WorldWideScience

Sample records for longitudinally polarized protons

  1. Accessing the longitudinally polarized photon content of the proton

    Science.gov (United States)

    Mukherjee, A.; Pisano, C.

    2004-08-01

    We investigate the QED Compton process in longitudinally polarized lepton-proton scattering both in the elastic and inelastic channels and show that the cross section can be expressed in terms of the polarized equivalent photon distribution of the proton. We provide the necessary kinematical constraints to extract the polarized photon content of the proton using this process at HERMES, COMPASS, and eRHIC. We also discuss the suppression of the major background process coming from virtual Compton scattering. We point out that such an experiment can give valuable information on g1(xB,Q2) in the small xB, broad Q2 region at the future polarized collider eRHIC and especially in the lower Q2, medium xB region in fixed target experiments.

  2. Twist-3 effect from the longitudinally polarized proton for ALT in hadron production from pp collisions

    Science.gov (United States)

    Koike, Yuji; Pitonyak, Daniel; Yoshida, Shinsuke

    2016-08-01

    We compute the contribution from the longitudinally polarized proton to the twist-3 double-spin asymmetry ALT in inclusive (light) hadron production from proton-proton collisions, i.e., p↑ p → → h X. We show that using the relevant QCD equation-of-motion relation and Lorentz invariance relation allows one to eliminate the twist-3 quark-gluon correlator (associated with the longitudinally polarized proton) in favor of one-variable twist-3 quark distributions and the (twist-2) transversity parton density. Including this result with the twist-3 pieces associated with the transversely polarized proton and unpolarized final-state hadron (which have already been calculated in the literature), we now have the complete leading-order cross section for this process.

  3. Twist-3 effect from the longitudinally polarized proton for ALT in hadron production from pp collisions

    Directory of Open Access Journals (Sweden)

    Yuji Koike

    2016-08-01

    Full Text Available We compute the contribution from the longitudinally polarized proton to the twist-3 double-spin asymmetry ALT in inclusive (light hadron production from proton–proton collisions, i.e., p↑p→→hX. We show that using the relevant QCD equation-of-motion relation and Lorentz invariance relation allows one to eliminate the twist-3 quark-gluon correlator (associated with the longitudinally polarized proton in favor of one-variable twist-3 quark distributions and the (twist-2 transversity parton density. Including this result with the twist-3 pieces associated with the transversely polarized proton and unpolarized final-state hadron (which have already been calculated in the literature, we now have the complete leading-order cross section for this process.

  4. Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-15

    We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510  GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  5. Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    We report measurements of single and double spin asymmetries for $W^{\\pm}$ and $Z/\\gamma^*$ boson production in longitudinally polarized $p+p$ collisions at $\\sqrt{s} = 510$ GeV by the STAR experiment at RHIC. The asymmetries for $W^{\\pm}$ were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the $W$ mass. The results are compared to theoretical predictions, constrained by recent polarized DIS measurements, and show a preference for a sizable, positive up antiquark polarization in the range $0.05

  6. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  7. Polarized proton collider at RHIC

    Science.gov (United States)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A. N.

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998 [2]), reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to s=500 GeV.

  8. Probing gluon polarization with pi0's in longitudinally polarized proton collisions at the RHIC-PHENIX experiment

    CERN Document Server

    Fukao, Y

    2005-01-01

    This report presents double helicity asymmetry in inclusive $\\pi^0$ production in polarized proton-proton collisions at a center-of-mass energy ($\\sqrt{s}$) of 200 GeV. The data were collected with the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) during the 2004 run. The data are compared to a next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculation.

  9. Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D' Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garcon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, Ian J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatie, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-03-19

    Single-beam, single-target, and double-spin asymmetries for hard exclusive photon production on the proton e→p→e'p'γ are presented. The data were taken at Jefferson Lab using the CLAS detector and a longitudinally polarized 14NH3 target. The three asymmetries were measured in 165 4-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of Generalized Parton Distributions. As a result, the measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H~ Compton Form Factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.

  10. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  11. Target and Double Spin Asymmetries of Deeply Virtual $\\pi^0$ Production with a Longitudinally Polarized Proton Target and CLAS

    CERN Document Server

    Kim, A; Burkert, V; Joo, K; Kim, W; Adhikari, K P; Akbar, Z; Pereira, S Anefalos; Badui, R A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Boiarinov, S; Briscoe, W J; Brooks, W K; Bültmann, S; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Chetry, T; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Djalali, C; Egiyan, H; Alaoui, A El; Fassi, L El; Eugenio, P; Fedotov, G; Fersch, R; Filippi, A; Fleming, J A; Fradi, A; Garçon, M; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Jiang, H; Jo, H S; Joosten, S; Keller, D; Khachatryan, G; Khandaker, M; Klein, A; Klein, F J; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Lanza, L; Lenisa, P; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P; McCracken, M E; McKinnon, B; Mokeev, V; Movsisyan, A; Munevar, E; Nadel-Turonski, P; Net, L A; Niccolai, S; Osipenko, M; Ostrovidov, A I; Paolone, M; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Prok, Y; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Salgado, C; Schumacher, R A; Seder, E; Sharabian, Y G; Skorodumina, Iu; Smith, G D; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Sytnik, V; Taiuti, M; Torayev, B; Ungaro, M; Voskanyan, H; Voutier, E; Watts, D P; Wei, X; Weinstein, L B; Zachariou, N; Zana, L; Zhang, J; Zonta, I

    2015-01-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel $\\vec e\\vec p\\to ep\\pi^0$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $x_B$, $-t$ and $\\phi$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $\\tilde{H}_T$ and $E_T$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $H_T$ and $\\bar E_T$. These data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existin...

  12. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    Directory of Open Access Journals (Sweden)

    A. Kim

    2017-05-01

    Full Text Available The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS. The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, −t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  13. Enhancement of proton acceleration by a right-handed circularly polarized laser interaction with a cone target exposed to a longitudinal magnetic field

    Science.gov (United States)

    Gong, J. X.; Cao, L. H.; Pan, K. Q.; Xiao, K. D.; Wu, D.; Zheng, C. Y.; Liu, Z. J.; He, X. T.

    2017-05-01

    Our previous research [J. X. Gong et al. Phys. Plasmas 24, 033103 (2017)] shows that in the presence of an external longitudinal magnetic field, there is no cut-off density when a right-handed (RH-) circularly polarized (CP) laser propagates in the plasmas. In this work, the proton acceleration driven by an RH-CP laser interaction with a pre-magnetized cone target filled with a pre-formed plasma is investigated under the mechanism of target normal sheath acceleration. The strength of the external magnetic field considered in this paper is comparable to that of the incident laser. The two-dimensional particle-in-cell simulation results show that with an external longitudinal magnetic field, both the energy and yield of protons accelerated by the sheath electric field at the rear of the target are remarkably increased because of the higher coupling efficiency from RH-CP laser energy to electrons and the more efficient electron acceleration. Electrons can be converged remarkably by the external magnetic field and the divergence of protons can be controlled evidently by the collimated electrons. The maximum cut-off energy of protons with an imposed longitudinal magnetic field can be promoted to be as high as 82 MeV. Detailed simulation results show that the maximum energy of protons increases with the increasing initial external magnetic field.

  14. Polarized protons and Siberian snakes

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D. [Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics

    1999-07-01

    The lecture started with a brief review of the history of polarized proton beams. Then it described the unexpected and still unexplained large transverse spin effects found in high energy proton spin experiments at the ZGS, AGS, and Fermilab. Next there was detailed discussion of Siberian snakes and some of their tests at the IUCF Cooler Ring. Finally there was a review of the use of Siberian Snakes in some possible high energy polarized proton beams at RHIC, HERA and Fermilab. Since a similar lecture is being published elsewhere, this manuscript will only contain this brief summary and the references. (author)

  15. Status of Proton Polarization in Rhic and AGS

    Science.gov (United States)

    Mackay, W. W.; Bai, M.; Huang, H.; Ahrens, L.; Alekseev, I. G.; Bravar, A.; Brown, K.; Bunce, G.; Calaga, R.; Courant, E. D.; Drees, A.; Fischer, W.; Gardner, C.; Glenn, J. W.; Gupta, R.; Igo, G.; Iriso, U.; Jinnouchi, O.; Kurita, K.; Luccio, A. U.; Luo, Y.; Makdisi, Y.; Marr, G.; Montag, C.; Nass, A.; Okada, H.; Okamura, M.; Pilat, F.; Ptitsyn, V.; Roser, T.; Saito, N.; Satogata, T.; Spinka, H.; Stephenson, E. J.; Svirida, D. N.; Takano, J.; Tepikian, S.; Tomas, R.; Tsoupas, N.; Underwood, D.; Whitten, C.; Wood, J.; Zeijts, J. Van; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2005-08-01

    The Relativistic Heavy Ion Collider (RHIC) has collided protons with both transverse and longitudinal polarization at a centre-of-mass energy of 200 GeV. Future running will extend this to 500 GeV. This paper describes the methods used to accelerate and manipulate polarized proton beams in RHIC and its injectors. Special techniques include the use of a partial Siberian snake and an AC dipole in the AGS. In RHIC we use superconducting helical Siberian snakes for acceleration, and eight superconducting helical rotators for independent control of polarization directions at two interaction regions. The present status and future plans for the polarized proton program will be reviewed.

  16. Polarization Transfer in Proton Compton Scattering at High Momentum Transfer

    CERN Document Server

    Hamilton, D J; Aniol, K A; Annand, J R M; Bertin, P Y; Bimbot, L; Bosted, P; Calarco, J R; Camsonne, A; Chang, G C; Chang, T H; Chen, J P; Seonho Choi; Chudakov, E; Danagulyan, A S; Degtyarenko, P; De Jager, C W; Deur, A; Dutta, D; Egiyan, K; Gao, H; Garibaldi, F; Gayou, O; Gilman, R; Glamazdin, A; Glashausser, C; Gómez, J; Hansen, J O; Hayes, D; Higinbotham, D W; Hinton, W; Horn, T; Howell, C; Hunyady, T; Hyde-Wright, C E; Jiang, X; Jones, M K; Khandaker, M; Ketikyan, A; Koubarovski, V; Krämer, K; Kumbartzki, G; Laveissière, G; Le Rose, J J; Lindgren, R A; Margaziotis, D J; Markowitz, P; McCormick, K; Meziani, Z E; Michaels, R; Moussiegt, P; Nanda, S; Nathan, A M; Nikolenko, D M; Nelyubin, V V; Norum, B E; Paschke, K; Pentchev, L; Perdrisat, C F; Piasetzky, E; Pomatsalyuk, R I; Punjabi, V A; Rachek, Igor A; Radyushkin, A V; Reitz, B; Roché, R; Roedelbronn, M; Ron, G; Sabatie, F; Saha, A; Savvinov, N; Shahinyan, A; Shestakov, Yu V; Sirca, S; Slifer, K J; Solvignon, P; Stoler, P; Tajima, S; Sulkosky, V; Todor, L; Vlahovic, B; Weinstein, L B; Wang, K; Wojtsekhowski, B; Voskanyan, H; Xiang, H; Zheng, X; Zhu, L

    2004-01-01

    Compton scattering from the proton was investigated at s=6.9 (GeV/c)**2 and \\t=-4.0 (GeV/c)**2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.

