to <10CFU. MPN values from LAMP assays confirmed that the amplifications were from <10CFU. The method described here, applicable directly on cells at 63°C, eliminates the requirement of complex nucleic acids extraction steps, facilitating the development of sensitive, rapid, low-cost, and field-deployable systems. This rapid MPN-LAMP approach has the potential to replace conventional MPN method for waterborne pathogens.

  14. Deduction of compound nucleus formation probability from the fragment angular distributions in heavy-ion reactions

    Science.gov (United States)

    Yadav, C.; Thomas, R. G.; Mohanty, A. K.; Kapoor, S. S.

    2015-07-01

    The presence of various fissionlike reactions in heavy-ion induced reactions is a major hurdle in the path to laboratory synthesis of heavy and super-heavy nuclei. It is known that the cross section of forming a heavy evaporation residue in fusion reactions depends on the three factors—the capture cross section, probability of compound nucleus formation PCN, and the survival probability of the compound nucleus against fission. As the probability of compound nucleus formation, PCN is difficult to theoretically estimate because of its complex dependence on several parameters; attempts have been made in the past to deduce it from the fission fragment anisotropy data. In the present work, the fragment anisotropy data for a number of heavy-ion reactions are analyzed and it is found that deduction of PCN from the anisotropy data also requires the knowledge of the ratio of relaxation time of the K degree of freedom to pre-equilibrium fission time.

  15. Formation and growth process of dislocation loops in zircaloys under electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, Haruo; Kinoshita, Chiken; Yasuda, Kazuhiro; Fukada, Shinya [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-11-01

    We have investigated the formation and growth process of dislocation loops in Zircaloys (Zrys) under electron irradiation using a high voltage electron microscope (HVEM). Dislocation loops are of great importance to degradation phenomena in fuel claddings, such as irradiation growth and reduced ductility in light water reactors. TEM specimens of three kinds of Zircaloys (Zry-2, Zry-4 and improved Zry-2) were irradiated with 1 MeV electrons at temperatures from 320 K to 970 K in the HVEM. Interstitial-type dislocation loops with the Burgers vector b = 1/3<112-bar0> were formed on the pyramidal or the prismatic planes at the beginning of irradiation. It was found that the nucleation and growth process of those loops follows the kinetics based on the di-interstitial model where di-interstitials act as the nuclei of interstitial dislocation loops. Based on this model, migration energies of interstitials and vacancies were determined to be 0.15-0.22 eV and 1.0-1.2 eV, respectively, from the irradiation temperature dependence of the density and the growth rate of loops. (author)

  16. Most-probable-number loop-mediated isothermal amplification-based procedure enhanced with K antigen-specific immunomagnetic separation for quantifying tdh(+) Vibrio parahaemolyticus in molluscan Shellfish.

    Science.gov (United States)

    Tanaka, Natsuko; Iwade, Yoshito; Yamazaki, Wataru; Gondaira, Fumio; Vuddhakul, Varaporn; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki

    2014-07-01

    Although thermostable direct hemolysin-producing (tdh(+)) Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis, the enumeration of tdh(+) V. parahaemolyticus remains challenging due to its low densities in the environment. In this study, we developed a most-probable-number (MPN)-based procedure designated A-IS(1)-LAMP, in which an immunomagnetic separation (IMS) technique targeting as many as 69 established K antigens and a loop-mediated isothermal amplification (LAMP) assay targeting the thermostable direct hemolysin (tdh) gene were applied in an MPN format. Our IMS employed PickPen, an eight-channel intrasolution magnetic particle separation device, which enabled a straightforward microtiter plate-based IMS procedure (designated as PickPen-IMS). The ability of the procedure to quantify a wide range of tdh(+) V. parahaemolyticus levels was evaluated by testing shellfish samples in Japan and southern Thailand, where shellfish products are known to contain relatively low and high levels of total V. parahaemolyticus, respectively. The Japanese and Thai shellfish samples showed, respectively, relatively low (tdh(+) V. parahaemolyticus, raising concern about the safety of Thai shellfish products sold to domestic consumers at local morning markets. LAMP showed similar or higher performance than conventional PCR in the detection and quantification of a wide range of tdh(+) V. parahaemolyticus levels in shellfish products. Whereas a positive effect of PickPen-IMS was not observed in MPN determination, PickPen-IMS was able to concentrate tdh(+) V. parahaemolyticus 32-fold on average from the Japanese shellfish samples at an individual tube level, suggesting a possibility of using PickPen-IMS as an optional tool for specific shellfish samples. The A-IS(1)-LAMP procedure can be used by any health authority in the world to measure the tdh(+) V. parahaemolyticus levels in shellfish products.

  17. Turbulence and the formation of filaments, loops and shock fronts in NGC 1275 in the Perseus Galaxy Cluster

    CERN Document Server

    Falceta-Goncalves, D; Gallagher, J S; Lazarian, A

    2009-01-01

    NGC1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by AGN jets observed in the radio as Perseus A. It presents a spectacular $H{\\alpha}$-emitting nebulosity surrounding NGC1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and 3-dimensional MHD simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the ICM with velocities of 100-500 km/s are found, also resembling the observations. The isotropic outflow momentum of the turbulence slow...

  18. Emptiness and depletion formation probability in spin models with inverse square interaction

    Science.gov (United States)

    Franchini, Fabio; Kulkarni, Manas

    2010-02-01

    We calculate the Emptiness Formation Probability (EFP) in the spin-Calogero Model (sCM) and Haldane-Shastry Model (HSM) using their hydrodynamic description. The EFP is the probability that a region of space is completely void of particles in the ground state of a quantum many body system. We calculate this probability in an instanton approach, by considering the more general problem of an arbitrary depletion of particles (DFP). In the limit of large size of depletion region the probability is dominated by a classical configuration in imaginary time that satisfies a set of boundary conditions and the action calculated on such solution gives the EFP/DFP with exponential accuracy. We show that the calculation for sCM can be elegantly performed by representing the gradientless hydrodynamics of spin particles as a sum of two spin-less Calogero collective field theories in auxiliary variables. Interestingly, the result we find for the EFP can be casted in a form reminiscing of spin-charge separation, which should be violated for a non-linear effect such as this. We also highlight the connections between sCM, HSM and λ=2 spin-less Calogero model from a EFP/DFP perspective.

  19. Risk communication formats for low probability events: an exploratory study of patient preferences

    Directory of Open Access Journals (Sweden)

    Iadarola Stephen

    2008-04-01

    Full Text Available Abstract Background Clear communication about the possible outcomes of proposed medical interventions is an integral part of medical care. Despite its importance, there have been few studies comparing different formats for presenting probabilistic information to patients, especially when small probabilities are involved. The purpose of this study was to explore the potential usefulness of several new small-risk graphic communication formats. Methods Information about the likelihoods of cancer and cancer prevention associated with two hypothetical cancer screening programs were used to create an augmented bar chart, an augmented grouped icon display, a flow chart, and three paired combinations of these formats. In the study scenario, the baseline risk of cancer was 53 per 1,000 (5.3%. The risk associated with cancer screening option A was 38 per 1,000 (3.8% and the risk associated with screening option B was 29 per 1,000 (2.9%. Both the augmented bar chart and the augmented grouped icon display contained magnified views of the differences in cancer risk and cancer prevention associated with the screening programs. A convenience sample of 29 subjects (mean age 56.4 years; 76% men used the Analytic Hierarchy Process (AHP to indicate their relative preferences for the six formats using 15 sequential paired comparisons. Results The most preferred format was the combined augmented bar chart + flow diagram (mean preference score 0.43 followed by the combined augmented icon + augmented bar chart format (mean preference score 0.22. The overall differences among the six formats were statistically significant: Kruskal-Wallis Chi Square = 141.4, p Conclusion These findings suggest that patients may prefer combined, rather than single, graphic risk presentation formats and that augmented bar charts and icon displays may be useful for conveying comparative information about small risks to clinical decision makers. Further research to confirm and extend these

  20. Probability density function of non-reactive solute concentration in heterogeneous porous formations.

    Science.gov (United States)

    Bellin, Alberto; Tonina, Daniele

    2007-10-30

    Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for the local concentration of conservative tracers migrating in heterogeneous aquifers. Our model accounts for dilution, mechanical mixing within the sampling volume and spreading due to formation heterogeneity. It is developed by modeling local concentration dynamics with an Ito Stochastic Differential Equation (SDE) that under the hypothesis of statistical stationarity leads to the Beta probability distribution function (pdf) for the solute concentration. This model shows large flexibility in capturing the smoothing effect of the sampling volume and the associated reduction of the probability of exceeding large concentrations. Furthermore, it is fully characterized by the first two moments of the solute concentration, and these are the same pieces of information required for standard geostatistical techniques employing Normal or Log-Normal distributions. Additionally, we show that in the absence of pore-scale dispersion and for point concentrations the pdf model converges to the binary distribution of [Dagan, G., 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2, The solute transport. Water Resour. Res. 18 (4), 835-848.], while it approaches the Normal distribution for sampling volumes much larger than the characteristic scale of the aquifer heterogeneity. Furthermore, we demonstrate that the same model with the spatial moments replacing the statistical moments can be applied to estimate the proportion of the plume volume where solute concentrations are above or below critical thresholds. Application of this model to point and vertically averaged bromide

  1. Asymptotics of Toeplitz determinants and the emptiness formation probability for the XY spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Franchini, Fabio; Abanov, Alexander G [Physics and Astronomy Department, Stony Brook University, Stony Brook, New York 11794-3800 (United States)

    2005-06-10

    We study an asymptotic behaviour of a special correlator known as the emptiness formation probability (EFP) for the one-dimensional anisotropic XY spin-1/2 chain in a transverse magnetic field. This correlator is essentially the probability of formation of a ferromagnetic string of length n in the antiferromagnetic ground state of the chain and plays an important role in the theory of integrable models. For the XY spin chain, the correlator can be expressed as the determinant of a Toeplitz matrix and its asymptotical behaviours for n {yields} {infinity} throughout the phase diagram are obtained using known theorems and conjectures on Toeplitz determinants. We find that the decay is exponential everywhere in the phase diagram of the XY model except on the critical lines, i.e. where the spectrum is gapless. In these cases, a power-law prefactor with a universal exponent arises in addition to an exponential or Gaussian decay. The latter Gaussian behaviour holds on the critical line corresponding to the isotropic XY model, while at the critical value of the magnetic field the EFP decays exponentially. At small anisotropy one has a crossover from the Gaussian to the exponential behaviour. We study this crossover using the bosonization approach.

  2. Compound nucleus formation probability PCN defined within the dynamical cluster-decay model

    Science.gov (United States)

    Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.

    2015-01-01

    With in the dynamical cluster-decay model (DCM), the compound nucleus fusion/ formation probability PCN is defined for the first time, and its variation with CN excitation energy E* and fissility parameter χ is studied. In DCM, the (total) fusion cross section σfusion is sum of the compound nucleus (CN) and noncompound nucleus (nCN) decay processes, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of the evaporation residues (ER) and fusion-fission (ff), including the intermediate mass fragments (IMFs), each calculated for all contributing decay fragments (A1, A2) in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf) process where P0=1 and P is calculated for the entrance channel nuclei. The calculations are presented for six different target-projectile combinations of CN mass A~100 to superheavy, at various different center-of-mass energies with effects of deformations and orientations of nuclei included in it. Interesting results are that the PCN=1 for complete fusion, but PCN <1 or ≪1 due to the nCN conribution, depending strongly on both E* and χ.

  3. Compound nucleus formation probability PCN defined within the dynamical cluster-decay model

    Directory of Open Access Journals (Sweden)

    Chopra Sahila

    2015-01-01

    Full Text Available With in the dynamical cluster-decay model (DCM, the compound nucleus fusion/ formation probability PCN is defined for the first time, and its variation with CN excitation energy E* and fissility parameter χ is studied. In DCM, the (total fusion cross section σfusion is sum of the compound nucleus (CN and noncompound nucleus (nCN decay processes, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of the evaporation residues (ER and fusion-fission (ff, including the intermediate mass fragments (IMFs, each calculated for all contributing decay fragments (A1, A2 in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf process where P0=1 and P is calculated for the entrance channel nuclei. The calculations are presented for six different target-projectile combinations of CN mass A~100 to superheavy, at various different center-of-mass energies with effects of deformations and orientations of nuclei included in it. Interesting results are that the PCN=1 for complete fusion, but PCN <1 or ≪1 due to the nCN conribution, depending strongly on both E* and χ.

  4. Finite size corrections to scaling of the formation probabilities and the Casimir effect in the conformal field theories

    Science.gov (United States)

    Rajabpour, M. A.

    2016-12-01

    We calculate formation probabilities of the ground state of the finite size quantum critical chains using conformal field theory (CFT) techniques. In particular, we calculate the formation probability of one interval in the finite open chain and also formation probability of two disjoint intervals in a finite periodic system. The presented formulas can be also interpreted as the Casimir energy of needles in particular geometries. We numerically check the validity of the exact CFT results in the case of the transverse field Ising chain.

  5. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    Science.gov (United States)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  6. The role of loop stacking in the dynamics of DNA hairpin formation

    CERN Document Server

    Mosayebi, Majid; Ouldridge, Thomas E; Louis, Ard A; Doye, Jonathan P K

    2014-01-01

    We study the dynamics of DNA hairpin formation using oxDNA, a nucleotide-level coarse-grained model of DNA. In particular, we explore the effects of the loop stacking interactions and non-native base pairing on the hairpin closing times. We find a non-monotonic variation of the hairpin closing time with temperature, in agreement with the experimental work of Wallace et al. [Proc. Nat. Acad. Sci. USA 2001, 98, 5584-5589]. The hairpin closing process involves the formation of an initial nucleus of one or two bonds between the stems followed by a rapid zippering of the stem. At high temperatures, typically above the hairpin melting temperature, an effective negative activation enthalpy is observed because the nucleus has a lower enthalpy than the open state. By contrast, at low temperatures, the activation enthalpy becomes positive mainly due to the increasing energetic cost of bending a loop that becomes increasingly highly stacked as the temperature decreases. We show that stacking must be very strong to induc...

  7. Self-avoiding worm-like chain model for dsDNA loop formation

    CERN Document Server

    Pollak, Yaroslav; Amit, Roee

    2014-01-01

    We compute for the first time the effects of excluded volume on the probability for double-stranded DNA to form a loop. We utilize a Monte-Carlo algorithm for generation of large ensembles of self- avoiding worm-like chains, which are used to compute the J-factor for varying lengthscales. In the entropic regime, we confirm the scaling-theory prediction of a power-law drop off of -1.92, which is significantly stronger than the -1.5 power-law predicted by the non-self-avoiding worm-like chain model. In the elastic regime, we find that the angle-independent end-to-end chain distribution is highly anisotropic. This anisotropy, combined with the excluded volume constraints, lead to an increase in the J-factor of the self-avoiding worm-like chain by about half an order of magnitude relative to its non-self-avoiding counterpart. This increase could partially explain the anomalous results of recent cyclization experiments, in which short dsDNA molecules were found to have an increased propensity to form a loop.

  8. Directional R-Loop Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site Rejection

    Directory of Open Access Journals (Sweden)

    Marius Rutkauskas

    2015-03-01

    Full Text Available CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against foreign nucleic acids. In type I CRISPR-Cas systems, invading DNA is detected by a large ribonucleoprotein surveillance complex called Cascade. The crRNA component of Cascade is used to recognize target sites in foreign DNA (protospacers by formation of an R-loop driven by base-pairing complementarity. Using single-molecule supercoiling experiments with near base-pair resolution, we probe here the mechanism of R-loop formation and detect short-lived R-loop intermediates on off-target sites bearing single mismatches. We show that R-loops propagate directionally starting from the protospacer-adjacent motif (PAM. Upon reaching a mismatch, R-loop propagation stalls and collapses in a length-dependent manner. This unambiguously demonstrates that directional zipping of the R-loop accomplishes efficient target recognition by rapidly rejecting binding to off-target sites with PAM-proximal mutations. R-loops that reach the protospacer end become locked to license DNA degradation by the auxiliary Cas3 nuclease/helicase without further target verification.

  9. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    Science.gov (United States)

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2013-12-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution.

  10. Formation of large-scale structure from cosmic-string loops and cold dark matter

    Science.gov (United States)

    Melott, Adrian L.; Scherrer, Robert J.

    1987-01-01

    Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.

  11. Understanding star formation in molecular clouds I. A universal probability distribution of column densities ?

    CERN Document Server

    Schneider, N; Csengeri, T; Klessen, R; Federrath, C; Tremblin, P; Girichidis, P; Bontemps, S; Andre, Ph

    2014-01-01

    Column density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With Herschel it is now possible to reveal rather precisely the column density of dust, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to an overestimation of the dust emission of molecular clouds, in particular for distant clouds. This implies too high values for column density and mass, and a misleading interpretation of probability distribution functions (PDFs) of the column density. In this paper, we demonstrate by using observations and simulations how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC3603(both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, ...

  12. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    Science.gov (United States)

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar

    2017-01-01

    FeCrAl alloys are an attractive class of materials for nuclear power applications because of their increased environmental compatibility compared with more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300 and 400 °C have shown post-irradiation microstructures containing dislocation loops and a Cr-rich α‧ phase. Although these initial studies established the post-irradiation microstructures, there was little to no focus on understanding the influence of pre-irradiation microstructures on this response. In this study, a well-annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 displacements per atom (dpa) at 382 °C and then the effect of random high-angle grain boundaries on the spatial distribution and size of a dislocation loops, a/2 dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with a/2 dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and a dislocation loops exhibiting an increased size in the vicinity of the grain boundary. These results suggest the importance of the pre-irradiation microstructure and, specifically, defect sink density spacing to the radiation tolerance of FeCrAl alloys.

  13. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes

    Science.gov (United States)

    Sanborn, Adrian; Rao, Suhas; Huang, Su-Chen; Durand, Neva; Huntley, Miriam; Jewett, Andrew; Bochkov, Ivan; Chinnappan, Dharmaraj; Cutkosky, Ashok; Li, Jian; Geeting, Kristopher; McKenna, Doug; Stamenova, Elena; Gnirke, Andreas; Melnikov, Alexandre; Lander, Eric; Aiden, Erez

    Our recent kilobase-resolution genome-wide maps of DNA self-contacts demonstrated that mammalian genomes are organized into domains and loops demarcated by the DNA-binding protein CTCF. Here, we combine these maps with new Hi-C, microscopy, and genome-editing experiments to study the physical structure of chromatin fibers, domains, and loops. We find that domains are inconsistent with equilibrium and fractal models. Instead, we use physical simulations to study two models of genome folding. In one, intermonomer attraction during condensation leads to formation of an anisotropic ``tension globule.'' In the other, CTCF and cohesin act together to extrude unknotted loops. Both models are consistent with the observed domains and loops. However, the extrusion model explains a far wider array of observations, such as why the CTCF-binding motifs at pairs of loop anchors lie in the convergent orientation. Finally, we perform 13 genome-editing experiments examining the effect of altering CTCF-binding sites on chromatin folding. The extrusion model predicts in silico the experimental maps using only CTCF-binding sites. Thus, we show that it is possible to disrupt, restore, and move loops and domains using targeted mutations as small as a single base pair.

  14. Verbal versus Numerical Probabilities: Does Format Presentation of Probabilistic Information regarding Breast Cancer Screening Affect Women's Comprehension?

    Science.gov (United States)

    Vahabi, Mandana

    2010-01-01

    Objective: To test whether the format in which women receive probabilistic information about breast cancer and mammography affects their comprehension. Methods: A convenience sample of 180 women received pre-assembled randomized packages containing a breast health information brochure, with probabilities presented in either verbal or numeric…

  15. MAPping the Ndc80 loop in cancer: A possible link between Ndc80/Hec1 overproduction and cancer formation.

    Science.gov (United States)

    Tang, Ngang Heok; Toda, Takashi

    2015-03-01

    Mis-regulation (e.g. overproduction) of the human Ndc80/Hec1 outer kinetochore protein has been associated with aneuploidy and tumourigenesis, but the genetic basis and underlying mechanisms of this phenomenon remain poorly understood. Recent studies have identified the ubiquitous Ndc80 internal loop as a protein-protein interaction platform. Binding partners include the Ska complex, the replication licensing factor Cdt1, the Dam1 complex, TACC-TOG microtubule-associated proteins (MAPs) and kinesin motors. We review the field and propose that the overproduction of Ndc80 may unfavourably absorb these interactors through the internal loop domain and lead to a change in the equilibrium of MAPs and motors in the cells. This sequestration will disrupt microtubule dynamics and the proper segregation of chromosomes in mitosis, leading to aneuploid formation. Further investigation of Ndc80 internal loop-MAPs interactions will bring new insights into their roles in kinetochore-microtubule attachment and tumourigenesis.

  16. Dual-beam irradiation of {alpha}-iron: Heterogeneous bubble formation on dislocation loops

    Energy Technology Data Exchange (ETDEWEB)

    Brimbal, Daniel, E-mail: Daniel.brimbal@cea.fr [Laboratoire d' Analyse Microstructurale des Materiaux (LA2M), CEA/Saclay, DEN/DMN/SRMA/LA2M, 91191 Gif-sur-Yvette Cedex (France); Decamps, Brigitte, E-mail: Brigitte.decamps@csnsm.in2p3.fr [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masses (CSNSM/IN2P3/CNRS), Orsay University, Bat. 108, 91405 Orsay Campus (France); Barbu, Alain, E-mail: Alain.barbu@cea.fr [Service de Recherches de Metallurgie Physique (SRMP), CEA/Saclay, DEN/DMN/SRMP, 91191 Gif-sur-Yvette Cedex (France); Meslin, Estelle, E-mail: Estelle.Meslin@cea.fr [Service de Recherches de Metallurgie Physique (SRMP), CEA/Saclay, DEN/DMN/SRMP, 91191 Gif-sur-Yvette Cedex (France); Henry, Jean, E-mail: Jean.henry@cea.fr [Laboratoire d' Analyse Microstructurale des Materiaux (LA2M), CEA/Saclay, DEN/DMN/SRMA/LA2M, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    Highlights: > We have irradiated {alpha}-iron in situ with Fe{sup +} and He{sup +} ions at 500 deg. C. > Dislocation loops and helium bubbles are present at 1 dpa/540 appm He. > The helium bubbles are located heterogeneously on the dislocation loops. - Abstract: In order to understand the evolution of materials under irradiation conditions similar to those in future fusion reactors, we have irradiated high purity iron in situ in a transmission electron microscope with 1 MeV Fe{sup +} ions while simultaneously implanting 15 keV He{sup +} ions, at 500 deg. C. Once {approx}1 dpa/500 appm He were reached, helium bubbles and large dislocation loops were observed. The study reveals that helium bubbles nucleated heterogeneously: a majority of them were observed inside the large dislocation loops.

  17. Molecular Dynamics Simulations of the Nucleation of Water: Determining the Sticking Probability and Formation Energy of a Cluster

    CERN Document Server

    Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-01-01

    We performed molecular dynamics (MD) simulations of the nucleation of water vapor in order to test nucleation theories. Simulations were performed for a wide range of supersaturation ratios (S = 3-25) and water temperatures (Tw=300-390K). We obtained the nucleation rates and the formation free energies of a subcritical cluster from the cluster size distribution. The classical nucleation theory (CNT) and the modified classical nucleation theory (MCNT) overestimate the nucleation rates in all cases. The semi-phenomenological (SP) model, which corrects the MCNT prediction using the second virial coefficient of a vapor, reproduces the formation free energy of a cluster with the size < 20 to within 10 % and the nucleation rate and cluster size distributions to within one order of magnitude. The sticking probability of the vapor molecules to the clusters was also determined from the growth rates of the clusters. The sticking probability rapidly increases with the supersaturation ratio S, which is similar to the ...

  18. Improvement of the quantitation method for the tdh (+) Vibrio parahaemolyticus in molluscan shellfish based on most-probable- number, immunomagnetic separation, and loop-mediated isothermal amplification.

    Science.gov (United States)

    Escalante-Maldonado, Oscar; Kayali, Ahmad Y; Yamazaki, Wataru; Vuddhakul, Varaporn; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki

    2015-01-01

    Vibrio parahaemolyticus is a marine microorganism that can cause seafood-borne gastroenteritis in humans. The infection can be spread and has become a pandemic through the international trade of contaminated seafood. Strains carrying the tdh gene encoding the thermostable direct hemolysin (TDH) and/or the trh gene encoding the TDH-related hemolysin (TRH) are considered to be pathogenic with the former gene being the most frequently found in clinical strains. However, their distribution frequency in environmental isolates is below 1%. Thus, very sensitive methods are required for detection and quantitation of tdh (+) strains in seafood. We previously reported a method to detect and quantify tdh (+) V. parahaemolyticus in seafood. This method consists of three components: the most-probable-number (MPN), the immunomagnetic separation (IMS) targeting all established K antigens, and the loop-mediated isothermal amplification (LAMP) targeting the tdh gene. However, this method faces regional issues in tropical zones of the world. Technicians have difficulties in securing dependable reagents in high-temperature climates where we found MPN underestimation in samples having tdh (+) strains as well as other microorganisms present at high concentrations. In the present study, we solved the underestimation problem associated with the salt polymyxin broth enrichment for the MPN component and with the immunomagnetic bead-target association for the IMS component. We also improved the supply and maintenance of the dependable reagents by introducing a dried reagent system to the LAMP component. The modified method is specific, sensitive, quick and easy and applicable regardless of the concentrations of tdh (+) V. parahaemolyticus. Therefore, we conclude this modified method is useful in world tropical, sub-tropical, and temperate zones.

  19. Improvement of the quantitation method for the tdh+ Vibrio parahaemolyticus in molluscan shellfish based on most-probable- number, immunomagnetic separation, and loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    Oscar eEscalante-Maldonado

    2015-04-01

    Full Text Available Vibrio parahaemolyticus is a marine microorganism that can cause seafood-borne gastroenteritis in humans. The infection can be spread and has become a pandemic through the international trade of contaminated seafood. Strains carrying the tdh gene encoding the thermostable direct hemolysin (TDH and/or the trh gene encoding the TDH-related hemolysin (TRH are considered to be pathogenic with the former gene being the most frequently found in clinical strains. However, their distribution frequency in environmental isolates is below 1%. Thus, very sensitive methods are required for detection and quantitation of tdh+ strains in seafood. We previously reported a method to detect and quantify tdh+ V. parahaemolyticus in seafood. This method consists of three components: the most-probable-number (MPN, the immunomagnetic separation (IMS targeting all established K antigens, and the loop-mediated isothermal amplification (LAMP targeting the tdh gene. However, this method faces regional issues in tropical zones of the world. Technicians have difficulties in securing dependable reagents in high-temperature climates where we found MPN underestimation in samples having tdh+ strains as well as other microorganisms present at high concentrations. In the present study, we solved the underestimation problem associated with the salt polymyxin broth enrichment for the MPN component and with the immunomagnetic bead-target association for the IMS component. We also improved the supply and maintenance of the dependable reagents by introducing a dried reagent system to the LAMP component. The modified method is specific, sensitive, quick and easy and applicable regardless of the concentrations of tdh+ V. parahaemolyticus. Therefore, we conclude this modified method is useful in world tropical, sub-tropical and temperate zones.

  20. Eliciting benefit-risk preferences and probability-weighted utility using choice-format conjoint analysis.

    Science.gov (United States)

    Van Houtven, George; Johnson, F Reed; Kilambi, Vikram; Hauber, A Brett

    2011-01-01

    This study applies conjoint analysis to estimate health-related benefit-risk tradeoffs in a non-expected-utility framework. We demonstrate how this method can be used to test for and estimate nonlinear weighting of adverse-event probabilities and we explore the implications of nonlinear weighting on maximum acceptable risk (MAR) measures of risk tolerance. We obtained preference data from 570 Crohn's disease patients using a web-enabled conjoint survey. Respondents were presented with choice tasks involving treatment options that involve different efficacy benefits and different mortality risks for 3 possible side effects. Using conditional logit maximum likelihood estimation, we estimate preference parameters using 3 models that allow for nonlinear preference weighting of risks--a categorical model, a simple-weighting model, and a rank dependent utility (RDU) model. For the second 2 models we specify and jointly estimate 1- and 2-parameter probability weighting functions. Although the 2-parameter functions are more flexible, estimation of the 1-parameter functions generally performed better. Despite well-known conceptual limitations, the simple-weighting model allows us to estimate weighting function parameters that vary across 3 risk types, and we find some evidence of statistically significant differences across risks. The parameter estimates from RDU model with the single-parameter weighting function provide the most robust estimates of MAR. For an improvement in Crohn's symptom severity from moderate and mild, we estimate maximum 10-year mortality risk tolerances ranging from 2.6% to 7.1%. Our results provide further the evidence that quantitative benefit-risk analysis used to evaluate medical interventions should account explicitly for the nonlinear probability weighting of preferences.

  1. Temperature-dependent loop formation kinetics in flexible peptides studied by time-resolved fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Harekrushna Sahoo

    2006-01-01

    Full Text Available Looping rates in short polypeptides can be determined by intramolecular fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo by tryptophan. By this methodology, the looping rates in glycine-serine peptides with the structure Trp-(Gly-Sern-Dbo-NH2 of different lengths (n = 0–10 were determined in dependence on temperature in D2O and the activation parameters were derived. In general, the looping rate increases with decreasing peptide length, but the shortest peptide (n=0 shows exceptional behavior because its looping rate is slower than that for the next longer ones (n=1,2. The activation energies increase from 17.5 kJ mol−1 for the longest peptide (n=10 to 20.5 kJ mol−1 for the shortest one (n=0, while the pre-exponential factors (log⁡(A/s−1 range from 10.20 to 11.38. The data are interpreted in terms of an interplay between internal friction (stiffness of the biopolymer backbone and steric hindrance effects and solvent friction (viscosity-limited diffusion. For the longest peptides, the activation energies resemble more and more the value expected for solvent viscous flow. Internal friction is most important for the shortest peptides, causing a negative curvature and a smaller than ideal slope (ca. –1.1 of the double-logarithmic plots of the looping rates versus the number of peptide chain segments (N. Interestingly, the corresponding plot for the pre-exponential factors (logA versus logN shows the ideal slope (–1.5. While the looping rates can be used to assess the flexibility of peptides in a global way, it is suggested that the activation energies provide a measure of the “thermodynamic” flexibility of a peptide, while the pre-exponential factors reflect the “dynamic” flexibility.

  2. Frequency format diagram and probability chart for breast cancer risk communication: a prospective, randomized trial

    Directory of Open Access Journals (Sweden)

    Wahner-Roedler Dietlind

    2008-10-01

    Full Text Available Abstract Background Breast cancer risk education enables women make informed decisions regarding their options for screening and risk reduction. We aimed to determine whether patient education regarding breast cancer risk using a bar graph, with or without a frequency format diagram, improved the accuracy of risk perception. Methods We conducted a prospective, randomized trial among women at increased risk for breast cancer. The main outcome measurement was patients' estimation of their breast cancer risk before and after education with a bar graph (BG group or bar graph plus a frequency format diagram (BG+FF group, which was assessed by previsit and postvisit questionnaires. Results Of 150 women in the study, 74 were assigned to the BG group and 76 to the BG+FF group. Overall, 72% of women overestimated their risk of breast cancer. The improvement in accuracy of risk perception from the previsit to the postvisit questionnaire (BG group, 19% to 61%; BG+FF group, 13% to 67% was not significantly different between the 2 groups (P = .10. Among women who inaccurately perceived very high risk (≥ 50% risk, inaccurate risk perception decreased significantly in the BG+FF group (22% to 3% compared with the BG group (28% to 19% (P = .004. Conclusion Breast cancer risk communication using a bar graph plus a frequency format diagram can improve the short-term accuracy of risk perception among women perceiving inaccurately high risk.

  3. Application of Discriminant Analysis for Studying the Source Rock Potential of Probable Formations in the Lorestan Basin, Iran

    Directory of Open Access Journals (Sweden)

    Amir Negahdari

    2014-06-01

    Full Text Available Understanding the performance and role of each formation in a petroleum play is crucial for the efficient and precise exploration and exploitation of trapped hydrocarbons in a sedimentary basin. The Lorestan basin is one of the most important hydrocarbon basins of Iran, and it includes various oil-prone potential source rocks and reservoir rocks. Previous geochemical studies of the basin were not accurate and there remain various uncertainties about the potential of the probable source rocks of the basin. In the present research, the geochemical characteristics of four probable source rocks of the Lorestan basin are studied using Rock-Eval pyrolysis and discriminant analysis. In achieving this goal, several discriminant functions are defined to evaluate the discriminant factor for the division of samples into two groups. The function with the highest discriminant factor was selected for the classification of probable source rocks into two groups: weak and strong. Among the studied formations, Garau and Pabdeh had the richest and poorest source rocks of the Lorestan basin, respectively. The comparison of the obtained results with the previous literature shows that the proposed model is more reliable for the recognition of the richness of source rock in the area.

  4. Understanding star formation in molecular clouds. III. Probability distribution functions of molecular lines in Cygnus X

    Science.gov (United States)

    Schneider, N.; Bontemps, S.; Motte, F.; Ossenkopf, V.; Klessen, R. S.; Simon, R.; Fechtenbaum, S.; Herpin, F.; Tremblin, P.; Csengeri, T.; Myers, P. C.; Hill, T.; Cunningham, M.; Federrath, C.

    2016-03-01

    The probability distribution function of column density (N-PDF) serves as a powerful tool to characterise the various physical processes that influence the structure of molecular clouds. Studies that use extinction maps or H2 column-density maps (N) that are derived from dust show that star-forming clouds can best be characterised by lognormal PDFs for the lower N range and a power-law tail for higher N, which is commonly attributed to turbulence and self-gravity and/or pressure, respectively. While PDFs from dust cover a large dynamic range (typically N ~ 1020-24 cm-2 or Av~ 0.1-1000), PDFs obtained from molecular lines - converted into H2 column density - potentially trace more selectively different regimes of (column) densities and temperatures. They also enable us to distinguish different clouds along the line of sight through using the velocity information. We report here on PDFs that were obtained from observations of 12CO, 13CO, C18O, CS, and N2H+ in the Cygnus X North region, and make a comparison to a PDF that was derived from dust observations with the Herschel satellite. The PDF of 12CO is lognormal for Av ~ 1-30, but is cut for higher Av because of optical depth effects. The PDFs of C18O and 13CO are mostly lognormal up to Av ~ 1-15, followed by excess up to Av ~ 40. Above that value, all CO PDFs drop, which is most likely due to depletion. The high density tracers CS and N2H+ exhibit only a power law distribution between Av ~ 15 and 400, respectively. The PDF from dust is lognormal for Av ~ 3-15 and has a power-law tail up to Av ~ 500. Absolute values for the molecular line column densities are, however, rather uncertain because of abundance and excitation temperature variations. If we take the dust PDF at face value, we "calibrate" the molecular line PDF of CS to that of the dust and determine an abundance [CS]/[H2] of 10-9. The slopes of the power-law tails of the CS, N2H+, and dust PDFs are -1.6, -1.4, and -2.3, respectively, and are thus consistent

  5. INTEGRATION OF CELL FORMATION AND LAYOUT DESIGN IN THE UNIDIRECTIONAL LOOP MATERIAL HANDLING ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    Lei Deming; Wu Zhiming

    2005-01-01

    A two-phase approach is proposed to deal with the integration problem in the loop layout.Tabu search is applied to cell construction in phase 1 to minimize the inter-cell flow, and the heuristic for layout design is used as phase 2 to optimize the sum ofintra-cell and inter-cell transportation cost.The final computational results demonstrate the validation of the two-phase approach.

  6. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation.

    Science.gov (United States)

    Wahba, Lamia; Costantino, Lorenzo; Tan, Frederick J; Zimmer, Anjali; Koshland, Douglas

    2016-06-01

    R loops form when transcripts hybridize to homologous DNA on chromosomes, yielding a DNA:RNA hybrid and a displaced DNA single strand. R loops impact the genome of many organisms, regulating chromosome stability, gene expression, and DNA repair. Understanding the parameters dictating R-loop formation in vivo has been hampered by the limited quantitative and spatial resolution of current genomic strategies for mapping R loops. We report a novel whole-genome method, S1-DRIP-seq (S1 nuclease DNA:RNA immunoprecipitation with deep sequencing), for mapping hybrid-prone regions in budding yeast Saccharomyces cerevisiae Using this methodology, we identified ∼800 hybrid-prone regions covering 8% of the genome. Given the pervasive transcription of the yeast genome, this result suggests that R-loop formation is dictated by characteristics of the DNA, RNA, and/or chromatin. We successfully identified two features highly predictive of hybrid formation: high transcription and long homopolymeric dA:dT tracts. These accounted for >60% of the hybrid regions found in the genome. We demonstrated that these two factors play a causal role in hybrid formation by genetic manipulation. Thus, the hybrid map generated by S1-DRIP-seq led to the identification of the first global genomic features causal for R-loop formation in yeast. © 2016 Wahba et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Transmesenteric hernia due to double-loop formation in the small intestine: a fatal case involving a toddler.

    Science.gov (United States)

    Kakimoto, Yu; Abiru, Hitoshi; Kotani, Hirokazu; Ozeki, Munetaka; Tsuruyama, Tatsuaki; Tamaki, Keiji

    2012-01-10

    We report a unique case of transmesenteric hernia resulting in death, which went undiagnosed during a recent hospital visit. The victim was a 2.5-year-old girl who - with the exception of chronic constipation - had no medical history. One night she complained of abdominal pains and was taken to a pediatric hospital where doctors performed an abdominal X-ray and echography. No significant findings suggesting bowel obstruction (e.g. air-fluid levels or dilation of the bowel) were obtained on examinations and bloody feces were not observed in this particular episode. As her abdominal pain gradually attenuated, the doctor allowed her to return home. A few hours later, she lost consciousness and expired despite resuscitation efforts attempted at an emergency hospital. A subsequent autopsy revealed that the small bowel had herniated through a defect in the mesentery resulting in two consecutive and inversely forming loops, in which each loop protruded on either side of the mesentery. This rare morphological anatomy seems to have progressed in a two-step process. The girl's mild abdominal pain was likely induced by herniation and formation of the first intestinal loop, followed by severe shock occurring when the subsequent intestinal segment invaginated into the same defect forming the second loop on the opposite side of the mesentery. This case illustrates the difficulty of diagnosing transmesenteric hernia due to the presentation of unspecific symptoms; especially in infants and toddlers. Furthermore, this report demonstrates the value of a complete autopsy in cases of sudden and unexpected deaths involving children. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Closed-Loop Control of Satellite Formations Using a Quasi-Rigid Body Formulation

    Science.gov (United States)

    Blake, Christopher; Misra, Arun K.

