WorldWideScience

Sample records for longwave radiation codes

  1. A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models

    International Nuclear Information System (INIS)

    Ellingson, R.G.; Baer, F.

    1993-01-01

    This report summarizes the activities of our group to meet our stated objectives. The report is divided into sections entitled: Radiation Model Testing Activities, General Circulation Model Testing Activities, Science Team Activities, and Publications, Presentations and Meetings. The section on Science Team Activities summarizes our participation with the science team to further advance the observation and modeling programs. Appendix A lists graduate students supported, and post-doctoral appointments during the project. Reports on the activities during each of the first two years are included as Appendix B. Significant progress has been made in: determining the ability of line-by-line radiation models to calculate the downward longwave flux at the surface; determining the uncertainties in calculated the downwelling radiance and flux at the surface associated with the use of different proposed profiling techniques; intercomparing clear-sky radiance and flux observations with calculations from radiation codes from different climate models; determining the uncertainties associated with estimating N* from surface longwave flux observations; and determining the sensitivity of model calculations to different formulations of the effects of finite sized clouds

  2. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2017-02-01

    Full Text Available The variation of aerosols, especially dust aerosol, in time and space plays an important role in climate forcing studies. Aerosols can effectively reduce land surface longwave emission and re-emit energy at a colder temperature, which makes it difficult to estimate downwelling surface longwave radiation (DSLR with satellite data. Using the latest atmospheric radiative transfer code (MODTRAN 5.0, we have simulated the outgoing longwave radiation (OLR and DSLR under different land surface types and atmospheric profile conditions. The results show that dust aerosol has an obvious “warming” effect to longwave radiation compared with other aerosols; that aerosol longwave radiative forcing (ALRF increased with the increasing of aerosol optical depth (AOD; and that the atmospheric water vapor content (WVC is critical to the understanding of ALRF. A method is proposed to improve the accuracy of DSLR estimation from satellite data for the skies under heavy dust aerosols. The AOD and atmospheric WVC under cloud-free conditions with a relatively simple satellite-based radiation model yielding the high accurate DSLR under heavy dust aerosol are used explicitly as model input to reduce the effects of dust aerosol on the estimation of DSLR. Validations of the proposed model with satellites data and field measurements show that it can estimate the DSLR accurately under heavy dust aerosol skies. The root mean square errors (RMSEs are 20.4 W/m2 and 24.2 W/m2 for Terra and Aqua satellites, respectively, at the Yingke site, and the biases are 2.7 W/m2 and 9.6 W/m2, respectively. For the Arvaikheer site, the RMSEs are 23.2 W/m2 and 19.8 W/m2 for Terra and Aqua, respectively, and the biases are 7.8 W/m2 and 10.5 W/m2, respectively. The proposed method is especially applicable to acquire relatively high accurate DSLR under heavy dust aerosol using MODIS data with available WVC and AOD data.

  3. Atmospheric transport, clouds and the Arctic longwave radiation paradox

    Science.gov (United States)

    Sedlar, Joseph

    2016-04-01

    Clouds interact with radiation, causing variations in the amount of electromagnetic energy reaching the Earth's surface, or escaping the climate system to space. While globally clouds lead to an overall cooling radiative effect at the surface, over the Arctic, where annual cloud fractions are high, the surface cloud radiative effect generally results in a warming. The additional energy input from absorption and re-emission of longwave radiation by the clouds to the surface can have a profound effect on the sea ice state. Anomalous atmospheric transport of heat and moisture into the Arctic, promoting cloud formation and enhancing surface longwave radiation anomalies, has been identified as an important mechanism in preconditioning Arctic sea ice for melt. Longwave radiation is emitted equally in all directions, and changes in the atmospheric infrared emission temperature and emissivity associated with advection of heat and moisture over the Arctic should correspondingly lead to an anomalous signal in longwave radiation at the top of the atmosphere (TOA). To examine the role of atmospheric heat and moisture transport into the Arctic on TOA longwave radiation, infrared satellite sounder observations from AIRS during 2003-2014 are analyzed for summer (JJAS). Thermodynamic metrics are developed to identify months characterized by a high frequency of warm and moist advection into the Arctic, and segregate the 2003-14 time period into climatological and anomalously warm, moist summer months. We find that anomalously warm, moist months result in a significant TOA longwave radiative cooling, which is opposite the forcing signal that the surface experiences during these months. At the timescale of the advective events, 3-10 days, the TOA cooling can be as large as the net surface energy budget during summer. When averaged on the monthly time scale, and over the full Arctic basin (poleward of 75°N), summer months experiencing frequent warm, moist advection events are

  4. The estimation of the atmospheric longwave radiation

    NARCIS (Netherlands)

    Nowak, H.; Wit, de M.H.; Schellen, H.L.

    1994-01-01

    The paper presents a review of some models to calculate the intensity of the atmospheric longwave radiation upon horizontal plane. This radiation (called also thermal or infrared radiation) may have significant influence on the radiative balance and subseuquently on the thermal balance of the

  5. Incoming longwave radiation to melting snow: observations, sensitivity and estimation in Northern environments

    Science.gov (United States)

    Sicart, J. E.; Pomeroy, J. W.; Essery, R. L. H.; Bewley, D.

    2006-11-01

    At high latitudes, longwave radiation can provide similar, or higher, amounts of energy to snow than shortwave radiation due to the low solar elevation (cosine effect and increased scattering due to long atmospheric path lengths). This effect is magnified in mountains due to shading and longwave emissions from the complex topography. This study examines longwave irradiance at the snow surface in the Wolf Creek Research Basin, Yukon Territory, Canada (60° 36N, 134° 57W) during the springs of 2002 and 2004. Incoming longwave radiation was estimated from standard meteorological measurements by segregating radiation sources into clear sky, clouds and surrounding terrain. A sensitivity study was conducted to detect the atmospheric and topographic conditions under which emission from adjacent terrain significantly increases the longwave irradiance. The total incoming longwave radiation is more sensitive to sky view factor than to the temperature of the emitting terrain surfaces. Brutsaert's equation correctly simulates the clear-sky irradiance for hourly time steps using temperature and humidity. Longwave emissions from clouds, which raised longwave radiation above that from clear skies by 16% on average, were best estimated using daily atmospheric shortwave transmissivity and hourly relative humidity. An independent test of the estimation procedure for a prairie site near Saskatoon, Saskatchewan, Canada, indicated that the calculations are robust in late winter and spring conditions. Copyright

  6. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  7. ENSO surface longwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2007-01-01

    Full Text Available We have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net over a 21-year period in the tropical and subtropical Pacific Ocean (40 S–40 N, 90 E–75 W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text, for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15–0 S, 105–130 E. There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3–4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm−2 during El Niño episodes to −20 Wm−2 during La Niña events, while over the western Pacific (15–0 S, 105–130 E these values range from −15 Wm−2 to +10 Wm−2, respectively. The long- term average (1984–2004 distribution of the net downwelling longwave radiation at the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm−2 south of the equator in the central Pacific (7–0 S, 160–120 W for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast, the

  8. Effectiveness estimation of camouflage measures with solar radiation and longwave radiation considered

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.S. [LG Electronics Corporation (Korea); Kauh, S.K. [Seoul National University, Seoul (Korea); Yoo, H.S. [Soongsil University, Seoul (Korea)

    1998-11-01

    Camouflage measures in military purpose utilizes the apparent temperature difference between the target and background, so it is essential to develop thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict apparent temperature as well as physical temperature exactly. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage, clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage. (author). 12 refs., 6 figs., 1 tab.

  9. Net radiation of mountain cultivated Norway spruce [Picea abies (L.) Karst.] stand: evaluation of shortand long-wave radiation ratio

    Czech Academy of Sciences Publication Activity Database

    Marková, I.; Marek, Michal V.

    2011-01-01

    Roč. 53, č. 2 (2011), s. 114-122 ISSN 0071-6677 Institutional research plan: CEZ:AV0Z60870520 Keywords : downward short- and long-wave radiation * upward short- and long-wave radiation * sun elevation * clearness index Subject RIV: GK - Forestry

  10. Longwave atmospheric radiation as a possible indicator of the aviation impact

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N.A. [Central Aerological Observatory of the Russian Federal Service for Hydrometeorology and Environmental Monitoring, Moscow (Russian Federation)

    1997-12-31

    Aircraft emissions changing composition of the atmospheric air should be sensed by radiation parameters, such as downward (in first turn) and upward long-wave fluxes. It might be supposed that the accurate measurements of long-wave (LW) radiation fluxes in regions of crowded aircraft routes time outside these regions, could detect the influence. Main transformation of the long-wave radiation (LWR) proceeds in the troposphere which absorbs and irradiates the LWR. The only mass method of the LWR measurements in the free atmosphere became the radiometer probe. In the former USSR it was successfully developed in 1961, and since 1963 the special radiometer sounding network started to make regular observations over the USSR territory. Rather small spatial variations of the downward LWR flux was observed indicating rather high homogeneity of the atmosphere composition. Analysis of the seasonal variations of the downward LWR has revealed that over some stations it has the opposite course of changes from summer to winter and it is mainly observed at rather high levels. (R.P.) 10 refs.

  11. Longwave atmospheric radiation as a possible indicator of the aviation impact

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N A [Central Aerological Observatory of the Russian Federal Service for Hydrometeorology and Environmental Monitoring, Moscow (Russian Federation)

    1998-12-31

    Aircraft emissions changing composition of the atmospheric air should be sensed by radiation parameters, such as downward (in first turn) and upward long-wave fluxes. It might be supposed that the accurate measurements of long-wave (LW) radiation fluxes in regions of crowded aircraft routes time outside these regions, could detect the influence. Main transformation of the long-wave radiation (LWR) proceeds in the troposphere which absorbs and irradiates the LWR. The only mass method of the LWR measurements in the free atmosphere became the radiometer probe. In the former USSR it was successfully developed in 1961, and since 1963 the special radiometer sounding network started to make regular observations over the USSR territory. Rather small spatial variations of the downward LWR flux was observed indicating rather high homogeneity of the atmosphere composition. Analysis of the seasonal variations of the downward LWR has revealed that over some stations it has the opposite course of changes from summer to winter and it is mainly observed at rather high levels. (R.P.) 10 refs.

  12. Spectral model for clear sky atmospheric longwave radiation

    Science.gov (United States)

    Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.

    2018-04-01

    An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the

  13. Outgoing Longwave Radiation Daily Climate Data Record (OLR Daily CDR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The product contains the 1-degree by 1-degree daily mean outgoing longwave radiation flux at the top of the atmosphere derived from HIRS radiance observations...

  14. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  15. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 2000-present, Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Incoming Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  16. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 2000-present, Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Incoming Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  17. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 2000-present, Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Incoming Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  18. NUCAPS: NOAA Unique Combined Atmospheric Processing System Outgoing Longwave Radiation (OLR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of Outgoing Longwave Radiation (OLR) from the NOAA Unique Combined Atmospheric Processing System (NUCAPS). NUCAPS was developed by the...

  19. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 2000-present, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  20. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 2000-present, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  1. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, 2000-present, Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Incoming Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  2. The measurement of longwave radiation properties upon plastic films used in greenhouses

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Sugaya, H.

    1982-01-01

    Due to the rising cost of heating oils in recent years, the subject of heat conservation on a greenhouse has become more important. In this aspect, the plastic films used for reducing heat losses must have low transmittance property for longwave radiation, also need to have low emissivity. The properties of plastic films which affect on the transfer of energy are important. The paper discusses the measurements of reflectance, transmittance, and emissivity of longwave radiation (thermal radiation) upon various plastic films used for crop protection in agriculture, particularly in a greenhouse. New measuring methods for reflectance and emissivity were presented, and the previous transmittance calculations (Hagiwara and Horiguchi, 1972) were improved by using newly obtained reflectance values. The transmittance values obtained from the present study are about 2-5 percent larger than the values obtained from the previous study. The reason for the discrepancy may be due to the negligence of the reflectance term in the previous calculation. (author)

  3. Impact of Precipitating Ice Hydrometeors on Longwave Radiative Effect Estimated by a Global Cloud-System Resolving Model

    Science.gov (United States)

    Chen, Ying-Wen; Seiki, Tatsuya; Kodama, Chihiro; Satoh, Masaki; Noda, Akira T.

    2018-02-01

    Satellite observation and general circulation model (GCM) studies suggest that precipitating ice makes nonnegligible contributions to the radiation balance of the Earth. However, in most GCMs, precipitating ice is diagnosed and its radiative effects are not taken into account. Here we examine the longwave radiative impact of precipitating ice using a global nonhydrostatic atmospheric model with a double-moment cloud microphysics scheme. An off-line radiation model is employed to determine cloud radiative effects according to the amount and altitude of each type of ice hydrometeor. Results show that the snow radiative effect reaches 2 W m-2 in the tropics, which is about half the value estimated by previous studies. This effect is strongly dependent on the vertical separation of ice categories and is partially generated by differences in terminal velocities, which are not represented in GCMs with diagnostic precipitating ice. Results from sensitivity experiments that artificially change the categories and altitudes of precipitating ice show that the simulated longwave heating profile and longwave radiation field are sensitive to the treatment of precipitating ice in models. This study emphasizes the importance of incorporating appropriate treatments for the radiative effects of precipitating ice in cloud and radiation schemes in GCMs in order to capture the cloud radiative effects of upper level clouds.

  4. NOAA Climate Data Record (CDR) of Monthly Outgoing Longwave Radiation (OLR), Version 2.2-1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Climate Data Record (CDR) of monthly mean High Resolution Infrared Radiation Sounder (HIRS) Outgoing Longwave Radiation (OLR) flux at the top of the atmosphere...

  5. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, 2000-present, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  6. NOAA Climate Data Record (CDR) of Daily Outgoing Longwave Radiation (OLR), Version 1.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Climate Data Record (CDR) contains the daily mean Outgoing Longwave Radiation (OLR) time series in global 1 degree x 1 degree equal-angle gridded maps spanning...

  7. Observation of The Top of The Atmosphere Outgoing Longwave Radiation Using The Geostationary Earth Radiation Budget Sensor

    Science.gov (United States)

    Spencer, G.; Llewellyn-Jones, D.

    In the summer of 2002 the Meteosat Second Generation (MSG) satellite is due to be launched. On board the MSG satellite is the Geostationary Earth Radiation Budget (GERB) sensor. This is a new radiometer that will be able to observe and measure the outgoing longwave radiation from the top of the atmosphere for the whole ob- served Earth disc, due to its unique position in geostationary orbit. Every 15 minutes the GERB sensor will make a full Earth disc observation, centred on the Greenwich meridian. Thus, the GERB sensor will provide unprecedented coupled temporal and spatial resolution of the outgoing longwave radiation (4.0 to 30.0 microns), by first measuring the broadband radiation (0.32 to 30.0 microns) and then subtracting the measured reflected shortwave solar radiation (0.32 to 4.0 microns), from the earth- atmosphere system. The GERB sensor is able to make measurements to within an accuracy of 1 W/sq. m. A forward model is being developed at Leicester to simulate the data from the GERB sensor for representative geophysical scenes and to investigate key parameters and processes that will affect the top of the atmosphere signal. At the heart of this model is a line-by-line radiative transfer model, the Oxford Reference Forward Model (RFM) that is to be used with model atmospheres generated from ECMWF analysis data. When MSG is launched, cloud data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI), also on board, is to be used in conjunction with GERB data.

  8. Downwelling Longwave Fluxes at Continental Surfaces-A Comparison of Observations with GCM Simulations and Implications for the Global Land-Surface Radiation Budget.

    Science.gov (United States)

    Garratt, J. R.; Prata, A. J.

    1996-03-01

    Previous work suggests that general circulation (global climate) models have excess net radiation at land surfaces, apparently due to overestimates in downwelling shortwave flux and underestimates in upwelling long-wave flux. Part of this excess, however, may be compensated for by an underestimate in downwelling longwave flux. Long term observations of the downwelling longwave component at several land stations in Europe, the United States, Australia, and Antarctica suggest that climate models (four are used, as in previous studies) underestimate this flux component on an annual basis by up to 10 W m2, yet with low statistical significance. It is probable that the known underestimate in boundary-layer air temperature contributes to this, as would low model cloudiness and neglect of minor gases such as methane, nitrogen oxide, and the freons. The bias in downwelling longwave flux, together with those found earlier for downwelling shortwave and upwlling long-wave fluxes, are consistent with the model bias found previously for net radiation. All annually averaged fluxes and biases are deduced for global land as a whole.

  9. Radiative and Thermal Impacts of Smoke Aerosol Longwave Absorption during Fires in the Moscow Region in Summer 2010

    Science.gov (United States)

    Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.

    2018-03-01

    The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.

  10. The potential influence of multiple scattering on longwave flux and heating rate simulations with clouds

    Science.gov (United States)

    Kuo, C. P.; Yang, P.; Huang, X.; Feldman, D.; Flanner, M.; Kuo, C.; Mlawer, E. J.

    2017-12-01

    Clouds, which cover approximately 67% of the globe, serve as one of the major modulators in adjusting radiative energy on the Earth. Since rigorous radiative transfer computations including multiple scattering are costly, only absorption is considered in the longwave spectral bands in the radiation sub-models of the general circulation models (GCMs). Quantification of the effect of ignoring longwave scattering for flux and heating rate simulations is performed by using the GCM version of the Longwave Rapid Radiative Transfer Model (RRTMG_LW) with an implementation with the 16-stream Discrete Ordinates Radiative Transfer (DISORT) Program for a Multi-Layered Plane-Parallel Medium in conjunction with the 2010 CCCM products that merge satellite observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), the CloudSat, the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectrometer (MODIS). One-year global simulations show that neglecting longwave scattering overestimates upward flux at the top of the atmosphere (TOA) and underestimates downward flux at the surface by approximately 2.63 and 1.15 W/m2, respectively. Furthermore, when longwave scattering is included in the simulations, the tropopause is cooled by approximately 0.018 K/day and the surface is heated by approximately 0.028 K/day. As a result, the radiative effects of ignoring longwave scattering and doubling CO2 are comparable in magnitude.

  11. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    Science.gov (United States)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  12. Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface

    Science.gov (United States)

    Webster, Clare; Rutter, Nick; Jonas, Tobias

    2017-09-01

    A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.

  13. Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing

    Czech Academy of Sciences Publication Activity Database

    Geleyn, J.- F.; Mašek, Jan; Brožková, Radmila; Kuma, P.; Degrauwe, D.; Hello, G.; Pristov, N.

    2017-01-01

    Roč. 143, č. 704 (2017), s. 1313-1335 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : numerical weather prediction * climate models * clouds * parameterization * atmospheres * formulation * absorption * scattering * accurate * database * longwave radiative transfer * broadband approach * idealized optical paths * net exchanged rate decomposition * bracketing * selective intermittency Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.444, year: 2016

  14. Observational Characterization of the Downward Atmospheric Longwave Radiation at the Surface in the City of São Paulo

    NARCIS (Netherlands)

    Wilde Barbaro, E.; Oliveira, A.P.; Soares, J.; Codato, G.; Ferreira, M.J.; Mlakar, P.; Boznar, M.Z.; Escobedo, J.

    2010-01-01

    This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in São Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a

  15. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling

    Science.gov (United States)

    Mölg, Thomas; Cullen, Nicolas J.; Kaser, Georg

    Broadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G) and incoming longwave radiation (L↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff, so G or L↓ can be modelled based on neff derived from measured L↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L↓ increases by 45-65% (depending on altitude) relative to clear-sky L↓. Validation for a 1 year dataset of G and L↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L↓ is measured.

  16. Predicting Downward Longwave Radiation for Various Land Use in All-Sky Condition: Northeast Florida

    Directory of Open Access Journals (Sweden)

    Chi-Han Cheng

    2014-01-01

    Full Text Available Accurate estimate of the surface longwave radiation is important for the surface radiation budget, which in turn controls evaporation and sensible heat fluxes. Regional land use changes can impact local weather conditions; for example, heterogeneous land use patterns and temporal changes in atmospheric circulation patterns would affect air temperature and water vapor pressure, which are more commonly used as inputs in existing models for estimating downward longwave radiation (LWd. In this study, first, we analyzed the cloud cover and land use covers impacts on LWd. Next, LWd on all-sky conditions were developed by using the existing land use-adapted model and cloud cover data from the region of Saint Johns River Water Management District (SJRWMD, FL. The results show that factors, such as, seasonal effects, cloud cover, and land use, are of importance in the estimation of LWd and they cannot be ignored when developing a model for LWd prediction. The all-sky land use-adapted model with all factors taken into account performs better than other existing models statistically. The results of the statistical analyses indicated that the BIAS, RMSE, MAE, and PMRE are −0.18 Wm−2, 10.81 Wm−2, 8.00 Wm−2, and 2.30%; −2.61 Wm−2, 14.45 Wm−2, 10.64 Wm−2, and 3.19%; −0.07 Wm−2, 10.53 Wm−2, 8.03 Wm−2, and 2.27%; and −0.62 Wm−2, 13.97 Wm−2, 9.76 Wm−2, and 2.87% for urban, rangeland, agricultural, and wetland areas, respectively.

  17. Recent developments in the line-by-line modeling of outgoing longwave radiation

    International Nuclear Information System (INIS)

    Buehler, S.A.; Engeln, A. von; Brocard, E.; John, V.O.; Kuhn, T.; Eriksson, P.

    2006-01-01

    High frequency resolution radiative transfer model calculations with the Atmospheric Radiative Transfer Simulator (ARTS) were used to simulate the clear-sky outgoing longwave radiative flux (OLR) at the top of the atmosphere. Compared to earlier calculations by Clough and coworkers the model used a spherical atmosphere instead of a plane parallel atmosphere, updated spectroscopic parameters from HITRAN, and updated continuum parameterizations from Mlawer and coworkers. These modifications lead to a reduction in simulated OLR by approximately 4.1%, the largest part, approximately 2.5%, being due to the absence of the plane parallel approximation. As a simple application of the new model, the sensitivity of OLR to changes in humidity, carbon dioxide concentration, and temperature were investigated for different cloud-free atmospheric scenarios. It was found that for the tropical scenario a 20% change in humidity has a larger impact than a doubling of the carbon dioxide concentration. The sensitive altitude region for temperature and humidity changes is the entire free troposphere, including the upper troposphere where humidity data quality is poor

  18. Revising shortwave and longwave radiation archives in view of possible revisions of the WSG and WISG reference scales: methods and implications

    Science.gov (United States)

    Nyeki, Stephan; Wacker, Stefan; Gröbner, Julian; Finsterle, Wolfgang; Wild, Martin

    2017-08-01

    A large number of radiometers are traceable to the World Standard Group (WSG) for shortwave radiation and the interim World Infrared Standard Group (WISG) for longwave radiation, hosted by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC, Davos, Switzerland). The WSG and WISG have recently been found to over- and underestimate radiation values, respectively (Fehlmann et al., 2012; Gröbner et al., 2014), although research is still ongoing. In view of a possible revision of the reference scales of both standard groups, this study discusses the methods involved and the implications on existing archives of radiation time series, such as the Baseline Surface Radiation Network (BSRN). Based on PMOD/WRC calibration archives and BSRN data archives, the downward longwave radiation (DLR) time series over the 2006-2015 period were analysed at four stations (polar and mid-latitude locations). DLR was found to increase by up to 3.5 and 5.4 W m-2 for all-sky and clear-sky conditions, respectively, after applying a WISG reference scale correction and a minor correction for the dependence of pyrgeometer sensitivity on atmospheric integrated water vapour content. Similar increases in DLR may be expected at other BSRN stations. Based on our analysis, a number of recommendations are made for future studies.

  19. A simple formula for the net long-wave radiation flux in the southern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tomasz Zapadka

    2001-09-01

    Full Text Available This paper discusses problems of estimating the net long-wave radiation flux at the sea surface on the basis of easily measurable meteorological quantities (air and sea surface temperatures, near-surface water vapour pressure, cloudiness. Empirical data and existing formulae are compared. Additionally, an improved formula for the southern Baltic region is introduced, with a systematic error of less than 1 W -2 and a statistical error of less than 20 W -2.

  20. Comparative analysis of different approaches to the computation of long-wave radiation balance of water air systems

    International Nuclear Information System (INIS)

    Zhukovskii, K.; Nourani, Y.; Monte, L.

    1999-01-01

    In the present paper, the net long-wave radiation balance of the water-air environmental systems is analysed on the base of several semi-empirical approaches. Various theoretical models of infrared atmospheric radiation are reviewed. Factors, affecting their behavior are considered. Special attention is paid to physical conditions under which those models are applicable. Atmospheric and net infrared radiation fluxes are computed and compared under clear and cloudy sky. Results are presented in graphical form. Conclusions are made on the applicability of models considered for evaluating infrared radiation fluxes in environmental conditions of Central Italy. On the base of present analysis Anderson's model is chosen for future calculations of heat budget of lakes in Central Italy [it

  1. A Paradigm shift to an Old Scheme for Outgoing Longwave Radiation

    Science.gov (United States)

    McDonald, Alastair B.

    2016-04-01

    There are many cases where the climate models do not agree with the empirical data. For instance, the data from radiosondes (and MSUs) do not show the amount of warming in the upper troposphere that is predicted by the models (Thorne et al. 2011). The current scheme for outgoing longwave radiation can be traced back to the great 19th Century French mathematician J-B Joseph Fourier. His anachronistic idea was that the radiation balance at the top of the atmosphere (TOA) is maintained by the conduction of heat from the surface (Fourier 1824). It was based on comparing the atmosphere to the 18th Century Swiss scientist H-B de Saussure's hotbox which he had invented to show that solar radiation is only slightly absorbed by the atmosphere. Saussure also showed that thermal radiation existed and argued that the warmth of the air near the surface of the Earth is due to absorption of that infra red radiation (Saussure 1786). Hence a paradigm shift to Saussure's scheme, where the thermal radiation is absorbed at the base of the atmosphere, rather than throughout the atmosphere as in Fourier's scheme, may solve many climate models problems. In this new paradigm the boundary layer continually exchanges radiation with the surface. Thus only at two instants during the day is there no net gain or loss of heat by the boundary layer from the surface, and so that layer is not in LTE. Moreover, since the absorption of outgoing longwave radiation is saturated within the boundary layer, it has little influence on the TOA balance. That balance is mostly maintained by changes in albedo, e.g. clouds and ice sheets. Use of this paradigm can explain why the excess warming in south western Europe was caused by water vapour close to the surface (Philipona et al. 2005), and may also explain why there are difficulties in closing the surface radiation balance (Wild et al. 2013) and in modelling abrupt climate change (White et al. 2013). References: Fourier, Joseph. 1824. 'Remarques G

  2. Shortwave and longwave radiative contributions to global warming under increasing CO2

    Science.gov (United States)

    Donohoe, Aaron; Armour, Kyle C.; Pendergrass, Angeline G.; Battisti, David S.

    2014-01-01

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR. PMID:25385628

  3. Shortwave and longwave radiative contributions to global warming under increasing CO2.

    Science.gov (United States)

    Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S

    2014-11-25

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

  4. Observed Screen (Air) and GCM Surface/Screen Temperatures: Implications for Outgoing Longwave Fluxes at the Surface.

    Science.gov (United States)

    Garratt, J. R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.

  5. Assesment of longwave radiation effects on air quality modelling in street canyons

    Science.gov (United States)

    Soucasse, L.; Buchan, A.; Pain, C.

    2016-12-01

    Computational Fluid Dynamics is widely used as a predictive tool to evaluate people's exposure to pollutants in urban street canyons. However, in low-wind conditions, flow and pollutant dispersion in the canyons are driven by thermal effects and may be affected by longwave (infrared) radiation due to the absorption and emission of water vapor contained in the air. These effects are mostly ignored in the literature dedicated to air quality modelling at this scale. This study aims at quantifying the uncertainties due to neglecting thermal radiation in air quality models. The Large-Eddy-Simulation of air flow in a single 2D canyon with a heat source on the ground is considered for Rayleigh and Reynolds numbers in the range of [10e8-10e10] and [5.10e3-5.10e4] respectively. The dispersion of a tracer is monitored once the statistically steady regime is reached. Incoming radiation is computed for a mid-latitude summer atmosphere and canyon surfaces are assumed to be black. Water vapour is the only radiating molecule considered and a global model is used to treat the spectral dependancy of its absorption coefficient. Flow and radiation fields are solved in a coupled way using the finite element solvers Fluidity and Fetch which have the capability of adapting their space and angular resolution according to an estimate of the solution error. Results show significant effects of thermal radiation on flow patterns and tracer dispersion. When radiation is taken into account, the air is heated far from the heat source leading to a stronger natural convection flow. The tracer is then dispersed faster out of the canyon potentially decreasing people's exposure to pollution within the street canyon.

  6. The Global Character of the Flux of Downward Longwave Radiation

    Science.gov (United States)

    Stephens, Graeme L.; Wild, Martin; Stackhouse, Paul W., Jr.; L'Ecuyer, Tristan; Kato, Seiji; Henderson, David S.

    2012-01-01

    Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W/sq m with an error of approximately +/-10 W/sq m that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W/sq m and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W/sq m for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.

  7. First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica

    Science.gov (United States)

    Yang, Yuekui; Palm, Stephen P.; Marshak, Alexander; Wu, Dong L.; Yu, Hongbin; Fu, Qiang

    2014-01-01

    We present the first satellite-detected perturbations of the outgoing longwave radiation (OLR) associated with blowing snow events over the Antarctic ice sheet using data from Cloud-Aerosol Lidar with Orthogonal Polarization and Clouds and the Earth's Radiant Energy System. Significant cloud-free OLR differences are observed between the clear and blowing snow sky, with the sign andmagnitude depending on season and time of the day. During nighttime, OLRs are usually larger when blowing snow is present; the average difference in OLRs between without and with blowing snow over the East Antarctic Ice Sheet is about 5.2 W/m2 for the winter months of 2009. During daytime, in contrast, the OLR perturbation is usually smaller or even has the opposite sign. The observed seasonal variations and day-night differences in the OLR perturbation are consistent with theoretical calculations of the influence of blowing snow on OLR. Detailed atmospheric profiles are needed to quantify the radiative effect of blowing snow from the satellite observations.

  8. Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks

    Science.gov (United States)

    Nussbaumer, Eric A.; Pinker, Rachel T.

    2012-04-01

    A novel approach for calculating downwelling surface longwave (DSLW) radiation under all sky conditions is presented. The DSLW model (hereafter, DSLW/UMD v2) similarly to its predecessor, DSLW/UMD v1, is driven with a combination of Moderate Resolution Imaging Spectroradiometer (MODIS) level-3 cloud parameters and information from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim model. To compute the clear sky component of DSLW a two layer feed-forward artificial neural network with sigmoid hidden neurons and linear output neurons is implemented; it is trained with simulations derived from runs of the Rapid Radiative Transfer Model (RRTM). When computing the cloud contribution to DSLW, the cloud base temperature is estimated by using an independent artificial neural network approach of similar architecture as previously mentioned, and parameterizations. The cloud base temperature neural network is trained using spatially and temporally co-located MODIS and CloudSat Cloud Profiling Radar (CPR) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. Daily average estimates of DSLW from 2003 to 2009 are compared against ground measurements from the Baseline Surface Radiation Network (BSRN) giving an overall correlation coefficient of 0.98, root mean square error (rmse) of 15.84 W m-2, and a bias of -0.39 W m-2. This is an improvement over an earlier version of the model (DSLW/UMD v1) which for the same time period has an overall correlation coefficient 0.97 rmse of 17.27 W m-2, and bias of 0.73 W m-2.

  9. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Science.gov (United States)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions

  10. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2012-06-01

    Full Text Available As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR. In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night.

    We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD and the relative root mean squared deviance (RMSD of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations

  11. The influence of Cloud Longwave Scattering together with a state-of-the-art Ice Longwave Optical Parameterization in Climate Model Simulations

    Science.gov (United States)

    Chen, Y. H.; Kuo, C. P.; Huang, X.; Yang, P.

    2017-12-01

    Clouds play an important role in the Earth's radiation budget, and thus realistic and comprehensive treatments of cloud optical properties and cloud-sky radiative transfer are crucial for simulating weather and climate. However, most GCMs neglect LW scattering effects by clouds and tend to use inconsistent cloud SW and LW optical parameterizations. Recently, co-authors of this study have developed a new LW optical properties parameterization for ice clouds, which is based on ice cloud particle statistics from MODIS measurements and state-of-the-art scattering calculation. A two-stream multiple-scattering scheme has also been implemented into the RRTMG_LW, a widely used longwave radiation scheme by climate modeling centers. This study is to integrate both the new LW cloud-radiation scheme for ice clouds and the modified RRTMG_LW with scattering capability into the NCAR CESM to improve the cloud longwave radiation treatment. A number of single column model (SCM) simulations using the observation from the ARM SGP site on July 18 to August 4 in 1995 are carried out to assess the impact of new LW optical properties of clouds and scattering-enabled radiation scheme on simulated radiation budget and cloud radiative effect (CRE). The SCM simulation allows interaction between cloud and radiation schemes with other parameterizations, but the large-scale forcing is prescribed or nudged. Comparing to the results from the SCM of the standard CESM, the new ice cloud optical properties alone leads to an increase of LW CRE by 26.85 W m-2 in average, as well as an increase of the downward LW flux at surface by 6.48 W m-2. Enabling LW cloud scattering further increases the LW CRE by another 3.57 W m-2 and the downward LW flux at the surface by 0.2 W m-2. The change of LW CRE is mainly due to an increase of cloud top height, which enhances the LW CRE. A long-term simulation of CESM will be carried out to further understand the impact of such changes on simulated climates.

  12. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    Science.gov (United States)

    Lange, Stefan

    2018-05-01

    Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  13. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    Directory of Open Access Journals (Sweden)

    S. Lange

    2018-05-01

    Full Text Available Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds. Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016 rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011 data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016. This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  14. Role of Longwave Cloud-Radiation Feedback in the Simulation of the Madden-Julian Oscillation

    Science.gov (United States)

    Kim, Daehyun; Ahn, Min-Seop; Kang, In-Sik; Del Genio, Anthony D.

    2015-01-01

    The role of the cloud-radiation interaction in the simulation of the Madden-Julian oscillation (MJO) is investigated. A special focus is on the enhancement of column-integrated diabatic heating due to the greenhouse effects of clouds and moisture in the region of anomalous convection. The degree of this enhancement, the greenhouse enhancement factor (GEF), is measured at different precipitation anomaly regimes as the negative ratio of anomalous outgoing longwave radiation to anomalous precipitation. Observations show that the GEF varies significantly with precipitation anomaly and with the MJO cycle. The greenhouse enhancement is greater in weak precipitation anomaly regimes and its effectiveness decreases monotonically with increasing precipitation anomaly. The GEF also amplifies locally when convection is strengthened in association with the MJO, especially in the weak precipitation anomaly regime (less than 5 mm day(exp -1)). A robust statistical relationship is found among CMIP5 climate model simulations between the GEF and the MJO simulation fidelity. Models that simulate a stronger MJO also simulate a greater GEF, especially in the weak precipitation anomaly regime (less than 5 mm day(exp -1)). Models with a greater GEF in the strong precipitation anomaly regime (greater than 30 mm day(-1)) represent a slightly slower MJO propagation speed. Many models that lack the MJO underestimate the GEF in general and in particular in the weak precipitation anomaly regime. The results herein highlight that the cloud-radiation interaction is a crucial process for climate models to correctly represent the MJO.

  15. Longwave scattering effects on fluxes in broken cloud fields

    Energy Technology Data Exchange (ETDEWEB)

    Takara, E.E.; Ellingson, R.G. [Univ. of Maryland, College Park, MD (United States)

    1996-04-01

    The optical properties of clouds in the radiative energy balance are important. Most works on the effects of scattering have been in the shortwave; but longwave effects can be significant. In this work, the fluxes above and below a single cloud layer are presented, along with the errors in assuming flat black plate clouds or black clouds. The predicted fluxes are the averaged results of analysis of several fields with the same cloud amount.

  16. Code of practice for ionizing radiation

    International Nuclear Information System (INIS)

    Khoo Boo Huat

    1995-01-01

    Prior to 1984, the use of ionizing radiation in Malaysia was governed by the Radioactive Substances Act of 1968. After 1984, its use came under the control of Act 304, called the Atomic Energy Licensing Act 1984. Under powers vested by the Act, the Radiation Protection (Basic Safety Standards) Regulations 1988 were formulated to regulate its use. These Acts do not provide information on proper working procedures. With the publication of the codes of Practice by The Standards and Industrial Research Institute of Malaysia (SIRIM), the users are now able to follow proper guidelines and use ionizing radiation safely and beneficially. This paper discusses the relevant sections in the following codes: 1. Code of Practice for Radiation Protection (Medical X-ray Diagnosis) MS 838:1983. 2. Code of Practice for Safety in Laboratories Part 4: Ionizing radiation MS 1042: Part 4: 1992. (author)

  17. Comparison of observed and modeled cloud-free longwave downward radiation (2010–2016 at the high mountain BSRN Izaña station

    Directory of Open Access Journals (Sweden)

    R. D. García

    2018-06-01

    Full Text Available A 7-year (2010–2016 comparison study between measured and simulated longwave downward radiation (LDR under cloud-free conditions was performed at the Izaña Atmospheric Observatory (IZO, Spain. This analysis encompasses a total of 2062 cases distributed approximately evenly between day and night. Results show an excellent agreement between Baseline Surface Radiation Network (BSRN measurements and simulations with libRadtran V2.0.1 and MODerate resolution atmospheric TRANsmission model (MODTRAN V6 radiative transfer models (RTMs. Mean bias (simulated − measured of  <  1.1 % and root mean square of the bias (RMS of  <  1 % are within the instrumental error (2 %. These results highlight the good agreement between the two RTMs, proving to be useful tools for the quality control of LDR observations and for detecting temporal drifts in field instruments. The standard deviations of the residuals, associated with the RTM input parameters uncertainties are rather small, 0.47 and 0.49 % for libRadtran and MODTRAN, respectively, at daytime, and 0.49 to 0.51 % at night-time. For precipitable water vapor (PWV  >  10 mm, the observed night-time difference between models and measurements is +5 W m−2 indicating a scale change of the World Infrared Standard Group of Pyrgeometers (WISG, which serves as reference for atmospheric longwave radiation measurements. Preliminary results suggest a possible impact of dust aerosol on infrared radiation during daytime that might not be correctly parametrized by the models, resulting in a slight underestimation of the modeled LDR, of about −3 W m−2, for relatively high aerosol optical depth (AOD  >  0.20.

  18. Longwave instabilities and patterns in fluids

    CERN Document Server

    Shklyaev, Sergey

    2017-01-01

    This book summarizes the main advances in the field of nonlinear evolution and pattern formation caused by longwave instabilities in fluids. It will allow readers to master the multiscale asymptotic methods and become familiar with applications of these methods in a variety of physical problems.  Longwave instabilities are inherent to a variety of systems in fluid dynamics, geophysics, electrodynamics, biophysics, and many others. The techniques of the derivation of longwave amplitude equations, as well as the analysis of numerous nonlinear equations, are discussed throughout. This book will be of value to researchers and graduate students in applied mathematics, physics, and engineering, in particular within the fields of fluid mechanics, heat and mass transfer theory, and nonlinear dynamics. .

  19. Adaptation of radiation shielding code to space environment

    International Nuclear Information System (INIS)

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  20. Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.

    Science.gov (United States)

    Garratt, J. R.

    2001-04-01

    An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).

  1. Radiation transport phenomena and modeling - part A: Codes

    International Nuclear Information System (INIS)

    Lorence, L.J.

    1997-01-01

    The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped

  2. Long-wave Irradiance Measurement and Modeling during Snowmelt, a Case Study in the Yukon Territory, Canada

    Science.gov (United States)

    Sicart, J.; Essery, R.; Pomeroy, J.

    2004-12-01

    At high latitudes, long-wave radiation emitted by the atmosphere and solar radiation can provide similar amounts of energy for snowmelt due to the low solar elevation and the high albedo of snow. This paper investigates temporal and spatial variations of long-wave irradiance at the snow surface in an open sub-Arctic environment. Measurements were conducted in the Wolf Creek Research Basin, Yukon Territory, Canada (60°36'N, 134°57'W) during the springs of 2002, 2003 and 2004. The main causes of temporal variability are air temperature and cloud cover, especially in the beginning of the melting period when the atmosphere is still cold. Spatial variability was investigated through a sensitivity study to sky view factors and to temperatures of surrounding terrain. The formula of Brutsaert gives a useful estimation of the clear-sky irradiance at hourly time steps. Emission by clouds was parameterized at the daily time scale from the atmospheric attenuation of solar radiation. The inclusion of air temperature variability does not much improve the calculation of cloud emission.

  3. Code of practice against radiation hazards at PINSTECH

    International Nuclear Information System (INIS)

    Mubarak, M.A.; Javed, M.; Ahmad, S.

    1982-10-01

    It is the radiation safety policy of PAEC/PINSTECH that all radiation exposure should be kept as low as reasonably achievable (ALARA). A code of practice against radiation hazards at PINSTECH was written in 1972 which regulated the conduct of radiation work at PINSTECH. Since the radiation work at PINSTECH has greatly increased, it was considered necessary to revise the code so as to incorporate the new concepts in this field as well as to help meet the present requirements of radiation protection. The procedures set forth in this code are mandatory and in no case should any of them be deviated except under an emergency situation which may be handled according to procedures laid down in a separate manual ''Emergency Procedures at PARR-PINSTECH'' (PINSTECH/HP--19). All those supervising or performing any kind of radiation work are required to study and adhere to these procedures. Copy of this code should be kept in every radiation laboratory for ready reference. (author)

  4. Calculation codes in radiation protection, radiation physics and dosimetry

    International Nuclear Information System (INIS)

    2003-01-01

    These scientific days had for objective to draw up the situation of calculation codes of radiation transport, of sources estimation, of radiation doses managements and to draw the future perspectives. (N.C.)

  5. Code of practice for safety in laboratory - non ionising radiation

    International Nuclear Information System (INIS)

    Ramli Jaya; Mohd Yusof Mohd Ali; Khoo Boo Huat; Khatijah Hashim

    1995-01-01

    The code identifies the non-ionizing radiation encountered in laboratories and the associated hazards. The code is intended as a laboratory standard reference document for general information on safety requirements relating to the usage of non-ionizing radiations in laboratories. The nonionizing radiations cover in this code, namely, are ultraviolet radiation, visible light, radio-frequency radiation, lasers, sound waves and ultrasonic radiation. (author)

  6. Longwave indirect effect of mineral dusts on ice clouds

    Directory of Open Access Journals (Sweden)

    Q. Min

    2010-08-01

    Full Text Available In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2 of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.

  7. Calculation codes in radiation protection, radiation physics and dosimetry; Codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    These scientific days had for objective to draw up the situation of calculation codes of radiation transport, of sources estimation, of radiation doses managements and to draw the future perspectives. (N.C.)

  8. Atmospheric radiative transfer modeling: a summary of the AER codes

    Energy Technology Data Exchange (ETDEWEB)

    Clough, S.A. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Shephard, M.W. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)]. E-mail: mshephar@aer.com; Mlawer, E.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Delamere, J.S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Iacono, M.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Cady-Pereira, K. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Boukabara, S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Brown, P.D. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)

    2005-03-01

    The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER (http://www.rtweb.aer.com). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM{sub L}W and RRTM{sub S}W; the Monochromatic Radiative Transfer Model (MonoRTM); the MT{sub C}KD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model.