  17. First Polarized Proton Collisions at RHIC

    Science.gov (United States)

    Roser, T.; Ahrens, L.; Alessi, J.; Bai, M.; Beebe-Wang, J.; Brennan, J. M.; Brown, K. A.; Bunce, G.; Cameron, P.; Courant, E. D.; Drees, A.; Fischer, W.; Fliller, R.; Glenn, W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Makdisi, Y.; Montag, C.; Pilat, F.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; van Zeijts, J.; Zelenski, A.; Zeno, K.; Deshpande, A.; Kurita, K.; Krueger, K.; Spinka, H.; Underwood, D.; Syphers, M.; Alekseev, I.; Svirida, D.; Ranjbar, V.; Tojo, J.; Jinnouchi, O.; Okamura, M.; Saito, N.

    2003-05-01

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180° about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV.

  18. Measurement of the parity-violating longitudinal single-spin asymmetry AL for W - (+) boson production in polarized proton collisions at √{ s} = 510 GeV at RHIC

    Science.gov (United States)

    Surrow, Bernd; STAR Collaboration

    2016-09-01

    The STAR experiment at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized proton collisions to gain a deeper insight into the spin structure and dynamics of the proton. The collision of polarized protons at √{ s} = 500GeV opened a new era of spin-flavor structure studies using the production of W - (+) bosons which are primarily produced in u + d (d + u) collisions. The STAR experiment is well equipped to measure W - (+) ->e- +νe (e+ +νe) in longitudinally polarized proton collisions. The published STAR AL results (combination of 2011 and 2012 data) have been used by two global analyses groups suggesting a significant impact in constraining the helicity distributions of anti- u and anti- d quarks. In 2013, the STAR experiment collected a data set at √{ s} = 510 GeV with a factor of three larger figure of merit based on a total integrated luminosity of 300 pb-1 and an average beam polarization of 54 % . We will report on the status of the STAR 2013 W AL analysis along with future plans.

  19. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    Energy Technology Data Exchange (ETDEWEB)

    X. Jiang; J. Arrington; F. Benmokhtar; A. Camsonne; J. P. Chen; S. Choi; E. Chudakov; F. Cusanno; A. Deur; D. Dutta; F. Garibaldi; D. Gaskell; O. Gayou; R. Gilman; C. Glashauser; D. Hamilton; O. Hansen; D. W. Higinbotham; R. J. Holt; C. W. de Jager; M. K. Jones; L. J. Kaufman; E. R. Kinney; K. Kramer; L. Lagamba; R. de Leo; J. Lerose; D. Lhuillier; R. Lindgren; N. Liyanage; K. McCormick; Z.-E. Meziani; R. Michaels; B. Moffit; P. Monaghan; S. Nanda; K. D. Paschke; C. F. Perdrisat; V. Punjabi; I. A. Qattan; R. D. Ransome; P. E. Reimer; B. Reitz; A. Saha; E. C. Schulte; R. Sheyor; K. Slifer; P. Solvignon; V. Sulkosky; G. M. Urciuoli; E. Voutier; K. Wang; K. Wijesooriya; B. Wojtsekhowski; and L. Zhu

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  20. Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at sqrt[s]=200  GeV.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cudd, A B; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2015-08-28

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A_{LL}, in polarized pp collisions at center-of-mass energy sqrt[s]=200  GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. The measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x>0.05.

  1. Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\\sqrt{s}=200$ GeV

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bultmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sanchez, M Calderon de la Barca; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cudd, A B; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L -X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

  2. CONFIGURATION MANUAL POLARIZED PROTON COLLIDER AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    ROSER,T.; MACKAY,W.W.; ALEKSEEV,I.; BAI,M.; BROWN,K.; BUNCE,G.; CAMERON,P.; COURANT,E.; ET AL.

    2001-03-01

    In this report, the authors present their design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. They provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  3. Configuration Manual Polarized Proton Collider at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Svirida, D.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.

    2006-01-01

    In this report we present our design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. We provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  4. Probing the Spin Structure of the Proton Using Polarized Proton-Proton Collisions and the Production of W Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Beaumier, Michael J. [Univ. of California, Riverside, CA (United States)

    2016-08-01

    This thesis discusses the process of extracting the longitudinal asymmetry, A$W±\\atop{L}$ describing W → μ production in forward kinematic regimes. This asymmetry is used to constrain our understanding of the polarized parton distribution functions characterizing $\\bar{u}$ and $\\bar{d}$ sea quarks in the proton. This asymmetry will be used to constrain the overall contribution of the sea-quarks to the total proton spin. The asymmetry is evaluated over the pseudorapidity range of the PHENIX Muon Arms, 2.1 < |η| 2.6, for longitudinally polarized proton-proton collisions at 510 GeV √s. In particular, I will discuss the statistical methods used to characterize real muonic W decays and the various background processes is presented, including a discussion of likelihood event selection and the Extended Unbinned Maximum Likelihood t. These statistical methods serve estimate the yields of W muonic decays, which are used to calculate the longitudinal asymmetry.

  5. Polarized protons and parity violating asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Trueman, T.L.

    1984-01-01

    The potential for utilizing parity violating effects, associated with polarized protons, to study the standard model, proton structure, and new physics at the SPS Collider is summarized. 24 references.

  6. Polarized proton beams since the ZGS

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D.

    1994-12-31

    The author discusses research involving polarized proton beams since the ZGS`s demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world`s first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970`s; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE.

  7. Recent results of gluon and sea quark polarization measurements in polarized proton-proton collisions at STAR

    CERN Document Server

    Li, Xuan

    2014-01-01

    The STAR experiment at RHIC is carrying out a comprehensive high-energy spin physics program to understand the internal structure and dynamics of the proton in polarized proton-proton collisions at $\\sqrt{s} = 200$ GeV and $\\sqrt{s} = 500/510$ GeV. STAR has the capability, with nearly full azimuthal coverage, to reconstruct leptons, hadrons and jets in the mid-rapidity region ($|\\eta|<1$). The results for inclusive jet longitudinal double spin asymmetries taken during the 2009 RHIC run indicate the first non-zero gluon contribution ($\\Delta g(x,Q^{2}) / g(x,Q^{2})$) to the proton spin for $0.05longitudinal single-spin asymmetry measurements of $W^{+/-}$ bosons at $\\sqrt{s} = 500/510$ GeV in polarized proton-proton collisions provide a direct probe of the polarized anti-u and anti-d quark distributions ($\\Delta \\bar{u}(x,Q^{2})$, $\\Delta \\bar{d}(x,Q^{2})$). These results better constrain the polarized gluon and sea quark distributions of the prot...

  8. Polarized photon or proton Primakoff effect

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, J.; Vidal, J. (Deparatment de Fisica Teorica, Universitat de Valencia, e IFIC Centre Mixt Univ. Valencia-CSIC, E-46100 Burjassot (Spain)); Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Gonzalez Sprinberg, G.A. (Departmento de Fisica, Universidad Nacionalde La Plata, C.C. 67, 1900 La Plata, Argentina and CONICET (Argentina))

    1992-02-01

    A proposal to determine the axial coupling of the proton for the neutral strangeness current is discussed. By means of the [gamma][minus][ital Z][minus][pi][degree] triangle anomaly, the parity violating asymmetries for polarized photon or polarized proton Primakoff effect filter the couplings so as to leave the proton axial coupling only. We calculate the relevant observables induced by the electroweak interference and study the regions of energy and [ital Q][sup 2] of possible experimental interest.

  9. Accelerating Polarized Protons with Siberian Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D. [Randall Laboratory of Physics, University of Michigan, Ann Arbor (United States)

    1998-05-01

    There is a brief review of the history of polarized proton beams and the unexpected and still unexplained large transverse spin effects found in high energy proton spin experiments at the ZGS, AGS and Fermilab. Next there is a detailed discussion of Siberian snakes and some of their tests at the IUCF Cooler Ring. Finally there is a report on the use of Siberian snakes in some possible high energy polarized proton beams at RHIC, HERA and Fermilab. (author) 19 refs, 12 figs

  10. The JLab polarization transfer measurements of proton elastic form factor

    Indian Academy of Sciences (India)

    C F Perdrisat; V Punjabi

    2003-11-01

    The ratio of the electric and magnetic proton form factors, /, has been obtained in two Hall A experiments, from measurements of the longitudinal and transverse polarizations of the recoil proton, ℓ and , in the elastic scattering of polarized electrons, $\\overrightarrow{e}p→ e\\overrightarrow{p}$. Together these experiments cover the 2 range of 0.5 to 5.6 GeV2. A new experiment is currently being prepared, to extend the 2 range to 9 GeV2 in Hall C.

  11. Helical Dipole Magnets for Polarized Protons in RHIC

    Science.gov (United States)

    Syphers, M.; Courant, E.; Fischer, W.; Luccio, A.; Mariam, F.; Peggs, S.; Pilat, F.; Roser, T.; Tepikian, S.; Tsoupas, N.; Willen, E.; Katayama, T.; Hatanaka, K.; Kawaguchi, T.; Okamura, M.; Tominaka, T.; Wu, H.; Ptitsin, V.; Shatunov, Y.

    1997-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) will be able to support experiments using polarized proton beams. Siberian Snakes are used to maintain polarization in this high energy superconducting collider. To make efficient use of available space while taking advantage of high field superconducting magnets, 4 Tesla helical dipole magnets will be used. These magnets generate a central dipole field in which the field direction rotates through 360^circ about the longitudinal axis over the length of the device. An arrangement of four such magnets can produce the desired change in the spin direction while keeping the proton orbit outside of the ``Snake'' unaltered. Similar magnet arrangements will be used to produce longitudinal polarization at the two major interaction points in RHIC. The basic requirements and layout of these magnets are described, as well as tolerances on field quality and integrated field strengths. First results of tests of prototype helical magnets will be discussed.