    2011-04-01

    Satellites in formation work together to fulfill the role of a larger satellite. The purpose of this article is to develop a quasi-rigid body formulation for modeling and controlling such a formation as a single entity. In this article, a definition of a quasi-rigid body coordinate frame is presented, which, when attached to a formation, conveniently describes its orientation in space. Using this formulation, the equations of motion for a satellite formation are recast, and natural circular formations are expressed more succinctly. When the J 2 perturbation is considered, a correction factor on the formation's spin rate is introduced. The control of a satellite formation can effectively be separated into (1) a control torque to maintain the attitude and (2) control forces that maintain the rigidity of the formation. With this in mind, a nonlinear Lyapunov controller is derived using the formulation, which acts on the formation as a whole. Simulations validate this controller and illustrate its utility for maintaining circular formations, in particular, in the presence of gravitational perturbations.

  9. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    Science.gov (United States)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  10. Dislocation-enhanced experimental-scale vacancy loop formation in hcp Zirconium in one single collision cascade.

    Science.gov (United States)

    Zhou, Wei; Tian, Jiting; Zheng, Jian; Xue, Jianming; Peng, Shuming

    2016-02-12

    Large defects are the main factor leading to the degradation of material properties under irradiation environments. It is commonly assumed that the large defects are mainly formed through cluster growth under continuous irradiations. Besides this mechanism, recent experiments and simulations show that sometimes an individual ion can also directly create a large defect. Here we report a novel mechanism for the formation of the large defects, as discovered by our Molecular Dynamics (MD) simulations of the collision cascades in hcp Zirconium (Zr): a pre-existing edge dislocation (ED) can significantly promote the nucleation of the vacancy clusters, and even facilitate the direct formation of an experimental-scale large vacancy loop (about 3 nm) in only one single displacement cascade. This dislocation-related mechanism may be the key for understanding the experimental results in the low-dose irradiated Zr where the high-density large dislocation loops are observed but difficult to be explained by the two mechanisms mentioned above. Considering that intrinsic dislocations exist in nearly all crystalline materials, our results provide a significant concept: pre-existing dislocations have a strong influence on the primary damage production, and taking them into account is indispensable for assessing and improving the material's irradiation-resistance.

  11. Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151mLu

    Directory of Open Access Journals (Sweden)

    F. Wang

    2017-07-01

    Full Text Available The quenching of the experimental spectroscopic factor for proton emission from the short-lived d3/2 isomeric state in 151mLu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyväskylä. The proton-decay energy and half-life of this isomer were measured to be 1295(5 keV and 15.4(8 μs, respectively, in agreement with another recent study. These new experimental data can resolve the discrepancy in the spectroscopic factor calculated using the spherical WKB approximation. Using the R-matrix approach it is found that the proton formation probability indicates no significant hindrance for the proton decay of 151mLu.

  12. Compound nucleus formation probability PCN determined within the dynamical cluster-decay model for various "hot" fusion reactions

    Science.gov (United States)

    Kaur, Arshdeep; Chopra, Sahila; Gupta, Raj K.

    2014-08-01

    The compound nucleus (CN) fusion/formation probability PCN is defined and its detailed variations with the CN excitation energy E*, center-of-mass energy Ec .m., fissility parameter χ, CN mass number ACN, and Coulomb interaction parameter Z1Z2 are studied for the first time within the dynamical cluster-decay model (DCM). The model is a nonstatistical description of the decay of a CN to all possible processes. The (total) fusion cross section σfusion is the sum of the CN and noncompound nucleus (nCN) decay cross sections, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of evaporation residues and fusion-fission, including intermediate-mass fragments, each calculated for all contributing decay fragments (A1, A2) in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf) process, where P0=1 and P is calculated for the entrance-channel nuclei. The DCM, with effects of deformations and orientations of nuclei included in it, is used to study the PCN for about a dozen "hot" fusion reactions forming a CN of mass number A ˜100 to superheavy nuclei and for various different nuclear interaction potentials. Interesting results are that PCN=1 for complete fusion, but PCNPCN≪1 due to the nCN contribution, depending strongly on different parameters of the entrance-channel reaction but found to be independent of the nuclear interaction potentials used.

  13. The sea urchin stem–loop-binding protein: a maternally expressed protein that probably functions in expression of multiple classes of histone mRNA

    Science.gov (United States)

    Robertson, Anthony J.; Howard, Jason T.; Dominski, Zbigniew; Schnackenberg, Bradley J.; Sumerel, Jan L.; McCarthy, John J.; Coffman, James A.; Marzluff, William F.

    2004-01-01

    Following the completion of oogenesis and oocyte maturation, histone mRNAs are synthesized and stored in the sea urchin egg pronucleus. Histone mRNAs are the only mRNAs that are not polyadenylated but instead end in a stem–loop which has been conserved in evolution. The 3′ end binds the stem–loop-binding protein (SLBP), and SLBP is required for histone pre-mRNA processing as well as translation of the histone mRNAs. A cDNA encoding a 59 kDa sea urchin SLBP (suSLBP) has been cloned from an oocyte cDNA library. The suSLBP contains an RNA-binding domain that is similar to the RNA-binding domain found in SLBPs from other species, although there is no similarity between the rest of the suSLBP and other SLBPs. The suSLBP is present at constant levels in eggs and for the first 12 h of development. The levels of suSLBP then decline and remain at a low level for the rest of embryogenesis. The suSLBP is concentrated in the egg pronucleus and is released from the nucleus only when cells enter the first mitosis. SuSLBP expressed by in vitro translation does not bind the stem–loop RNA, suggesting that suSLBP is modified to activate RNA binding in sea urchin embryos. PMID:14762208

  14. An idiosyncratic serine ordering loop in methanogen seryl-tRNA synthetases guides substrates through seryl-tRNASer formation.

    Science.gov (United States)

    Dulic, Morana; Pozar, Josip; Bilokapic, Silvija; Weygand-Durasevic, Ivana; Gruic-Sovulj, Ita

    2011-10-01

    Seryl-tRNA synthetases (SerRS) covalently attach serine to cognate tRNA(Ser). Atypical SerRSs, considerably different from canonical enzymes, have been found in methanogenic archaea. A crystal structure of methanogenic-type SerRS revealed a motif within the active site (serine ordering loop; SOL), which undergoes a notable induced-fit rearrangement during serine binding. The loop rearranges from a disordered conformation in the unliganded enzyme, to an ordered structure comprising an α-helix followed by a loop. We performed kinetic and thermodynamic analyses of SerRS variants to establish the role of the SOL in serylation. Thermodynamic data confirmed a linkage between binding of serine and α-helix formation, previously described by the crystallographic analysis. The ability of the SOL to adopt the observed secondary structure was recognized as essential for serine activation. Mutation of Gln400, which according to the structural data establishes the main connection between the serine and the SOL, produced only modest kinetic effects. Kinetic data offer new insights into the coupling of the conformational change with active site assembly. Productive positioning of the SOL may be driven by the interaction between Trp396 and the serine α-amino group. Rapid kinetics reveals that His250, a non-SOL residue, is essential for transfer of serine to tRNA. Modeling data established that accommodation of the tRNA within the active site may require movement of the SOL. This would enable His250 to assist in productive positioning of the 3'-end of the tRNA for the aminoacyl transfer. Thus, the rearrangements of the SOL conformationally adjust the active site for both reaction steps.

  15. Near-Barrierless Ammonium Bisulfate Formation via a Loop-Structure Promoted Proton-Transfer Mechanism on the Surface of Water.

    Science.gov (United States)

    Li, Lei; Kumar, Manoj; Zhu, Chongqin; Zhong, Jie; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-02-17

    In the atmosphere, a well-known and conventional pathway toward the formation of ammonium sulfate is through the neutralization of sulfuric acid with ammonia (NH3) in water droplets. Here, we present direct ab initio molecular dynamics simulation evidence of the formation of ammonium bisulfate (NH4HSO4) from the hydrated NH3 and SO3 molecules in a water trimer as well as on the surface of a water droplet. This reaction suggests a new mechanism for the formation of ammonium sulfate in the atmosphere, especially when the concentration of NH3 is high (e.g., ∼10 μg m(-3)) in the air. Contrary to the water monomer and dimer, the water trimer enables near-barrierless proton transfer via the formation of a unique loop structure around the reaction center. The formation of the loop structure promotes the splitting of a water molecule in the proton-transfer center, resulting in the generation a NH4(+)/HSO4(-) ion pair. The loop-structure promoted proton-transfer mechanism is expected to be ubiquitous on the surface of cloud droplets with adsorbed NH3 and SO3 molecules and, thus, may play an important role in the nucleation of aerosol particles (e.g., fine particles PM2.5) in water droplets.

  16. The strength of an Ig switch region is determined by its ability to drive R loop formation and its number of WGCW sites.

    Science.gov (United States)

    Zhang, Zheng Z; Pannunzio, Nicholas R; Han, Li; Hsieh, Chih-Lin; Yu, Kefei; Lieber, Michael R

    2014-07-24

    R loops exist at the murine IgH switch regions and possibly other locations, but their functional importance is unclear. In biochemical systems, R loop initiation requires DNA sequence regions containing clusters of G nucleotides, but cellular studies have not been done. Here, we vary the G-clustering, total switch region length, and the number of target sites (WGCW sites for the activation-induced deaminase) at synthetic switch regions in a murine B cell line to determine the effect on class switch recombination (CSR). G-clusters increase CSR regardless of their immediate proximity to the WGCW sites. This increase is accompanied by an increase in R loop formation. CSR efficiency correlates better with the absolute number of WGCW sites in the switch region rather than the total switch region length or density of WGCW sites. Thus, the overall strength of the switch region depends on G-clusters, which initiate R loop formation, and on the number of WGCW sites.

  17. Flow Induced Microvascular Network Formation of Therapeutic Relevant Arteriovenous (AV) Loop-Based Constructs in Response to Ionizing Radiation.

    Science.gov (United States)

    Schmidt, Volker J; Covi, Jennifer M; Koepple, Christoph; Hilgert, Johannes G; Polykandriotis, Elias; Bigdeli, Amir K; Distel, Luitpold V; Horch, Raymund E; Kneser, Ulrich

    2017-02-15

    BACKGROUND The arteriovenous (AV) loop model enables axial vascularization to gain a functional microcirculatory system in tissue engineering constructs in vivo. These constructs might replace surgical flaps for the treatment of complex wounds in the future. Today, free flaps are often exposed to high-dose radiation after defect coverage, according to guideline-oriented treatment plans. Vascular response of AV loop-based constructs has not been evaluated after radiation, although it is of particular importance. It is further unclear whether the interposed venous AV loop graft is crucial for the induction of angiogenesis. MATERIAL AND METHODS We exposed the grafted vein to a single radiation dose of 2 Gy prior to loop construction to alter intrinsic and angio-inductive properties specifically within the graft. Vessel loops were embedded in a fibrin-filled chamber for 15 days and radiation-induced effects on flow-mediated vascularization were assessed by micro-CT and two-dimensional histological analysis. RESULTS Vessel amount was significantly impaired when an irradiated vein graft was used for AV loop construction. However, vessel growth and differentiation were still present. In contrast to vessel density, which was homogeneously diminished in constructs containing irradiated veins, vessel diameter was primarily decreased in the more peripheral regions. CONCLUSIONS Vascular luminal sprouts were significantly diminished in irradiated venous grafts, suggesting that the interposing vein constitutes a vital part of the AV loop model and is essential to initiate flow-mediate angiogenesis. These results add to the current understanding of AV loop-based neovascularization and suggest clinical implications for patients requiring combined AV loop-based tissue transfer and adjuvant radiotherapy.

  18. Flow Induced Microvascular Network Formation of Therapeutic Relevant Arteriovenous (AV) Loop-Based Constructs in Response to Ionizing Radiation

    Science.gov (United States)

    Schmidt, Volker J.; Covi, Jennifer M.; Koepple, Christoph; Hilgert, Johannes G.; Polykandriotis, Elias; Bigdeli, Amir K.; Distel, Luitpold V.; Horch, Raymund E.; Kneser, Ulrich

    2017-01-01

    Background The arteriovenous (AV) loop model enables axial vascularization to gain a functional microcirculatory system in tissue engineering constructs in vivo. These constructs might replace surgical flaps for the treatment of complex wounds in the future. Today, free flaps are often exposed to high-dose radiation after defect coverage, according to guideline-oriented treatment plans. Vascular response of AV loop-based constructs has not been evaluated after radiation, although it is of particular importance. It is further unclear whether the interposed venous AV loop graft is crucial for the induction of angiogenesis. Material/Methods We exposed the grafted vein to a single radiation dose of 2 Gy prior to loop construction to alter intrinsic and angio-inductive properties specifically within the graft. Vessel loops were embedded in a fibrin-filled chamber for 15 days and radiation-induced effects on flow-mediated vascularization were assessed by micro-CT and two-dimensional histological analysis. Results Vessel amount was significantly impaired when an irradiated vein graft was used for AV loop construction. However, vessel growth and differentiation were still present. In contrast to vessel density, which was homogeneously diminished in constructs containing irradiated veins, vessel diameter was primarily decreased in the more peripheral regions. Conclusions Vascular luminal sprouts were significantly diminished in irradiated venous grafts, suggesting that the interposing vein constitutes a vital part of the AV loop model and is essential to initiate flow-mediate angiogenesis. These results add to the current understanding of AV loop-based neovascularization and suggest clinical implications for patients requiring combined AV loop-based tissue transfer and adjuvant radiotherapy. PMID:28199294

  19. Volumetric contributions of loop regions of G-quadruplex DNA to the formation of the tertiary structure.

    Science.gov (United States)

    Takahashi, Shuntaro; Sugimoto, Naoki

    2017-02-06

    DNA guanine-quadruplexes (G-quadruplexes) are unique DNA structures formed by guanine-rich sequences. The loop regions of G-quadruplexes play key roles in stability and topology of G-quadruplexes. Here, we investigated volumetric changes induced by pressure in the folding of the G-quadruplex formed by the thrombin binding aptamer (TBA) with mutations within the loop regions. The change of partial molar volume in the transition from coil to G-quadruplex, ∆Vtr, of TBA with a mutation from T to A in the 5' most loop (TBA T3A) was 75.5cm(3)mol(-1), which was larger than that of TBA (54.6cm(3)mol(-1)). TBA with a G to T mutation in the central loop (TBA G8T) had thermal stability similar to TBA T3A but a smaller ∆Vtr of 41.1cm(3)mol(-1). In the presence of poly(ethylene)glycol 200 (PEG200), ∆Vtr values were 14.7cm(3)mol(-1) for TBA T3A and 13.2cm(3)mol(-1) for TBA G8T. These results suggest that the two mutations destabilize the G-quadruplex structure differently. Thus, volumetric data obtained using pressure-based thermodynamic analyses provides information about the dynamics of the loop regions and the roles of loops in the stabilities and folding of G-quadruplex structures.

  20. Oyster Shell Proteins Originate from Multiple Organs and Their Probable Transport Pathway to the Shell Formation Front.

    Directory of Open Access Journals (Sweden)

    Xiaotong Wang

    Full Text Available Mollusk shell is one kind of potential biomaterial, but its vague mineralization mechanism hinders its further application. Mollusk shell matrix proteins are important functional components that are embedded in the shell, which play important roles in shell formation. The proteome of the oyster shell had been determined based on the oyster genome sequence by our group and gives the chance for further deep study in this area. The classical model of shell formation posits that the shell proteins are mantle-secreted. But, in this study, we further analyzed the shell proteome data in combination with organ transcriptome data and we found that the shell proteins may be produced by multiple organs though the mantle is still the most important organ for shell formation. To identify the transport pathways of these shell proteins not in classical model of shell formation, we conducted a shell damage experiment and we determined the shell-related gene set to identify the possible transport pathways from multiple organs to the shell formation front. We also found that there may exist a remodeling mechanism in the process of shell formation. Based on these results along with some published results, we proposed a new immature model, which will help us think about the mechanism of shell formation in a different way.

  1. R环的形成及对基因组稳定性的影响%R-loop structure:the formation and the effects on genomic stability

    Institute of Scientific and Technical Information of China (English)

    潘学峰; 姜楠; 陈细芳; 周晓宏; 丁良; 段斐

    2014-01-01

    R-环是由一个RNA:DNA杂交体和一条单链状态的DNA分子共同组成的三链核酸结构。其中,RNA:DNA杂交体的形成起因于基因转录所合成的RNA分子不能与模板分开,或RNA分子重新与一段双链DNA分子中的一条链杂交。在基因转录过程中,当转录泡遇到富含 G 碱基的非模板链区或位于某些与人类疾病有关的三核苷酸卫星 DNA时,转录泡后方累积的负超螺旋可促进 R环形成。同时,新生 RNA分子未被及时加工、成熟或未被快速转运到细胞质等因素也会催生 R 环。研究表明,细胞拥有多种管理 R 环的方法,可以有效地管理R环的形成和处理已经形成的R环,以尽量避免R环对DNA复制、基因突变和同源重组产生不利影响。文章重点分析了R-环的形成机制及R环对DNA复制、基因突变和同源重组的影响,并针对R-环诱导的DNA复制在某些三核苷酸重复扩增有关的神经肌肉退行性疾病发生过程中的作用进行了分析和讨论。%R-loop is a type of three-stranded nucleic acid structure that is made up of an RNA:DNA hybrid, formed due to failing separation of a nascent RNA molecule with transcripting template in transcription or by the re-annealing of RNA molecule with one of the two strands in a double stranded DNA molecule, along with the single stranded DNA, which is either the non-template strand in the transcription bubble or the RNA substituted DNA strand. Formation of R-loops can occur when transcription goes through a genomic DNA region having a tract of G bases in the non-template strand in the transcription bubble or through a type of triplet microsatellite DNA sequences that are known to be associated with certain human diseases. The negative supercoiling forces accumulated in the transcrip-tion bubble, and the misprocessing of RNA precursors, as well as the delayed utilizations and transportations of RNA molecules to cytoplasm promote R loop

  2. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    Science.gov (United States)

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  3. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    Science.gov (United States)

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  4. Cosmic string loop shapes

    CERN Document Server

    Blanco-Pillado, Jose J; Shlaer, Benjamin

    2015-01-01

    We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe string network. The simulation does not include gravitational back reaction, but we model that process by smoothing the loop using Lorentzian convolution. We find that loops at formation consist of generally straight segments separated by kinks. We do not see cusps or any cusp-like structure at the scale of the entire loop, although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps on each loop. The smoothing process does not lead to any significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.

  5. Concepts of Dhatu Siddhanta (theory of tissues formation and differentiation) and Rasayana; probable predecessor of stem cell therapy.

    Science.gov (United States)

    Sharma, Vinamra; Chaudhary, Anand Kumar

    2014-01-01

    To maintain health and to cure diseases through Rasayana (rejuvenation) therapy along with main treatment is the unique approach of Ayurveda. The basic constituent unit of a living being is always a functional cell. Question arises from where it is generated? How it attains its final specific differentiation form? As age progresses, various changes occur at every cell level and cell undergoes to adaptation accordingly. Microenvironment for cell nourishment diminishes with age or as disease condition persists. In this context, Acharyas had contributed and documented various facts and theories through their insight wisdom. Hidden secretes in the basic principles of any medical system are needed to be explained in terms of contemporary knowledge. Contemporary research areas should be opened to include various explanations of different fields of ancient thoughts to support these new doctrines, if any. This review may be helpful to open the door of future research area in the field of reverse scientific approach of Ayurveda in the context of Dhatu Siddhanta (theory of tissues formation and differentiation) and theory of stem cell.

  6. The Energy Landscape of Hyperstable LacI-DNA Loops

    Science.gov (United States)

    Kahn, Jason

    2009-03-01

    The Escherichia coli LacI protein represses transcription of the lac operon by blocking access to the promoter through binding at a promoter-proximal DNA operator. The affinity of tetrameric LacI (and therefore the repression efficiency) is enhanced by simultaneous binding to an auxiliary operator, forming a DNA loop. Hyperstable LacI-DNA loops were previously shown to be formed on DNA constructs that include a sequence-directed bend flanked by operators. Biochemical experiments showed that two such constructs (9C14 and 11C12) with different helical phasing between the operators and the DNA bend form different DNA loop shapes. The geometry and topology of the loops and the relevance of alternative conformations suggested by probable flexible linkers in LacI remain unclear. Bulk and single molecule fluorescence resonance energy transfer (SM-FRET, with D. English) experiments on a dual fluorophore-labeled 9C14-LacI loop demonstrate that it adopts a single, stable, rigid closed-form loop conformation. Here, we characterize the LacI-9C14 loop by SM-FRET as a function of inducer isopropyl-β,D-thiogalactoside (IPTG) concentration. Energy transfer measurements reveal partial but incomplete destabilization of loop formation by IPTG. Surprisingly, there is no change in the energy transfer efficiency of the remaining looped population. Models for the regulation of the lac operon often assume complete disruption of LacI-operator complexes upon inducer binding to LacI. Our work shows that even at saturating IPTG there is still a significant population of LacI-DNA complexes in a looped state, in accord with previous in vivo experiments that show incomplete induction (with J. Maher). Finally, we will report progress on characterizing the ``energy landscape'' for DNA looping upon systematic variation of the DNA linkers between the operators and the bending locus. Rod mechanics simulations (with N. Perkins) provide testable predictions on loop stability, topology, and FRET.

  7. Highly branched and loop-rich gels via formation of metal-organic cages linked by polymers.

    Science.gov (United States)

    Zhukhovitskiy, Aleksandr V; Zhong, Mingjiang; Keeler, Eric G; Michaelis, Vladimir K; Sun, Jessie E P; Hore, Michael J A; Pochan, Darrin J; Griffin, Robert G; Willard, Adam P; Johnson, Jeremiah A

    2016-01-01

    Gels formed via metal-ligand coordination typically have very low branch functionality, f, as they consist of ∼2-3 polymer chains linked to single metal ions that serve as junctions. Thus, these materials are very soft and unable to withstand network defects such as dangling ends and loops. We report here a new class of gels assembled from polymeric ligands and metal-organic cages (MOCs) as junctions. The resulting 'polyMOC' gels are precisely tunable and may feature increased branch functionality. We show two examples of such polyMOCs: a gel with a low f based on a M2L4 paddlewheel cluster junction and a compositionally isomeric one of higher f based on a M12L24 cage. The latter features large shear moduli, but also a very large number of elastically inactive loop defects that we subsequently exchanged for functional ligands, with no impact on the gel's shear modulus. Such a ligand substitution is not possible in gels of low f, including the M2L4-based polyMOC.

  8. Handbook of probability

    CERN Document Server

    Florescu, Ionut

    2013-01-01

    THE COMPLETE COLLECTION NECESSARY FOR A CONCRETE UNDERSTANDING OF PROBABILITY Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability. The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introductio

  9. Quantum probability

    CERN Document Server

    Gudder, Stanley P

    2014-01-01

    Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism.Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles.The first two chapters survey the ne

  10. Ruin probabilities

    DEFF Research Database (Denmark)

    Asmussen, Søren; Albrecher, Hansjörg

    The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities......, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially...

  11. Ignition Probability

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — USFS, State Forestry, BLM, and DOI fire occurrence point locations from 1987 to 2008 were combined and converted into a fire occurrence probability or density grid...

  12. Probability-1

    CERN Document Server

    Shiryaev, Albert N

    2016-01-01

    This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for independent study. To accommodate the greatly expanded material in the third edition of Probability, the book is now divided into two volumes. This first volume contains updated references and substantial revisions of the first three chapters of the second edition. In particular, new material has been added on generating functions, the inclusion-exclusion principle, theorems on monotonic classes (relying on a detailed treatment of “π-λ” systems), and the fundamental theorems of mathematical statistics.

  13. Lexicographic Probability, Conditional Probability, and Nonstandard Probability

    Science.gov (United States)

    2009-11-11

    the following conditions: CP1. µ(U |U) = 1 if U ∈ F ′. CP2 . µ(V1 ∪ V2 |U) = µ(V1 |U) + µ(V2 |U) if V1 ∩ V2 = ∅, U ∈ F ′, and V1, V2 ∈ F . CP3. µ(V |U...µ(V |X)× µ(X |U) if V ⊆ X ⊆ U , U,X ∈ F ′, V ∈ F . Note that it follows from CP1 and CP2 that µ(· |U) is a probability measure on (W,F) (and, in... CP2 hold. This is easily seen to determine µ. Moreover, µ vaciously satisfies CP3, since there do not exist distinct sets U and X in F ′ such that U

  14. Risk Probabilities

    DEFF Research Database (Denmark)

    Rojas-Nandayapa, Leonardo

    Tail probabilities of sums of heavy-tailed random variables are of a major importance in various branches of Applied Probability, such as Risk Theory, Queueing Theory, Financial Management, and are subject to intense research nowadays. To understand their relevance one just needs to think...... of insurance companies facing losses due to natural disasters, banks seeking protection against huge losses, failures in expensive and sophisticated systems or loss of valuable information in electronic systems. The main difficulty when dealing with this kind of problems is the unavailability of a closed...

  15. Probability theory

    CERN Document Server

    S Varadhan, S R

    2001-01-01

    This volume presents topics in probability theory covered during a first-year graduate course given at the Courant Institute of Mathematical Sciences. The necessary background material in measure theory is developed, including the standard topics, such as extension theorem, construction of measures, integration, product spaces, Radon-Nikodym theorem, and conditional expectation. In the first part of the book, characteristic functions are introduced, followed by the study of weak convergence of probability distributions. Then both the weak and strong limit theorems for sums of independent rando

  16. Mice aorta loop grafting: A new model which separate vascular rejection and neointimal formation in chronic rejection

    Institute of Scientific and Technical Information of China (English)

    陈勇; 窦科峰; 何勇; 孙凯

    2003-01-01

    Objective: To study the cause and mechanism of transplantation vasculopathy which characterized by accelerated graft arteriosclerosis (AGA), we established a mouse aorta graft model. Methods: A segment of thoracic aortas of B10.A (2R) mice were transplanted to C57BL/10 mice abdominal aorta by end to side anastomoses. The different time point collected grafts were analyzed by morphological, histochemical and electro microscopic methods. Results: Rejection was manifested as a concentric progressive destruction of the smooth muscle cells. In contrast, the endothelial inflammation and subsequent neointimal proliferation characteristic of AGA was localized to the regions of turbulent flow, i.e. the junction of the graft with the recipient aorta. Conclusion: This model separates the processes of rejection and neointimal formation which usually manifested together in the lesion of AGA, elucidate that different mechanisms control vascular rejection and neointimal formation in chronic rejection.

  17. Monte Carlo transition probabilities

    OpenAIRE

    Lucy, L. B.

    2001-01-01

    Transition probabilities governing the interaction of energy packets and matter are derived that allow Monte Carlo NLTE transfer codes to be constructed without simplifying the treatment of line formation. These probabilities are such that the Monte Carlo calculation asymptotically recovers the local emissivity of a gas in statistical equilibrium. Numerical experiments with one-point statistical equilibrium problems for Fe II and Hydrogen confirm this asymptotic behaviour. In addition, the re...

  18. Probability and Measure

    CERN Document Server

    Billingsley, Patrick

    2012-01-01

    Praise for the Third Edition "It is, as far as I'm concerned, among the best books in math ever written....if you are a mathematician and want to have the top reference in probability, this is it." (Amazon.com, January 2006) A complete and comprehensive classic in probability and measure theory Probability and Measure, Anniversary Edition by Patrick Billingsley celebrates the achievements and advancements that have made this book a classic in its field for the past 35 years. Now re-issued in a new style and format, but with the reliable content that the third edition was revered for, this

  19. EUV spectral line formation and the temperature structure of active region fan loops: observations with Hinode/EIS and SDO/AIA

    CERN Document Server

    Brooks, David H; Young, Peter R

    2011-01-01

    With the aim of studying AR fan loops using Hinode/EIS and SDO/AIA, we investigate a number of inconsistencies in modeling the absolute intensities of Fe VIII and Si VII lines, and address why their images look very similar despite the fact that they have significantly different formation temperatures in ionization equilibrium: log T/K = 5.6 and 5.8. These issues are important to resolve because confidence has been undermined in their use for DEM analysis, and Fe VIII is the main contributor to the AIA 131A channel at low temperatures. Furthermore, they are the best EIS lines to use for velocity studies, and for assigning the correct temperature to velocity measurements in the fans. We find that the Fe VIII 185.213A line is particularly sensitive to the slope of the DEM, leading to disproportionate changes in its effective formation temperature. If the DEM has a steep gradient in the log T/K = 5.6 to 5.8 range, or is strongly peaked, Fe VIII 185.213A and Si VII 275.368A will be formed at the same temperature....

  20. Probability theory and applications

    CERN Document Server

    Hsu, Elton P

    1999-01-01

    This volume, with contributions by leading experts in the field, is a collection of lecture notes of the six minicourses given at the IAS/Park City Summer Mathematics Institute. It introduces advanced graduates and researchers in probability theory to several of the currently active research areas in the field. Each course is self-contained with references and contains basic materials and recent results. Topics include interacting particle systems, percolation theory, analysis on path and loop spaces, and mathematical finance. The volume gives a balanced overview of the current status of probability theory. An extensive bibliography for further study and research is included. This unique collection presents several important areas of current research and a valuable survey reflecting the diversity of the field.

  1. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish.

    Science.gov (United States)

    Fish, Jason E; Wythe, Joshua D; Xiao, Tong; Bruneau, Benoit G; Stainier, Didier Y R; Srivastava, Deepak; Woo, Stephanie

    2011-04-01

    Members of the Slit family of secreted ligands interact with Roundabout (Robo) receptors to provide guidance cues for many cell types. For example, Slit/Robo signaling elicits repulsion of axons during neural development, whereas in endothelial cells this pathway inhibits or promotes angiogenesis depending on the cellular context. Here, we show that miR-218 is intronically encoded in slit2 and slit3 and that it suppresses Robo1 and Robo2 expression. Our data indicate that miR-218 and multiple Slit/Robo signaling components are required for heart tube formation in zebrafish and that this network modulates the previously unappreciated function of Vegf signaling in this process. These findings suggest a new paradigm for microRNA-based control of ligand-receptor interactions and provide evidence for a novel signaling pathway regulating vertebrate heart tube assembly.

  2. Genetic based sensorless hybrid intelligent controller for strip loop formation control between inter-stands in hot steel rolling mills.

    Science.gov (United States)

    Thangavel, S; Palanisamy, V; Duraiswamy, K

    2008-04-01

    Safe operating environment is essential for all complex industrial processes. The safety issues in steel rolling mill when the hot strip passes through consecutive mill stands have been considered in this paper. Formation of sag in strip is a common problem in the rolling process. The excessive sag can lead to scrap runs and damage to machinery. Conventional controllers for mill actuation system are based on a rolling model. The factors like rise in temperature, aging, wear and tear are not taken into account while designing a conventional controller. Therefore, the conventional controller cannot yield a requisite controlled output. In this paper, a new Genetic-neuro-fuzzy hybrid controller without tension sensor has been proposed to optimize the quantum of excessive sag and reduce it. The performance of the proposed controller has been compared with the performance of fuzzy logic controller, Neuro-fuzzy controller and conventional controller with the help of data collected from the plant. The simulation results depict that the proposed controller has superior performance than the other controllers.

  3. Simultaneous production and utilization of methanol for methyl formate synthesis in a looped heat exchanger reactor configuration

    Institute of Scientific and Technical Information of China (English)

    A.Goosheneshin; R.Maleki; D.Iranshahi; M.R.Rahimpour; A.Jahanmiri

    2012-01-01

    In this investigation,a novel thermally coupled reactor (TCR) containing methyl formate (MF) production in the endothermic side and methanol synthesis in the exothermic side has been investigated.The interesting feature of this TCR is that productive methanol in the exothermic side could be recycled and used as feed of endothermic side for MF synthesis.Other important advantages of the proposed system are high production rates of hydrogen and MF.The configuration consists of two thermally coupled concentric tubular reactors.In these coupled reactors,autothermal system is obtained within the reactor.A steady-state heterogeneous model is used for simulation of the coupled reactor.The proposed model has been utilized to compare the performance of TCR with the conventional methanol reactor (CMR).Noticeable enhancement can be obtained in the performance of the reactors.The influence of operational parameters is studied on reactor performance.The results show that coupling of these reactions could be feasible and beneficial.Experimental proof-of-concept is required to validate the operation of the novel reactor.

  4. Formation of Al2O3/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop

    Science.gov (United States)

    Majumdar, Sanjib; Paul, Bhaskar; Chakraborty, Poulami; Kishor, Jugal; Kain, Vivekanand; Dey, Gautam Kumar

    2017-04-01

    Iron aluminide coating layers were formed on a ferritic martensitic grade 9Cr-1Mo (P 91) steel using pack aluminizing process. The formation of different aluminide compositions such as orthorhombic-Fe2Al5, B2-FeAl and A2-Fe(Al) on the pack chemistry and heat treatment conditions have been established. About 4-6 μm thick Al2O3 scale was formed on the FeAl phase by controlled heat treatment. The corrosion tests were conducted using both the FeAl and Al2O3/FeAl coated specimens in an electro-magnetic pump driven Pb-17Li Loop at 500 °C for 5000 h maintaining a flow velocity of 1.5 m/s. The detailed characterization studies using scanning electron microscopy, back-scattered electron imaging and energy dispersive spectrometry revealed no deterioration of the coating layers after the corrosion tests. Self-healing oxides were formed at the cracks generated in the aluminide layers during thermal cycling and protected the base alloy (steel) from any kind of elemental dissolution or microstructural degradation.

  5. Learning unbelievable marginal probabilities

    CERN Document Server

    Pitkow, Xaq; Miller, Ken D

    2011-01-01

    Loopy belief propagation performs approximate inference on graphical models with loops. One might hope to compensate for the approximation by adjusting model parameters. Learning algorithms for this purpose have been explored previously, and the claim has been made that every set of locally consistent marginals can arise from belief propagation run on a graphical model. On the contrary, here we show that many probability distributions have marginals that cannot be reached by belief propagation using any set of model parameters or any learning algorithm. We call such marginals `unbelievable.' This problem occurs whenever the Hessian of the Bethe free energy is not positive-definite at the target marginals. All learning algorithms for belief propagation necessarily fail in these cases, producing beliefs or sets of beliefs that may even be worse than the pre-learning approximation. We then show that averaging inaccurate beliefs, each obtained from belief propagation using model parameters perturbed about some le...

  6. Loop-to-loop coupling.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  7. RCD+: Fast loop modeling server.

    Science.gov (United States)

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-08

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. 熔盐堆丧失厂外电源事故的概率安全评价%Probability safety assessment of LOOP accident to molten salt reactor

    Institute of Scientific and Technical Information of China (English)

    梅牡丹; 邵世威; 左嘉旭; 禹志臻; 陈堃

    2013-01-01

    以熔盐堆丧失厂外电源(Loss of offsite power,LOOP)为例,采用概率安全评价(Probabilistic safety assessment,PSA)程序Risk Spectrum对其进行PSA分析,同时假设一凹路没有任何阀门,且设备可靠性数据基于现有成熟电站设备的可靠性数据,得到了熔盐堆LOOP事故引发的放射性物质向堆芯释放的事故序列及其频率.结果表明,熔盐堆LOOP事故引发的放射性物质向堆芯的释放频率为2×1011/(堆·年),获得了不确定性分析的点估计和区间估计,重点找出了对LOOP事故引发的放射性物质向堆芯的释放频率贡献最大的因素是反应堆舱室冷却功能失效,为后期熔盐堆系统的设计与改进提供了有效的帮助.

  9. Model of Large-format EO-IR sensor for calculating the probability of true and false detection and tracking for moving and fixed objects

    Science.gov (United States)

    Korb, Andrew R.; Grossman, Stanley I.

    2015-05-01

    A model was developed to understand the effects of spatial resolution and Signal to Noise ratio on the detection and tracking performance of wide-field, diffraction-limited electro-optic and infrared motion imagery systems. False positive detection probability and false positive rate per frame were calculated as a function of target-to-background contrast and object size. Results showed that moving objects are fundamentally more difficult to detect than stationary objects because SNR for fixed objects increases and false positive probability detection rates diminish rapidly with successive frames whereas for moving objects the false detection rate remains constant or increases with successive frames. The model specifies that the desired performance of a detection system, measured by the false positive detection rate, can be achieved by image system designs with different combinations of SNR and spatial resolution, usually requiring several pixels resolving the object; this capability to tradeoff resolution and SNR enables system design trades and cost optimization. For operational use, detection thresholds required to achieve a particular false detection rate can be calculated. Interestingly, for moderate size images the model converges to the Johnson Criteria. Johnson found that an imaging system with an SNR >3.5 has a probability of detection >50% when the resolution on the object is 4 pixels or more. Under these conditions our model finds the false positive rate is less than one per hundred image frames, and the ratio of the probability of object detection to false positive detection is much greater than one. The model was programmed into Matlab to generate simulated images frames for visualization.

  10. Probability Aggregates in Probability Answer Set Programming

    OpenAIRE

    Saad, Emad

    2013-01-01

    Probability answer set programming is a declarative programming that has been shown effective for representing and reasoning about a variety of probability reasoning tasks. However, the lack of probability aggregates, e.g. {\\em expected values}, in the language of disjunctive hybrid probability logic programs (DHPP) disallows the natural and concise representation of many interesting problems. In this paper, we extend DHPP to allow arbitrary probability aggregates. We introduce two types of p...