  9. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  10. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  11. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be

  12. The RAGE radiation-hydrodynamic code

    International Nuclear Information System (INIS)

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale; Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Stefan, Ryan

    2008-01-01

    We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm

  13. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  14. The RAGE radiation-hydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale [Science Applications International Corp. MS A-1, 10260 Campus Point Drive, San Diego, CA 92121 (United States); Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob [Los Alamos National Laboratory, MS T087, PO Box 1663, Los Alamos, NM 87545 (United States); Stefan, Ryan [TaylorMade-adidas Golf, 5545 Fermi Court, Carlsbad, CA 92008-7324 (United States)], E-mail: michael.r.clover@saic.com

    2008-10-01

    We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.

  15. Code of practice for radiation protection in veterinary medicine

    International Nuclear Information System (INIS)

    Duffy, J.; Fenton, D.; McGarry, A.; McAllister, H.; Skelly, C

    2002-11-01

    This Code of Practice updates the Code of Practice on Radiation Protection in Veterinary Radiology prepared by the Nuclear Energy Board in June 1989. The Code is designed to give guidance to veterinary surgeons to ensure that they, their employees and members of the public are adequately protected from the hazards of ionising radiation arising from the use of X-ray equipment and radioactive substances in the practice of veterinary medicine. It reflects the regulations as specified in the Radiological Protection Act, 1991, (Ionising Radiation) Order, 2000 (S.I. No. 125 of 2000)

  16. Development of models for thermal infrared radiation above and within plant canopies

    Science.gov (United States)

    Paw u, Kyaw T.

    1992-01-01

    Any significant angular dependence of the emitted longwave radiation could result in errors in remotely estimated energy budgets or evapotranspiration. Empirical data and thermal infrared radiation models are reviewed in reference to anisotropic emissions from the plant canopy. The biometeorological aspects of linking longwave models with plant canopy energy budgets and micrometeorology are discussed. A new soil plant atmosphere model applied to anisotropic longwave emissions from a canopy is presented. Time variation of thermal infrared emission measurements is discussed.

  17. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  18. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  19. Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model

    International Nuclear Information System (INIS)

    Daouas, Naouel

    2016-01-01

    Highlights: • An efficient tool is proposed for a rigorous energy analysis of building envelope. • The longwave radiation has an important impact on the energy requirements. • Optimum insulation thickness for roofs is rigorously determined in a cost analysis. • The present method is more accurate than the sol–air degree hours method. • The proposed model is applicable to the study of the efficiency of cool roofs. - Abstract: In Tunisia, the building sector is considered as a major issue of energy consumption. A special attention should be drawn to improve the thermal quality of the building envelope with real consideration of the Tunisian climate specificity. One of the most effective measures is the roof insulation. Therefore, the present study is concerned with the determination of the optimum insulation thickness and the resulting energy savings and payback period for two typical roof structures and two types of insulation materials. An efficient analytical dynamic model based on the Complex Finite Fourier Transform (CFFT) is proposed and validated in order to handle the nonlinear longwave radiation (LWR) exchange with the sky. This model provides a short computational time solution of the transient heat transfer through multilayer roofs, which could be a good alternative to some numerical methods. Both heating and cooling annual loads are rigorously estimated and used as inputs to a life-cycle cost analysis. Among the studied cases, the most economical one is the hollow terracotta-based roof insulated with rock wool, where the optimum insulation thickness is estimated to be 7.9 cm, with a payback period of 6.06 years and energy savings up to 58.06% of the cost of energy consumed without insulation. The impact of the LWR exchange component is quantified and the results show its important effect on the annual transmission loads and, consequently, on optimum insulation thickness. A sensitivity analysis shows the efficiency of cool roofs in the Tunisian

  20. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  1. Estimation of sea surface salinity in the Bay of Bengal using Outgoing Longwave Radiation

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Subrahmanyam, B.; Sarma, M.S.S.; Tilvi, V.; RameshBabu, V.

    .5C176 C2 2.5C176 grids in conjunction with the OLR maps. 3. Results and Discussion [7] Figures 1a–1c show the distributions of climatolog- ical OLR (CDC, USA), E-P (SOCC, UK) and SSS (WOA98) data sets for June in the tropical Indian Ocean and western...) (Figure 2c) and in the northern Andaman Sea during northern fall (October) (Figure 2d). Since the temperature in the stratified layer Figure 1. Distributions of (a) Outgoing Longwave Radia- tion (CDC, USA), (b) Evaporation minus Precipitation (SOCC, UK...

  2. Radiation observation at Dome Fuji Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Naohiko Hirasawa

    2008-06-01

    Full Text Available This paper reports radiation observations at Dome Fuji Station from February 1, 2003 to January 20, 2004, carried out by the 44th Japanese Antarctic Research Expedition team. The radiometers which measured the upward longwave radiation (LWu, the downward longwave (LWd and the downward shortwave (SWd were equipped with fans to avoid frosting on the surface of the radiometer dome by air circulation. The upward shortwave radiation (SWu measured by a radiometer without fan needs correction, which we leave as a problem for the future. In addition, as for LWd and LWu in the polar night, a typical radiational cooling case and a suppressed radiational cooling one are shown.

  3. A Radiation Solver for the National Combustion Code

    Science.gov (United States)

    Sockol, Peter M.

    2015-01-01

    A methodology is given that converts an existing finite volume radiative transfer method that requires input of local absorption coefficients to one that can treat a mixture of combustion gases and compute the coefficients on the fly from the local mixture properties. The Full-spectrum k-distribution method is used to transform the radiative transfer equation (RTE) to an alternate wave number variable, g . The coefficients in the transformed equation are calculated at discrete temperatures and participating species mole fractions that span the values of the problem for each value of g. These results are stored in a table and interpolation is used to find the coefficients at every cell in the field. Finally, the transformed RTE is solved for each g and Gaussian quadrature is used to find the radiant heat flux throughout the field. The present implementation is in an existing cartesian/cylindrical grid radiative transfer code and the local mixture properties are given by a solution of the National Combustion Code (NCC) on the same grid. Based on this work the intention is to apply this method to an existing unstructured grid radiation code which can then be coupled directly to NCC.

  4. Longwave Imaging for Astronomical Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  5. Code of practice : safe use of ionizing radiation

    International Nuclear Information System (INIS)

    1988-07-01

    Ionizing radiation is used extensively in the field of scientific research. The risk of uncontrolled exposure to both the worker and the environment is ever present. The purpose of this Code is to set out practices considered by the CSIRO Health and Safety Committee to be appropriate for CSIRO staff and, if followed, they will result in appropriate protection for research staff and the environment. The Code does not cover sources of non-ionizing radiation such as microwave ovens, RF generators and laser sources

  6. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    Science.gov (United States)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  7. Code of Nursing Practice for Staff Exposed to Ionizing Radiation (1984)

    International Nuclear Information System (INIS)

    1984-01-01

    This Code, published by the National Health and Medical Research Council and intended for nurses and auxiliary staff provides general guidance on radiation protection. The Code is supplementary to radiation control legislation relating to the use of ionizing radiation in medical practice. The principles established by the recommendations of the International Commission on Radiological Protection (ICRP) have been taken into account. (NEA) [fr

  8. Improved Estimates of Clear Sky Longwave Flux and Application to the Tropical Greenhouse Effect

    Science.gov (United States)

    Collins, W. D.

    1997-01-01

    The first objective of this investigation is to eliminate the clear-sky offset introduced by the scene-identification procedures developed for the Earth Radiation Budget Experiment (ERBE). Estimates of this systematic bias range from 10 to as high as 30 W/sq m. The initial version of the ScaRaB data is being processed with the original ERBE algorithm. Since the ERBE procedure for scene identification is based upon zonal flux averages, clear scenes with longwave emission well below the zonal mean value are mistakenly classified as cloudy. The erroneous classification is more frequent in regions with deep convection and enhanced mid- and upper-tropospheric humidity. We will develop scene identification parameters with zonal and/or time dependence to reduce or eliminate the bias in the clear- sky data. The modified scene identification procedure could be used for the ScaRaB-specific version of the Earth-radiation products. The second objective is to investigate changes in the clear-sky Outgoing Longwave Radiation (OLR) associated with decadal variations in the tropical and subtropical climate. There is considerable evidence for a shift in the climate state starting in approximately 1977. The shift is accompanied by higher SSTs in the equatorial Pacific, increased tropical convection, and higher values of atmospheric humidity. Other evidence indicates that the humidity in the tropical troposphere has been steadily increasing over the last 30 years. It is not known whether the atmospheric greenhouse effect has increased during this period in response to these changes in SST and precipitable water. We will investigate the decadal-scale fluctuations in the greenhouse effect using Nimbus-7, ERBE, and ScaRaB measurements spaning 1979 to the present. The data from the different satellites will be intercalibrated by comparison with model calculations based upon ship radiosonde observations. The fluxes calculated from the radiation model will also be used for validation of the

  9. Code of practice for conducting radiation work at PINSTECH (revised 1992)

    International Nuclear Information System (INIS)

    Aslam, M.; Atta, M.A.; Orfi, S.D.

    1992-02-01

    The primary objective of this code is to achieve standard of radiation protection and safety set by Pakistan Nuclear Safety and Radiation Protection (PNSRP) ordinance 1984 and PNSRP regulations 1990. Secondary objective remains to make all best efforts to implement latest ICRP recommendations. The revised code of practice sets forth the objective of adequate system radiological safety of radiation workers, environment and general public. The code provides the guidance to persons and authorities who are responsible for the protection of workers and those who are concerned with the planning and management of personnel monitoring services. The procedures set forth in the code are mandatory and in no case should any of them be deviated under normal conditions. All those supervising and performing any kind of radiation work are required to study and adhere to those procedures and shell make all possible efforts to keep the exposure as low as reasonably achievable (ALARA), social and economic factor being taken into account. (author)

  10. Permanent phonetic identification code for radiation workers

    International Nuclear Information System (INIS)

    Khatua, R.; Somasundaram, S.; Srivastava, D.N.

    1987-01-01

    This report describes a system of self-checking short and easily memorisable 4-digit 'Permanent Phonetic Radiation Code' (PPRC) using radix 128 for Indians occupationally exposed to radiation, to facilitate entry of all radiation dose data pertaining to an individual in a single record of a file. The logic of PPRC is computer compatible. The necessary computer program has been developed in Health Physics Division for printing the PPRCs in Devanagari script through dot-matrix printers for making it understandable to the majority of the persons concerned. (author)

  11. Ethical codes. Fig leaf argument, ballast or cultural element for radiation protection?

    International Nuclear Information System (INIS)

    Gellermann, Rainer

    2014-01-01

    The international association for radiation protection (IRPA) adopted in May 2004 a Code of Ethics in order to allow their members to hold an adequate professional level of ethical line of action. Based on this code of ethics the professional body of radiation protection (Fachverband fuer Strahlenschutz) has developed its own ethical code and adopted in 2005.

  12. Alteration of lymphocyte functions by 8-methoxypsoralen and longwave ultraviolet radiation. I. Suppressive effects of PUVA on T-lymphocyte migration in vitro

    International Nuclear Information System (INIS)

    Okamoto, H.; Takigawa, M.; Horio, T.

    1985-01-01

    We investigated the influence of 8-methoxypsoralen (8-MOP) plus long-wave ultraviolet radiation (PUVA) on lymphocyte migration in vitro. Nylon wool-purified, mouse splenic T lymphocytes showed locomotive responses to casein, normal mouse serum (NMS), and zymosan-activated mouse serum (ZAS). Migratory responses to casein and NMS, and to ZAS were remarkably suppressed in lymphocytes exposed to 0.5 J/cm2 UVA plus 0.1 micrograms/ml 8-MOP and to 0.8 J/cm2 UVA plus 8-MOP, respectively. The PUVA treatment used in the present study had no effect on random movement and lymphocyte viability. T lymphocytes cultured in the absence of mitogenic agent for 24 h demonstrated a greater increase in their migration activity than noncultured cells, while lymphocytes cultured after 1.0 J/cm2 PUVA pretreatment remained low. These findings suggest that the therapeutic effect of PUVA on inflammatory skin disorders may be due in part to the suppression of lymphocyte migration

  13. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  14. Acceleration of a Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Hochstedler, R.D.; Smith, L.M.

    1996-01-01

    Execution time for the Integrated TIGER Series (ITS) Monte Carlo radiation transport code has been reduced by careful re-coding of computationally intensive subroutines. Three test cases for the TIGER (1-D slab geometry), CYLTRAN (2-D cylindrical geometry), and ACCEPT (3-D arbitrary geometry) codes were identified and used to benchmark and profile program execution. Based upon these results, sixteen top time-consuming subroutines were examined and nine of them modified to accelerate computations with equivalent numerical output to the original. The results obtained via this study indicate that speedup factors of 1.90 for the TIGER code, 1.67 for the CYLTRAN code, and 1.11 for the ACCEPT code are achievable. copyright 1996 American Institute of Physics

  15. grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Gammie, Charles F.; Leung, Po Kin; Moscibrodzka, Monika

    2009-01-01

    We describe a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The version we describe here is designed to model hot accretion flows in the Kerr metric and therefore incorporates synchrotron emission and absorption, and Compton scattering. The code can be readily generalized, however, to account for other radiative processes and an arbitrary spacetime. We describe a suite of test problems, and demonstrate the expected N -1/2 convergence rate, where N is the number of Monte Carlo samples. Finally, we illustrate the capabilities of the code with a model calculation, a spectrum of the slowly accreting black hole Sgr A* based on data provided by a numerical general relativistic MHD model of the accreting plasma.

  16. Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Gunnar [Dept. of Geosciences, Univ. of Oslo (Norway); Center for International Climate and Environmental Research-Oslo (CICERO), Oslo (Norway); Kvalevaag, Maria [Dept. of Geosciences, Univ. of Oslo (Norway); Raedel, Gaby; Cook, Jolene; Shine, Keith P. [Dept. of Meteorology, Univ. of Reading (United Kingdom); Clark, Hannah [CNRM/GAME Meteo France, Toulouse (France); Lab. d' Aerologie, Univ. de Toulouse (France); Karcher, Fernand [CNRM/GAME Meteo France, Toulouse (France); Markowicz, Krzysztof; Kardas, Aleksandra; Wolkenberg, Paulina [Inst. of Geophysics, Univ. of Warsaw (Poland); Balkanski, Yves [LSCE/IPSL, Lab. CEA-CNRS-UVSQ (France); Ponater, Michael [Deutsches Zentrum fuer Luft und Raumfahrt (DLR), Inst. fuer Physik der Atmosphaere, Oberpfaffenhofen (Germany); Forster, Piers; Rap, Alexandru [School of Earth and Environment, Univ. of Leeds (United Kingdom); Leon, Ruben Rodriguez de [Manchester Metropolitan Univ. (United Kingdom)

    2009-12-15

    Seven groups have participated in an intercomparison study of calculations of radiative forcing (RF) due to stratospheric water vapour (SWV) and contrails. a combination of detailed radiative transfer schemes and codes for global-scale calculations have been used, as well as a combination of idealized simulations and more realistic global-scale changes in stratospheric water vapour and contrails. Detailed line-by-line codes agree within about 15% for longwave (LW) and shortwave (SW) RF, except in one case where the difference is 30%. Since the LW and SW RF due to contrails and SWV changes are of opposite sign, the differences between the models seen in the individual LW and SW components can be either compensated or strengthened in the net RF. and thus in relative terms uncertainties are much larger for the net RF. Some of the models used for global-scale simulations of changes in SWV and contrails differ substantially in RF from the more detailed radiative transfer schemes. For the global-scale calculations we use a method of weighting the results to calculate a best estimate based on their performance compared to the more detailed radiative transfer schemes in the idealized simulations. (orig.)

  17. Code of practice of radiation protection in fixed nuclear gauges

    International Nuclear Information System (INIS)

    Eltayeb, M. A. M.

    2012-09-01

    The present work aims at developing and updating a code of practice of radiation protection in fixed nuclear gauges that comply with current international recommendations. The work also intended to evaluate the current radiation protection situation in two selected companies using nuclear gauges in Sudan. A draft of the code is proposed which includes the basic principle of protection such as source construction and gauges radiation monitoring, storage maintenance and leak testing as well as specific issues related to nuclear gauges. The practical part of this study included investigation of radiation protection in the comparisons using nuclear gauges for level detection, to evaluate the level of radiation protection and the compliance to the regulatory authority regulations. The result revealed that the two companies do not have an effective radiation protection program and that can lead to exposure of workers to unnecessary doses. Some recommendations were stated, if implemented they could improve the status of radiation protection in those companies. (Author)

  18. Code of practice for radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Hamed, M. I.

    2010-05-01

    In aim of this study was to develop a draft for a new code practice for radiation protection in nuclear medicine that meets the current relevant international recommendation. The draft includes the following main fields: methods of radiation protection for workers, patients and public. Also, the principles of safe design of nuclear medicine departments, quality assurance program, proper manipulation of radiation sources including radioactive waste and emergency preparedness and response. The practical part of this study includes inspections of three nuclear medicine departments available in Sudan so as to assess the degree of compliance of those departments with what is stated in this code. The inspection missions have been conducted using a checklist that addresses all items that may affect radiation raincoat issues in addition to per formin area radiation monitoring around the installation of the radioactive sources. The results of this revealed that most of the departments do not have effective radiation protection program which in turn could lead to unnecessary exposure to patients, public and workers. Finally, some recommendations are given that - if implemented - could improve the status of radiation protection in nuclear medicine department. (Author)

  19. Longwave emission trends over Africa and implications for Atlantic hurricanes

    Science.gov (United States)

    Zhang, Lei; Rechtman, Thomas; Karnauskas, Kristopher B.; Li, Laifang; Donnelly, Jeffrey P.; Kossin, James P.

    2017-09-01

    The latitudinal gradient of outgoing longwave radiation (OLR) over Africa is a skillful and physically based predictor of seasonal Atlantic hurricane activity. The African OLR gradient is observed to have strengthened during the satellite era, as predicted by state-of-the-art global climate models (GCMs) in response to greenhouse gas forcing. Prior to the satellite era and the U.S. and European clean air acts, the African OLR gradient weakened due to aerosol forcing of the opposite sign. GCMs predict a continuation of the increasing OLR gradient in response to greenhouse gas forcing. Assuming a steady linear relationship between African easterly waves and tropical cyclogenesis, this result suggests a future increase in Atlantic tropical cyclone frequency by 10% (20%) at the end of the 21st century under the RCP 4.5 (8.5) forcing scenario.

  20. Ethical codes. Fig leaf argument, ballast or cultural element for radiation protection?; Ethik-Codes. Feigenblatt, Ballast oder Kulturelement fuer den Strahlenschutz?

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, Rainer [Nuclear Control and Consulting GmbH, Braunschweig (Germany)

    2014-07-01

    The international association for radiation protection (IRPA) adopted in May 2004 a Code of Ethics in order to allow their members to hold an adequate professional level of ethical line of action. Based on this code of ethics the professional body of radiation protection (Fachverband fuer Strahlenschutz) has developed its own ethical code and adopted in 2005.

  1. Variability In Long-Wave Runup as a Function of Nearshore Bathymetric Features

    Energy Technology Data Exchange (ETDEWEB)

    Dunkin, Lauren McNeill [Texas A & M Univ., College Station, TX (United States)

    2010-05-01

    Beaches and barrier islands are vulnerable to extreme storm events, such as hurricanes, that can cause severe erosion and overwash to the system. Having dunes and a wide beach in front of coastal infrastructure can provide protection during a storm, but the influence that nearshore bathymetric features have in protecting the beach and barrier island system is not completely understood. The spatial variation in nearshore features, such as sand bars and beach cusps, can alter nearshore hydrodynamics, including wave setup and runup. The influence of bathymetric features on long-wave runup can be used in evaluating the vulnerability of coastal regions to erosion and dune overtopping, evaluating the changing morphology, and implementing plans to protect infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone. XBeach assumes that coastal erosion at the land-sea interface is dominated by bound long-wave processes. Several hydrodynamic conditions are used to force the numerical model. The XBeach simulation results suggest that bathymetric irregularity induces significant changes in the extreme long-wave runup at the beach and the energy indicator through the surfzone.

  2. Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors

    Science.gov (United States)

    Pigeon, Jeremy James

    The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882

  3. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  4. Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening

    OpenAIRE

    Rehab I. Abdul Rahman; Mazhar B. Tayel

    2015-01-01

    This paper presents a method of hardening the 8051 micro-controller, able to assure reliable operation in the presence of bit flips caused by radiation. Aiming at avoiding such faults in the 8051 micro-controller, Hamming code protection was used in its SRAM memory and registers. A VHDL code has been used for this hamming code protection.

  5. Biologic changes due to long-wave ultraviolet irradiation on human skin: ultrastructural study

    International Nuclear Information System (INIS)

    Kumakiri, M.; Hashimoto, K.; Willis, I.

    1977-01-01

    Alteration of the skin induced by single and repeated long-wave ultraviolet (UVA) exposures was studied. Following a single exposure to relatively large doses of UVA, pronounced dermal damage was observed. In the papillary dermis, superficial dermal vessels showed widely open endothelial gaps and extravasation of blood cells. Marked changes of fibroblasts were also seen in the superficial dermis. In the reticular dermis, extravascular fibrin deposition was seen. After repeated exposures to UVA the formation of cross-banded filamentous aggregations (''Zebra bodies'') was observed in the superficial and reticular dermis. These were often found in amorphous masses surrounding the blood vessels. These striking dermal alterations were absent in skin irradiated by solar stimulating radiation and in control skin. Dyskeratotic ''sunburn cells'' were occasionally seen in the epidermis after single as well as repeated exposures to UVA. The number of these cells was less than that seen after a single exposure to solar simulating radiation

  6. Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.

    Science.gov (United States)

    Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun

    2017-09-01

    Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.

  7. MQRAD, a computer code for synchrotron radiation from quadrupole magnets

    International Nuclear Information System (INIS)

    Morimoto, Teruhisa.

    1984-01-01

    The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)

  8. PEREGRINE: An all-particle Monte Carlo code for radiation therapy

    International Nuclear Information System (INIS)

    Hartmann Siantar, C.L.; Chandler, W.P.; Rathkopf, J.A.; Svatos, M.M.; White, R.M.

    1994-09-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor while minimizing the dose to normal tissues. To carry out this task, it is critical to calculate correctly the distribution of dose delivered. Monte Carlo transport methods have the potential to provide more accurate prediction of dose distributions than currently-used methods. PEREGRINE is a new Monte Carlo transport code developed at Lawrence Livermore National Laboratory for the specific purpose of modeling the effects of radiation therapy. PEREGRINE transports neutrons, photons, electrons, positrons, and heavy charged-particles, including protons, deuterons, tritons, helium-3, and alpha particles. This paper describes the PEREGRINE transport code and some preliminary results for clinically relevant materials and radiation sources

  9. Calibrated Mid-wave Infrared (IR) (MidIR) and Long-wave IR (LWIR) Stokes and Degree-of-Liner Polarization (DOLP)

    Science.gov (United States)

    2008-09-01

    radiance from natural surfaces, was recorded continuously using an Eppley long-wave pyranometer . The long-wave pyranometer is designed to measure radiance...meteorological parameters as well as the ambient radiant loading experienced during the test recorded by the Eppley long-wave pyranometer . Tables 1

  10. Technical considerations for designing low-cost, long-wave infrared objectives

    Science.gov (United States)

    Desroches, Gerard; Dalzell, Kristy; Robitaille, Blaise

    2014-06-01

    With the growth of uncooled infrared imaging in the consumer market, the balance between cost implications and performance criteria in the objective lens must be examined carefully. The increased availability of consumer-grade, long-wave infrared cameras is related to a decrease in military usage but it is also due to the decreasing costs of the cameras themselves. This has also driven up demand for low-cost, long-wave objectives that can resolve smaller pixels while maintaining high performance. Smaller pixels are traditionally associated with high cost objectives because of higher resolution requirements but, with careful consideration of all the requirements and proper selection of materials, costs can be moderated. This paper examines the cost/performance trade-off implications associated with optical and mechanical requirements of long-wave infrared objectives. Optical performance, f-number, field of view, distortion, focus range and thermal range all affect the cost of the objective. Because raw lens material cost is often the most expensive item in the construction, selection of the material as well as the shape of the lens while maintaining acceptable performance and cost targets were explored. As a result of these considerations, a low-cost, lightweight, well-performing objective was successfully designed, manufactured and tested.

  11. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    Science.gov (United States)

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  12. Available computer codes and data for radiation transport analysis

    International Nuclear Information System (INIS)

    Trubey, D.K.; Maskewitz, B.F.; Roussin, R.W.

    1975-01-01

    The Radiation Shielding Information Center (RSIC), sponsored and supported by the Energy Research and Development Administration (ERDA) and the Defense Nuclear Agency (DNA), is a technical institute serving the radiation transport and shielding community. It acquires, selects, stores, retrieves, evaluates, analyzes, synthesizes, and disseminates information on shielding and ionizing radiation transport. The major activities include: (1) operating a computer-based information system and answering inquiries on radiation analysis, (2) collecting, checking out, packaging, and distributing large computer codes, and evaluated and processed data libraries. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  13. Using Satellites to Investigate the Sensitivity of Longwave Downward Radiation to Water Vapor at High Elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-01-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  14. Recent developments in the Los Alamos radiation transport code system

    International Nuclear Information System (INIS)

    Forster, R.A.; Parsons, K.

    1997-01-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results

  15. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    Science.gov (United States)

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  16. Nonsteady heat conduction code with radiation boundary conditions

    International Nuclear Information System (INIS)

    Fillo, J.A.; Benenati, R.; Powell, J.

    1975-01-01

    A heat-transfer model for studying the temperature build-up in graphite blankets for fusion reactors is presented. In essence, the computer code developed is for two-dimensional, nonsteady heat conduction in heterogeneous, anisotropic solids with nonuniform internal heating. Thermal radiation as well as bremsstrahlung radiation boundary conditions are included. Numerical calculations are performed for two design options by varying the wall loading, bremsstrahlung, surface layer thickness and thermal conductivity, blanket dimensions, time step and grid size. (auth)

  17. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Montan, D.N.

    1980-01-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation and ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation

  18. Modeling radiation belt dynamics using a 3-D layer method code

    Science.gov (United States)

    Wang, C.; Ma, Q.; Tao, X.; Zhang, Y.; Teng, S.; Albert, J. M.; Chan, A. A.; Li, W.; Ni, B.; Lu, Q.; Wang, S.

    2017-08-01

    A new 3-D diffusion code using a recently published layer method has been developed to analyze radiation belt electron dynamics. The code guarantees the positivity of the solution even when mixed diffusion terms are included. Unlike most of the previous codes, our 3-D code is developed directly in equatorial pitch angle (α0), momentum (p), and L shell coordinates; this eliminates the need to transform back and forth between (α0,p) coordinates and adiabatic invariant coordinates. Using (α0,p,L) is also convenient for direct comparison with satellite data. The new code has been validated by various numerical tests, and we apply the 3-D code to model the rapid electron flux enhancement following the geomagnetic storm on 17 March 2013, which is one of the Geospace Environment Modeling Focus Group challenge events. An event-specific global chorus wave model, an AL-dependent statistical plasmaspheric hiss wave model, and a recently published radial diffusion coefficient formula from Time History of Events and Macroscale Interactions during Substorms (THEMIS) statistics are used. The simulation results show good agreement with satellite observations, in general, supporting the scenario that the rapid enhancement of radiation belt electron flux for this event results from an increased level of the seed population by radial diffusion, with subsequent acceleration by chorus waves. Our results prove that the layer method can be readily used to model global radiation belt dynamics in three dimensions.

  19. Validation of comprehensive space radiation transport code

    International Nuclear Information System (INIS)

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-01-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation

  20. Radiation transport phenomena and modeling. Part A: Codes; Part B: Applications with examples

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Beutler, D.E.

    1997-09-01

    This report contains the notes from the second session of the 1997 IEEE Nuclear and Space Radiation Effects Conference Short Course on Applying Computer Simulation Tools to Radiation Effects Problems. Part A discusses the physical phenomena modeled in radiation transport codes and various types of algorithmic implementations. Part B gives examples of how these codes can be used to design experiments whose results can be easily analyzed and describes how to calculate quantities of interest for electronic devices

  1. Computer codes for problems of isotope and radiation research

    International Nuclear Information System (INIS)

    Remer, M.

    1986-12-01

    A survey is given of computer codes for problems in isotope and radiation research. Altogether 44 codes are described as titles with abstracts. 17 of them are in the INIS scope and are processed individually. The subjects are indicated in the chapter headings: 1) analysis of tracer experiments, 2) spectrum calculations, 3) calculations of ion and electron trajectories, 4) evaluation of gamma irradiation plants, and 5) general software

  2. Radiation protection code of practice in academic and research institutes

    International Nuclear Information System (INIS)

    Abdalla, A. A. M.

    2010-05-01

    The main aim of this study was to establish a code of practice on radiation protection for safe control of radiation sources used in academic and research institutes, another aim of this study was to assess the current situation of radiation protection in some of the academic and research institutes.To achieve the aims of this study, a draft of a code of practice has been developed which is based on international and local relevant recommendation. The developed code includes the following main issues: regulatory responsibilities, radiation protection program and design of radiation installations. The second aim had been accomplished by conducting inspection visits to five (A, B, C, D and E) academic and to four (F, G, H and I ) research institutes. Eight of such institutes are located in Khartoum State and the ninth one is in Madani city (Aljazeera State). The inspection activities have been carried out using a standard inspection check list developed by the regulatory authority of the Sudan. The inspection missions to the above mentioned institutes involved also evaluation of radiation levels around the premises and storage areas of radiation sources. The dose rate measurement around radiation sources locations were found to be quite low. This mainly is due to the fact that the activities of most radionuclides that are used in these institutes are quite low ( in the range of micro curies). Also ,most the x-ray machines that were found in use for scientific academic and research purposes work at low k Vp of maximum 60 k Vp. None of the radiation workers in the inspected institutes has a personal radiation monitoring device, therefor staff dose levels have not been assessed. However it was noted that in most of the academic/ research studies radiation workers are only exposed to very low levels of radiation and for a very short time that dose not exceed 1 minute, therefore the expected occupational exposure of the staff is very low. Radiation measurement in public

  3. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    International Nuclear Information System (INIS)

    Yang, Jun; Wang, Yuwei; Leconte, Jérémy; Forget, François; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Koll, Daniel D. B.; Ding, Feng; Abbot, Dorian S.

    2016-01-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m 2 ; differences in shortwave reach up to 60 W m 2 , especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m 2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  4. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing (China); Leconte, Jérémy; Forget, François [Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Paris (France); Wolf, Eric T. [Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, CO (United States); Goldblatt, Colin [School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada); Feldl, Nicole [Division of Geological and Planetary Sciences, California Institute of Technology, CA (United States); Merlis, Timothy [Department of Atmospheric and Oceanic Sciences at McGill University, Montréal (Canada); Koll, Daniel D. B.; Ding, Feng; Abbot, Dorian S., E-mail: junyang@pku.edu.cn, E-mail: abbot@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL (United States)

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m{sup 2}; differences in shortwave reach up to 60 W m{sup 2}, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m{sup 2} in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  5. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  6. Prototype demonstration of radiation therapy planning code system

    International Nuclear Information System (INIS)

    Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S.

    1996-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care

  7. Academic Training - The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...

  8. Study and application of Dot 3.5 computer code in radiation shielding problems

    International Nuclear Information System (INIS)

    Otto, A.C.; Mendonca, A.G.; Maiorino, J.R.

    1983-01-01

    The application of nuclear transportation code S sub(N), Dot 3.5, to radiation shielding problems is revised. Aiming to study the better available option (convergence scheme, calculation mode), of DOT 3.5 computer code to be applied in radiation shielding problems, a standard model from 'Argonne Code Center' was selected and a combination of several calculation options to evaluate the accuracy of the results and the computational time was used, for then to select the more efficient option. To illustrate the versatility and efficacy in the application of the code for tipical shielding problems, the streaming neutrons calculation along a sodium coolant channel is ilustrated. (E.G.) [pt

  9. Code of practice on radiation protection in the mining and milling of radioactive ores 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This Code was formulated under provisions of the Environment Protection (Nuclear Codes) Act 1978 in close consultation with the Governments of the States and the Northern Territory. It is a major revision of the Code of Practice on Radiation Protection in the Mining and Milling of Radioactive Ores (1980), incorporating changes flowing from advances in internationally agreed radiation protection philosophy, and experience gained in Australia in uranium mining and milling operations and the extraction of monazite from mineral sands. The Code specifies the standards, practices, procedures, and measures to prevent or limit risk to employees and to the public from uranium mining and milling, mineral sands operations and extraction of radioactive ores. To assist the industry in meeting the requirements and responsibilities imposed by the Code, guidelines to the former Code will be reviewed and, if appropriate, revised. New guidelines to assist compliance with changed requirements will also be prepared. The Act provides for the revision of codes of practice. The Code of Practice on Radiation Protection in the Mining and Milling of Radioactive Ores (1987) will be reviewed from time to time and revised if necessary to ensure that the highest standards of radiation protection in the mining and milling of radioactive ores are maintained

  10. Code of practice on radiation protection in the mining and milling of radioactive ores 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This Code was formulated under provisions of the Environment Protection (Nuclear Codes) Act 1978 in close consultation with the Governments of the States and the Northern Territory. It is a major revision of the Code of Practice on Radiation Protection in the Mining and Milling of Radioactive Ores (1980), incorporating changes flowing from advances in internationally agreed radiation protection philosophy, and experience gained in Australia in uranium mining and milling operations and the extraction of monazite from mineral sands. The Code specifies the standards, practices, procedures, and measures to prevent or limit risk to employees and to the public from uranium mining and milling, mineral sands operations and extraction of radioactive ores. To assist the industry in meeting the requirements and responsibilities imposed by the Code, guidelines to the former Code will be reviewed and, if appropriate, revised. New guidelines to assist compliance with changed requirements will also be prepared. The Act provides for the revision of codes of practice. The Code of Practice on Radiation Protection in the Mining and Milling of Radioactive Ores (1987) will be reviewed from time to time and revised if necessary to ensure that the highest standards of radiation protection in the mining and milling of radioactive ores are maintained.

  11. Code of practice for the safe use of ionizing radiation in secondary schools (1986)

    International Nuclear Information System (INIS)

    1987-01-01

    The code of practice is intended for schools and indicates the basic philosophy behind the current approach to the control of hazards associated with the use of ionizing radiation. The purpose of this code is to provide guidance on safe and proper practices in the use of radiation. It covers modes of radiation exposure, shielding, dose limits, responsibility, general rules, x-ray generators, general control of radioactive sources, sealed sources and unsealed sources

  12. The use of the SRIM code for calculation of radiation damage induced by neutrons

    Science.gov (United States)

    Mohammadi, A.; Hamidi, S.; Asadabad, Mohsen Asadi

    2017-12-01

    Materials subjected to neutron irradiation will being evolve to structural changes by the displacement cascades initiated by nuclear reaction. This study discusses a methodology to compute primary knock-on atoms or PKAs information that lead to radiation damage. A program AMTRACK has been developed for assessing of the PKAs information. This software determines the specifications of recoil atoms (using PTRAC card of MCNPX code) and also the kinematics of interactions. The deterministic method was used for verification of the results of (MCNPX+AMTRACK). The SRIM (formely TRIM) code is capable to compute neutron radiation damage. The PKAs information was extracted by AMTRACK program, which can be used as an input of SRIM codes for systematic analysis of primary radiation damage. Then the Bushehr Nuclear Power Plant (BNPP) radiation damage on reactor pressure vessel is calculated.

  13. Conference on Atmospheric Radiation, 7th, San Francisco, CA, July 23-27, 1990, Preprints

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The present conference on atmospheric radiation discusses the Cirrus experiment, cloud climatologies, the earth radiation budget, the surface radiation budget, remote sensing, radiative transfer, arctic clouds and aerosols, and clouds and radiation. Attention is given to the results of the FIRE Marine Stratocumulus Observations, cirrus cloud properties derived from satellite radiances during FIRE, the dimension of a cloud's boundary, and satellite observations of cirrus clouds. Topics addressed include the seasonal variation of the diurnal cycles of the earth's radiation budget determined from ERBE, estimation of the outgoing longwave flux from NOAA AVHRR satellite observations, a comparison of observed and modeled longwave radiances, and climate monitoring using radiative entropy from ERB observations. Also discussed are approximations to the diffuse radiative properties of cloud layers, the greenhouse potential of other trace gases relative to CO2, global surface albedos estimated from ERBE data, and the energy exchange in a tropical rain forest

  14. Comparison and evaluation of gridded radiation products across northern Eurasia

    International Nuclear Information System (INIS)

    Troy, T J; Wood, E F

    2009-01-01

    Northern Eurasia is a region experiencing documented changes in temperature and large-scale streamflow, yet little attention has been focused on the large-scale energy budgets over the region. We compare station data and gridded radiation products from reanalysis and remote sensing to evaluate the radiative fluxes across northern Eurasia. On annual timescales, we find that the downward shortwave radiation products, with the exception of those of the NCEP/NCAR reanalysis, compare well with long-term station observations, but that this agreement breaks down with smaller timescales and for downward longwave and upward shortwave and longwave radiation. Of the six gridded products, the Surface Radiation Budget data set performs the best as compared to observations. Differences in radiative fluxes are on the order of 15-20 W m -2 on seasonal timescales, averaged across the region, with larger variations spatially and at smaller timescales. The resulting uncertainty in net radiation has implications for climate and hydrologic analyses that seek to understand changes in northern Eurasia climate and its hydrologic cycle.

  15. CT dosimetry computer codes: Their influence on radiation dose estimates and the necessity for their revision under new ICRP radiation protection standards

    International Nuclear Information System (INIS)

    Kim, K. P.; Lee, J.; Bolch, W. E.

    2011-01-01

    Computed tomography (CT) dosimetry computer codes have been most commonly used due to their user friendliness, but with little consideration for potential uncertainty in estimated organ dose and their underlying limitations. Generally, radiation doses calculated with different CT dosimetry computer codes were comparable, although relatively large differences were observed for some specific organs or tissues. The largest difference in radiation doses calculated using different computer codes was observed for Siemens Sensation CT scanners. Radiation doses varied with patient age and sex. Younger patients and adult females receive a higher radiation dose in general than adult males for the same CT technique factors. There are a number of limitations of current CT dosimetry computer codes. These include unrealistic modelling of the human anatomy, a limited number of organs and tissues for dose calculation, inability to alter patient height and weight, and non-applicability to new CT technologies. Therefore, further studies are needed to overcome these limitations and to improve CT dosimetry. (authors)

  16. Top-of-atmosphere radiative fluxes - Validation of ERBE scanner inversion algorithm using Nimbus-7 ERB data

    Science.gov (United States)

    Suttles, John T.; Wielicki, Bruce A.; Vemury, Sastri

    1992-01-01

    The ERBE algorithm is applied to the Nimbus-7 earth radiation budget (ERB) scanner data for June 1979 to analyze the performance of an inversion method in deriving top-of-atmosphere albedos and longwave radiative fluxes. The performance is assessed by comparing ERBE algorithm results with appropriate results derived using the sorting-by-angular-bins (SAB) method, the ERB MATRIX algorithm, and the 'new-cloud ERB' (NCLE) algorithm. Comparisons are made for top-of-atmosphere albedos, longwave fluxes, viewing zenith-angle dependence of derived albedos and longwave fluxes, and cloud fractional coverage. Using the SAB method as a reference, the rms accuracy of monthly average ERBE-derived results are estimated to be 0.0165 (5.6 W/sq m) for albedos (shortwave fluxes) and 3.0 W/sq m for longwave fluxes. The ERBE-derived results were found to depend systematically on the viewing zenith angle, varying from near nadir to near the limb by about 10 percent for albedos and by 6-7 percent for longwave fluxes. Analyses indicated that the ERBE angular models are the most likely source of the systematic angular dependences. Comparison of the ERBE-derived cloud fractions, based on a maximum-likelihood estimation method, with results from the NCLE showed agreement within about 10 percent.

  17. The World Radiation Monitoring Center of the Baseline Surface Radiation Network: Status 2017

    Science.gov (United States)

    Driemel, Amelie; König-Langlo, Gert; Sieger, Rainer; Long, Charles N.

    2017-04-01

    The World Radiation Monitoring Center (WRMC) is the central archive of the Baseline Surface Radiation Network (BSRN). The BSRN was initiated by the World Climate Research Programme (WCRP) Working Group on Radiative Fluxes and began operations in 1992. One of its aims is to provide short and long-wave surface radiation fluxes of the best possible quality to support the research projects of the WCRP and other scientific projects. The high quality, uniform and consistent measurements of the BSRN network can be used to monitor the short- and long-wave radiative components and their changes with the best methods currently available, to validate and evaluate satellite-based estimates of the surface radiative fluxes, and to verify the results of global climate models. In 1992 the BSRN/WRMC started at ETH Zurich, Switzerland with 9 stations. Since 2007 the archive is hosted by the Alfred-Wegener-Institut (AWI) in Bremerhaven, Germany (http://www.bsrn.awi.de/) and comprises a network of currently 59 stations in contrasting climatic zones, covering a latitude range from 80°N to 90°S. Of the 59 stations, 23 offer the complete radiation budget (down- and upwelling short- and long-wave data). In addition to the ftp-service access instituted at ETH Zurich, the archive at AWI offers data access via PANGAEA - Data Publisher for Earth & Environmental Science (https://www.pangaea.de). PANGAEA guarantees the long-term availability of its content through a commitment of the operating institutions. Within PANGAEA, the metadata of the stations are freely available. To access the data itself an account is required. If the scientist accepts to follow the data release guidelines of the archive (http://bsrn.awi.de/data/conditions-of-data-release/) he or she can get an account from amelie.driemel@awi.de. Currently, more than 9,400 station months (>780 years) are available for interested scientists (see also https://dataportals.pangaea.de/bsrn/?q=LR0100 for an overview on available data

  18. Analysis of radiation field distribution in Yonggwang unit 3 with MCNP code

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Ha, Wi Ho; Shin, Chang Ho; Kim, Soon Young; Kim, Jong Kyung

    2004-01-01

    Radiation field analysis is performed at the inside of the containment building of nuclear power plant(NPP) using the well-known MCNP code. The target NPP in this study is Yonggwang Unit 3 Cycle 8. In this work, whole transport calculations were done using MCNPX 2.4.0 due to the functional benefits, such as Mesh Tally, that the code provides. The neutron spectra released from the operating reactor core were firstly evaluated as a radiation source term, and then dose distributions in the work areas of the NPP were calculated

  19. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    Science.gov (United States)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  20. Creation and utilization of a World Wide Web based space radiation effects code: SIREST

    Science.gov (United States)

    Singleterry, R. C. Jr; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Thibeault, S. A.; Noor, A. K.; Cucinotta, F. A.; Badavi, F. F.; Chang, C. K.; Qualls, G. D.; hide

    2001-01-01

    In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.