  12. BEAM SCRUBBING FOR RHIC POLARIZED PROTON RUN.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,S.Y.FISCHER,W.HUANG,H.ROSER,T.

    2004-07-05

    One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. A beam scrubbing study shows that with a reasonable period of time of running high intensity 112-bunch proton beam, the pressure rise can be reduced, allowing higher beam intensity.

  13. RHIC Performance with Polarized Protons in Run-6

    Science.gov (United States)

    Ptitsyn, V.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, S.; Brown, K. A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; DeLong, J.; D'Ottavio, T.; Drees, A.; Fedotov, A.; Fischer, W.; Ganetis, G.; Hahn, H.; Hayes, T.; Hseuh, H.-C.; Huang, H.; Ingrassia, P.; Kayran, D.; Kewisch, J.; Lee, R.; Litvinenko, V. N.; Luo, Y.; MacKay, W. W.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Montag, C.; Morris, J.; Pilat, F.; Pile, P.; Roser, T.; Russo, T.; Sandberg, J.; Satogata, T.; Schultheiss, C.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zeno, K.; Zelenski, A.; Zhang, S. Y.

    2007-06-01

    The RHIC polarized proton run (Run-6) in 2006 started on February 1 and continued for 21 weeks. The Run-6 included the machine operation at different beam energies and with different orientation of beam polarization at the collision points. The machine operation at 100GeV and 31.2 GeV provided physics data of polarized proton collisions to the STAR, PHENIX and BRAHMS experiments. Record levels of the luminosity (up to 3.5ṡ1031 cm-2 s-1 peak) and proton beam polarization (up to 65%) were achieved during the 100GeV operation. The beam polarization was preserved during the acceleration by using Siberian Snakes, based on helical magnets. The polarization orientation at STAR and PHENIX experiments was controlled with helical spin rotators. During different stages of the run the physics data were provided with longitudinal, vertical and horizontal orientations of the beam polarization at the collision points. Total luminosity integrals of 45 pb-1 at 100 GeV and 0.35 pb-1 at 31.2 GeV were delivered to the experiments.

  14. Antiproton--Proton Scattering Experiments with Polarization

    CERN Document Server

    Lenisa, P; Lenisa, Paolo; Rathmann, Frank

    2005-01-01

    The document describes the physics case of the PAX experiment using polarized antiprotons, which has recently been proposed for the new Facility for Antiprotons and Ions Research (FAIR) at GSI--Darmstadt. Polarized antiprotons provide access to a wealth of single-- and double--spin observables, thereby opening a new window to physics uniquely accessible at the HESR. The polarized antiprotons would be most efficiently produced by spin--filtering in a dedicated Antiproton Polarizer Ring (APR) using an internal polarized hydrogen gas target. In the proposed collider scenario of the PAX experiment, polarized protons stored in a COSY--like Cooler Storage Ring (CSR) up to momenta of 3.5 GeV/c are bombarded head--on with 15 GeV/c polarized antiprotons stored in the HESR. This asymmetric double--polarized antiproton--proton collider is ideally suited to map, e.g., the transversity distribution in the proton. The proposed detector consists of a large--angle apparatus optimized for the detection of Drell--Yan electron ...

  15. Nuclear Effects in Polarized Proton-Deuteron Drell-Yan Processes

    Institute of Scientific and Technical Information of China (English)

    DUAN Chun-Gui; SHI Li-Jie; SHEN Peng-Nian; LI Guang-Lie

    2004-01-01

    @@ The longitudinally polarized Drell- Yan process is one of the most powerful tools to probe the structure of hadrons.By means of the recent formalism of the polarized proton-deuteron (pd) Drell-Yan, we calculate the ratio of the proton-deuteron Drell-Yan cross section to the proton-proton (pp) one △σpd/2△σpp in the polarized case. The theoretical results can be compared with future experimental data to confirm the nuclear effect due to the 6-quark cluster in deuteron.

  16. Polarization measurement of laser-accelerated protons

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Büscher, Markus, E-mail: m.buescher@fz-juelich.de [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald [Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Gibbon, Paul; Karmakar, Anupam [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  17. Acceleration of polarized protons in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Tsoupas, N.; Ahrens, L.; Bai, M.; Brown, K.; Courant, E.; Glenn, J.W.; Huang, H.; Luccio, A.; MacKay, W.W.; Roser, T.; Schoefer, V.; Zeno, K.

    2010-02-25

    The high energy (s{sup 1/2} = 500 GeV) polarized proton beam experiments performed in RHIC, require high polarization of the proton beam. With the AGS used as the pre-injector to RHIC, one of the main tasks is to preserve the polarization of the proton beam, during the beam acceleration in the AGS. The polarization preservation is accomplished by the two partial helical magnets [1,2,3,4,5,6,7] which have been installed in AGS, and help overcome the imperfection and the intrinsic spin resonances which occur during the acceleration of protons. This elimination of the intrinsic resonances is accomplished by placing the vertical tune Q{sub y} at a value close to 8.98, within the spin-tune stop-band created by the snake. At this near integer tune the perturbations caused by the partial helical magnets is large resulting in large beta and dispersion waves. To mitigate the adverse effect of the partial helices on the optics of the AGS, we have introduced compensation quads[2] in the AGS. In this paper we present the beam optics of the AGS which ameliorates this effect of the partial helices.

  18. Spin flipping a stored polarized proton beam

    Science.gov (United States)

    Caussyn, D. D.; Derbenev, Ya. S.; Ellison, T. J.; Lee, S. Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E. J.; von Przewoski, B.; Blinov, B. B.; Chu, C. M.; Courant, E. D.; Crandell, D. A.; Kaufman, W. A.; Krisch, A. D.; Nurushev, T. S.; Phelps, R. A.; Ratner, L. G.; Wong, V. K.; Ohmori, C.

    1994-11-01

    We recently studied the spin flipping of a vertically polarized, stored 139-MeV proton beam. To flip the spin, we induced an rf depolarizing resonance by sweeping our rf solenoid magnet's frequency through the resonance frequency. With multiple spin flips, we found a polarization loss of 0.0000+/-0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions. Minimizing the depolarization during each spin flip is especially important because frequent spin flipping could significantly reduce the systematic errors in stored polarized-beam experiments.

  19. Angular dependence of recoil proton polarization in high-energy \\gamma d \\to p n

    Energy Technology Data Exchange (ETDEWEB)

    X. Jiang; J. Arrington; F. Benmokhtar; A. Camsonne; J.P. Chen; S. Choi; E. Chudakov; F. Cusanno; A. Deur; D. Dutta; F. Garibaldi; D. Gaskell; O. Gayou; R. Gilman; C. Glashauser; D. Hamilton; O. Hansen; D.W. Higinbotham; R.J. Holt; C.W. de Jager; M.K. Jones; L.J. Kaufman; E.R. Kinney; K. Kramer; L. Lagamba; R. de Leo; J. Lerose; D. Lhuillier; R. Lindgren; N. Liyanage; K. McCormick; Z.-E. Meziani; R. Michaels; B. Moffit; P. Monaghan; S. Nanda; K.D. Paschke; C.F. Perdrisat; V. Punjabi; I.A. Qattan; R.D. Ransome; P.E. Reimer; B. Reitz; A. Saha; E.C. Schulte; R. Sheyor; K. Slifer; P. Solvignon; V. Sulkosky; G.M. Urciuoli; E. Voutier; K. Wang; K. Wijesooriya; B. Wojtsekhowski; L. Zhu

    2007-02-26

    We measured the angular dependence of the three recoil proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily.. Transverse polarizations are not well described, but suggest isovector dominance.

  20. Angular dependence of recoil proton polarization in high-energy \\gamma d \\to p n

    CERN Document Server

    Jiang, X; Benmokhtar, F; Camsonne, A; Chen, J P; Choi, S; Chudakov, E; Cusanno, F; De Jager, C W; De Leo, R; Deur, A; Dutta, D; Garibaldi, F; Gaskell, D; Gayou, O; Gilman, R; Glashauser, C; Hamilton, D; Hansen, O; Higinbotham, D W; Holt, R J; Jones, M K; Kaufman, L J; Kinney, E R; Krämer, K; Lagamba, L; Lerose, J; Lhuillier, D; Lindgren, R; Liyanage, N; McCormick, K; Meziani, Z E; Michaels, R; Moffit, B; Monaghan, P; Nanda, S; Paschke, K D; Perdrisat, C F; Punjabi, V; Qattan, I A; Ransome, R D; Reimer, P E; Reitz, B; Saha, A; Schulte, E C; Sheyor, R; Slifer, K J; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Wang, K; Wijesooriya, K; Wojtsekhowski, B; Zhu, L

    2007-01-01

    We measured the angular dependence of the three recoil proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily.. Transverse polarizations are not well described, but suggest isovector dominance.

  1. Spin Physics Experiments at NICA-SPD with polarized proton and deuteron beams

    Directory of Open Access Journals (Sweden)

    Savin I.

    2015-01-01

    Full Text Available The brief description of the Letter of Intent proposing primarily to perform measurements of asymmetries of the DY pair production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading twist collinear and TMD PDFs of quarks and anti-quarks in nucleons.

  2. ACCELERATING AND COLLIDING POLARIZED PROTONS IN RHIC WITH SIBERIAN SNAKES.

    Energy Technology Data Exchange (ETDEWEB)

    ROSER,T.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE - WANG,J.; BRENNAN,J.M.; BROWN,K.A.; BUNCE,G.; CAMERON,P.; COURANT,E.D.; DREES,A.; FISCHER,W.; ET AL

    2002-06-02

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180{sup o} about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV. We report on our experiences during commissioning and operation of collider with polarized protons.

  3. Polarization measurements of proton capture gamma rays

    NARCIS (Netherlands)

    Suffert, M.; Endt, P.M.; Hoogenboom, A.M.