  11. Scaling Qualitative Probability

    OpenAIRE

    Burgin, Mark

    2017-01-01

    There are different approaches to qualitative probability, which includes subjective probability. We developed a representation of qualitative probability based on relational systems, which allows modeling uncertainty by probability structures and is more coherent than existing approaches. This setting makes it possible proving that any comparative probability is induced by some probability structure (Theorem 2.1), that classical probability is a probability structure (Theorem 2.2) and that i...

  12. Formation of Gallium Nitride Crystal Loops on Silicon (111) Substrate%Si(111)衬底上生长GaN晶环的研究

    Institute of Scientific and Technical Information of China (English)

    王显明; 孙振翠; 魏芹芹; 王强; 曹文田; 薛成山

    2004-01-01

    利用热壁化学气相沉积在Si(111)衬底上获得GaN晶环,采用扫描电镜(SEM)、选择区电子衍射(SAED)、X射线衍射(XRD),光致发光(PL)谱和傅里叶红外吸收谱(FTIR)对晶环的组成、结构、形貌和光学特性进行分析.初步结果证明:在Si(111)衬底上获得择优生长的六方纤锌矿结构的GaN晶环.SEM显示在均匀的薄膜上出现直径约为10μm的5晶环,由XRD和SAED的分析证实晶环呈六方纤矿多晶结构,FTIR显示GaN薄膜的主要成分为GaN,同时含有少量的C污染,PL测试表明晶环呈现不同于GaN薄膜的发光特性.%The crystal loops of Gallium nitride (GaN) were deposited on silicon (111) substrate by using hot-wall chemical vapor deposition and thermal treatment. Scanning electron microscopy (SEM), selected area electron diffraction (SAED), x-ray diffraction (XRD), photoluminescence (PL) and Fourier Transform Infrared transmission (FTIR) Spectroscopy were employed to analyze the surface morphology, structure and optical properties of GaN layer.SEM image shows five half-loops attached to a crystal string side by side in the uniform films. XRD, SAED patterns reveal that the formed loops are polycrystalline hexagonal gallium nitride. FTIR pattern shows the main composition of the film is GaN and it contains trifle carbon contamination. New feature is found in PL pattern of the crystal loops,which is different from the bulk GaN films.

  13. On Probability Leakage

    OpenAIRE

    Briggs, William M.

    2012-01-01

    The probability leakage of model M with respect to evidence E is defined. Probability leakage is a kind of model error. It occurs when M implies that events $y$, which are impossible given E, have positive probability. Leakage does not imply model falsification. Models with probability leakage cannot be calibrated empirically. Regression models, which are ubiquitous in statistical practice, often evince probability leakage.

  14. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  15. The Statistical Loop Analyzer (SLA)

    Science.gov (United States)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  16. Probability 1/e

    Science.gov (United States)

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  17. Probability an introduction

    CERN Document Server

    Goldberg, Samuel

    1960-01-01

    Excellent basic text covers set theory, probability theory for finite sample spaces, binomial theorem, probability distributions, means, standard deviations, probability function of binomial distribution, more. Includes 360 problems with answers for half.

  18. Probability 1/e

    Science.gov (United States)

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  19. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  20. Probable biofilm formation in the cheek as a complication of soft tissue filler resulting from improper endodontic treatment of tooth 16

    Directory of Open Access Journals (Sweden)

    Marusza W

    2012-03-01

    the potential role of hyaluronic acid in the formation of biofilm, and how to avoid this complication, thereby increasing the safety of hyaluronic acid-based procedures.Keywords: pantomogram, biofilm, hyaluronic acid, fluorescent in situ hybridization, peptide nucleic acids

  1. Exotic Looped Trajectories of Photons in Three-Slit Interference

    CERN Document Server

    Magana-Loaiza, Omar S; Mirhosseini, Mohammad; Fickler, Robert; Safari, Akbar; Mick, Uwe; McIntyre, Brian; Banzer, Peter; Rodenburg, Brandon; Leuchs, Gerd; Boyd, Robert W

    2016-01-01

    The validity of the superposition principle and of Born's rule are well-accepted tenants of quantum mechanics. Surprisingly, it has recently been predicted that the intensity pattern formed in a three-slit experiment is seemingly in contradiction with the predictions of the most conventional form of the superposition principle when exotic looped trajectories are taken into account. However, the probability of observing such paths is typically very small and thus rendering them extremely difficult to measure. In this work, we confirm the validity of Born's rule and present the first experimental observation of these exotic trajectories as additional paths for the light by directly measuring their contribution to the formation of optical interference fringes. We accomplish this by enhancing the electromagnetic near-fields in the vicinity of the slits through the excitation of surface plasmons. This process effectively increases the probability of occurrence of these exotic trajectories, demonstrating that they ...

  2. Quantum probability measures and tomographic probability densities

    NARCIS (Netherlands)

    Amosov, GG; Man'ko, [No Value

    2004-01-01

    Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the

  3. Agreeing Probability Measures for Comparative Probability Structures

    NARCIS (Netherlands)

    P.P. Wakker (Peter)

    1981-01-01

    textabstractIt is proved that fine and tight comparative probability structures (where the set of events is assumed to be an algebra, not necessarily a σ-algebra) have agreeing probability measures. Although this was often claimed in the literature, all proofs the author encountered are not valid

  4. On the Properties of Cosmic String Loops

    Science.gov (United States)

    Casper, Paul Henry

    1996-01-01

    When coupled with the prevailing ideas of cosmology, the standard model of particle physics implies that the early universe underwent a sequence of phase transitions. Such phase transitions can lead to topological defects such as magnetic monopoles, domain walls and cosmic strings. The formation and subsequent evolution of a network of cosmic strings may have played a key role in the development of the early universe. One of the most crucial elements in the evolution of the cosmic string network is the formation and decay of closed loops of cosmic string. After formation, the loops lose their energy by emitting gravitational radiation. This provides the primary energy loss mechanism for the cosmic string network. In addition, the cosmic string loops may display a number of observable features through which the cosmic string model may be constrained. In this dissertation a number of the key properties of cosmic string loops are investigated. A general method for determining the rates at which cosmic string loops radiate both energy and linear momentum is developed and implemented. Exact solutions for the radiation rates of a several new classes of loops are derived and used to test the validity of using the piecewise linear method on smooth loop trajectories. A large set of representative loop trajectories is produced using the method of loop fragmentation. These trajectories are analyzed to provide useful information on the properties of realistic cosmic string loops. The fraction of cosmic string loops which would collapse to form black holes is determined and used to place a new observational limit on the mass per unit length of cosmic strings.

  5. Expression of alpha 1-proteinase inhibitor in Escherichia coli: effects of single amino acid substitutions in the active site loop on aggregate formation

    NARCIS (Netherlands)

    Schulze, A.J.; Degryse, E.; Speck, D.; Huber, R.; Bischoff, Rainer

    1994-01-01

    Overproduction of eukaryotic proteins in microorganisms often leads to the formation of insoluble protein aggregates which accumulate as intracellular inclusion bodies. alpha 1-Proteinase inhibitor (alpha 1-PI) when produced as a cytoplasmic protein in Escherichia coli (E. coli) forms inclusion bodi

  6. Probability and Relative Frequency

    Science.gov (United States)

    Drieschner, Michael

    2016-01-01

    The concept of probability seems to have been inexplicable since its invention in the seventeenth century. In its use in science, probability is closely related with relative frequency. So the task seems to be interpreting that relation. In this paper, we start with predicted relative frequency and show that its structure is the same as that of probability. I propose to call that the `prediction interpretation' of probability. The consequences of that definition are discussed. The "ladder"-structure of the probability calculus is analyzed. The expectation of the relative frequency is shown to be equal to the predicted relative frequency. Probability is shown to be the most general empirically testable prediction.

  7. Elements of probability theory

    CERN Document Server

    Rumshiskii, L Z

    1965-01-01

    Elements of Probability Theory presents the methods of the theory of probability. This book is divided into seven chapters that discuss the general rule for the multiplication of probabilities, the fundamental properties of the subject matter, and the classical definition of probability. The introductory chapters deal with the functions of random variables; continuous random variables; numerical characteristics of probability distributions; center of the probability distribution of a random variable; definition of the law of large numbers; stability of the sample mean and the method of moments

  8. Evaluating probability forecasts

    CERN Document Server

    Lai, Tze Leung; Shen, David Bo; 10.1214/11-AOS902

    2012-01-01

    Probability forecasts of events are routinely used in climate predictions, in forecasting default probabilities on bank loans or in estimating the probability of a patient's positive response to treatment. Scoring rules have long been used to assess the efficacy of the forecast probabilities after observing the occurrence, or nonoccurrence, of the predicted events. We develop herein a statistical theory for scoring rules and propose an alternative approach to the evaluation of probability forecasts. This approach uses loss functions relating the predicted to the actual probabilities of the events and applies martingale theory to exploit the temporal structure between the forecast and the subsequent occurrence or nonoccurrence of the event.

  9. Pre-pore oligomer formation by Vibrio cholerae cytolysin: insights from a truncated variant lacking the pore-forming pre-stem loop.

    Science.gov (United States)

    Paul, Karan; Chattopadhyay, Kausik

    2014-01-03

    Vibrio cholerae cytolysin (VCC), a β-barrel pore-forming toxin (β-PFT), induces killing of the target eukaryotic cells by forming heptameric transmembrane β-barrel pores. Consistent with the β-PFT mode of action, binding of the VCC toxin monomers with the target cell membrane triggers formation of pre-pore oligomeric intermediates, followed by membrane insertion of the β-strands contributed by the pre-stem motif within the central cytolysin domain of each protomer. It has been shown previously that blocking of membrane insertion of the VCC pre-stem motif arrests conversion of the pre-pore state to the functional transmembrane pore. Consistent with the generalized β-PFT mechanism, it therefore appears that the VCC pre-stem motif plays a critical role toward forming the structural scaffold of the transmembrane β-barrel pore. It is, however, still not known whether the pre-stem motif plays any role in the membrane interaction process, and subsequent pre-pore structure formation by VCC. In this direction, we have constructed a recombinant variant of VCC deleting the pre-stem region, and have characterized the effect(s) of physical absence of the pre-stem motif on the distinct steps of the membrane pore-formation process. Our results show that the deletion of the pre-stem segment does not affect membrane binding and pre-pore oligomer formation by the toxin, but it critically abrogates the functional pore-forming activity of VCC. Present study extends our insights regarding the structure-function mechanism associated with the membrane pore formation by VCC, in the context of the β-PFT mode of action.

  10. The finite Bruck Loops

    CERN Document Server

    Baumeister, Barbara

    2009-01-01

    We continue the work by Aschbacher, Kinyon and Phillips [AKP] as well as of Glauberman [Glaub1,2] by describing the structure of the finite Bruck loops. We show essentially that a finite Bruck loop $X$ is the direct product of a Bruck loop of odd order with either a soluble Bruck loop of 2-power order or a product of loops related to the groups $PSL_2(q)$, $q= 9$ or $q \\geq 5$ a Fermat prime. The latter possibillity does occur as is shown in [Nag1, BS]. As corollaries we obtain versions of Sylow's, Lagrange's and Hall's Theorems for loops.

  11. What Are Probability Surveys?

    Science.gov (United States)

    The National Aquatic Resource Surveys (NARS) use probability-survey designs to assess the condition of the nation’s waters. In probability surveys (also known as sample-surveys or statistical surveys), sampling sites are selected randomly.

  12. Introduction to probability

    CERN Document Server

    Roussas, George G

    2006-01-01

    Roussas's Introduction to Probability features exceptionally clear explanations of the mathematics of probability theory and explores its diverse applications through numerous interesting and motivational examples. It provides a thorough introduction to the subject for professionals and advanced students taking their first course in probability. The content is based on the introductory chapters of Roussas's book, An Intoduction to Probability and Statistical Inference, with additional chapters and revisions. Written by a well-respected author known for great exposition an

  13. Philosophical theories of probability

    CERN Document Server

    Gillies, Donald

    2000-01-01

    The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. Philosophical Theories of Probability is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.

  14. Poly(dA:dT-rich DNAs are highly flexible in the context of DNA looping.

    Directory of Open Access Journals (Sweden)

    Stephanie Johnson

    Full Text Available Large-scale DNA deformation is ubiquitous in transcriptional regulation in prokaryotes and eukaryotes alike. Though much is known about how transcription factors and constellations of binding sites dictate where and how gene regulation will occur, less is known about the role played by the intervening DNA. In this work we explore the effect of sequence flexibility on transcription factor-mediated DNA looping, by drawing on sequences identified in nucleosome formation and ligase-mediated cyclization assays as being especially favorable for or resistant to large deformations. We examine a poly(dA:dT-rich, nucleosome-repelling sequence that is often thought to belong to a class of highly inflexible DNAs; two strong nucleosome positioning sequences that share a set of particular sequence features common to nucleosome-preferring DNAs; and a CG-rich sequence representative of high G+C-content genomic regions that correlate with high nucleosome occupancy in vivo. To measure the flexibility of these sequences in the context of DNA looping, we combine the in vitro single-molecule tethered particle motion assay, a canonical looping protein, and a statistical mechanical model that allows us to quantitatively relate the looping probability to the looping free energy. We show that, in contrast to the case of nucleosome occupancy, G+C content does not positively correlate with looping probability, and that despite sharing sequence features that are thought to determine nucleosome affinity, the two strong nucleosome positioning sequences behave markedly dissimilarly in the context of looping. Most surprisingly, the poly(dA:dT-rich DNA that is often characterized as highly inflexible in fact exhibits one of the highest propensities for looping that we have measured. These results argue for a need to revisit our understanding of the mechanical properties of DNA in a way that will provide a basis for understanding DNA deformation over the entire range of

  15. Dependent Probability Spaces

    Science.gov (United States)

    Edwards, William F.; Shiflett, Ray C.; Shultz, Harris

    2008-01-01

    The mathematical model used to describe independence between two events in probability has a non-intuitive consequence called dependent spaces. The paper begins with a very brief history of the development of probability, then defines dependent spaces, and reviews what is known about finite spaces with uniform probability. The study of finite…

  16. Non-Archimedean Probability

    NARCIS (Netherlands)

    Benci, Vieri; Horsten, Leon; Wenmackers, Sylvia

    We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned

  17. Interpretations of probability

    CERN Document Server

    Khrennikov, Andrei

    2009-01-01

    This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.

  18. Non-Archimedean Probability

    NARCIS (Netherlands)

    Benci, Vieri; Horsten, Leon; Wenmackers, Sylvia

    2013-01-01

    We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned prob

  19. Dynamical Simulation of Probabilities

    Science.gov (United States)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices(such as random number generators). Self-orgainizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed. Special attention was focused upon coupled stochastic processes, defined in terms of conditional probabilities, for which joint probability does not exist. Simulations of quantum probabilities are also discussed.

  20. Philosophy and probability

    CERN Document Server

    Childers, Timothy

    2013-01-01

    Probability is increasingly important for our understanding of the world. What is probability? How do we model it, and how do we use it? Timothy Childers presents a lively introduction to the foundations of probability and to philosophical issues it raises. He keeps technicalities to a minimum, and assumes no prior knowledge of the subject. He explains the main interpretations of probability-frequentist, propensity, classical, Bayesian, and objective Bayesian-and uses stimulatingexamples to bring the subject to life. All students of philosophy will benefit from an understanding of probability,

  1. Directed and Almost-Directed Flow Loops in Real Networks

    Directory of Open Access Journals (Sweden)

    M. Todinov

    2013-09-01

    Full Text Available Directed flow loops are highly undesirable because they are associated with wastage of energy for maintaining them and entail big losses to the world economy. It is shown that directed flow loops may appear in networks even if the dispatched commodity does not physically travel along a closed contour. Consequently, a theorem giving the necessary and sufficient condition of a directed flow loop on randomly oriented straight-line flow paths has been formulated and a close-form expression has been derived for the probability of a directed flow loop. The results show that even for a relatively small number of intersecting flow paths, the probability of a directed flow loop is very large, which means that the existence of directed flow loops in real networks is practically inevitable. Consequently, a theorem and an efficient algorithm have been proposed related to discovering and removing directed flow loops in a network with feasible flows. The new concept ‘almost-directed flow loop’ has also been introduced for the first time. It is shown that the removal of an almost-directed flow loop also results in a significant decrease of the losses. It is also shown that if no directed flow loops exist in the network, the removal of an almost-directed flow loop cannot create a directed flow loop.

  2. Pseudonoise code tracking loop

    Science.gov (United States)

    Laflame, D. T. (Inventor)

    1980-01-01

    A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop.

  3. Supersymmetric Wilson loops at two loops

    CERN Document Server

    Bassetto, Antonio; Pucci, Fabrizio; Seminara, Domenico

    2008-01-01

    We study the quantum properties of certain BPS Wilson loops in ${\\cal N}=4$ supersymmetric Yang-Mills theory. They belong to a general family, introduced recently, in which the addition of particular scalar couplings endows generic loops on $S^3$ with a fraction of supersymmetry. When restricted to $S^2$, their quantum average has been further conjectured to be exactly computed by the matrix model governing the zero-instanton sector of YM$_2$ on the sphere. We perform a complete two-loop analysis on a class of cusped Wilson loops lying on a two-dimensional sphere, finding perfect agreement with the conjecture. The perturbative computation reproduces the matrix-model expectation through a highly non-trivial interplay between ladder diagrams and self-energies/vertex contributions, suggesting the existence of a localization procedure.

  4. Probability and radical behaviorism

    Science.gov (United States)

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforcement and extinction, respectively. PMID:22478114

  5. Probability and radical behaviorism

    OpenAIRE

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforc...

  6. PROBABILITY AND STATISTICS.

    Science.gov (United States)

    STATISTICAL ANALYSIS, REPORTS), (*PROBABILITY, REPORTS), INFORMATION THEORY, DIFFERENTIAL EQUATIONS, STATISTICAL PROCESSES, STOCHASTIC PROCESSES, MULTIVARIATE ANALYSIS, DISTRIBUTION THEORY , DECISION THEORY, MEASURE THEORY, OPTIMIZATION

  7. Real analysis and probability

    CERN Document Server

    Ash, Robert B; Lukacs, E

    1972-01-01

    Real Analysis and Probability provides the background in real analysis needed for the study of probability. Topics covered range from measure and integration theory to functional analysis and basic concepts of probability. The interplay between measure theory and topology is also discussed, along with conditional probability and expectation, the central limit theorem, and strong laws of large numbers with respect to martingale theory.Comprised of eight chapters, this volume begins with an overview of the basic concepts of the theory of measure and integration, followed by a presentation of var

  8. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  9. On Quantum Conditional Probability

    Directory of Open Access Journals (Sweden)

    Isabel Guerra Bobo

    2013-02-01

    Full Text Available We argue that quantum theory does not allow for a generalization of the notion of classical conditional probability by showing that the probability defined by the Lüders rule, standardly interpreted in the literature as the quantum-mechanical conditionalization rule, cannot be interpreted as such.

  10. Choice Probability Generating Functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel L; Bierlaire, Michel

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...

  11. Introduction to probability

    CERN Document Server

    Freund, John E

    1993-01-01

    Thorough, lucid coverage of permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, binomial distribution, geometric distribution, standard deviation, law of large numbers, and much more. Exercises with some solutions. Summary. Bibliography. Includes 42 black-and-white illustrations. 1973 edition.

  12. Choice Probability Generating Functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel L; Bierlaire, Michel

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...

  13. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2013-01-01

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...

  14. Probability, Nondeterminism and Concurrency

    DEFF Research Database (Denmark)

    Varacca, Daniele

    Nondeterminism is modelled in domain theory by the notion of a powerdomain, while probability is modelled by that of the probabilistic powerdomain. Some problems arise when we want to combine them in order to model computation in which both nondeterminism and probability are present. In particula...

  15. Acquisition times of carrier tracking sampled data phase-locked loops

    Science.gov (United States)

    Aguirre, S.

    1986-01-01

    Phase acquisition times of type II and III loops typical of the Advanced Receiver are studied by computer simulations when the loops are disturbed by gaussian noise. Reliable estimates are obtained by running 5000 trials for each combination of loop signal-to-noise ratio (SNR) and frequency offset. The probabilities of acquisition are shown versus time from start of acquisition for various loop SNRs and frequency offsets. For frequency offsets smaller than one-fourth of the loop bandwidth and for loop SNRs of 10 dB and higher, the loops acquire with probability 0.99 within 2.5 B sub L for type II loops and within 7/B sub L for type III loops.

  16. Coxeter-Chein Loops

    CERN Document Server

    Blok, Rieuwert J

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give amalgam presentations for Coxeter-Chein loops. This is to our knowledge the first such presentation for a Moufang loop.

  17. Coxeter-Chein Loops

    OpenAIRE

    Blok, Rieuwert J.; Gagola III, Stephen

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give am...

  18. Observational Evidence for Loop-Loop Interaction

    Science.gov (United States)

    Guiping, W.; Guangli, H.; Yuhua, T.; Aoao, X.

    2004-01-01

    Through analysis of the data including the hard x-ray(BASTE) microwave(NoRP) and magnetogram(MDI from SOHO) as well as the images of soft x-ray(YHKOH) and EIT(SOHO) on Apr. 151998 solar flare in the active region 8203(N30W12) we found: (1) there are similar quasi period oscillation in the profile of hard x-ray flux (25-5050-100keV) and microwave flux(1GHz) with duration of 85+/-25s every peak includes two sub-peak structures; (2) in the preheat phase of the flare active magnetic field changes apparently and a s-pole spot emerges ; (3) several EIT and soft x-ray loops exist and turn into bright . All of these may suggest that loop-loop interaction indeed exist. Through reconnection the electrons may be accelerated and the hard x-ray and microwave emission take place.

  19. Probabilities in physics

    CERN Document Server

    Hartmann, Stephan

    2011-01-01

    Many results of modern physics--those of quantum mechanics, for instance--come in a probabilistic guise. But what do probabilistic statements in physics mean? Are probabilities matters of objective fact and part of the furniture of the world, as objectivists think? Or do they only express ignorance or belief, as Bayesians suggest? And how are probabilistic hypotheses justified and supported by empirical evidence? Finally, what does the probabilistic nature of physics imply for our understanding of the world? This volume is the first to provide a philosophical appraisal of probabilities in all of physics. Its main aim is to make sense of probabilistic statements as they occur in the various physical theories and models and to provide a plausible epistemology and metaphysics of probabilities. The essays collected here consider statistical physics, probabilistic modelling, and quantum mechanics, and critically assess the merits and disadvantages of objectivist and subjectivist views of probabilities in these fie...

  20. Concepts of probability theory

    CERN Document Server

    Pfeiffer, Paul E

    1979-01-01

    Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.

  1. Probability in physics

    CERN Document Server

    Hemmo, Meir

    2012-01-01

    What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their  explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive. 

  2. Probability and Bayesian statistics

    CERN Document Server

    1987-01-01

    This book contains selected and refereed contributions to the "Inter­ national Symposium on Probability and Bayesian Statistics" which was orga­ nized to celebrate the 80th birthday of Professor Bruno de Finetti at his birthplace Innsbruck in Austria. Since Professor de Finetti died in 1985 the symposium was dedicated to the memory of Bruno de Finetti and took place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa­ pers are published especially by the relationship to Bruno de Finetti's scientific work. The evolution of stochastics shows growing importance of probability as coherent assessment of numerical values as degrees of believe in certain events. This is the basis for Bayesian inference in the sense of modern statistics. The contributions in this volume cover a broad spectrum ranging from foundations of probability across psychological aspects of formulating sub­ jective probability statements, abstract measure theoretical considerations, contributions to theoretical statistics an...

  3. Probability an introduction

    CERN Document Server

    Grimmett, Geoffrey

    2014-01-01

    Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit th...

  4. THE NUCLEAR ENCOUNTER PROBABILITY

    NARCIS (Netherlands)

    SMULDERS, PJM

    1994-01-01

    This Letter dicusses the nuclear encounter probability as used in ion channeling analysis. A formulation is given, incorporating effects of large beam angles and beam divergence. A critical examination of previous definitions is made.

  5. Probability for statisticians

    CERN Document Server

    Shorack, Galen R

    2017-01-01

    This 2nd edition textbook offers a rigorous introduction to measure theoretic probability with particular attention to topics of interest to mathematical statisticians—a textbook for courses in probability for students in mathematical statistics. It is recommended to anyone interested in the probability underlying modern statistics, providing a solid grounding in the probabilistic tools and techniques necessary to do theoretical research in statistics. For the teaching of probability theory to post graduate statistics students, this is one of the most attractive books available. Of particular interest is a presentation of the major central limit theorems via Stein's method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function. The bootstrap and trimming are both presented. Martingale coverage includes coverage of censored data martingales. The text includes measure theoretic...

  6. Probability and Statistical Inference

    OpenAIRE

    Prosper, Harrison B.

    2006-01-01

    These lectures introduce key concepts in probability and statistical inference at a level suitable for graduate students in particle physics. Our goal is to paint as vivid a picture as possible of the concepts covered.

  7. Probability in quantum mechanics

    Directory of Open Access Journals (Sweden)

    J. G. Gilson

    1982-01-01

    Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.

  8. Quantum computing and probability.

    Science.gov (United States)

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  9. Mitotic chromosome compaction via active loop extrusion

    Science.gov (United States)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  10. The perception of probability.

    Science.gov (United States)

    Gallistel, C R; Krishan, Monika; Liu, Ye; Miller, Reilly; Latham, Peter E

    2014-01-01

    We present a computational model to explain the results from experiments in which subjects estimate the hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a) Subjects do not update their estimate after each outcome; they step from one estimate to another at irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the assumption that a threshold amount of change must be exceeded in order for them to indicate a change in their perception. (c) The mapping of observed probability to the median perceived probability is the identity function over the full range of probabilities. (d) Precision (how close estimates are to the best possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from one observation to the next. (g) Subjects sometimes have second thoughts about a previous change perception, after observing further outcomes. (h) The frequency with which they perceive changes moves in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional parametric assumptions.) The model treats the perception of the current probability as a by-product of the construction of a compact encoding of the experienced sequence in terms of its change points. It illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology of decision making.

  11. What Controls DNA Looping?

    Directory of Open Access Journals (Sweden)

    Pamela J. Perez

    2014-08-01

    Full Text Available The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein—the nonspecific nucleoid protein HU—increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture.

  12. Testing loop quantum cosmology

    Science.gov (United States)

    Wilson-Ewing, Edward

    2017-03-01

    Loop quantum cosmology predicts that quantum gravity effects resolve the big-bang singularity and replace it by a cosmic bounce. Furthermore, loop quantum cosmology can also modify the form of primordial cosmological perturbations, for example by reducing power at large scales in inflationary models or by suppressing the tensor-to-scalar ratio in the matter bounce scenario; these two effects are potential observational tests for loop quantum cosmology. In this article, I review these predictions and others, and also briefly discuss three open problems in loop quantum cosmology: its relation to loop quantum gravity, the trans-Planckian problem, and a possible transition from a Lorentzian to a Euclidean space-time around the bounce point.

  13. Experimental Probability in Elementary School

    Science.gov (United States)

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  14. Experimental Probability in Elementary School

    Science.gov (United States)

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  15. The pleasures of probability

    CERN Document Server

    Isaac, Richard

    1995-01-01

    The ideas of probability are all around us. Lotteries, casino gambling, the al­ most non-stop polling which seems to mold public policy more and more­ these are a few of the areas where principles of probability impinge in a direct way on the lives and fortunes of the general public. At a more re­ moved level there is modern science which uses probability and its offshoots like statistics and the theory of random processes to build mathematical descriptions of the real world. In fact, twentieth-century physics, in embrac­ ing quantum mechanics, has a world view that is at its core probabilistic in nature, contrary to the deterministic one of classical physics. In addition to all this muscular evidence of the importance of probability ideas it should also be said that probability can be lots of fun. It is a subject where you can start thinking about amusing, interesting, and often difficult problems with very little mathematical background. In this book, I wanted to introduce a reader with at least a fairl...

  16. Ponderomotive Acceleration in Coronal Loops

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Obenschain, K

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a "byproduct" of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets...

  17. Improving Ranking Using Quantum Probability

    OpenAIRE

    Melucci, Massimo

    2011-01-01

    The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...

  18. Probabilities from Envariance

    CERN Document Server

    Zurek, W H

    2004-01-01

    I show how probabilities arise in quantum physics by exploring implications of {\\it environment - assisted invariance} or {\\it envariance}, a recently discovered symmetry exhibited by entangled quantum systems. Envariance of perfectly entangled states can be used to rigorously justify complete ignorance of the observer about the outcome of any measurement on either of the members of the entangled pair. Envariance leads to Born's rule, $p_k \\propto |\\psi_k|^2$. Probabilities derived in this manner are an objective reflection of the underlying state of the system -- they reflect experimentally verifiable symmetries, and not just a subjective ``state of knowledge'' of the observer. Envariance - based approach is compared with and found superior to the key pre-quantum definitions of probability including the {\\it standard definition} based on the `principle of indifference' due to Laplace, and the {\\it relative frequency approach} advocated by von Mises. Implications of envariance for the interpretation of quantu...

  19. Collision Probability Analysis

    DEFF Research Database (Denmark)

    Hansen, Peter Friis; Pedersen, Preben Terndrup

    1998-01-01

    It is the purpose of this report to apply a rational model for prediction of ship-ship collision probabilities as function of the ship and the crew characteristics and the navigational environment for MS Dextra sailing on a route between Cadiz and the Canary Islands.The most important ship and crew...... characteristics are: ship speed, ship manoeuvrability, the layout of the navigational bridge, the radar system, the number and the training of navigators, the presence of a look out etc. The main parameters affecting the navigational environment are ship traffic density, probability distributions of wind speeds...... probability, i.e. a study of the navigator's role in resolving critical situations, a causation factor is derived as a second step.The report documents the first step in a probabilistic collision damage analysis. Future work will inlcude calculation of energy released for crushing of structures giving...

  20. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2010-01-01

    This paper establishes that every random utility discrete choice model (RUM) has a representation that can be characterized by a choice-probability generating function (CPGF) with specific properties, and that every function with these specific properties is consistent with a RUM. The choice...... probabilities from the RUM are obtained from the gradient of the CPGF. Mixtures of RUM are characterized by logarithmic mixtures of their associated CPGF. The paper relates CPGF to multivariate extreme value distributions, and reviews and extends methods for constructing generating functions for applications...

  1. Negative Probabilities and Contextuality

    CERN Document Server

    de Barros, J Acacio; Oas, Gary

    2015-01-01

    There has been a growing interest, both in physics and psychology, in understanding contextuality in experimentally observed quantities. Different approaches have been proposed to deal with contextual systems, and a promising one is contextuality-by-default, put forth by Dzhafarov and Kujala. The goal of this paper is to present a tutorial on a different approach: negative probabilities. We do so by presenting the overall theory of negative probabilities in a way that is consistent with contextuality-by-default and by examining with this theory some simple examples where contextuality appears, both in physics and psychology.

  2. Introduction to imprecise probabilities

    CERN Document Server

    Augustin, Thomas; de Cooman, Gert; Troffaes, Matthias C M

    2014-01-01

    In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, includin

  3. Estimating tail probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.B.; Tolley, H.D.

    1982-12-01

    This paper investigates procedures for univariate nonparametric estimation of tail probabilities. Extrapolated values for tail probabilities beyond the data are also obtained based on the shape of the density in the tail. Several estimators which use exponential weighting are described. These are compared in a Monte Carlo study to nonweighted estimators, to the empirical cdf, to an integrated kernel, to a Fourier series estimate, to a penalized likelihood estimate and a maximum likelihood estimate. Selected weighted estimators are shown to compare favorably to many of these standard estimators for the sampling distributions investigated.

  4. Classic Problems of Probability

    CERN Document Server

    Gorroochurn, Prakash

    2012-01-01

    "A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin

  5. Epistemology and Probability

    CERN Document Server

    Plotnitsky, Arkady

    2010-01-01

    Offers an exploration of the relationships between epistemology and probability in the work of Niels Bohr, Werner Heisenberg, and Erwin Schrodinger; in quantum mechanics; and in modern physics. This book considers the implications of these relationships and of quantum theory for our understanding of the nature of thinking and knowledge in general

  6. Counterexamples in probability

    CERN Document Server

    Stoyanov, Jordan M

    2013-01-01

    While most mathematical examples illustrate the truth of a statement, counterexamples demonstrate a statement's falsity. Enjoyable topics of study, counterexamples are valuable tools for teaching and learning. The definitive book on the subject in regards to probability, this third edition features the author's revisions and corrections plus a substantial new appendix.

  7. Varga: On Probability.

    Science.gov (United States)

    Varga, Tamas

    This booklet resulted from a 1980 visit by the author, a Hungarian mathematics educator, to the Teachers' Center Project at Southern Illinois University at Edwardsville. Included are activities and problems that make probablility concepts accessible to young children. The topics considered are: two probability games; choosing two beads; matching…

  8. Collision Probability Analysis

    DEFF Research Database (Denmark)

    Hansen, Peter Friis; Pedersen, Preben Terndrup

    1998-01-01

    probability, i.e. a study of the navigator's role in resolving critical situations, a causation factor is derived as a second step.The report documents the first step in a probabilistic collision damage analysis. Future work will inlcude calculation of energy released for crushing of structures giving...

  9. On Probability Domains

    Science.gov (United States)

    Frič, Roman; Papčo, Martin

    2010-12-01

    Motivated by IF-probability theory (intuitionistic fuzzy), we study n-component probability domains in which each event represents a body of competing components and the range of a state represents a simplex S n of n-tuples of possible rewards-the sum of the rewards is a number from [0,1]. For n=1 we get fuzzy events, for example a bold algebra, and the corresponding fuzzy probability theory can be developed within the category ID of D-posets (equivalently effect algebras) of fuzzy sets and sequentially continuous D-homomorphisms. For n=2 we get IF-events, i.e., pairs ( μ, ν) of fuzzy sets μ, ν∈[0,1] X such that μ( x)+ ν( x)≤1 for all x∈ X, but we order our pairs (events) coordinatewise. Hence the structure of IF-events (where ( μ 1, ν 1)≤( μ 2, ν 2) whenever μ 1≤ μ 2 and ν 2≤ ν 1) is different and, consequently, the resulting IF-probability theory models a different principle. The category ID is cogenerated by I=[0,1] (objects of ID are subobjects of powers I X ), has nice properties and basic probabilistic notions and constructions are categorical. For example, states are morphisms. We introduce the category S n D cogenerated by Sn=\\{(x1,x2,ldots ,xn)in In;sum_{i=1}nxi≤ 1\\} carrying the coordinatewise partial order, difference, and sequential convergence and we show how basic probability notions can be defined within S n D.

  10. Prospect evaluation as a function of numeracy and probability denominator.

    Science.gov (United States)

    Millroth, Philip; Juslin, Peter

    2015-05-01

    This study examines how numeracy and probability denominator (a direct-ratio probability, a relative frequency with denominator 100, a relative frequency with denominator 10,000) affect the evaluation of prospects in an expected-value based pricing task. We expected that numeracy would affect the results due to differences in the linearity of number perception and the susceptibility to denominator neglect with different probability formats. An analysis with functional measurement verified that participants integrated value and probability into an expected value. However, a significant interaction between numeracy and probability format and subsequent analyses of the parameters of cumulative prospect theory showed that the manipulation of probability denominator changed participants' psychophysical response to probability and value. Standard methods in decision research may thus confound people's genuine risk attitude with their numerical capacities and the probability format used. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The Early Universe in Loop Quantum Cosmology

    OpenAIRE

    Bojowald, M.

    2005-01-01

    Loop quantum cosmology applies techniques derived for a background independent quantization of general relativity to cosmological situations and draws conclusions for the very early universe. Direct implications for the singularity problem as well as phenomenology in the context of inflation or bouncing universes result, which will be reviewed here. The discussion focuses on recent new results for structure formation and generalizations of the methods.

  12. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  13. Natively unstructured loops differ from other loops.

    Science.gov (United States)

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-07-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  14. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  15. Negative probability in the framework of combined probability

    OpenAIRE

    Burgin, Mark

    2013-01-01

    Negative probability has found diverse applications in theoretical physics. Thus, construction of sound and rigorous mathematical foundations for negative probability is important for physics. There are different axiomatizations of conventional probability. So, it is natural that negative probability also has different axiomatic frameworks. In the previous publications (Burgin, 2009; 2010), negative probability was mathematically formalized and rigorously interpreted in the context of extende...

  16. Negative probability in the framework of combined probability

    OpenAIRE

    Burgin, Mark

    2013-01-01

    Negative probability has found diverse applications in theoretical physics. Thus, construction of sound and rigorous mathematical foundations for negative probability is important for physics. There are different axiomatizations of conventional probability. So, it is natural that negative probability also has different axiomatic frameworks. In the previous publications (Burgin, 2009; 2010), negative probability was mathematically formalized and rigorously interpreted in the context of extende...

  17. R-loops in bacterial transcription: their causes and consequences.

    Science.gov (United States)

    Gowrishankar, J; Leela, J Krishna; Anupama, K

    2013-01-01

    Nascent untranslated transcripts in bacteria are prone to generating RNA-DNA hybrids (R-loops); Rho-dependent transcription termination acts to reduce their prevalence. Here we discuss the mechanisms of R-loop formation and growth inhibition in bacteria.

  18. Handbook of probability theory and applications

    CERN Document Server

    Rudas, Tamas

    2008-01-01

    ""This is a valuable reference guide for readers interested in gaining a basic understanding of probability theory or its applications in problem solving in the other disciplines.""-CHOICEProviding cutting-edge perspectives and real-world insights into the greater utility of probability and its applications, the Handbook of Probability offers an equal balance of theory and direct applications in a non-technical, yet comprehensive, format. Editor Tamás Rudas and the internationally-known contributors present the material in a manner so that researchers of vari

  19. A loop quantum multiverse?

    CERN Document Server

    Bojowald, Martin

    2013-01-01

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  20. Blind loop syndrome

    Science.gov (United States)

    ... part of the stomach) and operations for extreme obesity As a complication of inflammatory bowel disease Diseases such as diabetes or scleroderma may slow down movement in a segment of the intestine, leading to blind loop syndrome.