  1. Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer

    Science.gov (United States)

    Messiter, A. F.

    1995-01-01

    For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.

  2. A Radiation Chemistry Code Based on the Green's Function of the Diffusion Equation

    Science.gov (United States)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Stochastic radiation track structure codes are of great interest for space radiation studies and hadron therapy in medicine. These codes are used for a many purposes, notably for microdosimetry and DNA damage studies. In the last two decades, they were also used with the Independent Reaction Times (IRT) method in the simulation of chemical reactions, to calculate the yield of various radiolytic species produced during the radiolysis of water and in chemical dosimeters. Recently, we have developed a Green's function based code to simulate reversible chemical reactions with an intermediate state, which yielded results in excellent agreement with those obtained by using the IRT method. This code was also used to simulate and the interaction of particles with membrane receptors. We are in the process of including this program for use with the Monte-Carlo track structure code Relativistic Ion Tracks (RITRACKS). This recent addition should greatly expand the capabilities of RITRACKS, notably to simulate DNA damage by both the direct and indirect effect.

  3. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    Science.gov (United States)

    Schreier, Franz; Milz, Mathias; Buehler, Stefan A.; von Clarmann, Thomas

    2018-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric radiative transfer and remote sensing - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the 19 HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. The mutual differences of the equivalent brightness temperatures are presented and possible causes of disagreement are discussed. In particular, the impact of path integration schemes and atmospheric layer discretization is assessed. When the continuum absorption contribution is ignored because of the different implementations, residuals are generally in the sub-Kelvin range and smaller than 0.1 K for some window channels (and all atmospheric models and lbl codes). None of the three codes turned out to be perfect for all channels and atmospheres. Remaining discrepancies are attributed to different lbl optimization techniques. Lbl codes seem to have reached a maturity in the implementation of radiative transfer that the choice of the underlying physical models (line shape models, continua etc) becomes increasingly relevant.

  4. A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes

    Science.gov (United States)

    Schnittman, Jeremy David; Krolik, Julian H.

    2013-01-01

    We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.

  5. Computer codes for tasks in the fields of isotope and radiation research

    International Nuclear Information System (INIS)

    Friedrich, K.; Gebhardt, O.

    1978-11-01

    Concise descriptions of computer codes developed for solving problems in the fields of isotope and radiation research at the Zentralinstitut fuer Isotopen- und Strahlenforschung (ZfI) are compiled. In part two the structure of the ZfI program library MABIF is outlined and a complete list of all codes available is given

  6. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    Science.gov (United States)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  7. Application of OMEGA Monte Carlo codes for radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Ayyangar, Komanduri M.; Jiang, Steve B.

    1998-01-01

    The accuracy of conventional dose algorithms for radiosurgery treatment planning is limited, due to the inadequate consideration of the lateral radiation transport and the difficulty of acquiring accurate dosimetric data for very small beams. In the present paper, some initial work on the application of Monte Carlo method in radiation treatment planning in general, and in radiosurgery treatment planning in particular, has been presented. Two OMEGA Monte Carlo codes, BEAM and DOSXYZ, are used. The BEAM code is used to simulate the transport of particles in the linac treatment head and radiosurgery collimator. A phase space file is obtained from the BEAM simulation for each collimator size. The DOSXYZ code is used to calculate the dose distribution in the patient's body reconstructed from CT slices using the phase space file as input. The accuracy of OMEGA Monte Carlo simulation for radiosurgery dose calculation is verified by comparing the calculated and measured basic dosimetric data for several radiosurgery beams and a 4 x 4 cm 2 conventional beam. The dose distributions for three clinical cases are calculated using OMEGA codes as the dose engine for an in-house developed radiosurgery treatment planning system. The verification using basic dosimetric data and the dose calculation for clinical cases demonstrate the feasibility of applying OMEGA Monte Carlo code system to radiosurgery treatment planning. (author)

  8. Evaluation of the computer code system RADHEAT-V4 by analysing benchmark problems on radiation shielding

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Naito, Yoshitaka

    1990-11-01

    A computer code system RADHEAT-V4 has been developed for safety evaluation on radiation shielding of nuclear fuel facilities. To evaluate the performance of the code system, 18 benchmark problem were selected and analysed. Evaluated radiations are neutron and gamma-ray. Benchmark problems consist of penetration, streaming and skyshine. The computed results show more accurate than those by the Sn codes ANISN and DOT3.5 or the Monte Carlo code MORSE. Big core memory and many times I/O are, however, required for RADHEAT-V4. (author)

  9. Quasilinear simulation of auroral kilometric radiation by a relativistic Fokker-Planck code

    International Nuclear Information System (INIS)

    Matsuda, Y.

    1991-01-01

    An intense terrestrial radiation called the auroral kilometric radiation (AKR) is believed to be generated by cyclotron maser instability. We study a quasilinear evolution of this instability by means of a two-dimensional relativistic Fokker-Planck code which treats waves and distributions self-consistently, including radiation loss and electron source and sink. We compare the distributions and wave amplitude with spacecraft observations to elucidate physical processes involved. 3 refs., 1 fig

  10. Collection of regulatory texts relative to radiation protection. Part 2: orders and decisions taken in application of the Public Health Code and Labour Code concerning the protection of populations, patients and workers against the risks of ionizing radiations

    International Nuclear Information System (INIS)

    2007-05-01

    This collection of texts includes the general measures of population protection, exposure to natural radiations, general system of authorizations and statements, protection of persons exposed to ionizing radiations for medical purpose, situations of radiological emergency and long exposure to ionizing radiations, penal dispositions, application of the Public Health code and application of the Labour code. Chronological contents by date of publication is given. (N.C.)

  11. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    Science.gov (United States)

    Smith, L. M.; Hochstedler, R. D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).

  12. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    Smith, L.M.; Hochstedler, R.D.

    1997-01-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code)

  13. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    Science.gov (United States)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are

  14. Long-term changes in net radiation and its components above a pine forest and a grass surface in Germany

    International Nuclear Information System (INIS)

    Kessler, A.; Jaeger, L.

    1999-01-01

    Long-term measurements (1974–1993 and 1996, respectively) of the net radiation (Q), global radiation (G), reflected global radiation (R), long-wave atmospheric radiation (A) and thermal radiation (E) of a pine forest in Southern Germany (index p) and of a grass surface in Northern Germany (index g) are compared. The influence of changes in surface properties is discussed. There are, in the case of the pine stand, forest growth and forest management and in the case of the grass surface, the shifting of the site from a climatic garden to a horizontal roof. Both series of radiant fluxes are analyzed with respect to the influences of the weather (cloudiness, heat advection). To eliminate the different influence of the solar radiation of the two sites, it is necessary to normalize by means of the global radiation G, yielding the radiation efficiency Q/G, the albedo R/G=α and the normalized long-wave net radiation (A+E)/G. Furthermore, the long-term mean values and the long-term trend of yearly mean values are discussed and, moreover, a comparison is made of individual monthly values. Q p is twice as large as Q g . The reason for this is the higher values of G and A above the pine forest and half values of α p compared to α g . E p is only a little greater than E g . The time series of the radiation fluxes show the following trends: Q p declines continuously despite a slight increase of G p . This is mainly due to the long-wave radiation fluxes. The net radiation of the grass surface Q g shows noticeably lower values after the merging of the site. This phenomenon is also dominated by the long-wave radiation processes. Although the properties of both site surfaces alter, E p and E g remain relatively stable. A p and A g show a remarkable decrease however. The reason for this is to be found in a modification of the heat advection, showing a more pronounced impact on the more continentally exposed site (pine forest). Compared to α g , α p shows only a small

  15. Radiation protection for human exploration of the moon and mars: Application of the mash code system

    International Nuclear Information System (INIS)

    Johnson, J.O.; Santoro, R.T.; Drischler, J.D.; Barnes, J.M.

    1992-01-01

    The Monte Carlo Adjoint Shielding code system -- MASH, developed for the Department of Defense for calculating radiation protection factors for armored vehicles against neutron and gamma radiation, has been used to assess the dose from reactor radiation to an occupant in a habitat on Mars. The capability of MASH to reproduce measured data is summarized to demonstrate the accuracy of the code. The estimation of the radiation environment in an idealized reactor-habitat model is reported to illustrate the merits of the adjoint Monte Carlo procedure for space related studies. The reactor radiation dose for different reactor-habitat surface configurations to a habitat occupant is compared with the natural radiation dose acquired during a 500-day Mars mission

  16. Temperature properties in the tropical tropopause layer and their correlations with Outgoing Longwave Radiation: FORMOSAT-3/COSMIC observations

    Science.gov (United States)

    Wang, Kaiti; Wu, Yi-chao; Lin, Jia-Ting; Tan, Pei-Hua

    2018-06-01

    The properties of temperature at the level of lapse rate minimum (LRM) in the tropical tropopause layer between 20°S and 20°N are investigated using 3-year radio occultation observations based on the FORMOSAT-3/COSMIC mission from November of 2006 to October of 2009. The correlations between this LRM temperature and Outgoing Longwave Radiation (OLR) are analyzed by 5° × 5° grids in longitude and latitude. Two primary regions, one from 60°E to 180°E and the other from 90°W to 30°E, are found to have higher correlations and can be associated with regions of lower OLR values. The patterns of this spatial distributions of regions with higher correlations begin to change more obviously when the altitude ascends to the level of Cold Point Tropopause (CPT). This correlation at the LRM altitude in annual and seasonal scales also shows spatial distributions associated with OLR intensities. The altitudinal dependence of the correlations between temperature and OLR is further analyzed based on grids of high correlations with significance at LRM altitude, for the two primary regions. The results show that for the different time scales in this analysis (3-year, annual, and seasonal), the correlations all gradually decrease above the LRM levels but maintain a significant level to as high as 2.5-3.5 km. Below the LRM level, the correlation decreases with a slower rate as the altitude descends and still keeps significant at the deep 5 km level. These suggest that the vertical temperature profiles could be affected by the convection mechanism for a wide range of altitudes in the troposphere even above LRM altitude. Applying the same analysis on one complete La Niña event during the survey period also reveals similar features.

  17. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  18. Code of practice for radiation protection in dentistry (1987)

    International Nuclear Information System (INIS)

    1988-01-01

    This code is intended as a guide to safe practices and lays down detailed requirements for the following protective measures : allocation of responsibility and need for clinical assessment of the indications for radiography; provision of appropriate equipment, film and processing facilities; adoption of procedures to minimise exposure to radiation. This code deals with radiographic procedures commonly used in general and specialist dental practice. These entail : intra-oral radiography: periapical, bitewing and occlusal views; panoramic radiography: intra-oral tube radiography and panoramic tomography; radiography of the complete skull or certain parts of the dento-maxillo-facial region; hand and wrist radiography for the sole purpose of the determination of the bone age

  19. The radiation protection code of practice in teletherapy facilities

    International Nuclear Information System (INIS)

    Fadlalla, N. S. M.

    2010-05-01

    This study aimed to provide a document (code) for the standard practice in teletherapy facilities to be a reference and guide for establishing new teletherapy facilities or mending an existing one, another aim was to evaluated the teletherapy facilities with regard to their compliance to the recommendations and guides mentioned in this document. This document includes: safety specifications for teletherapy equipment, facility planning and shielding design, radiation protection and work practice, quality assurance and personnel requirements and responsibilities. In order to assess the degree of compliance of the two centers in the country with what was stated in the developed document IAEA inspection checklist was utilized and made some radiation measurement were made around the treatment rooms. The results of such inspection mission revealed that the current status of radiation protection in both of inspected centers is almost similar and both are not satisfactory as many of the essential items of radiation protection as stipulated in this document were not followed, which lead to unnecessary, radiation exposure to patients and staff. Finally, some recommendations that may help to improve the status of radiation protection in radiotherapy departments in Sudan are given. (Author)

  20. User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)

    Science.gov (United States)

    Hainley, Donald C.

    1991-01-01

    A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.

  1. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  2. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    Science.gov (United States)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against

  3. Comparison of the sensitivity of surface downward longwave radiation to changes in water vapor at two high elevation sites

    International Nuclear Information System (INIS)

    Chen, Yonghua; Naud, Catherine M; Rangwala, Imtiaz; Landry, Christopher C; Miller, James R

    2014-01-01

    Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 km apart horizontally and 348 m vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR–q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here. (letter)

  4. Comparison of the Sensitivity of Surface Downward Longwave Radiation to Changes in Water Vapor at Two High Elevation Sites

    Science.gov (United States)

    Chen, Yonghua; Naud, Catherine M.; Rangwala, Imtiaz; Landry, Christopher C.; Miller, James R.

    2014-01-01

    Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 kilometers apart horizontally and 348 meters vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR-q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here.

  5. Code of Practice for the Protection of Persons against Ionizing Radiations arising from Medical and Dental Use

    Energy Technology Data Exchange (ETDEWEB)

    1972-01-01

    This Code is a revision of the 1964 Code of Practice for the protection of persons against ionizing radiations arising from medical and dental use. This revised Code (which does not have the force of law) applies to the use of ionizing radiations arising from all forms of medical and dental practice and from allied research involving human subjects. It covers both workers, patients and members of the public. Although the arrangements recommended relate primarily to institutions they should be applied, as far as possible, by all medical and dental practitioners. The Code has been drawn up in the light of the recommendations of the International Commission on Radiological Protection (ICRP) and of the views of the Medical Research Council's Committee on Protection against Ionizing Radiations.

  6. Code of Practice on Radiation Protection in the Mining and Processing of Mineral Sands (1982) (Western Australia)

    International Nuclear Information System (INIS)

    1982-01-01

    This Code establishes radiation safety practices for the mineral sands industry in Western Australia. The Code prescribes, not only for operators and managers of mines and processing plants but for their employees as well, certain duties designed to ensure that radiation exposure is kept as low as reasonably practicable. The Code further provides for the management of wastes, again with a view to keeping contaminant concentrations and dose rates within specified levels. Finally, provision is made for the rehabilitation of those sites in which mining or processing operations have ceased by restoring the areas to designated average radiation levels. (NEA) [fr

  7. Radiation Shielding Information Center: a source of computer codes and data for fusion neutronics studies

    International Nuclear Information System (INIS)

    McGill, B.L.; Roussin, R.W.; Trubey, D.K.; Maskewitz, B.F.

    1980-01-01

    The Radiation Shielding Information Center (RSIC), established in 1962 to collect, package, analyze, and disseminate information, computer codes, and data in the area of radiation transport related to fission, is now being utilized to support fusion neutronics technology. The major activities include: (1) answering technical inquiries on radiation transport problems, (2) collecting, packaging, testing, and disseminating computing technology and data libraries, and (3) reviewing literature and operating a computer-based information retrieval system containing material pertinent to radiation transport analysis. The computer codes emphasize methods for solving the Boltzmann equation such as the discrete ordinates and Monte Carlo techniques, both of which are widely used in fusion neutronics. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  8. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    International Nuclear Information System (INIS)

    Cupini, E.

    1999-01-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed [it

  9. Collection of regulatory texts related to radiation protection (collection of legal and regulatory measures related to radiation protection). Part 1: laws and decrees (Extracts of the Public Health Code and of the Labour Code dealing with the protection of population, patients and workers against the hazards of ionizing radiations); Part 2: orders, decisions, non codified decrees (Orders and decisions taken in application of the Public Health Code and of the Labour Code dealing with the protection of population, patients and workers against the hazards of ionizing radiations)

    International Nuclear Information System (INIS)

    Rivas, R.; Saad, N.; Niel, X.; Cottin, V.; Lachaume, J.L.; Feries, J.

    2011-01-01

    The first part contains legal and regulatory texts extracted from the Public Health Code and related to health general protection and to health products (medical devices), from the Social Security Code, and from the Labour Code related to individual work relationships, to health and safety at work, to work places, to work equipment and means of protection, to the prevention of some exposure risks and of risks related to some activities. The second part gathers texts extracted from the Public Health Code and related to ionizing radiations (general measures for the protection of the population, exposure to natural radiations, general regime of authorizations and declarations, purchase, retailing, importation, exportation, transfer and elimination of radioactive sources, protection of persons exposed to ionizing radiations for medical or forensics purposes, situations of radiological emergency and of sustained exposure to ionizing radiations, control), to the safety of waters and food products, and to the control of medical devices, to the protection of patients. It also contains extracts for the Labour Code related to workers protection

  10. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  11. Computer codes in nuclear safety, radiation transport and dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M.

    2006-01-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations

  12. Refining surface net radiation estimates in arid and semi-arid climates of Iran

    Science.gov (United States)

    Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar

    2018-06-01

    an alternative was checked and found to not improve the agreement. The MODIS surface albedos differed from the ISCCP FD values by no more than 0.02-0.07, but because these differences are mostly at longer wavelengths, they did not change the net solar radiation very much. Therefore to obtain the best estimate of surface net radiation with the best combination of spatial and temporal resolution, we developed a method to adjust the ISCCP FD surface longwave fluxes using the AIRS surface air and skin temperatures to obtain the higher spatial resolution of the latter (45 km), while retaining the 3-h time intervals of the former. Overall, the refinements reduced the ISCCP FD longwave flux magnitudes by about 25.5-42.1 W/m2 RMS (maximum difference -27.5 W/m2 for incoming longwave radiation and -59 W/m2 for outgoing longwave radiation) with the largest differences occurring at 9:00 and 12:00 UTC near local noon. Combining the ISCCP FD net shortwave radiation data and the AIRS-modified net longwave radiation data changed the total net radiation for summertime by 4.64 to 61.5 W/m2 and for wintertime by 1.06 to 41.88 W/m2 (about 11.1-39.2% of the daily mean).

  13. Code of Practice for the Protection of Persons against Ionizing Radiations arising from Medical and Dental Use

    International Nuclear Information System (INIS)

    1972-01-01

    This Code is a revision of the 1964 Code of Practice for the protection of persons against ionizing radiations arising from medical and dental use. This revised Code (which does not have the force of law) applies to the use of ionizing radiations arising from all forms of medical and dental practice and from allied research involving human subjects. It covers both workers, patients and members of the public. Although the arrangements recommended relate primarily to institutions they should be applied, as far as possible, by all medical and dental practitioners. The Code has been drawn up in the light of the recommendations of the International Commission on Radiological Protection (ICRP) and of the views of the Medical Research Council's Committee on Protection against Ionizing Radiations. (NEA) [fr

  14. Assessment of the methods for determining net radiation at different time-scales of meteorological variables

    Directory of Open Access Journals (Sweden)

    Ni An

    2017-04-01

    Full Text Available When modeling the soil/atmosphere interaction, it is of paramount importance to determine the net radiation flux. There are two common calculation methods for this purpose. Method 1 relies on use of air temperature, while Method 2 relies on use of both air and soil temperatures. Nowadays, there has been no consensus on the application of these two methods. In this study, the half-hourly data of solar radiation recorded at an experimental embankment are used to calculate the net radiation and long-wave radiation at different time-scales (half-hourly, hourly, and daily using the two methods. The results show that, compared with Method 2 which has been widely adopted in agronomical, geotechnical and geo-environmental applications, Method 1 is more feasible for its simplicity and accuracy at shorter time-scale. Moreover, in case of longer time-scale, daily for instance, less variations of net radiation and long-wave radiation are obtained, suggesting that no detailed soil temperature variations can be obtained. In other words, shorter time-scales are preferred in determining net radiation flux.

  15. Influence of soybean pubescence type on radiation balance

    International Nuclear Information System (INIS)

    Nielsen, D.C.; Blad, B.I.; Verma, S.B.; Rosenberg, N.J.; Specht, J.E.

    1984-01-01

    Increasing the density of pubescence on the leaves and stems of soybeans (Glycine max L.) should influence the radiation balance of the soybean canopy and affect the evapotranspiration and photosynthetic rates. This study was undertaken to evaluate the influence of increased pubescence density on various components of the radiation balance. Near-isogenic lines of two soybean cultivars (Clark and Harosoy) were grown in four adjacent small plots (18 m · 18 m) during the 1980, 1981, and 1982 growing seasons near Mead, Nebr. The soil at this site is classified as a Typic Argiudoll. The isolines of each cultivar varied only in the amount of pubescence (dense vs. normal pubescence). Measurements of albedo, reflected photosynthetically active radiation (PAR), emitted longwave radiation, and net radiation were made over the crop surfaces with instruments mounted on a rotating boom located at the intersection of the four plots. Radiative canopy temperatures were measured with a handheld infrared thermometer (IRT). Results show that dense pubescence increased reflection of shortwave radiation and PAR by 3 to 5% and 8 to 11%, respectively. Emitted longwave radiation and radiative canopy temperature were not significantly affected by increased pubescence, although there was a slight tendency for the dense pubescent canopy to be cooler. Increased pubescence decreased net radiation over the canopy by 0.5 to 1.5%. These results suggest that soybeans with dense pubescence may be slightly better adapted to the high radiation, high temperature, and limited moisture conditions of the eastern Great Plains than are those with normal pubescence

  16. Determine Daytime Earth's Radiation Budget from DSCOVR

    Science.gov (United States)

    Su, W.; Thieman, M. M.; Duda, D. P.; Khlopenkov, K. V.; Liang, L.; Sun-Mack, S.; Minnis, P.; SUN, M.

    2017-12-01

    The Deep Space Climate Observatory (DSCOVR) platform provides a unique perspective for remote sensing of the Earth. With the National Institute of Standards and Technology Advanced Radiometer (NISTAR) and the Earth Polychromatic Imaging Camera (EPIC) onboard, it provides full-disk measurements of the broadband shortwave and total radiances reaching the L1 position. Because the satellite orbits around the L1 spot, it continuously observes a nearly full Earth, providing the potential to determine the daytime radiation budget of the globe at the top of the atmosphere. The NISTAR is a single-pixel instrument that measures the broadband radiance from the entire globe, while EPIC is a spectral imager with channels in the UV and visible ranges. The Level 1 NISTAR shortwave radiances are filtered radiances. To determine the daytime TOA shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. We will describe the algorithm used to un-filter the shortwave radiances. These unfiltered NISTAR radiances are then converted to the full disk shortwave and daytime longwave fluxes, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. These anisotropy factors are determined by using the scene identifications determined from multiple low Earth orbit and geostationary satellites matched into the EPIC field of view. Time series of daytime radiation budget determined from NISTAR will be presented, and methodology of estimating the fluxes from the small unlit crescent of the Earth that comprises part of the field of view will also be described. The daytime shortwave and longwave fluxes from NISTAR will be compared with CERES dataset.

  17. Handheld Longwave Infrared Camera Based on Highly-Sensitive Quantum Well Infrared Photodetectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact handheld longwave infrared camera based on quantum well infrared photodetector (QWIP) focal plane array (FPA) technology. Based on...

  18. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    International Nuclear Information System (INIS)

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.

    2012-01-01

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  19. History of one family of atmospheric radiative transfer codes

    Science.gov (United States)

    Anderson, Gail P.; Wang, Jinxue; Hoke, Michael L.; Kneizys, F. X.; Chetwynd, James H., Jr.; Rothman, Laurence S.; Kimball, L. M.; McClatchey, Robert A.; Shettle, Eric P.; Clough, Shepard (.; Gallery, William O.; Abreu, Leonard W.; Selby, John E. A.

    1994-12-01

    Beginning in the early 1970's, the then Air Force Cambridge Research Laboratory initiated a program to develop computer-based atmospheric radiative transfer algorithms. The first attempts were translations of graphical procedures described in a 1970 report on The Optical Properties of the Atmosphere, based on empirical transmission functions and effective absorption coefficients derived primarily from controlled laboratory transmittance measurements. The fact that spectrally-averaged atmospheric transmittance (T) does not obey the Beer-Lambert Law (T equals exp(-(sigma) (DOT)(eta) ), where (sigma) is a species absorption cross section, independent of (eta) , the species column amount along the path) at any but the finest spectral resolution was already well known. Band models to describe this gross behavior were developed in the 1950's and 60's. Thus began LOWTRAN, the Low Resolution Transmittance Code, first released in 1972. This limited initial effort has how progressed to a set of codes and related algorithms (including line-of-sight spectral geometry, direct and scattered radiance and irradiance, non-local thermodynamic equilibrium, etc.) that contain thousands of coding lines, hundreds of subroutines, and improved accuracy, efficiency, and, ultimately, accessibility. This review will include LOWTRAN, HITRAN (atlas of high-resolution molecular spectroscopic data), FASCODE (Fast Atmospheric Signature Code), and MODTRAN (Moderate Resolution Transmittance Code), their permutations, validations, and applications, particularly as related to passive remote sensing and energy deposition.

  20. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Mokhov, Nikolai [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Niita, Koji [Research Organization for Information Science and Technology, Ibaraki-ken (Japan)

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  1. Parametric influence of powerful radiation on plasma surface

    International Nuclear Information System (INIS)

    Kuklin, V.M.; Panchenko, I.P.; Chernousenko, V.M.

    1989-01-01

    A self-consistent set of equations that describes one-dimensional dynamics to develop the instability of long-wave intensive Langmuir wave is obtained and solved. The parametric instability influence on the character of absorption of the incident radiation energy is elucidated primarily. 40 refs.; 8 figs

  2. Longwave infrared observation of urban landscapes

    Science.gov (United States)

    Goward, S. N.

    1981-01-01

    An investigation is conducted regarding the feasibility to develop improved methods for the identification and analysis of urban landscapes on the basis of a utilization of longwave infrared observations. Attention is given to landscape thermal behavior, urban thermal properties, modeled thermal behavior of pavements and buildings, and observed urban landscape thermal emissions. The differential thermal behavior of buildings, pavements, and natural areas within urban landscapes is found to suggest that integrated multispectral solar radiant reflectance and terrestrial radiant emissions data will significantly increase potentials for analyzing urban landscapes. In particular, daytime satellite observations of the considered type should permit better identification of urban areas and an analysis of the density of buildings and pavements within urban areas. This capability should enhance the utility of satellite remote sensor data in urban applications.

  3. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1983-01-01

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  4. High Quantum Efficiency 1024x1024 Longwave Infrared SLS FPA and Camera, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a high quantum efficiency (QE) 1024x1024 longwave infrared focal plane array (LWIR FPA) and CAMERA with ~ 12 micron cutoff wavelength made from...

  5. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow

    Science.gov (United States)

    Li, J.-L. F.; Richardson, Mark; Hong, Yulan; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Fetzer, Eric; Stephens, Graeme; Liu, Yinghui

    2017-08-01

    Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation, but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we show that the radiative effects of precipitating ice (falling snow) contribute substantially to this discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave albedo and downward longwave radiation. Using two simulations with the climate model CESM1, we show that including falling-snow radiative effects improves the simulations relative to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice concentration from passive microwave sensors. From 50-70°S, the simulated sea-ice-area bias is reduced by 2.12 × 106 km2 (55%) in winter and by 1.17 × 106 km2 (39%) in summer, mainly because increased wintertime longwave heating restricts sea-ice growth and so reduces summer albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea level contributions and changes in global warming driven by long-term changes in Southern Ocean feedbacks.

  6. Downwelling radiation at the sea surface in the central Mediterranean: one year of shortwave and longwave irradiance measurements on the Lampedusa buoy

    Science.gov (United States)

    di Sarra, Alcide; Bommarito, Carlo; Anello, Fabrizio; Di Iorio, Tatiana; Meloni, Daniela; Monteleone, Francesco; Pace, Giandomenico; Piacentino, Salvatore; Sferlazzo, Damiano

    2017-04-01

    An oceanographic buoy has been developed and deployed in August 2015 about 3.3 miles South West of the island of Lampedusa, at 35.49°N, 12.47°E, in the central Mediterranean Sea. The buoy was developed within the Italian RITMARE flagship project, and contributes to the Italian fixed-point oceanographic observation network. The buoy is an elastic beacon type and is intended to study air-sea interactions, propagation of radiation underwater, and oceanographic properties. The buoy measurements complement the atmospheric observations carried out at the long-term Station for Climate Observations on the island of Lampedusa (www.lampedusa.enea.it; 35.52°N, 12.63°E), which is located about 15 km E-NE of the buoy. Underwater instruments and part of the atmospheric sensors are presently being installed on the buoy. Measurements of downwelling shortwave, SW, and longwave, LW, irradiance, have been made since September 2015 with a Kipp and Zonen CMP21 pyranometer and a Kipp and Zonen CGR4 pyrgeometer, respectively. The radiometers are mounted on a small platform at about 7 m above sea level, on an arm protruding southward of the buoy. High time resolution data, at 1 Hz, have been acquired since December 2015, together with the sensors' attitude. Data from the period December 2015-December 2016 are analyzed and compared with measurements made on land at the Station for Climate Observations at 50 m above mean sea level. This study aims at deriving high quality determinations of the downwelling radiation over sea in the central Mediterranean. The following aspects will be discussed: - representativeness of time averaging of irradiance measurements over moving platforms; - comparison of downwelling irradiance measurements made over land and over ocean, and identification of possible correction strategies to infer irradiances over the ocean from close by measurements made over land; - influence of dome cleaning on the quality of measurements; - envisaging possible corrections

  7. Observed perturbations of the Earth's Radiation Budget - A response to the El Chichon stratospheric aerosol layer?

    Science.gov (United States)

    Ardanuy, P. E.; Kyle, H. L.

    1986-01-01

    The Earth Radiation Budget experiment, launched aboard the Nimbus-7 polar-orbiting spacecraft in late 1978, has now taken over seven years of measurements. The dataset, which is global in coverage, consists of the individual components of the earth's radiation budget, including longwave emission, net radiation, and both total and near-infrared albedos. Starting some six months after the 1982 eruption of the El Chichon volcano, substantial long-lived positive shortwave irradiance anomalies were observed by the experiment in both the northern and southern polar regions. Analysis of the morphology of this phenomena indicates that the cause is the global stratospheric aerosol layer which formed from the cloud of volcanic effluents. There was little change in the emitted longwave in the polar regions. At the north pole the largest anomaly was in the near-infrared, but at the south pole the near UV-visible anomaly was larger. Assuming an exponential decay, the time constant for the north polar, near-infrared anomaly was 1.2 years. At mid- and low latitudes the effect of the El Chichon aerosol layer could not be separated from the strong reflected-shortwave and emitted-longwave perturbations issuing from the El Nino/Southern Oscillation event of 1982-83.

  8. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    Science.gov (United States)

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  9. The cloud radiative feedback of a midlatitude squall line system and implication for climate study

    International Nuclear Information System (INIS)

    Chin, H.N.S.

    1992-01-01

    The main objectives of this study are (1) to study the impact of longwave and shortwave radiation on the thermodynamic and kinematic structure of a midlatitude squall line; and (2) to explore the influence of specifically including the ice phase in the cloud-radiation feedback mechanism for climate models

  10. The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Multimedia

    CERN. Geneva; Ferrari, Alfredo; Silari, Marco

    2006-01-01

    Transport and interaction of electromagnetic radiation Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. In these codes, photon transport is simulated by using the detailed scheme, i.e., interaction by interaction. Detailed simulation is easy to implement, and the reliability of the results is only limited by the accuracy of the adopted cross sections. Simulations of electron and positron transport are more difficult, because these particles undergo a large number of interactions in the course of their slowing down. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interacti...

  11. Study and application of the ANISN and DOT 3.5 codes to problems in nuclear radiation shielding

    International Nuclear Information System (INIS)

    Otto, A.C.

    1983-01-01

    The application of the Sn transport codes ANISN and DOT 3.5 to problems in radiation shielding is reviewed. In addition, a large array of codes involved in radiation shielding calculations is described and applied in this work. The ANISN and DOT 3.5 codes solve the multigroup transport equation in plane, cylindrical and spherical geometries, the first in one dimension and the second in two dimensions, by using the Sn approximation and were designed to solve coupled neutron-photon transport problems commonly found in reactor shielding calculations. In this work the numerical methods used in these codes are reviewed and their basic application to deep-penetration and void problems is discussed. Benchmark problems are solved by employing the array of codes previously mentioned. In particular, the ability of the ISOFLUXO program coupled to the DOT 3.5 code of mapping contours of regions with approximately the same scalar fluxes is illustrated, showing that they can be efficiently used in shielding analysis. (Author) [pt

  12. Monsoon sensitivity to aerosol direct radiative forcing in the ...

    Indian Academy of Sciences (India)

    to the total, scattering aerosols and black carbon aerosols. ... acts as an internal damping mechanism spinning down the regional hydrological cycle and leading to sig- ... tion and emission of longwave radiation. ... effect of aerosols over India, where the emission of .... that aerosol effects on monsoon water cycle dynam-.

  13. 3D-TRANS-2003, Workshop on Common Tools and Interfaces for Radiation Transport Codes

    International Nuclear Information System (INIS)

    2004-01-01

    Description: Contents proceedings of Workshop on Common Tools and Interfaces for Deterministic Radiation Transport, for Monte Carlo and Hybrid Codes with a proposal to develop the following: GERALD - A General Environment for Radiation Analysis and Design. GERALD intends to create a unifying software environment where the user can define, solve and analyse a nuclear radiation transport problem using available numerical tools seamlessly. This environment will serve many purposes: teaching, research, industrial needs. It will also help to preserve the existing analytical and numerical knowledge base. This could represent a significant step towards solving the legacy problem. This activity should contribute to attracting young engineers to nuclear science and engineering and contribute to competence and knowledge preservation and management. This proposal was made at the on Workshop on C ommon Tools and Interfaces for Deterministic Radiation Transport, for Monte Carlo and Hybrid Codes , held from 25-26 September 2003 in connection with the conference SNA-2003. A first success with the development of such tools was achieved with the BOT3P2.0 and 3.0 codes providing an easy procedure and mechanism for defining and displaying 3D geometries and materials both in the form of refineable meshes for deterministic codes or Monte Carlo geometries consistent with deterministic models. Advanced SUSD: Improved tools for Sensitivity/Uncertainty Analysis. The development of tools for the analysis and estimation of sensitivities and uncertainties in calculations, or their propagation through complex computational schemes, in the field of neutronics, thermal hydraulics and also thermo-mechanics is of increasing importance for research and engineering applications. These tools allow establishing better margins for engineering designs and for the safe operation of nuclear facilities. Such tools are not sufficiently developed, but their need is increasingly evident in many activities

  14. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    Science.gov (United States)

    Guo, Song; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  15. 3D PiC code investigations of Auroral Kilometric Radiation mechanisms

    International Nuclear Information System (INIS)

    Gillespie, K M; McConville, S L; Speirs, D C; Ronald, K; Phelps, A D R; Bingham, R; Cross, A W; Robertson, C W; Whyte, C G; He, W; Vorgul, I; Cairns, R A; Kellett, B J

    2014-01-01

    Efficient (∼1%) electron cyclotron radio emissions are known to originate in the X mode from regions of locally depleted plasma in the Earths polar magnetosphere. These emissions are commonly referred to as the Auroral Kilometric Radiation (AKR). AKR occurs naturally in these polar regions where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. Initial studies were conducted in the form of 2D PiC code simulations [1] and a scaled laboratory experiment that was constructed to reproduce the mechanism of AKR. As studies progressed, 3D PiC code simulations were conducted to enable complete investigation of the complex interaction dimensions. A maximum efficiency of 1.25% is predicted from these simulations in the same mode and frequency as measured in the experiment. This is also consistent with geophysical observations and the predictions of theory.

  16. Python Radiative Transfer Emission code (PyRaTE): non-LTE spectral lines simulations

    Science.gov (United States)

    Tritsis, A.; Yorke, H.; Tassis, K.

    2018-05-01

    We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When computing the escape probability, the optical depth is calculated towards all directions with density, molecular abundance, temperature and velocity variations all taken into account. A very easy-to-use interface, capable of importing data from simulations outputs performed with all major astrophysical codes, is also developed. The code is written in PYTHON using an "embarrassingly parallel" strategy and can handle all geometries and projection angles. We benchmark the code by comparing our results with those from RADEX (van der Tak et al. 2007) and against analytical solutions and present case studies using hydrochemical simulations. The code will be released for public use.

  17. A dual-sided coded-aperture radiation detection system

    International Nuclear Information System (INIS)

    Penny, R.D.; Hood, W.E.; Polichar, R.M.; Cardone, F.H.; Chavez, L.G.; Grubbs, S.G.; Huntley, B.P.; Kuharski, R.A.; Shyffer, R.T.; Fabris, L.; Ziock, K.P.; Labov, S.E.; Nelson, K.

    2011-01-01

    We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5x5x50 cm 3 cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 keV) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels.

  18. FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code

    Science.gov (United States)

    De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.

    2013-02-01

    We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.

  19. Estimation of daily net radiation from synoptic meteorological data

    International Nuclear Information System (INIS)

    Lee, B.W.; Myung, E.J.; Kim, B.C.

    1991-01-01

    Five models for net radiation estimation reported by Linacre (1968), Berljand(1956), Nakayama et al. (1983), Chang (1970) and Doorenbos et al. (1977) were tested for the adaptability to Korea. A new model with effective longwave radiation term parameterized by air temperature, solar radiation and vapor pressure was formulated and tested for its accuracy. Above five models with original parameter values showed large absolute mean deviations ranging from 0.86 to 1.64 MJ/m 2 /day. The parameters of the above five models were reestimated by using net radiation and meteorological elements measured in Suwon, Korea

  20. Development of application program and building database to increase facilities for using the radiation effect assessment computer codes

    International Nuclear Information System (INIS)

    Hyun Seok Ko; Young Min Kim; Suk-Hoon Kim; Dong Hoon Shin; Chang-Sun Kang

    2005-01-01

    The current radiation effect assessment system is required the skillful technique about the application for various code and high level of special knowledge classified by field. Therefore, as a matter of fact, it is very difficult for the radiation users' who don't have enough special knowledge to assess or recognize the radiation effect properly. For this, we already have developed the five Computer codes(windows-based), that is the radiation effect assessment system, in radiation utilizing field including the nuclear power generation. It needs the computer program that non-specialist can use the five computer codes to have already developed with ease. So, we embodied the A.I-based specialist system that can infer the assessment system by itself, according to the characteristic of given problem. The specialist program can guide users, search data, inquire of administrator directly. Conceptually, with circumstance which user to apply the five computer code may encounter actually, we embodied to consider aspects as follows. First, the accessibility of concept and data to need must be improved. Second, the acquirement of reference theory and use of corresponding computer code must be easy. Third, Q and A function needed for solution of user's question out of consideration previously. Finally, the database must be renewed continuously. Actually, to express this necessity, we develop the client program to organize reference data, to build the access methodology(query) about organized data, to load the visible expression function of searched data. And It is embodied the instruction method(effective theory acquirement procedure and methodology) to acquire the theory referring the five computer codes. It is developed the data structure access program(DBMS) to renew continuously data with ease. For Q and A function, it is embodied the Q and A board within client program because the user of client program can search the content of question and answer. (authors)

  1. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  2. Computer codes in nuclear safety, radiation transport and dosimetry; Les codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J M; Kodeli, I; Menard, St; Bouchet, J L; Renard, F; Martin, E; Blazy, L; Voros, S; Bochud, F; Laedermann, J P; Beaugelin, K; Makovicka, L; Quiot, A; Vermeersch, F; Roche, H; Perrin, M C; Laye, F; Bardies, M; Struelens, L; Vanhavere, F; Gschwind, R; Fernandez, F; Quesne, B; Fritsch, P; Lamart, St; Crovisier, Ph; Leservot, A; Antoni, R; Huet, Ch; Thiam, Ch; Donadille, L; Monfort, M; Diop, Ch; Ricard, M

    2006-07-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.

  3. Performance of the dot product function in radiative transfer code SORD

    Science.gov (United States)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-10-01

    The successive orders of scattering radiative transfer (RT) codes frequently call the scalar (dot) product function. In this paper, we study performance of some implementations of the dot product in the RT code SORD using 50 scenarios for light scattering in the atmosphere-surface system. In the dot product function, we use the unrolled loops technique with different unrolling factor. We also considered the intrinsic Fortran functions. We show results for two machines: ifort compiler under Windows, and pgf90 under Linux. Intrinsic DOT_PRODUCT function showed best performance for the ifort. For the pgf90, the dot product implemented with unrolling factor 4 was the fastest. The RT code SORD together with the interface that runs all the mentioned tests are publicly available from ftp://maiac.gsfc.nasa.gov/pub/skorkin/SORD_IP_16B (current release) or by email request from the corresponding (first) author.

  4. Evaluation of coded aperture radiation detectors using a Bayesian approach

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Kyle, E-mail: mille856@andrew.cmu.edu [Auton Lab, The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Huggins, Peter [Auton Lab, The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Labov, Simon; Nelson, Karl [Lawrence Livermore National Laboratory, Livermore, CA (United States); Dubrawski, Artur [Auton Lab, The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2016-12-11

    We investigate tradeoffs arising from the use of coded aperture gamma-ray spectrometry to detect and localize sources of harmful radiation in the presence of noisy background. Using an example application scenario of area monitoring and search, we empirically evaluate weakly supervised spectral, spatial, and hybrid spatio-spectral algorithms for scoring individual observations, and two alternative methods of fusing evidence obtained from multiple observations. Results of our experiments confirm the intuition that directional information provided by spectrometers masked with coded aperture enables gains in source localization accuracy, but at the expense of reduced probability of detection. Losses in detection performance can however be to a substantial extent reclaimed by using our new spatial and spatio-spectral scoring methods which rely on realistic assumptions regarding masking and its impact on measured photon distributions.

  5. Review of the Monte Carlo and deterministic codes in radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Tagziria, H.

    2000-02-01

    Modelling a physical system can be carried out either stochastically or deterministically. An example of the former method is the Monte Carlo technique, in which statistically approximate methods are applied to exact models. No transport equation is solved as individual particles are simulated and some specific aspect (tally) of their average behaviour is recorded. The average behaviour of the physical system is then inferred using the central limit theorem. In contrast, deterministic codes use mathematically exact methods that are applied to approximate models to solve the transport equation for the average particle behaviour. The physical system is subdivided in boxes in the phase-space system and particles are followed from one box to the next. The smaller the boxes the better the approximations become. Although the Monte Carlo method has been used for centuries, its more recent manifestation has really emerged from the Manhattan project of the Word War II. Its invention is thought to be mainly due to Metropolis, Ulah (through his interest in poker), Fermi, von Neuman and Richtmeyer. Over the last 20 years or so, the Monte Carlo technique has become a powerful tool in radiation transport. This is due to users taking full advantage of richer cross section data, more powerful computers and Monte Carlo techniques for radiation transport, with high quality physics and better known source spectra. This method is a common sense approach to radiation transport and its success and popularity is quite often also due to necessity, because measurements are not always possible or affordable. In the Monte Carlo method, which is inherently realistic because nature is statistical, a more detailed physics is made possible by isolation of events while rather elaborate geometries can be modelled. Provided that the physics is correct, a simulation is exactly analogous to an experimenter counting particles. In contrast to the deterministic approach, however, a disadvantage of the

  6. Calculation of the Thermal Radiation Benchmark Problems for a CANDU Fuel Channel Analysis Using the CFX-10 Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Park, Joo Hwan; Rhee, Bo Wook

    2006-07-15

    To justify the use of a commercial Computational Fluid Dynamics (CFD) code for a CANDU fuel channel analysis, especially for the radiation heat transfer dominant conditions, the CFX-10 code is tested against three benchmark problems which were used for the validation of a radiation heat transfer in the CANDU analysis code, a CATHENA. These three benchmark problems are representative of the CANDU fuel channel configurations from a simple geometry to whole fuel channel geometry. With assumptions of a non-participating medium completely enclosed with the diffuse, gray and opaque surfaces, the solutions of the benchmark problems are obtained by the concept of surface resistance to radiation accounting for the view factors and the emissivities. The view factors are calculated by the program MATRIX version 1.0 avoiding the difficulty of hand calculation for the complex geometries. For the solutions of the benchmark problems, the temperature or the net radiation heat flux boundary conditions are prescribed for each radiating surface to determine the radiation heat transfer rate or the surface temperature, respectively by using the network method. The Discrete Transfer Model (DTM) is used for the CFX-10 radiation model and its calculation results are compared with the solutions of the benchmark problems. The CFX-10 results for the three benchmark problems are in close agreement with these solutions, so it is concluded that the CFX-10 with a DTM radiation model can be applied to the CANDU fuel channel analysis where a surface radiation heat transfer is a dominant mode of the heat transfer.