    1959-01-01

    The linear polarization has been measured of eight different gamma rays of widely differing energies (Eγ = 0.8 - 8.0 MeV) emitted at resonances in the 24Mg(p, γ)25Al, 30Si(p, γ)31P, and 32S(p, γ)33Cl reactions. The gamma rays emitted at 90° to the proton beam were Compton scattered in a 2″ NaI scint

  4. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  5. Spin transfer to $\\Lambda_{c}^{+}$ hyperons in polarized proton collisions at RHIC

    CERN Document Server

    Rykov, V L

    2004-01-01

    The analysis\\cite{ohkuma:1} of helicity transfer to $\\Lambda_{c}^{+}$ in polarized proton collisions is extended to the proton helicity correlations with the $\\Lambda_{c}^{+}$ transverse polarization in the production plane (parameter $D_{LS}$). The available spin transfer observables for the collisions of {\\em two} longitudinally polarized protons are evaluated. It is shown that, in the central region at $\\Lambda_{c}^{+}$ transverse momenta of a few GeV/c, $D_{LS}$ parameters are of about the same size as the helicity-to-helicity correlations. The methodical issue of using spin transfers for cross-checks of systematic errors in cross-section $A_{LL}$ measurements at polarized proton colliders is also briefly discussed.

  6. Transverse Force on Transversely Polarized Quarks in Longitudinally Polarized Nucleons

    CERN Document Server

    Abdallah, Manal

    2016-01-01

    We study the semi-classical interpretation of the $x^3$ and $x^4$ moments of twist-3 parton distribution functions (PDFs). While no semi-classical interpretation for the higher moments of $g_T(x)$ and $e(x)$ was find, the $x^3$ moment of the chirally odd spin-dependent twist-3 PDF $h_L^3(x)$ can be related to the longitudinal gradient of the transverse force on transversely polarized quarks in longitudinally polarized nucleons in a DIS experiment. We discuss how this result relates to the torque acting on a quark in the same experiment. This has further implications for comparisons between tha Jaffe-Manohar and the Ji decompositions of the nucleon spin.

  7. Double-polarization observable G in neutral-pion photoproduction off the proton

    CERN Document Server

    Thiel, A; Lang, M; Afzal, F; Anisovich, A V; Bantes, B; Bayadilov, D; Beck, R; Bichow, M; Brinkmann, K -T; Böse, S; Crede, V; Dieterle, M; Dutz, H; Elsner, D; Ewald, R; Fornet-Ponse, K; Friedrich, St; Frommberger, F; Funke, Ch; Goertz, St; Gottschall, M; Gridnev, A; Grüner, M; Gutz, E; Hammann, D; Hammann, Ch; Hannappel, J; Hartmann, J; Hillert, W; Hoffmeister, Ph; Honisch, Ch; Jude, T; Kaiser, D; Kalinowsky, H; Kalischewski, F; Kammer, S; Keshelashvili, I; Klassen, P; Kleber, V; Klein, F; Klempt, E; Koop, K; Krusche, B; Kube, M; Lopatin, I; Mahlberg, Ph; Makonyi, K; Metag, V; Meyer, W; Müller, J; Müllers, J; Nanova, M; Nikonov, V; Piontek, D; Reeve, S; Reicherz, G; Runkel, S; Sarantsev, A; Schmidt, Ch; Schmieden, H; Seifen, T; Sokhoyan, V; Spieker, K; Thoma, U; Urban, M; van Pee, H; Walther, D; Wendel, Ch; Wilson, A; Winnebeck, A; Witthauer, L

    2016-01-01

    This paper reports on a measurement of the double-polarization observable G in $\\pi^0$ photoproduction off the proton using the CBELSA/TAPS experiment at the ELSA accelerator in Bonn. The observable G is determined from reactions of linearly-polarized photons with longitudinally-polarized protons. The polarized photons are produced by bremsstrahlung off a properly oriented diamond radiator. A frozen spin butanol target provides the polarized protons. The data cover the photon energy range from 617 to 1325 MeV and a wide angular range. The experimental results for G are compared to predictions by the Bonn-Gatchina (BnGa), J\\"ulich-Bonn (J\\"uBo), MAID and SAID partial wave analyses. Implications of the new data for the pion photoproduction multipoles are discussed.

  8. Double-polarization observable G in neutral-pion photoproduction off the proton

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, A.; Lang, M.; Afzal, F.; Beck, R.; Boese, S.; Funke, C.; Gottschall, M.; Gruener, M.; Hammann, C.; Hannappel, J.; Hartmann, J.; Hoffmeister, P.; Honisch, C.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Klassen, P.; Klempt, E.; Koop, K.; Kube, M.; Mahlberg, P.; Mueller, J.; Muellers, J.; Piontek, D.; Schmidt, C.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thoma, U.; Urban, M.; Pee, H. van; Walther, D.; Wendel, C.; Winnebeck, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Eberhardt, H.; Bantes, B.; Dutz, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Frommberger, F.; Goertz, S.; Hammann, D.; Hillert, W.; Jude, T.; Kammer, S.; Kleber, V.; Klein, F.; Reeve, S.; Runkel, S.; Schmieden, H. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Anisovich, A.V.; Bayadilov, D.; Nikonov, V.; Sarantsev, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Bichow, M.; Meyer, W.; Reicherz, G. [Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (Germany); Brinkmann, K.T.; Gutz, E. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen und Kernphysik, Bonn (Germany); Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Crede, V. [Florida State University, Department of Physics, Tallahassee, FL (United States); Dieterle, M.; Keshelashvili, I.; Krusche, B.; Witthauer, L. [Universitaet Basel, Institut fuer Physik, Basel (Switzerland); Friedrich, S.; Makonyi, K.; Metag, V.; Nanova, M. [Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Gridnev, A.; Lopatin, I. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Wilson, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Florida State University, Department of Physics, Tallahassee, FL (United States); Collaboration: The CBELSA/TAPS Collaboration

    2017-01-15

    This paper reports on a measurement of the double-polarization observable G in π{sup 0} photoproduction off the proton using the CBELSA/TAPS experiment at the ELSA accelerator in Bonn. The observable G is determined from reactions of linearly polarized photons with longitudinally polarized protons. The polarized photons are produced by bremsstrahlung off a diamond radiator of well-defined orientation. A frozen spin butanol target provides the polarized protons. The data cover the photon energy range from 617 to 1325 MeV and a wide angular range. The experimental results for G are compared to predictions by the Bonn-Gatchina (BnGa), Juelich-Bonn (JueBo), MAID and SAID partial wave analyses. Implications of the new data for the pion photoproduction multipoles are discussed. (orig.)

  9. Measurement of Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, H; Bosted, P; Elouadrhiri, L; Adhikari, K P; Aghasyan, M; Amaryan, M; Anghinolfi, M; Baghdasaryan, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Branford, D; Briscoe, W J; Brooks, W; Carman, D S; Casey, L; Cole, P L; Collins, P; Crabb, D; Crede, V; D& #x27; Angelo, A; Daniel, A; Dashyan, N; DeVita, R; DeSanctis, E; Deur, A; Dey, B; Dhamija, S; Dickson, R; Djalali, C; Dodge, G; Doughty, D; Dupre, R; El Alaoui, A; Eugenio, P; Fegan, S; Fersch, M; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Hassall, N; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Isupov, E L; Jawalkar, S S; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal,; Kim, W; Klein, A; Klein, F J; Konczykowski, P; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Livingston, K; Lu, H Y; Markov, N; Mayer, M; McAndrew, J; McCracken, M E; McKInnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moreno, B; Moriya, K; Morrison, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niroula, M R; Osipenko, M; Ostrovidov, A I; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Perrin, Y; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Protopopescu; Raue, B A; Ricco, G; Ripani, M; Rosner, G; Rossi, P; Sabatie, F; Saini, M S; Salamanca, J; Salgado, C; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Sober, D I; Sokhan, D; Stapanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Suleiman, R; Taiuti, M; Tedeschi, D J; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voutier, E; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zhang, J; Zhao, B; Zhao, Z W

    2010-12-01

    We report the first measurement of the transverse momentum dependence of double spin asymmetries in semi-inclusive production of pions in deep inelastic scattering off the longitudinally polarized proton. Data have been obtained using a polarized electron beam of 5.7 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). A significant non-zero $\\sin2\\phi$ single spin asymmetry was also observed for the first time indicating strong spin-orbit correlations for transversely polarized quarks in the longitudinally polarized proton. The azimuthal modulations of single spin asymmetries have been measured over a wide kinematic range.

  10. Measurement of Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target

    CERN Document Server

    Avakian, H; Burkert, V D; Elouadrhiri, L; Adhikari, K P; Aghasyan, M; Amaryan, M; Anghinolfi, M; Baghdasaryan, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Branford, D; Briscoe, W J; Brooks, W; Carman, D S; Casey, L; Cole, P L; Collins, P; Crabb, D; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; DeVita, R; DeSanctis, E; Deur, A; Dey, B; Dhamija, S; Dickson, R; Djalali, C; Dodge, G; Doughty, D; Dupre, R; ElAlaoui, A; Eugenio, P; Fegan, S; Fersch, R; Forest, T A; Fradi, A; Gabrielyan, M Y; Gavalian, G; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Gohn, W; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Hassall, N; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Isupov, E L; Jawalkar, S S; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, W; Klein, A; Klein, F J; Konczykowski, P; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Livingston, K; Lu, H Y; Markov, N; Mayer, M; McAndrew, J; McCracken, M E; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moreno, B; Moriya, K; Morrison, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niroula, M R; Osipenko, M; Ostrovidov, A I; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Pereira, S Anefalos; Perrin, Y; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Raue, B A; Ricco, G; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salamanca, J; Salgado, C; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Suleiman, R; Taiuti, M; Tedeschi, D J; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voutier, E; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zhang, J; Zhao, B; Zhao, Z W

    2010-01-01

    We report the first measurement of the transverse momentum dependence of double spin asymmetries in semi-inclusive production of pions in deep inelastic scattering off the longitudinally polarized proton. Data have been obtained using a polarized electron beam of 5.7 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). A significant non-zero $\\sin2\\phi$ single spin asymmetry was also observed for the first time indicating strong spin-orbit correlations for transversely polarized quarks in the longitudinally polarized proton. The azimuthal modulations of single spin asymmetries have been measured over a wide kinematic range.