  1. Diffusion of Wilson Loops

    CERN Document Server

    Brzoska, A M; Negele, J W; Thies, M

    2004-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory.

  2. Some Recent Advances in Loop Quantum Cosmology

    Science.gov (United States)

    Ashtekar, Abhay

    2012-05-01

    In my talk I discussed three recent advances in loop quantum cosmology: 1) Path integral formulation and its WKB approximation; 2) Cosmological spin foams and lessons they provide; and 3) Probability of a slow roll inflationary phase compatible with the 7 year WMAP data. In addition to presenting an overview, this discussion also provides the necessary background for a number of talks in the parallel sessions.

  3. From Loops to Surfaces

    CERN Document Server

    Neuberger, H

    2010-01-01

    The generating function for all antisymmetric characters of a Wilson loop matrix in SU(N) Yang Mills theory is the partition function of a fermion living on the curve describing the loop. This generalizes to fermion subsystems living on higher dimensional submanifolds, for example, surfaces. This write-up also contains some extra background, in response to some questions raised during the oral presentation.

  4. Paradoxes in probability theory

    CERN Document Server

    Eckhardt, William

    2013-01-01

    Paradoxes provide a vehicle for exposing misinterpretations and misapplications of accepted principles. This book discusses seven paradoxes surrounding probability theory.  Some remain the focus of controversy; others have allegedly been solved, however the accepted solutions are demonstrably incorrect. Each paradox is shown to rest on one or more fallacies.  Instead of the esoteric, idiosyncratic, and untested methods that have been brought to bear on these problems, the book invokes uncontroversial probability principles, acceptable both to frequentists and subjectivists. The philosophical disputation inspired by these paradoxes is shown to be misguided and unnecessary; for instance, startling claims concerning human destiny and the nature of reality are directly related to fallacious reasoning in a betting paradox, and a problem analyzed in philosophy journals is resolved by means of a computer program.

  5. Contributions to quantum probability

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Tobias

    2010-06-25

    Chapter 1: On the existence of quantum representations for two dichotomic measurements. Under which conditions do outcome probabilities of measurements possess a quantum-mechanical model? This kind of problem is solved here for the case of two dichotomic von Neumann measurements which can be applied repeatedly to a quantum system with trivial dynamics. The solution uses methods from the theory of operator algebras and the theory of moment problems. The ensuing conditions reveal surprisingly simple relations between certain quantum-mechanical probabilities. It also shown that generally, none of these relations holds in general probabilistic models. This result might facilitate further experimental discrimination between quantum mechanics and other general probabilistic theories. Chapter 2: Possibilistic Physics. I try to outline a framework for fundamental physics where the concept of probability gets replaced by the concept of possibility. Whereas a probabilistic theory assigns a state-dependent probability value to each outcome of each measurement, a possibilistic theory merely assigns one of the state-dependent labels ''possible to occur'' or ''impossible to occur'' to each outcome of each measurement. It is argued that Spekkens' combinatorial toy theory of quantum mechanics is inconsistent in a probabilistic framework, but can be regarded as possibilistic. Then, I introduce the concept of possibilistic local hidden variable models and derive a class of possibilistic Bell inequalities which are violated for the possibilistic Popescu-Rohrlich boxes. The chapter ends with a philosophical discussion on possibilistic vs. probabilistic. It can be argued that, due to better falsifiability properties, a possibilistic theory has higher predictive power than a probabilistic one. Chapter 3: The quantum region for von Neumann measurements with postselection. It is determined under which conditions a probability distribution on a

  6. Superpositions of probability distributions

    Science.gov (United States)

    Jizba, Petr; Kleinert, Hagen

    2008-09-01

    Probability distributions which can be obtained from superpositions of Gaussian distributions of different variances v=σ2 play a favored role in quantum theory and financial markets. Such superpositions need not necessarily obey the Chapman-Kolmogorov semigroup relation for Markovian processes because they may introduce memory effects. We derive the general form of the smearing distributions in v which do not destroy the semigroup property. The smearing technique has two immediate applications. It permits simplifying the system of Kramers-Moyal equations for smeared and unsmeared conditional probabilities, and can be conveniently implemented in the path integral calculus. In many cases, the superposition of path integrals can be evaluated much easier than the initial path integral. Three simple examples are presented, and it is shown how the technique is extended to quantum mechanics.

  7. Superpositions of probability distributions.

    Science.gov (United States)

    Jizba, Petr; Kleinert, Hagen

    2008-09-01

    Probability distributions which can be obtained from superpositions of Gaussian distributions of different variances v=sigma;{2} play a favored role in quantum theory and financial markets. Such superpositions need not necessarily obey the Chapman-Kolmogorov semigroup relation for Markovian processes because they may introduce memory effects. We derive the general form of the smearing distributions in v which do not destroy the semigroup property. The smearing technique has two immediate applications. It permits simplifying the system of Kramers-Moyal equations for smeared and unsmeared conditional probabilities, and can be conveniently implemented in the path integral calculus. In many cases, the superposition of path integrals can be evaluated much easier than the initial path integral. Three simple examples are presented, and it is shown how the technique is extended to quantum mechanics.

  8. Fractal probability laws.

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2008-06-01

    We explore six classes of fractal probability laws defined on the positive half-line: Weibull, Frechét, Lévy, hyper Pareto, hyper beta, and hyper shot noise. Each of these classes admits a unique statistical power-law structure, and is uniquely associated with a certain operation of renormalization. All six classes turn out to be one-dimensional projections of underlying Poisson processes which, in turn, are the unique fixed points of Poissonian renormalizations. The first three classes correspond to linear Poissonian renormalizations and are intimately related to extreme value theory (Weibull, Frechét) and to the central limit theorem (Lévy). The other three classes correspond to nonlinear Poissonian renormalizations. Pareto's law--commonly perceived as the "universal fractal probability distribution"--is merely a special case of the hyper Pareto class.

  9. Bayesian Probability Theory

    Science.gov (United States)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  10. Measurement uncertainty and probability

    CERN Document Server

    Willink, Robin

    2013-01-01

    A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.

  11. A formula for crossing probabilities of critical systems inside polygons

    Science.gov (United States)

    Flores, S. M.; Simmons, J. J. H.; Kleban, P.; Ziff, R. M.

    2017-02-01

    In this article, we use our results from Flores and Kleban (2015 Commun. Math. Phys. 333 389-434, 2015 Commun. Math. Phys. 333 435-81, 2015 Commun. Math. Phys. 333 597-667, 2015 Commun. Math. Phys. 333 669-715) to generalize known formulas for crossing probabilities. Prior crossing results date back to Cardy’s prediction of a formula for the probability that a percolation cluster in two dimensions connects the left and right sides of a rectangle at the percolation critical point in the continuum limit (Cardy 1992 J. Phys. A: Math. Gen. 25 L201-6). Here, we predict a new formula for crossing probabilities of a continuum limit loop-gas model on a planar lattice inside a 2N-sided polygon. In this model, boundary loops exit and then re-enter the polygon through its vertices, with exactly one loop passing once through each vertex, and these loops join the vertices pairwise in some specified connectivity through the polygon’s exterior. The boundary loops also connect the vertices through the interior, which we regard as a crossing event. For particular values of the loop fugacity, this formula specializes to FK cluster (resp. spin cluster) crossing probabilities of a critical Q-state random cluster (resp. Potts) model on a lattice inside the polygon in the continuum limit. This includes critical percolation as the Q  =  1 random cluster model. These latter crossing probabilities are conditioned on a particular side-alternating free/fixed (resp. fluctuating/fixed) boundary condition on the polygon’s perimeter, related to how the boundary loops join the polygon’s vertices pairwise through the polygon’s exterior in the associated loop-gas model. For Q\\in ≤ft\\{2,3,4\\right\\} , we compare our predictions of these random cluster (resp. Potts) model crossing probabilities in a rectangle (N  =  2) and in a hexagon (N  =  3) with high-precision computer simulation measurements. We find that the measurements agree with our predictions very

  12. Searching with Probabilities

    Science.gov (United States)

    1983-07-26

    DeGroot , Morris H. Probability and Statistic. Addison-Wesley Publishing Company, Reading, Massachusetts, 1975. [Gillogly 78] Gillogly, J.J. Performance...distribution [ DeGroot 751 has just begun. The beta distribution has several features that might make it a more reasonable choice. As with the normal-based...1982. [Cooley 65] Cooley, J.M. and Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 1965. [ DeGroot 75

  13. Probability via expectation

    CERN Document Server

    Whittle, Peter

    1992-01-01

    This book is a complete revision of the earlier work Probability which ap­ peared in 1970. While revised so radically and incorporating so much new material as to amount to a new text, it preserves both the aim and the approach of the original. That aim was stated as the provision of a 'first text in probability, de­ manding a reasonable but not extensive knowledge of mathematics, and taking the reader to what one might describe as a good intermediate level'. In doing so it attempted to break away from stereotyped applications, and consider applications of a more novel and significant character. The particular novelty of the approach was that expectation was taken as the prime concept, and the concept of expectation axiomatized rather than that of a probability measure. In the preface to the original text of 1970 (reproduced below, together with that to the Russian edition of 1982) I listed what I saw as the advantages of the approach in as unlaboured a fashion as I could. I also took the view that the text...

  14. Improving Ranking Using Quantum Probability

    CERN Document Server

    Melucci, Massimo

    2011-01-01

    The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of false alarm and the same parameter estimation data. As quantum probability provided more effective detectors than classical probability within other domains that data management, we conjecture that, the system that can implement subspace-based detectors shall be more effective than a system which implements a set-based detectors, the effectiveness being calculated as expected recall estimated over the probability of detection and expected fallout estimated over the probability of false alarm.

  15. Genetic Programming with Simple Loops

    Institute of Scientific and Technical Information of China (English)

    QI Yuesheng; WANG Baozhong; KANG Lishan

    1999-01-01

    A kind of loop function LoopN inGenetic Programming (GP) is proposed.Different from other forms of loopfunction, such as While-Do and Repeat-Until, LoopNtakes only oneargument as its loop body and makes its loop body simply run N times,soinfinite loops will never happen. The problem of how to avoid too manylayers ofloops in Genetic Programming is also solved. The advantage ofLoopN in GP is shown bythe computational results in solving the mowerproblem.

  16. Applying Popper's Probability

    CERN Document Server

    Whiting, Alan B

    2014-01-01

    Professor Sir Karl Popper (1902-1994) was one of the most influential philosophers of science of the twentieth century, best known for his doctrine of falsifiability. His axiomatic formulation of probability, however, is unknown to current scientists, though it is championed by several current philosophers of science as superior to the familiar version. Applying his system to problems identified by himself and his supporters, it is shown that it does not have some features he intended and does not solve the problems they have identified.

  17. Probably Almost Bayes Decisions

    DEFF Research Database (Denmark)

    Anoulova, S.; Fischer, Paul; Poelt, S.

    1996-01-01

    discriminant functions for this purpose. We analyze this approach for different classes of distribution functions of Boolean features:kth order Bahadur-Lazarsfeld expansions andkth order Chow expansions. In both cases, we obtain upper bounds for the required sample size which are small polynomials...... in the relevant parameters and which match the lower bounds known for these classes. Moreover, the learning algorithms are efficient.......In this paper, we investigate the problem of classifying objects which are given by feature vectors with Boolean entries. Our aim is to "(efficiently) learn probably almost optimal classifications" from examples. A classical approach in pattern recognition uses empirical estimations of the Bayesian...

  18. Probability for physicists

    CERN Document Server

    Sirca, Simon

    2016-01-01

    This book is designed as a practical and intuitive introduction to probability, statistics and random quantities for physicists. The book aims at getting to the main points by a clear, hands-on exposition supported by well-illustrated and worked-out examples. A strong focus on applications in physics and other natural sciences is maintained throughout. In addition to basic concepts of random variables, distributions, expected values and statistics, the book discusses the notions of entropy, Markov processes, and fundamentals of random number generation and Monte-Carlo methods.

  19. Generalized Probability Functions

    Directory of Open Access Journals (Sweden)

    Alexandre Souto Martinez

    2009-01-01

    Full Text Available From the integration of nonsymmetrical hyperboles, a one-parameter generalization of the logarithmic function is obtained. Inverting this function, one obtains the generalized exponential function. Motivated by the mathematical curiosity, we show that these generalized functions are suitable to generalize some probability density functions (pdfs. A very reliable rank distribution can be conveniently described by the generalized exponential function. Finally, we turn the attention to the generalization of one- and two-tail stretched exponential functions. We obtain, as particular cases, the generalized error function, the Zipf-Mandelbrot pdf, the generalized Gaussian and Laplace pdf. Their cumulative functions and moments were also obtained analytically.

  20. The statistical physics of cosmological networks of string loops

    CERN Document Server

    Magueijo, J; Steer, D; Magueijo, Joao; Sandvik, Haavard; Steer, Daniele

    1999-01-01

    We solve numerically the Boltzmann equation describing the evolution of a cosmic string network which contains only loops. In Minkowski space time the equilibrium solution predicted by statistical mechanics is recovered, and we prove that this solution is stable to non-linear perturbations provided that their energy does not exceed the critical energy for the Hagedorn transition. In expanding Einstein - de Sitter Universes we probe the distribution of loops with length much smaller than the horizon. For these loops we discover stable scaling solutions both in the radiation and matter dominated epochs. The shape of these solutions is very different in the two eras, with much higher energy density in the radiation epoch, and a larger average loop length in the matter epoch. These results suggest that if the conditions for formation of loop networks are indeed satisfied, these could in principle be good candidates for structure formation.

  1. Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3 PbTiO3 solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Brian [University College, Dublin; Jesse, Stephen [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Svechnikov, S. V. [National Academy of Science of Ukraine, Kiev, Ukraine; Kiselev, Dmitri [University of Aveiro, Portugal

    2010-01-01

    Polarization switching in ergodic relaxor and ferroelectric phases in the PbMg1/3Nb2/3O3 PbTiO3 (PMN-PT) system is studied using piezoresponse force microscopy, single point electromechanical relaxation measurements, and voltage spectroscopy mapping. The dependence of relaxation behavior on voltage pulse amplitude and time is found to follow a universal logarithmic behavior with a nearly constant slope. This behavior is indicative of the progressive population of slow relaxation states, as opposed to a linear relaxation in the presence of a broad relaxation time distribution. The role of relaxation behavior, ferroelectric nonlinearity, and the spatial inhomogeneity of the tip field on hysteresis loop behavior is analyzed in detail. The hysteresis loops for ergodic PMN-10%PT are shown to be kinetically limited, while in PMN with larger PT content, true ferroelectric hysteresis loops with low nucleation biases are observed.

  2. Loop electrosurgical excisional procedure.

    Science.gov (United States)

    Mayeaux, E J; Harper, M B

    1993-02-01

    Loop electrosurgical excisional procedure, or LEEP, also known as loop diathermy treatment, loop excision of the transformation zone (LETZ), and large loop excision of the transformation zone (LLETZ), is a new technique for outpatient diagnosis and treatment of dysplastic cervical lesions. This procedure produces good specimens for cytologic evaluation, carries a low risk of affecting childbearing ability, and is likely to replace cryotherapy or laser treatment for cervical neoplasias. LEEP uses low-current, high-frequency electrical generators and thin stainless steel or tungsten loops to excise either lesions or the entire transformation zone. Complication rates are comparable to cryotherapy or laser treatment methods and include bleeding, incomplete removal of the lesion, and cervical stenosis. Compared with other methods, the advantages of LEEP include: removal of abnormal tissue in a manner permitting cytologic study, low cost, ease of acquiring necessary skills, and the ability to treat lesions with fewer visits. Patient acceptance of the procedure is high. Widespread use of LEEP by family physicians can be expected.

  3. Concentration and length dependence of DNA looping in transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Lin Han

    Full Text Available In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage, to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least two distinct looped states and demonstrate that the presence of these two states depends both upon the concentration of repressor protein and the distance between the two repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA looping, or equivalently, the for looping.

  4. Diffusion-driven looping provides a consistent framework for chromatin organization.

    Directory of Open Access Journals (Sweden)

    Manfred Bohn

    Full Text Available Chromatin folding inside the interphase nucleus of eukaryotic cells is done on multiple scales of length and time. Despite recent progress in understanding the folding motifs of chromatin, the higher-order structure still remains elusive. Various experimental studies reveal a tight connection between genome folding and function. Chromosomes fold into a confined subspace of the nucleus and form distinct territories. Chromatin looping seems to play a dominant role both in transcriptional regulation as well as in chromatin organization and has been assumed to be mediated by long-range interactions in many polymer models. However, it remains a crucial question which mechanisms are necessary to make two chromatin regions become co-located, i.e. have them in spatial proximity. We demonstrate that the formation of loops can be accomplished solely on the basis of diffusional motion. The probabilistic nature of temporary contacts mimics the effects of proteins, e.g. transcription factors, in the solvent. We establish testable quantitative predictions by deriving scale-independent measures for comparison to experimental data. In this Dynamic Loop (DL model, the co-localization probability of distant elements is strongly increased compared to linear non-looping chains. The model correctly describes folding into a confined space as well as the experimentally observed cell-to-cell variation. Most importantly, at biological densities, model chromosomes occupy distinct territories showing less inter-chromosomal contacts than linear chains. Thus, dynamic diffusion-based looping, i.e. gene co-localization, provides a consistent framework for chromatin organization in eukaryotic interphase nuclei.

  5. Loops in Twistor Space

    CERN Document Server

    Bena, I; Kosower, D A; Roiban, R; Bena, Iosif; Bern, Zvi; Kosower, David A.; Roiban, Radu

    2004-01-01

    We elucidate the one-loop twistor-space structure corresponding to momentum-space MHV diagrams. We also discuss the infrared divergences, and argue that only a limited set of MHV diagrams contain them. We show how to introduce a twistor-space regulator corresponding to dimensional regularization for the infrared-divergent diagrams. We also evaluate explicitly the `holomorphic anomaly' pointed out by Cachazo, Svrcek, and Witten, and use the result to define modified differential operators which can be used to probe the twistor-space structure of one-loop amplitudes.

  6. Closed Loop Subspace Identification

    Directory of Open Access Journals (Sweden)

    Geir W. Nilsen

    2005-07-01

    Full Text Available A new three step closed loop subspace identifications algorithm based on an already existing algorithm and the Kalman filter properties is presented. The Kalman filter contains noise free states which implies that the states and innovation are uneorre lated. The idea is that a Kalman filter found by a good subspace identification algorithm will give an output which is sufficiently uncorrelated with the noise on the output of the actual process. Using feedback from the output of the estimated Kalman filter in the closed loop system a subspace identification algorithm can be used to estimate an unbiased model.

  7. Loop Quantum Gravity

    CERN Document Server

    Chiou, Dah-Wei

    2014-01-01

    This article presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) -- a background-independent, nonperturbative approach to a consistent quantum theory of gravity. Instead of rigorous and systematic derivations, it aims to provide a general picture of LQG, placing emphasis on the fundamental ideas and their significance. The canonical formulation of LQG, as the central topic of the article, is presented in a logically orderly fashion with moderate details, while the spin foam theory, black hole thermodynamics, and loop quantum cosmology are covered briefly. Current directions and open issues are also summarized.

  8. Measure, integral and probability

    CERN Document Server

    Capiński, Marek

    2004-01-01

    Measure, Integral and Probability is a gentle introduction that makes measure and integration theory accessible to the average third-year undergraduate student. The ideas are developed at an easy pace in a form that is suitable for self-study, with an emphasis on clear explanations and concrete examples rather than abstract theory. For this second edition, the text has been thoroughly revised and expanded. New features include: · a substantial new chapter, featuring a constructive proof of the Radon-Nikodym theorem, an analysis of the structure of Lebesgue-Stieltjes measures, the Hahn-Jordan decomposition, and a brief introduction to martingales · key aspects of financial modelling, including the Black-Scholes formula, discussed briefly from a measure-theoretical perspective to help the reader understand the underlying mathematical framework. In addition, further exercises and examples are provided to encourage the reader to become directly involved with the material.

  9. Probabilities for Solar Siblings

    Science.gov (United States)

    Valtonen, Mauri; Bajkova, A. T.; Bobylev, V. V.; Mylläri, A.

    2015-02-01

    We have shown previously (Bobylev et al. Astron Lett 37:550-562, 2011) that some of the stars in the solar neighborhood today may have originated in the same star cluster as the Sun, and could thus be called Solar Siblings. In this work we investigate the sensitivity of this result to galactic models and to parameters of these models, and also extend the sample of orbits. There are a number of good candidates for the sibling category, but due to the long period of orbit evolution since the break-up of the birth cluster of the Sun, one can only attach probabilities of membership. We find that up to 10 % (but more likely around 1 %) of the members of the Sun's birth cluster could be still found within 100 pc from the Sun today.

  10. Probabilities for Solar Siblings

    CERN Document Server

    Valtonen, M; Bobylev, V V; Myllari, A

    2015-01-01

    We have shown previously (Bobylev et al 2011) that some of the stars in the Solar neighborhood today may have originated in the same star cluster as the Sun, and could thus be called Solar Siblings. In this work we investigate the sensitivity of this result to Galactic models and to parameters of these models, and also extend the sample of orbits. There are a number of good candidates for the Sibling category, but due to the long period of orbit evolution since the break-up of the birth cluster of the Sun, one can only attach probabilities of membership. We find that up to 10% (but more likely around 1 %) of the members of the Sun's birth cluster could be still found within 100 pc from the Sun today.

  11. Quantum Monte Carlo with directed loops.

    Science.gov (United States)

    Syljuåsen, Olav F; Sandvik, Anders W

    2002-10-01

    We introduce the concept of directed loops in stochastic series expansion and path-integral quantum Monte Carlo methods. Using the detailed balance rules for directed loops, we show that it is possible to smoothly connect generally applicable simulation schemes (in which it is necessary to include backtracking processes in the loop construction) to more restricted loop algorithms that can be constructed only for a limited range of Hamiltonians (where backtracking can be avoided). The "algorithmic discontinuities" between general and special points (or regions) in parameter space can hence be eliminated. As a specific example, we consider the anisotropic S=1/2 Heisenberg antiferromagnet in an external magnetic field. We show that directed-loop simulations are very efficient for the full range of magnetic fields (zero to the saturation point) and anisotropies. In particular, for weak fields and anisotropies, the autocorrelations are significantly reduced relative to those of previous approaches. The back-tracking probability vanishes continuously as the isotropic Heisenberg point is approached. For the XY model, we show that back tracking can be avoided for all fields extending up to the saturation field. The method is hence particularly efficient in this case. We use directed-loop simulations to study the magnetization process in the two-dimensional Heisenberg model at very low temperatures. For LxL lattices with L up to 64, we utilize the step structure in the magnetization curve to extract gaps between different spin sectors. Finite-size scaling of the gaps gives an accurate estimate of the transverse susceptibility in the thermodynamic limit: chi( perpendicular )=0.0659+/-0.0002.

  12. Probability for Weather and Climate

    Science.gov (United States)

    Smith, L. A.

    2013-12-01

    decision making versus advance science, are noted. It is argued that, just as no point forecast is complete without an estimate of its accuracy, no model-based probability forecast is complete without an estimate of its own irrelevance. The same nonlinearities that made the electronic computer so valuable links the selection and assimilation of observations, the formation of ensembles, the evolution of models, the casting of model simulations back into observables, and the presentation of this information to those who use it to take action or to advance science. Timescales of interest exceed the lifetime of a climate model and the career of a climate scientist, disarming the trichotomy that lead to swift advances in weather forecasting. Providing credible, informative climate services is a more difficult task. In this context, the value of comparing the forecasts of simulation models not only with each other but also with the performance of simple empirical models, whenever possible, is stressed. The credibility of meteorology is based on its ability to forecast and explain the weather. The credibility of climatology will always be based on flimsier stuff. Solid insights of climate science may be obscured if the severe limits on our ability to see the details of the future even probabilistically are not communicated clearly.

  13. People's conditional probability judgments follow probability theory (plus noise).

    Science.gov (United States)

    Costello, Fintan; Watts, Paul

    2016-09-01

    A common view in current psychology is that people estimate probabilities using various 'heuristics' or rules of thumb that do not follow the normative rules of probability theory. We present a model where people estimate conditional probabilities such as P(A|B) (the probability of A given that B has occurred) by a process that follows standard frequentist probability theory but is subject to random noise. This model accounts for various results from previous studies of conditional probability judgment. This model predicts that people's conditional probability judgments will agree with a series of fundamental identities in probability theory whose form cancels the effect of noise, while deviating from probability theory in other expressions whose form does not allow such cancellation. Two experiments strongly confirm these predictions, with people's estimates on average agreeing with probability theory for the noise-cancelling identities, but deviating from probability theory (in just the way predicted by the model) for other identities. This new model subsumes an earlier model of unconditional or 'direct' probability judgment which explains a number of systematic biases seen in direct probability judgment (Costello & Watts, 2014). This model may thus provide a fully general account of the mechanisms by which people estimate probabilities.

  14. Growth and instability of charged dislocation loops under irradiation in ceramic materials

    CERN Document Server

    Ryazanov, A I; Kinoshita, C; Klaptsov, A V

    2002-01-01

    We have investigated the physical mechanisms of the growth and stability of charged dislocation loops in ceramic materials with very strong different mass of atoms (stabilized cubic zirconia) under different energies and types of irradiation conditions: 100-1000 keV electrons, 100 keV He sup + and 300 keV O sup + ions. The anomalous formation of extended defect clusters (charged dislocation loops) has been observed by TEM under electron irradiation subsequent to ion irradiation. It is demonstrated that very strong strain field (contrast) near charged dislocation loops is formed. The dislocation loops grow up to a critical size and after then become unstable. The instability of the charged dislocation loop leads to the multiplication of dislocation loops and the formation of dislocation network near the charged dislocation loops. A theoretical model is suggested for the explanation of the growth and stability of the charged dislocation loop, taking the charge state of point defects. The calculated distribution...

  15. Savage s Concept of Probability

    Institute of Scientific and Technical Information of China (English)

    熊卫

    2003-01-01

    Starting with personal preference, Savage [3] constructs a foundation theory for probability from the qualitative probability to the quantitative probability and to utility. There are some profound logic connections between three steps in Savage's theory; that is, quantitative concepts properly represent qualitative concepts. Moreover, Savage's definition of subjective probability is in accordance with probability theory, and the theory gives us a rational decision model only if we assume that the weak ...

  16. Probability Theory without Bayes' Rule

    OpenAIRE

    Rodriques, Samuel G.

    2014-01-01

    Within the Kolmogorov theory of probability, Bayes' rule allows one to perform statistical inference by relating conditional probabilities to unconditional probabilities. As we show here, however, there is a continuous set of alternative inference rules that yield the same results, and that may have computational or practical advantages for certain problems. We formulate generalized axioms for probability theory, according to which the reverse conditional probability distribution P(B|A) is no...

  17. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  18. Reversible hysteresis loop tuning

    Science.gov (United States)

    Berger, A.; Binek, Ch.; Margulies, D. T.; Moser, A.; Fullerton, E. E.

    2006-02-01

    We utilize antiferromagnetically coupled bilayer structures to magnetically tune hysteresis loop properties. Key element of this approach is the non-overlapping switching field distribution of the two magnetic layers that make up the system: a hard magnetic CoPtCrB layer (HL) and a soft magnetic CoCr layer (SL). Both layers are coupled antiferromagnetically through an only 0.6-nm-thick Ru interlayer. The non-overlapping switching field distribution allows the measurement of magnetization reversal in the SL at low fields while keeping the magnetization state of the HL unperturbed. Applying an appropriate high field or high field sequence changes the magnetic state of the HL, which then influences the SL magnetization reversal due to the interlayer coupling. In this way, the position and shape of the SL hysteresis loop can be changed or tuned in a fully reversible and highly effective manner. Here, we study specifically how the SL hysteresis loop characteristics change as we move the HL through an entire high field hysteresis loop sequence.

  19. Probability state modeling theory.

    Science.gov (United States)

    Bagwell, C Bruce; Hunsberger, Benjamin C; Herbert, Donald J; Munson, Mark E; Hill, Beth L; Bray, Chris M; Preffer, Frederic I

    2015-07-01

    As the technology of cytometry matures, there is mounting pressure to address two major issues with data analyses. The first issue is to develop new analysis methods for high-dimensional data that can directly reveal and quantify important characteristics associated with complex cellular biology. The other issue is to replace subjective and inaccurate gating with automated methods that objectively define subpopulations and account for population overlap due to measurement uncertainty. Probability state modeling (PSM) is a technique that addresses both of these issues. The theory and important algorithms associated with PSM are presented along with simple examples and general strategies for autonomous analyses. PSM is leveraged to better understand B-cell ontogeny in bone marrow in a companion Cytometry Part B manuscript. Three short relevant videos are available in the online supporting information for both of these papers. PSM avoids the dimensionality barrier normally associated with high-dimensionality modeling by using broadened quantile functions instead of frequency functions to represent the modulation of cellular epitopes as cells differentiate. Since modeling programs ultimately minimize or maximize one or more objective functions, they are particularly amenable to automation and, therefore, represent a viable alternative to subjective and inaccurate gating approaches.

  20. Probability distributions for magnetotellurics

    Energy Technology Data Exchange (ETDEWEB)

    Stodt, John A.

    1982-11-01

    Estimates of the magnetotelluric transfer functions can be viewed as ratios of two complex random variables. It is assumed that the numerator and denominator are governed approximately by a joint complex normal distribution. Under this assumption, probability distributions are obtained for the magnitude, squared magnitude, logarithm of the squared magnitude, and the phase of the estimates. Normal approximations to the distributions are obtained by calculating mean values and variances from error propagation, and the distributions are plotted with their normal approximations for different percentage errors in the numerator and denominator of the estimates, ranging from 10% to 75%. The distribution of the phase is approximated well by a normal distribution for the range of errors considered, while the distribution of the logarithm of the squared magnitude is approximated by a normal distribution for a much larger range of errors than is the distribution of the squared magnitude. The distribution of the squared magnitude is most sensitive to the presence of noise in the denominator of the estimate, in which case the true distribution deviates significantly from normal behavior as the percentage errors exceed 10%. In contrast, the normal approximation to the distribution of the logarithm of the magnitude is useful for errors as large as 75%.

  1. RANDOM VARIABLE WITH FUZZY PROBABILITY

    Institute of Scientific and Technical Information of China (English)

    吕恩琳; 钟佑明

    2003-01-01

    Mathematic description about the second kind fuzzy random variable namely the random variable with crisp event-fuzzy probability was studied. Based on the interval probability and using the fuzzy resolution theorem, the feasible condition about a probability fuzzy number set was given, go a step further the definition arid characters of random variable with fuzzy probability ( RVFP ) and the fuzzy distribution function and fuzzy probability distribution sequence of the RVFP were put forward. The fuzzy probability resolution theorem with the closing operation of fuzzy probability was given and proved. The definition and characters of mathematical expectation and variance of the RVFP were studied also. All mathematic description about the RVFP has the closing operation for fuzzy probability, as a result, the foundation of perfecting fuzzy probability operation method is laid.

  2. Two-loop and n-loop eikonal vertex corrections

    OpenAIRE

    Kidonakis, Nikolaos

    2003-01-01

    I present calculations of two-loop vertex corrections with massive and massless partons in the eikonal approximation. I show that the $n$-loop result for the UV poles can be given in terms of the one-loop calculation.

  3. Local loop near-rings

    OpenAIRE

    Franetič, Damir

    2015-01-01

    We study loop near-rings, a generalization of near-rings, where the additive structure is not necessarily associative. We introduce local loop near-rings and prove a useful detection principle for localness.

  4. A Tale of Two Probabilities

    Science.gov (United States)

    Falk, Ruma; Kendig, Keith

    2013-01-01

    Two contestants debate the notorious probability problem of the sex of the second child. The conclusions boil down to explication of the underlying scenarios and assumptions. Basic principles of probability theory are highlighted.

  5. On the extended loop calculus

    CERN Document Server

    Griego, J R

    1995-01-01

    Some features of extended loops are considered. In particular, the behaviour under diffeomorphism transformations of the wavefunctions with support on the extended loop space are studied. The basis of a method to obtain analytical expressions of diffeomorphism invariants via extended loops are settled. Applications to knot theory and quantum gravity are considered.

  6. Introduction to probability with R

    CERN Document Server

    Baclawski, Kenneth

    2008-01-01

    FOREWORD PREFACE Sets, Events, and Probability The Algebra of Sets The Bernoulli Sample Space The Algebra of Multisets The Concept of Probability Properties of Probability Measures Independent Events The Bernoulli Process The R Language Finite Processes The Basic Models Counting Rules Computing Factorials The Second Rule of Counting Computing Probabilities Discrete Random Variables The Bernoulli Process: Tossing a Coin The Bernoulli Process: Random Walk Independence and Joint Distributions Expectations The Inclusion-Exclusion Principle General Random Variable

  7. Closing global material loops

    DEFF Research Database (Denmark)

    Prosman, Ernst-Jan; Wæhrens, Brian Vejrum; Liotta, Giacomo

    2017-01-01

    Replacing virgin materials with waste materials, a practice known as Industrial Symbiosis (IS), has been identified as a key strategy for closing material loops. This article adopts a critical view on geographic proximity and external coordinators – two key enablers of IS. By ‘uncovering’ a case...... where both enablers are absent, this study seeks to explore firm-level challenges of IS. We adopt an exploratory case study approach at a cement manufacturer who engages in cross-border IS without the support of external coordinators. Our research presents insights into two key areas of IS: 1) setting...... for geographic proximity and external coordinators. In doing so, our insights into firm-level challenges of long-distance IS exchanges contribute to closing global material loops by increasing the number of potential circular pathways....

  8. RNA LEGO: magnesium-dependent assembly of RNA building blocks through loop-loop interactions.

    Science.gov (United States)

    Horiya, Satoru; Li, Xianglan; Kawai, Gota; Saito, Ryota; Katoh, Akira; Kobayashi, Koh; Harada, Kazuo

    2002-01-01

    We describe the construction of nano-molecular assemblies using RNA building blocks the human immunodeficiency virus type 1 (HIV-1) dimerization initiation site (DIS) RNA, that forms stable base pairing through a magnesium-dependent loop-loop interaction ("kissing"). RNA building blocks containing two DIS or DIS-like hairpins connected by a two nucleotide linker self-assembled to form specific structures as observed by non-denaturing polyacrylamide gel electrophoresis (PAGE). Furthermore, observation of "real time" formation of the molecular assemblies by circular dichroism (CD) spectroscopy was attempted.

  9. A first course in probability

    CERN Document Server

    Ross, Sheldon

    2014-01-01

    A First Course in Probability, Ninth Edition, features clear and intuitive explanations of the mathematics of probability theory, outstanding problem sets, and a variety of diverse examples and applications. This book is ideal for an upper-level undergraduate or graduate level introduction to probability for math, science, engineering and business students. It assumes a background in elementary calculus.

  10. Conditionals, probability, and belief revision

    NARCIS (Netherlands)

    Voorbraak, F.

    1989-01-01

    A famous result obtained in the mid-seventies by David Lewis shows that a straightforward interpretation of probabilities of conditionals as conditional probabilities runs into serious trouble. In this paper we try to circumvent this trouble by defining extensions of probability functions, called

  11. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  12. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  13. PAR Loop Schedule Review

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, Jr.; W.F.

    1958-04-30

    The schedule for the installation of the PAR slurry loop experiment in the South Facility of the ORR has been reviewed and revised. The design, fabrications and Installation is approximately two weeks behind schedule at this time due to many factors; however, indications are that this time can be made up. Design is estimated to be 75% complete, fabrication 32% complete and installation 12% complete.

  14. Verification of Loop Diagnostics

    Science.gov (United States)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  15. Cosmic string loop microlensing

    Science.gov (United States)

    Bloomfield, Jolyon K.; Chernoff, David F.

    2014-06-01

    Cosmic superstring loops within the galaxy microlens background point sources lying close to the observer-string line of sight. For suitable alignments, multiple paths coexist and the (achromatic) flux enhancement is a factor of two. We explore this unique type of lensing by numerically solving for geodesics that extend from source to observer as they pass near an oscillating string. We characterize the duration of the flux doubling and the scale of the image splitting. We probe and confirm the existence of a variety of fundamental effects predicted from previous analyses of the static infinite straight string: the deficit angle, the Kaiser-Stebbins effect, and the scale of the impact parameter required to produce microlensing. Our quantitative results for dynamical loops vary by O(1) factors with respect to estimates based on infinite straight strings for a given impact parameter. A number of new features are identified in the computed microlensing solutions. Our results suggest that optical microlensing can offer a new and potentially powerful methodology for searches for superstring loop relics of the inflationary era.

  16. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  17. The Art of Probability Assignment

    CERN Document Server

    Dimitrov, Vesselin I

    2012-01-01

    The problem of assigning probabilities when little is known is analized in the case where the quanities of interest are physical observables, i.e. can be measured and their values expressed by numbers. It is pointed out that the assignment of probabilities based on observation is a process of inference, involving the use of Bayes' theorem and the choice of a probability prior. When a lot of data is available, the resulting probability are remarkable insensitive to the form of the prior. In the oposite case of scarse data, it is suggested that the probabilities are assigned such that they are the least sensitive to specific variations of the probability prior. In the continuous case this results in a probability assignment rule wich calls for minimizing the Fisher information subject to constraints reflecting all available information. In the discrete case, the corresponding quantity to be minimized turns out to be a Renyi distance between the original and the shifted distribution.

  18. Hardware in the loop simulation of arbitrary magnitude shaped correlated radar clutter

    CSIR Research Space (South Africa)

    Strydom, JJ

    2014-10-01

    Full Text Available This paper describes a simple process for the generation of arbitrary probability distributions of complex data with correlation from sample to sample, optimized for hardware in the loop radar environment simulation. Measured radar clutter is used...