  7. Calculation of the Thermal Radiation Benchmark Problems for a CANDU Fuel Channel Analysis Using the CFX-10 Code

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Park, Joo Hwan; Rhee, Bo Wook

    2006-07-01

    To justify the use of a commercial Computational Fluid Dynamics (CFD) code for a CANDU fuel channel analysis, especially for the radiation heat transfer dominant conditions, the CFX-10 code is tested against three benchmark problems which were used for the validation of a radiation heat transfer in the CANDU analysis code, a CATHENA. These three benchmark problems are representative of the CANDU fuel channel configurations from a simple geometry to whole fuel channel geometry. With assumptions of a non-participating medium completely enclosed with the diffuse, gray and opaque surfaces, the solutions of the benchmark problems are obtained by the concept of surface resistance to radiation accounting for the view factors and the emissivities. The view factors are calculated by the program MATRIX version 1.0 avoiding the difficulty of hand calculation for the complex geometries. For the solutions of the benchmark problems, the temperature or the net radiation heat flux boundary conditions are prescribed for each radiating surface to determine the radiation heat transfer rate or the surface temperature, respectively by using the network method. The Discrete Transfer Model (DTM) is used for the CFX-10 radiation model and its calculation results are compared with the solutions of the benchmark problems. The CFX-10 results for the three benchmark problems are in close agreement with these solutions, so it is concluded that the CFX-10 with a DTM radiation model can be applied to the CANDU fuel channel analysis where a surface radiation heat transfer is a dominant mode of the heat transfer

  8. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R; Hollmann, R; Mueller, J; Stuhlmann, R [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1998-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  9. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R.; Hollmann, R.; Mueller, J.; Stuhlmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  10. The Premar Code for the Monte Carlo Simulation of Radiation Transport In the Atmosphere

    International Nuclear Information System (INIS)

    Cupini, E.; Borgia, M.G.; Premuda, M.

    1997-03-01

    The Montecarlo code PREMAR is described, which allows the user to simulate the radiation transport in the atmosphere, in the ultraviolet-infrared frequency interval. A plan multilayer geometry is at present foreseen by the code, witch albedo possibility at the lower boundary surface. For a given monochromatic point source, the main quantities computed by the code are the absorption spatial distributions of aerosol and molecules, together with the related atmospheric transmittances. Moreover, simulation of of Lidar experiments are foreseen by the code, the source and telescope fields of view being assigned. To build-up the appropriate probability distributions, an input data library is assumed to be read by the code. For this purpose the radiance-transmittance LOWTRAN-7 code has been conveniently adapted as a source of the library so as to exploit the richness of information of the code for a large variety of atmospheric simulations. Results of applications of the PREMAR code are finally presented, with special reference to simulations of Lidar system and radiometer experiments carried out at the Brasimone ENEA Centre by the Environment Department

  11. The new deterministic 3-D radiation transport code Multitrans: C5G7 MOX fuel assembly benchmark

    International Nuclear Information System (INIS)

    Kotiluoto, P.

    2003-01-01

    The novel deterministic three-dimensional radiation transport code MultiTrans is based on combination of the advanced tree multigrid technique and the simplified P3 (SP3) radiation transport approximation. In the tree multigrid technique, an automatic mesh refinement is performed on material surfaces. The tree multigrid is generated directly from stereo-lithography (STL) files exported by computer-aided design (CAD) systems, thus allowing an easy interface for construction and upgrading of the geometry. The deterministic MultiTrans code allows fast solution of complicated three-dimensional transport problems in detail, offering a new tool for nuclear applications in reactor physics. In order to determine the feasibility of a new code, computational benchmarks need to be carried out. In this work, MultiTrans code is tested for a seven-group three-dimensional MOX fuel assembly transport benchmark without spatial homogenization (NEA C5G7 MOX). (author)

  12. RADHEAT-V4: a code system to generate multigroup constants and analyze radiation transport for shielding safety evaluation

    International Nuclear Information System (INIS)

    Yamano, Naoki; Minami, Kazuyoshi; Koyama, Kinji; Naito, Yoshitaka.

    1989-03-01

    A modular code system RADHEAT-V4 has been developed for performing precisely neutron and photon transport analyses, and shielding safety evaluations. The system consists of the functional modules for producing coupled multi-group neutron and photon cross section sets, for analyzing the neutron and photon transport, and for calculating the atom displacement and the energy deposition due to radiations in nuclear reactor or shielding material. A precise method named Direct Angular Representation (DAR) has been developed for eliminating an error associated with the method of the finite Legendre expansion in evaluating angular distributions of cross sections and radiation fluxes. The DAR method implemented in the code system has been described in detail. To evaluate the accuracy and applicability of the code system, some test calculations on strong anisotropy problems have been performed. From the results, it has been concluded that RADHEAT-V4 is successfully applicable to evaluating shielding problems accurately for fission and fusion reactors and radiation sources. The method employed in the code system is very effective in eliminating negative values and oscillations of angular fluxes in a medium having an anisotropic source or strong streaming. Definitions of the input data required in various options of the code system and the sample problems are also presented. (author)

  13. The COBAIN (COntact Binary Atmospheres with INterpolation) Code for Radiative Transfer

    Science.gov (United States)

    Kochoska, Angela; Prša, Andrej; Horvat, Martin

    2018-01-01

    Standard binary star modeling codes make use of pre-existing solutions of the radiative transfer equation in stellar atmospheres. The various model atmospheres available today are consistently computed for single stars, under different assumptions - plane-parallel or spherical atmosphere approximation, local thermodynamical equilibrium (LTE) or non-LTE (NLTE), etc. However, they are nonetheless being applied to contact binary atmospheres by populating the surface corresponding to each component separately and neglecting any mixing that would typically occur at the contact boundary. In addition, single stellar atmosphere models do not take into account irradiance from a companion star, which can pose a serious problem when modeling close binaries. 1D atmosphere models are also solved under the assumption of an atmosphere in hydrodynamical equilibrium, which is not necessarily the case for contact atmospheres, as the potentially different densities and temperatures can give rise to flows that play a key role in the heat and radiation transfer.To resolve the issue of erroneous modeling of contact binary atmospheres using single star atmosphere tables, we have developed a generalized radiative transfer code for computation of the normal emergent intensity of a stellar surface, given its geometry and internal structure. The code uses a regular mesh of equipotential surfaces in a discrete set of spherical coordinates, which are then used to interpolate the values of the structural quantites (density, temperature, opacity) in any given point inside the mesh. The radiaitive transfer equation is numerically integrated in a set of directions spanning the unit sphere around each point and iterated until the intensity values for all directions and all mesh points converge within a given tolerance. We have found that this approach, albeit computationally expensive, is the only one that can reproduce the intensity distribution of the non-symmetric contact binary atmosphere and

  14. DGR, GGR; molecular dynamical codes for simulating radiation damages in diamond and graphite crystals

    International Nuclear Information System (INIS)

    Taji, Yukichi

    1984-06-01

    Development has been made of molecular dynamical codes DGR and GGR to simulate radiation damages yielded in the diamond and graphite structure crystals, respectively. Though the usual molecular dynamical codes deal only with the central forces as the mutual interactions between atoms, the present codes can take account of noncentral forces to represent the effect of the covalent bonds characteristic of diamond or graphite crystals. It is shown that lattice defects yielded in these crystals are stable by themselves in the present method without any supports of virtual surface forces set on the crystallite surfaces. By this effect the behavior of lattice defects has become possible to be simulated in a more realistic manner. Some examples of the simulation with these codes are shown. (author)

  15. Development of the computer code to monitor gamma radiation in the nuclear facility environment

    International Nuclear Information System (INIS)

    Akhmad, Y. R.; Pudjiyanto, M.S.

    1998-01-01

    Computer codes for gamma radiation monitoring in the vicinity of nuclear facility which have been developed could be introduced to the commercial potable gamma analyzer. The crucial stage of the first year activity was succeeded ; that is the codes have been tested to transfer data file (pulse high distribution) from Micro NOMAD gamma spectrometer (ORTEC product) and the convert them into dosimetry and physics quantities. Those computer codes are called as GABATAN (Gamma Analyzer of Batan) and NAGABAT (Natural Gamma Analyzer of Batan). GABATAN code can isable to used at various nuclear facilities for analyzing gamma field up to 9 MeV, while NAGABAT could be used for analyzing the contribution of natural gamma rays to the exposure rate in the certain location

  16. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  17. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    International Nuclear Information System (INIS)

    1994-01-01

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs

  18. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs.

  19. User's guide: Nimbus-7 Earth radiation budget narrow-field-of-view products. Scene radiance tape products, sorting into angular bins products, and maximum likelihood cloud estimation products

    Science.gov (United States)

    Kyle, H. Lee; Hucek, Richard R.; Groveman, Brian; Frey, Richard

    1990-01-01

    The archived Earth radiation budget (ERB) products produced from the Nimbus-7 ERB narrow field-of-view scanner are described. The principal products are broadband outgoing longwave radiation (4.5 to 50 microns), reflected solar radiation (0.2 to 4.8 microns), and the net radiation. Daily and monthly averages are presented on a fixed global equal area (500 sq km), grid for the period May 1979 to May 1980. Two independent algorithms are used to estimate the outgoing fluxes from the observed radiances. The algorithms are described and the results compared. The products are divided into three subsets: the Scene Radiance Tapes (SRT) contain the calibrated radiances; the Sorting into Angular Bins (SAB) tape contains the SAB produced shortwave, longwave, and net radiation products; and the Maximum Likelihood Cloud Estimation (MLCE) tapes contain the MLCE products. The tape formats are described in detail.

  20. The application of the Monte Carlo code FLUKA in radiation protection studies for the large hadron collider

    International Nuclear Information System (INIS)

    Battistoni, Giuseppe; Broggi, Francesco; Brugger, Markus

    2010-01-01

    The multi-purpose particle interaction and transport code FLUKA is integral part of all radiation protection studies for the design and operation of the Large Hadron Collider (LHC) at CERN. It is one of the very few codes available for this type of calculations which is capable to calculate in one and the same simulation proton-proton and heavy ion collisions at LHC energies as well as the entire hadronic and electromagnetic particle cascade initiated by secondary particles in detectors and beam-line components from TeV energies down to energies of thermal neutrons. The present paper reviews these capabilities of FLUKA in giving details of relevant physics models along with examples of radiation protection studies for the LHC such as shielding studies for underground areas occupied by personnel during LHC operation and the simulation of induced radioactivity around beam loss points. Integral part of the FLUKA development is a careful benchmarking of specific models as well as the code performance in complex, real life applications which is demonstrated with examples of studies relevant to radiation protection at the LHC. (author)

  1. The radiative heating response to climate change

    Science.gov (United States)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  2. Fast algorithm for two-dimensional data table use in hydrodynamic and radiative-transfer codes

    International Nuclear Information System (INIS)

    Slattery, W.L.; Spangenberg, W.H.

    1982-01-01

    A fast algorithm for finding interpolated atomic data in irregular two-dimensional tables with differing materials is described. The algorithm is tested in a hydrodynamic/radiative transfer code and shown to be of comparable speed to interpolation in regularly spaced tables, which require no table search. The concepts presented are expected to have application in any situation with irregular vector lengths. Also, the procedures that were rejected either because they were too slow or because they involved too much assembly coding are described

  3. A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model

    International Nuclear Information System (INIS)

    Sekiguchi, Miho; Nakajima, Teruyuki

    2008-01-01

    The gas absorption process scheme in the broadband radiative transfer code 'mstrn8', which is used to calculate atmospheric radiative transfer efficiently in a general circulation model, is improved. Three major improvements are made. The first is an update of the database of line absorption parameters and the continuum absorption model. The second is a change to the definition of the selection rule for gas absorption used to choose which absorption bands to include. The last is an upgrade of the optimization method used to decrease the number of quadrature points used for numerical integration in the correlated k-distribution approach, thereby realizing higher computational efficiency without losing accuracy. The new radiation package termed 'mstrnX' computes radiation fluxes and heating rates with errors less than 0.6 W/m 2 and 0.3 K/day, respectively, through the troposphere and the lower stratosphere for any standard AFGL atmospheres. A serious cold bias problem of an atmospheric general circulation model using the ancestor code 'mstrn8' is almost solved by the upgrade to 'mstrnX'

  4. New in-flight calibration adjustment of the Nimbus 6 and 7 earth radiation budget wide field of view radiometers

    Science.gov (United States)

    Kyle, H. L.; House, F. B.; Ardanuy, P. E.; Jacobowitz, H.; Maschhoff, R. H.; Hickey, J. R.

    1984-01-01

    In-flight calibration adjustments are developed to process data obtained from the wide-field-of-view channels of Nimbus-6 and Nimbus-7 after the failure of the Nimbus-7 longwave scanner on June 22, 1980. The sensor characteristics are investigated; the satellite environment is examined in detail; and algorithms are constructed to correct for long-term sensor-response changes, on/off-cycle thermal transients, and filter-dome absorption of longwave radiation. Data and results are presented in graphs and tables, including comparisons of the old and new algorithms.

  5. Sweat Rate Prediction Equations for Outdoor Exercise with Transient Solar Radiation

    Science.gov (United States)

    2012-01-01

    AD] 15 Interchangeable variables gSL W/m2 Global solar load Direct weather station data; pyranometer values 25 Direct measurement from weather station... pyranometer (to measure short-wave radiation fluxes) and pyrgeometer (to measure long-wave radiation fluxes). Normally, the value of the solar load...as described below. During field operations, Rsol (W/m2) can be calculated from 0.835 ·ERF. If Rsol (in W/m2) is known by direct pyranometer mea

  6. Combined convective and diffusive modeling of the ring current and radiation belt electron dynamics using the VERB-4D code

    Science.gov (United States)

    Aseev, N.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Wang, D.

    2017-12-01

    Ring current and radiation belts are key elements in the global dynamics of the Earth's magnetosphere. Comprehensive mathematical models are useful tools that allow us to understand the multiscale dynamics of these charged particle populations. In this work, we present results of simulations of combined ring current - radiation belt electron dynamics using the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. The VERB-4D code solves the modified Fokker-Planck equation including convective terms and models simultaneously ring current (1 - 100 keV) and radiation belt (100 keV - several MeV) electron dynamics. We apply the code to the number of geomagnetic storms that occurred in the past, compare the results with different satellite observations, and show how low-energy particles can affect the high-energy populations. Particularly, we use data from Polar Operational Environmental Satellite (POES) mission that provides a very good MLT coverage with 1.5-hour time resolution. The POES data allow us to validate the approach of the VERB-4D code for modeling MLT-dependent processes such as electron drift, wave-particle interactions, and magnetopause shadowing. We also show how different simulation parameters and empirical models can affect the results, making a particular emphasis on the electric and magnetic field models. This work will help us reveal advantages and disadvantages of the approach behind the code and determine its prediction efficiency.

  7. The effect on radiation damage of structural material in a hybrid system by using a Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Günay, Mehtap; Şarer, Başar; Kasap, Hızır

    2014-01-01

    Highlights: • The effects of some fluids on gas production rates in structural material were investigated. • The MCNPX-2.7.0 Monte Carlo code was used for three-dimensional calculations. • It was found that biggest contribution to gas production rates comes from Fe isotope of the. • The desirable values for 5% SFG-PuO 2 with respect to radiation damage were specified. - Abstract: In this study, the molten salt-heavy metal mixtures 99–95% Li20Sn80-1-5% SFG-Pu, 99–95% Li20Sn80-1-5% SFG-PuF4, 99-95% Li20Sn80-1-5% SFG-PuO2 were used as fluids. The fluids were used in the liquid first-wall, blanket and shield zones of the designed hybrid reactor system. 9Cr2WVTa ferritic steel with the width of 4 cm was used as the structural material. The parameters of radiation damage are proton, deuterium, tritium, He-3 and He-4 gas production rates. In this study, the effects of the selected fluid on the radiation damage, in terms of individual as well as total isotopes in the structural material, were investigated for 30 full power years (FPYs). Three-dimensional analyses were performed using the most recent version of the MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library

  8. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    Science.gov (United States)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  9. Iterative linear solvers in a 2D radiation-hydrodynamics code: Methods and performance

    International Nuclear Information System (INIS)

    Baldwin, C.; Brown, P.N.; Falgout, R.; Graziani, F.; Jones, J.

    1999-01-01

    Computer codes containing both hydrodynamics and radiation play a central role in simulating both astrophysical and inertial confinement fusion (ICF) phenomena. A crucial aspect of these codes is that they require an implicit solution of the radiation diffusion equations. The authors present in this paper the results of a comparison of five different linear solvers on a range of complex radiation and radiation-hydrodynamics problems. The linear solvers used are diagonally scaled conjugate gradient, GMRES with incomplete LU preconditioning, conjugate gradient with incomplete Cholesky preconditioning, multigrid, and multigrid-preconditioned conjugate gradient. These problems involve shock propagation, opacities varying over 5--6 orders of magnitude, tabular equations of state, and dynamic ALE (Arbitrary Lagrangian Eulerian) meshes. They perform a problem size scalability study by comparing linear solver performance over a wide range of problem sizes from 1,000 to 100,000 zones. The fundamental question they address in this paper is: Is it more efficient to invert the matrix in many inexpensive steps (like diagonally scaled conjugate gradient) or in fewer expensive steps (like multigrid)? In addition, what is the answer to this question as a function of problem size and is the answer problem dependent? They find that the diagonally scaled conjugate gradient method performs poorly with the growth of problem size, increasing in both iteration count and overall CPU time with the size of the problem and also increasing for larger time steps. For all problems considered, the multigrid algorithms scale almost perfectly (i.e., the iteration count is approximately independent of problem size and problem time step). For pure radiation flow problems (i.e., no hydrodynamics), they see speedups in CPU time of factors of ∼15--30 for the largest problems, when comparing the multigrid solvers relative to diagonal scaled conjugate gradient

  10. Process of cross section generation for radiation shielding calculations, using the NJOY code

    International Nuclear Information System (INIS)

    Ono, S.; Corcuera, R.P.

    1986-10-01

    The process of multigroup cross sections generation for radiation shielding calculations, using the NJOY code, is explained. Photon production cross sections, processed by the GROUPR module, and photon interaction cross sections processed by the GAMINR are given. These data are compared with the data produced by the AMPX system and published data. (author) [pt

  11. Radiation transport simulation in gamma irradiator systems using E G S 4 Monte Carlo code and dose mapping calculations based on point kernel technique

    International Nuclear Information System (INIS)

    Raisali, G.R.

    1992-01-01

    A series of computer codes based on point kernel technique and also Monte Carlo method have been developed. These codes perform radiation transport calculations for irradiator systems having cartesian, cylindrical and mixed geometries. The monte Carlo calculations, the computer code 'EGS4' has been applied to a radiation processing type problem. This code has been acompanied by a specific user code. The set of codes developed include: GCELLS, DOSMAPM, DOSMAPC2 which simulate the radiation transport in gamma irradiator systems having cylinderical, cartesian, and mixed geometries, respectively. The program 'DOSMAP3' based on point kernel technique, has been also developed for dose rate mapping calculations in carrier type gamma irradiators. Another computer program 'CYLDETM' as a user code for EGS4 has been also developed to simulate dose variations near the interface of heterogeneous media in gamma irradiator systems. In addition a system of computer codes 'PRODMIX' has been developed which calculates the absorbed dose in the products with different densities. validation studies of the calculated results versus experimental dosimetry has been performed and good agreement has been obtained

  12. Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES

    Science.gov (United States)

    Leitner, P.; Lemmerer, B.; Hanslmeier, A.; Zaqarashvili, T.; Veronig, A.; Grimm-Strele, H.; Muthsam, H. J.

    2017-09-01

    The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to 25''×25'' on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers ˜4 Mm of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An ≈145 km wide transition layer separates the convective from the oscillatory layers in the higher photosphere.

  13. Non-ionizing radiation protection training manual for radiation control. Lectures, demonstrations, laboratories and tours on the course on non-ionizing radiations. Final report

    International Nuclear Information System (INIS)

    Morgan, K.Z.; Burkhart, R.L.

    1976-03-01

    In late 1974, consultation with the National Training Coordination Committee of the Conference of Radiation Control Program Directors determined that State personnel needed training in order to fulfill their responsibility with respect to the growing number of non-ionizing radiation sources. A contract was awarded to the Georgia Institute of Technology to develop materials for a training program on non-ionizing radiation protection, pilot test these materials in a two-week presentation for Federal, State, and local government health personnel, and revise the materials as needed to produce a self-contained training manual. The materials were pilot-tested in March 1976, and then revised to provide the final manual. The course consists of three parts (1) general discussions of basic principles, properties, propagation and behavior of all types of non-ionizing radiations (2) an indepth study of all types and applications of coherent (laser) radiations, and (3) a study of ultraviolet, infrared, microwave, r.f., longwave and mechanical radiations as they may be used to have applications in hospitals and other medical institutions

  14. Collection of regulatory texts relative to radiation protection. Part 2: by-laws, decisions, non-codified decrees / Collection of legal and statutory provisions relative to radiation protection. Part 2: by-laws and decisions taken in application of the Public Health Code and Labour Code concerning the protection of populations, patients and workers against the risks of ionizing radiations

    International Nuclear Information System (INIS)

    Rivas, Robert; Feries, Jean; Marzorati, Frank; Chevalier, Celine; Lachaume, Jean-Luc

    2012-01-01

    This second part gathers texts extracted from the Public Health Code and related to ionizing radiations (general measures for the protection of the population, exposure to natural radiations, general regime of authorizations and declarations, purchase, retailing, importation, exportation, transfer and elimination of radioactive sources, protection of persons exposed to ionizing radiations for medical or forensics purposes, situations of radiological emergency and of sustained exposure to ionizing radiations, control), to the safety of waters and food products, and to the control of medical devices, to the protection of patients. It also contains extracts for the Labour Code related to workers protection. This document is an update of the previous version from March 2011

  15. Collection of regulatory texts relative to radiation protection. Part 2: orders and decisions taken in application of the Public Health Code and Labour Code concerning the protection of populations, patients and workers against the risks of ionizing radiations; Recueil de textes reglementaires relatifs a la radioprotection. Partie 2: arretes et decisions pris en application du Code de Sante Publique et du Code du Travail concernant la protection de la population, des patients et des travailleurs contre les dangers des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    This collection of texts includes the general measures of population protection, exposure to natural radiations, general system of authorizations and statements, protection of persons exposed to ionizing radiations for medical purpose, situations of radiological emergency and long exposure to ionizing radiations, penal dispositions, application of the Public Health code and application of the Labour code. Chronological contents by date of publication is given. (N.C.)

  16. Ray-tracing 3D dust radiative transfer with DART-Ray: code upgrade and public release

    Science.gov (United States)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard J.; Clarke, Adam J.; Debattista, Victor P.; Fischera, Jörg; Pasetto, Stefano; Rushton, Mark; Thirlwall, Jordan J.

    2017-11-01

    We present an extensively updated version of the purely ray-tracing 3D dust radiation transfer code DART-Ray. The new version includes five major upgrades: 1) a series of optimizations for the ray-angular density and the scattered radiation source function; 2) the implementation of several data and task parallelizations using hybrid MPI+OpenMP schemes; 3) the inclusion of dust self-heating; 4) the ability to produce surface brightness maps for observers within the models in HEALPix format; 5) the possibility to set the expected numerical accuracy already at the start of the calculation. We tested the updated code with benchmark models where the dust self-heating is not negligible. Furthermore, we performed a study of the extent of the source influence volumes, using galaxy models, which are critical in determining the efficiency of the DART-Ray algorithm. The new code is publicly available, documented for both users and developers, and accompanied by several programmes to create input grids for different model geometries and to import the results of N-body and SPH simulations. These programmes can be easily adapted to different input geometries, and for different dust models or stellar emission libraries.

  17. Observations and Modeling of Upper Ocean Hydrography in the Western Arctic With Implications for Acoustic Propagation

    Science.gov (United States)

    2016-12-01

    Poland 52 variability under the influence of sea-ice growth and melt, river run-off, solar and longwave radiation ( clouds ), and seasonally...Several global climate models were evaluated against historical and recent hydrographic observations and found to inadequately represent key upper...Canada Basin, climate system model 15. NUMBER OF PAGES 143 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY

  18. HELIOS: An Open-source, GPU-accelerated Radiative Transfer Code for Self-consistent Exoplanetary Atmospheres

    Science.gov (United States)

    Malik, Matej; Grosheintz, Luc; Mendonça, João M.; Grimm, Simon L.; Lavie, Baptiste; Kitzmann, Daniel; Tsai, Shang-Min; Burrows, Adam; Kreidberg, Laura; Bedell, Megan; Bean, Jacob L.; Stevenson, Kevin B.; Heng, Kevin

    2017-02-01

    We present the open-source radiative transfer code named HELIOS, which is constructed for studying exoplanetary atmospheres. In its initial version, the model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with nonisotropic scattering. A small set of the main infrared absorbers is employed, computed with the opacity calculator HELIOS-K and combined using a correlated-k approximation. The molecular abundances originate from validated analytical formulae for equilibrium chemistry. We compare HELIOS with the work of Miller-Ricci & Fortney using a model of GJ 1214b, and perform several tests, where we find: model atmospheres with single-temperature layers struggle to converge to radiative equilibrium; k-distribution tables constructed with ≳ 0.01 cm-1 resolution in the opacity function (≲ {10}3 points per wavenumber bin) may result in errors ≳ 1%-10% in the synthetic spectra; and a diffusivity factor of 2 approximates well the exact radiative transfer solution in the limit of pure absorption. We construct “null-hypothesis” models (chemical equilibrium, radiative equilibrium, and solar elemental abundances) for six hot Jupiters. We find that the dayside emission spectra of HD 189733b and WASP-43b are consistent with the null hypothesis, while the latter consistently underpredicts the observed fluxes of WASP-8b, WASP-12b, WASP-14b, and WASP-33b. We demonstrate that our results are somewhat insensitive to the choice of stellar models (blackbody, Kurucz, or PHOENIX) and metallicity, but are strongly affected by higher carbon-to-oxygen ratios. The code is publicly available as part of the Exoclimes Simulation Platform (exoclime.net).

  19. Using Procedure Codes to Define Radiation Toxicity in Administrative Data: The Devil is in the Details.

    Science.gov (United States)

    Meyer, Anne-Marie; Kuo, Tzy-Mey; Chang, YunKyung; Carpenter, William R; Chen, Ronald C; Sturmer, Til

    2017-05-01

    Systematic coding systems are used to define clinically meaningful outcomes when leveraging administrative claims data for research. How and when these codes are applied within a research study can have implications for the study validity and their specificity can vary significantly depending on treatment received. Data are from the Surveillance, Epidemiology, and End Results-Medicare linked dataset. We use propensity score methods in a retrospective cohort of prostate cancer patients first examined in a recently published radiation oncology comparative effectiveness study. With the narrowly defined outcome definition, the toxicity event outcome rate ratio was 0.88 per 100 person-years (95% confidence interval, 0.71-1.08). With the broadly defined outcome, the rate ratio was comparable, with 0.89 per 100 person-years (95% confidence interval, 0.76-1.04), although individual event rates were doubled. Some evidence of surveillance bias was suggested by a higher rate of endoscopic procedures the first year of follow-up in patients who received proton therapy compared with those receiving intensity-modulated radiation treatment (11.15 vs. 8.90, respectively). This study demonstrates the risk of introducing bias through subjective application of procedure codes. Careful consideration is required when using procedure codes to define outcomes in administrative data.

  20. Synthesis of the scientific French speaking days on numerical codes in radiation protection, in radio physics and in dosimetry

    International Nuclear Information System (INIS)

    Paul, D.; Makovicka, L.; Ricard, M.

    2005-01-01

    Synthesis of the scientific French speaking days on numerical codes in radiation protection, in radio-physics and in dosimetry. The paper carries the title of 'French speaking' scientific days co-organized on October 2-3, 2003 in Sochaux by the SFRP, SFPM and FIRAM societies. It has for objective to establish the scientific balance sheet of this international event, to give the synthesis of current tendencies in the field of the development and of the use of the numerical codes in radiation protection, in radio-physics and in dosimetry. (author)

  1. Abstracts of digital computer code packages. Assembled by the Radiation Shielding Information Center. [Radiation transport codes

    Energy Technology Data Exchange (ETDEWEB)

    McGill, B.; Maskewitz, B.F.; Anthony, C.M.; Comolander, H.E.; Hendrickson, H.R.

    1976-01-01

    The term ''code package'' is used to describe a miscellaneous grouping of materials which, when interpreted in connection with a digital computer, enables the scientist--user to solve technical problems in the area for which the material was designed. In general, a ''code package'' consists of written material--reports, instructions, flow charts, listings of data, and other useful material and IBM card decks (or, more often, a reel of magnetic tape) on which the source decks, sample problem input (including libraries of data) and the BCD/EBCDIC output listing from the sample problem are written. In addition to the main code, and any available auxiliary routines are also included. The abstract format was chosen to give to a potential code user several criteria for deciding whether or not he wishes to request the code package. (RWR)

  2. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    Science.gov (United States)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  3. Nimbus-7 Earth radiation budget calibration history. Part 2: The Earth flux channels

    Science.gov (United States)

    Kyle, H. Lee; Hucek, Douglas Richard R.; Ardanuy, Philip E.; Hickey, John R.; Maschhoff, Robert H.; Penn, Lanning M.; Groveman, Brian S.; Vallette, Brenda J.

    1994-01-01

    Nine years (November 1978 to October 1987) of Nimbus-7 Earth radiation budget (ERB) products have shown that the global annual mean emitted longwave, absorbed shortwave, and net radiation were constant to within about + 0.5 W/sq m. Further, most of the small annual variations in the emitted longwave have been shown to be real. To obtain this measurement accuracy, the wide-field-of-view (WFOV) Earth-viewing channels 12 (0.2 to over 50 micrometers), 13 (0.2 to 3.8 micrometers), and 14 (0.7 to 2.8 micrometers) have been characterized in their satellite environment to account for signal variations not considered in the prelaunch calibration equations. Calibration adjustments have been derived for (1) extraterrestrial radiation incident on the detectors, (2) long-term degradation of the sensors, and (3) thermal perturbations within the ERB instrument. The first item is important in all the channels; the second, mainly in channels 13 and 14, and the third, only in channels 13 and 14. The Sun is used as a stable calibration source to monitor the long-term degradation of the various channels. Channel 12, which is reasonably stable to both thermal perturbations and sensor degradation, is used as a reference and calibration transfer agent for the drifting sensitivities of the filtered channels 13 and 14. Redundant calibration procedures were utilized. Laboratory studies complemented analyses of the satellite data. Two nearly independent models were derived to account for the thermal perturbations in channels 13 and 14. The global annual mean terrestrial shortwave and longwave signals proved stable enough to act as secondary calibration sources. Instantaneous measurements may still, at times, be in error by as much as a few Wm(exp -2), but the long-term averages are stable to within a fraction of a Wm(exp -2).

  4. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  5. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  6. The Remote Sensing of Surface Radiative Temperature over Barbados.

    Science.gov (United States)

    remote sensing of surface radiative temperature over Barbados was undertaken using a PRT-5 attached to a light aircraft. Traverses across the centre of the island, over the rugged east coast area, and the urban area of Bridgetown were undertaken at different times of day and night in the last week of June and the first week of December, 1969. These traverses show that surface variations in long-wave radiation emission lie within plus or minus 5% of the observations over grass at a representative site. The quick response of the surface to sunset and sunrise was

  7. Evaluation of Clear-Sky Incoming Radiation Estimating Equations Typically Used in Remote Sensing Evapotranspiration Algorithms

    Directory of Open Access Journals (Sweden)

    Ted W. Sammis

    2013-09-01

    Full Text Available Net radiation is a key component of the energy balance, whose estimation accuracy has an impact on energy flux estimates from satellite data. In typical remote sensing evapotranspiration (ET algorithms, the outgoing shortwave and longwave components of net radiation are obtained from remote sensing data, while the incoming shortwave (RS and longwave (RL components are typically estimated from weather data using empirical equations. This study evaluates the accuracy of empirical equations commonly used in remote sensing ET algorithms for estimating RS and RL radiation. Evaluation is carried out through comparison of estimates and observations at five sites that represent different climatic regions from humid to arid. Results reveal (1 both RS and RL estimates from all evaluated equations well correlate with observations (R2 ≥ 0.92, (2 RS estimating equations tend to overestimate, especially at higher values, (3 RL estimating equations tend to give more biased values in arid and semi-arid regions, (4 a model that parameterizes the diffuse component of radiation using two clearness indices and a simple model that assumes a linear increase of atmospheric transmissivity with elevation give better RS estimates, and (5 mean relative absolute errors in the net radiation (Rn estimates caused by the use of RS and RL estimating equations varies from 10% to 22%. This study suggests that Rn estimates using recommended incoming radiation estimating equations could improve ET estimates.

  8. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    Science.gov (United States)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  9. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    Science.gov (United States)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the

  10. Review of the Monte Carlo and deterministic codes in radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Tagziria, H

    2000-02-01

    Modelling a physical system can be carried out either stochastically or deterministically. An example of the former method is the Monte Carlo technique, in which statistically approximate methods are applied to exact models. No transport equation is solved as individual particles are simulated and some specific aspect (tally) of their average behaviour is recorded. The average behaviour of the physical system is then inferred using the central limit theorem. In contrast, deterministic codes use mathematically exact methods that are applied to approximate models to solve the transport equation for the average particle behaviour. The physical system is subdivided in boxes in the phase-space system and particles are followed from one box to the next. The smaller the boxes the better the approximations become. Although the Monte Carlo method has been used for centuries, its more recent manifestation has really emerged from the Manhattan project of the Word War II. Its invention is thought to be mainly due to Metropolis, Ulah (through his interest in poker), Fermi, von Neuman andRichtmeyer. Over the last 20 years or so, the Monte Carlo technique has become a powerful tool in radiation transport. This is due to users taking full advantage of richer cross section data, more powerful computers and Monte Carlo techniques for radiation transport, with high quality physics and better known source spectra. This method is a common sense approach to radiation transport and its success and popularity is quite often also due to necessity, because measurements are not always possible or affordable. In the Monte Carlo method, which is inherently realistic because nature is statistical, a more detailed physics is made possible by isolation of events while rather elaborate geometries can be modelled. Provided that the physics is correct, a simulation is exactly analogous to an experimenter counting particles. In contrast to the deterministic approach, however, a disadvantage of the

  11. The behaviour of hydrogen-like atoms in an intense long-wave field

    International Nuclear Information System (INIS)

    Brodsky, A.M.

    1979-01-01

    The equations, which permit the calculation by means of regular operations of multiphoton photoionisation cross sections and the dynamic polarisabilities in an intense classical long-wave electromagnetic field, are considered for a hydrogen atom. The calculations have been performed for a circularly polarised field. A quantitative expression has been derived for the Lamb shift analogue, which can be verified experimentally. Within the framework of the problem the interaction at small distances is self-compensated and reduced to a constant potential. This conclusion is of general interest for the theory of strong interactions. (author)

  12. Photonic antenna enhanced middle wave and longwave infrared focal plane array with low noise and high operating temperature, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Photodetectors and focal plane arrays (FPAs) covering the middle-wave and longwave infrared (MWIR/LWIR) are of great importance in numerous NASA applications,...

  13. AREVA Developments for an Efficient and Reliable use of Monte Carlo codes for Radiation Transport Applications

    Science.gov (United States)

    Chapoutier, Nicolas; Mollier, François; Nolin, Guillaume; Culioli, Matthieu; Mace, Jean-Reynald

    2017-09-01

    In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics). Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition) has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.

  14. Synthetic radiation diagnostics in PIConGPU. Integrating spectral detectors into particle-in-cell codes

    Energy Technology Data Exchange (ETDEWEB)

    Pausch, Richard; Burau, Heiko; Huebl, Axel; Steiniger, Klaus [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Debus, Alexander; Widera, Rene; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    We present the in-situ far field radiation diagnostics in the particle-in-cell code PIConGPU. It was developed to close the gap between simulated plasma dynamics and radiation observed in laser plasma experiments. Its predictive capabilities, both qualitative and quantitative, have been tested against analytical models. Now, we apply this synthetic spectral diagnostics to investigate plasma dynamics in laser wakefield acceleration, laser foil irradiation and plasma instabilities. Our method is based on the far field approximation of the Lienard-Wiechert potential and allows predicting both coherent and incoherent radiation spectrally from infrared to X-rays. Its capability to resolve the radiation polarization and to determine the temporal and spatial origin of the radiation enables us to correlate specific spectral signatures with characteristic dynamics in the plasma. Furthermore, its direct integration into the highly-scalable GPU framework of PIConGPU allows computing radiation spectra for thousands of frequencies, hundreds of detector positions and billions of particles efficiently. In this talk we will demonstrate these capabilities on resent simulations of laser wakefield acceleration (LWFA) and high harmonics generation during target normal sheath acceleration (TNSA).

  15. Comparison of Radiation Transport Codes, HZETRN, HETC and FLUKA, Using the 1956 Webber SPE Spectrum

    Science.gov (United States)

    Heinbockel, John H.; Slaba, Tony C.; Blattnig, Steve R.; Tripathi, Ram K.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.; Reddell, Brandon; Clowdsley, Martha S.; hide

    2009-01-01

    Protection of astronauts and instrumentation from galactic cosmic rays (GCR) and solar particle events (SPE) in the harsh environment of space is of prime importance in the design of personal shielding, spacec raft, and mission planning. Early entry of radiation constraints into the design process enables optimal shielding strategies, but demands efficient and accurate tools that can be used by design engineers in every phase of an evolving space project. The radiation transport code , HZETRN, is an efficient tool for analyzing the shielding effectiveness of materials exposed to space radiation. In this paper, HZETRN is compared to the Monte Carlo codes HETC-HEDS and FLUKA, for a shield/target configuration comprised of a 20 g/sq cm Aluminum slab in front of a 30 g/cm^2 slab of water exposed to the February 1956 SPE, as mode led by the Webber spectrum. Neutron and proton fluence spectra, as well as dose and dose equivalent values, are compared at various depths in the water target. This study shows that there are many regions where HZETRN agrees with both HETC-HEDS and FLUKA for this shield/target configuration and the SPE environment. However, there are also regions where there are appreciable differences between the three computer c odes.

  16. Longwave thermal infrared spectral variability in individual rocks

    Energy Technology Data Exchange (ETDEWEB)

    Balick, Lee K [Los Alamos National Laboratory; Gillespie, Alan [UN. WASHINGTON; French, Andrew [USDA-ARS; Danilina, Iryna [UN. WASHINGTON

    2008-01-01

    A hyperspectral imaging spectrometer measuring in the longwave thermal infrared (7.6-11.6 {micro}m) with a spatial resolution less than 4 mm was used in the field to observe the variability of emissivity spectra within individual rocks. The rocks were obtained commercially, were on the order of 20 cm in size and were selected to have distinct spectral features: they include alabaster (gypsum), soapstone (steatite with talc), obsidian (volcanic glass), norite (plagioclase and orthopyroxene), and 'jasper' (silica with iron oxides). The advantages of using an imaging spectrometer to spectrally characterize these rocks are apparent. Large spectral variations were observed within individual rocks that may be attributed to roughness, surface geometry, and compositional variation. Non-imaging spectrometers would normally miss these variations as would small samples used in laboratory measurements, spatially averaged spectra can miss the optimum spectra for identification materials and spatially localized components of the rock can be obscured.

  17. Study of the source term of radiation of the CDTN GE-PET trace 8 cyclotron with the MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Benavente C, J. A.; Lacerda, M. A. S.; Fonseca, T. C. F.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Vega C, H. R., E-mail: jhonnybenavente@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Full text: The knowledge of the neutron spectra in a PET cyclotron is important for the optimization of radiation protection of the workers and individuals of the public. The main objective of this work is to study the source term of radiation of the GE-PET trace 8 cyclotron of the Development Center of Nuclear Technology (CDTN/CNEN) using computer simulation by the Monte Carlo method. The MCNPX version 2.7 code was used to calculate the flux of neutrons produced from the interaction of the primary proton beam with the target body and other cyclotron components, during 18F production. The estimate of the source term and the corresponding radiation field was performed from the bombardment of a H{sub 2}{sup 18}O target with protons of 75 μA current and 16.5 MeV of energy. The values of the simulated fluxes were compared with those reported by the accelerator manufacturer (GE Health care Company). Results showed that the fluxes estimated with the MCNPX codes were about 70% lower than the reported by the manufacturer. The mean energies of the neutrons were also different of that reported by GE Health Care. It is recommended to investigate other cross sections data and the use of physical models of the code itself for a complete characterization of the source term of radiation. (Author)

  18. Radiation protection of workers in the mining and milling of radioactive ores. Code of practice and technical addendum. 1983 ed

    International Nuclear Information System (INIS)

    1983-01-01

    This Code of Practice sets forth the means of ensuring protection against ionizing radiation for workers engaged in mining and milling of radioactive ores: general provisions outlining the responsibilities of the employer and the worker, limits of radiation exposure, administrative organization of radiation protection, radiation surveillance, engineering and administrative protective measures and medical surveillance. It is designed to facilitate the preparation and adoption of national and local regulations and factory rules for radiation protection in mining and milling of radioactive ores.

  19. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 earth radiation budget data set, November 1985 to October 1987

    Science.gov (United States)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1992-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented for 21 months from Nov. 1985 to Oct. 1987. These data were retrieved from measurements made by the shortwave wide-field-of-view radiometer of the Earth Radiation Budget (ERB) instrument aboard the Nimbus 7 spacecraft. Profiles of zonal mean albedos and absorbed solar radiation were tabulated. These geographical distributions are provided as a resource for researchers studying the radiation budget of the Earth. The El Nino/Southern Oscillation event of 1986-1987 is included in this data set. This atlas of albedo and absorbed solar radiation extends to 12 years the period covered by two similar atlases: NASA RP-1230 (Jul. 1975 - Oct. 1978) and NASA RP-1231 (Nov. 1978 - Oct. 1985). These three compilations complement the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185, RP-1186, and RP-1261, which were also based on the Nimbus 6 and 7 ERB data.