  11. Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

    CERN Document Server

    Fanelli, C; Hamilton, D J; Salme, G; Wojtsekhowski, B; Ahmidouch, A; Annand, J R M; Baghdasaryan, H; Beaufait, J; Bosted, P; Brash, E J; Butuceanu, C; Carter, P; Christy, E; Chudakov, E; Danagoulian, S; Day, D; Degtyarenko, P; Ent, R; Fenker, H; Fowler, M; Frlez, E; Gaskell, D; Gilman, R; Horn, T; Huber, G M; de Jager, C W; Jensen, E; Jones, M K; Kelleher, A; Keppel, C; Khandaker, M; Kohl, M; Kumbartzki, G; Lassiter, S; Li, Y; Lindgren, R; Lovelace, H; Luo, W; Mack, D; Mamyan, V; Margaziotis, D J; Markowitz, P; Maxwell, J; Mbianda, G; Meekins, D; Meziane, M; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Mulholland, J; Nelyubin, V; Pentchev, L; Perdrisat, C F; Piasetzky, E; Prok, Y; Puckett, A J R; Punjabi, V; Shabestari, M; Shahinyan, A; Slifer, K; Smith, G; Solvignon, P; Subedi, R; Wesselmann, F R; Wood, S; Ye, Z; Zheng, X

    2015-01-01

    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The WACS polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of \\cma$= 70^\\circ$. The longitudinal transfer \\KLL, measured to be $0.645 \\pm 0.059 \\pm 0.048$, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is $\\sim$3 times larger than predicted by the GPD-based calculations, which indicates a significant unknown contribution to the scattering amplitude.

  12. Spin physics experiments at NICA-SPD with polarized proton and deuteron beams

    Energy Technology Data Exchange (ETDEWEB)

    Savin, I.; Efremov, A.; Pshekhonov, D.; Kovalenko, A.; Teryaev, O.; Shevchenko, O.; Nagajcev, A.; Guskov, A.; Kukhtin, V.; Toplilin, N. [JINR, Dubna (Russian Federation)

    2016-08-15

    This is a brief description of suggested measurements of asymmetries of the Drell-Yan (DY) pair production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading-twist collinear and TMD PDFs of quarks and anti-quarks in nucleons. Other spin effects in hadronic and heavy-ion collisions may be also studied constituting the spin physics program at NICA. (orig.)

  13. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chris Harris

    2001-08-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  14. Polarizing a stored proton beam by spin flip?

    CERN Document Server

    Oellers, D; Barsov, S; Bechstedt, U; Benati, P; Bertelli, S; Chiladze, D; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Dietrich, J; Dolfus, N; Dymov, S; Engels, R; Erven, W; Garishvili, A; Gebel, R; Goslawski, P; Grigoryev, K; Hadamek, H; Kacharava, A; Khoukaz, A; Kulikov, A; Langenberg, G; Lehrach, A; Lenisa, P; Lomidze, N; Lorentz, B; Macharashvili, G; Maier, R; Martin, S; Merzliakov, S; Meshkov, I N; Meyer, H O; Mielke, M; Mikirtychiants, M; Mikirtychiants, S; Nass, A; Nekipelov, M; Nikolaev, N N; Nioradze, M; d'Orsaneo, G; Papenbrock, M; Prasuhn, D; Rathmann, F; Sarkadi, J; Schleichert, R; Smirnov, A; Seyfarth, H; Sowinski, J; Spoelgen, D; Stancari, G; Stancari, M; Statera, M; Steffens, E; Stein, H J; Stockhorst, H; Straatmann, H; Ströher, H; Tabidze, M; Tagliente, G; Engblom, P Thoerngren; Trusov, S; Vasilyev, A; Weidemann, Chr; Welsch, D; Wieder, P; Wüstner, P; Zupranski, P

    2009-01-01

    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

  15. Studies of Unstable Nuclei with Spin-Polarized Proton Target

    Science.gov (United States)

    Sakaguchi, Satoshi; Uesaka, Tomohiro; Wakui, Takashi; Chebotaryov, Sergey; Kawahara, Tomomi; Kawase, Shoichiro; Milman, Evgeniy; Tang, Tsz Leung; Tateishi, Kenichiro; Teranishi, Takashi

    2016-02-01

    Roles of spin-dependent interactions in unstable nuclei have been investigated via the direct reaction of radioactive ions with a solid spin-polarized proton target. The target has a unique advantage of a high polarization of 20-30% under low magnetic field of 0.1 T and at a high temperature of 100 K, which allow us to detect recoil protons with good angular resolution. Present status of on-going experimental studies at intermediate energies, such as proton elastic scattering and (p, 2p) knockout reaction, and new physics opportunities expected with low-energy RI beams are overviewed.

  16. Using Polarized Beams to Investigate the Spin of the Proton

    Science.gov (United States)

    Trentalange, Stephen

    2013-10-01

    The spin of the proton has been investigated with polarized beams and targets for decades and has led to our current picture of the kinematic and partonic structure of the proton's spin. Historically, this picture has relied heavily on data from Deep Inelastic Scattering of polarized leptons and is still mainly influenced by this framework. Over the past decade, operation of the RHIC/AGS has vastly increased the amount of data from collisions of polarized proton beams. Much theoretical and experimental work has been done to understand such probes as pions, jets, and Z/Ws especially with the STAR, PHENIX, BRAHMS, AnDY and pp2pp detectors. I will present an overview of the capabilities of the RHIC complex and demonstrate how measurements from many experiments are complementing and expanding our understanding of the proton spin.

  17. Polarized Proton Collisions at 205GeV at RHIC

    Science.gov (United States)

    Bai, M.; Roser, T.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Courant, E.; Drees, A.; Fischer, W.; Gardner, C.; Gill, R.; Glenn, J.; Haeberli, W.; Huang, H.; Jinnouchi, O.; Kewisch, J.; Luccio, A.; Luo, Y.; Nakagawa, I.; Okada, H.; Pilat, F.; Mackay, W. W.; Makdisi, Y.; Montag, C.; Ptitsyn, V.; Satogata, T.; Stephenson, E.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Wise, T.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2006-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

  18. Proton polarization from π+ absorption in 4He

    Science.gov (United States)

    Aclander, J.; MayTal-Beck, S.; Altman, A.; Ashery, D.; Hahn, H.; Moinester, M. A.; Rahav, A.; Feltham, A.; Jones, G.; Pavan, M.; Sevior, M.; Hutcheon, D.; Ottewell, D.; Smith, G. R.; Niskanen, J. A.

    1993-02-01

    The polarization of protons resulting from π+ absorption in 4He was measured at bombarding energies of 120 MeV and 250 MeV. Events arising from absorption in a quasi-deuteron were analysed by using kinematical constraints. The apparatus was tested by measuring the polarization of protons resulting from π +d→ overline→pp . Differences observed between polarization measured for pion absorption in the deuteron and in quasi-deuterons inside 3He and 4He suggest that the density of the absorbing nucleon pair affects this observable. There is however a large discrepancy between the experimental results and theoretical predictions.

  19. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian

    2010-04-15

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  20. Enhanced lithographic resolution using longitudinal polarization state of light

    Science.gov (United States)

    Van, My-Phung; Ushakova, Katsiaryna; Bastiaansen, Cees W. M.; Pereira, Silvania F.; Urbach, H. Paul; Broer, Dirk J.

    2015-10-01

    Laser direct-writing is an important technique for the fabrication of complex patterns. There is a continuous need for structures with increasingly small features, i.e., enhanced resolution. Focused radially polarized light is known to exhibit a narrow longitudinal polarization component. Here, a proof-of-concept is shown of enhanced resolution through polarization-selectivity by the selective recording of the longitudinal polarization component in a polarization-selective homeotropic and smectic B photoresist. The full-width-at-half-maximum (FWHM) of the fabricated spots in the polarization-selective resist is up to 56% smaller compared to the FWHM of the same spot in a photoresist that is not polarization-selective, which supports simulations that predict a theoretical maximum reduction of 62%.

  1. Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target

    CERN Document Server

    Airapetian, A; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bacchetta, A; Bailey, P; Balin, D; Beckmann, M; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Bouwhuis, M; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Chen, T; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E G; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Grebenyuk, O; Gregor, I M; Hadjidakis, C; Hafidi, K; Hartig, M; Hasch, D; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, H; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Osborne, A; Pickert, N; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Sommer, W; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Vikhrov, V; Vincter, M G; Vogel, C; Volmer, J; Wang, S; Wendland, J; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P

    2005-01-01

    Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case. This contribution is significantly positive for (\\pi^+) mesons and dominates the asymmetries on a longitudinally polarized target previously measured by \\hermes. The subleading-twist contribution for (\\pi^-) mesons is found to be small.

  2. Proton polarization from π+ absorption in 3He

    Science.gov (United States)

    Maytal-Beck, S.; Aclander, J.; Altman, A.; Ashery, D.; Hahn, H.; Moinester, M. A.; Rahav, A.; Feltham, A.; Jones, G.; Pavan, M.; Sevior, M.; Hutcheon, D.; Ottewell, D.; Smith, G. R.; Niskanen, J. A.

    1992-05-01

    We present the first polarization measurements for pion absorption on a nucleus heavier than the deuteron. The polarization of protons resulting from π+ absorption in the 3He was measured at bombarding energies of 120 and 250 MeV. Protons from absorption in a quasideuteron were selected by applying kinematical constraints. A significant discrepancy was observed between the experimental results and theoretical predictions. At 120 MeV the measured polarizations for 3He are consistent with those of the deuteron. At 250 MeV the angular distribution of the polarization is significantly different than for the deuteron, showing sensitivity to the nuclear density, and thus may be sensitive to short range correlations between nucleons.

  3. Polarity governed selective amplification of through plane proton shuttling in proton exchange membrane fuel cells.

    Science.gov (United States)

    Gautam, Manu; Chattanahalli Devendrachari, Mruthyunjayachari; Thimmappa, Ravikumar; Raja Kottaichamy, Alagar; Pottachola Shafi, Shahid; Gaikwad, Pramod; Makri Nimbegondi Kotresh, Harish; Ottakam Thotiyl, Musthafa

    2017-03-15

    Graphene oxide (GO) anisotropically conducts protons with directional dominance of in plane ionic transport (σ IP) over the through plane (σ TP). In a typical H2-O2 fuel cell, since the proton conduction occurs through the plane during its generation at the fuel electrode, it is indeed inevitable to selectively accelerate GO's σ TP for advancement towards a potential fuel cell membrane. We successfully achieved ∼7 times selective amplification of GO's σ TP by tuning the polarity of the dopant molecule in its nanoporous matrix. The coexistence of strongly non-polar and polar domains in the dopant demonstrated a synergistic effect towards σ TP with the former decreasing the number of water molecules coordinated to protons by ∼3 times, diminishing the effects of electroosmotic drag exerted on ionic movements, and the latter selectively accelerating σ TP across the catalytic layers by bridging the individual GO planes via extensive host guest H-bonding interactions. When they are decoupled, the dopant with mainly non-polar or polar features only marginally enhances the σ TP, revealing that polarity factors contribute to fuel cell relevant transport properties of GO membranes only when they coexist. Fuel cell polarization and kinetic analyses revealed that these multitask dopants increased the fuel cell performance metrics of the power and current densities by ∼3 times compared to the pure GO membranes, suggesting that the functional group factors of the dopants are of utmost importance in GO-based proton exchange membrane fuel cells.