  19. Sequence dependence of transcription factor-mediated DNA looping.

    Science.gov (United States)

    Johnson, Stephanie; Lindén, Martin; Phillips, Rob

    2012-09-01

    DNA is subject to large deformations in a wide range of biological processes. Two key examples illustrate how such deformations influence the readout of the genetic information: the sequestering of eukaryotic genes by nucleosomes and DNA looping in transcriptional regulation in both prokaryotes and eukaryotes. These kinds of regulatory problems are now becoming amenable to systematic quantitative dissection with a powerful dialogue between theory and experiment. Here, we use a single-molecule experiment in conjunction with a statistical mechanical model to test quantitative predictions for the behavior of DNA looping at short length scales and to determine how DNA sequence affects looping at these lengths. We calculate and measure how such looping depends upon four key biological parameters: the strength of the transcription factor binding sites, the concentration of the transcription factor, and the length and sequence of the DNA loop. Our studies lead to the surprising insight that sequences that are thought to be especially favorable for nucleosome formation because of high flexibility lead to no systematically detectable effect of sequence on looping, and begin to provide a picture of the distinctions between the short length scale mechanics of nucleosome formation and looping.

  20. A Generalized Theory of DNA Looping and Cyclization

    Science.gov (United States)

    Wilson, David; Lillian, Todd; Perkins, Noel; Tkachenko, Alexei; Meiners, Jens-Christian

    2010-03-01

    We have developed a semi-analytic method for calculating the Stockmayer Jacobson J-factor for protein mediated DNA loops. The formation of DNA loops on the order of a few persistence lengths is a key component in many biological regulatory functions. The binding of LacI protein within the Lac Operon of E.coli serves as the canonical example for loop regulated transcription. We use a non-linear rod model to determine the equilibrium shape of the inter-operator DNA loop under prescribed binding constraints while taking sequence-dependent curvature and elasticity into account. Then we construct a Hamiltonian that describes thermal fluctuations about the open and looped equilibrium states, yielding the entropic and enthalpic costs of loop formation. Our work demonstrates that even for short sequences of the order one persistence length, entropic terms contribute substantially to the J factor. We also show that entropic considerations are able to determine the most favorable binding topology. The J factor can be used to compare the relative loop lifetimes of various DNA sequences, making it a useful tool in sequence design. A corollary of this work is the computation of an effective torsional persistence length, which demonstrates how torsion bending coupling in a constrained geometry affects the conversion of writhe to twist.

  1. Probability workshop to be better in probability topic

    Science.gov (United States)

    Asmat, Aszila; Ujang, Suriyati; Wahid, Sharifah Norhuda Syed

    2015-02-01

    The purpose of the present study was to examine whether statistics anxiety and attitudes towards probability topic among students in higher education level have an effect on their performance. 62 fourth semester science students were given statistics anxiety questionnaires about their perception towards probability topic. Result indicated that students' performance in probability topic is not related to anxiety level, which means that the higher level in statistics anxiety will not cause lower score in probability topic performance. The study also revealed that motivated students gained from probability workshop ensure that their performance in probability topic shows a positive improvement compared before the workshop. In addition there exists a significance difference in students' performance between genders with better achievement among female students compared to male students. Thus, more initiatives in learning programs with different teaching approaches is needed to provide useful information in improving student learning outcome in higher learning institution.

  2. R Loops in the Regulation of Antibody Gene Diversification.

    Science.gov (United States)

    Pavri, Rushad

    2017-06-02

    For nearly three decades, R loops have been closely linked with class switch recombination (CSR), the process that generates antibody isotypes and that occurs via a complex cascade initiated by transcription-coupled mutagenesis in switch recombination sequences. R loops form during transcription of switch recombination sequences in vitro and in vivo, and there is solid evidence that R loops are required for efficient class switching. The classical model of R loops posits that they boost mutation rates by generating stable and long tracts of single-stranded DNA that serve as the substrate for activation induced deaminase (AID), the enzyme that initiates the CSR reaction cascade by co-transcriptionally mutating ssDNA in switch recombination sequences. Though logical and compelling, this model has not been supported by in vivo evidence. Indeed, several reports suggest that R loops may not be involved in recruiting AID activity to switch regions, meaning that R loops probably serve other unanticipated roles in CSR. Here, I review the key findings in this field to date and propose hypotheses that could help towards elucidating the precise function of R loops in CSR.

  3. Fusion probability in heavy nuclei

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, PCN> , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. PCN> for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: PCN> has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine PCN> . Approximate boundaries have been obtained from where PCN> starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of PCN> from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections

  4. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.

    Science.gov (United States)

    St-Pierre, Jean-François; Mousseau, Normand

    2012-07-01

    We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction. This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we estimate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of exhaustive search methods.

  5. Propensity, Probability, and Quantum Theory

    Science.gov (United States)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  6. Improving Loop Dependence Analysis

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo; Karlsson, Sven

    2017-01-01

    Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve...... the quality of that information by reusing the information given by the programmer for parallelization. We have implemented a prototype based on GCC into which we also add a new optimization pass. Our approach improves the amount of correctly classified dependencies resulting in 46% average improvement...

  7. Closing the loop.

    Science.gov (United States)

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging

  8. Hidden Variables or Positive Probabilities?

    CERN Document Server

    Rothman, T; Rothman, Tony

    2001-01-01

    Despite claims that Bell's inequalities are based on the Einstein locality condition, or equivalent, all derivations make an identical mathematical assumption: that local hidden-variable theories produce a set of positive-definite probabilities for detecting a particle with a given spin orientation. The standard argument is that because quantum mechanics assumes that particles are emitted in a superposition of states the theory cannot produce such a set of probabilities. We examine a paper by Eberhard who claims to show that a generalized Bell inequality, the CHSH inequality, can be derived solely on the basis of the locality condition, without recourse to hidden variables. We point out that he nonetheless assumes a set of positive-definite probabilities, which supports the claim that hidden variables or "locality" is not at issue here, positive-definite probabilities are. We demonstrate that quantum mechanics does predict a set of probabilities that violate the CHSH inequality; however these probabilities ar...

  9. Applied probability and stochastic processes

    CERN Document Server

    Sumita, Ushio

    1999-01-01

    Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...

  10. PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT

    Science.gov (United States)

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  11. PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT

    Science.gov (United States)

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  12. Probabilistic Choice, Reversibility, Loops, and Miracles

    Science.gov (United States)

    Stoddart, Bill; Bell, Pete

    We consider an addition of probabilistic choice to Abrial's Generalised Substitution Language (GSL) in a form that accommodates the backtracking interpretation of non-deterministic choice. Our formulation is introduced as an extension of the Prospective Values formalism we have developed to describe the results from a backtracking search. Significant features are that probabilistic choice is governed by feasibility, and non-termination is strict. The former property allows us to use probabilistic choice to generate search heuristics. In this paper we are particularly interested in iteration. By demonstrating sub-conjunctivity and monotonicity properties of expectations we give the basis for a fixed point semantics of iterative constructs, and we consider the practical proof treatment of probabilistic loops. We discuss loop invariants, loops with probabilistic behaviour, and probabilistic termination in the context of a formalism in which a small probability of non-termination can dominate our calculations, proposing a method of limits to avoid this problem. The formal programming constructs described have been implemented in a reversible virtual machine (RVM).

  13. Loop expansion and the bosonic representation of loop quantum gravity

    Science.gov (United States)

    Bianchi, E.; Guglielmon, J.; Hackl, L.; Yokomizo, N.

    2016-10-01

    We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.

  14. Loop expansion and the bosonic representation of loop quantum gravity

    CERN Document Server

    Bianchi, Eugenio; Hackl, Lucas; Yokomizo, Nelson

    2016-01-01

    We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.

  15. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  16. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  17. The consistent histories approach to loop quantum cosmology

    CERN Document Server

    Craig, David A

    2016-01-01

    We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on "measurements" to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories -- as determined by the system's decoherence functional -- that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with ...

  18. Condition Monitoring of Control Loops

    OpenAIRE

    Horch, Alexander

    2000-01-01

    The main concern of this work is the development of methodsfor automatic condition monitoring of control loops withapplication to the process industry. By condition monitoringboth detection and diagnosis of malfunctioning control loops isunderstood, using normal operating data and a minimum amount ofprocess knowledge. The use of indices for quantifying loop performance is dealtwith in the first part of the thesis. The starting point is anindex proposed by Harris (1989). This index has been mo...

  19. Understanding Students' Beliefs about Probability.

    Science.gov (United States)

    Konold, Clifford

    The concept of probability is not an easy concept for high school and college students to understand. This paper identifies and analyzes the students' alternative frameworks from the viewpoint of constructivism. There are various interpretations of probability through mathematical history: classical, frequentist, and subjectivist interpretation.…

  20. Expected utility with lower probabilities

    DEFF Research Database (Denmark)

    Hendon, Ebbe; Jacobsen, Hans Jørgen; Sloth, Birgitte

    1994-01-01

    An uncertain and not just risky situation may be modeled using so-called belief functions assigning lower probabilities to subsets of outcomes. In this article we extend the von Neumann-Morgenstern expected utility theory from probability measures to belief functions. We use this theory...

  1. Varieties of Belief and Probability

    NARCIS (Netherlands)

    D.J.N. van Eijck (Jan); S. Ghosh; J. Szymanik

    2015-01-01

    htmlabstractFor reasoning about uncertain situations, we have probability theory, and we have logics of knowledge and belief. How does elementary probability theory relate to epistemic logic and the logic of belief? The paper focuses on the notion of betting belief, and interprets a language for

  2. Landau-Zener Probability Reviewed

    CERN Document Server

    Valencia, C

    2008-01-01

    We examine the survival probability for neutrino propagation through matter with variable density. We present a new method to calculate the level-crossing probability that differs from Landau's method by constant factor, which is relevant in the interpretation of neutrino flux from supernova explosion.

  3. Probability and Statistics: 5 Questions

    DEFF Research Database (Denmark)

    Probability and Statistics: 5 Questions is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in probability and statistics. We hear their views on the fields, aims, scopes, the future direction of research and how their work fits...

  4. A graduate course in probability

    CERN Document Server

    Tucker, Howard G

    2014-01-01

    Suitable for a graduate course in analytic probability, this text requires only a limited background in real analysis. Topics include probability spaces and distributions, stochastic independence, basic limiting options, strong limit theorems for independent random variables, central limit theorem, conditional expectation and Martingale theory, and an introduction to stochastic processes.

  5. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  6. Invariant probabilities of transition functions

    CERN Document Server

    Zaharopol, Radu

    2014-01-01

    The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of t...

  7. Linear Positivity and Virtual Probability

    CERN Document Server

    Hartle, J B

    2004-01-01

    We investigate the quantum theory of closed systems based on the linear positivity decoherence condition of Goldstein and Page. A quantum theory of closed systems requires two elements; 1) a condition specifying which sets of histories may be assigned probabilities that are consistent with the rules of probability theory, and 2) a rule for those probabilities. The linear positivity condition of Goldstein and Page is the weakest of the general conditions proposed so far. Its general properties relating to exact probability sum rules, time-neutrality, and conservation laws are explored. Its inconsistency with the usual notion of independent subsystems in quantum mechanics is reviewed. Its relation to the stronger condition of medium decoherence necessary for classicality is discussed. The linear positivity of histories in a number of simple model systems is investigated with the aim of exhibiting linearly positive sets of histories that are not decoherent. The utility of extending the notion of probability to i...

  8. Statistical properties of first-order bang-bang Pll with nonzero loop delay

    OpenAIRE

    Chun, Byungjin; Kennedy, Michael Peter

    2008-01-01

    A method to solve the stationary state probability is presented for the first-order bang-bang phase-locked loop (BBPLL) with nonzero loop delay. This is based on a delayed Markov chain model and a state How diagram for tracing the state history due to the loop delay. As a result, an eigenequation is obtained, and its closed form solutions are derived for some cases. After obtaining the state probability, statistical characteristics such as mean gain of the binary phase detector and timing err...

  9. A Markov chain technique for determining the acquisition behavior of a digital tracking loop

    Science.gov (United States)

    Chadwick, H. D.

    1972-01-01

    An iterative procedure is presented for determining the acquisition behavior of discrete or digital implementations of a tracking loop. The technique is based on the theory of Markov chains and provides the cumulative probability of acquisition in the loop as a function of time in the presence of noise and a given set of initial condition probabilities. A digital second-order tracking loop to be used in the Viking command receiver for continuous tracking of the command subcarrier phase was analyzed using this technique, and the results agree closely with experimental data.

  10. Survival probability and ruin probability of a risk model

    Institute of Scientific and Technical Information of China (English)

    LUO Jian-hua

    2008-01-01

    In this paper, a new risk model is studied in which the rate of premium income is regarded as a random variable, the arrival of insurance policies is a Poisson process and the process of claim occurring is p-thinning process. The integral representations of the survival probability are gotten. The explicit formula of the survival probability on the infinite interval is obtained in the special casc--exponential distribution.The Lundberg inequality and the common formula of the ruin probability are gotten in terms of some techniques from martingale theory.

  11. Theory for RNA folding, stretching, and melting including loops and salt

    CERN Document Server

    Einert, Thomas R

    2011-01-01

    Secondary structure formation of nucleic acids strongly depends on salt concentration and temperature. We develop a theory for RNA folding that correctly accounts for sequence effects, the entropic contributions associated with loop formation, and salt effects. Using an iterative expression for the partition function that neglects pseudoknots, we calculate folding free energies and minimum free energy configurations based on the experimentally derived base pairing free energies. The configurational entropy of loop formation is modeled by the asymptotic expression -c ln m, where m is the length of the loop and c the loop exponent, which is an adjustable constant. Salt effects enter in two ways: first, we derive salt induced modifications of the free energy parameters for describing base pairing and, second, we include the electrostatic free energy for loop formation. Both effects are modeled on the Debye-Hueckel level including counterion condensation. We validate our theory for two different RNA sequences: Fo...

  12. Probability

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    People much given to gambling usually manage to work out rough-and-ready ways of measuring the likelihood of certain situations so as to know which way to bet their money, and how much. If they did not do this., they would quickly lose all their money to those who did.

  13. A Looping-Based Model for Quenching Repression.

    Directory of Open Access Journals (Sweden)

    Yaroslav Pollak

    2017-01-01

    Full Text Available We model the regulatory role of proteins bound to looped DNA using a simulation in which dsDNA is represented as a self-avoiding chain, and proteins as spherical protrusions. We simulate long self-avoiding chains using a sequential importance sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain's termini reduces the probability of looping, even for chains much longer than the protrusion-chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. The reduced probability of looping can be explained via an eclipse-like model, which provides a novel inhibitory mechanism. We test the eclipse model on two possible transcription-factor occupancy states of the D. melanogaster eve 3/7 enhancer, and show that it provides a possible explanation for the experimentally-observed eve stripe 3 and 7 expression patterns.

  14. Dynamic PID loop control

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  15. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  16. Dynamic PID loop control

    CERN Document Server

    Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C

    2012-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.

  17. Vortex loops and Majoranas

    Energy Technology Data Exchange (ETDEWEB)

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  18. Optimized Carrier Tracking Loop Design for Real-Time High-Dynamics GNSS Receivers

    Directory of Open Access Journals (Sweden)

    Pedro A. Roncagliolo

    2012-01-01

    Full Text Available Carrier phase estimation in real-time Global Navigation Satellite System (GNSS receivers is usually performed by tracking loops due to their very low computational complexity. We show that a careful design of these loops allows them to operate properly in high-dynamics environments, that is, accelerations up to 40 g or more. Their phase and frequency discriminators and loop filter are derived considering the digital nature of the loop inputs. Based on these ideas, we propose a new loop structure named Unambiguous Frequency-Aided Phase-Locked Loop (UFA-PLL. In terms of tracking capacity and noise resistance UFA-PLL has the same advantages of frequently used coupled-loop schemes, but it is simpler to design and to implement. Moreover, it can keep phase lock in situations where other loops cannot. The loop design is completed selecting the correlation time and loop bandwidth that minimize the pull-out probability, without relying on typical rules of thumb. Optimal and efficient ways to smooth the phase estimates are also presented. Hence, high-quality phase measurements—usually exploited in offline and quasistatic applications—become practical for real-time and high-dynamics receivers. Experiments with fixed-point implementations of the proposed loops and actual radio signals are also shown.

  19. The cosmological Kibble mechanism in the laboratory string formation in liquid crystals

    CERN Document Server

    Bowick, M J; Schiff, E A; Srivastava, A M

    1994-01-01

    We have observed the production of strings (disclination lines and loops) via the Kibble mechanism of domain (bubble) formation in the isotropic to nematic phase transition of a sample of uniaxial nematic liquid crystal. The probablity of string formation per bubble is measured to be $0.33 \\pm 0.01$. This is in good agreement with the theoretical value $1/ \\pi$ expected in two dimensions for the order parameter space $S^2/{\\bf Z}_2$ of a simple uniaxial nematic liquid crystal.

  20. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  1. Coronal loop physical parameters from the analysis of multiple observed transverse oscillations

    CERN Document Server

    Ramos, A Asensio

    2013-01-01

    The analysis of quickly damped transverse oscillations of solar coronal loops using magneto-hydrodynamic seismology allow us to infer physical parameters that are difficult to measure otherwise. Under the assumption that such damped oscillations are due to the resonant conversion of global modes into Alfven oscillations of the tube surface, we carry out a global seismological analysis of a large set of coronal loops. A Bayesian hierarchical method is used to obtain distributions for coronal loop physical parameters by means of a global analysis of a large number of observations. The resulting distributions summarise global information and constitute data-favoured information that can be used for the inversion of individual events. The results strongly suggest that internal Alfven travel times along the loop are larger than 100 s and smaller than 540 s with 95% probability. Likewise, the density contrast between the loop interior and the surrounding is larger than 2.3 and below 6.9 with 95% probability.

  2. Repulsive forces between looping chromosomes induce entropy-driven segregation.

    Directory of Open Access Journals (Sweden)

    Manfred Bohn

    Full Text Available One striking feature of chromatin organization is that chromosomes are compartmentalized into distinct territories during interphase, the degree of intermingling being much smaller than expected for linear chains. A growing body of evidence indicates that the formation of loops plays a dominant role in transcriptional regulation as well as the entropic organization of interphase chromosomes. Using a recently proposed model, we quantitatively determine the entropic forces between chromosomes. This Dynamic Loop Model assumes that loops form solely on the basis of diffusional motion without invoking other long-range interactions. We find that introducing loops into the structure of chromatin results in a multi-fold higher repulsion between chromosomes compared to linear chains. Strong effects are observed for the tendency of a non-random alignment; the overlap volume between chromosomes decays fast with increasing loop number. Our results suggest that the formation of chromatin loops imposes both compartmentalization as well as order on the system without requiring additional energy-consuming processes.

  3. Failure probability under parameter uncertainty.

    Science.gov (United States)

    Gerrard, R; Tsanakas, A

    2011-05-01

    In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.

  4. Observation of multiple sausage oscillations in cool postflare loop

    CERN Document Server

    Srivastava, A K; Uddin, W; Dwivedi, B N; Kumar, Pankaj

    2008-01-01

    Using simultaneous high spatial (1.3 arc sec) and temporal (5 and 10 s) resolution H-alpha observations from the 15 cm Solar Tower Telescope at ARIES, we study the oscillations in the relative intensity to explore the possibility of sausage oscillations in the chromospheric cool postflare loop. We use standard wavelet tool, and find the oscillation period of ~ 587 s near the loop apex, and ~ 349 s near the footpoint. We suggest that the oscillations represent the fundamental and the first harmonics of fast sausage waves in the cool postflare loop. Based on the period ratio P1/P2 ~ 1.68, we estimate the density scale height in the loop as ~ 17 Mm. This value is much higher than the equilibrium scale height corresponding to H-alpha temperature, which probably indicates that the cool postflare loop is not in hydrostatic equilibrium. Seismologically estimated Alfv\\'en speed outside the loop is ~ 300-330 km/s. The observation of multiple oscillations may play a crucial role in understanding the dynamics of lower s...

  5. Probability with applications and R

    CERN Document Server

    Dobrow, Robert P

    2013-01-01

    An introduction to probability at the undergraduate level Chance and randomness are encountered on a daily basis. Authored by a highly qualified professor in the field, Probability: With Applications and R delves into the theories and applications essential to obtaining a thorough understanding of probability. With real-life examples and thoughtful exercises from fields as diverse as biology, computer science, cryptology, ecology, public health, and sports, the book is accessible for a variety of readers. The book's emphasis on simulation through the use of the popular R software language c

  6. Probability Ranking in Vector Spaces

    CERN Document Server

    Melucci, Massimo

    2011-01-01

    The Probability Ranking Principle states that the document set with the highest values of probability of relevance optimizes information retrieval effectiveness given the probabilities are estimated as accurately as possible. The key point of the principle is the separation of the document set into two subsets with a given level of fallout and with the highest recall. The paper introduces the separation between two vector subspaces and shows that the separation yields a more effective performance than the optimal separation into subsets with the same available evidence, the performance being measured with recall and fallout. The result is proved mathematically and exemplified experimentally.

  7. Holographic probabilities in eternal inflation.

    Science.gov (United States)

    Bousso, Raphael

    2006-11-10

    In the global description of eternal inflation, probabilities for vacua are notoriously ambiguous. The local point of view is preferred by holography and naturally picks out a simple probability measure. It is insensitive to large expansion factors or lifetimes and so resolves a recently noted paradox. Any cosmological measure must be complemented with the probability for observers to emerge in a given vacuum. In lieu of anthropic criteria, I propose to estimate this by the entropy that can be produced in a local patch. This allows for prior-free predictions.

  8. Local Causality, Probability and Explanation

    CERN Document Server

    Healey, Richard A

    2016-01-01

    In papers published in the 25 years following his famous 1964 proof John Bell refined and reformulated his views on locality and causality. Although his formulations of local causality were in terms of probability, he had little to say about that notion. But assumptions about probability are implicit in his arguments and conclusions. Probability does not conform to these assumptions when quantum mechanics is applied to account for the particular correlations Bell argues are locally inexplicable. This account involves no superluminal action and there is even a sense in which it is local, but it is in tension with the requirement that the direct causes and effects of events are nearby.

  9. A philosophical essay on probabilities

    CERN Document Server

    Laplace, Marquis de

    1996-01-01

    A classic of science, this famous essay by ""the Newton of France"" introduces lay readers to the concepts and uses of probability theory. It is of especial interest today as an application of mathematical techniques to problems in social and biological sciences.Generally recognized as the founder of the modern phase of probability theory, Laplace here applies the principles and general results of his theory ""to the most important questions of life, which are, in effect, for the most part, problems in probability."" Thus, without the use of higher mathematics, he demonstrates the application

  10. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    Science.gov (United States)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  11. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study.

    Science.gov (United States)

    Allnér, Olof; Nilsson, Lennart; Villa, Alessandra

    2013-07-01

    Riboswitches are mRNA-based molecules capable of controlling the expression of genes. They undergo conformational changes upon ligand binding, and as a result, they inhibit or promote the expression of the associated gene. The close connection between structural rearrangement and function makes a detailed knowledge of the molecular interactions an important step to understand the riboswitch mechanism and efficiency. We have performed all-atom molecular dynamics simulations of the adenine-sensing add A-riboswitch to study the breaking of the kissing loop, one key tertiary element in the aptamer structure. We investigated the aptamer domain of the add A-riboswitch in complex with its cognate ligand and in the absence of the ligand. The opening of the hairpins was simulated using umbrella sampling using the distance between two loops as the reaction coordinate. A two-step process was observed in all the simulated systems. First, a general loss of stacking and hydrogen bond interactions is seen. The last interactions that break are the two base pairs G37-C61 and G38-C60, but the break does not affect the energy profile, indicating their pivotal role in the tertiary structure formation but not in the structure stabilization. The junction area is partially organized before the kissing loop formation and residue A24 anchors together the loop helices. Moreover, when the distance between the loops is increased, one of the hairpins showed more flexibility by changing its orientation in the structure, while the other conserved its coaxial arrangement with the rest of the structure.

  12. Phenomenology of loop quantum cosmology

    CERN Document Server

    Sakellariadou, Mairi

    2010-01-01

    After introducing the basic ingredients of Loop Quantum Cosmology, I will briefly discuss some of its phenomenological aspects. Those can give some useful insight about the full Loop Quantum Gravity theory and provide an answer to some long-standing questions in early universe cosmology.

  13. Improved code-tracking loop

    Science.gov (United States)

    Laflame, D. T.

    1980-01-01

    Delay-locked loop tracks pseudonoise codes without introducing dc timing errors, because it is not sensitive to gain imbalance between signal processing arms. "Early" and "late" reference codes pass in combined form through both arms, and each arm acts on both codes. Circuit accomodates 1 dB weaker input signals with tracking ability equal to that of tau-dither loops.

  14. Loop groups and noncommutative geometry

    CERN Document Server

    Carpi, Sebastiano

    2015-01-01

    We describe the representation theory of loop groups in terms of K-theory and noncommutative geometry. This is done by constructing suitable spectral triples associated with the level l projective unitary positive-energy representations of any given loop group LG. The construction is based on certain supersymmetric conformal field theory models associated with LG.

  15. Brane Couplings from Bulk Loops

    OpenAIRE

    Georgi, Howard; Grant, Aaron K.; Hailu, Girma

    2000-01-01

    We compute loop corrections to the effective action of a field theory on a five-dimensional $S_1/Z_2$ orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

  16. Higher dimensional loop quantum cosmology

    Science.gov (United States)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  17. Diurnal distribution of sunshine probability

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, S.

    1982-01-01

    The diurnal distribution of the sunshine probability is essential for the predetermination of average irradiances and illuminances by solar radiation on sloping surfaces. The most meteorological stations have only monthly average values of the sunshine duration available. It is, therefore, necessary to compute the diurnal distribution of sunshine probability starting from the average monthly values. It is shown how the symmetric component of the distribution of the sunshine probability which is a consequence of a ''sidescene effect'' of the clouds can be calculated. The asymmetric components of the sunshine probability depending on the location and the seasons and their influence on the predetermination of the global radiation are investigated and discussed.

  18. Probability representation of classical states

    NARCIS (Netherlands)

    Man'ko, OV; Man'ko, [No Value; Pilyavets, OV

    2005-01-01

    Probability representation of classical states described by symplectic tomograms is discussed. Tomographic symbols of classical observables which are functions on phase-space are studied. Explicit form of kernel of commutative star-product of the tomographic symbols is obtained.

  19. Introduction to probability and measure

    CERN Document Server

    Parthasarathy, K R

    2005-01-01

    According to a remark attributed to Mark Kac 'Probability Theory is a measure theory with a soul'. This book with its choice of proofs, remarks, examples and exercises has been prepared taking both these aesthetic and practical aspects into account.

  20. Free probability and random matrices

    CERN Document Server

    Mingo, James A

    2017-01-01

    This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

  1. The probabilities of unique events.

    Directory of Open Access Journals (Sweden)

    Sangeet S Khemlani

    Full Text Available Many theorists argue that the probabilities of unique events, even real possibilities such as President Obama's re-election, are meaningless. As a consequence, psychologists have seldom investigated them. We propose a new theory (implemented in a computer program in which such estimates depend on an intuitive non-numerical system capable only of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of conjunctions should often tend to split the difference between the probabilities of the two conjuncts. We report two experiments showing that individuals commit such violations of the probability calculus, and corroborating other predictions of the theory, e.g., individuals err in the same way even when they make non-numerical verbal estimates, such as that an event is highly improbable.

  2. Logic, probability, and human reasoning.

    Science.gov (United States)

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction.

  3. Default probabilities and default correlations

    OpenAIRE

    Erlenmaier, Ulrich; Gersbach, Hans

    2001-01-01

    Starting from the Merton framework for firm defaults, we provide the analytics and robustness of the relationship between default correlations. We show that loans with higher default probabilities will not only have higher variances but also higher correlations between loans. As a consequence, portfolio standard deviation can increase substantially when loan default probabilities rise. This result has two important implications. First, relative prices of loans with different default probabili...

  4. Joint probabilities and quantum cognition

    CERN Document Server

    de Barros, J Acacio

    2012-01-01

    In this paper we discuss the existence of joint probability distributions for quantum-like response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  5. Three lectures on free probability

    OpenAIRE

    2012-01-01

    These are notes from a three-lecture mini-course on free probability given at MSRI in the Fall of 2010 and repeated a year later at Harvard. The lectures were aimed at mathematicians and mathematical physicists working in combinatorics, probability, and random matrix theory. The first lecture was a staged rediscovery of free independence from first principles, the second dealt with the additive calculus of free random variables, and the third focused on random matrix models.

  6. Dynamics of DNA Looping in Nanochannels

    Science.gov (United States)

    Heidarpourroushan, Maedeh

    This thesis is devoted to the study of protein-DNA interactions and especially how proteins can mediate DNA loop formation in nanochannels. In the last decade, a large number of studies have been performed, wherein DNA molecules were confined to the channels with cross-section around the persistence length of DNA molecule. Such nanochannels provide a good model system for studying of the physics of confined DNA. The results of this thesis increase our understanding of how different DNA-binding proteins can change the DNA configuration. (Abstract shortened by ProQuest.).

  7. Uranyl Nitrate Flow Loop

    Energy Technology Data Exchange (ETDEWEB)

    Ladd-Lively, Jennifer L [ORNL

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion

  8. Probably not future prediction using probability and statistical inference

    CERN Document Server

    Dworsky, Lawrence N

    2008-01-01

    An engaging, entertaining, and informative introduction to probability and prediction in our everyday lives Although Probably Not deals with probability and statistics, it is not heavily mathematical and is not filled with complex derivations, proofs, and theoretical problem sets. This book unveils the world of statistics through questions such as what is known based upon the information at hand and what can be expected to happen. While learning essential concepts including "the confidence factor" and "random walks," readers will be entertained and intrigued as they move from chapter to chapter. Moreover, the author provides a foundation of basic principles to guide decision making in almost all facets of life including playing games, developing winning business strategies, and managing personal finances. Much of the book is organized around easy-to-follow examples that address common, everyday issues such as: How travel time is affected by congestion, driving speed, and traffic lights Why different gambling ...

  9. Modeling loop entropy.

    Science.gov (United States)

    Chirikjian, Gregory S

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting "the" tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of "entropy" is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice, each of the above with different solvation and solvent models, thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics, and information theory.

  10. The loop gravity string

    CERN Document Server

    Freidel, Laurent; Pranzetti, Daniele

    2016-01-01

    In this work we study canonical gravity in finite regions for which we introduce a generalisation of the Gibbons-Hawking boundary term including the Immirzi parameter. We study the canonical formulation on a spacelike hypersuface with a boundary sphere and show how the presence of this term leads to an unprecedented type of degrees of freedom coming from the restoration of the gauge and diffeomorphism symmetry at the boundary. In the presence of a loop quantum gravity state, these boundary degrees of freedom localize along a set of punctures on the boundary sphere. We demonstrate that these degrees of freedom are effectively described by auxiliary strings with a 3-dimensional internal target space attached to each puncture. We show that the string currents represent the local frame field, that the string angular momenta represent the area flux and that the string stress tensor represents the two dimensional metric on the boundary of the region of interest. Finally, we show that the commutators of these broken...

  11. Cosmic string loop distribution on all length scales and at any redshift

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Larissa; Ringeval, Christophe [Institute of Mathematics and Physics, Centre for Cosmology, Particle Physics and Phenomenology, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Sakellariadou, Mairi, E-mail: larissa.lorenz@uclouvain.be, E-mail: christophe.ringeval@uclouvain.be, E-mail: mairi.sakellariadou@kcl.ac.uk [Department of Physics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)

    2010-10-01

    We analytically derive the expected number density distribution of Nambu-Goto cosmic string loops at any redshift soon after the time of string formation to today. Our approach is based on the Polchinski-Rocha model of loop formation from long strings which we adjust to fit numerical simulations and complement by a phenomenological modelling of gravitational backreaction. Cosmological evolution drives the loop distribution towards scaling on all length scales in both the radiation and matter era. Memory of any reasonable initial loop distribution in the radiation era is shown to be erased well before Big Bang Nucleosynthesis. In the matter era, the loop distribution reaches full scaling, up to some residual loops from the radiation era which may be present for extremely low string tension. Finally, the number density of loops below the gravitational cutoff is shown to be scale independent, proportional to a negative power of the string tension and insensitive to the details of the backreaction modelling. As an application, we show that the energy density parameter of loops today cannot exceed 10{sup −5} for currently allowed string tension values, while the loop number density cannot be less than 10{sup −6} per Mpc{sup 3}. Our result should provide a more robust basis for studying the cosmological consequences of cosmic string loops.

  12. Heating of the Solar Corona and its Loops

    Science.gov (United States)

    Klimchuk, James A.

    2009-01-01

    At several million degrees, the solar corona is more than two orders of magnitude hotter than the underlying solar surface. The reason for these extreme conditions has been a puzzle for decades and is considered one of the fundamental problems in astrophysics. Much of the coronal plasma is organized by the magnetic field into arch-like structures called loops. Recent observational and theoretical advances have led to great progress in understanding the nature of these loops. In particular, we now believe they are bundles of unresolved magnetic strands that are heated by storms of impulsive energy bursts called nanoflares. Turbulent convection at the solar surface shuffles the footpoints of the strands and causes them to become tangled. A nanoflare occurs when the magnetic stresses reach a critical threshold, probably by way of a mechanism called the secondary instability. I will describe our current state of knowledge concerning the corona, its loops, and how they are heated.

  13. Hard Loops, Soft Loops, and High Density Effective Field Theory

    CERN Document Server

    Schäfer, T

    2003-01-01

    We study several issues related to the use of effective field theories in QCD at large baryon density. We show that the power counting is complicated by the appearance of two scales inside loop integrals. Hard dense loops involve the large scale $mu^2$ and lead to phenomena such as screening and damping at the scale $gmu$. Soft loops only involve small scales and lead to superfluidity and non-Fermi liquid behavior at exponentially small scales. Four-fermion operators in the effective theory are suppressed by powers of $1/mu$, but they get enhanced by hard loops. As a consequence their contribution to the pairing gap is only suppressed by powers of the coupling constant, and not powers of $1/mu$. We determine the coefficients of four-fermion operators in the effective theory by matching quark-quark scattering amplitudes. Finally, we introduce a perturbative scheme for computing corrections to the gap parameter in the superfluid phase

  14. Cluster Membership Probability: Polarimetric Approach

    CERN Document Server

    Medhi, Biman J

    2013-01-01

    Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper-motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q(%) and u(%) for the proper-motion member stars depends on the ...

  15. Normal probability plots with confidence.

    Science.gov (United States)

    Chantarangsi, Wanpen; Liu, Wei; Bretz, Frank; Kiatsupaibul, Seksan; Hayter, Anthony J; Wan, Fang

    2015-01-01

    Normal probability plots are widely used as a statistical tool for assessing whether an observed simple random sample is drawn from a normally distributed population. The users, however, have to judge subjectively, if no objective rule is provided, whether the plotted points fall close to a straight line. In this paper, we focus on how a normal probability plot can be augmented by intervals for all the points so that, if the population distribution is normal, then all the points should fall into the corresponding intervals simultaneously with probability 1-α. These simultaneous 1-α probability intervals provide therefore an objective mean to judge whether the plotted points fall close to the straight line: the plotted points fall close to the straight line if and only if all the points fall into the corresponding intervals. The powers of several normal probability plot based (graphical) tests and the most popular nongraphical Anderson-Darling and Shapiro-Wilk tests are compared by simulation. Based on this comparison, recommendations are given in Section 3 on which graphical tests should be used in what circumstances. An example is provided to illustrate the methods.

  16. Eigenvalue distributions of Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Lohmayer, Robert

    2010-07-01

    In the first part of this thesis, we focus on the distribution of the eigenvalues of the unitary Wilson loop matrix in the two-dimensional case at arbitrary finite N. To characterize the distribution of the eigenvalues, we introduce three density functions (the ''symmetric'', the ''antisymmetric'', and the ''true'' eigenvalue density) which differ at finite N but possess the same infinite-N limit, exhibiting the Durhuus-Olesen phase transition. Using expansions of determinants and inverse determinants in characters of totally symmetric or totally antisymmetric representations of SU(N), the densities at finite N can be expressed in terms of simple sums involving only dimensions and quadratic Casimir invariants of certain irreducible representations of SU(N), allowing for a numerical computation of the densities at arbitrary N to any desired accuracy. We find that the true eigenvalue density, adding N oscillations to the monotonic symmetric density, is in some sense intermediate between the symmetric and the antisymmetric density, which in turn is given by a sum of N delta peaks located at the zeros of the average of the characteristic polynomial. Furthermore, we show that the dependence on N can be made explicit by deriving integral representations for the resolvents associated to the three eigenvalue densities. Using saddle-point approximations, we confirm that all three densities reduce to the Durhuus-Olesen result in the infinite-N limit. In the second part, we study an exponential form of the multiplicative random complex matrix model introduced by Gudowska-Nowak et al. Varying a parameter which can be identified with the area of the Wilson loop in the unitary case, the region of non-vanishing eigenvalue density of the N-dimensional complex product matrix undergoes a topological change at a transition point in the infinite-N limit. We study the transition by a detailed analysis of the average of the

  17. Radial propagators and Wilson loops

    CERN Document Server

    Leupold, S; Leupold, Stefan; Weigert, Heribert

    1996-01-01

    We present a relation which connects the propagator in the radial (Fock-Schwinger) gauge with a gauge invariant Wilson loop. It is closely related to the well-known field strength formula and can be used to calculate the radial gauge propagator. The result is shown to diverge in four-dimensional space even for free fields, its singular nature is however naturally explained using the renormalization properties of Wilson loops with cusps and self-intersections. Using this observation we provide a consistent regularization scheme to facilitate loop calculations. Finally we compare our results with previous approaches to derive a propagator in Fock-Schwinger gauge.