  20. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDUR and ACRTM reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.; Boss, C. R.

    2006-01-01

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies

  1. Comparative evaluation of radiation injuries in skin histological structures under local irradiation

    International Nuclear Information System (INIS)

    Kolchanova, G.M.

    1978-01-01

    In order to evaluate quantitatively to what degree the various histologic structures of the skin undergo changes after a radiation injury and during the reparative process, white rats have been used to study these changes in relation to the radiation dose and the time elapsed after exposure. The rats have been locally exposed on a single occasion to long-wave (10.2 keV) x-radiation in doses of 250, 500, 1000, or 2000 R. Greatest changes in histologic structures occured with doses of 250-1000 R on days 96-115 postexposure. With higher doses, these changes are most clearly marked as early as on day 38

  2. TIERCE: A code system for particles and radiation transport in thick targets

    Energy Technology Data Exchange (ETDEWEB)

    Bersillon, O.; Bauge, E.; Borne, F.; Clergeau, J.F.; Collin, M.; Cotten, D.; Delaroche, J.P.; Duarte, H.; Flament, J.L.; Girod, M.; Gosselin, G.; Granier, T.; Hilaire, S.; Morel, P.; Perrier, R.; Romain, P.; Roux, L. [CEA, Bruyeres-le-Chatel (France). Service de Physique Nucleaire

    1997-09-01

    Over the last few years, a great effort at Bruyeres-le-Chatel has been the development of the TIERCE code system for the transport of particles and radiations in complex geometry. The comparison of calculated results with experimental data, either microscopic (double differential spectra, residual nuclide yield...) or macroscopic (energy deposition, neutron leakage...), shows the need to improve the nuclear reaction models used. We present some new developments concerning data required for the evaporation model in the framework of a microscopic approach. 22 refs., 6 figs.

  3. Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks

    Science.gov (United States)

    Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.

    2017-12-01

    Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.

  4. Development and preliminary verification of 2-D transport module of radiation shielding code ARES

    International Nuclear Information System (INIS)

    Zhang Penghe; Chen Yixue; Zhang Bin; Zang Qiyong; Yuan Longjun; Chen Mengteng

    2013-01-01

    The 2-D transport module of radiation shielding code ARES is two-dimensional neutron and radiation shielding code. The theory model was based on the first-order steady state neutron transport equation, adopting the discrete ordinates method to disperse direction variables. Then a set of differential equations can be obtained and solved with the source iteration method. The 2-D transport module of ARES was capable of calculating k eff and fixed source problem with isotropic or anisotropic scattering in x-y geometry. The theoretical model was briefly introduced and series of benchmark problems were verified in this paper. Compared with the results given by the benchmark, the maximum relative deviation of k eff is 0.09% and the average relative deviation of flux density is about 0.60% in the BWR cells benchmark problem. As for the fixed source problem with isotropic and anisotropic scattering, the results of the 2-D transport module of ARES conform with DORT very well. These numerical results of benchmark problems preliminarily demonstrate that the development process of the 2-D transport module of ARES is right and it is able to provide high precision result. (authors)

  5. SPECT3D - A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output

    Science.gov (United States)

    MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.

    2007-05-01

    SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs

  6. AREVA Developments for an Efficient and Reliable use of Monte Carlo codes for Radiation Transport Applications

    Directory of Open Access Journals (Sweden)

    Chapoutier Nicolas

    2017-01-01

    Full Text Available In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics. Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.

  7. Code of Practice on radiation protection in the mining and milling of radioactive ores (1980) - Guidelines for storage and packaging of uranium concentrates

    International Nuclear Information System (INIS)

    1986-01-01

    This Guideline is intended to provide assistance in the application of the 1980 Code of Practice on radiation protection in mining and milling of radioactive ores. Its purpose is to give advice relevant to the design, construction and operation of an uranium concentrate storage and packaging facility in which exposure to ionizing radiation from uranium-bearing concentrate will not only conform to the Code, but will also be as low as reasonably achievable. (NEA) [fr

  8. Radiation transport and shielding information, computer codes, and nuclear data for use in CTR neutronics research and development

    International Nuclear Information System (INIS)

    Santoro, R.T.; Maskewitz, B.F.; Roussin, R.W.; Trubey, D.K.

    1976-01-01

    The activities of the Radiation Shielding Information Center (RSIC) of the Oak Ridge National Laboratory are being utilized in support of fusion reactor technology. The major activities of RSIC include the operation of a computer-based information storage and retrieval system, the collection, packaging, and distribution of large computer codes, and the compilation and dissemination of processed and evaluated data libraries, with particular emphasis on neutron and gamma-ray cross-section data. The Center has acquired thirteen years of experience in serving fission reactor, weapons, and accelerator shielding research communities, and the extension of its technical base to fusion reactor research represents a logical progression. RSIC is currently working with fusion reactor researchers and contractors in computer code development to provide tested radiation transport and shielding codes and data library packages. Of significant interest to the CTR community are the 100 energy group neutron and 21 energy group gamma-ray coupled cross-section data package (DLC-37) for neutronics studies, a comprehensive 171 energy group neutron and 36 energy group gamma-ray coupled cross-section data base with retrieval programs, including resonance self-shielding, that are tailored to CTR application, and a data base for the generation of energy-dependent atomic displacement and gas production cross sections and heavy-particle-recoil spectra for estimating radiation damage to CTR structural components

  9. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    Science.gov (United States)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  10. Quality improvement of International Classification of Diseases, 9th revision, diagnosis coding in radiation oncology: single-institution prospective study at University of California, San Francisco.

    Science.gov (United States)

    Chen, Chien P; Braunstein, Steve; Mourad, Michelle; Hsu, I-Chow J; Haas-Kogan, Daphne; Roach, Mack; Fogh, Shannon E

    2015-01-01

    Accurate International Classification of Diseases (ICD) diagnosis coding is critical for patient care, billing purposes, and research endeavors. In this single-institution study, we evaluated our baseline ICD-9 (9th revision) diagnosis coding accuracy, identified the most common errors contributing to inaccurate coding, and implemented a multimodality strategy to improve radiation oncology coding. We prospectively studied ICD-9 coding accuracy in our radiation therapy--specific electronic medical record system. Baseline ICD-9 coding accuracy was obtained from chart review targeting ICD-9 coding accuracy of all patients treated at our institution between March and June of 2010. To improve performance an educational session highlighted common coding errors, and a user-friendly software tool, RadOnc ICD Search, version 1.0, for coding radiation oncology specific diagnoses was implemented. We then prospectively analyzed ICD-9 coding accuracy for all patients treated from July 2010 to June 2011, with the goal of maintaining 80% or higher coding accuracy. Data on coding accuracy were analyzed and fed back monthly to individual providers. Baseline coding accuracy for physicians was 463 of 661 (70%) cases. Only 46% of physicians had coding accuracy above 80%. The most common errors involved metastatic cases, whereby primary or secondary site ICD-9 codes were either incorrect or missing, and special procedures such as stereotactic radiosurgery cases. After implementing our project, overall coding accuracy rose to 92% (range, 86%-96%). The median accuracy for all physicians was 93% (range, 77%-100%) with only 1 attending having accuracy below 80%. Incorrect primary and secondary ICD-9 codes in metastatic cases showed the most significant improvement (10% vs 2% after intervention). Identifying common coding errors and implementing both education and systems changes led to significantly improved coding accuracy. This quality assurance project highlights the potential problem

  11. Code of practice in industrial radiography

    International Nuclear Information System (INIS)

    Karma, S. E. M.

    2010-12-01

    The aim of this research is to developing a draft for a new radiation protection code of practice in industrial radiography without ignoring that one issued in 1998 and meet the current international recommendation. Another aim of this study was to assess the current situation of radiation protection in some of the industrial radiography department in Sudan. To achieve the aims of this study, a draft of a code of practice has been developed which is based on international and local relevant recommendations. The developed code includes the following main issues: regulatory responsibilities, radiation protection program and design of radiation installation. The practical part of this study includes scientific visits to two of industrial radiography departments in Sudan so as to assess the degree of compliance of that department with what state in the developed code. The result of each scientific visits revealed that most of the department do not have an effective radiation protection program and that could lead to exposure workers and public to unnecessary dose. Some recommendations were stated that, if implemented could improve the status of radiation protection in industrial radiography department. (Author)

  12. Shutterless non-uniformity correction for the long-term stability of an uncooled long-wave infrared camera

    Science.gov (United States)

    Liu, Chengwei; Sui, Xiubao; Gu, Guohua; Chen, Qian

    2018-02-01

    For the uncooled long-wave infrared (LWIR) camera, the infrared (IR) irradiation the focal plane array (FPA) receives is a crucial factor that affects the image quality. Ambient temperature fluctuation as well as system power consumption can result in changes of FPA temperature and radiation characteristics inside the IR camera; these will further degrade the imaging performance. In this paper, we present a novel shutterless non-uniformity correction method to compensate for non-uniformity derived from the variation of ambient temperature. Our method combines a calibration-based method and the properties of a scene-based method to obtain correction parameters at different ambient temperature conditions, so that the IR camera performance can be less influenced by ambient temperature fluctuation or system power consumption. The calibration process is carried out in a temperature chamber with slowly changing ambient temperature and a black body as uniform radiation source. Enough uniform images are captured and the gain coefficients are calculated during this period. Then in practical application, the offset parameters are calculated via the least squares method based on the gain coefficients, the captured uniform images and the actual scene. Thus we can get a corrected output through the gain coefficients and offset parameters. The performance of our proposed method is evaluated on realistic IR images and compared with two existing methods. The images we used in experiments are obtained by a 384× 288 pixels uncooled LWIR camera. Results show that our proposed method can adaptively update correction parameters as the actual target scene changes and is more stable to temperature fluctuation than the other two methods.

  13. A simplified computer code based on point Kernel theory for calculating radiation dose in packages of radioactive material

    International Nuclear Information System (INIS)

    1986-03-01

    A study on radiation dose control in packages of radioactive waste from nuclear facilities, hospitals and industries, such as sources of Ra-226, Co-60, Ir-192 and Cs-137, is presented. The MAPA and MAPAM computer codes, based on point Kernel theory for calculating doses of several source-shielding type configurations, aiming to assure the safe transport conditions for these sources, was developed. The validation of the code for point sources, using the values provided by NCRP, for the thickness of lead and concrete shieldings, limiting the dose at 100 Mrem/hr for several distances from the source to the detector, was carried out. The validation for non point sources was carried out, measuring experimentally radiation dose from packages developed by Brazilian CNEN/S.P. for removing the sources. (M.C.K.) [pt

  14. Abstracts of digital computer code packages assembled by the Radiation Shielding Information Center

    International Nuclear Information System (INIS)

    Carter, B.J.; Maskewitz, B.F.

    1985-04-01

    This publication, ORNL/RSIC-13, Volumes I to III Revised, has resulted from an internal audit of the first 168 packages of computing technology in the Computer Codes Collection (CCC) of the Radiation Shielding Information Center (RSIC). It replaces the earlier three documents published as single volumes between 1966 to 1972. A significant number of the early code packages were considered to be obsolete and were removed from the collection in the audit process and the CCC numbers were not reassigned. Others not currently being used by the nuclear R and D community were retained in the collection to preserve technology not replaced by newer methods, or were considered of potential value for reference purposes. Much of the early technology, however, has improved through developer/RSIC/user interaction and continues at the forefront of the advancing state-of-the-art

  15. Abstracts of digital computer code packages assembled by the Radiation Shielding Information Center

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B.J.; Maskewitz, B.F.

    1985-04-01

    This publication, ORNL/RSIC-13, Volumes I to III Revised, has resulted from an internal audit of the first 168 packages of computing technology in the Computer Codes Collection (CCC) of the Radiation Shielding Information Center (RSIC). It replaces the earlier three documents published as single volumes between 1966 to 1972. A significant number of the early code packages were considered to be obsolete and were removed from the collection in the audit process and the CCC numbers were not reassigned. Others not currently being used by the nuclear R and D community were retained in the collection to preserve technology not replaced by newer methods, or were considered of potential value for reference purposes. Much of the early technology, however, has improved through developer/RSIC/user interaction and continues at the forefront of the advancing state-of-the-art.

  16. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code

    Science.gov (United States)

    Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.

    2015-08-01

    MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.

  17. International symposium on standards and codes of practice in medical radiation dosimetry. Book of extended synopses

    International Nuclear Information System (INIS)

    2002-01-01

    The development of radiation measurement standards by National Metrology Institutes (NMIs) and their dissemination to Secondary Standard Dosimetry Laboratories (SSDLs), cancer therapy centres and hospitals represent essential aspects of the radiation dosimetry measurement chain. Although the demands for accuracy in radiotherapy initiated the establishment of such measurement chains, similar traceable dosimetry procedures have been implemented, or are being developed, in other areas of radiation medicine (e.g. diagnostic radiology and nuclear medicine), in radiation protection and in industrial applications of radiation. In the past few years the development of primary standards of absorbed dose to water in 60 Co for radiotherapy dosimetry has made direct calibrations in terms of absorbed dose to water available in many countries for the first time. Some laboratories have extended the development of these standards to high energy photon and electron beams and to low and medium energy x-ray beams. Other countries, however, still base their dosimetry for radiotherapy on air kerma standards. Dosimetry for conventional external beam radiotherapy was probably the field where standardized procedures adopted by medical physicists at hospitals were developed first. Those were related to exposure and air kerma standards. The recent development of Codes of Practice (or protocols) based on the concept of absorbed dose to water has led to changes in calibration procedures at hospitals. The International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water (TRS 398) was sponsored by the International Atomic Energy Agency (IAEA), World Health Organization (WHO), Pan-American Health Organization (PAHO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) and is expected to be adopted in many countries worldwide. It provides recommendations for the dosimetry of all types of beams (except neutrons) used in external radiotherapy and satisfies

  18. International symposium on standards and codes of practice in medical radiation dosimetry. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The development of radiation measurement standards by National Metrology Institutes (NMIs) and their dissemination to Secondary Standard Dosimetry Laboratories (SSDLs), cancer therapy centres and hospitals represent essential aspects of the radiation dosimetry measurement chain. Although the demands for accuracy in radiotherapy initiated the establishment of such measurement chains, similar traceable dosimetry procedures have been implemented, or are being developed, in other areas of radiation medicine (e.g. diagnostic radiology and nuclear medicine), in radiation protection and in industrial applications of radiation. In the past few years the development of primary standards of absorbed dose to water in {sup 60}Co for radiotherapy dosimetry has made direct calibrations in terms of absorbed dose to water available in many countries for the first time. Some laboratories have extended the development of these standards to high energy photon and electron beams and to low and medium energy x-ray beams. Other countries, however, still base their dosimetry for radiotherapy on air kerma standards. Dosimetry for conventional external beam radiotherapy was probably the field where standardized procedures adopted by medical physicists at hospitals were developed first. Those were related to exposure and air kerma standards. The recent development of Codes of Practice (or protocols) based on the concept of absorbed dose to water has led to changes in calibration procedures at hospitals. The International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water (TRS 398) was sponsored by the International Atomic Energy Agency (IAEA), World Health Organization (WHO), Pan-American Health Organization (PAHO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) and is expected to be adopted in many countries worldwide. It provides recommendations for the dosimetry of all types of beams (except neutrons) used in external radiotherapy and

  19. GARLIC — A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    International Nuclear Information System (INIS)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-01-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code — GARLIC — is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus. - Highlights: • High resolution infrared-microwave radiative transfer model. • Discussion of algorithmic and computational aspects. • Jacobians by automatic/algorithmic differentiation. • Performance evaluation by intercomparisons, verification, validation

  20. Influence of surface oxidation on the radiative properties of ZrB{sub 2}-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: lncaep@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Xing, Pifeng; Li, Cui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Peng [School of Material Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Jin, Xinxin [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Zhang, Xinghong [Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001 (China)

    2017-07-01

    Highlights: • Surface component affected radiative properties of ZrB{sub 2}-SiC composites significantly. • Emissivity in long-wave range gradually increased with the thickness of oxide scale. • The surface temperature had a little effect on radiative properties of composites. • Influence of surface roughness on emissivity could be negligible. • Covering the surface with glass is a method for improving radiative properties. - Abstract: The spectral emissivities of ZrB{sub 2}-20 vol.% SiC composites with various surface components of ZrB{sub 2}/SiC (ZS1), silica-rich glass (ZS2) and porous zirconia (ZS3) were measured using infrared spectrometer in the wavelength range from 2.5 to 25.0 μm. The relationship between surface oxidation (associated with surface component, thickness of oxide scale, testing temperature as well as roughness) and the radiative properties of ZrB{sub 2}-SiC composites were investigated systematically. Surface component affected the radiative properties of composites significantly. The total emissivity of ZS1 varied from 0.22 to 0.81 accompanied with surface oxidation in the temperature range 300–900 °C. The emissivity of ZS2 was about 1.5 times as that of ZS3 under the same testing conditions. The oxide scale on specimen surface enhanced the radiative properties especially in terms of short-wave range, and the emissivity in the long-wave range gradually increased with the thickness of oxide scale within a certain range. The influence of testing temperature and surface roughness was also investigated. The testing temperature had a little effect on radiative properties, whereas effect of surface roughness could be negligible.

  1. A simulation model for the actual, long wave and net solar radiation computing

    International Nuclear Information System (INIS)

    Kolev, B.; Stoilov, A.; Lyubomirov, L.

    2004-01-01

    The main purpose of this study is to present a calculating procedure for the components of the radiation balance - actual, long-wave and net radiation calculation, using the sunshine duration and the standard meteorological information, through a previously prepared program product.To calculate the actual solar radiation using the total cloudiness only, an empirical regression model has been developed. The results of the coefficient of correlation R(0.75-0.88), respectively for the spring and summer periods (March-May; June-August) show the adequacy of the chosen model. The verification of the model on the independent experimental material prove that the approach that authors suggested, can be successfully applied to the calculation of the actual radiation of the current place

  2. European Code against Cancer 4th Edition: Ionising and non-ionising radiation and cancer.

    Science.gov (United States)

    McColl, Neil; Auvinen, Anssi; Kesminiene, Ausrele; Espina, Carolina; Erdmann, Friederike; de Vries, Esther; Greinert, Rüdiger; Harrison, John; Schüz, Joachim

    2015-12-01

    Ionising radiation can transfer sufficient energy to ionise molecules, and this can lead to chemical changes, including DNA damage in cells. Key evidence for the carcinogenicity of ionising radiation comes from: follow-up studies of the survivors of the atomic bombings in Japan; other epidemiological studies of groups that have been exposed to radiation from medical, occupational or environmental sources; experimental animal studies; and studies of cellular responses to radiation. Considering exposure to environmental ionising radiation, inhalation of naturally occurring radon is the major source of radiation in the population - in doses orders of magnitude higher than those from nuclear power production or nuclear fallout. Indoor exposure to radon and its decay products is an important cause of lung cancer; radon may cause approximately one in ten lung cancers in Europe. Exposures to radon in buildings can be reduced via a three-step process of identifying those with potentially elevated radon levels, measuring radon levels, and reducing exposure by installation of remediation systems. In the 4th Edition of the European Code against Cancer it is therefore recommended to: "Find out if you are exposed to radiation from naturally high radon levels in your home. Take action to reduce high radon levels". Non-ionising types of radiation (those with insufficient energy to ionise molecules) - including extremely low-frequency electric and magnetic fields as well as radiofrequency electromagnetic fields - are not an established cause of cancer and are therefore not addressed in the recommendations to reduce cancer risk. Copyright © 2015 International Agency for Research on Cancer. Published by Elsevier Ltd. All rights reserved.

  3. Overhead longwave infrared hyperspectral material identification using radiometric models

    Energy Technology Data Exchange (ETDEWEB)

    Zelinski, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-09

    Material detection algorithms used in hyperspectral data processing are computationally efficient but can produce relatively high numbers of false positives. Material identification performed as a secondary processing step on detected pixels can help separate true and false positives. This paper presents a material identification processing chain for longwave infrared hyperspectral data of solid materials collected from airborne platforms. The algorithms utilize unwhitened radiance data and an iterative algorithm that determines the temperature, humidity, and ozone of the atmospheric profile. Pixel unmixing is done using constrained linear regression and Bayesian Information Criteria for model selection. The resulting product includes an optimal atmospheric profile and full radiance material model that includes material temperature, abundance values, and several fit statistics. A logistic regression method utilizing all model parameters to improve identification is also presented. This paper details the processing chain and provides justification for the algorithms used. Several examples are provided using modeled data at different noise levels.

  4. GARLIC - A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    Science.gov (United States)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-04-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.

  5. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E. [ENEA, Centro Ricerche Ezio Clementel, Bologna, (Italy). Dipt. Innovazione

    1999-07-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed. [Italian] Nel presente rapporto vengono descritte le principali caratteristiche del codice di calcolo PREMAR-2, che esegue la simulazione Montecarlo del trasporto della radiazione elettromagnetica nell'atmosfera, nell'intervallo di frequenza che va dall'infrarosso all'ultravioletto. Rispetto al codice PREMAR precedentemente sviluppato, il codice

  6. Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)

    2016-11-01

    Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.

  7. Long-term monitoring of the earth's radiation budget; Proceedings of the Meeting, Orlando, FL, Apr. 17, 18, 1990

    Science.gov (United States)

    Barkstrom, Bruce R. (Editor)

    1990-01-01

    The uses of the broadband flux measurements as well as the improvements in the Earth Radiation Budget Experiment in instrumentation and data reduction are summarized. Scientific uses of earth-radiation budget data are discussed, along with a perspective on the instrumentation giving a new foundation for studies of the radiation budget, with emphasis on calibration and long-term stability. Cloud identification and angular modeling are covered including angular dependence models for radiance to flux conversion and the pattern recognition of clouds and ice in polar regions. The surface-radiation budget and atmospheric radiative flux divergence from the Clouds and Earth Radiant Energy System are covered, and time dependence of the earth's radiation fields, determination of the outgoing longwave radiation and its diurnal variations are considered.

  8. Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought

    Science.gov (United States)

    Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.

    2017-10-01

    California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.

  9. Radiation budget in green beans crop with and without polyethylene cover

    International Nuclear Information System (INIS)

    Souza, J.L. de; Escobedo, J.F.

    1997-01-01

    The radiation budget in agricultural crops is very important on the microclimate characterization, on the water losses determination and on dry matter accumulation of vegetation. This work describes the radiation budget determination in a green beans crop (Phaseolus vulgaris L.), in Botucatu, SP, Brazil (22° 54′S; 48° 27′W; 850 m), under two different conditions: the normal field culture and in a polyethylene greenhouse. The densities of fluxes of radiation were used to construct diurnal curves of the components of global radiation (Rg), reflected radiation (Rr), net radiation (Rn).The arithmetic's relations allowed to obtain the components net short-waves (Rc) and net long-waves (Rl). The analysis of these components related to the leaf area index (LAI) in many phenological phases of the culture showed Rg distributed in 68%, 85%, 17% and 66%, 76%, 10% to Rn, Rc and Rl in the internal and external ambients in a polyethylene greenhouse, respectively [pt

  10. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wagner, John C.; Peplow, Douglas E.; Mosher, Scott W.; Evans, Thomas M.

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10 2-4 ), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.

  11. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wagner, John C.; Peplow, Douglas E.; Mosher, Scott W.; Evans, Thomas M.

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.

  12. Review of hybrid (deterministic/Monte Carlo) radiation transport methods, codes, and applications at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wagner, J.C.; Peplow, D.E.; Mosher, S.W.; Evans, T.M.

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10 2-4 ), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications. (author)

  13. HELIOS-CR - A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling

    International Nuclear Information System (INIS)

    MacFarlane, J.J.; Golovkin, I.E.; Woodruff, P.R.

    2006-01-01

    HELIOS-CR is a user-oriented 1D radiation-magnetohydrodynamics code to simulate the dynamic evolution of laser-produced plasmas and z-pinch plasmas. It includes an in-line collisional-radiative (CR) model for computing non-LTE atomic level populations at each time step of the hydrodynamics simulation. HELIOS-CR has been designed for ease of use, and is well-suited for experimentalists, as well as graduate and undergraduate student researchers. The energy equations employed include models for laser energy deposition, radiation from external sources, and high-current discharges. Radiative transport can be calculated using either a multi-frequency flux-limited diffusion model, or a multi-frequency, multi-angle short characteristics model. HELIOS-CR supports the use of SESAME equation of state (EOS) tables, PROPACEOS EOS/multi-group opacity data tables, and non-LTE plasma properties computed using the inline CR modeling. Time-, space-, and frequency-dependent results from HELIOS-CR calculations are readily displayed with the HydroPLOT graphics tool. In addition, the results of HELIOS simulations can be post-processed using the SPECT3D Imaging and Spectral Analysis Suite to generate images and spectra that can be directly compared with experimental measurements. The HELIOS-CR package runs on Windows, Linux, and Mac OSX platforms, and includes online documentation. We will discuss the major features of HELIOS-CR, and present example results from simulations

  14. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    Science.gov (United States)

    Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent

    2017-07-01

    This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system

  15. Antarctic specific features of the greenhouse effect. A radiative analysis using measurements and models

    International Nuclear Information System (INIS)

    Schmithuesen, Holger

    2014-01-01

    CO 2 is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO 2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, it is shown that the greenhouse effect of CO 2 is around zero or even negative. Moreover, for central Antarctica an increase in CO 2 concentration leads to an increased long-wave energy loss to space, which cools the earth-atmosphere system. These unique findings for central Antarctica are in contrast to the well known general warming effect of increasing CO 2 . The work contributes to explain the non-warming of central Antarctica since 1957.

  16. Use of PRIM code to analyze potential radiation-induced genetic and somatic effects to man from Jackpile-Paguate mines

    International Nuclear Information System (INIS)

    Momeni, M.H.

    1983-01-01

    Potential radiation-induced effects from inhalation and ingestion of land external exposure to radioactive materials at the Jackpile-Paguate uranium mine complex near Paguate, New Mexico, were analyzed. The Uranium Dispersion and Dosimetry (UDAD) computer code developed at Argonne National Laboratory was used to calculate the dose rates and the time-integrated doses to tissues at risk as a function of age and time for the population within 80 km of the mines. The ANL computer code Potential Radiation-Induced Biological Effects on Man (PRIM) then was used to calculate the potential radiation-induced somatic and genetic effects among the same population on the basis of absolute and relative risk models as a function of duration of exposure and age at time of exposure. The analyses were based on the recommendations in BEIR II and WASH-1400 and the lifetable method. The death rates were calculated for radiation exposure from the mines and for naturally induced effects for 19 age cohorts, 20 time intervals, and for each sex. The results indicated that under present conditions of the radiation environment at the mines, the number of potential fatal radiation-induced neoplasms that could occur among the regional population over the next 85 years would be 95 using the absolute risk model, and 243 using the relative risk model. Over the same period, there would be less than two radiation-induced genetic effects (dominant and multifactorials). After decommissioning f the mine site, these risks would decrease to less than 1 and less than 3 potential radiation-induced deaths under the relative and absolute risk models, respectively, and 0.001 genetic disorders. Because of various sources of error, the uncertainty in these predicted risks could be a factor of five

  17. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-12-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series of simulations have been performed by varying the amount of dust aerosols present in the atmosphere to study the trends in ground temperature, heating rate and radiative forcing for both its longwave and shortwave components. A case study for dust storm is also performed as dust storms are common in Arabian Peninsula. A sensitivity analyses is also performed to study the relationship of surface temperature minimum and maximum against aerosol concentration, single scattering albedo and asymmetry factor. These analyses are performed to get more insight into the role of dust aerosols on radiative forcing.

  18. Generalized intermediate long-wave hierarchy in zero-curvature representation with noncommutative spectral parameter

    Science.gov (United States)

    Degasperis, A.; Lebedev, D.; Olshanetsky, M.; Pakuliak, S.; Perelomov, A.; Santini, P. M.

    1992-11-01

    The simplest generalization of the intermediate long-wave hierarchy (ILW) is considered to show how to extend the Zakharov-Shabat dressing method to nonlocal, i.e., integro-partial differential, equations. The purpose is to give a procedure of constructing the zero-curvature representation of this class of equations. This result obtains by combining the Drinfeld-Sokolov formalism together with the introduction of an operator-valued spectral parameter, namely, a spectral parameter that does not commute with the space variable x. This extension provides a connection between the ILWk hierarchy and the Saveliev-Vershik continuum graded Lie algebras. In the case of ILW2 the Fairlie-Zachos sinh-algebra was found.

  19. Milagro Version 2 An Implicit Monte Carlo Code for Thermal Radiative Transfer: Capabilities, Development, and Usage

    Energy Technology Data Exchange (ETDEWEB)

    T.J. Urbatsch; T.M. Evans

    2006-02-15

    We have released Version 2 of Milagro, an object-oriented, C++ code that performs radiative transfer using Fleck and Cummings' Implicit Monte Carlo method. Milagro, a part of the Jayenne program, is a stand-alone driver code used as a methods research vehicle and to verify its underlying classes. These underlying classes are used to construct Implicit Monte Carlo packages for external customers. Milagro-2 represents a design overhaul that allows better parallelism and extensibility. New features in Milagro-2 include verified momentum deposition, restart capability, graphics capability, exact energy conservation, and improved load balancing and parallel efficiency. A users' guide also describes how to configure, make, and run Milagro2.

  20. Application of the MASH v1.0 Code System to radiological warfare radiation threats

    International Nuclear Information System (INIS)

    Johnson, J.O.; Santoro, R.T.; Smith, M.S.

    1994-01-01

    Nuclear hardening capabilities of US and foreign ground force systems is a primary concern of the Department of Defense (DoD) and US Army. The Monte Carlo Adjoint Shielding Code System -- MASH v1.0 was developed at Oak Ridge National Laboratory (ORNL) to analyze these capabilities, i.e. the shielding effectiveness, for prompt radiation from a nuclear weapon detonation. Rapidly changing world events and the proliferation of nuclear weapons related technology have increased the kinds of nuclear threats to include intentionally dispersed radiation sources and fallout from tactical nuclear weapons used in the modern AirLand battlefield scenario. Consequently, a DoD area of increasing interest focuses on determining the shielding effectiveness of foreign and US armored vehicles to radiological warfare and fallout radiation threats. To demonstrate the applicability of MASH for analyzing dispersed radiation source problems, calculations have been completed for two distributed sources; a dispersed radiation environment simulated by a uniformly distributed 60 Co source, and a 235 U fission weapon fallout source. Fluence and dose assessments were performed for the free-field, the inside of a steel-walled two-meter box, in a phantom standing in the free-field, and in a phantom standing in the two-meter box. The results indicate substantial radiation protection factors for the 60 Co dispersed radiation source and the fallout source compared to the prompt radiation protection factors. The dose protection factors ranged from 40 to 95 for the two-meter box and from 55 to 123 for the mid-gut position of the phantom standing in the box. The results further indicate that a 60 Co source might be a good first order approximation for a tactical fission weapon fallout protection factor analysis

  1. Natural and anthropogenic climate change

    International Nuclear Information System (INIS)

    Ko, M.K.W.; Clough, S.A.; Molnar, G.I.; Iacono, M.; Wang, W.C.; State Univ. of New York, Albany, NY

    1992-03-01

    This report consists of two parts: (1) progress for the period 9/1/91--3/31/92 and (2) the plan for the remaining period 4/1/92--8/31/92. The project includes two tasks: atmospheric radiation and improvement of climate models to evaluate the climatic effects of radiation changes. The atmospheric radiation task includes four subtasks: (1) Intercomparison of Radiation Codes in Climate Models (ICRCCM), (2) analysis of the water vapor continuum using line-by-line calculations to develop a parameterization for use in climate models, (3) parameterization of longwave radiation and (4) climate/radiation interactions of desert aerosols. Our effort in this period is focused on the first three subtasks. The improvement of climate models to evaluate the subtasks: (1) general circulation model study and (2) 2- D model development and application

  2. A development of computer code for evaluating internal radiation dose through ingestion and inhalation pathways

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Lee, Chang Woo; Choi, Yong Ho; Chun, Ki Jung; Kim, Kook Chan; Kim, Sang Bok; Kim, Jin Kyu

    1991-07-01

    The computer codes were developed to evaluate internal radiation dose when radioactive isotopes released from nuclear facilities are taken through ingestion and inhalation pathways. Food chain models and relevant data base representing the agricultural and social environment of Korea are set up. An equilibrium model-KFOOD, which can deal with routine releases from a nuclear facility and a dynamic model-ECOREA, which is suitable for the description of acute radioactivity release following nuclear accident. (Author)

  3. DISP1 code

    International Nuclear Information System (INIS)

    Vokac, P.

    1999-12-01

    DISP1 code is a simple tool for assessment of the dispersion of the fission product cloud escaping from a nuclear power plant after an accident. The code makes it possible to tentatively check the feasibility of calculations by more complex PSA3 codes and/or codes for real-time dispersion calculations. The number of input parameters is reasonably low and the user interface is simple enough to allow a rapid processing of sensitivity analyses. All input data entered through the user interface are stored in the text format. Implementation of dispersion model corrections taken from the ARCON96 code enables the DISP1 code to be employed for assessment of the radiation hazard within the NPP area, in the control room for instance. (P.A.)

  4. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-01-01

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results

  5. Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data

    Science.gov (United States)

    Steffen, Konrad; Box, Jason

    2003-01-01

    The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors

  6. Drying of Agricultural Products Using Long Wave Infrared Radiation(Part 2). Drying of Welsh Onion

    International Nuclear Information System (INIS)

    Itoh, K.; Han, C.S.

    1995-01-01

    The investigation was carried out to clarify the intermittent drying characteristics for welsh onion use of long-wave infrared radiation. When compared with two other methods: use of air and vacuum freezing, this method showed significantly high rate of drying. The experiments were carried out analyzing the influence of different lengths of the welsh onion, different rate of radiation and different temperature of the airflow. The obtained results were as follows: 1. The rate of drying increases as the length of welsh onion decrease and the rate of radiation increase. 2. The airflow, temperature does not influence to the rate of drying. 3. The increasing of the drying time considerably aggravate the quality the dried welsh onion

  7. Dispersion relation for long-wave neutrons and the possibility of its precise experimental verification

    International Nuclear Information System (INIS)

    Frank, A.I.; Nosov, V.G.

    1995-01-01

    Modern theoretical concepts concerning the dispersion relation for slow neutrons in matter are considered. The generally accepted optical-potential model is apparently not quite accurate and should be supplemented with some small corrections in the energy range attainable in experiments. For ultracold neutrons, these corrections are related to the proximity of the applicability boundary of the theory; for cold neutrons, these corrections are due to correlations in the positions of scatters. The accuracy of existing experiments is insufficient for confirmation or refutation these conclusions. A precision experiment is proposed to verify the dispersion relation for long-wave neutrons. 30 refs., 3 figs

  8. Radiation transport and shielding information, computer codes, and nuclear data for use in CTR neutronics research and development

    International Nuclear Information System (INIS)

    Santoro, R.T.; Maskewitz, B.F.; Roussin, R.W.; Trubey, D.K.

    1976-01-01

    The activities of the Radiation Shielding Information Center (RSIC) of the Oak Ridge National Laboratory are being utilized in support of fusion reactor technology. The major activities of RSIC include the operation of a computer-based information storage and retrieval system, the collection, packaging, and distribution of large computer codes, and the compilation and dissemination of processed and evaluated data libraries, with particular emphasis on neutron and gamma-ray cross-section data. The Center has acquired thirteen years of experience in serving fission reactor, weapons, and accelerator shielding research communities, and the extension of its technical base to fusion reactor research represents a logical progression. RSIC is currently working with fusion reactor researchers and contractors in computer code development to provide tested radiation transport and shielding codes and data library packages. Of significant interest to the CTR community are the 100 energy group neutron and 21 energy group gamma-ray coupled cross-section data package (DLC-37) for neutronics studies, a comprehensive 171 energy group neutron and 36 energy group gamma-ray coupled cross-section data base with retrieval programs, including resonance self-shielding, that are tailored to CTR application, and a data base for the generation of energy-dependent atomic displacement and gas production cross sections and heavy-particle-recoil spectra for estimating radiation damage to CTR structural components. Since 1964, the Center has been involved in the international exchange of information, encouraged and supported by both government and interagency agreements; and to achieve an equally viable and successful program in fusion research, the reciprocal exchange of CTR data and computing technology is encouraged and welcomed

  9. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  10. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Protat, Alain; Young, Stuart; McFarlane, Sally A.; L' Ecuyer, Tristan; Mace, Gerald G.; Comstock, Jennifer M.; Long, Charles N.; Berry, Elizabeth; Delanoe, Julien

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.

  11. Gamma streaming experiments for validation of Monte Carlo code

    International Nuclear Information System (INIS)

    Thilagam, L.; Mohapatra, D.K.; Subbaiah, K.V.; Iliyas Lone, M.; Balasubramaniyan, V.

    2012-01-01

    In-homogeneities in shield structures lead to considerable amount of leakage radiation (streaming) increasing the radiation levels in accessible areas. Development works on experimental as well as computational methods for quantifying this streaming radiation are still continuing. Monte Carlo based radiation transport code, MCNP is usually a tool for modeling and analyzing such problems involving complex geometries. In order to validate this computational method for streaming analysis, it is necessary to carry out some experimental measurements simulating these inhomogeneities like ducts and voids present in the bulk shields for typical cases. The data thus generated will be analysed by simulating the experimental set up employing MCNP code and optimized input parameters for the code in finding solutions for similar radiation streaming problems will be formulated. Comparison of experimental data obtained from radiation streaming experiments through ducts will give a set of thumb rules and analytical fits for total radiation dose rates within and outside the duct. The present study highlights the validation of MCNP code through the gamma streaming experiments carried out with the ducts of various shapes and dimensions. Over all, the present study throws light on suitability of MCNP code for the analysis of gamma radiation streaming problems for all duct configurations considered. In the present study, only dose rate comparisons have been made. Studies on spectral comparison of streaming radiation are in process. Also, it is planned to repeat the experiments with various shield materials. Since the penetrations and ducts through bulk shields are unavoidable in an operating nuclear facility the results on this kind of radiation streaming simulations and experiments will be very useful in the shield structure optimization without compromising the radiation safety

  12. Modeling of the radiative energy balance within a crop canopy for estimating evapotranspiration: Studies on a row planted soybean canopy

    International Nuclear Information System (INIS)

    Nakano, Y.; Hirota, O.

    1990-01-01

    The spatial distribution and density of the leaf area within a crop canopy were used to estimate the radiational environment and evapotranspiration. Morphological measurements were pursued on the soybean stands in the early stage of growth when the two-dimensional foliage distribution pattern existed. The rectangular tube model was used to calculate the light absorption by parallel row of crops both short-wave radiation (direct and diffuse solar radiation, and scattered radiation by plant elements) and long-wave radiation (emanated radiation from the sky, ground and leaves). The simulated profiles are in close agreement with the experimentally measured short-wave and net radiation data. The evapotranspiration of a row was calcuated using a simulated net radiation. The model calculation also agreed well with the evapotranspiration estimated by the Bowen ratio method

  13. Antarctic specific features of the greenhouse effect. A radiative analysis using measurements and models

    Energy Technology Data Exchange (ETDEWEB)

    Schmithuesen, Holger

    2014-12-10

    CO{sub 2} is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO{sub 2} absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, it is shown that the greenhouse effect of CO{sub 2} is around zero or even negative. Moreover, for central Antarctica an increase in CO{sub 2} concentration leads to an increased long-wave energy loss to space, which cools the earth-atmosphere system. These unique findings for central Antarctica are in contrast to the well known general warming effect of increasing CO{sub 2}. The work contributes to explain the non-warming of central Antarctica since 1957.

  14. Syrthes thermal code and Estet or N3S fluid mechanics codes coupling; Couplage du code de thermique Syrthes et des codes de mecanique des fluides N3S et ou Estet

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I [SIMULOG, 78 - Guyancourt (France)

    1997-06-01

    EDF has developed numerical codes for modeling the conductive, radiative and convective thermal transfers and their couplings in complex industrial configurations: the convection in a fluid is solved by Estet in finite volumes or N3S in finite elements, the conduction is solved by Syrthes and the wall-to-wall thermal radiation is modelled by Syrthes with the help of a radiosity method. Syrthes controls the different heat exchanges which may occur between fluid and solid domains, using an explicit iterative method. An extension of Syrthes has been developed in order to allow the consideration of configurations where several fluid codes operate simultaneously, using ``message passing`` tools such as PVM (Parallel Virtual Machine) and the Calcium code coupler developed at EDF. Application examples are given

  15. Code of Practice

    International Nuclear Information System (INIS)

    Doyle, Colin; Hone, Christopher; Nowlan, N.V.

    1984-05-01

    This Code of Practice introduces accepted safety procedures associated with the use of alpha, beta, gamma and X-radiation in secondary schools (pupils aged 12 to 18) in Ireland, and summarises good practice and procedures as they apply to radiation protection. Typical dose rates at various distances from sealed sources are quoted, and simplified equations are used to demonstrate dose and shielding calculations. The regulatory aspects of radiation protection are outlined, and references to statutory documents are given

  16. Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa

    Directory of Open Access Journals (Sweden)

    C. Lema^itre

    2010-09-01

    Full Text Available The radiative heating rate due to mineral dust over West Africa is investigated using the radiative code STREAMER, as well as remote sensing and in situ observations gathered during the African Monsoon Multidisciplinary Analysis Special Observing Period (AMMA SOP. We focus on two days (13 and 14 June 2006 of an intense and long lasting episode of dust being lifted in remote sources in Chad and Sudan and transported across West Africa in the African easterly jet region, during which airborne operations were conducted at the regional scale, from the southern fringes of the Sahara to the Gulf of Guinea. Profiles of heating rates are computed from airborne LEANDRE 2 (Lidar Embarqué pour l'étude de l'Atmosphère: Nuages Dynamique, Rayonnement et cycle de l'Eau and space-borne CALIOP (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar observations using two mineral dust model constrained by airborne in situ data and ground-based sunphotometer obtained during the campaign. Complementary spaceborne observations (from the Moderate-resolution Imaging Spectroradiometer-MODIS and in-situ observations such as dropsondes are also used to take into account the infrared contribution of the water vapour. We investigate the variability of the heating rate on the vertical within a dust plume, as well as the contribution of both shortwave and longwave radiation to the heating rate and the radiative heating rate profiles of dust during daytime and nighttime. The sensitivity of the so-derived heating rate is also analyzed for some key variables for which the associated uncertainties may be large. During daytime, the warming associated with the presence of dust was found to be between 1.5 K day−1 and 4 K day−1, on average, depending on altitude and latitude. Strong warming (i.e. heating rates as high as 8 K day−1 was also observed locally in some limited part of the dust plumes. The uncertainty on the

  17. The Relationship Between Surface Temperature Anomaly Time Series and those of OLR, Water Vapor, and Cloud Cover as Observed Using Nine Years of AIRS Version-5 Level-3 Products

    Science.gov (United States)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product

  18. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  19. SSI and the Environmental Code

    International Nuclear Information System (INIS)

    Loefgren, T.