  4. FIDDLING CARBON STRINGS WITH POLARIZED PROTON BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, H.; KURITA, K.

    2006-05-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region was first tested in the Brookhaven AGS successfully. CNI Polarimeters were then installed in the AGS and both RHIC rings. The polarimeter consists of ultra-thin carbon targets and silicon strip detectors. The waveform digitizers are used for signal readout, which allows deadtime-less data processing on the fly. Polarimeters are crucial instrumentation for the RHIC spin physics program. This paper summarizes the polarimeter design issues and operation results.

  5. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.

    Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  6. Longitudinal tracking studies for a high intensity proton synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K. [Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States)

    1996-06-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed. {copyright} {ital 1996 American Institute of Physics.}

  7. Polarization Observables for Kaon Photoproduction from Polarized Protons

    CERN Document Server

    Walford, Natalie K

    2013-01-01

    The search for undiscovered excited states of the nucleon continues to be a focus of experiments at Jefferson Lab.Recent LQCD calculations have confirmed long-standing quark-model predictions of many more states than have so far been identified.A large effort for the N-star program has been launched using the CLAS detector to provide the database that will allow nearly model-independent partial wave analyses to be carried out in the search for such states. Polarization observables play a crucial role in this effort, as they are essential in disentangling overlapping resonant and non-resonant amplitudes. In 2010, double-polarization data were taken at JLab using circularly polarized photons incident on a transversely polarized frozen-spin butanol target. Our current analysis yields preliminary data of the T and F asymmetries for kaon photoproduction final states, which are compared to predictions of recent multipole analyses. This work is the first of its kind and will significantly broaden the world database ...

  8. Measurement of the longitudinal spin structure of the proton by COMPASS

    Science.gov (United States)

    Korzenev, A.; Compass Collaboration

    2010-01-01

    The inclusive A and hadron double-spin asymmetries Apπ+, Apπ-, ApK+, ApK- measured at COMPASS (CERN SPS) in deep-inelastic scattering of a polarized muon beam off a polarized NH 3 solid target are presented. The results have been obtained with the full statistics collected in 2007 for the longitudinal target polarization. Proton asymmetries have been combined with published deuteron ones. An evaluation of the non-singlet spin-dependent structure function g1NS(x,Q) and its first moment, which confirms the validity of the Bjorken sum-rule, is presented. A LO evaluation of polarized quark densities is also presented. The use of the proton data allows to perform a full flavor separation and to extract individual helicity densities of u, d, u¯, d¯ and s quarks. All sea quark densities are found to be compatible with zero in the full range of the measurements.

  9. J/psi Production Properties From Polarized Proton-proton Collisions At 200 Gev

    CERN Document Server

    Al-Jamel, A F

    2004-01-01

    We present preliminary results on J/ψ production asymmetries and polarization in polarized proton-proton collisions at s = 200 GeV, based on data collected in 2002–2003 using the Muon Arms of PHENIX. The integrated luminosity and average polarization were 350 nb−1 and 27%, respectively. For each arm, the J/ψ mass spectra and the associated counts are extracted in two pT bins with the colliding beams either with the same helicity configuration (++/−−) or opposite (+−/−+). Preliminary results on ALL are presented, based on the J/ψ counting in each pT bin and the corresponding measured relative luminosity. The dependence of the J/ψ polarization on the helicity configuration at low and high pT is also presented by studying the decay cos &thetas; distribution in each bin.

  10. The recoil proton polarization in. pi. p elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  11. Proton acceleration by circularly polarized traveling electromagnetic wave

    Directory of Open Access Journals (Sweden)

    Amol Holkundkar

    2012-09-01

    Full Text Available The acceleration of charged particles, producing collimated monoenergetic beams, over short distances holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism for accelerating protons to high energies by using a phase modulated circularly polarized electromagnetic wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless amplitude of 0.1 is capable to accelerate a 1 keV proton to 386 MeV under optimum conditions. Finally, we discuss possible limitations of the acceleration scheme.

  12. Proton acceleration by circularly polarized traveling electromagnetic wave

    CERN Document Server

    Holkundkar, A; Marklund, M

    2012-01-01

    The acceleration of charged particles, producing collimated mono-energetic beams, over short distances holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism for accelerating protons to high energies by using a phase-modulated circularly polarized electromagnetic wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless amplitude of 0.1 is capable to accelerate a 1 KeV proton to 386 MeV under optimum conditions. Finally we discuss possible limitations of the acceleration scheme.

  13. Probing Gluon Helicity with Dijets from $\\sqrt s$ = 510 GeV Polarized Proton Collisions at STAR

    CERN Document Server

    Ramachandran, Suvarna

    2016-01-01

    The production of jets in polarized proton collisions at STAR is dominated by quark-gluon and gluon-gluon scattering processes. The dijet longitudinal double-spin asymmetry $(A_{LL})$ is sensitive to the helicity distributions and may be used to extract information about the gluon helicity contribution $\\Delta{g(x,Q^2)}$ to the spin of the proton. Previous STAR jet measurements at $\\sqrt s$ = 200 GeV show evidence of polarized gluons for gluon momentum fractions above 0.05. The measurement of dijet $A_{LL}$ at $\\sqrt s$ = 510 GeV will extend the current constraints on $\\Delta{g(x,Q^2)}$ to lower gluon momentum fractions and allow for the reconstruction of the partonic kinematics at leading order. These proceedings present preliminary results from the dijet $A_{LL}$ measurement from $\\sim50 pb^{-1}$ of $\\sim50 \\%$ polarized proton data taken during the 2012 RHIC run.

  14. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Matthew [Univ. of Virginia, Charlottesville, VA (United States)

    2001-05-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  15. Nanofocusing of longitudinally polarized light using absorbance modulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang; Zhao, Xing, E-mail: zhaoxingtjnk@nankai.edu.cn; Zhang, Bo; Zheng, Yi; Zhou, Liqiu; Fang, Zhiliang [Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Ministry of Education of China, Nankai University, Tianjin 300071 (China); Wang, Lingjie; Wu, Yanxiong [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2014-02-10

    Recently, many methods based on amplitude or phase modulation to reduce the focal spot and enhance the longitudinal field component of a tight-focused radially polarized light beam have been suggested. But they all suffer from spot size limit 0.36λ/NA and large side lobes strength in longitudinal component. Here, we report a method of generating a tighter focused spot by focusing radially polarized and azimuthally polarized beams of different wavelengths on a thin photochromic film through a high-numerical-aperture lens simultaneously. In this method, by suppressing the radial component and compressing the longitudinal component of radially polarized beam, absorbance modulation makes the ultimate spot size break the size limit of 0.36λ/NA with side-lobe intensity of longitudinal component below 1% of central-peak intensity. The theoretical analysis and simulation demonstrate that the focal spot size could be smaller than 0.1λ with nearly all radial component blocked at high intensity ratio of the two illuminating beams.

  16. Questions and prospects in quarkonium polarization measurements from proton-proton to nucleus-nucleus collisions

    CERN Document Server

    Faccioli, Pietro

    2012-01-01

    Polarization measurements are the best instrument to understand how quark and antiquark combine into the different quarkonium states, but no model has so far succeeded in explaining the measured J/psi and Upsilon polarizations. On the other hand, the experimental data in proton-antiproton and proton-nucleus collisions are inconsistent, incomplete and ambiguous. New analyses will have to properly address often underestimated issues: the existence of azimuthal anisotropies, the dependence on the reference frame, the influence of the experimental acceptance on the comparison with other measurements and with theory. Additionally, a recently developed frame-invariant formalism will provide an alternative and often more immediate physical viewpoint and, at the same time, will help probing systematic effects due to experimental biases. The role of feed-down decays from heavier states, a crucial missing piece in the current experimental knowledge, will have to be investigated. Ultimately, quarkonium polarization meas...

  17. Contribution superstring Z' boson on the polarization effects in proton-proton collisions

    CERN Document Server

    Muradov, R K

    2004-01-01

    In this work we investigate the single- and the double- spin asymmetries at the collisions of polarized protons $pp \\to (\\gamma*, Z^0,Z')+X within the scope of QCD, electroweak interaction and superstring E_6 theory. The helicity amplitude method is used. Analytical expressions for the single- and the double- spin asymmetries are obtained and their dependence from the transverse momentum of lepton pair is investigated at the three different values of invariant masses of lepton pair. Has been extracted pure contribution coming from superstring Z' boson on the single- and double- spin asymmetries. The obtained results allow to investigate the spin structure of the proton.

  18. Measurement of polarization of cumulative protons in the reaction. gamma. A. -->. pX

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R.A.; Avakyan, E.O.; Avetisyan, A.; Asatryan, R.A.; Gavalyan, V.G.; Garibyan, Y.A.; Danagulyan, S.S.; Eganov, V.S.; Keropyan, I.A.; Marukyan, G.O.

    1985-09-01

    Polarization of cumulative protons in the reaction ..gamma..A..-->..pX has been measured in the 190--270 MeV proton energy range for the nuclei C, Cu, Sn, and Pb. The measured polarization is practically independent of the mass number of the nucleus and of the proton energy.

  19. An Approach to Extract the Spin Transfer to in Polarized Proton-Proton Collision

    Institute of Scientific and Technical Information of China (English)

    HAN Ran; YE Hong-Xue; LIANG Yu-Tie; MAO Ya-Jun

    2008-01-01

    We introduce an approach to extract the spin transfer to (A) in polarized proton-proton collision, based on the relation between single spin asymmetry and the polarization of (A) production. With 4 × 106 (A) events simulated for a PHENIX detector system, DLL = 0.1598 ± 0.0343 is retrieved by the approach and it agrees very well with the input value of 0.1429. The approach is further tested and confirmed with 'bunch shuffling' method for the simulated events as well as experimental events collected at PHENIX in 2003. It is concluded that one can correctly extract the spin transfer without detailed understanding of acceptance correction even if the correction is significantly large in PHENIX experiment by using the approach described here. The method can be generally used for spin transfer study.