  18. Holographic Wilson loops in anisotropic quark-gluon plasma.

    Science.gov (United States)

    Ageev, Dmitry

    2016-10-01

    The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.

  19. Holographic Wilson loops in anisotropic quark-gluon plasma.

    Directory of Open Access Journals (Sweden)

    Ageev Dmitry

    2016-01-01

    Full Text Available The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.

  20. Detonation probabilities of high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, S.W.; Bott, T.F.; Bement, T.R.

    1995-07-01

    The probability of a high explosive violent reaction (HEVR) following various events is an extremely important aspect of estimating accident-sequence frequency for nuclear weapons dismantlement. In this paper, we describe the development of response curves for insults to PBX 9404, a conventional high-performance explosive used in US weapons. The insults during dismantlement include drops of high explosive (HE), strikes of tools and components on HE, and abrasion of the explosive. In the case of drops, we combine available test data on HEVRs and the results of flooring certification tests to estimate the HEVR probability. For other insults, it was necessary to use expert opinion. We describe the expert solicitation process and the methods used to consolidate the responses. The HEVR probabilities obtained from both approaches are compared.

  1. Probability theory a foundational course

    CERN Document Server

    Pakshirajan, R P

    2013-01-01

    This book shares the dictum of J. L. Doob in treating Probability Theory as a branch of Measure Theory and establishes this relation early. Probability measures in product spaces are introduced right at the start by way of laying the ground work to later claim the existence of stochastic processes with prescribed finite dimensional distributions. Other topics analysed in the book include supports of probability measures, zero-one laws in product measure spaces, Erdos-Kac invariance principle, functional central limit theorem and functional law of the iterated logarithm for independent variables, Skorohod embedding, and the use of analytic functions of a complex variable in the study of geometric ergodicity in Markov chains. This book is offered as a text book for students pursuing graduate programs in Mathematics and or Statistics. The book aims to help the teacher present the theory with ease, and to help the student sustain his interest and joy in learning the subject.

  2. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  3. Approximation methods in probability theory

    CERN Document Server

    Čekanavičius, Vydas

    2016-01-01

    This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.

  4. Probability on real Lie algebras

    CERN Document Server

    Franz, Uwe

    2016-01-01

    This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Lévy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Lévy processes, and the Malliavin calculus.

  5. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2011-01-01

    A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that d

  6. Innovation and social probable knowledge

    OpenAIRE

    Marco Crocco

    2000-01-01

    In this paper some elements of Keynes's theory of probability are used to understand the process of diffusion of an innovation. Based on a work done elsewhere (Crocco 1999, 2000), we argue that this process can be viewed as a process of dealing with the collective uncertainty about how to sort a technological problem. Expanding the concepts of weight of argument and probable knowledge to deal with this kind of uncertainty we argue that the concepts of social weight of argument and social prob...

  7. Knowledge typology for imprecise probabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G. D. (Gregory D.); Zucker, L. J. (Lauren J.)

    2002-01-01

    When characterizing the reliability of a complex system there are often gaps in the data available for specific subsystems or other factors influencing total system reliability. At Los Alamos National Laboratory we employ ethnographic methods to elicit expert knowledge when traditional data is scarce. Typically, we elicit expert knowledge in probabilistic terms. This paper will explore how we might approach elicitation if methods other than probability (i.e., Dempster-Shafer, or fuzzy sets) prove more useful for quantifying certain types of expert knowledge. Specifically, we will consider if experts have different types of knowledge that may be better characterized in ways other than standard probability theory.

  8. Probability, statistics, and queueing theory

    CERN Document Server

    Allen, Arnold O

    1990-01-01

    This is a textbook on applied probability and statistics with computer science applications for students at the upper undergraduate level. It may also be used as a self study book for the practicing computer science professional. The successful first edition of this book proved extremely useful to students who need to use probability, statistics and queueing theory to solve problems in other fields, such as engineering, physics, operations research, and management science. The book has also been successfully used for courses in queueing theory for operations research students. This second edit

  9. Understanding the role of thermal fluctuations in DNA looping

    Science.gov (United States)

    Wilson, David P.; Lillian, Todd; Goyal, Sachin; Tkachenko, Alexei V.; Perkins, Noel C.; Meiners, Jens-Christian

    2007-06-01

    Protein-mediated DNA loop formation is an important biological process that regulates key functions such as transcription. We present a mechanical model for these DNA-protein complexes that can take effects of the DNA sequence such induced curvature into account. This model provides the equilibrium shape and elastic energy of the DNA loop, using boundary conditions from the protein crystal structure. We then construct a Hamiltonian for small perturbations of the DNA around the equilibrium shape, which in turn allows us to calculate the eigenmodes and the entropic contributions of the thermal fluctuations to the free energy of the DNA loop. Here we present computations related to the short wild-type lactose repressor loop of Escheria coli (E. coli), and find that the entropic contributions are significant and amount to up to 3.9 k BT of the free energy. We also show that this entropic contribution from the stiffening of the DNA loop depends strongly on the phase angle between the two operator sites, which adds to the known phasing effect of the elastic energy of the loop.

  10. Product Integrals and Wilson loops

    CERN Document Server

    Karp, R L

    2001-01-01

    Using product integrals we review the unambiguous mathematical representation of Wilson line and Wilson loop operators, including their behavior under gauge transformations and the non-abelian Stokes theorem. Interesting consistency conditions among Wilson lines are also presented.

  11. Thermal fluctuations in loop cosmology

    CERN Document Server

    Magueijo, J; Magueijo, Joao; Singh, Parampreet

    2007-01-01

    Quantum gravitational effects in loop quantum cosmology lead to a resolution of the initial singularity and have the potential to solve the horizon problem and generate a quasi scale-invariant spectrum of density fluctuations. We consider loop modifications to the behavior of the inverse scale factor below a critical scale in closed models and assume a purely thermal origin for the fluctuations. We show that the no-go results for scale invariance in classical thermal models can be evaded even if we just consider modifications to the background (zeroth order) gravitational dynamics. Since a complete and systematic treatment of the perturbed Einstein equations in loop cosmology is still lacking, we simply parameterize their expected modifications. These change quantitatively, but not qualitatively, our conclusions. We thus urge the community to more fully work out this complex aspect of loop cosmology, since the full picture would not only fix the free parameters of the theory, but also provide a model for a no...

  12. Loop Quantum Cosmology Gravitational Baryogenesis

    CERN Document Server

    Odintsov, S D

    2016-01-01

    Loop Quantum Cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer remedy or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of Loop Quantum Cosmology. As we demonstrate, when Loop Quantum Cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of Loop Quantum Cosmology and we investigate under which circumstances the bar...

  13. Closing the loop: an interactive action-research conference format for delivering updated medical information while eliciting Latina patient/family experiences and psychosocial needs post-genetic cancer risk assessment.

    Science.gov (United States)

    Macdonald, Deborah J; Deri, Julia; Ricker, Charité; Perez, Martin A; Ogaz, Raquel; Feldman, Nancy; Viveros, Lori A; Paz, Benjamin; Weitzel, Jeffrey N; Blazer, Kathleen R

    2012-09-01

    A patient/family-centered conference was conducted at an underserved community hospital to address Latinas' post-genetic cancer risk assessment (GCRA) medical information and psychosocial support needs, and determine the utility of the action research format. Latinas seen for GCRA were recruited to a half-day conference conducted in Spanish. Content was partly determined from follow-up survey feedback. Written surveys, interactive discussions, and Audience Response System (ARS) queries facilitated the participant-healthcare professional action research process. Analyses included descriptive statistics and thematic analysis. The 71 attendees (41 patients and 27 relatives/friends) were primarily non-US born Spanish-speaking females, mean age 43 years. Among patients, 73 % had a breast cancer history; 85 % had BRCA testing (49 % BRCA+). Nearly all (96 %) attendees completed the conference surveys and ARS queries; ≥48 % participated in interactive discussions. Most (95 %) agreed that the format met their personal interests and expectations and provided useful information and resources. Gaps/challenges identified in the GCRA process included pre-consult anxiety, uncertainty about reason for referral and expected outcomes, and psychosocial needs post-GCRA, such as absorbing and disseminating risk information to relatives and concurrently coping with a recent cancer diagnosis. The combined action research and educational conference format was innovative and effective for responding to continued patient information needs and addressing an important data gap about support needs of Latina patients and family members following genetic cancer risk assessment. Findings informed GCRA process improvements and provide a basis for theory-driven cancer control research.

  14. Note on Closed-Form Expressions for Irreducible Loop Integrals

    CERN Document Server

    Chapling, Richard

    2016-01-01

    We provide a new analysis of the irreducible loop integrals first considered in a 2003 paper of Wu. Using convergence ideas from probability, we produce conditions on the regulator masses so that the integrals have well-defined limits in the limit required by the regularisation technique; we then derive closed-form expressions for the regularised forms of these integrals in terms of incomplete Gamma-functions.

  15. Continuous smearing of Wilson Loops

    CERN Document Server

    Lohmayer, Robert

    2011-01-01

    Continuum smearing was introduced in section 4.1 of JHEP03, 064 (2006) as a meaningful continuum analogue of the well known set of lattice techniques by the same name. Here we apply continuous smearing in continuous space-time to Wilson loops in order to clarify what it does in the context of field theory and also in the context of the loop calculus of the Makeenko-Migdal equation.

  16. The Projectile inside the Loop

    OpenAIRE

    Varieschi, Gabriele U.

    2005-01-01

    In this paper we describe an alternative use of the loop-the-loop apparatus, which can be used to study an interesting case of projectile motion. We also present an effective way to perform and analyze these experiments, by using video capture software together with a digital video camera. These experiments can be integrated into classroom demonstrations for general physics courses, or become part of laboratory activities.

  17. Introduction to Loop Quantum Gravity

    OpenAIRE

    Mercuri, Simone

    2010-01-01

    The questions I have been asked during the 5th International School on Field Theory and Gravitation, have compelled me to give an account of the premises that I consider important for a beginner's approach to Loop Quantum Gravity. After a description of some general arguments and an introduction to the canonical theory of gravity, I review the background independent approach to quantum gravity, giving only a brief survey of Loop Quantum Gravity.

  18. Bifurcations of nontwisted heteroclinic loop

    Institute of Scientific and Technical Information of China (English)

    田清平; 朱德明

    2000-01-01

    Bifurcations of nontwisted and fine heteroclinic loops are studied for higher dimensional systems. The existence and its associated existing regions are given for the 1-hom orbit and the 1-per orbit, respectively, and bifurcation surfaces of the two-fold periodic orbit are also obtained. At last, these bifurcation results are applied to the fine heteroclinic loop for the planar system, which leads to some new and interesting results.

  19. SureTrak Probability of Impact Display

    Science.gov (United States)

    Elliott, John

    2012-01-01

    The SureTrak Probability of Impact Display software was developed for use during rocket launch operations. The software displays probability of impact information for each ship near the hazardous area during the time immediately preceding the launch of an unguided vehicle. Wallops range safety officers need to be sure that the risk to humans is below a certain threshold during each use of the Wallops Flight Facility Launch Range. Under the variable conditions that can exist at launch time, the decision to launch must be made in a timely manner to ensure a successful mission while not exceeding those risk criteria. Range safety officers need a tool that can give them the needed probability of impact information quickly, and in a format that is clearly understandable. This application is meant to fill that need. The software is a reuse of part of software developed for an earlier project: Ship Surveillance Software System (S4). The S4 project was written in C++ using Microsoft Visual Studio 6. The data structures and dialog templates from it were copied into a new application that calls the implementation of the algorithms from S4 and displays the results as needed. In the S4 software, the list of ships in the area was received from one local radar interface and from operators who entered the ship information manually. The SureTrak Probability of Impact Display application receives ship data from two local radars as well as the SureTrak system, eliminating the need for manual data entry.

  20. Comments on quantum probability theory.

    Science.gov (United States)

    Sloman, Steven

    2014-01-01

    Quantum probability theory (QP) is the best formal representation available of the most common form of judgment involving attribute comparison (inside judgment). People are capable, however, of judgments that involve proportions over sets of instances (outside judgment). Here, the theory does not do so well. I discuss the theory both in terms of descriptive adequacy and normative appropriateness.

  1. Exact Probability Distribution versus Entropy

    Directory of Open Access Journals (Sweden)

    Kerstin Andersson

    2014-10-01

    Full Text Available The problem  addressed concerns the determination of the average number of successive attempts  of guessing  a word of a certain  length consisting of letters with given probabilities of occurrence. Both first- and second-order approximations  to a natural language are considered.  The guessing strategy used is guessing words in decreasing order of probability. When word and alphabet sizes are large, approximations  are necessary in order to estimate the number of guesses.  Several  kinds of approximations  are discussed demonstrating moderate requirements regarding both memory and central processing unit (CPU time. When considering realistic  sizes of alphabets and words (100, the number of guesses can be estimated  within minutes with reasonable accuracy (a few percent and may therefore constitute an alternative to, e.g., various entropy expressions.  For many probability  distributions,  the density of the logarithm of probability products is close to a normal distribution. For those cases, it is possible to derive an analytical expression for the average number of guesses. The proportion  of guesses needed on average compared to the total number  decreases almost exponentially with the word length. The leading term in an asymptotic  expansion can be used to estimate the number of guesses for large word lengths. Comparisons with analytical lower bounds and entropy expressions are also provided.

  2. Stretching Probability Explorations with Geoboards

    Science.gov (United States)

    Wheeler, Ann; Champion, Joe

    2016-01-01

    Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…

  3. Conditional Independence in Applied Probability.

    Science.gov (United States)

    Pfeiffer, Paul E.

    This material assumes the user has the background provided by a good undergraduate course in applied probability. It is felt that introductory courses in calculus, linear algebra, and perhaps some differential equations should provide the requisite experience and proficiency with mathematical concepts, notation, and argument. The document is…

  4. Fuzzy Markov chains: uncertain probabilities

    OpenAIRE

    2002-01-01

    We consider finite Markov chains where there are uncertainties in some of the transition probabilities. These uncertainties are modeled by fuzzy numbers. Using a restricted fuzzy matrix multiplication we investigate the properties of regular, and absorbing, fuzzy Markov chains and show that the basic properties of these classical Markov chains generalize to fuzzy Markov chains.

  5. Stretching Probability Explorations with Geoboards

    Science.gov (United States)

    Wheeler, Ann; Champion, Joe

    2016-01-01

    Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…

  6. DECOFF Probabilities of Failed Operations

    DEFF Research Database (Denmark)

    Gintautas, Tomas

    A statistical procedure of estimation of Probabilities of Failed Operations is described and exemplified using ECMWF weather forecasts and SIMO output from Rotor Lift test case models. Also safety factor influence is investigated. DECOFF statistical method is benchmarked against standard Alpha...

  7. A Novel Approach to Probability

    CERN Document Server

    Kafri, Oded

    2016-01-01

    When P indistinguishable balls are randomly distributed among L distinguishable boxes, and considering the dense system in which P much greater than L, our natural intuition tells us that the box with the average number of balls has the highest probability and that none of boxes are empty; however in reality, the probability of the empty box is always the highest. This fact is with contradistinction to sparse system in which the number of balls is smaller than the number of boxes (i.e. energy distribution in gas) in which the average value has the highest probability. Here we show that when we postulate the requirement that all possible configurations of balls in the boxes have equal probabilities, a realistic "long tail" distribution is obtained. This formalism when applied for sparse systems converges to distributions in which the average is preferred. We calculate some of the distributions resulted from this postulate and obtain most of the known distributions in nature, namely, Zipf law, Benford law, part...

  8. Probability representations of fuzzy systems

    Institute of Scientific and Technical Information of China (English)

    LI Hongxing

    2006-01-01

    In this paper, the probability significance of fuzzy systems is revealed. It is pointed out that COG method, a defuzzification technique used commonly in fuzzy systems, is reasonable and is the optimal method in the sense of mean square. Based on different fuzzy implication operators, several typical probability distributions such as Zadeh distribution, Mamdani distribution, Lukasiewicz distribution, etc. are given. Those distributions act as "inner kernels" of fuzzy systems. Furthermore, by some properties of probability distributions of fuzzy systems, it is also demonstrated that CRI method, proposed by Zadeh, for constructing fuzzy systems is basically reasonable and effective. Besides, the special action of uniform probability distributions in fuzzy systems is characterized. Finally, the relationship between CRI method and triple I method is discussed. In the sense of construction of fuzzy systems, when restricting three fuzzy implication operators in triple I method to the same operator, CRI method and triple I method may be related in the following three basic ways: 1) Two methods are equivalent; 2) the latter is a degeneration of the former; 3) the latter is trivial whereas the former is not. When three fuzzy implication operators in triple I method are not restricted to the same operator, CRI method is a special case of triple I method; that is, triple I method is a more comprehensive algorithm. Since triple I method has a good logical foundation and comprises an idea of optimization of reasoning, triple I method will possess a beautiful vista of application.

  9. On the commutativity degree in finite Moufang loops

    Directory of Open Access Journals (Sweden)

    Karim Ahmadidelir

    2016-09-01

    Full Text Available The textit{commutativity degree}, $Pr(G$, of a finite group $G$ (i.e. the probability that two (randomly chosen elements of $G$ commute with respect to its operation has been studied well by many authors. It is well-known that the best upper bound for $Pr(G$ is $frac{5}{8}$ for a finite non--abelian group $G$.In this paper, we will define the same concept for a finite non--abelian textit{Moufang loop} $M$ and try to give a best upper bound for $Pr(M$. We will prove that for a well-known class of finite Moufang loops, named textit{Chein loops}, and its modifications, this best upper bound is $frac{23}{32}$. So, our conjecture is that for any finite Moufang loop $M$, $Pr(Mleq frac{23}{32}$.Also, we will obtain some results related to the $Pr(M$ and ask the similar questions raised and answered in group theory about the relations between the structure of a finite group and its commutativity degree in finite Moufang loops.

  10. "Paper-clip" type triple helix formation by 5'-d-(TC)3Ta(CT)3Cb(AG)3 (a and b = 0-4) as a function of loop size with and without the pseudoisocytosine base in the Hoogsteen strand.

    Science.gov (United States)

    Chin, T M; Lin, S B; Lee, S Y; Chang, M L; Cheng, A Y; Chang, F C; Pasternack, L; Huang, D H; Kan, L S

    2000-10-10

    The formation of a DNA "paper-clip" type triple helix (triplex) with a common sequence 5'-d-(TC)(3)T(a)()(CT)(3)C(b)()(AG)(3) (a and b = 0-4) was studied by UV thermal melting experiments and CD spectra. These DNA oligomers form triplexes and duplexes under slightly acidic and neutral conditions, respectively. The stability of the formed triplexes (at pH 4.5) or duplexes (at pH 7.0 or 8.0) does not vary significantly with the size of the loops (a and b = 1-4). At pH 6.0, the triplex stability is, however, a function of a and b. It is also interesting to note that the oligomer 5'-d-(TC)(3)(CT)(3)(AG)(3) (a and b = 0) forms a stable triplex at pH 4.5 with a slightly lower T(m) value, due to dissociation of a base triad at one end and a distorted base triad at the other, observed by (1)H NMR. Thus, we have here a model system, 5'-d-(TC)(3)T(a)(CT)(3)C(b)(AG)(3), that could form a triplex effectively with (a and b = 1-4) and without (a and b = 0) loops under acidic conditions. In addition, the triplex formation of oligomers with replacement of one, two, or three 2'-deoxycytidine in the Hoogsteen strand by either 2'-deoxypseudoisocytidine (D) or 2'-O-methylpseudoisocytidine (M) was also studied in the sequence 5'-d-(TX)(3)T(2)(CT)(3)C(2)(AG)(3) (where X is C, D, or M). Both CD spectra and UV melting results showed that only D3 [(TX)(3) = (TD)(3)] and M3 [(TX)(3) = (TM)(3)] were able to form the paper-clip structure under both neutral and acidic conditions. This is because the N(3)H of a pseudoisocytosine base can serve as a proton donor without protonation. We hereby proved that the 2'-deoxypseudoisocytidine, similar to 2'-O-methylpseudoisocytidine, could replace 2'-deoxycytidine in the Hoogsteen strand to provide triplex formation at neutral pH.

  11. Evidence of Solar Flare Triggering due to Loop-Loop Interaction Caused by Footpoint Shear-Motion

    CERN Document Server

    Kumar, Pankaj; Somov, B V; Manoharan, P K; Erdelyi, R; Uddin, Wahab

    2010-01-01

    We analyze multi-wavelength data of a M7.9/1N class solar flare which occurred on 27 April, 2006 from AR NOAA 10875. GOES soft X-ray images provide the most likely signature of two interacting loops and their reconnection, which triggers the solar flare. TRACE 195 A images also reveal the loop-loop interaction and the formation of `X' points with converging motion (~30 km/s) at the reconnection site in-between this interacting loop system. This provides the evidence of progressive reconnection and flare maximization at the interaction site in the active region. The absence of type III radio burst during this time period indicates no opening of magnetic field lines during the flare energy release, which implies only the change of field lines connectivity/orientation during the loop-loop interaction and reconnection process. The Ondrejov dynamic radio spectrum shows an intense decimetric (DCIM) radio burst (2.5--4.5 GHz, duration ~3 min) during flare initiation, which reveals the signature of particle accelerat...

  12. The consistent histories approach to loop quantum cosmology

    Science.gov (United States)

    Craig, David A.

    2016-06-01

    We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on “measurements” to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories — as determined by the system’s decoherence functional — that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with scalar matter. We show how the theory may be used to make definite physical predictions in the absence of “observers”. As an application, we demonstrate how the theory predicts that loop quantum models “bounce” from large volume to large volume, while conventional “Wheeler-DeWitt”-quantized universes are invariably singular. We also briefly indicate the relation to other work.

  13. A probable crouching theropod dinosaur trace from the Tuchengzi Formation in Chichengarea, Hebei Province, China%河北赤城地区土城子组中一例极可能的兽脚类恐龙蹲伏迹

    Institute of Scientific and Technical Information of China (English)

    邢立达; 杰勒德D.杰尔林斯基; 杰瑞德D.哈里斯; 朱利安D.迪维

    2012-01-01

    描述了河北省赤城县寺梁山土城子(后城)组一例极可能的兽脚类恐龙蹲伏迹及相关的足迹,该蹲伏迹也是该组地层目前发现的最大的兽脚类足迹.虽然缺乏前足迹和尾迹,但因保存了左跖骨印、关联的坐骨及可能的耻骨胼胝印被定为蹲伏迹.该蹲伏迹是世界上第三例非对称的兽脚类恐龙蹲伏迹.%A probable theropod dinosaur crouching trace and associated tracks from the Tuchengzi (Houcheng) Formation of Siliang Mountain,Chicheng County,Hebei Province,China are the largest theropod tracks currently known from the formation.Although the crouching trace lacks manus and tail marks,the traces are interpreted as made by a crouching theropod because they include a left metatarsal impression and associated ischial,and possibly pubic,callosity traces.This represents the third known example of an asymmetric crouching position adopted by a theropod.

  14. Understanding Y haplotype matching probability.

    Science.gov (United States)

    Brenner, Charles H

    2014-01-01

    The Y haplotype population-genetic terrain is better explored from a fresh perspective rather than by analogy with the more familiar autosomal ideas. For haplotype matching probabilities, versus for autosomal matching probabilities, explicit attention to modelling - such as how evolution got us where we are - is much more important while consideration of population frequency is much less so. This paper explores, extends, and explains some of the concepts of "Fundamental problem of forensic mathematics - the evidential strength of a rare haplotype match". That earlier paper presented and validated a "kappa method" formula for the evidential strength when a suspect matches a previously unseen haplotype (such as a Y-haplotype) at the crime scene. Mathematical implications of the kappa method are intuitive and reasonable. Suspicions to the contrary raised in rest on elementary errors. Critical to deriving the kappa method or any sensible evidential calculation is understanding that thinking about haplotype population frequency is a red herring; the pivotal question is one of matching probability. But confusion between the two is unfortunately institutionalized in much of the forensic world. Examples make clear why (matching) probability is not (population) frequency and why uncertainty intervals on matching probabilities are merely confused thinking. Forensic matching calculations should be based on a model, on stipulated premises. The model inevitably only approximates reality, and any error in the results comes only from error in the model, the inexactness of the approximation. Sampling variation does not measure that inexactness and hence is not helpful in explaining evidence and is in fact an impediment. Alternative haplotype matching probability approaches that various authors have considered are reviewed. Some are based on no model and cannot be taken seriously. For the others, some evaluation of the models is discussed. Recent evidence supports the adequacy of

  15. Vortex loops entry into type-II superconductors

    CERN Document Server

    Samokhvalov, A V

    1996-01-01

    The magnetic field distribution, the magnetic flux, and the free energy of an Abrikosov vortex loop near a flat surface of type--II superconductors are calculated in the London approximation. The shape of such a vortex line is a semicircle of arbitrary radius. The interaction of the vortex half--ring and an external homogeneous magnetic field applied along the surface is studied. The magnitude of the energy barrier against the vortex expansion into superconductor is found. The possibilities of formation of an equilibrium vortex line determined by the structure of the applied magnetic field by creating the expanding vortex loops near the surface of type--II superconductor are discussed.

  16. Detection and characterization of R-loops at the murine immunoglobulin Sα region.

    Science.gov (United States)

    Kao, Yu-Pu; Hsieh, Wen-Chuan; Hung, Shu-Ting; Huang, Chiun-Wei; Lieber, Michael R; Huang, Feng-Ting

    2013-06-01

    IgA is the most abundant antibody in mammals. However, the mechanism of its class switching is still not clear. The formation of the R-loops, as the target for AID, has been proposed to play a crucial role during mammalian class switch recombination. Here, we provide a systematic evaluation of R-loops at Sα (IgA) in CH12F3-2A cells, which is a unique cell model system for class switch recombination because of its consistent switching to IgA upon stimulation. The results of R-loop analysis demonstrate distinct features specific to Sα. Some R-loops may initiate from the end of Iα, but all terminate exclusively within Sα. Time-course analysis also indicates that the percentage of R-loops peaks prior to the occurrence of class switch recombination. This is the first demonstration that R-loops form at Sαin vitro and in situ, despite variable G density and relatively few GGGG clusters in Sα. The short distance from the promoter to Sα may compensate for the less robust R-loop-forming factors at Sα relative to other switch regions. In conclusion, R-loops at the Sα region further support R-loop formation as a general feature of all stimulated switch regions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Bol loops of odd prime exponent

    CERN Document Server

    Foguel, Tuval

    2009-01-01

    Although any finite Bol loop of odd prime exponent is solvable, we show there exist such Bol loops with trivial center. We also construct finitely generated, infinite, simple Bruck loops of odd prime exponent for sufficiently large primes. This shows that the Burnside problem for Bruck loops has a negative answer.

  18. Classifying Finitely Generated Indecomposable RA Loops

    CERN Document Server

    Cornelissen, Mariana

    2012-01-01

    In 1995, E. Jespers, G. Leal and C. Polcino Milies classified all finite ring alternative loops (RA loops for short) which are not direct products of proper subloops. In this paper we extend this result to finitely generated RA loops and provide an explicit description of all such loops.

  19. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  20. Probability biases as Bayesian inference

    Directory of Open Access Journals (Sweden)

    Andre; C. R. Martins

    2006-11-01

    Full Text Available In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them. Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be used as part of the explanation behind other known biases. That means that, although the observed errors are still errors under the be understood as adaptations to the solution of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary advantage, since they would give us an efficient way of making decisions. %XX In that sense, it should be no surprise that humans reason with % probability as it has been observed.

  1. Cluster pre-existence probability

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswari, N.S.; Vijayaraghavan, K.R.; Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)

    2011-10-15

    Pre-existence probability of the fragments for the complete binary spectrum of different systems such as {sup 56}Ni, {sup 116}Ba, {sup 226}Ra and {sup 256}Fm are calculated, from the overlapping part of the interaction potential using the WKB approximation. The role of reduced mass as well as the classical hydrodynamical mass in the WKB method is analysed. Within WKB, even for negative Q -value systems, the pre-existence probability is calculated. The calculations reveal rich structural information. The calculated results are compared with the values of preformed cluster model of Gupta and collaborators. The mass asymmetry motion is shown here for the first time as a part of relative separation motion. (orig.)

  2. Large deviations and idempotent probability

    CERN Document Server

    Puhalskii, Anatolii

    2001-01-01

    In the view of many probabilists, author Anatolii Puhalskii''s research results stand among the most significant achievements in the modern theory of large deviations. In fact, his work marked a turning point in the depth of our understanding of the connections between the large deviation principle (LDP) and well-known methods for establishing weak convergence results.Large Deviations and Idempotent Probability expounds upon the recent methodology of building large deviation theory along the lines of weak convergence theory. The author develops an idempotent (or maxitive) probability theory, introduces idempotent analogues of martingales (maxingales), Wiener and Poisson processes, and Ito differential equations, and studies their properties. The large deviation principle for stochastic processes is formulated as a certain type of convergence of stochastic processes to idempotent processes. The author calls this large deviation convergence.The approach to establishing large deviation convergence uses novel com...

  3. Sm Transition Probabilities and Abundances

    CERN Document Server

    Lawler, J E; Sneden, C; Cowan, J J

    2005-01-01

    Radiative lifetimes, accurate to +/- 5%, have been measured for 212 odd-parity levels of Sm II using laser-induced fluorescence. The lifetimes are combined with branching fractions measured using Fourier-transform spectrometry to determine transition probabilities for more than 900 lines of Sm II. This work is the largest-scale laboratory study to date of Sm II transition probabilities using modern methods. This improved data set has been used to determine a new solar photospheric Sm abundance, log epsilon = 1.00 +/- 0.03, from 26 lines. The spectra of three very metal-poor, neutron-capture-rich stars also have been analyzed, employing between 55 and 72 Sm II lines per star. The abundance ratios of Sm relative to other rare earth elements in these stars are in agreement, and are consistent with ratios expected from rapid neutron-capture nucleosynthesis (the r-process).

  4. Knot probabilities in random diagrams

    Science.gov (United States)

    Cantarella, Jason; Chapman, Harrison; Mastin, Matt

    2016-10-01

    We consider a natural model of random knotting—choose a knot diagram at random from the finite set of diagrams with n crossings. We tabulate diagrams with 10 and fewer crossings and classify the diagrams by knot type, allowing us to compute exact probabilities for knots in this model. As expected, most diagrams with 10 and fewer crossings are unknots (about 78% of the roughly 1.6 billion 10 crossing diagrams). For these crossing numbers, the unknot fraction is mostly explained by the prevalence of ‘tree-like’ diagrams which are unknots for any assignment of over/under information at crossings. The data shows a roughly linear relationship between the log of knot type probability and the log of the frequency rank of the knot type, analogous to Zipf’s law for word frequency. The complete tabulation and all knot frequencies are included as supplementary data.

  5. Probability distributions for multimeric systems.

    Science.gov (United States)

    Albert, Jaroslav; Rooman, Marianne

    2016-01-01

    We propose a fast and accurate method of obtaining the equilibrium mono-modal joint probability distributions for multimeric systems. The method necessitates only two assumptions: the copy number of all species of molecule may be treated as continuous; and, the probability density functions (pdf) are well-approximated by multivariate skew normal distributions (MSND). Starting from the master equation, we convert the problem into a set of equations for the statistical moments which are then expressed in terms of the parameters intrinsic to the MSND. Using an optimization package on Mathematica, we minimize a Euclidian distance function comprising of a sum of the squared difference between the left and the right hand sides of these equations. Comparison of results obtained via our method with those rendered by the Gillespie algorithm demonstrates our method to be highly accurate as well as efficient.

  6. Probability distribution functions in the finite density lattice QCD

    CERN Document Server

    Ejiri, S; Aoki, S; Kanaya, K; Saito, H; Hatsuda, T; Ohno, H; Umeda, T

    2012-01-01

    We study the phase structure of QCD at high temperature and density by lattice QCD simulations adopting a histogram method. We try to solve the problems which arise in the numerical study of the finite density QCD, focusing on the probability distribution function (histogram). As a first step, we investigate the quark mass dependence and the chemical potential dependence of the probability distribution function as a function of the Polyakov loop when all quark masses are sufficiently large, and study the properties of the distribution function. The effect from the complex phase of the quark determinant is estimated explicitly. The shape of the distribution function changes with the quark mass and the chemical potential. Through the shape of the distribution, the critical surface which separates the first order transition and crossover regions in the heavy quark region is determined for the 2+1-flavor case.

  7. Observational Signatures of Coronal Loop Heating and Cooling Driven by Footpoint Shuffling

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Ugarte-Urra, I; Warren, H P; Rappazzo, A F; Velli, M

    2016-01-01

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50000 km length and axial magnetic field intensities ranging from 0.01...

  8. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    Science.gov (United States)

    Stirling, Peter C; Hieter, Philip

    2016-07-22

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers.

  9. Asbestos and Probable Microscopic Polyangiitis

    Directory of Open Access Journals (Sweden)

    George S Rashed Philteos

    2004-01-01

    Full Text Available Several inorganic dust lung diseases (pneumoconioses are associated with autoimmune diseases. Although autoimmune serological abnormalities are common in asbestosis, clinical autoimmune/collagen vascular diseases are not commonly reported. A case of pulmonary asbestosis complicated by perinuclear-antineutrophil cytoplasmic antibody (myeloperoxidase positive probable microscopic polyangiitis (glomerulonephritis, pericarditis, alveolitis, multineuritis multiplex is described and the possible immunological mechanisms whereby asbestosis fibres might be relevant in induction of antineutrophil cytoplasmic antibodies are reviewed in the present report.

  10. Logic, Probability, and Human Reasoning

    Science.gov (United States)

    2015-01-01

    3–6] and they underlie mathematics , science, and tech- nology [7–10]. Plato claimed that emotions upset reason - ing. However, individuals in the grip...Press 10 Nickerson, R. (2011) Mathematical Reasoning : Patterns, Problems, Conjectures, and Proofs, Taylor & Francis 11 Blanchette, E. and Richards, A...Logic, probability, and human reasoning P.N. Johnson-Laird1,2, Sangeet S. Khemlani3, and Geoffrey P. Goodwin4 1 Princeton University, Princeton, NJ

  11. Probability and statistics: A reminder

    Directory of Open Access Journals (Sweden)

    Clément Benoit

    2013-07-01

    Full Text Available The main purpose of these lectures is to provide the reader with the tools needed to data analysis in the framework of physics experiments. Basic concepts are introduced together with examples of application in experimental physics. The lecture is divided into two parts: probability and statistics. It is build on the introduction from “data analysis in experimental sciences” given in [1

  12. Probability Measures on Groups IX

    CERN Document Server

    1989-01-01

    The latest in this series of Oberwolfach conferences focussed on the interplay between structural probability theory and various other areas of pure and applied mathematics such as Tauberian theory, infinite-dimensional rotation groups, central limit theorems, harmonizable processes, and spherical data. Thus it was attended by mathematicians whose research interests range from number theory to quantum physics in conjunction with structural properties of probabilistic phenomena. This volume contains 5 survey articles submitted on special invitation and 25 original research papers.

  13. Study of the Open Loop and Closed Loop Oscillator Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Imel, George R. [Idaho State Univ., Pocatello, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, Tony [Knolls Atomic Power Lab. (KAPL), Schenectady, NY (United States); Langbehn, Adam [Puget Sound Naval Base, Bremerton, WA (United States); Aryal, Harishchandra [Idaho State Univ., Pocatello, ID (United States); Benzerga, M. Lamine [Idaho State Univ., Pocatello, ID (United States)

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  14. BPS Wilson Loops on S^2 at Higher Loops

    CERN Document Server

    Young, Donovan

    2008-01-01

    We consider supersymmetric Wilson loops of the variety constructed by Drukker, Giombi, Ricci, and Trancanelli, whose spatial contours lie on a two-sphere. Working to second order in the 't Hooft coupling in planar N=4 Supersymmetric Yang-Mills Theory (SYM), we compute the vacuum expectation value of a wavy-latitude and of a loop composed of two longitudes. We evaluate the resulting integrals numerically and find that the results are consistent with the zero-instanton sector calculation of Wilson loops in 2-d Yang-Mills on S^2 performed by Bassetto and Griguolo. We also consider the connected correlator of two distinct latitudes to third order in the 't Hooft coupling in planar N=4 SYM. We compare the result in the limit where the latitudes become coincident to a perturbative calculation in 2-d Yang-Mills on S^2 using a light-cone Wu-Mandelstam-Leibbrandt prescription. The two calculations produce differing results.

  15. Objective probability and quantum fuzziness

    CERN Document Server

    Mohrhoff, U

    2007-01-01

    This paper offers a critique of the Bayesian approach to quantum mechanics in general and of a recent paper by Caves, Fuchs, and Schack in particular (quant-ph/0608190 v2). In this paper the Bayesian interpretation of Born probabilities is defended against what the authors call the "objective-preparations view". The fact that Caves et al. and the proponents of this view equally misconstrue the time dependence of quantum states, voids the arguments pressed by the former against the latter. After tracing the genealogy of this common error, I argue that the real oxymoron is not an unknown quantum state, as the Bayesians hold, but an unprepared quantum state. I further argue that the essential role of probability in quantum theory is to define and quantify an objective fuzziness. This, more than anything, legitimizes conjoining "objective" to "probability". The measurement problem is essentially the problem of finding a coherent way of thinking about this objective fuzziness, and about the supervenience of the ma...

  16. Empirical and Computational Tsunami Probability

    Science.gov (United States)

    Geist, E. L.; Parsons, T.; ten Brink, U. S.; Lee, H. J.