    1997-12-01

    Radiation is, to some extent, included in the environmental code being prepared by the government. As a consequence both the Radiation Protection Institute and the proposed Environmental Court may set legal conditions concerning radiation protection for the proponent. Legal and other matters related to this issue are discussed in the report

  20. NEACRP comparison of codes for the radiation protection assessment of transportation packages. Solutions to problems 1 - 4

    International Nuclear Information System (INIS)

    Avery, A.F.; Locke, H.F.

    1992-03-01

    In 1985 the Reactor Physics Committee of the Nuclear Energy Agency initiated an intercomparison of codes for the calculation of the performance of shielding for the transportation of spent reactor fuel. The results of the application of a range of codes to the prediction of the dose-rates in the four theoretical benchmarks set to examine the attenuation of radiation through a variety of cask geometries are presented in this report. The contributions from neutrons, fission product gamma-rays and secondary gamma-rays are tabulated separately, and grouped according to the type of method of calculation employed. A brief discussion is included for each set of results, and overall comparisons of the methods, codes, and nuclear data are made. A number of conclusions are drawn on the advantages and disadvantages of the various methods of calculation, based upon the results of their application to these four benchmark problems

  1. Radiation therapy sources, equipment and installations

    International Nuclear Information System (INIS)

    2011-03-01

    The safety code for Telegamma Therapy Equipment and Installations, (AERB/SC/MED-1) and safety code for Brachytherapy Sources, Equipment and Installations, (AERB/SC/MED-3) were issued by AERB in 1986 and 1988 respectively. These codes specified mandatory requirements for radiation therapy facilities, covering the entire spectrum of operations ranging from the setting up of a facility to its ultimate decommissioning, including procedures to be followed during emergency situations. The codes also stipulated requirements of personnel and their responsibilities. With the advent of new techniques and equipment such as 3D-conformal radiation therapy, intensity modulated radiation therapy, image guided radiation therapy, treatment planning system, stereotactic radiosurgery, stereotactic radiotherapy, portal imaging, integrated brachytherapy and endovascular brachytherapy during the last two decades, AERB desires that these codes be revised and merged into a single code titled Radiation Therapy Sources, Equipment, and Installations

  2. MORSE Monte Carlo code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described

  3. Balance of longwave radiation employing the rate of solar radiation for Santa Maria, Rio Grande do Sul, Brazil1

    Directory of Open Access Journals (Sweden)

    Evandro Zanini Righi

    Full Text Available New coefficients were determined for the weighting term for cloudiness in the Brunt-Penman equation using the rate of solar radiation (RK in place of the rate of sunshine duration (n/N. The coefficients in the Brutsaert method proposed for daytime in southern Brazil were also tested and adjusted, and the method was selected which gave the more accurate daily results in relation to the original Brunt-Penman equation, for Santa Maria in the state of Rio Grande do Sul, Brazil (RS. Meteorological data covering 2,472 days obtained from the automatic and conventional weather stations in Santa Maria were used. The coefficients were adjusted by linear and nonlinear regression methods depending on the model, using 2/3 of the data. The adjusted equations were tested with the remaining 1/3 of the data. The Brunt-Penman equation modified by the term for cloudiness weighted both for solar radiation incident on the surface with no cloudiness (RK,R and for solar radiation incident at the top of the atmosphere (RK,K, were those that resulted in the best statistical indices relative to the original Brunt-Penman equation. In those equations the boundary conditions, 0.3 ≥ RK,R ≥ 1 or RK,K ≤ 0.22, were imposed. Although having similar statistical indices, a sensitivity analysis showed that the Brutsaert equation and other weightings for cloudiness resulted in larger deviations when compared to the original Brunt-Penman equation, in addition to having greater complexity for practical application.

  4. Spatially coded backscatter radiography

    International Nuclear Information System (INIS)

    Thangavelu, S.; Hussein, E.M.A.

    2007-01-01

    Conventional radiography requires access to two opposite sides of an object, which makes it unsuitable for the inspection of extended and/or thick structures (airframes, bridges, floors etc.). Backscatter imaging can overcome this problem, but the indications obtained are difficult to interpret. This paper applies the coded aperture technique to gamma-ray backscatter-radiography in order to enhance the detectability of flaws. This spatial coding method involves the positioning of a mask with closed and open holes to selectively permit or block the passage of radiation. The obtained coded-aperture indications are then mathematically decoded to detect the presence of anomalies. Indications obtained from Monte Carlo calculations were utilized in this work to simulate radiation scattering measurements. These simulated measurements were used to investigate the applicability of this technique to the detection of flaws by backscatter radiography

  5. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    Science.gov (United States)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  6. RNA-Seq analysis of D. radiodurans find non coding RNAs expressed in response to radiation stress

    International Nuclear Information System (INIS)

    Gadewal, Nikhil; Mukhopadhyaya, Rita

    2015-01-01

    In bacteria discovery of functional RNA molecules that are not translated into protein, noncoding RNAs, became possible with advent of Next Generation Sequencing technology. Bacterial non coding RNAs are typically 50-300 nucleotides long and work as internal signals controlling various levels of gene expression. Deep sequencing of total cellular RNA captures all coding and noncoding transcripts with their differential levels of expression in the transcriptome. It provides a powerful approach to study bacterial gene expression and mechanisms of gene regulation. We subjected the 3 h transcriptome of Deinococcus radiodurans R1 cells post exposure to 6 KGy gamma radiation to 100 x 2 cycles of deep sequencing on the Illumina HiSeq 2000 to look for ncRNA transcripts. Bioinformatics pipeline for analysis and interpretation of RNA Seq data was done in house using Softwares available in public domains. Our sequence data aligned with 21 putative ncRNAs expressed in the intergenic regions of annotated genome of D radiodurans. Verification of 2 ncRNA candidates and 3 transcription factor genes by Real Time PCR confirmed presence of these transcripts in the 3 h transcriptome sequenced by us. Any relationship between ncRNAs and control of radiation induced gene expression in D radiodurans can be proved only after specific gene knock outs in future. (author)

  7. Antarctic Specific Features of the Greenhouse Effect: A Radiative Analysis Using Measurements and Models

    OpenAIRE

    Schmithüsen, Holger

    2014-01-01

    CO2 is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, it is shown that the gr...

  8. TOA Radiation Balance Study through Reprocessed ERBS WFOV Nonscanner data from 1985 to 1998

    Science.gov (United States)

    Shrestha, A. K.; Kato, S.; Wong, T.; Stackhouse, P. W., Jr.; Doelling, D. R.; Loughman, R. P.

    2017-12-01

    Wide-field-of-view (WFOV) nonscanner instrument onboard Earth Radiation Budget Satellite (ERBS) provided broadband irradiances at the top-of-atmosphere (TOA) from 1985 to 1999. However, earlier studies show that the uncertainty in this TOA radiation dataset is significantly higher during the period after the Mt. Pinatubo eruption and battery issue in 1991. In addition, the difference between daytime and nighttime longwave irradiance drifts with time throughout the lifetime of the instrument. We re-processed ERBS WFOV data using the algorithm similar to the one used in the CERES project and calibrated it with CERES-derived irradiances. In addition, the spatial coverage of ERBS irradiances is extended to global from near-global (60°N to 60°S latitudes) using CERES climatological ratio of the near-global to global mean irradiances. The near-global standard deviation of deseasonalized shortwave anomalies computed with Ed4 decreases to 3.2 Wm-2 from 8.0 Wm-2, computed with previous version. In addition, the drift of day-minus-night longwave irradiance is reduced by one third. Similar to the previous version, however, the Ed4 global shortwave irradiance averaged over the 1994 to 1997 period (second period) is smaller by 2.2 Wm-2 compared to that averaged over the 1985 to 1989 period (first period). In addition, the global longwave irradiance in the second period is larger by 0.7 Wm-2 compared to that averaged over the first period. When the difference of two periods is computed (second period minus first period) with the DEEP-C data product (Allan et al. 2014), the difference is 0.5 (-0.3) Wm-2 for shortwave (longwave). The global net imbalance at the TOA computed with ERBS and DEEP-C data sets are, respectively, 0.45 (1.89) Wm-2 and 0.17 (0.96) Wm-2 for the first (second) period. The net imbalance for the CERES period in the 2000s is 0.65 Wm-2. In this presentation, we will further compare Ed4 ERBS-derived TOA net imbalance with ocean heating rates. Re-processed ERBS

  9. GRAVE: An Interactive Geometry Construction and Visualization Software System for the TORT Nuclear Radiation Transport Code

    International Nuclear Information System (INIS)

    Blakeman, E.D.

    2000-01-01

    A software system, GRAVE (Geometry Rendering and Visual Editor), has been developed at the Oak Ridge National Laboratory (ORNL) to perform interactive visualization and development of models used as input to the TORT three-dimensional discrete ordinates radiation transport code. Three-dimensional and two-dimensional visualization displays are included. Display capabilities include image rotation, zoom, translation, wire-frame and translucent display, geometry cuts and slices, and display of individual component bodies and material zones. The geometry can be interactively edited and saved in TORT input file format. This system is an advancement over the current, non-interactive, two-dimensional display software. GRAVE is programmed in the Java programming language and can be implemented on a variety of computer platforms. Three- dimensional visualization is enabled through the Visualization Toolkit (VTK), a free-ware C++ software library developed for geometric and data visual display. Future plans include an extension of the system to read inputs using binary zone maps and combinatorial geometry models containing curved surfaces, such as those used for Monte Carlo code inputs. Also GRAVE will be extended to geometry visualization/editing for the DORT two-dimensional transport code and will be integrated into a single GUI-based system for all of the ORNL discrete ordinates transport codes

  10. A Finnish national code of practice for reference dosimetry of radiation therapy

    International Nuclear Information System (INIS)

    Kosunen, A.; Sipilae, P.; Jaervinen, H.; Parkkinen, R.; Jokelainen, I.

    2002-01-01

    Full text: A national Code of Practice (CoP) for reference dosimetry of radiation therapy in Finland will be established during 2002 and will be implemented from the beginning of 2003. The CoP will cover dosimetry of the conventional radiotherapy modalities used in Finland i.e. external radiotherapy with megavoltage photon and electron beams, external radiotherapy with low energy kilovoltage X-ray beams and brachytherapy. The formalisms for external radiation beam dosimetry are those of TRS 389. For brachytherapy the formalism will follow the general guidelines of TECDOC-1274. The CoP will be prepared by the SSDL of STUK in close co-operation with the Finnish radiotherapy physicists. For external beam radiotherapy, the main objective of the national Code of Practice for radiation therapy dosimetry is to maintain the achieved good level of consistency of the dosimetry procedures in external beam radiotherapy as the 'absorbed dose to water' based approach of TRS 389 is implemented in Finland. In the CoP the dosimetry the procedures are described for the whole dosimetry chain starting from the calibration of the ionisation chambers at the SSDL of STUK and ending to the calibration of the beam monitor ionisation chamber of a linear accelerator. For brachytherapy dosimetry the aim is to fix the national practice for reference air kerma rate calibrations both for radioactive sources and for well-type ionisation chambers. Although the dosimetry procedures are described independently of the SSDL service, CoP makes use of the special features of the calibration service offered by the SSDL of STUK. For ionisation chambers used for photon dosimetry the calibration factors for the user measurement chain are given not only for the actual reference beam quality ( 60 Co) but also for a set of user beam qualities. Furthermore, SSDL of STUK offers calibration services for plane parallel ionisation chambers in an electron beam of a user linac. For brachytherapy SSDL of STUK has

  11. GENII [Generation II]: The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs

  12. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  13. Coherent Synchrotron Radiation A Simulation Code Based on the Non-Linear Extension of the Operator Splitting Method

    CERN Document Server

    Dattoli, Giuseppe

    2005-01-01

    The coherent synchrotron radiation (CSR) is one of the main problems limiting the performance of high intensity electron accelerators. A code devoted to the analysis of this type of problems should be fast and reliable: conditions that are usually hardly achieved at the same time. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problem in accelerators. The extension of these method to the non-linear case is ideally suited to treat CSR instability problems. We report on the development of a numerical code, based on the solution of the Vlasov equation, with the inclusion of non-linear contribution due to wake field effects. The proposed solution method exploits an algebraic technique, using exponential operators implemented numerically in C++. We show that the integration procedure is capable of reproducing the onset of an instability and effects associated with bunching mechanisms leading to the growth of the instability itself. In addition, parametric studies a...

  14. Analysis of the pool critical assembly benchmark using raptor-M3G, a parallel deterministic radiation transport code - 289

    International Nuclear Information System (INIS)

    Fischer, G.A.

    2010-01-01

    The PCA Benchmark is analyzed using RAPTOR-M3G, a parallel SN radiation transport code. A variety of mesh structures, angular quadrature sets, cross section treatments, and reactor dosimetry cross sections are presented. The results show that RAPTOR-M3G is generally suitable for PWR neutron dosimetry applications. (authors)

  15. Numerical simulations of inertial confinement fusion hohlraum with LARED-integration code

    International Nuclear Information System (INIS)

    Li Jinghong; Li Shuanggui; Zhai Chuanlei

    2011-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happened in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (author)

  16. A research program on radiative, chemical, and dynamical feedback progresses influencing the carbon dioxide and trace gases climate effects

    International Nuclear Information System (INIS)

    1989-07-01

    This report summarizes the up-to-date progress. The program includes two tasks: atmospheric radiation and climatic effects and their objective is to link quantitatively the radiation forcing changes and the climate responses caused by increasing greenhouse gases. Here, the objective and approach are described. We investigate the combined atmospheric radiation characteristics of the greenhouse gases (H 2 O, CO 2 , CH 4 , N 2 O, CFCs, and O 3 ), aerosols and clouds. Since the climatic effect of increasing atmospheric greenhouse gases is initiated by perturabtion to the longwave thermal radiation, it is critical to understand better the radiation characteristics of the greenhouse gases and their relationship to radiatively-important aerosols and clouds; the latter reflect solar radiation (a cooling of the surface) and provide a greenhouse effect (a warming to the surface). Therefore, aerosol and cloud particles are an integral part of the radiation field in the atmosphere. 9 refs

  17. Case studies of radiation in the cloud-capped atmospheric boundary layer

    International Nuclear Information System (INIS)

    Schmetz, J.; Raschke, E.

    1983-01-01

    This review presents observations of marine stratocumulus obtained by the three research aircraft that participated in the Joint Air-Sea Interaction Project (JASIN). Detailed measurements were made of the thermodynamic, cloud physics and radiation fields for a uniform cloud sheet on 8 August 1978. These show a well mixed boundary layer with cloud liquid water contents close to their adiabatic values. The longwave and shortwave radiative components of the cloud layer energy budget were measured and good agreement was obtained between the observations and several radiation schemes. In particular, the measured cloud shortwave absorption was close to the theoretical values. Observations of shortwave fluxes made from the Falcon aircraft beneath broken stratocumulus are also shown and compared with calculations made by using a Monte Carlo model. It is concluded that the radiative cloud-cloud interactions do not play a dominant role in the bulk radiative properties of cloud fields. These are mainly determined by cloud amount and the vertical and horizontal optical depths of the clouds within the field. (author)

  18. Seasonal changes in the radiation balance of subarctic forest and tundra

    International Nuclear Information System (INIS)

    Lafleur, P.M.; Renzetti, A.V.; Bello, R.

    1993-01-01

    This paper examines the seasonal behavior of the components of the radiation budget of subarctic tundra and open forest near Churchill, Manitoba. Data were collected between late February and August 1990. The presence of the winter snowpack is the most important factor which affects the difference in radiation balances of tundra and forest. Overall, net radiation was about four to five times larger over the forest when snow covered the ground. Albedo differences were primarily responsible for this difference in net radiation; however, somewhat smaller net longwave losses were experienced at the tundra site. The step decrease in albedo from winter to summer (i.e. snow-covered to snow-free conditions) was significant at both sites. The forest albedo decreased by about three-fold while the tundra experienced a seven-fold decrease. Net radiation at both sites increased in direct response to the albedo change. Transmissivity of the atmosphere near Churchill also appeared to change at about the same time as the loss of the snow cover and may be related to changing air masses which bring about the final snow melt

  19. Analysis of the variation of the attenuation curve in function of the radiation field size for k Vp X-ray beams using the MCNP-5C code

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marco@cetea.com.b, E-mail: marfernandes@fmb.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina; Ribeiro, Victor A.B. [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Viana, Rodrigo S.S.; Coelho, Talita S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The paper illustrates the use of the Monte Carlo method, MCNP-5C code, to analyze the attenuation curve behavior of the 50 kVp radiation beam from superficial radiotherapy equipment as Dermopan2 model. The simulations seek to verify the MCNP-5C code performance to study the variation of the attenuation curve - percentage depth dose (PDD) curve - in function of the radiation field dimension used at radiotherapy of skin tumors with 50 kVp X-ray beams. The PDD curve was calculated for six different radiation field sizes with circular geometry of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 cm in diameter. The radiation source was modeled considering a tungsten target with inclination 30 deg, focal point of 6.5 mm in diameter and energy beam of 50 kVp; the X-ray spectrum was calculated with the MCNP-5C code adopting total filtration (beryllium window of 1 mm and aluminum additional filter of 1 mm). The PDD showed decreasing behavior with the attenuation depth similar what is presented on the literature. There was not significant variation at the PDD values for the radiation field between 1.0 and 4.0 cm in diameter. The differences increased for fields of 5.0 and 6.0 cm and at attenuation depth higher than 1.0 cm. When it is compared the PDD values for fields of 3.0 and 6.0 cm in diameter, it verifies the greater difference (12.6 %) at depth of 5.7 cm, proving the scattered radiation effect. The MCNP-5C code showed as an appropriate procedure to analyze the attenuation curves of the superficial radiotherapy beams. (author)

  20. Radiation-emitting Electronic Product Codes

    Data.gov (United States)

    U.S. Department of Health & Human Services — This database contains product names and associated information developed by the Center for all products, both medical and non-medical, which emit radiation. It...

  1. Methods for Ensuring High Quality of Coding of Cause of Death. The Mortality Register to Follow Southern Urals Populations Exposed to Radiation.

    Science.gov (United States)

    Startsev, N; Dimov, P; Grosche, B; Tretyakov, F; Schüz, J; Akleyev, A

    2015-01-01

    To follow up populations exposed to several radiation accidents in the Southern Urals, a cause-of-death registry was established at the Urals Center capturing deaths in the Chelyabinsk, Kurgan and Sverdlovsk region since 1950. When registering deaths over such a long time period, quality measures need to be in place to maintain quality and reduce the impact of individual coders as well as quality changes in death certificates. To ensure the uniformity of coding, a method for semi-automatic coding was developed, which is described here. Briefly, the method is based on a dynamic thesaurus, database-supported coding and parallel coding by two different individuals. A comparison of the proposed method for organizing the coding process with the common procedure of coding showed good agreement, with, at the end of the coding process, 70  - 90% agreement for the three-digit ICD -9 rubrics. The semi-automatic method ensures a sufficiently high quality of coding by at the same time providing an opportunity to reduce the labor intensity inherent in the creation of large-volume cause-of-death registries.

  2. Assessment of BSRN radiation records for the computation of monthly means

    Science.gov (United States)

    Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E. G.; Long, C. N.; Zhang, T.

    2011-02-01

    The integrity of the Baseline Surface Radiation Network (BSRN) radiation monthly averages are assessed by investigating the impact on monthly means due to the frequency of data gaps caused by missing or discarded high time resolution data. The monthly statistics, especially means, are considered to be important and useful values for climate research, model performance evaluations and for assessing the quality of satellite (time- and space-averaged) data products. The study investigates the spread in different algorithms that have been applied for the computation of monthly means from 1-min values. The paper reveals that the computation of monthly means from 1-min observations distinctly depends on the method utilized to account for the missing data. The intra-method difference generally increases with an increasing fraction of missing data. We found that a substantial fraction of the radiation fluxes observed at BSRN sites is either missing or flagged as questionable. The percentage of missing data is 4.4%, 13.0%, and 6.5% for global radiation, direct shortwave radiation, and downwelling longwave radiation, respectively. Most flagged data in the shortwave are due to nighttime instrumental noise and can reasonably be set to zero after correcting for thermal offsets in the daytime data. The study demonstrates that the handling of flagged data clearly impacts on monthly mean estimates obtained with different methods. We showed that the spread of monthly shortwave fluxes is generally clearly higher than for downwelling longwave radiation. Overall, BSRN observations provide sufficient accuracy and completeness for reliable estimates of monthly mean values. However, the value of future data could be further increased by reducing the frequency of data gaps and the number of outliers. It is shown that two independent methods for accounting for the diurnal and seasonal variations in the missing data permit consistent monthly means to within less than 1 W m-2 in most cases

  3. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  4. Radiation heat transfer model in a spent fuel pool by TRACE code

    International Nuclear Information System (INIS)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J.F.; Martorell, S.

    2014-01-01

    Nuclear policies have experienced an important change since Fukushima Daiichi nuclear plant accident and the safety of spent fuels has been in the spot issue among all the safety concerns. The work presented consists of the thermohydraulic simulation of spent fuel pool behavior after a loss of coolant throughout transfer channel with loss of cooling transient is produced. The simulation is done with the TRACE code. One of the most important variables that define the behavior of the pool is cladding temperature, which evolution depends on the heat emission. In this work convection and radiation heat transfer is considered. When both heat transfer models are considered, a clear delay in achieving the maximum peak cladding temperature (1477 K) is observed compared with the simulation in which only convection heat transfer is considered. (authors)

  5. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  6. Radiation transport Part B: Applications with examples

    International Nuclear Information System (INIS)

    Beutler, D.E.

    1997-01-01

    In the previous sections Len Lorence has described the need, theory, and types of radiation codes that can be applied to model the results of radiation effects tests or working environments for electronics. For the rest of this segment, the author will concentrate on the specific ways the codes can be used to predict device response or analyze radiation test results. Regardless of whether one is predicting responses in a working or test environment, the procedures are virtually the same. The same can be said for the use of 1-, 2-, or 3-dimensional codes and Monte Carlo or discrete ordinates codes. No attempt is made to instruct the student on the specifics of the code. For example, the author will not discuss the details, such as the number of meshes, energy groups, etc. that are appropriate for a discrete ordinates code. For the sake of simplicity, he will restrict himself to the 1-dimensional code CEPXS/ONELD. This code along with a wide variety of other radiation codes can be obtained form the Radiation Safety Information Computational Center (RSICC) for a nominal handling fee

  7. A strategy for testing the impact of clouds on the shortwave radiation budge of general circulation models: A prototype for the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1994-01-01

    Cloud-climate interactions are one of the greatest uncertainties in contemporary general circulation models (GCMs), and this study has focused on one aspect of this. Specifically, combined satellite and near-surface shortwave (SW) flux measurements have been used to test the impact of clouds on the SW radiation budgets of two GCMs. Concentration is initially on SW rather than longwave (LW) radiation because, in one of the GCMs used in this study an SW radiation inconsistency causes a LW inconsistency. The surface data consist of near-surface insolation measured by the upward facing pyranometer at the Boulder Atmospheric Observatory tower. The satellite data consist of top of the atmosphere (TOA) albedo data, collocated with the tower location, as determined from the GOES SW spin-scan radiometer. Measurements are made every half hour, with hourly means taken by averaging successive measurements. The combined data are for a 21-day period encompassing 28 June through 18 July 1987 and consist of 202 combined albedo/insolation measurements

  8. Relations between radiation fluxes of a greenhouse in semi-arid conditions

    International Nuclear Information System (INIS)

    Al-Riahi, M.; Al-Karaghouli, A.; Hasson, A.M.; Al-Kayssi, A.W.

    1989-01-01

    Measurements of global radiation, reflected radiation and net total radiation inside and outside the greenhouse were conducted in Fudhiliyah Agrometeorological Research Station during the period from 1 January to 30 April, 1987. From these measurements, several relationships were established. Linear regressions of hourly values of global radiation inside the greenhouse on hourly global radiation outside the greenhouse were fitted for each month of the recording period. The degree of fit was generally good (r > 0.95). Net short-wave radiation inside the greenhouse showed strong dependence on the global inside radiation (r = 0.998), also the net total radiation and global radiation inside the greenhouse correlate very strongly. From the above-mentioned relationships, it was found that the global, net short-wave and net total radiation could be successfully predicted when only global outside radiation is available. Using the linear regression equations correlating the above radiation parameters, albedo and heating coefficient were derived. Albedo showed strong dependence on solar altitude angle and period of day (forenoon and afternoon). Heating coefficients were consistently positive and their values varied between 0.10 and 0.393. Monthly average values of mean hourly night-time net long-wave radiation inside the greenhouse were −31, −32, −38 and −42 W m −2 for the months of January, February, March and April, respectively

  9. Demonstration study on shielding safety analysis code (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Sawamura, Sadashi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1999-03-01

    Dose evaluation for direct radiation and skyshine from nuclear fuel facilities is one of the environment evaluation items. This evaluation is carried out by using some shielding calculation codes. Because of extremely few benchmark data of skyshine, the calculation has to be performed very conservatively. Therefore, the benchmark data of skyshine and the well-investigated code for skyshine would be necessary to carry out the rational evaluation of nuclear facilities. The purpose of this steady is to obtain the benchmark data of skyshine and to investigate the calculation code for skyshine. In this fiscal year, the followings are investigated; (1) Construction and improvement of a pulsed radiation measurement system due to the gated counting method. (2) Using the system, carried out the radiation monitoring near and in the facility of 45 MeV Linear accelerator installed at Hokkaido University. (3) Simulation analysis of the photo-neutron production and the transport by using the EGS4 and MCNP code. (author)

  10. Thermal Radiation Anomalies Associated with Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Kafatos, Menas C.; Taylor, Patrick

    2017-01-01

    Recent developments of remote sensing methods for Earth satellite data analysis contribute to our understanding of earthquake related thermal anomalies. It was realized that the thermal heat fluxes over areas of earthquake preparation is a result of air ionization by radon (and other gases) and consequent water vapor condensation on newly formed ions. Latent heat (LH) is released as a result of this process and leads to the formation of local thermal radiation anomalies (TRA) known as OLR (outgoing Longwave radiation, Ouzounov et al, 2007). We compare the LH energy, obtained by integrating surface latent heat flux (SLHF) over the area and time with released energies associated with these events. Extended studies of the TRA using the data from the most recent major earthquakes allowed establishing the main morphological features. It was also established that the TRA are the part of more complex chain of the short-term pre-earthquake generation, which is explained within the framework of a lithosphere-atmosphere coupling processes.

  11. Preliminary analysis of surface radiation measurements recorded at the Nansen ice sheet (Antarctica)

    International Nuclear Information System (INIS)

    Bonafe', U.; Dalpane, E.; Georgiadis, T.; Pitacco, A.

    1996-01-01

    An experiment on radiation and surface energy balance was conducted during the 9. Italian expedition in Antarctica at the Nancen ice sheet, a glacier situated close to the Italian base at Terra Nova Bay, to correlate surface balances to the formation and development of katabatic winds. Measurements were taken by radiometers covering the whole spectra of solar and terrestrial emissions and by fast sensors of atmospheric wind velocity and humidity for the application of the eddy correlation technique. A preliminary analysis of the radiometric data collected in order to quantify the major components of radiative energy balance during the Antarctic summer in clear sky conditions is reported and discussed. The findings show the very low available energy (mean about 1 W/m 2 ), in terms of net radiation, for the physical processes such as sensible- and latent-heat fluxes. Long-wave radiation balance was applied to estimate the reliability of the Swinbank's parametrization, relative to general conditions of the atmosphere

  12. ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Hung-Yi [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Taipei 10617, Taiwan (China); Yun, Kiyun; Yoon, Suk-Jin [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of); Younsi, Ziri [Institut für Theoretische Physik, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main (Germany)

    2016-04-01

    General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge–Kutta integration step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey-Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.

  13. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  14. Effect of long-wave UV radiation on mouse melanoma: An in vitro and in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Pastila, R.

    2006-04-15

    The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple

  15. Effect of long-wave UV radiation on mouse melanoma: An in vitro and in vivo study

    International Nuclear Information System (INIS)

    Pastila, R.

    2006-04-01

    The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple

  16. Radiation Effects on the Thermodiffusive Instability of Premixed Flames on a Cylindrical Porous Flame Holder

    Science.gov (United States)

    Du, Minglong; Yang, Lijun

    2017-10-01

    A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.

  17. Ticor-based scintillation detectors for detection of mixed radiation

    CERN Document Server

    Litvinov, L A; Kolner, V B; Ryzhikov, V D; Volkov, V G; Tarasov, V A; Zelenskaya, O V

    2002-01-01

    Detection of mixed radiation of thermal neutrons and gamma-rays have been realized using a new ceramic material based on small-crystalline long-wave scintillator alpha-Al sub 2 O sub 3 :Ti (Ticor) and lithium fluoride. Characteristics are presented for scintillators with Si-PIN-PD type photoreceivers and PMT under sup 2 sup 3 sup 9 Pu alpha-particles, sup 2 sup 0 sup 7 Bi internal conversion electrons,as well as sup 2 sup 4 sup 1 Am and sup 1 sup 3 sup 7 Cs gamma-quanta. Detection efficiency of thermal neutron is estimated for composite materials based on Ticor and lithium fluoride.

  18. A study on the application of CRUDTRAN code in primary systems of domestic pressurized heavy-water reactors for prediction of radiation source term

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Cho, Hoon Jo; Jung, Min Young; Lee, Sang Heon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-04-15

    The importance of developing a source-term assessment technology has been emphasized owing to the decommissioning of Kori nuclear power plant (NPP) Unit 1 and the increase of deteriorated NPPs. We analyzed the behavioral mechanism of corrosion products in the primary system of a pressurized heavy-water reactor-type NPP. In addition, to check the possibility of applying the CRUDTRAN code to a Canadian Deuterium Uranium Reactor (CANDU)-type NPP, the type was assessed using collected domestic onsite data. With the assessment results, it was possible to predict trends according to operating cycles. Values estimated using the code were similar to the measured values. The results of this study are expected to be used to manage the radiation exposures of operators in high-radiation areas and to predict decommissioning processes in the primary system.

  19. Impact of cloud radiative heating on East Asian summer monsoon circulation

    International Nuclear Information System (INIS)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-01-01

    The impacts of cloud radiative heating on the East Asian Summer Monsoon (EASM) over southeastern China (105°–125°E, 20°–35°N) are addressed by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of clouds, the EASM circulation and precipitation would be much weaker than that in normal conditions. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. the different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which consequently enhances updraft. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance. (letter)

  20. The significance of radiative coupling between vegetation and the atmosphere

    International Nuclear Information System (INIS)

    Martin, P.

    1989-01-01

    In a recent theoretical study, Jarvis and McNaughton derived an expression for the elasticity of evaporation with respect to canopy conductance to analyze the coupling between vegetation and the atmosphere. They concluded that one cannot expect a fractional change in stomatal resistance to cause a proportional change in leaf or canopy transpiration, especially for vegetation with low aerodynamic roughness. However, a potentially important stomatal feedback was left out. As stomata close, transpiration decreases, while the temperature of sunlit leaves and the associated outgoing long-wave radiation from the leaf increase. The net result is a change both in transpiration and leaf net radiation. This paper examines the assumptions made in Jarvis and McNaughton's analysis, presents an alternative derivation for the elasticity of evaporation to conductance, and discusses its theoretical and practical implications

  1. Effect of long-wave ultraviolet light on the lens. I. Model systems for detecting and measuring effect on the lens in vitro

    International Nuclear Information System (INIS)

    Kuck, J.F.R. Jr.

    1976-01-01

    Rat, mouse, and chick lenses incubated with 3-aminotriazole under long-wave ultraviolet (UV) show reduced accumulation and incorporation of leucine and a loss of glutathione. The effect on leucine incorporation is strikingly enhanced when capsule-epithelium pools are incubated. The procedure may identify photosensitizers or metabolic inhibitors which are cataractogenic when acting in conjunction with UV

  2. Vectorization of DOT3.5 code

    International Nuclear Information System (INIS)

    Nonomiya, Iwao; Ishiguro, Misako; Tsutsui, Tsuneo

    1990-07-01

    In this report, we describe the vectorization of two-dimensional Sn-method radiation transport code DOT3.5. Vectorized codes are not only the NEA original version developed at ORNL but also the versions improved by JAERI: DOT3.5 FNS version for fusion neutronics analyses, DOT3.5 FER version for fusion reactor design, and ESPRIT module of RADHEAT-V4 code system for radiation shielding and radiation transport analyses. In DOT3.5, input/output processing time amounts to a great part of the elapsed time when a large number of energy groups and/or a large number of spatial mesh points are used in the calculated problem. Therefore, an improvement has been made for the speedup of input/output processing in the DOT3.5 FNS version, and DOT-DD (Double Differential cross section) code. The total speedup ratio of vectorized version to the original scalar one is 1.7∼1.9 for DOT3.5 NEA version, 2.2∼2.3 fro DOT3.5 FNS version, 1.7 for DOT3.5 FER version, and 3.1∼4.4 for RADHEAT-V4, respectively. The elapsed times for improved DOT3.5 FNS version and DOT-DD are reduced to 50∼65% that of the original version by the input/output speedup. In this report, we describe summary of codes, the techniques used for the vectorization and input/output speedup, verification of computed results, and speedup effect. (author)

  3. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  4. A Stabilizing Feedback Between Cloud Radiative Effects and Greenland Surface Melt: Verification From Multi-year Automatic Weather Station Measurements

    Science.gov (United States)

    Zender, C. S.; Wang, W.; van As, D.

    2017-12-01

    Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, palbedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, palbedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative state. Clouds warm the brighter and colder surfaces of Greenland, enhance snow melt, and tend to lower the albedo. Clouds cool the darker and warmer surfaces, inhibiting snow melt, which increases albedo, and thus stabilizes surface melt. This stabilizing mechanism may also occur over sea ice, helping to forestall surface melt as the Arctic becomes dimmer.

  5. A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

    2013-04-01

    Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contribute 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.

  6. CODE's new solar radiation pressure model for GNSS orbit determination

    Science.gov (United States)

    Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.

    2015-08-01

    The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which

  7. Deciphering free-radical code of radiation effects

    International Nuclear Information System (INIS)

    Volovyk, S.; Bazyka, D.; Loganovsky, K.; Bebeshko, V.

    2007-01-01

    Complete text of publication follows. Objective: Ionizing radiation is fundamental environmental factor for life origin and evolution. Free radicals, primordial 'sea' for life conceiving and existence, induced by cosmic and terrestrial background radiation, are evolutionally archetypal, ubiquitous, and omnipotent in physiological- pathophysiological dichotomy. Classical free-radical paradigm in radiation biology and medicine, focused in essence on oxidative damage, needs new conceptualization and generalization. Methods: Suggested novel insights into free radicals dual immanent nature and functions in organism systems are based on original concepts of radicals dynamic charge transfer (CT) - redox ambivalence (interactional nucleo-, electro-, and ambiphilicity spectrum); pertinent chemical reactivity and selectivity delocalization model; physiological functional ambivalence and complementarity, and dynamic free-radical homeostasis. Results: Subtle perturbations in radicals CT spatiotemporal homeodynamics, in responsive signaling / controlling networks, concomitant alterations in genes expression, transcription, and apoptosis, redox control of mitochondrial ET chain, telomere/telomerase balance, DNA CT, circadian clock, hemispheric biochemical dominance/accentuation, including alteration of nitric oxide-superoxide complementarity, membranes permeability, neurotransmission pattern, synaptic circuitry, etc under radiation exposure have more fundamental impact on organism systems (especially CNS and CVS) deterioration than simple radicals inflicted oxidative (nitrosative) damage of cellular constituents. Conclusions: This novel conceptualization of free-radical paradigm constitutes new dimension in deciphering molecular mechanisms of radiation effects on subtle borderline norm-pathology and continuity-discontinuity dichotomy in organisms systems disorders - CT(redox)omics, which involves investigation of CT, redox, and spin states of free radicals, DNA bases

  8. Uranium Dispersion and Dosimetry (UDAD) Code

    International Nuclear Information System (INIS)

    Momeni, M.H.; Yuan, Y.; Zielen, A.J.

    1979-05-01

    The Uranium Dispersion and Dosimetry (UDAD) Code provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility. The UDAD Code incorporates the radiation dose from the airborne release of radioactive materials, and includes dosimetry of inhalation, ingestion, and external exposures. The removal of raioactive particles from a contaminated area by wind action is estimated, atmospheric concentrations of radioactivity from specific sources are calculated, and source depletion as a result of deposition, fallout, and ingrowth of radon daughters are included in a sector-averaged Gaussian plume dispersion model. The average air concentration at any given receptor location is assumed to be constant during each annual release period, but to increase from year to year because of resuspension. Surface contamination and deposition velocity are estimated. Calculation of the inhalation dose and dose rate to an individual is based on the ICRP Task Group Lung Model. Estimates of the dose to the bronchial epithelium of the lung from inhalation of radon and its short-lived daughters are calculated based on a dose conversion factor from the BEIR report. External radiation exposure includes radiation from airborne radionuclides and exposure to radiation from contaminated ground. Terrestrial food pathways include vegetation, meat, milk, poultry, and eggs. Internal dosimetry is based on ICRP recommendations. In addition, individual dose commitments, population dose commitments, and environmental dose commitments are computed. This code also may be applied to dispersion of any other pollutant

  9. Relationships between radiation, clouds, and convection during DYNAMO

    Science.gov (United States)

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-01

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of 0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by 20% with a minimum in this enhancement 10 days prior to peak MJO rainfall and maximum 7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  10. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes

    International Nuclear Information System (INIS)

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-01-01

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX’s MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application. (paper)

  11. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2012-12-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.

  12. Monte Carlo codes use in neutron therapy; Application de codes Monte Carlo en neutrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Paquis, P.; Mokhtari, F.; Karamanoukian, D. [Hopital Pasteur, 06 - Nice (France); Pignol, J.P. [Hopital du Hasenrain, 68 - Mulhouse (France); Cuendet, P. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires; Fares, G.; Hachem, A. [Faculte des Sciences, 06 - Nice (France); Iborra, N. [Centre Antoine-Lacassagne, 06 - Nice (France)

    1998-04-01

    Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)

  13. Internal radiation dose calculations with the INREM II computer code

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Killough, G.G.

    1978-01-01

    A computer code, INREM II, was developed to calculate the internal radiation dose equivalent to organs of man which results from the intake of a radionuclide by inhalation or ingestion. Deposition and removal of radioactivity from the respiratory tract is represented by the Internal Commission on Radiological Protection Task Group Lung Model. A four-segment catenary model of the gastrointestinal tract is used to estimate movement of radioactive material that is ingested, or swallowed after being cleared from the respiratory tract. Retention of radioactivity in other organs is specified by linear combinations of decaying exponential functions. The formation and decay of radioactive daughters is treated explicitly, with each radionuclide in the decay chain having its own uptake and retention parameters, as supplied by the user. The dose equivalent to a target organ is computed as the sum of contributions from each source organ in which radioactivity is assumed to be situated. This calculation utilizes a matrix of dosimetric S-factors (rem/μCi-day) supplied by the user for the particular choice of source and target organs. Output permits the evaluation of components of dose from cross-irradiations when penetrating radiations are present. INREM II has been utilized with current radioactive decay data and metabolic models to produce extensive tabulations of dose conversion factors for a reference adult for approximately 150 radionuclides of interest in environmental assessments of light-water-reactor fuel cycles. These dose conversion factors represent the 50-year dose commitment per microcurie intake of a given radionuclide for 22target organs including contributions from specified source organs and surplus activity in the rest of the body. These tabulations are particularly significant in their consistent use of contemporary models and data and in the detail of documentation

  14. Climatic responses to the shortwave and longwave direct radiative effects of sea salt aerosol in present day and the last glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xu [Chinese Academy of Sciences (CAS), Climate Change Research Center (CCRC), Beijing (China); Chinese Academy of Sciences (CAS), Nansen-Zhu International Research Center, Institute of Atmospheric Physics (IAP), Beijing (China); Harvard University, School of Engineering and Applied Sciences, Cambridge, MA (United States); Liao, Hong [Chinese Academy of Sciences (CAS), State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), P.O. Box 9804, Beijing (China)

    2012-12-15

    We examine the climatic responses to the shortwave (SW) and longwave (LW) direct radiative effects (RE) of sea salt aerosol in present day and the last glacial maximum (LGM) using a general circulation model with online simulation of sea salt cycle. The 30-year control simulation predicts a present-day annual emission of sea salt of 4,253 Tg and a global burden of 8.1 Tg for the particles with dry radii smaller than 10 {mu}m. Predicted annual and global mean SW and LW REs of sea salt are, respectively, -1.06 and +0.14 W m{sup -2} at the top of atmosphere (TOA), and -1.10 and +0.54 W m{sup -2} at the surface. The LW warming of sea salt is found to decrease with altitude, which leads to a stronger net sea salt cooling in the upper troposphere. The changes in global mean air temperature by the present-day sea salt are simulated to be -0.55, -0.63, -0.86, and -0.91 K at the surface, 850, 500a, and 200 hPa, respectively. The emission of sea salt at the LGM is estimated to be 4,075 Tg year{sup -1}. Relative to present day, the LGM sea salt emission is higher by about 18% over the tropical and subtropical oceans, and is lower by about 35% in the mid- and high-latitudes in both hemispheres because of the expansion of sea ice. As a result of the weakened LGM water cycle, the LGM annual and global mean burden of sea salt is predicted to be higher by 4% as compared to the present-day value. Compared with the climatic effect of sea salt in present day, the sea-salt-induced reductions in surface air temperature at the LGM have similar magnitude in the tropics but are weakened by about 0.18 and 0.14 K in the high latitudes of the Southern and Northern Hemispheres, respectively. We also perform a sensitivity study to explore the upper limit of the climatic effect of the LGM sea salt. We assume an across-the-board 30% increase in the glacial wind speed and consider sea salt emissions over sea ice, so that the model can reproduce the ratio of sea salt deposition between the LGM and

  15. Effect of 8-methoxypsoralen plus long-wave ultraviolet (PUVA) radiation on mast cells. II. In vitro PUVA inhibits degranulation of rat peritoneal mast cells induced by compound 48/80

    International Nuclear Information System (INIS)

    Toda, K.; Danno, K.; Tachibana, T.; Horio, T.