  20. Leading Neutrons From Polarized Proton-Nucleus Collisions

    CERN Document Server

    Kopeliovich, B Z; Schmidt, Ivan

    2016-01-01

    Leading neutron production on protons is known to be subject to strong absorptive corrections, which have been under debate for a long time. On nuclear targets these corrections are significantly enhanced and push the partial cross sections of neutron production to the very periphery of the nucleus. As a result, the A-dependences of inclusive and diffractive neutron production turn out to be similar. The mechanism of \\pi-a_1 interference, which successfully explained the observed single-spin asymmetry of neutrons in polarized pp interactions, is extended here to polarized pA collisions. Corrected for nuclear effects it explains well the magnitude and sign of the asymmetry A_N observed in inelastic events, resulting in a violent break up of the nucleus. However the excessive magnitude of A_N observed in the diffractive sample, remains a challenge.

  1. On the East-West Longitudinally Asymmetric Distribution of Solar Proton Events

    CERN Document Server

    He, H -Q

    2016-01-01

    A large data set of 78 solar proton events observed near the Earth's orbit during 1996-2011 is investigated. An East-West longitudinal (azimuthal) asymmetry is found to exist in the distribution of flare sources of solar proton events. With the same longitudinal separation between the flare sources and the magnetic field line footpoint of observer, the number of the solar proton events originating from solar sources located on the eastern side of the nominal magnetic footpoint of observer is larger than the number of the solar proton events from solar sources located on the western side. We emphasize the importance of this statistical investigation in two aspects. On the one hand, this statistical finding confirms our previous simulation results obtained by numerically solving five-dimensional Fokker-Planck equation of solar energetic particle (SEP) transport. On the other hand, the East-West longitudinally (azimuthally) asymmetric distribution of solar proton events accumulated over a long time period provid...

  2. Polarization of cumulative protons in the reaction. gamma. A r arrow pX

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R.O.; Avetisyan, A.E.; Arestakesyan, G.A.; Bartikyan, M.V.; Garibyan, Y.A.; Grigoryan, A.E.; Eganov, V.S.; Karapetyan, A.P.; Karapetyan, M.P.; Keropyan, I.A.; and others

    1989-02-01

    The polarization of cumulative protons has been measured in the reaction {gamma}{ital A}{r arrow}{ital pX} in the proton-energy region 170--270 MeV for C and Sn nuclei in bremsstrahlung beams produced by 4.5- and 1.5-GeV electrons. The measured polarization value is close to zero.

  3. Spin structure of the proton from polarized inclusive deep-inelastic muon-proton scattering

    CERN Document Server

    Adams, D; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Karev, A G; Kessler, H J; Ketel, T; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Reyhancan, I; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Tlaczala, W; Trentalange, S; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1997-01-01

    We have measured the spin-dependent structure function $g_1^{\\rm p}$ in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003 < x < 0.7$ and $1\\gevtwo < Q^2 < 60\\gevtwo$. A next-to-leading order QCD analysis is used to evolve the measured $\\gpone(x,Q^2)$ to a fixed $Q^2_0$. The first moment of $\\gpone$ at $Q^2_0 = 10\\gevtwo$ is $\\gammap = 0.136\\pm 0.013 \\,(\\mbox{stat.}) \\pm 0.009\\,(\\mbox{syst.})\\pm 0.005\\ (\\mbox{evol.})$. This result is below the prediction of the Ellis--Jaffe sum rule by more than two standard deviations. The singlet axial charge $\\dsigt$ is found to be $0.28 \\pm 0.16$. In the Adler--Bardeen factorization scheme, $\\Delta g \\simeq 2$ is required to bring $\\Delta \\Sigma$ in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.

  4. RHIC polarized proton-proton operation at 100 GeV in Run 15

    Energy Technology Data Exchange (ETDEWEB)

    Schoefer, V. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Aschenauer, E. C. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Atoian, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States); D Ottavio, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Gardner, C. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Laster, J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Makdisi, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Marr, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Narayan, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Poblaguev, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Schmidke, W. B. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Steski, D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Yip, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zelenski, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zhang, S. Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-05-03

    The first part of RHIC Run 15 consisted of ten weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance. The largest effort consisted in commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a beam-beam compensation with the e-lens, which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic RF cature scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.

  5. Analyzing Powers and Differential Cross Sections for Polarized Proton Neutron Going to Negative Pion Proton Proton

    Science.gov (United States)

    Duncan, Fraser Andrew

    There is considerable interest in the pn to pi^-pp reaction which can proceed by a nonresonant channel from the isospin 0 pn initial state (an NDelta intermediate state cannot be formed). This thesis describes a measurement of analyzing powers and triple differential cross sections for a subset of this reaction, pn to pi^-pp(^1S_0) by isolating the quasifree process in pd to pi^-ppp_{s}. The experimental arrangement selects the relative S-wave component of the outgoing "diproton". The experiment was done on TRIUMF beam line 1B using a LD_2 target; the pion was detected in a magnetic spectrometer, the two outgoing protons in a scintillator bar array. The spectator proton was undetected. Data were taken in August 1989 at 353, 403 and 440 MeV beam energies. Of these the 403 and 440 MeV data are analysed in this thesis and analyzing powers and triple differential cross sections as a function of pion scattering angle extracted at centre of mass kinetic energies, T_{CM}, of 55 and 70 MeV (corresponding to the 403 and 440 MeV beam energies respectively). Partial wave analysis of the data shows that, while the isospin 0 channel dominates the reaction, contributing approximately 75% of the cross section at the energies studied here, there are significant contributions from the s and d-wave pion, isospin 1 channels. Of particular importance is the contribution from the s-wave pion, isospin 1, channel whose interference with the isospin 0 channels produces the characteristic shapes of the cross sections and analyzing powers observed in the data. The d-wave pion, isospin 1 channels, are also required to fully explain the observed analyzing power distributions, and are essential for the T_{CM} = 70MeV data. Comparisons of the pion production data measured in this experiment with pion absorption measurements on ^3He, where the absorption process is pi^-pp(^1S_0) to pn, show a shift in the shape of the differential cross section which can be interpreted as due to differences in

  6. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  7. Updated Report Acceleration of Polarized Protons to 120-150 GeV/c at Fermilab

    CERN Document Server

    Courant, E D; Leonova, M A; Lin, A M T; Liu, J; Lorenzon, W; Nees, D A; Raymond, R S; Sivers, D W; Wong, V K; Kourbanis, I; Derbenev, Ya S; Morozov, V S; Crabb, D G; Reimer, P E; O'Fallon, J R; Fidecaro, G; Fidecaro, M; Hinterberger, F; Troshin, S M; Ukhanov, M N; Kondratenko, A M; van Oers, W T H

    2011-01-01

    The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilab's Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polarized proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.

  8. Polarization of Lambda0 and antiLambda0 inclusively produced by 610GeV/c Sigma- and 525GeV/c proton beams

    CERN Document Server

    Sanchez-Lopez, J L; Engelfried, J; Akgun, U; Alkhazov, G; Amaro-Reyes, J; Atamanchuk, A G; Ayan, A S; Balatz, M Y; Blanco-Covarrubias, A; Bondar, N F; Cooper, P S; Dauwe, L J; Davidenko, G V; Dersch, U; Dolgolenko, A G; Dzyubenko, G B; Edelstein, R; Emediato, L; Endler, A M F; Eschrich, I; Escobar, C O; Estrada, N; Evdokimov, A V; Filimonov, I S; Flores-Castillo, A; García, F G; Gaspero, M; Giller, I; Golovtsov, V L; Gouffon, P; Gülmez, E; He Kangling; Iori, M; Jun, S Y; Kaya, M; Kilmer, J; Kim, V T; Kochenda, L M; Konorov, I; Kozhevnikov, A P; Krivshich, A G; Krüger, H; Kubantsev, M A; Kubarovskii, V P; Kulyavtsev, A I; Kuropatkin, N P; Kurshetsov, V F; Kushnirenko, A; Kwan, S; Lach, J; Lamberto, A; Landsberg, L G; Larin, I; Leikin, E M; Li Yunshan; Luksys, M; Lungov, T; Maleev, V P; Mao, D; Mao, Chensheng; Mao, Zhenlin; Mathew, P; Mattson, M; Matveev, V; McCliment, E; Moinester, M A; Molchanov, V V; Morelos, A; Nemitkin, A V; Neoustroev, P V; Newsom, C; Nilov, A P; Nurushev, S B; Ocherashvili, A; Onel, Y; Ozel, E; Ozkorucuklu, S; Penzo, Aldo L; Petrenko, S V; Pogodin, P I; Procario, M; Prutskoi, V A; Ramberg, E; Rappazzo, G F; Razmyslovich, B V; Rud, V I; Russ, J; Schiavon, Paolo; Simón, J; Sitnikov, A I; Skow, D; Smith, V J; Srivastava, M; Steiner, V; Stepanov, V; Stutte, L; Svoiski, M; Terentyev, N K; Thomas, G P; Torres, I; Uvarov, L N; Vasilev, A N; Vavilov, D V; Vazquez-Jauregui, E; Verebryusov, V S; Victorov, V A; Vishnyakov, V E; Vorobyov, A A; Vorwalter, K; You, J; Zhao, Wenheng; Zheng, Shuchen; Zukanovich-Funchal, R

    2007-01-01

    We have measured the polarization of Lambda0 and antiLambda0 inclusively produced by 610GeV/c Sigma- and 525GeV/c proton beams in the experiment SELEX during the 1996/7 fixed target run at Fermilab. The polarization was measured as a function of the Lambda longitudinal momentum fraction xF and transverse momentum pt. For the Lambda0 produced by Sigma- the polarization is increasing with xF, from slightly negative at x_F~0 to about 15% at large xF; it shows a non-monotonic behavior as a function of pt. For the proton beam, the Lambda0 polarization is negative and decreasing as a function of xF and pt. The antiLambda0 polarization is compatible with 0 for both beam particles over the full kinematic range. The target dependence was examined but no statistically significant difference was found.

  9. Observation of the longitudinal event structure in proton diffractive dissociation at the ISR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.M.; Meritet, L.; Reyrolle, M.; Vazeille, F.; Bonino, R.; Castellina, A.; Erhan, S.; Ingelman, G.; Medinnis, M.; Schlein, P.E.

    1986-02-06

    We study the internal structure of a forward-going p..pi../sup +/..pi../sup -/..pi../sup +/..pi../sup -/ system, with invariant mass in the range 2.5-4 GeV, produced through diffractive dissociation of a beam proton at the ISR. The shape of the system, as seen in its center-of-mass, deviates strongly from isotropic phase space and possesses, rather, a longitudinal structure with a major axis along the incoming proton direction. The final state proton momentum is aligned in the direction of the incoming proton, an effect which becomes more pronounced with increasing diffractive mass. (orig.).