    2008-12-01

    A key component in assessing the hazard posed by tsunamis is quantification of tsunami likelihood or probability. To determine tsunami probability, one needs to know the distribution of tsunami sizes and the distribution of inter-event times. Both empirical and computational methods can be used to determine these distributions. Empirical methods rely on an extensive tsunami catalog and hence, the historical data must be carefully analyzed to determine whether the catalog is complete for a given runup or wave height range. Where site-specific historical records are sparse, spatial binning techniques can be used to perform a regional, empirical analysis. Global and site-specific tsunami catalogs suggest that tsunami sizes are distributed according to a truncated or tapered power law and inter-event times are distributed according to an exponential distribution modified to account for clustering of events in time. Computational methods closely follow Probabilistic Seismic Hazard Analysis (PSHA), where size and inter-event distributions are determined for tsunami sources, rather than tsunamis themselves as with empirical analysis. In comparison to PSHA, a critical difference in the computational approach to tsunami probabilities is the need to account for far-field sources. The three basic steps in computational analysis are (1) determination of parameter space for all potential sources (earthquakes, landslides, etc.), including size and inter-event distributions; (2) calculation of wave heights or runup at coastal locations, typically performed using numerical propagation models; and (3) aggregation of probabilities from all sources and incorporation of uncertainty. It is convenient to classify two different types of uncertainty: epistemic (or knowledge-based) and aleatory (or natural variability). Correspondingly, different methods have been traditionally used to incorporate uncertainty during aggregation, including logic trees and direct integration. Critical

  17. Generalized loop space and TMDs

    Directory of Open Access Journals (Sweden)

    Mertens Tom

    2014-06-01

    Full Text Available The Standard Model describes the three (of four basic interactions known in Nature in terms of the quantum fields which are constituted by representations of special unitary gauge groups of symmetry. However, the physical observables do not always coincide with the fundamental degrees of freedom of the Standard Model. Therefore it can be useful to switch to the loop space representation of the gauge theory, where the variables are inherently gauge invariant but the degrees of freedom are absorbed in the path/loop dependence. Over-completeness of this space requires the introduction of an equivalence relation which is provided by Wilson loop functionals operating on piecewise regular paths. It is well known that certain Wilson loops show the same singularity structure as some Transverse Momentum Dependent PDFs (TMDs, which are not renormalizable by the common methods due to exactly this singularity structure. By introducing geometrical operators, like the area-derivative, we were able to derive an evolution equation for these Wilson loops and we hope to apply this method in the future to find some renormalization schemes for TMDs.

  18. Loop coupled resonator optical waveguides.

    Science.gov (United States)

    Song, Junfeng; Luo, Lian-Wee; Luo, Xianshu; Zhou, Haifeng; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Lo, Guo-Qiang

    2014-10-06

    We propose a novel coupled resonator optical waveguide (CROW) structure that is made up of a waveguide loop. We theoretically investigate the forbidden band and conduction band conditions in an infinite periodic lattice. We also discuss the reflection- and transmission- spectra, group delay in finite periodic structures. Light has a larger group delay at the band edge in a periodic structure. The flat band pass filter and flat-top group delay can be realized in a non-periodic structure. Scattering matrix method is used to calculate the effects of waveguide loss on the optical characteristics of these structures. We also introduce a tunable coupling loop waveguide to compensate for the fabrication variations since the coupling coefficient of the directional coupler in the loop waveguide is a critical factor in determining the characteristics of a loop CROW. The loop CROW structure is suitable for a wide range of applications such as band pass filters, high Q microcavity, and optical buffers and so on.

  19. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2015-01-01

    A novel verticall A novel vertically polarized dpolarize , omnidirection omnidirectional l , printed slot loop antenna h sprinted slot loop antenna has been designed, simulated, fabricated, and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform...

  20. Stem-loop structures in prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Boccia Angelo

    2006-07-01

    Full Text Available Abstract Background Prediction of secondary structures in the expressed sequences of bacterial genomes allows to investigate spontaneous folding of the corresponding RNA. This is particularly relevant in untranslated mRNA regions, where base pairing is less affected by interactions with the translation machinery. Relatively large stem-loops significantly contribute to the formation of more complex secondary structures, often important for the activity of sequence elements controlling gene expression. Results Systematic analysis of the distribution of stem-loop structures (SLSs in 40 wholly-sequenced bacterial genomes is presented. SLSs were searched as stems measuring at least 12 bp, bordering loops 5 to 100 nt in length. G-U pairing in the stems was allowed. SLSs found in natural genomes are constantly more numerous and stable than those expected to randomly form in sequences of comparable size and composition. The large majority of SLSs fall within protein-coding regions but enrichment of specific, non random, SLS sub-populations of higher stability was observed within the intergenic regions of the chromosomes of several species. In low-GC firmicutes, most higher stability intergenic SLSs resemble canonical rho-independent transcriptional terminators, but very frequently feature at the 5'-end an additional A-rich stretch complementary to the 3' uridines. In all species, a clearly biased SLS distribution was observed within the intergenic space, with most concentrating at the 3'-end side of flanking CDSs. Some intergenic SLS regions are members of novel repeated sequence families. Conclusion In depth analysis of SLS features and distribution in 40 different bacterial genomes showed the presence of non random populations of such structures in all species. Many of these structures are plausibly transcribed, and might be involved in the control of transcription termination, or might serve as RNA elements which can enhance either the stability or

  1. Stem-loop structures in prokaryotic genomes

    Science.gov (United States)

    Petrillo, Mauro; Silvestro, Giustina; Di Nocera, Pier Paolo; Boccia, Angelo; Paolella, Giovanni

    2006-01-01

    Background Prediction of secondary structures in the expressed sequences of bacterial genomes allows to investigate spontaneous folding of the corresponding RNA. This is particularly relevant in untranslated mRNA regions, where base pairing is less affected by interactions with the translation machinery. Relatively large stem-loops significantly contribute to the formation of more complex secondary structures, often important for the activity of sequence elements controlling gene expression. Results Systematic analysis of the distribution of stem-loop structures (SLSs) in 40 wholly-sequenced bacterial genomes is presented. SLSs were searched as stems measuring at least 12 bp, bordering loops 5 to 100 nt in length. G-U pairing in the stems was allowed. SLSs found in natural genomes are constantly more numerous and stable than those expected to randomly form in sequences of comparable size and composition. The large majority of SLSs fall within protein-coding regions but enrichment of specific, non random, SLS sub-populations of higher stability was observed within the intergenic regions of the chromosomes of several species. In low-GC firmicutes, most higher stability intergenic SLSs resemble canonical rho-independent transcriptional terminators, but very frequently feature at the 5'-end an additional A-rich stretch complementary to the 3' uridines. In all species, a clearly biased SLS distribution was observed within the intergenic space, with most concentrating at the 3'-end side of flanking CDSs. Some intergenic SLS regions are members of novel repeated sequence families. Conclusion In depth analysis of SLS features and distribution in 40 different bacterial genomes showed the presence of non random populations of such structures in all species. Many of these structures are plausibly transcribed, and might be involved in the control of transcription termination, or might serve as RNA elements which can enhance either the stability or the turnover of cotranscribed

  2. Low-lying magnetic loops in the solar internetwork

    CERN Document Server

    Gonzalez, M J Martinez; Collados, M; Solanki, S K

    2007-01-01

    The aim of this work is to study the structure of the magnetic field vector in the internetwork and search for the presence of small-scale loops. We invert 1.56 micron spectropolarimetric observations of internetwork regions at disc centre by applying the SIR code. This allows us to recover the atmospheric parameters that play a role in the formation of these spectral lines. We are mainly interested in the structure of the magnetic field vector. We find that many opposite polarity elements of the internetwork are connected by short (2-6''), low-lying (photospheric) loops. These loops connect at least the 10-20 % of the internetwork flux visible in our data. Also we have some evidence that points towards a dynamic scenario which can be produced by the emergence of internetwork magnetic flux.

  3. Are violent events responsible of a Galaxy Morphological loop?

    CERN Document Server

    Scannapieco, C; Tissera, P B

    2005-01-01

    We use cosmological SPH simulations to investigate the effects of mergers and interactions on the formation of the bulge and disc components of galactic systems. We find that secular evolution during mergers seems to be a key process in the formation of stable disc-bulge systems with observational counterparts and contributes to establish the fundamental relations observed in galaxies. Our findings suggest that the secular evolution phase couples the formation mechanisms of the bulge and disc components. According to our results, depending on the particular stability properties and merger parameters, violents events could drive a morphological loop in which the outcome could be a disc or a spheroid.

  4. Performance Evaluation of the Loop Buffer Switch under Prioritized Traffic

    Directory of Open Access Journals (Sweden)

    Devesh Pratap Singh

    2013-04-01

    Full Text Available In this paper, optical loop buffer based architecture is discussed; with its advantages over other architectures. In general the performance of the switch is measured at physical and network layer. The physical layer analysis deals with power budget analysis, however, at the network layer; the performance is measured in terms of packet loss probability and average delay. To obtain more realistic performance at the network layer the QoS parameters need to be included. In this paper, a QoS parameter which is known as priority of the incoming packets is included and corresponding results are presented, and it has been found that even at the load of 0.7, packet loss probabilities on the order of 10-5 can be achieved.In this paper, optical loop buffer based architecture is discussed; with its advantages over other architectures. In general the performance of the switch is measured at physical and network layer. The physical layer analysis deals with power budget analysis, however, at the network layer; the performance is measured in terms of packet loss probability and average delay. To obtain more realistic performance at the network layer the QoS parameters need to be included. In this paper, a QoS parameter which is known as priority of the incoming packets is included and corresponding results are presented, and it has been found that even at the load of 0.7, packet loss probabilities on the order of 10-5 can be achieved.

  5. Estimating Probabilities in Recommendation Systems

    CERN Document Server

    Sun, Mingxuan; Kidwell, Paul

    2010-01-01

    Recommendation systems are emerging as an important business application with significant economic impact. Currently popular systems include Amazon's book recommendations, Netflix's movie recommendations, and Pandora's music recommendations. In this paper we address the problem of estimating probabilities associated with recommendation system data using non-parametric kernel smoothing. In our estimation we interpret missing items as randomly censored observations and obtain efficient computation schemes using combinatorial properties of generating functions. We demonstrate our approach with several case studies involving real world movie recommendation data. The results are comparable with state-of-the-art techniques while also providing probabilistic preference estimates outside the scope of traditional recommender systems.

  6. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2012-01-01

    This book provides a unique and balanced approach to probability, statistics, and stochastic processes.   Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area.  The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and

  7. PROBABILITY MODEL OF GUNTHER GENERATOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper constructs the probability model of Gunther generator at first, and the finite dimension union distribution of the output sequence is presented. The result shows that the output sequence is an independent and uniformly distributed 0,1 random variable sequence.It gives the theoretical foundation about why Gunther generator can avoid the statistic weakness of the output sequence of stop-and-go generator, and analyzes the coincidence between output sequence and input sequences of Gunther generator. The conclusions of this paper would offer theoretical references for designers and analyzers of clock-controlled generators.

  8. Probability, statistics, and computational science.

    Science.gov (United States)

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  9. Probability of Detection Demonstration Transferability

    Science.gov (United States)

    Parker, Bradford H.

    2008-01-01

    The ongoing Mars Science Laboratory (MSL) Propellant Tank Penetrant Nondestructive Evaluation (NDE) Probability of Detection (POD) Assessment (NESC activity) has surfaced several issues associated with liquid penetrant POD demonstration testing. This presentation lists factors that may influence the transferability of POD demonstration tests. Initial testing will address the liquid penetrant inspection technique. Some of the factors to be considered in this task are crack aspect ratio, the extent of the crack opening, the material and the distance between the inspection surface and the inspector's eye.

  10. All digital pulsewidth control loop

    Science.gov (United States)

    Huang, Hong-Yi; Jan, Shiun-Dian; Pu, Ruei-Iun

    2013-03-01

    This work presents an all-digital pulsewidth control loop (ADPWCL). The proposed system accepts a wide range of input duty cycles and performs a fast correction to the target output pulsewidth. An all-digital delay-locked loop (DLL) with fast locking time using a simplified time to digital converter and a new differential two-step delay element is proposed. The area of the delay element is much smaller than that in conventional designs, while having the same delay range. A test chip is verified in a 0.18-µm CMOS process. The measured duty cycle ranges from 4% to 98% with 7-bit resolution.

  11. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    Martin Bojowald

    2004-10-01

    Aspects of the full theory of loop quantum gravity can be studied in a simpler context by reducing to symmetric models like cosmological ones. This leads to several applications where loop effects play a significant role when one is sensitive to the quantum regime. As a consequence, the structure of and the approach to classical singularities are very different from general relativity. The quantum theory is free of singularities, and there are new phenomenological scenarios for the evolution of the very early universe such as inflation. We give an overview of the main effects, focussing on recent results obtained by different groups.

  12. Loop quantum geometry: a primer

    Energy Technology Data Exchange (ETDEWEB)

    Corichi, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A. Postal 70-543, Mexico D.F. 04510 (Mexico)

    2005-01-15

    This is the written version of a lecture given at the 'VI Mexican School of Gravitation and Mathematical Physics' (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-experts interested in learning the basics of the subject.

  13. LISA Pathfinder: OPD loop characterisation

    Science.gov (United States)

    Born, Michael; LPF Collaboration

    2017-05-01

    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.

  14. Loop Quantum Geometry: A primer

    OpenAIRE

    Corichi, Alejandro

    2005-01-01

    This is the written version of a lecture given at the ``VI Mexican School of Gravitation and Mathematical Physics" (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-expert...

  15. Loop structures in the 5' untranslated region and antisense RNA mediate pilE gene expression in Neisseria gonorrhoeae.

    Science.gov (United States)

    Masters, Thao L; Wachter, Jenny; Hill, Stuart A

    2016-11-01

    Regulation of the Neisseria gonorrhoeae pilE gene is ill-defined. In this study, post-transcriptional effects on expression were assessed. In silico analysis predicts the formation of three putative stable stem-loop structures with favourable free energies within the 5' untranslated region of the pilE message. Using quantitative reverse transcriptase PCR analyses, we show that each loop structure forms, with introduced destabilizing stem-loop mutations diminishing loop stability. Utilizing a series of pilE translational fusions, deletion of either loop 1 or loop 2 caused a significant reduction of pilE mRNA resulting in reduced expression of the reporter gene. Consequently, the formation of the loops apparently protects the pilE transcript from degradation. Putative loop 3 contains the pilE ribosomal binding site. Consequently, its formation may influence translation. Analysis of a small RNA transcriptome revealed an antisense RNA being produced upstream of the pilE promoter that is predicted to hybridize across the 5' untranslated region loops. Insertional mutants were created where the antisense RNA is not transcribed. In these mutants, pilE transcript levels are greatly diminished, with any residual message apparently not being translated. Complementation of these insertion mutants in trans with the antisense RNA gene facilitates pilE translation yielding a pilus + phenotype. Overall, this study demonstrates a complex relationship between loop-dependent transcript protection and antisense RNA in modulating pilE expression levels.

  16. Hf Transition Probabilities and Abundances

    CERN Document Server

    Lawler, J E; Labby, Z E; Sneden, C; Cowan, J J; Ivans, I I

    2006-01-01

    Radiative lifetimes from laser-induced fluorescence measurements, accurate to about +/- 5 percent, are reported for 41 odd-parity levels of Hf II. The lifetimes are combined with branching fractions measured using Fourier transform spectrometry to determine transition probabilities for 150 lines of Hf II. Approximately half of these new transition probabilities overlap with recent independent measurements using a similar approach. The two sets of measurements are found to be in good agreement for measurements in common. Our new laboratory data are applied to refine the hafnium photospheric solar abundance and to determine hafnium abundances in 10 metal-poor giant stars with enhanced r-process abundances. For the Sun we derive log epsilon (Hf) = 0.88 +/- 0.08 from four lines; the uncertainty is dominated by the weakness of the lines and their blending by other spectral features. Within the uncertainties of our analysis, the r-process-rich stars possess constant Hf/La and Hf/Eu abundance ratios, log epsilon (Hf...

  17. Gd Transition Probabilities and Abundances

    CERN Document Server

    Den Hartog, E A; Sneden, C; Cowan, J J

    2006-01-01

    Radiative lifetimes, accurate to +/- 5%, have been measured for 49 even-parity and 14 odd-parity levels of Gd II using laser-induced fluorescence. The lifetimes are combined with branching fractions measured using Fourier transform spectrometry to determine transition probabilities for 611 lines of Gd II. This work is the largest-scale laboratory study to date of Gd II transition probabilities and the first using a high performance Fourier transform spectrometer. This improved data set has been used to determine a new solar photospheric Gd abundance, log epsilon = 1.11 +/- 0.03. Revised Gd abundances have also been derived for the r-process-rich metal-poor giant stars CS 22892-052, BD+17 3248, and HD 115444. The resulting Gd/Eu abundance ratios are in very good agreement with the solar-system r-process ratio. We have employed the increasingly accurate stellar abundance determinations, resulting in large part from the more precise laboratory atomic data, to predict directly the Solar System r-process elemental...

  18. A protrusion can "eclipse" looping of a long self-avoiding chain

    CERN Document Server

    Pollak, Yaroslav; Amit, Roee

    2016-01-01

    We simulate long self-avoiding chains using a weighted-biased sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain's termini reduces the probability of looping, even for chains much longer than the protrusion-chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. We model the simulated results theoretically by considering how the protrusion "eclipses" the chain terminus closer to the protrusion from the more distant chain terminus. This eclipse mechanism has implications for understanding the regulatory role of proteins bound to DNA.

  19. Linearized Controller Design for the Output Probability Density Functions of Non-Gaussian Stochastic Systems

    Institute of Scientific and Technical Information of China (English)

    Pousga Kabore; Husam Baki; Hong Yue; Hong Wang

    2005-01-01

    This paper presents a linearized approach for the controller design of the shape of output probability density functions for general stochastic systems. A square root approximation to an output probability density function is realized by a set of B-spline functions. This generally produces a nonlinear state space model for the weights of the B-spline approximation. A linearized model is therefore obtained and embedded into a performance function that measures the tracking error of the output probability density function with respect to a given distribution. By using this performance function as a Lyapunov function for the closed loop system, a feedback control input has been obtained which guarantees closed loop stability and realizes perfect tracking. The algorithm described in this paper has been tested on a simulated example and desired results have been achieved.

  20. Dirac Induction for loop groups

    NARCIS (Netherlands)

    Posthuma, H.

    2011-01-01

    Using a coset version of the cubic Dirac operators for affine Lie algebras, we give an algebraic construction of the Dirac induction homomorphism for loop group representations. With this, we prove a homogeneous generalization of the Weyl-Kac character formula and show compatibility with Dirac induc

  1. Five-loop massive tadpoles

    CERN Document Server

    Luthe, T

    2016-01-01

    We provide an update on a long-term project that aims at evaluating massive vacuum integrals at the five-loop frontier, with high precision and in various space-time dimensions. A number of applications are sketched, mainly concerning the determination of anomalous dimensions, for quantum field theories in four, three and two dimensions.

  2. Loop quantum gravity and observations

    CERN Document Server

    Barrau, A

    2014-01-01

    Quantum gravity has long been thought to be completely decoupled from experiments or observations. Although it is true that smoking guns are still missing, there are now serious hopes that quantum gravity phenomena might be tested. We review here some possible ways to observe loop quantum gravity effects either in the framework of cosmology or in astroparticle physics.

  3. Kissing loop interaction in adenine riboswitch: insights from umbrella sampling simulations.

    Science.gov (United States)

    Di Palma, Francesco; Bottaro, Sandro; Bussi, Giovanni

    2015-01-01

    Riboswitches are cis-acting regulatory RNA elements prevalently located in the leader sequences of bacterial mRNA. An adenine sensing riboswitch cis-regulates adeninosine deaminase gene (add) in Vibrio vulnificus. The structural mechanism regulating its conformational changes upon ligand binding mostly remains to be elucidated. In this open framework it has been suggested that the ligand stabilizes the interaction of the distal "kissing loop" complex. Using accurate full-atom molecular dynamics with explicit solvent in combination with enhanced sampling techniques and advanced analysis methods it could be possible to provide a more detailed perspective on the formation of these tertiary contacts. In this work, we used umbrella sampling simulations to study the thermodynamics of the kissing loop complex in the presence and in the absence of the cognate ligand. We enforced the breaking/formation of the loop-loop interaction restraining the distance between the two loops. We also assessed the convergence of the results by using two alternative initialization protocols. A structural analysis was performed using a novel approach to analyze base contacts. Contacts between the two loops were progressively lost when larger inter-loop distances were enforced. Inter-loop Watson-Crick contacts survived at larger separation when compared with non-canonical pairing and stacking interactions. Intra-loop stacking contacts remained formed upon loop undocking. Our simulations qualitatively indicated that the ligand could stabilize the kissing loop complex. We also compared with previously published simulation studies. Kissing complex stabilization given by the ligand was compatible with available experimental data. However, the dependence of its value on the initialization protocol of the umbrella sampling simulations posed some questions on the quantitative interpretation of the results and called for better converged enhanced sampling simulations.

  4. Post-Classical Probability Theory

    CERN Document Server

    Barnum, Howard

    2012-01-01

    This paper offers a brief introduction to the framework of "general probabilistic theories", otherwise known as the "convex-operational" approach the foundations of quantum mechanics. Broadly speaking, the goal of research in this vein is to locate quantum mechanics within a very much more general, but conceptually very straightforward, generalization of classical probability theory. The hope is that, by viewing quantum mechanics "from the outside", we may be able better to understand it. We illustrate several respects in which this has proved to be the case, reviewing work on cloning and broadcasting, teleportation and entanglement swapping, key distribution, and ensemble steering in this general framework. We also discuss a recent derivation of the Jordan-algebraic structure of finite-dimensional quantum theory from operationally reasonable postulates.

  5. Associativity and normative credal probability.

    Science.gov (United States)

    Snow, P

    2002-01-01

    Cox's Theorem is a widely cited motivation for probabilistic models of uncertain belief. The theorem relates the associativity of the logical connectives to that of the arithmetic operations of probability. Recent questions about the correctness of Cox's Theorem have been resolved, but there are new questions about one functional equation used by Cox in 1946. This equation is missing from his later work. Advances in knowledge since 1946 and changes in Cox's research interests explain the equation's disappearance. Other associativity-based motivations avoid functional equations altogether, and so may be more transparently applied to finite domains and discrete beliefs. A discrete counterpart of Cox's Theorem can be assembled from results that have been in the literature since 1959.

  6. Probability theory a comprehensive course

    CERN Document Server

    Klenke, Achim

    2014-01-01

    This second edition of the popular textbook contains a comprehensive course in modern probability theory. Overall, probabilistic concepts play an increasingly important role in mathematics, physics, biology, financial engineering and computer science. They help us in understanding magnetism, amorphous media, genetic diversity and the perils of random developments at financial markets, and they guide us in constructing more efficient algorithms.   To address these concepts, the title covers a wide variety of topics, many of which are not usually found in introductory textbooks, such as:   • limit theorems for sums of random variables • martingales • percolation • Markov chains and electrical networks • construction of stochastic processes • Poisson point process and infinite divisibility • large deviation principles and statistical physics • Brownian motion • stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the c...

  7. The Inductive Applications of Probability Calculus

    Directory of Open Access Journals (Sweden)

    Corrado Gini

    2015-06-01

    Full Text Available The Author goes back to Founders of Probability calculus to investigate their original interpretation of the probability measure in the applications of the probability theory to real problems. The Author puts in evidence some misunderstandings related to the inversion of deductions derived by the use of probability distributions for investigating the causes of events.

  8. Probability landscapes for integrative genomics

    Directory of Open Access Journals (Sweden)

    Benecke Arndt

    2008-05-01

    Full Text Available Abstract Background The comprehension of the gene regulatory code in eukaryotes is one of the major challenges of systems biology, and is a requirement for the development of novel therapeutic strategies for multifactorial diseases. Its bi-fold degeneration precludes brute force and statistical approaches based on the genomic sequence alone. Rather, recursive integration of systematic, whole-genome experimental data with advanced statistical regulatory sequence predictions needs to be developed. Such experimental approaches as well as the prediction tools are only starting to become available and increasing numbers of genome sequences and empirical sequence annotations are under continual discovery-driven change. Furthermore, given the complexity of the question, a decade(s long multi-laboratory effort needs to be envisioned. These constraints need to be considered in the creation of a framework that can pave a road to successful comprehension of the gene regulatory code. Results We introduce here a concept for such a framework, based entirely on systematic annotation in terms of probability profiles of genomic sequence using any type of relevant experimental and theoretical information and subsequent cross-correlation analysis in hypothesis-driven model building and testing. Conclusion Probability landscapes, which include as reference set the probabilistic representation of the genomic sequence, can be used efficiently to discover and analyze correlations amongst initially heterogeneous and un-relatable descriptions and genome-wide measurements. Furthermore, this structure is usable as a support for automatically generating and testing hypotheses for alternative gene regulatory grammars and the evaluation of those through statistical analysis of the high-dimensional correlations between genomic sequence, sequence annotations, and experimental data. Finally, this structure provides a concrete and tangible basis for attempting to formulate a

  9. Modeling a self-avoiding chromatin loop: relation to the packing problem, action-at-a-distance, and nuclear context.

    Science.gov (United States)

    Bon, Michaël; Marenduzzo, Davide; Cook, Peter R

    2006-02-01

    There is now convincing evidence that genomes are organized into loops, and that looping brings distant genes together so that they can bind to local concentrations of polymerases in "factories" or "hubs." As there remains no systematic analysis of how looping affects the probability that a gene can access binding sites in such factories/hubs, we used an algorithm that we devised and Monte Carlo methods to model a DNA or chromatin loop as a semiflexible (self-avoiding) tube attached to a sphere; we examine how loop thickness, rigidity, and contour length affect where particular segments of the loop lie relative to binding sites on the sphere. Results are compared with those obtained with the traditional model of an (infinitely thin) freely jointed chain. They provide insights into the packing problem (how long genomes are packed into small nuclei), and action-at-a-distance (how firing of one origin or gene can prevent firing of an adjacent one).

  10. Probability theory and mathematical statistics for engineers

    CERN Document Server

    Pugachev, V S

    1984-01-01

    Probability Theory and Mathematical Statistics for Engineers focuses on the concepts of probability theory and mathematical statistics for finite-dimensional random variables.The publication first underscores the probabilities of events, random variables, and numerical characteristics of random variables. Discussions focus on canonical expansions of random vectors, second-order moments of random vectors, generalization of the density concept, entropy of a distribution, direct evaluation of probabilities, and conditional probabilities. The text then examines projections of random vector

  11. Introduction to probability theory with contemporary applications

    CERN Document Server

    Helms, Lester L

    2010-01-01

    This introduction to probability theory transforms a highly abstract subject into a series of coherent concepts. Its extensive discussions and clear examples, written in plain language, expose students to the rules and methods of probability. Suitable for an introductory probability course, this volume requires abstract and conceptual thinking skills and a background in calculus.Topics include classical probability, set theory, axioms, probability functions, random and independent random variables, expected values, and covariance and correlations. Additional subjects include stochastic process

  12. Statistical convergence of order $\\alpha$ in probability

    OpenAIRE

    Pratulananda Das; Sanjoy Ghosal; Sumit Som

    2016-01-01

    In this paper ideas of different types of convergence of a sequence of random variables in probability, namely, statistical convergence of order $\\alpha$ in probability, strong $p$-Ces$\\grave{\\mbox{a}}$ro summability of order $\\alpha$ in probability, lacunary statistical convergence or $S_{\\theta}$-convergence of order $\\alpha$ in probability, ${N_{\\theta}}$-convergence of order $\\alpha$ in probability have been introduced and their certain basic properties have been studied.

  13. R-loop: an emerging regulator of chromatin dynamics

    Institute of Scientific and Technical Information of China (English)

    Qais Al-Hadid; Yanzhong Yang

    2016-01-01

    The dynamic structure of chromatin,which exists in two conformational states:heterochromatin and euchromatin,alters the accessibility of the DNA to regulatory factors during transcription,replication,recombination,and DNA damage repair.Chemical modifications of histones and DNA,as well as adenosine triphospahate-dependent nucleosome remodeling,have been the major focus of research on chromatin dynamics over the past two decades.However,recent studies using a DNA-RNA hybrid-specific antibody and next-generation seque,ncing approaches have revealed that the formation of R-loops,one of the most common non-canonical DNA structures,is an emerging regulator of chromatin states.This review focuses on recent insights into the interplay between R-loop formation and the epigenetic modifications of chromatin in normal and disease states.

  14. High Tc superconducting small loop antenna

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Mehler, M.J.; Maclean, T.S.M.; Lancaster, M.J.; Gough, C.E. (Univ. of Birmingham (UK)); Alford, N. (I.C.I. Advanced Materials Div., Runcorn (UK))

    1989-12-01

    The improvement in the radiation efficiency of an electrically small loop antenna is analysed when it is fabricated from a superconductor, and experimental results for a liquid nitrogen cooled, ceramic superconducting loop at 450MHz are presented. (orig.).

  15. Crystal packing effects on protein loops.

    Science.gov (United States)

    Rapp, Chaya S; Pollack, Rena M

    2005-07-01

    The effects of crystal packing on protein loop structures are examined by (1) a comparison of loops in proteins that have been crystallized in alternate packing arrangements, and (2) theoretical prediction of loops both with and without the inclusion of the crystal environment. Results show that in a minority of cases, loop geometries are dependent on crystal packing effects. Explicit representation of the crystal environment in a loop prediction algorithm can be used to model these effects and to reconstruct the structures, and relative energies, of a loop in alternative packing environments. By comparing prediction results with and without the inclusion of the crystal environment, the loop prediction algorithm can further be used to identify cases in which a crystal structure does not represent the most stable state of a loop in solution. We anticipate that this capability has implications for structural biology.

  16. Modified Continuous Loop Technique for microvascular anastomosis

    Directory of Open Access Journals (Sweden)

    Kumar Pramod

    2001-01-01

    Full Text Available A modified method of continuous loop technique for microvascular anastomosis is described. The handling of loop is easier & even last suture is placed under vision. This makes the microvascular anastomosis easier and simpler.

  17. Resumming the POPE at One Loop

    CERN Document Server

    Lam, Ho Tat

    2016-01-01

    The Pentagon Operator Product Expansion represents polygonal Wilson loops in planar $\\mathcal{N}=4$ super Yang-Mills in terms of a series of flux tube excitations for finite coupling. We demonstrate how to re-sum this series at the one loop level for the hexagonal Wilson loop dual to the six-point MHV amplitude. By summing over a series of effective excitations we find expressions which integrate to logarithms and polylogarithms, reproducing the known one-loop result.

  18. Loop Equations in Abelian Gauge Theories

    CERN Document Server

    Di Bartolo, C; Pe~na, F; Bartolo, Cayetano Di; Leal, Lorenzo; Peña, Francisco

    2005-01-01

    The equations obeyed by the vacuum expectation value of the Wilson loop of Abelian gauge theories are considered from the point of view of the loop-space. An approximative scheme for studying these loop-equations for lattice Maxwell theory is presented. The approximation leads to a partial difference equation in the area and length variables of the loop, and certain physically motivated ansatz is seen to reproduce the mean field results from a geometrical perspective.

  19. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  20. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  1. SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability.

    Science.gov (United States)

    Song, Chenlin; Hotz-Wagenblatt, Agnes; Voit, Renate; Grummt, Ingrid

    2017-08-08

    R loops are three-stranded nucleic acid structures consisting of an RNA:DNA heteroduplex and a "looped-out" nontemplate strand. As aberrant formation and persistence of R loops block transcription elongation and cause DNA damage, mechanisms that resolve R loops are essential for genome stability. Here we show that the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase DDX21 efficiently unwinds R loops and that depletion of DDX21 leads to accumulation of cellular R loops and DNA damage. Significantly, the activity of DDX21 is regulated by acetylation. Acetylation by CBP inhibits DDX21 activity, while deacetylation by SIRT7 augments helicase activity and overcomes R-loop-mediated stalling of RNA polymerases. Knockdown of SIRT7 leads to the same phenotype as depletion of DDX21 (i.e., increased formation of R loops and DNA double-strand breaks), indicating that SIRT7 and DDX21 cooperate to prevent R-loop accumulation, thus safeguarding genome integrity. Moreover, DDX21 resolves estrogen-induced R loops on estrogen-responsive genes in breast cancer cells, which prevents the blocking of transcription elongation on these genes. © 2017 Song et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Probable Linezolid-Induced Pancytopenia

    Directory of Open Access Journals (Sweden)

    Nita Lakhani

    2005-01-01

    Full Text Available A 75-year-old male outpatient with cardiac disease, diabetes, chronic renal insufficiency and iron deficiency anemia was prescribed linezolid 600 mg twice daily for a methicillin-resistant Staphylococcus aureus diabetic foot osteomyelitis. After one week, his blood counts were consistent with baseline values. The patient failed to return for subsequent blood work. On day 26, he was admitted to hospital with acute renal failure secondary to dehydration, and was found to be pancytopenic (erythrocytes 2.5x1012/L, leukocytes 2.9x109/L, platelets 59x109/L, hemoglobin 71 g/L. The patient was transfused, and linezolid was discontinued. His blood counts improved over the week and remained at baseline two months later. The patient's decline in blood counts from baseline levels met previously established criteria for clinical significance. Application of the Naranjo scale indicated a probable relationship between pancytopenia and linezolid. Clinicians should be aware of this rare effect with linezolid, and prospectively identify patients at risk and emphasize weekly hematological monitoring.

  3. Avoiding Negative Probabilities in Quantum Mechanics

    CERN Document Server

    Nyambuya, Golden Gadzirayi

    2013-01-01

    As currently understood since its discovery, the bare Klein-Gordon theory consists of negative quantum probabilities which are considered to be physically meaningless if not outright obsolete. Despite this annoying setback, these negative probabilities are what led the great Paul Dirac in 1928 to the esoteric discovery of the Dirac Equation. The Dirac Equation led to one of the greatest advances in our understanding of the physical world. In this reading, we ask the seemingly senseless question, "Do negative probabilities exist in quantum mechanics?" In an effort to answer this question, we arrive at the conclusion that depending on the choice one makes of the quantum probability current, one will obtain negative probabilities. We thus propose a new quantum probability current of the Klein-Gordon theory. This quantum probability current leads directly to positive definite quantum probabilities. Because these negative probabilities are in the bare Klein-Gordon theory, intrinsically a result of negative energie...

  4. Psychophysics of the probability weighting function

    Science.gov (United States)

    Takahashi, Taiki

    2011-03-01

    A probability weighting function w(p) for an objective probability p in decision under risk plays a pivotal role in Kahneman-Tversky prospect theory. Although recent studies in econophysics and neuroeconomics widely utilized probability weighting functions, psychophysical foundations of the probability weighting functions have been unknown. Notably, a behavioral economist Prelec (1998) [4] axiomatically derived the probability weighting function w(p)=exp(-() (01e)=1e,w(1)=1), which has extensively been studied in behavioral neuroeconomics. The present study utilizes psychophysical theory to derive Prelec's probability weighting function from psychophysical laws of perceived waiting time in probabilistic choices. Also, the relations between the parameters in the probability weighting function and the probability discounting function in behavioral psychology are derived. Future directions in the application of the psychophysical theory of the probability weighting function in econophysics and neuroeconomics are discussed.

  5. Loop L1 governs the DNA-binding specificity and order for RecA-catalyzed reactions in homologous recombination and DNA repair

    Science.gov (United States)

    Shinohara, Takeshi; Ikawa, Shukuko; Iwasaki, Wakana; Hiraki, Toshiki; Hikima, Takaaki; Mikawa, Tsutomu; Arai, Naoto; Kamiya, Nobuo; Shibata, Takehiko

    2015-01-01

    In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mechanism for this conserved binding order remain unknown. A comparison of the loop L1 structures in a DNA-free RecA crystal that we originally determined and in the reported DNA-bound active RecA crystals suggested that the aspartate at position 161 in loop L1 in DNA-free RecA prevented double-stranded, but not single-stranded, DNA-binding to the primary site. This was confirmed by the effects of the Ala-replacement of Asp-161 (D161A), analyzed directly by gel-mobility shift assays and indirectly by DNA-dependent ATPase activity and SOS repressor cleavage. When RecA/Rad51-recombinases interact with double-stranded DNA before single-stranded DNA, homologous joint-formation is suppressed, likely by forming a dead-end product. We found that the D161A-replacement reduced this suppression, probably by allowing double-stranded DNA to bind preferentially and reversibly to the primary site. Thus, Asp-161 in the flexible loop L1 of wild-type RecA determines the preference for single-stranded DNA-binding to the primary site and regulates the DNA-binding order in RecA-catalyzed recombinase reactions. PMID:25561575

  6. Polyhedra in loop quantum gravity

    CERN Document Server

    Bianchi, Eugenio; Speziale, Simone

    2010-01-01

    Interwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in Euclidean space: a polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: we give formulas for the edge lengths, the volume and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of a polyhedron. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection...

  7. Loop Diuretics in Clinical Practice.

    Science.gov (United States)

    Oh, Se Won; Han, Sang Youb

    2015-06-01

    Diuretics are commonly used to control edema across various clinical fields. Diuretics inhibit sodium reabsorption in specific renal tubules, resulting in increased urinary sodium and water excretion. Loop diuretics are the most potent diuretics. In this article, we review five important aspects of loop diuretics, in particular furosemide, which must be considered when prescribing this medicine: (1) oral versus intravenous treatment, (2) dosage, (3) continuous versus bolus infusion, (4) application in chronic kidney disease patients, and (5) side effects. The bioavailability of furosemide differs between oral and intravenous therapy. Additionally, the threshold and ceiling doses of furosemide differ according to the particular clinical condition of the patient, for example in patients with severe edema or chronic kidney disease. To maximize the efficiency of furosemide, a clear understanding of how the mode of delivery will impact bioavailability and the required dosage is necessary.