    1986-01-01

    Rat peritoneal mast cells incubated with a histamine liberator, compound 48/80, showed a significantly reduced capacity for releasing histamine following in vitro treatment with 0.1 micrograms/ml of 8-methoxypsoralen (8-MOP) plus 1-5 J/cm2 of long-wave ultraviolet (UVA) irradiation (PUVA). No remarkable inhibition in histamine release was observed in the cells treated with 8-MOP only. Irradiation with 5 J/cm2 of UVA alone exerted an inhibitory effect on histamine release, to a lesser extent than PUVA. PUVA irradiation did not bring any decrease in cell viability or any spontaneous release of histamine from irradiated cells as shown by phase-contrast microscopy and by histamine assay, respectively. These results suggest that PUVA treatment may cause a noncytotoxic disturbance at mast cell membranes or on surface receptors, leading to a decreased capacity for secreting chemical mediators

  16. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Science.gov (United States)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  17. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    Science.gov (United States)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  18. Specialized Monte Carlo codes versus general-purpose Monte Carlo codes

    International Nuclear Information System (INIS)

    Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi

    2002-01-01

    The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)

  19. Nimbus 7 earth radiation budget wide field of view climate data set improvement. II - Deconvolution of earth radiation budget products and consideration of 1982-1983 El Nino event

    Science.gov (United States)

    Ardanuy, Phillip E.; Hucek, Richard R.; Groveman, Brian S.; Kyle, H. Lee

    1987-01-01

    A deconvolution technique is employed that permits recovery of daily averaged earth radiation budget (ERB) parameters at the top of the atmosphere from a set of the Nimbus 7 ERB wide field of view (WFOV) measurements. Improvements in both the spatial resolution of the resultant fields and in the fidelity of the time averages is obtained. The algorithm is evaluated on a set of months during the period 1980-1983. The albedo, outgoing long-wave radiation, and net radiation parameters are analyzed. The amplitude and phase of the quasi-stationary patterns that appear in the spatially deconvolved fields describe the radiation budget components for 'normal' as well as the El Nino/Southern Oscillation (ENSO) episode years. They delineate the seasonal development of large-scale features inherent in the earth's radiation budget as well as the natural variability of interannual differences. These features are underscored by the powerful emergence of the 1982-1983 ENSO event in the fields displayed. The conclusion is that with this type of resolution enhancement, WFOV radiometers provide a useful tool for the observation of the contemporary climate and its variability.

  20. Surface radiation changes and their impact on climate in Central Europe[Dissertation 17578

    Energy Technology Data Exchange (ETDEWEB)

    Ruckstuhl, Ch.

    2008-07-01

    The rapid temperature increase of 0.7 {sup o}C averaged over the Northern Hemisphere and of 1 {sup o}C over mainland Europe since 1980 is considerably larger than expected from anthropogenic greenhouse warming. The present thesis addresses questions like whether this rapid climate change is due to unexpected large greenhouse forcing that includes strong water vapor feedback or whether the temperature rise is strengthened by an increase in shortwave radiation fluxes observed since the mid-1980s. Solar dimming, a decrease of solar radiation measured at the Earth's surface, has been observed during several decades before the 1980s. Since then a reversed trend with increasing solar radiation has been observed. Our investigations show that this solar brightening has apparently added to the temperature rise since the 1980s. The analyses give evidence for a substantial decline in aerosol concentrations over Europe, which has led to a significant increase of solar radiation reaching the ground. Aerosol optical depth (AOD) observations at six remote locations from the Baltic Sea to the Central Alps show a decrease in AOD by up to 63 percent from 1986 to 2005. Solar radiation, concurrently measured under cloud-free skies and averaged over eight German and twenty-five Swiss radiation stations below 1000 m a.s.l., shows a statistically significant increase of +1.15 [+0.68 to +1.62] W m{sup -2} dec {sup -1} between 1981 and 2005. Hence, the direct aerosol effect is clearly measured. On the other hand, all-sky solar radiation shows a statistically significant increase only due to the extraordinary year 2003, with its strongly reduced cloud amount. Without considering the year 2003, which has only a marginal impact on the temperature trends, the increase in solar radiation due to changes in clouds is +0.78 [-1.26 to +2.82] W m{sup -2} dec {sup -1}. This shortwave cloud forcing is further reduced due to the counterbalancing longwave cloud effect. With respect to climate

  1. Evaluating Radiative Closure in the Middle-to-Upper Troposhere

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, David C. [Univ. of Wisconsin, Madison, WI (United States); Turner, David D. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States), Norman, OK (United States); Knuteson, Robert O. [Univ. of Wisconsin, Madison, WI (United States)

    2013-01-02

    This project had two general objectives. The first is the characterization and improvement of the radiative transfer parameterization in strongly absorbing water vapor bands, as these strongly absorbing bands dictate the clear sky radiative heating rate. The second is the characterization and improvement of the radiative transfer in cirrus clouds, with emphasis on ensuring that the parameterization of the radiative transfer is consistent and accurate across the spectrum. Both of these objectives are important for understanding the radiative processes in the mid-to-upper troposphere. The research on this project primarily involved analysis of data from the First and Second Radiative Heating in Underexplored Bands Campaigns, RHUBC-I and II. This included a climate model sensitivity study using results from RHUBC-I. The RHUBC experiments are ARM-funded activities that directly address the objectives of this research project. A secondary effort was also conducted that investigated the trends in the long-term (~14 year) dataset collected by the Atmospheric Emitted Radiance Interferometer (AERI) at the ARM Southern Great Plains site. This work, which was primarily done by a post-doc at the University of Wisconsin, Madison under Dr. Turner's direction, uses the only NIST-traceable instrument at the ARM site that has a well-documented calibration and uncertainty performance to investigate long-term trends in the downwelling longwave radiance above this site.

  2. Measurement and modelling of radiation transmission within a stand of maritime pine (Pinus pinaster Ait)

    International Nuclear Information System (INIS)

    Berbigier, P.; Bonnefond, J.M.

    1995-01-01

    A semi-empirical model of radiation penetration in a maritime pine canopy was developed so that mean solar (and net) radiation absorption by crowns and understorey could be estimated from above-canopy measurements only. Beam radiation Rb was assumed to penetrate the canopy according to Beer's law with an extinction coefficient of 0.32; this figure was found using non-linear regression techniques. For diffuse sky radiation, Beer's law was integrated over the sky vault assuming a SOC (standard overcast sky) luminance model; the upward and downward scattered radiative fluxes were obtained using the Kubelka-Munk equations and measurements of needle transmittance and reflectance. The penetration of net radiation within the canopy was also modelled. The model predicts the measured albedo of the stand very well. The estimation of solar radiation transmitted by the canopy was also satisfactory with the maximum difference between this and the mean output of mobile sensors at ground level being only 18 W m -2 . Due to the poor precision of net radiometers, the net radiation model could not be tested critically. However, as the modelled longwave radiation balance under the canopy is always between -10 and -20 Wm -2 , the below-canopy net radiation must be very close to the solar radiation balance. (author) [fr

  3. The FLUKA code: An accurate simulation tool for particle therapy

    CERN Document Server

    Battistoni, Giuseppe; Böhlen, Till T; Cerutti, Francesco; Chin, Mary Pik Wai; Dos Santos Augusto, Ricardo M; Ferrari, Alfredo; Garcia Ortega, Pablo; Kozlowska, Wioletta S; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis

    2016-01-01

    Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically-based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in-vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with bot...

  4. Partitioning of radiation and energy balance components in an inhomogeneous desert valley

    International Nuclear Information System (INIS)

    Malek, E.; Bingham, G.E.

    1997-01-01

    Radiation and energy balance components are required to validate global, regional, and local scale models representing surface heat flux relationships in the heterogeneous surfaces of the world's arid and desert regions. Research was conducted in north-eastern Nevada, U.S.A., in a Great Basin inhomogeneous semi-arid desert valley located at 40° 44′ N, 114° 26′ W, with an elevation of 1707 m above mean sea level, to study the daily, monthly, and annual mesoscale radiation and energy balance components. We established five radiation stations along with five Bowen ratio systems to measure the incoming (R si ) and outgoing (R so ) solar (shortwave) radiation, net (R n ) radiation, air temperatures and moisture at 1 and 2 m above-ground, the aggregated (soil + vegetation) surface temperature, soil heat flux at 8 cm (three locations at each station), soil temperatures at 2 and 6 cm above each soil flux plate, wind speed and direction at 10 m, and precipitation (if any) every 5 s averaged into 20 min throughout the valley during the 93–94 water year (beginning 1 October). Our study during the 93–94 water year showed that albedo (R so /R si ) ranged from 85% (snow-covered surface) to 10% (cloudy skies with wet surface) among stations. The water year total incoming solar radiation (averaged among stations) amounted to 6·33 × 10 3 MJ·m −2 and about 24% of that was reflected back to the atmosphere. The net longwave radiation (R ln = R lo − R li ) was about 32% of R si , where R lo and R li are the terrestrial (outgoing) and atmospheric (incoming) longwave radiation, respectively. The 93–94 water year average net radiation (R n ) among stations amounted to 2·68 × 10 3 MJ·m −2 (about 44% of R si ). Approximately 85·3% and 14·6% of R n were used for the processes of sensible (H) and latent (LE) heat fluxes, respectively. The annual R n contribution to surface soil heat flux (G surf ) was almost 0·1%. Monthly and annual relationships among

  5. Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions

    Science.gov (United States)

    Wang, XiaoCong; Liu, YiMin; Bao, Qing

    2016-01-01

    Impacts of cloud overlap assumptions on radiative budgets and heating fields are explored with the aid of a cloud-resolving model (CRM), which provided cloud geometry as well as cloud micro and macro properties. Large-scale forcing data to drive the CRM are from TRMM Kwajalein Experiment and the Global Atmospheric Research Program's Atlantic Tropical Experiment field campaigns during which abundant convective systems were observed. The investigated overlap assumptions include those that were traditional and widely used in the past and the one that was recently addressed by Hogan and Illingworth (2000), in which the vertically projected cloud fraction is expressed by a linear combination of maximum and random overlap, with the weighting coefficient depending on the so-called decorrelation length Lcf. Results show that both shortwave and longwave cloud radiative forcings (SWCF/LWCF) are significantly underestimated under maximum (MO) and maximum-random (MRO) overlap assumptions, whereas remarkably overestimated under the random overlap (RO) assumption in comparison with that using CRM inherent cloud geometry. These biases can reach as high as 100 Wm- 2 for SWCF and 60 Wm- 2 for LWCF. By its very nature, the general overlap (GenO) assumption exhibits an encouraging performance on both SWCF and LWCF simulations, with the biases almost reduced by 3-fold compared with traditional overlap assumptions. The superiority of GenO assumption is also manifested in the simulation of shortwave and longwave radiative heating fields, which are either significantly overestimated or underestimated under traditional overlap assumptions. The study also pointed out the deficiency of constant assumption on Lcf in GenO assumption. Further examinations indicate that the CRM diagnostic Lcf varies among different cloud types and tends to be stratified in the vertical. The new parameterization that takes into account variation of Lcf in the vertical well reproduces such a relationship and

  6. Radiation dependent ionization model

    International Nuclear Information System (INIS)

    Busquet, M.

    1991-01-01

    For laser created plasma simulation, hydrodynamics codes need a non-LTE atomic physics package for both EOS and optical properties (emissivity and opacity). However in XRL targets as in some ICF targets, high Z material can be found. In these cases radiation trapping can induce a significant departure from the optically thin ionization description. The authors present a method to change an existing LTE code into a non-LTE code with coupling of ionization to radiation. This method has very low CPU cost and can be used in 2D simulations

  7. Radioactive action code

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    A new coding system, 'Hazrad', for buildings and transportation containers for alerting emergency services personnel to the presence of radioactive materials has been developed in the United Kingdom. The hazards of materials in the buildings or transport container, together with the recommended emergency action, are represented by a number of codes which are marked on the building or container and interpreted from a chart carried as a pocket-size guide. Buildings would be marked with the familiar yellow 'radioactive' trefoil, the written information 'Radioactive materials' and a list of isotopes. Under this the 'Hazrad' code would be written - three symbols to denote the relative radioactive risk (low, medium or high), the biological risk (also low, medium or high) and the third showing the type of radiation emitted, alpha, beta or gamma. The response cards indicate appropriate measures to take, eg for a high biological risk, Bio3, the wearing of a gas-tight protection suit is advised. The code and its uses are explained. (U.K.)

  8. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  9. FAST: a three-dimensional time-dependent FEL simulation code

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1999-01-01

    In this report we briefly describe the three-dimensional, time-dependent FEL simulation code FAST. The equations of motion of the particles and Maxwell's equations are solved simultaneously taking into account the slippage effect. Radiation fields are calculated using an integral solution of Maxwell's equations. A special technique has been developed for fast calculations of the radiation field, drastically reducing the required CPU time. As a result, the developed code allows one to use a personal computer for time-dependent simulations. The code allows one to simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate simultaneously an external seed with superimposed noise in the electron beam; to take into account energy spread in the electron beam and the space charge fields; and to simulate a high-gain, high-efficiency FEL amplifier with a tapered undulator. It is important to note that there are no significant memory limitations in the developed code and an electron bunch of any length can be simulated

  10. Long-wave model for strongly anisotropic growth of a crystal step.

    Science.gov (United States)

    Khenner, Mikhail

    2013-08-01

    A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the "one-sided" model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed the nonlinear dynamics. Linear stability depends on whether the stiffness is minimum or maximum in the direction of the step growth. It also depends nontrivially on the combination of the anisotropy strength parameter and the atomic flux from the terrace to the step. Computations show formation and coarsening of a hill-and-valley structure superimposed onto a long-wavelength profile, which independently coarsens. Coarsening laws for the hill-and-valley structure are computed for two principal orientations of a maximum step stiffness, the increasing anisotropy strength, and the varying atomic flux.

  11. Radiation Budget Instrument (RBI) for JPSS-2

    Science.gov (United States)

    Georgieva, Elena; Priestley, Kory; Dunn, Barry; Cageao, Richard; Barki, Anum; Osmundsen, Jim; Turczynski, Craig; Abedin, Nurul

    2015-01-01

    Radiation Budget Instrument (RBI) will be one of five instruments flying aboard the JPSS-2 spacecraft, a polar-orbiting sun-synchronous satellite in Low Earth Orbit. RBI is a passive remote sensing instrument that will follow the successful legacy of the Clouds and Earth's Radiant Energy System (CERES) instruments to make measurement of Earth's short and longwave radiation budget. The goal of RBI is to provide an independent measurement of the broadband reflected solar radiance and Earth's emitted thermal radiance by using three spectral bands (Shortwave, Longwave, and Total) that will have the same overlapped point spread function (PSF) footprint on Earth. To ensure precise NIST-traceable calibration in space the RBI sensor is designed to use a visible calibration target (VCT), a solar calibration target (SCT), and an infrared calibration target (ICT) containing phase change cells (PCC) to enable on-board temperature calibration. The VCT is a thermally controlled integrating sphere with space grade Spectralon covering the inner surface. Two sides of the sphere will have fiber-coupled laser diodes in the UV to IR wavelength region. An electrical substitution radiometer on the integrating sphere will monitor the long term stability of the sources and the possible degradation of the Spectralon in space. In addition the radiometric calibration operations will use the Spectralon diffusers of the SCT to provide accurate measurements of Solar degradation. All those stable on-orbit references will ensure that calibration stability is maintained over the RBI sensor lifetime. For the preflight calibration the RBI will view five calibration sources - two integrating spheres and three CrIS (Cross-track Infrared Sounder ) -like blackbodies whose outputs will be validated with NIST calibration approach. Thermopile are the selected detectors for the RBI. The sensor has a requirement to perform lunar calibration in addition to solar calibration in space in a way similar to CERES

  12. Code, standard and specifications

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    Radiography also same as the other technique, it need standard. This standard was used widely and method of used it also regular. With that, radiography testing only practical based on regulations as mentioned and documented. These regulation or guideline documented in code, standard and specifications. In Malaysia, level one and basic radiographer can do radiography work based on instruction give by level two or three radiographer. This instruction was produced based on guideline that mention in document. Level two must follow the specifications mentioned in standard when write the instruction. From this scenario, it makes clearly that this radiography work is a type of work that everything must follow the rule. For the code, the radiography follow the code of American Society for Mechanical Engineer (ASME) and the only code that have in Malaysia for this time is rule that published by Atomic Energy Licensing Board (AELB) known as Practical code for radiation Protection in Industrial radiography. With the existence of this code, all the radiography must follow the rule or standard regulated automatically.

  13. Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet

    Science.gov (United States)

    Sedlar, J.

    2017-12-01

    Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.

  14. Improvements to SOIL: An Eulerian hydrodynamics code

    International Nuclear Information System (INIS)

    Davis, C.G.

    1988-04-01

    Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs

  15. Coupling the MCNP Monte Carlo code and the FISPACT activation code with automatic visualization of the results of simulations

    International Nuclear Information System (INIS)

    Bourauel, Peter; Nabbi, Rahim; Biel, Wolfgang; Forrest, Robin

    2009-01-01

    The MCNP 3D Monte Carlo computer code is used not only for criticality calculations of nuclear systems but also to simulate transports of radiation and particles. The findings so obtained about neutron flux distribution and the associated spectra allow information about materials activation, nuclear heating, and radiation damage to be obtained by means of activation codes such as FISPACT. The stochastic character of particle and radiation transport processes normally links findings to the materials cells making up the geometry model of MCNP. Where high spatial resolution is required for the activation calculations with FISPACT, fine segmentation of the MCNP geometry becomes compulsory, which implies considerable expense for the modeling process. For this reason, an alternative simulation technique has been developed in an effort to automate and optimize data transfer between MCNP and FISPACT. (orig.)

  16. Performance Analysis of GFDL's GCM Line-By-Line Radiative Transfer Model on GPU and MIC Architectures

    Science.gov (United States)

    Menzel, R.; Paynter, D.; Jones, A. L.

    2017-12-01

    Due to their relatively low computational cost, radiative transfer models in global climate models (GCMs) run on traditional CPU architectures generally consist of shortwave and longwave parameterizations over a small number of wavelength bands. With the rise of newer GPU and MIC architectures, however, the performance of high resolution line-by-line radiative transfer models may soon approach those of the physical parameterizations currently employed in GCMs. Here we present an analysis of the current performance of a new line-by-line radiative transfer model currently under development at GFDL. Although originally designed to specifically exploit GPU architectures through the use of CUDA, the radiative transfer model has recently been extended to include OpenMP in an effort to also effectively target MIC architectures such as Intel's Xeon Phi. Using input data provided by the upcoming Radiative Forcing Model Intercomparison Project (RFMIP, as part of CMIP 6), we compare model results and performance data for various model configurations and spectral resolutions run on both GPU and Intel Knights Landing architectures to analogous runs of the standard Oxford Reference Forward Model on traditional CPUs.

  17. Importance biasing scheme implemented in the PRIZMA code

    International Nuclear Information System (INIS)

    Kandiev, I.Z.; Malyshkin, G.N.

    1997-01-01

    PRIZMA code is intended for Monte Carlo calculations of linear radiation transport problems. The code has wide capabilities to describe geometry, sources, material composition, and to obtain parameters specified by user. There is a capability to calculate path of particle cascade (including neutrons, photons, electrons, positrons and heavy charged particles) taking into account possible transmutations. Importance biasing scheme was implemented to solve the problems which require calculation of functionals related to small probabilities (for example, problems of protection against radiation, problems of detection, etc.). The scheme enables to adapt trajectory building algorithm to problem peculiarities

  18. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  19. The PARTRAC code: Status and recent developments

    Science.gov (United States)

    Friedland, Werner; Kundrat, Pavel

    Biophysical modeling is of particular value for predictions of radiation effects due to manned space missions. PARTRAC is an established tool for Monte Carlo-based simulations of radiation track structures, damage induction in cellular DNA and its repair [1]. Dedicated modules describe interactions of ionizing particles with the traversed medium, the production and reactions of reactive species, and score DNA damage determined by overlapping track structures with multi-scale chromatin models. The DNA repair module describes the repair of DNA double-strand breaks (DSB) via the non-homologous end-joining pathway; the code explicitly simulates the spatial mobility of individual DNA ends in parallel with their processing by major repair enzymes [2]. To simulate the yields and kinetics of radiation-induced chromosome aberrations, the repair module has been extended by tracking the information on the chromosome origin of ligated fragments as well as the presence of centromeres [3]. PARTRAC calculations have been benchmarked against experimental data on various biological endpoints induced by photon and ion irradiation. The calculated DNA fragment distributions after photon and ion irradiation reproduce corresponding experimental data and their dose- and LET-dependence. However, in particular for high-LET radiation many short DNA fragments are predicted below the detection limits of the measurements, so that the experiments significantly underestimate DSB yields by high-LET radiation [4]. The DNA repair module correctly describes the LET-dependent repair kinetics after (60) Co gamma-rays and different N-ion radiation qualities [2]. First calculations on the induction of chromosome aberrations have overestimated the absolute yields of dicentrics, but correctly reproduced their relative dose-dependence and the difference between gamma- and alpha particle irradiation [3]. Recent developments of the PARTRAC code include a model of hetero- vs euchromatin structures to enable

  20. C5 Benchmark Problem with Discrete Ordinate Radiation Transport Code DENOVO

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan [ORNL; Clarno, Kevin T [ORNL; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Fox, Patricia B [ORNL

    2011-01-01

    The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S{sub N}) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO{sub 2} fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations.

  1. Recent progress of an integrated implosion code and modeling of element physics

    International Nuclear Information System (INIS)

    Nagatomo, H.; Takabe, H.; Mima, K.; Ohnishi, N.; Sunahara, A.; Takeda, T.; Nishihara, K.; Nishiguchu, A.; Sawada, K.

    2001-01-01

    Physics of the inertial fusion is based on a variety of elements such as compressible hydrodynamics, radiation transport, non-ideal equation of state, non-LTE atomic process, and relativistic laser plasma interaction. In addition, implosion process is not in stationary state and fluid dynamics, energy transport and instabilities should be solved simultaneously. In order to study such complex physics, an integrated implosion code including all physics important in the implosion process should be developed. The details of physics elements should be studied and the resultant numerical modeling should be installed in the integrated code so that the implosion can be simulated with available computer within realistic CPU time. Therefore, this task can be basically separated into two parts. One is to integrate all physics elements into a code, which is strongly related to the development of hydrodynamic equation solver. We have developed 2-D integrated implosion code which solves mass, momentum, electron energy, ion energy, equation of states, laser ray-trace, laser absorption radiation, surface tracing and so on. The reasonable results in simulating Rayleigh-Taylor instability and cylindrical implosion are obtained using this code. The other is code development on each element physics and verification of these codes. We had progress in developing a nonlocal electron transport code and 2 and 3 dimension radiation hydrodynamic code. (author)

  2. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    Science.gov (United States)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  3. A Monte Carlo code for ion beam therapy

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Initially developed for applications in detector and accelerator physics, the modern Fluka Monte Carlo code is now used in many different areas of nuclear science. Over the last 25 years, the code has evolved to include new features, such as ion beam simulations. Given the growing use of these beams in cancer treatment, Fluka simulations are being used to design treatment plans in several hadron-therapy centres in Europe.   Fluka calculates the dose distribution for a patient treated at CNAO with proton beams. The colour-bar displays the normalized dose values. Fluka is a Monte Carlo code that very accurately simulates electromagnetic and nuclear interactions in matter. In the 1990s, in collaboration with NASA, the code was developed to predict potential radiation hazards received by space crews during possible future trips to Mars. Over the years, it has become the standard tool to investigate beam-machine interactions, radiation damage and radioprotection issues in the CERN accelerator com...

  4. Radiation sterilization of tissue allografts: Requirements for validation and routine control. A code of practice

    International Nuclear Information System (INIS)

    2007-12-01

    These recommendations for the radiation sterilization of tissue allografts adopt the principles that the International Organization for Standardization (ISO) applies to the radiation sterilization of health care products. The approach has been adapted to take into account the special features associated with human tissues and the features that distinguish them from industrially produced sterile health care products. The approach as described here is not applicable if viral contamination is identified. Thus it is emphasized that the human donors of the tissues must be medically and serologically screened. To further support this screening it is recommended that autopsy reports be reviewed if available. This adaptation of established ISO methods can thus only be applied to sterilization of tissue allografts if the radiation sterilization described here is the terminal stage of a careful, detailed, documented sequence of procedures involving: donor selection; tissue retrieval; tissue banking general procedures; specific processing procedures; labelling; and distribution. The methods proposed here for the establishment of a sterilization dose are based on statistical approaches used for the sterilization of health care products and modified appropriately for the low numbers of tissue allograft samples typically available. This code of practice will be useful to tissue banking staff, surgeons using tissues for transplantation, regulators who oversee the safety of transplantation and radiation sterilization procedures, members of tissue banking associations, health service personnel in hospitals in which tissue transplantations are performed and inter-governmental organizations involved in transplantation issues, for example the World Health Organization. This publication was discussed extensively at an international meeting in Wrexham in the United Kingdom and was approved by the Technical Advisory Committee of the relevant IAEA project, which included the Chairpersons

  5. Radiation heat transfer model for the SCDAP code

    International Nuclear Information System (INIS)

    Sohal, M.S.

    1984-01-01

    A radiation heat transfer model has been developed for severe fuel damage analysis which accounts for anisotropic effects of reflected radiation. The model simplifies the view factor calculation which results in significant savings in computational cost with little loss of accuracy. Radiation heat transfer rates calculated by the isotropic and anisotropic models compare reasonably well with those calculated by other models. The model is applied to an experimental nuclear rod bundle during a slow boiloff of the coolant liquid, a situation encountered during a loss of coolant accident with severe fuel damage. At lower temperatures and also lower temperature gradients in the core, the anisotropic effect was not found to be significant

  6. Technical note: Fu-Liou-Gu and Corti-Peter model performance evaluation for radiative retrievals from cirrus clouds

    Science.gov (United States)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2017-06-01

    We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  7. Applicability of the PHITS code to a tokamak fusion device

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko; Okuno, Koichi; Kawasaki, Hiromitsu

    2011-01-01

    The three-dimensional Monte-Carlo code PHITS (particle and Heavy Ion Transport code System) has been developed to perform the radiation transport analysis, design of the radiation shields and neutronics calculations for tokamak-type D-D fusion reactors. A subroutine was included in PHITS to represent the toroidal neutron source of 2.45 MeV neutrons from the D-D reaction. Here, an example of preliminary tests using PHITS is given. (author)

  8. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  9. Advanced methodologies of evaluating the radiation sources and ionising radiation shieldings for reducing the irradiation in nuclear field personnel

    International Nuclear Information System (INIS)

    Pantazi, D.; Mateescu, S.; Stanciu, M.

    2003-01-01

    One of the technical measures of protection against ionizing radiations is the radiation shielding. The process of implementing modern and efficient methods of evaluating the radiation shielding implies advanced calculation methods. That means using from simpler 1-D or 2-D computing codes such as MicroShield or QAD up to systems of codes such as SCALE (containing several independent modules) or the Monte Carlo multipurpose and many particles, MCNP, transport code. The main objective of this work is to present the Monte Carlo based evaluation of the dose rates from the CANDU type spent fuel all along the path of its handling up to intermediate storage. These values will be then compared with the values obtained from calculations with different computing programs. To obtain this objective two problems were approached: - establishing geometrical models according to the definition used by MCNP code so that the characteristics of CANDU type nuclear fuel are taking into account; - checking the validity of the proposed models by comparing the MCNP results with those obtained with other computing codes specific for shielding evaluation and radiation dose calculation

  10. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    Energy Technology Data Exchange (ETDEWEB)

    Plante, Ianik, E-mail: ianik.plante-1@nasa.gov [Wyle Science, Technology & Engineering, 1290 Hercules, Houston, TX 77058 (United States); Devroye, Luc, E-mail: lucdevroye@gmail.com [School of Computer Science, McGill University, 3480 University Street, Montreal H3A 0E9 (Canada)

    2015-09-15

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  11. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    International Nuclear Information System (INIS)

    Plante, Ianik; Devroye, Luc

    2015-01-01

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well

  12. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    Science.gov (United States)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  13. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  14. Two-dimensional disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Seki, Masahiro.

    1988-08-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing components such as first wall and divertor/limiter are subjected to an intense heat load with very high heat flux and short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs, it causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes (melting/evaporation) and radiation heat loss is required in the design of these components. This paper describes the computer code DREAM developed to perform the two-dimensional transient thermal analysis that takes phase changes and radiation into account. The input and output of the code and a sample analysis on a disruption simulation experiment are also reported. The user's input manual is added as an appendix. The profiles and time variations of temperature, and melting and evaporated thicknesses of the material subjected to intense heat load can be obtained, using this computer code. This code also gives the temperature data for elastoplastic analysis with FEM structural analysis codes (ADINA, MARC, etc.) to evaluate the thermal stress and crack propagation behavior within the wall materials. (author)

  15. MCNP code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids

  16. The Premar Code for the Monte Carlo Simulation of Radiation Transport In the Atmosphere; Il codice PREMAR per la simulazione Montecarlo del trasporto della radiazione dell`atmosfera

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Innovazione; Borgia, M.G. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Energia; Premuda, M. [Consiglio Nazionale delle Ricerche, Bologna (Italy). Ist. FISBAT

    1997-03-01

    The Montecarlo code PREMAR is described, which allows the user to simulate the radiation transport in the atmosphere, in the ultraviolet-infrared frequency interval. A plan multilayer geometry is at present foreseen by the code, witch albedo possibility at the lower boundary surface. For a given monochromatic point source, the main quantities computed by the code are the absorption spatial distributions of aerosol and molecules, together with the related atmospheric transmittances. Moreover, simulation of of Lidar experiments are foreseen by the code, the source and telescope fields of view being assigned. To build-up the appropriate probability distributions, an input data library is assumed to be read by the code. For this purpose the radiance-transmittance LOWTRAN-7 code has been conveniently adapted as a source of the library so as to exploit the richness of information of the code for a large variety of atmospheric simulations. Results of applications of the PREMAR code are finally presented, with special reference to simulations of Lidar system and radiometer experiments carried out at the Brasimone ENEA Centre by the Environment Department.

  17. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  18. Evaluation of Arctic broadband surface radiation measurements

    Science.gov (United States)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  19. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    Science.gov (United States)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  20. Radiation protection studies for medical particle accelerators using FLUKA Monte Carlo code

    International Nuclear Information System (INIS)

    Infantino, Angelo; Mostacci, Domiziano; Cicoria, Gianfranco; Lucconi, Giulia; Pancaldi, Davide; Vichi, Sara; Zagni, Federico; Marengo, Mario

    2017-01-01

    Radiation protection (RP) in the use of medical cyclotrons involves many aspects both in the routine use and for the decommissioning of a site. Guidelines for site planning and installation, as well as for RP assessment, are given in international documents; however, the latter typically offer analytic methods of calculation of shielding and materials activation, in approximate or idealised geometry set-ups. The availability of Monte Carlo (MC) codes with accurate up-to-date libraries for transport and interaction of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of modern computers, makes the systematic use of simulations with realistic geometries possible, yielding equipment and site-specific evaluation of the source terms, shielding requirements and all quantities relevant to RP at the same time. In this work, the well-known FLUKA MC code was used to simulate different aspects of RP in the use of biomedical accelerators, particularly for the production of medical radioisotopes. In the context of the Young Professionals Award, held at the IRPA 14 conference, only a part of the complete work is presented. In particular, the simulation of the GE PETtrace cyclotron (16.5 MeV) installed at S. Orsola-Malpighi University Hospital evaluated the effective dose distribution around the equipment; the effective number of neutrons produced per incident proton and their spectral distribution; the activation of the structure of the cyclotron and the vault walls; the activation of the ambient air, in particular the production of "4"1Ar. The simulations were validated, in terms of physical and transport parameters to be used at the energy range of interest, through an extensive measurement campaign of the neutron environmental dose equivalent using a rem-counter and TLD dosemeters. The validated model was then used in the design and the licensing request of a new Positron Emission Tomography facility. (authors)

  1. Characterization of optical and micro-physical properties of cirrus clouds using a wideband thermal infrared spectrometer

    Science.gov (United States)

    Palchetti, Luca; Di Natale, Gianluca; Bianchini, Giovanni

    2014-05-01

    High-altitude ice clouds such as cirrus clouds play a key role in the Earth's radiation budget since they cover permanently about 20-30% of the surface of the planet, reaching even to 60-70% in the tropics. The modulation of the incoming solar radiation and the outgoing Earth's thermal emission due to cirrus can contribute to heat or to cool the atmosphere, according to their optical properties, which must be characterised with great accuracy and over the whole spectral range involved in the scattering and emission processes. Here we present the infrared measurements over the wide spectral range from 9 to 50 micron performed by the Fourier transform spectrometer REFIR-PAD (Radiation Explorer in Far InfraRed - Prototype for Application and Development) during many field campaigns that have taken place since 2007 from different high-altitude ground-based stations: Testa Grigia Station, Cervinia-Italy, (3480 m asl), Cerro Toco, Atacama-Chile, (5380 m asl), Concordia Base, Dome C-Antarctica (3230 m asl). These measurements show for the first time the spectral effect of cirrus clouds in the long-wave part of the emission spectrum above 15 micron of wavelength. To characterise these measurements over the wide spectral range as a function of the optical properties of ice particles, a model of the radiative transfer, that integrates the well known numerical code LBLRTM, which simulates the radiative transfer in the atmosphere, with a specific code which simulates the propagation of the radiation through the cloud, was developed. The optical properties of clouds have been modelled using the δ-scaled Eddington approximation for a single layer and the Ping Yang's database for the single-scattering properties of ice crystals. The preliminary results of the fit procedure used for the determination of the micro-physical parameters of ice crystals, such as the effective diameter, ice water path, effective temperature and optical thickness will be shown in the presentation. The

  2. The IAEA code of conduct on the safety of radiation sources and the security of radioactive materials. A step forwards or backwards?

    International Nuclear Information System (INIS)

    Boustany, K.

    2001-01-01

    About the finalization of the Code of Conduct on the Safety and Security of radioactive Sources, it appeared that two distinct but interrelated subject areas have been identified: the prevention of accidents involving radiation sources and the prevention of theft or any other unauthorized use of radioactive materials. What analysis reveals is rather that there are gaps in both the content of the Code and the processes relating to it. Nevertheless, new standards have been introduced as a result of this exercise and have thus, as an enactment of what constitutes appropriate behaviour in the field of the safety and security of radioactive sources, emerged into the arena of international relations. (N.C.)

  3. photon-plasma: A modern high-order particle-in-cell code

    International Nuclear Information System (INIS)

    Haugbølle, Troels; Frederiksen, Jacob Trier; Nordlund, Åke

    2013-01-01

    We present the photon-plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach, the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks

  4. Analysis of the radiation budget in regional climate simulations with COSMO-CLM for Africa

    Directory of Open Access Journals (Sweden)

    Steffen Kothe

    2014-09-01

    Full Text Available This study analysed two regional climate simulations for Africa regarding the radiation budgets with particular focus on the contribution of potentially influential parameters on uncertainties in the radiation components. The ERA-Interim driven simulations have been performed with the COSMO-CLM (grid-spacings of 0.44 ° or 0.22 °. The simulated budgets were compared to the satellite-based Global Energy and Water Cycle Experiment Surface Radiation Budget and ERA-Interim data sets. The COSMO-CLM tended to underestimate the net solar radiation and the outgoing long-wave radiation, and showed a regionally varying over- or underestimation in all budget components. An increase in horizontal resolution from 0.44 ° to 0.22 ° slightly reduced the mean errors by up to 5 %. Especially over sea regions, uncertainties in cloud fraction were the main influencing parameter on errors in the simulated radiation fluxes. Compared to former simulations the introduction of a new bare soil albedo treatment reduced the influence of uncertainties in surface albedo significantly. Over the African continent errors in aerosol optical depth and skin temperature were regionally important sources for the discrepancies within the simulated radiation. In a sensitivity test it was shown that the use of aerosol optical depth values from the MACC reanalysis product improved the simulated surface radiation substantially.

  5. The effect of clouds on the earth's solar and infrared radiation budgets

    Science.gov (United States)

    Herman, G. F.; Wu, M.-L. C.; Johnson, W. T.

    1980-01-01

    The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use realistic cloud optical properties and are fully interactive with model-generated cloudiness. This simulation is compared to others in which the clouds are alternatively non-interactive with respect to the solar or thermal radiation calculations. Other cloud processes (formation, latent heat release, precipitation, vertical mixing) were accurately simulated in these experiments. It is concluded that on a global basis clouds increase the global radiation balance by 40 W/sq m by absorbing longwave radiation, but decrease it by 56 W/sq m by reflecting solar radiation to space. The net cloud effect is therefore a reduction of the radiation balance by 16 W/sq m, and is dominated by the cloud albedo effect. Changes in cloud frequency and distribution and in atmospheric and land temperatures are also reported for the control and for the non-interactive simulations. In general, removal of the clouds' infrared absorption cools the atmosphere and causes additional cloudiness to occur, while removal of the clouds' solar radiative properties warms the atmosphere and causes fewer clouds to form. It is suggested that layered clouds and convective clouds over water enter the climate system as positive feedback components, while convective clouds over land enter as negative components.

  6. Effect of the environmental stimuli upon the human body in winter outdoor thermal environment

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Kondo, Emi; Ishii, Jin

    2013-01-01

    the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses...... of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation....... The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect...

  7. User's manual of MANYCASK code for calculation of spatial distributions of radiation dose rates in a system composed of many spent-fuel-shipping casks

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1986-01-01

    A calculation code MANYCASK is designed for evaluation of spatial distributions of radiation dose rates in ships loaded with a lot of spent fuel shipping casks. Principle of the calculation method adopted in this code is different from that of ordinary codes, and is advantageous for calculating highly reliable dose rate distributions with a very short calculation time. Basic concept of the principle has been described in other reports in detail. A brief description of the principle will be included in the present report along with a technique named Shadow Technique in this report, in addition to format descriptions of output data as well as input data. Results of sample calculations are compared with measured results in figures so as to show how the calculation method adopted is valid. For the purpose of making this code popular among many people, the author writes the user's manual in the present report in Japanese for domestic users, and in English in another report for people in abroad. (author)

  8. TACO: a finite element heat transfer code

    International Nuclear Information System (INIS)

    Mason, W.E. Jr.

    1980-02-01

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code

  9. Code of practice for the safe use of industrial radiography equipment (1989)

    International Nuclear Information System (INIS)

    1989-12-01

    This code supersedes the Code of practice for the control and safe handling of sealed radioactive sources used in industrial radiography, published by the National Health and Medical Research Council (NHMRC) in 1968. It differs significantly from the former code because radiation protection practice and recommended standards have changed. The code covers the design, construction and requirements for the safe use of X-radiography equipment and gamma-radiography equipment. It provides illustrative working rules, detailed emergency procedures and comprehensive responsibilities and duties for all personnel involved in supplying and using industrial radiography equipment. The code details those equipment requirements, personnel requirements and work practices that the NHMRC considers necessary to keep exposures to ionizing radiation as low as reasonably achievable. Some equipment and facilities currently in use may not meet all of the mandatory requirements of this code. These requirements have been included in the code to encourage progress towards future compliance in the expectation that, in the interim, statutory authorities will apply them with discretion

  10. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    International Nuclear Information System (INIS)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection

  11. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection.

  12. Application of the three-dimensional Oak Ridge transport code

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.; Emmett, M.B.; Cramer, S.N.

    1984-01-01

    TORT, a 3-d extension of the DOT discrete ordinates transport code is now in production use for studies of radiation penetration into large concrete and masonry structures. This paper discusses certain features of the new code and shows representative results, including comparisons with Monte Carlo calculations

  13. PLASMOR: A laser-plasma simulation code. Pt. 2

    International Nuclear Information System (INIS)

    Salzman, D.; Krumbein, A.D.; Szichman, H.

    1987-06-01

    This report supplements a previous one which describes the PLASMOR hydrodynamics code. The present report documents the recent changes and additions made in the code. In particular described are two new subroutines for radiative preheat, a system of preprocessors which prepare the code before run, a list of postprocessors which simulate experimental setups, and the basic data sets required to run PLASMOR. In the Appendix a new computer-based manual which lists the main features of PLASMOR is reproduced

  14. Monte Carlo codes use in neutron therapy

    International Nuclear Information System (INIS)

    Paquis, P.; Mokhtari, F.; Karamanoukian, D.; Pignol, J.P.; Cuendet, P.; Iborra, N.

    1998-01-01

    Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)

  15. Dosimetry, metallurgical and code needs of the U.S. utilities related to radiation embrittlement of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Rahn, F.J.; Marston, T.U.; Ozer, O.; Stahlkopf, K.

    1980-01-01

    Codes and regulation guides in the U.S.A., on performance of pressure vessel are examined. Limiting factors in the analysis and prediction of radiation embrittlement in reactor pressure vessels are: accurate measurement of neutron flux and spectrum in-situ, irradiation rate dependence, environmental conditions influence of flaws annealing, analysis of mechanical tests. The establishment of a self-consistent set of irradiated materials properties data taken at realistic flux rates is required, in conjunction with a careful technique in measuring with a careful technique in measuring the fluence and spectrum at the pressure vessel wall and material test specimen positions

  16. Radiation and energy balance of lettuce culture inside a polyethylene greenhouse

    International Nuclear Information System (INIS)

    Frisina, V. de A.; Escobedo, J.F.

    1999-01-01

    The objective of this paper was to describe the radiation and energy balance, during the lettuce (Lactuca sativa, L. cv. Verônica) crop cycle inside a polyethylene greenhouse. The radiation and energy balance was made inside a tunnel greenhouse with polyethylene cover (100 mm) and in an external area, both areas with 35 m 2 . Global, reflected and net radiation, soil heat flux and air temperature (dry and humid) were measured during the crop cycle. A Datalogger, which operated at 1 Hz frequency, storing 5 minutes averages was utilized. The global (K↓) and reflected (K) radiations showed that the average transmission of global radiation (K↓in / K↓ex) was almost constant, near to 79.59%, while the average ratio of reflected radiation (Kin / Kex) was 69.21% with 8.47% standard-deviation. The normalized curves of short-wave net radiation, in relation to the global radiation (K*/ K↓), found for both environments, were almost constant at the beginning of cycle; this relation decreased in the final stage of culture. The normalized relation (Rn/ K↓) was bigger in the external area, about 12%, when the green culture covered the soil surface. The long-wave radiation balance average (L*) was bigger outside, about 50%. The energy balance, estimated in terms of vertical fluxes, showed that, for the external area, in average, 83.07% of total net radiation was converted in latent heat evaporation (LE), and 18% in soil heat flux (G), and 9.96% in sensible heat (H), while inside of the greenhouse, 58.71% of total net radiation was converted in LE, 42.68% in H, and 28.79% in G. (author) [pt

  17. Igo - A Monte Carlo Code For Radiotherapy Planning

    International Nuclear Information System (INIS)

    Goldstein, M.; Regev, D.

    1999-01-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor, while minimizing the dose to normal tissues and vital organs. To carry out this task, it is critical to calculate correctly the 3-D dose delivered. Monte Carlo transport methods (especially the Adjoint Monte Carlo have the potential to provide more accurate predictions of the 3-D dose the currently used methods. IG0 is a Monte Carlo code derived from the general Monte Carlo Program - MCNP, tailored specifically for calculating the effects of radiation therapy. This paper describes the IG0 transport code, the PIG0 interface and some preliminary results

  18. Forms of Approximate Radiation Transport

    CERN Document Server

    Brunner, G

    2002-01-01

    Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.

  19. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    Science.gov (United States)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards

  20. A NUMERICAL SCHEME FOR SPECIAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT RADIATIVE TRANSFER EQUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuga, Ken; Takahashi, Hiroyuki R. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.

  1. Radiation shielding analysis

    International Nuclear Information System (INIS)

    Moon, S.H.; Ha, C.W.; Kwon, S.K.; Lee, J.K.; Choi, H.S.

    1982-01-01

    The theoretical bases of radiation streaming analysis in power reactors, such as ducts or reactor cavity, have been investigated. Discrete ordinates-Monte Carlo or Monte Carlo-Monte Carlo coupling techniques are suggested for the streaming analysis of ducts or reactor cavity. Single albedo scattering approximation code (SINALB) has been developed for simple and quick estimation of gamma-ray ceiling scattering, where the ceiling is assumed to be semi-infinite medium. This code has been employed to calculate the gamma-ray ceiling scattering effects in the laboratory containing a Co-60 source. The SINALB is applicable to gamma-ray scattering, only where the ceiling is thicker than Σsup(-1) and the height is at least twice higher than the shield wall. This code can be used for the purpose of preliminary radiation shield design. The MORSE code has been improved to analyze the gamma-ray scattering problem with on approximation method in respect to the random walk and estimation processes. This improved MORSE code has been employed to the gamma-ray ceiling scattering problem. The results of the improved MORSE calculation are in good agreement with the SINALB and standard MORSE. (Author)

  2. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  3. Safety code 19: recommended safety procedures for the selection, installation and use of x-ray diffraction equipment

    International Nuclear Information System (INIS)

    1984-01-01

    This document is one of a series of Safety Codes prepared by the Radiation Protection Bureau to set out requirements for the safe use of radiation emitting devices. The equipment and installation guidelines and safety procedures detailed in this Code are primarily for the instruction and guidance of persons employed in Federal Public Service Departments and Agencies, as well as those coming under the jurisdiction of the Canada Labour Code. This Safety Code is also intended to assist other users of X-ray diffraction equipment to select safe equipment and to install and use it so that the radiation hazard to the operator and other persons in its vicinity is negligible. It should be noted that facilities under provincial jurisdiction may be subject to requirements specified under provincial statutes. This Code supersedes Safety Code RPD-SC-7, entitled 'Requirements For Non-Medical X-Ray Equipment, Use and Installation', insofar as X-ray diffraction equipment is concerned, and it is intended to complement X-ray equipment design, construction and performance standards promulgated under the Radiation Emitting Devices Act

  4. RADHEAT-V3, a code system for generating coupled neutron and gamma-ray group constants and analyzing radiation transport

    International Nuclear Information System (INIS)

    Koyama, Kinji; Taji, Yukichi; Miyasaka, Shun-ichi; Minami, Kazuyoshi.

    1977-07-01

    The modular code system RADHEAT is for producing coupled multigroup neutron and gamma-ray cross section sets, analyzing the neutron and gamma-ray transport, and calculating the energy deposition and atomic displacements due to these radiations in a nuclear reactor or shield. The basic neutron cross sections and secondary gamma-ray production data are taken from ENDF/B and POPOP4 libraries respectively. The system (1) generates multigroup neutron cross sections, energy deposition coefficients and atomic displacement factors due to neutron reactions, (2) generates multigroup gamma-ray cross sections and energy transfer coefficients, (3) generates secondary gamma-ray production cross sections, (4) combines these cross sections into the coupled set, (5) outputs and updates the multigroup cross section libraries in convenient formats for other transport codes, (6) analyzes the neutron and gamma-ray transport and calculates the energy deposition and the number density of atomic displacements in a medium, (7) collapses the cross sections to a broad-group structure, by option, using the weighting functions obtained by one-dimensional transport calculation, and (8) plots, by option, multigroup cross sections, and neutron and gamma-ray distributions. Definitions of the input data required in various options of the code system are also given. (auth.)

  5. Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model

    Science.gov (United States)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.

    2018-04-01

    A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine

  6. Path Toward a Unified Geometry for Radiation Transport

    Science.gov (United States)

    Lee, Kerry

    The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading

  7. Computer-modeling codes to improve exploration nuclear-logging methods. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Wilson, R.D.; Price, R.K.; Kosanke, K.L.

    1983-03-01

    As part of the Department of Energy's National Uranium Resource Evaluation (NURE) project's Technology Development effort, a number of computer codes and accompanying data bases were assembled for use in modeling responses of nuclear borehole logging Sondes. The logging methods include fission neutron, active and passive gamma-ray, and gamma-gamma. These CDC-compatible computer codes and data bases are available on magnetic tape from the DOE Technical Library at its Grand Junction Area Office. Some of the computer codes are standard radiation-transport programs that have been available to the radiation shielding community for several years. Other codes were specifically written to model the response of borehole radiation detectors or are specialized borehole modeling versions of existing Monte Carlo transport programs. Results from several radiation modeling studies are available as two large data bases (neutron and gamma-ray). These data bases are accompanied by appropriate processing programs that permit the user to model a wide range of borehole and formation-parameter combinations for fission-neutron, neutron-, activation and gamma-gamma logs. The first part of this report consists of a brief abstract for each code or data base. The abstract gives the code name and title, short description, auxiliary requirements, typical running time (CDC 6600), and a list of references. The next section gives format specifications and/or directory for the tapes. The final section of the report presents listings for programs used to convert data bases between machine floating-point and EBCDIC

  8. Experiences using IAEA Code of practice for radiation sterilization of tissue allografts: Validation and routine control

    Energy Technology Data Exchange (ETDEWEB)

    Hilmy, N. [Batan Research Tissue Bank (BRTB), Centre for Research and Development of Isotopes and Radiation Technology, P.O. Box 7002, JKSKL, Jakarta 12070 (Indonesia)], E-mail: nazly@batan.go.id; Febrida, A.; Basril, A. [Batan Research Tissue Bank (BRTB), Centre for Research and Development of Isotopes and Radiation Technology, P.O. Box 7002, JKSKL, Jakarta 12070 (Indonesia)

    2007-11-15

    Problems of tissue allografts in using International Standard (ISO) 11137 for validation of radiation sterilization dose (RSD) are limited and low numbers of uniform samples per production batch, those are products obtained from one donor. Allograft is a graft transplanted between two different individuals of the same species. The minimum number of uniform samples needed for verification dose (VD) experiment at the selected sterility assurance level (SAL) per production batch according to the IAEA Code is 20, i.e., 10 for bio-burden determination and the remaining 10 for sterilization test. Three methods of the IAEA Code have been used for validation of RSD, i.e., method A1 that is a modification of method 1 of ISO 11137:1995, method B (ISO 13409:1996), and method C (AAMI TIR 27:2001). This paper describes VD experiments using uniform products obtained from one cadaver donor, i.e., cancellous bones, demineralized bone powders and amnion grafts from one life donor. Results of the verification dose experiments show that RSD is 15.4 kGy for cancellous and demineralized bone grafts and 19.2 kGy for amnion grafts according to method A1 and 25 kGy according to methods B and C.

  9. INTDOS: a computer code for estimating internal radiation dose using recommendations of the International Commission on Radiological Protection

    International Nuclear Information System (INIS)

    Ryan, M.T.

    1981-09-01

    INTDOS is a user-oriented computer code designed to calculate estimates of internal radiation dose commitment resulting from the acute inhalation intake of various radionuclides. It is designed so that users unfamiliar with the details of such can obtain results by answering a few questions regarding the exposure case. The user must identify the radionuclide name, solubility class, particle size, time since exposure, and the measured lung burden. INTDOS calculates the fractions of the lung burden remaining at time, t, postexposure considering the solubility class and particle size information. From the fraction remaining in the lung at time, t, the quantity inhaled is estimated. Radioactive decay is accounted for in the estimate. Finally, effective committed dose equivalents to various organs and tissues of the body are calculated using inhalation committed dose factors presented by the International Commission on Radiological Protection (ICRP). This computer code was written for execution on a Digital Equipment Corporation PDP-10 computer and is written in Fortran IV. A flow chart and example calculations are discussed in detail to aid the user who is unfamiliar with computer operations

  10. APC: A new code for Atmospheric Polarization Computations

    International Nuclear Information System (INIS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2013-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface. -- Highlights: •A new code, APC, has been developed. •The code was validated against well-known codes. •The BPDF for an arbitrary Mueller matrix is computed

  11. Oriented color centres being formed in anisotropic action of optical radiation on sodium-silicate glass

    International Nuclear Information System (INIS)

    Barinova, N.A.; Glebov, L.B.; Dokuchaev, V.G.; Savel'ev, V.L.

    1992-01-01

    A study was made of anisotropy of absorption of hole colour centres appearing in sodium-silicate glass due to anisotropic action of UV radiation. In case of such action in the field of long-wave edge of their fundamental absorption oriented hole colour centres occurs with maximum of absorption bands to 2.0, 2.8, 4.1 eV. Principal direction of hole colour centres orientation in this case coincides with orientation of ionized glass matrix centres. Orientation of such kind is connected with selective ionization of disorderedly oriented centres forming edge of fundamental absorption. Value of guided dichroism of colour centres absorption is determined by hole migration

  12. Modelling of long-wave chaotic radar system for anti-stealth applications

    Science.gov (United States)

    Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi

    2018-04-01

    Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.

  13. Obtaining a radiation beam poly energy using the code Penelope 2006

    International Nuclear Information System (INIS)

    Andrade, Lucio das Chagas; Peixoto, Jose Guilherme Pereira

    2013-01-01

    Obtaining a spectrum X-ray is not a very easy task, one of the techniques used is the simulation by Monte Carlo method. The Penelope code is a code based on this method that simulates the transport of particles such as electrons, positrons and photons in different media and materials. The versions of this program in 2003 and 2006 show significant differences for facilitating the use of the code. The program allows the construction of the desired geometry and definitions of simulation parameters. (author)

  14. The FLUFF code for calculating finned surface heat transfer -description and user's guide

    International Nuclear Information System (INIS)

    Fry, C.J.

    1985-08-01

    FLUFF is a computer code for calculating heat transfer from finned surfaces by convection and radiation. It can also represent heat transfer by radiation to a partially emitting and absorbing medium within the fin cavity. The FLUFF code is useful not only for studying the behaviour of finned surfaces but also for deriving heat fluxes which can be applied as boundary conditions to other heat transfer codes. In this way models of bodies with finned surfaces may be greatly simplified since the fins need not be explicitly represented. (author)

  15. Development of Visual CINDER Code with Visual C⧣.NET

    International Nuclear Information System (INIS)

    Kim, Oyeon

    2016-01-01

    CINDER code, CINDER' 90 or CINDER2008 that is integrated with the Monte Carlo code, MCNPX, is widely used to calculate the inventory of nuclides in irradiated materials. The MCNPX code provides decay processes to the particle transport scheme that traditionally only covered prompt processes. The integration schemes serve not only the reactor community (MCNPX burnup) but also the accelerator community as well (residual production information). The big benefit for providing these options lies in the easy cross comparison of the transmutation codes since the calculations are based on exactly the same material, neutron flux and isotope production/destruction inputs. However, it is just frustratingly cumbersome to use. In addition, multiple human interventions may increase the possibility of making errors. The number of significant digits in the input data varies in steps, which may cause big errors for highly nonlinear problems. Thus, it is worthwhile to find a new way to wrap all the codes and procedures in one consistent package which can provide ease of use. The visual CINDER code development is underway with visual C .NET framework. It provides a few benefits for the atomic transmutation simulation with CINDER code. A few interesting and useful properties of visual C .NET framework are introduced. We also showed that the wrapper could make the simulation accurate for highly nonlinear transmutation problems and also increase the possibility of direct combination a radiation transport code MCNPX with CINDER code. Direct combination of CINDER with MCNPX in a wrapper will provide more functionalities for the radiation shielding and prevention study

  16. Development of Visual CINDER Code with Visual C⧣.NET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Oyeon [Institute for Modeling and Simulation Convergence, Daegu (Korea, Republic of)

    2016-10-15

    CINDER code, CINDER' 90 or CINDER2008 that is integrated with the Monte Carlo code, MCNPX, is widely used to calculate the inventory of nuclides in irradiated materials. The MCNPX code provides decay processes to the particle transport scheme that traditionally only covered prompt processes. The integration schemes serve not only the reactor community (MCNPX burnup) but also the accelerator community as well (residual production information). The big benefit for providing these options lies in the easy cross comparison of the transmutation codes since the calculations are based on exactly the same material, neutron flux and isotope production/destruction inputs. However, it is just frustratingly cumbersome to use. In addition, multiple human interventions may increase the possibility of making errors. The number of significant digits in the input data varies in steps, which may cause big errors for highly nonlinear problems. Thus, it is worthwhile to find a new way to wrap all the codes and procedures in one consistent package which can provide ease of use. The visual CINDER code development is underway with visual C .NET framework. It provides a few benefits for the atomic transmutation simulation with CINDER code. A few interesting and useful properties of visual C .NET framework are introduced. We also showed that the wrapper could make the simulation accurate for highly nonlinear transmutation problems and also increase the possibility of direct combination a radiation transport code MCNPX with CINDER code. Direct combination of CINDER with MCNPX in a wrapper will provide more functionalities for the radiation shielding and prevention study.

  17. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    Science.gov (United States)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for cloud properties over the Arctic Ocean.

  18. Code of practice for the safe use of industrial radiography equipment (1989)

    International Nuclear Information System (INIS)

    1989-12-01

    This code supersedes the Code of Practice for the control and safe handling of sealed radioactive sources use din industrial radiography, published by the National Health and Medical Research Council (NHMRC) in 1968. It differs significantly from the former code because radiation protection practice and recommended standards have changed. The code covers the design, construction and requirements for the safe use of X-radiography equipment and gamma-radiography equipment. It provides illustrative working rules, detailed emergency procedures and comprehensive responsibilities and duties for all personnel involved in supplying and using industrial radiography equipment. The code details those equipment requirements, personnel requirements and work practices that the NHMRC considers necessary to keep exposures to ionizing radiation as low as reasonably achievable. Some equipment and facilities currently in use may not meet all of the mandatory requirements of this code. These requirements have been included in the code to encourage progress towards future compliance in the expectation that, in the interim, statutory authorities will apply them with discretion. 9 refs., tabs., ills

  19. NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs, and New Surface Albedo Treatment

    Science.gov (United States)

    Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2016-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  20. A Thermal Infrared Radiation Parameterization for Atmospheric Studies

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)

    2001-01-01

    This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.

  1. Radiation shielding of the main injector

    International Nuclear Information System (INIS)

    Bhat, C.M.; Martin, P.S.

    1995-05-01

    The radiation shielding in the Fermilab Main Injector (FMI) complex has been carried out by adopting a number of prescribed stringent guidelines established by a previous safety analysis. Determination of the required amount of radiation shielding at various locations of the FMI has been done using Monte Carlo computations. A three dimensional ray tracing code as well as a code based upon empirical observations have been employed in certain cases

  2. Development of a new EMP code at LANL

    Science.gov (United States)

    Colman, J. J.; Roussel-Dupré, R. A.; Symbalisty, E. M.; Triplett, L. A.; Travis, B. J.

    2006-05-01

    A new code for modeling the generation of an electromagnetic pulse (EMP) by a nuclear explosion in the atmosphere is being developed. The source of the EMP is the Compton current produced by the prompt radiation (γ-rays, X-rays, and neutrons) of the detonation. As a first step in building a multi- dimensional EMP code we have written three kinetic codes, Plume, Swarm, and Rad. Plume models the transport of energetic electrons in air. The Plume code solves the relativistic Fokker-Planck equation over a specified energy range that can include ~ 3 keV to 50 MeV and computes the resulting electron distribution function at each cell in a two dimensional spatial grid. The energetic electrons are allowed to transport, scatter, and experience Coulombic drag. Swarm models the transport of lower energy electrons in air, spanning 0.005 eV to 30 keV. The swarm code performs a full 2-D solution to the Boltzmann equation for electrons in the presence of an applied electric field. Over this energy range the relevant processes to be tracked are elastic scattering, three body attachment, two body attachment, rotational excitation, vibrational excitation, electronic excitation, and ionization. All of these occur due to collisions between the electrons and neutral bodies in air. The Rad code solves the full radiation transfer equation in the energy range of 1 keV to 100 MeV. It includes effects of photo-absorption, Compton scattering, and pair-production. All of these codes employ a spherical coordinate system in momentum space and a cylindrical coordinate system in configuration space. The "z" axis of the momentum and configuration spaces is assumed to be parallel and we are currently also assuming complete spatial symmetry around the "z" axis. Benchmarking for each of these codes will be discussed as well as the way forward towards an integrated modern EMP code.

  3. Performance analysis of a parallel Monte Carlo code for simulating solar radiative transfer in cloudy atmospheres using CUDA-enabled NVIDIA GPU

    Science.gov (United States)

    Russkova, Tatiana V.

    2017-11-01

    One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.

  4. Mutagenicity of 8-methoxypsoralen and long-wave ultraviolet irradiation in V-79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Burger, P.M.; Simons, J.W.I.M.

    1979-01-01

    The effect of 8-methoxypsoralen (8-MOP) and long-wave ultraviolet irradiation (UVA) on cell killing and mutation induction was studied in V-79 Chinese hamster cells. No effect was observed after treatment with 8-MOP alone (50 μg/ml, 4 h), UVA alone (9000 J/m 2 ), or 8-MOP metobolized by rat-liver microsomes. Combined treatment with 8-MOP and UVA induced both cell killing and mutation. This was also observed under conditins approaching patient treatment with PUVA photochemotherapy with respect to the concentration of 8-MOP in the skin and the amount of UVA received by the epidermal cells. A simple relation proved to apply for mutation induction under different treatment conditions: 5.5 X 10 -8 per J/m 2 per μg 8-MOP/ml. On this basis the mutation induction in dividing cells per session of PUVA-photochemotherapy amounts to 12.4 X 10 -5 , which is probably an over-estimation. (Auth.)

  5. Implementation of Japanese male and female tomographic phantoms to multi-particle Monte Carlo code for ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Nagaoka, Tomoaki; Lee, Jai-Ki

    2006-01-01

    Japanese male and female tomographic phantoms, which have been developed for radio-frequency electromagnetic-field dosimetry, were implemented into multi-particle Monte Carlo transport code to evaluate realistic dose distribution in human body exposed to radiation field. Japanese tomographic phantoms, which were developed from the whole body magnetic resonance images of Japanese average adult male and female, were processed as follows to be implemented into general purpose multi-particle Monte Carlo code, MCNPX2.5. Original array size of Japanese male and female phantoms, 320 x 160 x 866 voxels and 320 x 160 x 804 voxels, respectively, were reduced into 320 x 160 x 433 voxels and 320 x 160 x 402 voxels due to the limitation of memory use in MCNPX2.5. The 3D voxel array of the phantoms were processed by using the built-in repeated structure algorithm, where the human anatomy was described by the repeated lattice of tiny cube containing the information of material composition and organ index number. Original phantom data were converted into ASCII file, which can be directly ported into the lattice card of MCNPX2.5 input deck by using in-house code. A total of 30 material compositions obtained from International Commission on Radiation Units and Measurement (ICRU) report 46 were assigned to 54 and 55 organs and tissues in the male and female phantoms, respectively, and imported into the material card of MCNPX2.5 along with the corresponding cross section data. Illustrative calculation of absorbed doses for 26 internal organs and effective dose were performed for idealized broad parallel photon and neutron beams in anterior-posterior irradiation geometry, which is typical for workers at nuclear power plant. The results were compared with the data from other Japanese and Caucasian tomographic phantom, and International Commission on Radiological Protection (ICRP) report 74. The further investigation of the difference in organ dose and effective dose among tomographic

  6. Applications of FLUKA Monte Carlo code for nuclear and accelerator physics

    CERN Document Server

    Battistoni, Giuseppe; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fasso, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M; Morone, Christina; Muraro, Silvia; Parodi, Katerina; Patera, Vincenzo; Pelliccioni, Maurizio; Pinsky, Lawrence; Ranft, Johannes; Roesler, Stefan; Rollet, Sofia; Sala, Paola R; Santana, Mario; Sarchiapone, Lucia; Sioli, Maximiliano; Smirnov, George; Sommerer, Florian; Theis, Christian; Trovati, Stefania; Villari, R; Vincke, Heinz; Vincke, Helmut; Vlachoudis, Vasilis; Vollaire, Joachim; Zapp, Neil

    2011-01-01

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such top...

  7. Kinetic neoclassical calculations of impurity radiation profiles

    Directory of Open Access Journals (Sweden)

    D.P. Stotler

    2017-08-01

    Full Text Available Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions at a given electron temperature. Analogous simulations with a neon impurity yield qualitatively similar results.

  8. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    Science.gov (United States)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  9. A MODEL BUILDING CODE ARTICLE ON FALLOUT SHELTERS WITH RECOMMENDATIONS FOR INCLUSION OF REQUIREMENTS FOR FALLOUT SHELTER CONSTRUCTION IN FOUR NATIONAL MODEL BUILDING CODES.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    A MODEL BUILDING CODE FOR FALLOUT SHELTERS WAS DRAWN UP FOR INCLUSION IN FOUR NATIONAL MODEL BUILDING CODES. DISCUSSION IS GIVEN OF FALLOUT SHELTERS WITH RESPECT TO--(1) NUCLEAR RADIATION, (2) NATIONAL POLICIES, AND (3) COMMUNITY PLANNING. FALLOUT SHELTER REQUIREMENTS FOR SHIELDING, SPACE, VENTILATION, CONSTRUCTION, AND SERVICES SUCH AS ELECTRICAL…

  10. PHITS-a particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji; Sato, Tatsuhiko; Iwase, Hiroshi; Nose, Hiroyuki; Nakashima, Hiroshi; Sihver, Lembit

    2006-01-01

    The paper presents a summary of the recent development of the multi-purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS. In particular, we discuss in detail the development of two new models, JAM and JQMD, for high energy particle interactions, incorporated in PHITS, and show comparisons between model calculations and experiments for the validations of these models. The paper presents three applications of the code including spallation neutron source, heavy ion therapy and space radiation. The results and examples shown indicate PHITS has great ability of carrying out the radiation transport analysis of almost all particles including heavy ions within a wide energy range

  11. Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon

    Science.gov (United States)

    Collow, Allie Marquardt; Miller, Mark; Trabachino, Lynne

    2015-01-01

    Deforestation is an ongoing concern for the Amazon Rainforest of Brazil and associated changes to the land surface have been hypothesized to alter the climate in the region. A comprehensive set of meteorological observations at the surface and within the lower troposphere above Manacapuru, Brazil and data from the Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) are used to evaluate the seasonal cycle of cloudiness, thermodynamics, and the radiation budget. While ample moisture is present in the Amazon Rainforest year round, the northward progression of the Hadley circulation during the dry season contributes to a drying of the middle troposphere and inhibits the formation of deep convection. This results in a reduction in cloudiness and precipitation as well as an increase in the height of the lifting condensation level, which is shown to have a negative correlation to the fraction of low clouds. Frequent cloudiness prevents solar radiation from reaching the surface and clouds are often reflective with high values of shortwave cloud radiative effect at the surface and top of the atmosphere. Cloud radiative effect is reduced during the dry season however the dry season surface shortwave cloud radiative effect is still double what is observed during the wet season in other tropical locations. Within the column, the impact of clouds on the radiation budget is more prevalent in the longwave part of the spectrum, with a net warming in the wet season.

  12. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shigemori, Yuji; Seki, Akiyuki

    2009-07-01

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC - INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC - DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  13. Modification of genetic effects of gamma radiation by laser radiation

    International Nuclear Information System (INIS)

    Khotyljova, L.V.; Khokhlova, S.A.; Khokhlov, I.V.

    1988-01-01

    Full text: Mutants obtained by means of ionizing radiation and chemical mutagens often show low viability and productivity that makes their use in plant breeding difficult. Methods reducing the destructive mutagen action on important functions of plant organism and increasing quality and practical value of induced mutants would be interesting. We believe that one method for increasing efficiency of experimental mutagenesis in plants is the application of laser radiation as a modificator of genetic effects of ionizing radiation and chemical mutagens. Combined exposure of wheat seedlings to a gamma radiation dose of 2 kR and to laser radiation with the wave length of 632.8 nm (power density - 20 mVt/cm 2 , exposure - 30 min.) resulted in reducing the chromosomal aberration percentage from 30.5% in the gamma version to 16.3% in the combined treatment version. A radiosensibilizing effect was observed at additional exposure of gamma irradiated wheat seeds to laser light with the wave length of 441.6 nm where chromosomal aberration percentage increased from 22% in the gamma-irradiation version to 31% in the combined treatment version. By laser radiation it is also possible to normalize mitotic cell activity suppressed by gamma irradiation. Additional seedling irradiation with the light of helium-neon laser (632.8 nm) resulted in recovery of mitotic cell activity from 21% to 62% and increasing the average content of DNA per nucleus by 10%. The influence of only laser radiation on plant variability was also studied and it was shown that irradiation of wheat seeds and seedlings with pulsed and continuous laser light of visible spectrum resulted in phenotypically altered forms in M 2 . Their frequencies was dependent upon power density, dose and radiation wave length. Number of altered forms increased in going from long-wave to short-wave spectrum region. In comparing efficiency of different laser types of pulsed and continuous exposure (dose - 180 J/cm 2 ) 2% of altered

  14. Do convection-permitting models improve the representation of the impact of LUC?

    Science.gov (United States)

    Vanden Broucke, Sam; Van Lipzig, Nicole

    2017-10-01

    In this study we assess the added value of convection permitting scale (CPS) simulations in studies using regional climate models to quantify the bio-geophysical climate impact of land-use change (LUC). To accomplish this, a comprehensive model evaluation methodology is applied to both non-CPS and CPS simulations. The main characteristics of the evaluation methodology are (1) the use of paired eddy-covariance site observations (forest vs open land) and (2) a simultaneous evaluation of all surface energy budget components. Results show that although generally satisfactory, non-CPS simulations fall short of completely reproducing the observed LUC signal because of three key biases. CPS scale simulations succeed at significantly reducing two of these biases, namely, those in daytime shortwave radiation and daytime sensible heat flux. Also, CPS slightly reduces a third bias in nighttime incoming longwave radiation. The daytime improvements can be attributed partially to the switch from parameterized to explicit convection, the associated improvement in the simulation of afternoon convective clouds, and resulting surface energy budget and atmospheric feedbacks. Also responsible for the improvements during daytime is a better representation of surface heterogeneity and thus, surface roughness. Meanwhile, the modest nighttime longwave improvement can be attributed to increased vertical atmospheric resolution. However, the model still fails at reproducing the magnitude of the observed nighttime longwave difference. One possible explanation for this persistent bias is the nighttime radiative effect of biogenic volatile organic compound emissions over the forest site. A correlation between estimated emission rates and the observed nighttime longwave difference, as well as the persistence of the longwave bias provide support for this hypothesis. However, more research is needed to conclusively determine if the effect indeed exists.

  15. RITRACKS: A Software for Simulation of Stochastic Radiation Track Structure, Micro and Nanodosimetry, Radiation Chemistry and DNA Damage for Heavy Ions

    Science.gov (United States)

    Plante, I; Wu, H

    2014-01-01

    The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.

  16. A radiological characterization extension for the DORIAN code - Summer Student Report

    CERN Document Server

    van Hoorn, Isabelle

    2016-01-01

    During my stay at CERN as a summer student I was working in the Radiation Protection group. The primary task of my project was to expand the functionality of the DORIAN code that is used for the prediction and analysis of residual dose rates due to accelerator radiation induced activation. With the guidance of my supervisor I extended the framework of the DORIAN code to include a radiological classification scheme that is able to compute mass specific activities for a given irradiation profile and cool-down time and compare these specific activities to given waste characterization limit sets . Additionally, the DORIAN code extension can compute the cool-down time required to stay within a certain limit set threshold for a fixed irradiation profile

  17. A computer code for Cohort Analysis of Increased Risks of Death (CAIRD). Technical report

    International Nuclear Information System (INIS)

    Cook, J.R.; Bunger, B.M.; Barrick, M.K.

    1978-06-01

    The most serious health risk confronting individuals exposed to radiation is death from an induced cancer. Since cancers usually do no develop until many years after exposure, other causes of death may intervene and take the lives of those destined to die from cancer. This computer code has been developed to aid risk analysis by calculating the number of premature deaths and loss of years of life produced by a hypothetical population after exposure to a given risk situation. The code generates modified life tables and estimates the impact of increased risk through several numerical comparisons with the appropriate reference life tables. One of the code's frequent applications is in estimating the number of radiation induced deaths that would result from exposing an initial population of 100,000 individuals to an annual radiation dose. For each risk situation analyzed, the computer code generates a summary table which documents the input, data and contains the results of the comparisons with reference life tables

  18. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    Science.gov (United States)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  19. Development of EASYQAD version β: A Visualization Code System for QAD-CGGP-A Gamma and Neutron Shielding Calculation Code

    International Nuclear Information System (INIS)

    Kim, Jae Cheon; Lee, Hwan Soo; Ha, Pham Nhu Viet; Kim, Soon Young; Shin, Chang Ho; Kim, Jong Kyung

    2007-01-01

    EASYQAD had been previously developed by using MATLAB GUI (Graphical User Interface) in order to perform conveniently gamma and neutron shielding calculations at Hanyang University. It had been completed as version α of radiation shielding analysis code. In this study, EASYQAD was upgraded to version β with many additional functions and more user-friendly graphical interfaces. For general users to run it on Windows XP environment without any MATLAB installation, this version was developed into a standalone code system

  20. Development of fast ignition integrated interconnecting code (FI3) for fast ignition scheme

    International Nuclear Information System (INIS)

    Nagatomo, H.; Johzaki, T.; Mima, K.; Sunahara, A.; Nishihara, K.; Izawa, Y.; Sakagami, H.; Nakao, Y.; Yokota, T.; Taguchi, T.

    2005-01-01

    The numerical simulation plays an important role in estimating the feasibility and performance of the fast ignition. There are two key issues in numerical analysis for the fast ignition. One is the controlling the implosion dynamics to form a high density core plasma in non-spherical implosion, and the other is heating core plasma efficiency by the short pulse high intense laser. From initial laser irradiation to final fusion burning, all the physics are coupling strongly in any phase, and they must be solved consistently in computational simulation. However, in general, it is impossible to simulate laser plasma interaction and radiation hydrodynamics in a single computational code, without any numerical dissipation, special assumption or conditional treatment. Recently, we have developed 'Fast Ignition Integrated Interconnecting code' (FI 3 ) which consists of collective Particle-in-Cell code, Relativistic Fokker-Planck hydro code, and 2-dimensional radiation hydrodynamics code. And those codes are connecting with each other in data-flow bases. In this paper, we will present detail feature of the FI 3 code, and numerical results of whole process of fast ignition. (author)

  1. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  2. SSI and the Environmental Code; SSI och miljoebalken - utvaerdering av raettsliga konsekvenser

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, T

    1997-12-01

    Radiation is, to some extent, included in the environmental code being prepared by the government. As a consequence both the Radiation Protection Institute and the proposed Environmental Court may set legal conditions concerning radiation protection for the proponent. Legal and other matters related to this issue are discussed in the report.

  3. Non-coding RNA in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Chen Zhongzhong; Wang Liangyan; Lin Jun; Tian Bing; Hua Yuejin

    2006-01-01

    Researches on DNA damage and repair pathways of Deinococcus radiodurans show its extreme resistance to ionizing radiation, ultraviolet radiation and reactive oxygen species. Non-coding (ncRNA) RNAs are involved in a variety of processes such as transcriptional regulations, RNA processing and modification, mRNA translation, protein transportation and stability. The conserved secondary structures of intergenic regions of Deinococcus radiodurans R1 were predicted using Stochastic Context Free Grammar (SCFG) scan strategy. Results showed that 28 ncRNA families were present in the non-coding regions of the genome of Deinococcus radiodurans R1. Among these families, IRE is the largest family, followed by Histone3, tRNA, SECIS. DicF, ctRNA-pGA1 and tmRNA are one discovered in bacteria. Results from the comparison with other organisms showed that these ncRNA can be applied to the study of biological function of Deinococcus radiodurans and supply reference for the further study of DNA damage and repair mechanisms of this bacterium. (authors)

  4. Radiation shielding activities at the OECD/Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Sartori, Enrico; Vaz, Pedro

    2000-01-01

    The OECD Nuclear Energy Agency (NEA) has devoted considerable effort over the years to radiation shielding issues. The issues are addressed through international working groups. These activities are carried out in close co-ordination and co-operation with the Radiation Safety Information Computational Center (RSICC). The areas of work include: basic nuclear data activities in support of radiation shielding, computer codes, shipping cask shielding applications, reactor pressure vessel dosimetry, shielding experiments database. The method of work includes organising international code comparison exercises and benchmark studies. Training courses on radiation shielding computer codes are organised regularly including hands-on experience in modelling skills. The scope of the activity covers mainly reactor shields and spent fuel transportation packages, but also fusion neutronics and in particular shielding of accelerators and irradiation facilities. (author)

  5. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    International Nuclear Information System (INIS)

    White, Morgan C.

    2000-01-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to

  6. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    White, Morgan C. [Univ. of Florida, Gainesville, FL (United States)

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second

  7. Spatial variability of shortwave radiative fluxes in the context of snowmelt

    Science.gov (United States)

    Pinker, Rachel T.; Ma, Yingtao; Hinkelman, Laura; Lundquist, Jessica

    2014-05-01

    Snow-covered mountain ranges are a major source of water supply for run-off and groundwater recharge. Snowmelt supplies as much as 75% of surface water in basins of the western United States. Factors that affect the rate of snow melt include incoming shortwave and longwave radiation, surface albedo, snow emissivity, snow surface temperature, sensible and latent heat fluxes, ground heat flux, and energy transferred to the snowpack from deposited snow or rain. The net radiation generally makes up about 80% of the energy balance and is dominated by the shortwave radiation. Complex terrain poses a great challenge for obtaining the needed information on radiative fluxes from satellites due to elevation issues, spatially-variable cloud cover, rapidly changing surface conditions during snow fall and snow melt, lack of high quality ground truth for evaluation of the satellite based estimates, as well as scale issues between the ground observations and the satellite footprint. In this study we utilize observations of high spatial resolution (5-km) as available from the Moderate Resolution Imaging Spectro-radiometer (MODIS) to derive surface shortwave radiative fluxes in complex terrain, with attention to the impact of slopes on the amount of radiation received. The methodology developed has been applied to several water years (January to July during 2003, 2004, 2005 and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability in the shortwave fluxes. It is planned to apply the findings from this study for testing improvements in Snow Water Equivalent (SWE) estimates.

  8. A 3-D radiation model for non-grey gases

    International Nuclear Information System (INIS)

    Selcuk, Nevin; Doner, Nimeti

    2009-01-01

    A three-dimensional radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of grey gases (SLW) model for radiative heat transfer in non-grey absorbing-emitting media for use in conjunction with a computational fluid dynamics (CFD) code based on the same approach was developed. The code was applied to three test problems: two containing isothermal homogenous/non-homogenous water vapor and one non-isothermal water vapor/carbon dioxide mixture. Predictive accuracy of the code was evaluated by benchmarking its steady-state predictions against accurate results, calculated by ray tracing method with statistical narrow band model, available in the literature. Comparative testing with solutions of other methods is also provided. Comparisons reveal that MOL solution of DOM with SLW model provides accurate solutions for radiative heat fluxes and source terms and can be used with confidence in conjunction with CFD codes based on MOL

  9. Infrared image simulation for estimating the effectiveness of camouflage measures

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.S. [Seoul National University Graduate School, Seoul (Korea); Kauh, S.K. [Seoul National University, Seoul (Korea); Yoo, H.S. [Soong Sil University, Seoul (Korea)

    1999-08-01

    Camouflage measures in military purpose utilize the apparent temperature difference between target and background, so it is essential to develop a thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict the apparent temperature as well as the physical temperature precisely. Longwave emissivity variation as an effective surface treatment, such as painting of a less emissive material or camouflage clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage. (author). 12 refs., 15 figs., 2 tabs.

  10. A simple method for simulation of coherent synchrotron radiation in a tracking code

    International Nuclear Information System (INIS)

    Borland, M.

    2000-01-01

    Coherent synchrotron radiation (CSR) is of great interest to those designing accelerators as drivers for free-electron lasers (FELs). Although experimental evidence is incomplete, CSR is predicted to have potentially severe effects on the emittance of high-brightness electron beams. The performance of an FEL depends critically on the emittance, current, and energy spread of the beam. Attempts to increase the current through magnetic bunch compression can lead to increased emittance and energy spread due to CSR in the dipoles of such a compressor. The code elegant was used for design and simulation of the bunch compressor for the Low-Energy Undulator Test Line (LEUTL) FEL at the Advanced Photon Source (APS). In order to facilitate this design, a fast algorithm was developed based on the 1-D formalism of Saldin and coworkers. In addition, a plausible method of including CSR effects in drift spaces following the chicane magnets was developed and implemented. The algorithm is fast enough to permit running hundreds of tolerance simulations including CSR for 50 thousand particles. This article describes the details of the implementation and shows results for the APS bunch compressor

  11. Generic radiation safety design for SSRL synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C. [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)]. E-mail: james@slac.stanford.edu; Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)

    2006-12-15

    To allow for a conservative, simple, uniform, consistent, efficient radiation safety design for all SSRL beamlines, a generic approach has been developed, considering both synchrotron radiation (SR) and gas bremsstrahlung (GB) hazards. To develop the methodology and rules needed for generic beamline design, analytic models, the STAC8 code, and the FLUKA Monte Carlo code were used to pre-calculate sets of curves and tables that can be looked up for each beamline safety design. Conservative beam parameters and standard targets and geometries were used in the calculations. This paper presents the SPEAR3 beamline parameters that were considered in the design, the safety design considerations, and the main pre-calculated results that are needed for generic shielding design. In the end, the rules and practices for generic SSRL beamline design are summarized.

  12. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-12-31

    Although eastward propagation is usually regarded as an essential feature of the low-frequency ``Madden-Julian oscillation`` observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  13. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-01-01

    Although eastward propagation is usually regarded as an essential feature of the low-frequency Madden-Julian oscillation'' observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  14. Performance testing of thermal analysis codes for nuclear fuel casks

    International Nuclear Information System (INIS)

    Sanchez, L.C.

    1987-01-01

    In 1982 Sandia National Laboratories held the First Industry/Government Joint Thermal and Structural Codes Information Exchange and presented the initial stages of an investigation of thermal analysis computer codes for use in the design of nuclear fuel shipping casks. The objective of the investigation was to (1) document publicly available computer codes, (2) assess code capabilities as determined from their user's manuals, and (3) assess code performance on cask-like model problems. Computer codes are required to handle the thermal phenomena of conduction, convection and radiation. Several of the available thermal computer codes were tested on a set of model problems to assess performance on cask-like problems. Solutions obtained with the computer codes for steady-state thermal analysis were in good agreement and the solutions for transient thermal analysis differed slightly among the computer codes due to modeling differences

  15. Development of a new version of the Vehicle Protection Factor Code (VPF3)

    Science.gov (United States)

    Jamieson, Terrance J.

    1990-10-01

    The Vehicle Protection Factor (VPF) Code is an engineering tool for estimating radiation protection afforded by armoured vehicles and other structures exposed to neutron and gamma ray radiation from fission, thermonuclear, and fusion sources. A number of suggestions for modifications have been offered by users of early versions of the code. These include: implementing some of the more advanced features of the air transport rating code, ATR5, used to perform the air over ground radiation transport analyses; allowing the ability to study specific vehicle orientations within the free field; implementing an adjoint transport scheme to reduce the number of transport runs required; investigating the possibility of accelerating the transport scheme; and upgrading the computer automated design (CAD) package used by VPF. The generation of radiation free field fluences for infinite air geometries as required for aircraft analysis can be accomplished by using ATR with the air over ground correction factors disabled. Analysis of the effects of fallout bearing debris clouds on aircraft will require additional modelling of VPF.

  16. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations of a four-zone structure using five spacecraft and the VERB code

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y. Y.; Kondrashov, D.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2014-11-01

    Obtaining the global state of radiation belt electrons through reanalysis is an important step toward validating our current understanding of radiation belt dynamics and for identification of new physical processes. In the current study, reanalysis of radiation belt electrons is achieved through data assimilation of five spacecraft with the 3-D Versatile Electron Radiation Belt (VERB) code using a split-operator Kalman filter technique. The spacecraft data are cleaned for noise, saturation effects, and then intercalibrated on an individual energy channel basis, by considering phase space density conjunctions in the T96 field model. Reanalysis during the CRRES era reveals a never-before-reported four-zone structure in the Earth's radiation belts during the 24 March 1991 shock-induced injection superstorm: (1) an inner belt, (2) the high-energy shock-injection belt, (3) a remnant outer radiation belt, and (4) a second outer radiation belt. The third belt formed near the same time as the second belt and was later enhanced across keV to MeV energies by a second particle injection observed by CRRES and the Northern Solar Terrestrial Array riometer network. During the recovery phase of the storm, the fourth belt was created near L*=4RE, lasting for several days. Evidence is provided that the fourth belt was likely created by a dominant local heating process. This study outlines the necessity to consider all diffusive processes acting simultaneously and the advantage of supporting ground-based data in quantifying the observed radiation belt dynamics. It is demonstrated that 3-D data assimilation can resolve various nondiffusive processes and provides a comprehensive picture of the electron radiation belts.

  17. SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight

    International Nuclear Information System (INIS)

    Bourassa, A.E.; Degenstein, D.A.; Llewellyn, E.J.

    2008-01-01

    The inversion of satellite-based observations of limb scattered sunlight for the retrieval of constituent species requires an efficient and accurate modelling of the measurement. We present the development of the SASKTRAN radiative transfer model for the prediction of limb scatter measurements at optical wavelengths by method of successive orders along rays traced in a spherical atmosphere. The component of the signal due to the first two scattering events of the solar beam is accounted for directly along rays traced in the three-dimensional geometry. Simplifying assumptions in successive scattering orders provide computational optimizations without severely compromising the accuracy of the solution. SASKTRAN is designed for the analysis of measurements from the OSIRIS instrument and the implementation of the algorithm is efficient such that the code is suitable for the inversion of OSIRIS profiles on desktop computers. SASKTRAN total limb radiance profiles generally compare better with Monte-Carlo reference models over a large range of solar conditions than the approximate spherical and plane-parallel models typically used for inversions

  18. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  19. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    International Nuclear Information System (INIS)

    Klein, R I; Stone, J M

    2007-01-01

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments

  20. GAM-HEAT -- a computer code to compute heat transfer in complex enclosures

    International Nuclear Information System (INIS)

    Cooper, R.E.; Taylor, J.R.; Kielpinski, A.L.; Steimke, J.L.

    1991-02-01

    The GAM-HEAT code was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re- radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices, and also accounts for convective, conductive, and advective heat exchanges. The code is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium. The GAM-HEAT code has been exercised extensively for computing transient temperatures in SRS reactors with specific charges and control components. Results from these computations have been used to establish the need for and to evaluate hardware modifications designed to mitigate results of postulated accident scenarios, and to assist in the specification of safe reactor operating power limits. The code utilizes temperature dependence on material properties. The efficiency of the code has been enhanced by the use of an iterative equation solver. Verification of the code to date consists of comparisons with parallel efforts at Los Alamos National Laboratory and with similar efforts at Westinghouse Science and Technology Center in Pittsburgh, PA, and benchmarked using problems with known analytical or iterated solutions. All comparisons and tests yield results that indicate the GAM-HEAT code performs as intended