  8. Septo-Hippocampo-Septal Loop and Memory Formation

    Directory of Open Access Journals (Sweden)

    Fatemeh Khakpai

    2013-01-01

    Full Text Available   Cholinergic and GABAergic fibers in the medial septal/diagonal band of Broca (MS/DB area project to the hippocampus and constitute the septo-hippocampal pathway, which has been proven in learning and memory. In addition, the hippocampus has bidirectional connections with the septum, which use this relation for self-regulation of cholinergic input.   The activity of septal and hippocampal neurons is modulated by several neurotransmitters including glutamatergic neurons from the entorhinal cortex, serotonergic fibers from the raphe nucleus, dopaminergic neurons from the ventral tegmental area (VTA, histaminergic cells from the tuberomammillary nucleus and adrenergic fibers from the locus coeruleus (LC. Thus, changes in the glutamatergic, serotonergic and etc. mediated transmission in the MS/DB may influence cholinergic or GABAergic transmission in the hippocampus.

  9. Septo-Hippocampo-Septal Loop and Memory Formation

    Directory of Open Access Journals (Sweden)

    Fatemeh Khakpai

    2012-12-01

    Full Text Available Cholinergic and GABAergic fibers in the medial septal/diagonal band of Broca (MS/DB area project to the hippocampus and constitute the septo-hippocampal pathway, which has been proven in learning and memory. In addition, the hippocampus has bidirectional connections with the septum, which use this relation for self-regulation of cholinergic input. The activity of septal and hippocampal neurons is modulated by several neurotransmitters including glutamatergic neurons from the entorhinal cortex, serotonergic fibers from the raphe nucleus, dopaminergic neurons from the ventral tegmental area (VTA, histaminergic cells from the tuberomammillary nucleus and adrenergic fibers from the locus coeruleus (LC. Thus, changes in the glutamatergic, serotonergic and etc. mediated transmission in the MS/DB may influence cholinergic or GABAergic transmission in the hippocampus.

  10. Chaperonin function depends on structure and disorder in co-chaperonin mobile loops.

    Science.gov (United States)

    Landry, S J; Steede, N K; Garaudy, A M; Maskos, K; Viitanen, P V

    1999-01-01

    Co-chaperonins from diverse organisms exhibit mobile loops which fold into a beta hairpin conformation upon binding to the chaperonin. GroES, Gp31, and human Hsp10 mobile loops exhibit a preference for the beta hairpin conformation in the free co-chaperonins, and the conformational dynamics of the human Hsp10 mobile loop appear to be restricted by nascent hairpin formation. Backbone conformational entropy must weigh against binding of co-chaperonins to chaperonins, and thus the conformational preferences of the loops may strongly influence chaperonin-binding affinity. Indeed, subtle mutations in the loops change GroEL-binding affinity and cause defects in chaperonin function, and these defects can be suppressed by mutations in GroEL which compensate for the changes in affinity. The fact that high-affinity co-chaperonin binding impairs chaperonin function has implications for the mechanism of chaperonin-assisted protein folding.

  11. Deconfinement and virtual quark loops

    Science.gov (United States)

    Çelik, T.; Engels, J.; Satz, H.

    1983-12-01

    We calculate paer Monte Carlo evaluation on an 83 × 3 lattice the energy density ɛG of the gluon sector of QCD, including virtual quark loops up to the fourth power in the hopping parameter expansion. For light quarks of one flavour, we observe at T/ΛL 95 +/- 10 a rapid variation of ɛG in T, accompanied by strong fluctuations from iteration to iteration. as clear signal of the deconfinement transition.

  12. Quantum Reduced Loop Gravity and the foundation of Loop Quantum Cosmology

    CERN Document Server

    Alesci, Emanuele

    2016-01-01

    Quantum Reduced Loop Gravity is a promising framework for linking Loop Quantum Gravity and the effective semiclassical dynamics of Loop Quantum Cosmology. We review its basic achievements and its main perspectives, outlining how it provides a quantum description of the Universe in terms of a cuboidal graph which constitutes the proper framework for applying loop techniques in a cosmological setting.

  13. Chemical looping reforming of generator gas

    Energy Technology Data Exchange (ETDEWEB)

    Mendiara, T.; Jensen, Anker; Glarborg, P.

    2010-02-15

    The main objective of this work is to investigate the carbon deposition during reforming of hydrocarbons in a Chemical Looping Reformer (CLR). This knowledge is needed to asses the viability of the CLR technology in reforming tar from biomass gasification preserving lighter hydrocarbons and minimizing the carbon formation during the process. Two different setups were used to test the reactivity of the different samples in the conditions of interest for the tar reforming process: 1) Fixed bed flow reactor (FR), and 2) Thermogravimetric analyzer (TGA). In the experiments, the gas atmosphere was switched from reducing to oxidizing atmosphere in every cycle. During the oxidizing cycle, the carrier was regenerated using a mixture of oxygen and nitrogen. Four different oxygen carriers based on nickel (Ni40 and Ni60), manganese (Mn) and ilmenite (Fe) were tested. In the tests, toluene was used to simulate the tars. The Fe and the Mn carrier reacted to a small extent with methane at the highest temperature studied, 800 degrees C. The Ni-carriers did not react at 600 degrees C at first, but they showed some reactivity after having been activated at the higher temperature. Carbon formation occurred with the Ni-carriers, more so with the Ni60 than the Ni40. Ni40, Mn and Fe were activated at the higher temperature. However, Fe showed only low capacity. Ni60 showed no capability of tar reforming. Ni40 showed a high tendency to carbon formation at 800 degrees C, but the formation could be lowered by changing some parameters. Mn formed almost no carbon. Ni40 and Mn were chosen for further studies. Carbon deposition occurred for both Ni40 and Mn, but the amount deposited for Ni40 was about 10 times bigger. Ni40 reacted with the methane and toluene only at 800 degrees C. The conversion over Mn was not as big as for toluene alone. Carbon was formed from carbon monoxide on the Ni40 carrier and on the Mn, but to a much less extent on the latter one. The presence of hydrogen decreased

  14. Investigation of Methane Hydrate Formation in a Recirculating Flow Loop: Modeling of the Kinetics and Tests of Efficiency of Chemical Additives on Hydrate Inhibition Étude de la formation de l'hydrate de méthane dans une conduite de recirculation : modélisation de la cinétique et tests d'efficacité d'additifs chimiques inhibiteurs d'hydrates de gaz

    Directory of Open Access Journals (Sweden)

    Peytavy J. L.

    2006-12-01

    Full Text Available Gas hydrates can be formed when light gases, such as the components of natural gas, come into contact with water under particular conditions of temperature and pressure. These solid compounds give rise to problems in natural gas and oil industry because they can plug pipelines and process equipment. To prevent hydrate formation methanol and glycols are commonly and extensively used as inhibitors. Today, the thermodynamic equilibria of hydrate formation are well known, but the kinetics of gas hydrate formation and growth has to be studied in order to find means of controlling these processes and to explore the mechanisms for hydrate formation that follows non equilibrium laws. The present work deals with the kinetics of methane hydrate formation studied in a laboratory loop where the liquid blend saturated with methane is circulated up to a pressure of 75 bar. Pressure is maintained at a constant value during experimental runs by means of methane gas make-up. First the effects of pressure (35-75 bar, liquid velocity (0. 5-3 m/s, liquid cooling temperature ramp (2-15°C/h, and liquid hydrocarbon amount (0-96%, on hydrate formation kinetics are investigated. Then a new method is proposed to predict firstly the thermodynamic conditions (pressure and temperature at the maximum values of the growth rate of methane hydrate and secondly the methane hydrate growth rate. A good agreement is found between calculated and experimental data. Finally the evaluation of the efficiency of some kinetic additives and some surfactants developed to avoid either nucleation or crystal growth and agglomeration of methane hydrates is tested based on the proposed experimental procedure. Les hydrates de gaz des composés légers du gaz naturel se forment lorsque ceux-ci entrent en contact avec l'eau dans certaines conditions de température et de pression. Ces composés solides sont nuisibles pour les industries gazière et pétrolière car des bouchons solides peuvent

  15. Non-nearest-neighbor dependence of stability for group III RNA single nucleotide bulge loops.

    Science.gov (United States)

    Kent, Jessica L; McCann, Michael D; Phillips, Daniel; Panaro, Brandon L; Lim, Geoffrey F S; Serra, Martin J

    2014-06-01

    Thirty-five RNA duplexes containing single nucleotide bulge loops were optically melted and the thermodynamic parameters for each duplex determined. The bulge loops were of the group III variety, where the bulged nucleotide is either a AG/U or CU/G, leading to ambiguity to the exact position and identity of the bulge. All possible group III bulge loops with Watson-Crick nearest-neighbors were examined. The data were used to develop a model to predict the free energy of an RNA duplex containing a group III single nucleotide bulge loop. The destabilization of the duplex by the group III bulge could be modeled so that the bulge nucleotide leads to the formation of the Watson-Crick base pair rather than the wobble base pair. The destabilization of an RNA duplex caused by the insertion of a group III bulge is primarily dependent upon non-nearest-neighbor interactions and was shown to be dependent upon the stability of second least stable stem of the duplex. In-line structure probing of group III bulge loops embedded in a hairpin indicated that the bulged nucleotide is the one positioned further from the hairpin loop irrespective of whether the resulting stem formed a Watson-Crick or wobble base pair. Fourteen RNA hairpins containing group III bulge loops, either 3' or 5' of the hairpin loop, were optically melted and the thermodynamic parameters determined. The model developed to predict the influence of group III bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability.

  16. Modeling Phase-Locked Loops Using Verilog

    Science.gov (United States)

    2007-11-01

    a charge pump, the phase detector has a tri-state output that can drive a opamp loop filter directly. This signal is conditioned by the charge pump...then it can directly drive an opamp based loop filter. Most loop filters are based upon an integrator loop. The integrator loop filter is advantageous...replaced with an accumulator. The opamp circuit can be replaced by a digital filter using Z-transform theory z=exp(jwT), where T is the sampling

  17. The space of states of quantum gravity in terms of loops and extended loops some remarks

    CERN Document Server

    Di Bartolo, C; Griego, J R; Pullin, J; Di Bartolo, Cayetano; Gambini, Rodolfo; Griego, Jorge; Pullin, Jorge

    1995-01-01

    This article reviews the status of several solutions to all the constraints of quantum gravity that have been proposed in terms of loops and extended loops. We discuss pitfalls of several of the results and in particular discuss the issues of covariance and regularization of the constraints in terms of extended loops. We also propose a formalism for ``thickened out loops'' which does not face the covariance problems of extended loops and may allow to regularize expressions in a consistent manner.

  18. The Probability Distribution for a Biased Spinner

    Science.gov (United States)

    Foster, Colin

    2012-01-01

    This article advocates biased spinners as an engaging context for statistics students. Calculating the probability of a biased spinner landing on a particular side makes valuable connections between probability and other areas of mathematics. (Contains 2 figures and 1 table.)

  19. Conditional probability modulates visual search efficiency.

    Science.gov (United States)

    Cort, Bryan; Anderson, Britt

    2013-01-01

    We investigated the effects of probability on visual search. Previous work has shown that people can utilize spatial and sequential probability information to improve target detection. We hypothesized that performance improvements from probability information would extend to the efficiency of visual search. Our task was a simple visual search in which the target was always present among a field of distractors, and could take one of two colors. The absolute probability of the target being either color was 0.5; however, the conditional probability-the likelihood of a particular color given a particular combination of two cues-varied from 0.1 to 0.9. We found that participants searched more efficiently for high conditional probability targets and less efficiently for low conditional probability targets, but only when they were explicitly informed of the probability relationship between cues and target color.

  20. Conditional Probability Modulates Visual Search Efficiency

    Directory of Open Access Journals (Sweden)

    Bryan eCort

    2013-10-01

    Full Text Available We investigated the effects of probability on visual search. Previous work has shown that people can utilize spatial and sequential probability information to improve target detection. We hypothesized that performance improvements from probability information would extend to the efficiency of visual search. Our task was a simple visual search in which the target was always present among a field of distractors, and could take one of two colors. The absolute probability of the target being either color was 0.5; however, the conditional probability – the likelihood of a particular color given a particular combination of two cues – varied from 0.1 to 0.9. We found that participants searched more efficiently for high conditional probability targets and less efficiently for low conditional probability targets, but only when they were explicitly informed of the probability relationship between cues and target color.

  1. The Probability Distribution for a Biased Spinner

    Science.gov (United States)

    Foster, Colin

    2012-01-01

    This article advocates biased spinners as an engaging context for statistics students. Calculating the probability of a biased spinner landing on a particular side makes valuable connections between probability and other areas of mathematics. (Contains 2 figures and 1 table.)

  2. An integrated tool for loop calculations: AITALC

    Science.gov (United States)

    Lorca, Alejandro; Riemann, Tord

    2006-01-01

    AITALC, a new tool for automating loop calculations in high energy physics, is described. The package creates Fortran code for two-fermion scattering processes automatically, starting from the generation and analysis of the Feynman graphs. We describe the modules of the tool, the intercommunication between them and illustrate its use with three examples. Program summaryTitle of the program:AITALC version 1.2.1 (9 August 2005) Catalogue identifier:ADWO Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWO Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer:PC i386 Operating system:GNU/ LINUX, tested on different distributions SuSE 8.2 to 9.3, Red Hat 7.2, Debian 3.0, Ubuntu 5.04. Also on SOLARIS Programming language used:GNU MAKE, DIANA, FORM, FORTRAN77 Additional programs/libraries used:DIANA 2.35 ( QGRAF 2.0), FORM 3.1, LOOPTOOLS 2.1 ( FF) Memory required to execute with typical data:Up to about 10 MB No. of processors used:1 No. of lines in distributed program, including test data, etc.:40 926 No. of bytes in distributed program, including test data, etc.:371 424 Distribution format:tar gzip file High-speed storage required:from 1.5 to 30 MB, depending on modules present and unfolding of examples Nature of the physical problem:Calculation of differential cross sections for ee annihilation in one-loop approximation. Method of solution:Generation and perturbative analysis of Feynman diagrams with later evaluation of matrix elements and form factors. Restriction of the complexity of the problem:The limit of application is, for the moment, the 2→2 particle reactions in the electro-weak standard model. Typical running time:Few minutes, being highly depending on the complexity of the process and the FORTRAN compiler.

  3. Hyperstaticity and loops in frictional granular packings

    Science.gov (United States)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  4. The extended loop representation of quantum gravity

    CERN Document Server

    Di Bartolo, C; Griego, J R

    1995-01-01

    A new representation of Quantum Gravity is developed. This formulation is based on an extension of the group of loops. The enlarged group, that we call the Extended Loop Group, behaves locally as an infinite dimensional Lie group. Quantum Gravity can be realized on the state space of extended loop dependent wavefunctions. The extended representation generalizes the loop representation and contains this representation as a particular case. The resulting diffeomorphism and hamiltonian constraints take a very simple form and allow to apply functional methods and simplify the loop calculus. In particular we show that the constraints are linear in the momenta. The nondegenerate solutions known in the loop representation are also solutions of the constraints in the new representation. The practical calculation advantages allows to find a new solution to the Wheeler-DeWitt equation. Moreover, the extended representation puts in a precise framework some of the regularization problems of the loop representation. We sh...

  5. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.

    Science.gov (United States)

    Hamperl, Stephan; Bocek, Michael J; Saldivar, Joshua C; Swigut, Tomek; Cimprich, Karlene A

    2017-08-10

    Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Rationally designed coiled-coil DNA looping peptides control DNA topology.

    Science.gov (United States)

    Gowetski, Daniel B; Kodis, Erin J; Kahn, Jason D

    2013-09-01

    Artificial DNA looping peptides were engineered to study the roles of protein and DNA flexibility in controlling the geometry and stability of protein-mediated DNA loops. These LZD (leucine zipper dual-binding) peptides were derived by fusing a second, C-terminal, DNA-binding region onto the GCN4 bZip peptide. Two variants with different coiled-coil lengths were designed to control the relative orientations of DNA bound at each end. Electrophoretic mobility shift assays verified formation of a sandwich complex containing two DNAs and one peptide. Ring closure experiments demonstrated that looping requires a DNA-binding site separation of 310 bp, much longer than the length needed for natural loops. Systematic variation of binding site separation over a series of 10 constructs that cyclize to form 862-bp minicircles yielded positive and negative topoisomers because of two possible writhed geometries. Periodic variation in topoisomer abundance could be modeled using canonical DNA persistence length and torsional modulus values. The results confirm that the LZD peptides are stiffer than natural DNA looping proteins, and they suggest that formation of short DNA loops requires protein flexibility, not unusual DNA bendability. Small, stable, tunable looping peptides may be useful as synthetic transcriptional regulators or components of protein-DNA nanostructures.

  7. Thermodynamic examination of 1- to 5-nt purine bulge loops in RNA and DNA constructs.

    Science.gov (United States)

    Strom, Shane; Shiskova, Evgenia; Hahm, Yaeeun; Grover, Neena

    2015-07-01

    Bulge loops are common features of RNA structures that are involved in the formation of RNA tertiary structures and are often sites for interactions with proteins and ions. Minimal thermodynamic data currently exist on the bulge size and sequence effects. Using thermal denaturation methods, thermodynamic properties of 1- to 5-nt adenine and guanine bulge loop constructs were examined in 10 mM MgCl(2) or 1 M KCl. The [Formula: see text] loop parameters for 1- to 5-nt purine bulge loops in RNA constructs were between 3.07 and 5.31 kcal/mol in 1 M KCl buffer. In 10 mM magnesium ions, the ΔΔG° values relative to 1 M KCl were 0.47-2.06 kcal/mol more favorable for the RNA bulge loops. The [Formula: see text] loop parameters for 1- to 5-nt purine bulge loops in DNA constructs were between 4.54 and 5.89 kcal/mol. Only 4- and 5-nt guanine constructs showed significant change in stability for the DNA constructs in magnesium ions. A linear correlation is seen between the size of the bulge loop and its stability. New prediction models are proposed for 1- to 5-nt purine bulge loops in RNA and DNA in 1 M KCl. We show that a significant stabilization is seen for small bulge loops in RNA in the presence of magnesium ions. A prediction model is also proposed for 1- to 5-nt purine bulge loop RNA constructs in 10 mM magnesium chloride.

  8. Direct observation of the coalescence process between nanoscale dislocation loops with different Burgers vectors

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, K., E-mail: arakawak@uhvem.osaka-u.ac.jp [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); CREST, JST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Amino, T.; Mori, H. [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-01-15

    The dynamic behavior of nanoscale prismatic dislocation loops can significantly affect the microstructural variation in crystalline materials upon processes such as plastic deformation and high-energy particle irradiation. Using in situ transmission electron microscopy, this study experimentally demonstrates a reaction which follows the collision between two loops with different Burgers vectors in {alpha}-iron. Even after the formation of the junction, the reaction progresses further, unlike conventional reactions between dislocations of macroscopic length, and the larger loop finally absorbs the smaller one.

  9. Günther Tulip inferior vena cava filter retrieval using a bidirectional loop-snare technique

    Science.gov (United States)

    Ross, Jordan; Allison, Stephen; Vaidya, Sandeep; Monroe, Eric

    2016-01-01

    Many advanced techniques have been reported in the literature for difficult Günther Tulip filter removal. This report describes a bidirectional loop-snare technique in the setting of a fibrin scar formation around the filter leg anchors. The bidirectional loop-snare technique allows for maximal axial tension and alignment for stripping fibrin scar from the filter legs, a commonly encountered complication of prolonged dwell times. PMID:27338675

  10. Günther Tulip inferior vena cava filter retrieval using a bidirectional loop-snare technique.

    Science.gov (United States)

    Ross, Jordan; Allison, Stephen; Vaidya, Sandeep; Monroe, Eric

    2016-01-01

    Many advanced techniques have been reported in the literature for difficult Günther Tulip filter removal. This report describes a bidirectional loop-snare technique in the setting of a fibrin scar formation around the filter leg anchors. The bidirectional loop-snare technique allows for maximal axial tension and alignment for stripping fibrin scar from the filter legs, a commonly encountered complication of prolonged dwell times.

  11. Pre-Service Teachers' Conceptions of Probability

    Science.gov (United States)

    Odafe, Victor U.

    2011-01-01

    Probability knowledge and skills are needed in science and in making daily decisions that are sometimes made under uncertain conditions. Hence, there is the need to ensure that the pre-service teachers of our children are well prepared to teach probability. Pre-service teachers' conceptions of probability are identified, and ways of helping them…

  12. Using Playing Cards to Differentiate Probability Interpretations

    Science.gov (United States)

    López Puga, Jorge

    2014-01-01

    The aprioristic (classical, naïve and symmetric) and frequentist interpretations of probability are commonly known. Bayesian or subjective interpretation of probability is receiving increasing attention. This paper describes an activity to help students differentiate between the three types of probability interpretations.

  13. 47 CFR 1.1623 - Probability calculation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623... Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be computed to no less than three significant digits. Probabilities will be truncated to the number of...

  14. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...... of subjective probabilities in subjects with certain Non-Expected Utility preference representations that satisfy weak conditions that we identify....

  15. Inferring Beliefs as Subjectively Imprecise Probabilities

    DEFF Research Database (Denmark)

    Andersen, Steffen; Fountain, John; Harrison, Glenn W.;

    2012-01-01

    We propose a method for estimating subjective beliefs, viewed as a subjective probability distribution. The key insight is to characterize beliefs as a parameter to be estimated from observed choices in a well-defined experimental task and to estimate that parameter as a random coefficient. The e...... probabilities are indeed best characterized as probability distributions with non-zero variance....

  16. Scoring Rules for Subjective Probability Distributions

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd;

    report the true subjective probability of a binary event, even under Subjective Expected Utility. To address this one can “calibrate” inferences about true subjective probabilities from elicited subjective probabilities over binary events, recognizing the incentives that risk averse agents have...

  17. Using Playing Cards to Differentiate Probability Interpretations

    Science.gov (United States)

    López Puga, Jorge

    2014-01-01

    The aprioristic (classical, naïve and symmetric) and frequentist interpretations of probability are commonly known. Bayesian or subjective interpretation of probability is receiving increasing attention. This paper describes an activity to help students differentiate between the three types of probability interpretations.

  18. The trajectory of the target probability effect.

    Science.gov (United States)

    Hon, Nicholas; Yap, Melvin J; Jabar, Syaheed B

    2013-05-01

    The effect of target probability on detection times is well-established: Even when detection accuracy is high, lower probability targets are detected more slowly than higher probability ones. Although this target probability effect on detection times has been well-studied, one aspect of it has remained largely unexamined: How the effect develops over the span of an experiment. Here, we investigated this issue with two detection experiments that assessed different target probability ratios. Conventional block segment analysis and linear mixed-effects modeling converged on two key findings. First, we found that the magnitude of the target probability effect increases as one progresses through a block of trials. Second, we found, by examining the trajectories of the low- and high-probability targets, that this increase in effect magnitude was driven by the low-probability targets. Specifically, we found that low-probability targets were detected more slowly as a block of trials progressed. Performance to high-probability targets, on the other hand, was largely invariant across the block. The latter finding is of particular interest because it cannot be reconciled with accounts that propose that the target probability effect is driven by the high-probability targets.

  19. Pre-Service Teachers' Conceptions of Probability

    Science.gov (United States)

    Odafe, Victor U.

    2011-01-01

    Probability knowledge and skills are needed in science and in making daily decisions that are sometimes made under uncertain conditions. Hence, there is the need to ensure that the pre-service teachers of our children are well prepared to teach probability. Pre-service teachers' conceptions of probability are identified, and ways of helping them…

  20. Probability analysis of geological processes: a useful tool for the safety assessment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessandro, M.; Murray, C.N.; Bertozzi, G.; Girardi, F.

    1980-05-01

    In the development of methods for the assessment of the risk associated with the disposal of radioactive wastes over periods up to 10/sup 6/ years, much discussion has occurred on the use of probability analysis for geological processes. The applicability and limitations of this concept are related to the proper use of the geological data-base and the critical interpretation of probability distributions. The interpretation of geological phenomena in terms of probability is discussed and an example of application to the determination of faulting probability is illustrated. The method has been used for the determination of failure probability of geological segregation of a waste repository in a clay formation.

  1. Paraconsistent Probabilities: Consistency, Contradictions and Bayes’ Theorem

    Directory of Open Access Journals (Sweden)

    Juliana Bueno-Soler

    2016-09-01

    Full Text Available This paper represents the first steps towards constructing a paraconsistent theory of probability based on the Logics of Formal Inconsistency (LFIs. We show that LFIs encode very naturally an extension of the notion of probability able to express sophisticated probabilistic reasoning under contradictions employing appropriate notions of conditional probability and paraconsistent updating, via a version of Bayes’ theorem for conditionalization. We argue that the dissimilarity between the notions of inconsistency and contradiction, one of the pillars of LFIs, plays a central role in our extended notion of probability. Some critical historical and conceptual points about probability theory are also reviewed.

  2. An Objective Theory of Probability (Routledge Revivals)

    CERN Document Server

    Gillies, Donald

    2012-01-01

    This reissue of D. A. Gillies highly influential work, first published in 1973, is a philosophical theory of probability which seeks to develop von Mises' views on the subject. In agreement with von Mises, the author regards probability theory as a mathematical science like mechanics or electrodynamics, and probability as an objective, measurable concept like force, mass or charge. On the other hand, Dr Gillies rejects von Mises' definition of probability in terms of limiting frequency and claims that probability should be taken as a primitive or undefined term in accordance with modern axioma

  3. Fundamentals of applied probability and random processes

    CERN Document Server

    Ibe, Oliver

    2014-01-01

    The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability t

  4. Probability of Failure in Random Vibration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard

    1988-01-01

    Close approximations to the first-passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first-passage probability density function and the distribution function for the time interval spent below a barrier before out......-crossing. An integral equation for the probability density function of the time interval is formulated, and adequate approximations for the kernel are suggested. The kernel approximation results in approximate solutions for the probability density function of the time interval and thus for the first-passage probability...

  5. Singularities in loop quantum cosmology.

    Science.gov (United States)

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  6. Loop equations from differential systems

    CERN Document Server

    Eynard, Bertrand; Marchal, Olivier

    2016-01-01

    To any differential system $d\\Psi=\\Phi\\Psi$ where $\\Psi$ belongs to a Lie group (a fiber of a principal bundle) and $\\Phi$ is a Lie algebra $\\mathfrak g$ valued 1-form on a Riemann surface $\\Sigma$, is associated an infinite sequence of "correlators" $W_n$ that are symmetric $n$-forms on $\\Sigma^n$. The goal of this article is to prove that these correlators always satisfy "loop equations", the same equations satisfied by correlation functions in random matrix models, or the same equations as Virasoro or W-algebra constraints in CFT.

  7. Cygnus Loop: A double bubble?

    CERN Document Server

    West, J; Reichardt, I; Stil, J; Kothes, R; Jaffe, T

    2016-01-01

    The Cygnus Loop is a well-studied supernova remnant (SNR) that has been observed across the electromagnetic spectrum. Although widely believed to be an SNR shell with a blow- out region in the south, we consider the possibility that this object is two SNRs projected along the same line-of-sight by using multi-wavelength images and modelling. Our results show that a model of two objects including some overlap region/interaction between the two objects has the best match to the observed data.

  8. Closed-loop neuromorphic benchmarks

    CSIR Research Space (South Africa)

    Stewart

    2015-11-01

    Full Text Available Benchmarks   Terrence C. Stewart 1* , Travis DeWolf 1 , Ashley Kleinhans 2 , Chris Eliasmith 1   1 University of Waterloo, Canada, 2 Council for Scientific and Industrial Research, South Africa   Submitted to Journal:   Frontiers in Neuroscience   Specialty... the study was exempt from ethical approval procedures.) Did the study presented in the manuscript involve human or animal subjects: No I v i w 1Closed-loop Neuromorphic Benchmarks Terrence C. Stewart 1,∗, Travis DeWolf 1, Ashley Kleinhans 2 and Chris...

  9. Loop Virasoro Lie conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Henan, E-mail: wuhenanby@163.com; Chen, Qiufan; Yue, Xiaoqing [Department of Mathematics, Tongji University, Shanghai 200092 (China)

    2014-01-15

    The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.

  10. Using the Meeting Graph Framework to Minimise Kernel Loop Unrolling for Scheduled Loops

    Science.gov (United States)

    Bachir, Mounira; Gregg, David; Touati, Sid-Ahmed-Ali

    This paper improves our previous research effort [1] by providing an efficient method for kernel loop unrolling minimisation in the case of already scheduled loops, where circular lifetime intervals are known. When loops are software pipelined, the number of values simultaneously alive becomes exactly known giving better opportunities for kernel loop unrolling. Furthermore, fixing circular lifetime intervals allows us to reduce the algorithmic complexity of our method compared to [1] by computing a new research space for minimal kernel loop unrolling. The meeting graph (MG) is one of the [3] frameworks proposed in the literature which models loop unrolling and register allocation together in a common formal framework for software pipelined loops. Although MG significantly improves loop register allocation, the computed loop unrolling may lead to unpractical code growth.

  11. On the computability of conditional probability

    CERN Document Server

    Ackerman, Nathanael L; Roy, Daniel M

    2010-01-01

    We study the problem of computing conditional probabilities, a fundamental operation in statistics and machine learning. In the elementary discrete setting, a ratio of probabilities defines conditional probability. In the abstract setting, conditional probability is defined axiomatically and the search for more constructive definitions is the subject of a rich literature in probability theory and statistics. In the discrete or dominated setting, under suitable computability hypotheses, conditional probabilities are computable. However, we show that in general one cannot compute conditional probabilities. We do this by constructing a pair of computable random variables in the unit interval whose conditional distribution encodes the halting problem at almost every point. We show that this result is tight, in the sense that given an oracle for the halting problem, one can compute this conditional distribution. On the other hand, we show that conditioning in abstract settings is computable in the presence of cert...

  12. Are Coronal Loops Isothermal or Multithermal? Yes!

    CERN Document Server

    Schmelz, J T; Rightmire, L A; Kimble, J A; Del Zanna, G; Cirtain, J W; DeLuca, E E; Mason, H E

    2009-01-01

    Surprisingly few solar coronal loops have been observed simultaneously with TRACE and SOHO/CDS, and even fewer analyses of these loops have been conducted and published. The SOHO Joint Observing Program 146 was designed in part to provide the simultaneous observations required for in-depth temperature analysis of active region loops and determine whether these loops are isothermal or multithermal. The data analyzed in this paper were taken on 2003 January 17 of AR 10250. We used TRACE filter ratios, emission measure loci, and two methods of differential emission measure analysis to examine the temperature structure of three different loops. TRACE and CDS observations agree that Loop 1 is isothermal with Log T $=$ 5.85, both along the line of sight as well as along the length of the loop leg that is visible in the CDS field of view. Loop 2 is hotter than Loop 1. It is multithermal along the line of sight, with significant emission between 6.2 $<$ Log T $<$ 6.4, but the loop apex region is out of the CDS ...

  13. Gauge theory loop operators and Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-10-15

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  14. Efficient Loop Navigation for Symbolic Execution

    CERN Document Server

    Obdrzalek, Jan

    2011-01-01

    Symbolic execution is a successful and very popular technique used in software verification and testing. A key limitation of symbolic execution is in dealing with code containing loops. The problem is that even a single loop can generate a huge number of different symbolic execution paths, corresponding to different number of loop iterations and taking various paths through the loop. We introduce a technique which, given a start location above some loops and a target location anywhere below these loops, returns a feasible path between these two locations, if such a path exists. The technique infers a collection of constraint systems from the program and uses them to steer the symbolic execution towards the target. On reaching a loop it iteratively solves the appropriate constraint system to find out which path through this loop to take, or, alternatively, whether to continue below the loop. To construct the constraint systems we express the values of variables modified in a loop as functions of the number of ...

  15. Integrated statistical modelling of spatial landslide probability

    Science.gov (United States)

    Mergili, M.; Chu, H.-J.

    2015-09-01

    Statistical methods are commonly employed to estimate spatial probabilities of landslide release at the catchment or regional scale. Travel distances and impact areas are often computed by means of conceptual mass point models. The present work introduces a fully automated procedure extending and combining both concepts to compute an integrated spatial landslide probability: (i) the landslide inventory is subset into release and deposition zones. (ii) We employ a simple statistical approach to estimate the pixel-based landslide release probability. (iii) We use the cumulative probability density function of the angle of reach of the observed landslide pixels to assign an impact probability to each pixel. (iv) We introduce the zonal probability i.e. the spatial probability that at least one landslide pixel occurs within a zone of defined size. We quantify this relationship by a set of empirical curves. (v) The integrated spatial landslide probability is defined as the maximum of the release probability and the product of the impact probability and the zonal release probability relevant for each pixel. We demonstrate the approach with a 637 km2 study area in southern Taiwan, using an inventory of 1399 landslides triggered by the typhoon Morakot in 2009. We observe that (i) the average integrated spatial landslide probability over the entire study area corresponds reasonably well to the fraction of the observed landside area; (ii) the model performs moderately well in predicting the observed spatial landslide distribution; (iii) the size of the release zone (or any other zone of spatial aggregation) influences the integrated spatial landslide probability to a much higher degree than the pixel-based release probability; (iv) removing the largest landslides from the analysis leads to an enhanced model performance.

  16. The effect of isotope on the dynamic behavior of <1 0 0> vacancy-type dislocation loop in deuterium-implanted Fe

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P.P.; Zhu, Y.M.; Zhao, M.Z.; Jiang, S.N. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, C.X.; Wang, Y.M. [Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Wan, F.R. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ohnuki, S. [Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Zhan, Q., E-mail: qzhan@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-06-15

    Highlights: • Vacancy-loop formed in D-implanted Fe after anneal at high temperature. • V-loop formation temperature in D-implanted Fe is higher than that in H-implanted one. • Dynamic behavior of <1 0 0> vacancy-loop in D-implanted Fe has been in situ observed. • Growth and shrink rate of both type loops increase with increase of the damage rate. • The origin for the behavior of both type loops was discussed in detail. - Abstract: The dynamic behavior of individual loops of the both interstitial and vacancy types is believed to be strongly connected to the degradation processes that affect radiation-resistant materials used in nuclear-fission and fusion devices. Meanwhile, the isotopic effect of hydrogen on irradiation damage has attracted wide interest. In situ transmission electron microscopy investigation of the dynamic behavior of dislocation loops under high-energy electron irradiation was carried out in pure Fe with deuterium implantation at room temperature and aged at different temperatures. Shrinkage of dislocation loop was observed in implanted sample annealed at 753 K, except the popular growth of dislocation loop. The loop shrinkage was also observed in H implanted sample annealed at relatively lower temperature. The shrinking loop is identified to be <1 0 0> vacancy-type loop by acknowledged “inside–outside” method. Origin for the dynamic behavior of both type loops and the isotopic effect on the behavior were discussed.

  17. Master integrals for the four-loop Sudakov form factor

    CERN Document Server

    Boels, Rutger; Yang, Gang

    2016-01-01

    The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally ($\\mathcal{N}=4$) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for $\\mathcal{N}=4$ SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The ...

  18. Bell Could Become the Copernicus of Probability

    Science.gov (United States)

    Khrennikov, Andrei

    2016-07-01

    Our aim is to emphasize the role of mathematical models in physics, especially models of geometry and probability. We briefly compare developments of geometry and probability by pointing to similarities and differences: from Euclid to Lobachevsky and from Kolmogorov to Bell. In probability, Bell could play the same role as Lobachevsky in geometry. In fact, violation of Bell’s inequality can be treated as implying the impossibility to apply the classical probability model of Kolmogorov (1933) to quantum phenomena. Thus the quantum probabilistic model (based on Born’s rule) can be considered as the concrete example of the non-Kolmogorovian model of probability, similarly to the Lobachevskian model — the first example of the non-Euclidean model of geometry. This is the “probability model” interpretation of the violation of Bell’s inequality. We also criticize the standard interpretation—an attempt to add to rigorous mathematical probability models additional elements such as (non)locality and (un)realism. Finally, we compare embeddings of non-Euclidean geometries into the Euclidean space with embeddings of the non-Kolmogorovian probabilities (in particular, quantum probability) into the Kolmogorov probability space. As an example, we consider the CHSH-test.

  19. The Vertex Expansion in the Consistent Histories Formulation of Spin Foam Loop Quantum Cosmology

    CERN Document Server

    Craig, David

    2016-01-01

    Assignment of consistent quantum probabilities to events in a quantum universe is a fundamental challenge which every quantum cosmology/gravity framework must overcome. In loop quantum cosmology, this issue leads to a fundamental question: What is the probability that the universe undergoes a non-singular bounce? Using the consistent histories formulation, this question was successfully answered recently by the authors for a spatially flat FRW model in the canonical approach. In this manuscript, we obtain a covariant generalization of this result. Our analysis is based on expressing loop quantum cosmology in the spin foam paradigm and using histories defined via volume transitions to compute the amplitudes of transitions obtained using a vertex expansion. We show that the probability for bounce turns out to be unity.

  20. Role of direct repeat and stem-loop motifs in mtDNA deletions: cause or coincidence?

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayanan Lakshmanan

    Full Text Available Deletion mutations within mitochondrial DNA (mtDNA have been implicated in degenerative and aging related conditions, such as sarcopenia and neuro-degeneration. While the precise molecular mechanism of deletion formation in mtDNA is still not completely understood, genome motifs such as direct repeat (DR and stem-loop (SL have been observed in the neighborhood of deletion breakpoints and thus have been postulated to take part in mutagenesis. In this study, we have analyzed the mitochondrial genomes from four different mammals: human, rhesus monkey, mouse and rat, and compared them to randomly generated sequences to further elucidate the role of direct repeat and stem-loop motifs in aging associated mtDNA deletions. Our analysis revealed that in the four species, DR and SL structures are abundant and that their distributions in mtDNA are not statistically different from randomized sequences. However, the average distance between the reported age associated mtDNA breakpoints and their respective nearest DR motifs is significantly shorter than what is expected of random chance in human (p10 bp tend to decrease with increasing lifespan among the four mammals studied here, further suggesting an evolutionary selection against stable mtDNA misalignments associated with long DRs in long-living animals. In contrast to the results on DR, the probability of finding SL motifs near a deletion breakpoint does not differ from random in any of the four mtDNA sequences considered. Taken together, the findings in this study give support for the importance of stable mtDNA misalignments, aided by long DRs, as a major mechanism of deletion formation in long-living, but not in short-living mammals.