  10. Two-Pion Production in Proton-Proton Collisions with Polarized Beam

    CERN Document Server

    El-Bary, S Abd; Bilger, R; Brinkmann, K -Th; Clement, H; Dietrich, M; Doroshkevich, E; Dshemuchadse, S; Erhardt, A; Eyrich, W; Filippi, A; Freiesleben, H; Fritsch, M; Geyer, R; Gillitzer, A; Hanhart, C; Hauffe, J; Haug, K; Hesselbarth, D; Jaekel, R; Jakob, B; Karsch, L; Kilian, K; Koch, H; Kress, J; Kuhlmann, E; Marcello, S; Marwinski, S; Meier, R; Möller, K; Morsch, H P; Naumann, Lutz; Ritman, J; Roderburg, E; Schoenmeier, P; Schulte-Wissermann, M; Schroeder, W; Steinke, M; Stinzing, F; Sun, G Y; Waechter, J; Wagner, G J; Wagner, M; Weidlich, U; Wilms, A; Wintz, P; Wirth, S; Zhang, G; Zupranski, P

    2008-01-01

    The two-pion production reaction $\\vec{p}p\\to pp\\pi^+\\pi^-$ was measured with a polarized proton beam at $T_p \\approx$ 750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed pulse technique for Quirl and central calorimeter provided positive $\\pi^+$ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing power values up to $A_y$ = 0.3.

  11. Enhanced proton acceleration in an applied longitudinal magnetic field

    CERN Document Server

    Arefiev, Alexey; Fiksel, Gennady

    2016-01-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The predicted improved characterist...

  12. Longitudinal {lambda} and anti {lambda} polarization at the COMPASS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Donghee

    2007-09-15

    At the COMPASS experiment at CERN {lambda} and anti {lambda} particles are produced in deep inelastic scattering (DIS) processes with high statistics. The main focus of the research is the understanding of the spin transfer mechanism from quarks to hadrons through the fragmentation process by utilizing the longitudinal {lambda} and anti {lambda} polarization. The result of the spin transfer provides useful information to test different model predictions which describe spin effects in hyperon production and the quark-antiquark asymmetry of the nucleon and hyperon. The {lambda} and anti {lambda} polarization are determined by measuring the acceptance corrected angular distribution of its decay products. A Monte Carlo simulation is used to correct the acceptance of the COMPASS spectrometer. In this work, preliminary results from data collected in the current fragmentation region during 2002-2004 are presented. A significantly positive average spin transfer of anti {lambda} is found to be equal to C{sub LL}=+0.232{+-}0.039(stat.){+-}0.022(sys.), while the spin transfer of lambda is compatible with zero within the statistical accuracy. The dependences of the spin transfer on various kinematic variables are also presented. (orig.)

  13. Longitudinal and transverse spin asymmetries for inclusive jet production at mid-rapidity in polarized p+p collisions at sqrt{s}=200 GeV

    CERN Document Server

    Adamczyk, L; Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Alekseev, I; Alford, J; Anderson, B D; Anson, C D; Arkhipkin, D; Aschenauer, E; Averichev, G S; Balewski, J; Banerjee, A; Barnovska, Z; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Bridgeman, A; Brovko, S G; Bruna, E; Bueltmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, P; Chwastowski, J; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; de Souza, R Derradi; Dhamija, S; Didenko, L; Ding, F; Dion, A; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Elnimr, M; Engelage, J; Eppley, G; Eun, L; Evdokimov, O; Fatemi, R; Fazio, S; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Geurts, F; Gliske, S; Gorbunov, Y N; Grebenyuk, O G; Grosnick, D; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Huo, L; Igo, G; Jacobs, W W; Jena, C; Joseph, J; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Kettler, D; Kikola, D P; Kiryluk, J; Kisiel, A; Kizka, V; Klein, S R; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Koroleva, L; Korsch, W; Kotchenda, L; Kowalik, K; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, L; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Lu, Y; Luo, X; Luszczak, A; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Mall, O I; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Millane, J; Mioduszewski, S; Mitrovski, M K; Mohammed, Y; Mohanty, B; Mondal, M M; Morozov, B; Munhoz, M G; Mustafa, M K; Naglis, M; Nandi, B K; Nasim, Md; Nayak, T K; Nogach, L V; Novak, J; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Olson, D; Ostrowski, P; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Porter, J; Poskanzer, A M; Powell, C B; Prindle, D; Pruneau, C; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Raniwala, R; Raniwala, S; Ray, R L; Redwine, R; Reed, R; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Ruan, L; Rusnak, J; Sahoo, N R; Sakrejda, I; Sakuma, T; Salur, S; Sandacz, A; Sandweiss, J; Sangaline, E; Sarkar, A; Sarsour, M; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, B; Schmitz, N; Schuster, T R; Seele, J; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shao, M; Sharma, B; Sharma, M; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Staszak, D; Steadman, S G; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Tlusty, D; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen, J A; Jr.,; Varma, R; Vasconcelos, G M S; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Witzke, W; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Xue, L; Yang, Y; Yang, Y; Yepes, P; Yi, Y; Yip, K; Yoo, I-K; Zawisza, M; Zbroszczyk, H; Zhang, J B; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y

    2012-01-01

    We report STAR measurements of the longitudinal double-spin asymmetry A_LL, the transverse single-spin asymmetry A_N, and the transverse double-spin asymmetries A_Sigma and A_TT for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt{s} = 200 GeV. The data represent integrated luminosities of 7.6 /pb with longitudinal polarization and 1.8 /pb with transverse polarization, with 50-55% beam polarization, and were recorded in 2005 and 2006. No evidence is found for the existence of statistically significant jet A_N, A_Sigma, or A_TT at mid-rapidity. Recent model calculations indicate the A_N results may provide new limits on the gluon Sivers distribution in the proton. The asymmetry A_LL significantly improves the knowledge of gluon polarization in the nucleon.

  14. Polarized proton parameters for the 2015 PP-on-Au setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-25

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Au stores.

  15. Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-02

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.

  16. Two-pion production in proton-proton collisions with a polarized beam

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Bary, S.; Abd El-Samad, S.; Wintz, P. [Atomic Energy Authority, NRC, Cairo (Egypt); Bilger, R.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Ehrhardt, K.; Erhardt, A.; Haug, K.; Kress, J.; Meier, R.; Wagner, G.J.; Weidlich, U. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); Brinkmann, K.T. [Rheinische Friedrich-Wilhelms Universitaet Bonn, Bonn (Germany); Dshemuchadse, S. [Technische Universitaet Dresden, Dresden (Germany); Forschungszentrum Rossendorf, Rossendorf (Germany); Eyrich, W.; Hauffe, J.; Schroeder, W.; Stinzing, F.; Waechter, J.; Wagner, M.; Wirth, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany); Filippi, A.; Marcello, S. [University of Torino (Italy); INFN, Sezione di Torino (Italy); Freiesleben, H.; Jaekel, R.; Jakob, B.; Karsch, L.; Kuhlmann, E.; Schulte-Wissermann, M.; Sun, G.Y. [Technische Universitaet Dresden, Dresden (Germany); Fritsch, M. [Ruhr-Universitaet Bochum, Bochum (Germany); Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Geyer, R.; Gillitzer, A.; Hanhart, C.; Hesselbarth, D.; Kilian, K.; Marwinski, S.; Morsch, H.P.; Ritman, J.; Roderburg, E. [Forschungszentrum Juelich, Juelich (Germany); Koch, H.; Steinke, M.; Wilms, A. [Ruhr-Universitaet Bochum, Bochum (Germany); Moeller, K.; Naumann, L. [Forschungszentrum Rossendorf, Rossendorf (Germany); Schoenmeier, P. [Technische Universitaet Dresden, Dresden (Germany); Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Zhang, G. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); Zupranski, P. [Soltan Institute for Nuclear Studies, Warsaw (Poland)

    2008-09-15

    The two-pion production reaction pp{yields}pp{pi}{sup +}{pi}{sup -} was measured with a polarized proton beam at T{sub p}{approx}750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed-pulse technique for Quirl and central calorimeter provided positive {pi}{sup +} identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross-sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing-power values up to A{sub y}=0.3. The data taken in the energy region of the excitation of the Roper resonance confirm that its dominant {pi}{pi} decay channel is N{sup *}{yields}N{sigma}. (orig.)

  17. Two-pion production in proton-proton collisions with a polarized beam

    Science.gov (United States)

    El-Bary, S. Abd; El-Samad, S. Abd; Bilger, R.; Brinkmann, K.-Th.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Dshemuchadse, S.; Ehrhardt, K.; Erhardt, A.; Eyrich, W.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Geyer, R.; Gillitzer, A.; Hanhart, C.; Hauffe, J.; Haug, K.; Hesselbarth, D.; Jaekel, R.; Jakob, B.; Karsch, L.; Kilian, K.; Koch, H.; Kress, J.; Kuhlmann, E.; Marcello, S.; Marwinski, S.; Meier, R.; Möller, K.; Morsch, H. P.; Naumann, L.; Ritman, J.; Roderburg, E.; Schönmeier, P.; Schulte-Wissermann, M.; Schroeder, W.; Steinke, M.; Stinzing, F.; Sun, G. Y.; Wächter, J.; Wagner, G. J.; Wagner, M.; Weidlich, U.; Wilms, A.; Wintz, P.; Wirth, S.; Zhang, G.; Zupranski, P.

    2008-09-01

    The two-pion production reaction pp → ppπ+π- was measured with a polarized proton beam at T p ≈ 750 and 800MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed-pulse technique for Quirl and central calorimeter provided positive π+ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross-sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing-power values up to A y = 0.3. The data taken in the energy region of the excitation of the Roper resonance confirm that its dominant ππ decay channel is N * → Nσ.

  18. Single-Spin Polarization Effects and the Determination of Timelike Proton Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-10-24

    We show that measurements of the proton's polarization in e{sup +}e{sup -} {yields} p{bar p} strongly discriminate between analytic forms of models which fit the proton form factors in the spacelike region. In particular, the single-spin asymmetry normal to the scattering plane measures the relative phase difference between the timelike G{sub E} and G{sub M} form factors. The expected proton polarization in the timelike region is large, of order of several tens of percent.

  19. On the suitability of longitudinal profile measurements using Coherent Smith-Purcell radiation for high current proton beams

    CERN Document Server

    Barros, Joanna; Vieille-Grosjean, Mélissa; Kittelmann, Irena Dolenc; Thomas, Cyrille

    2014-01-01

    The use of Smith-Purcell radiation to measure electrons longitudinal profiles has been demonstrated at several facilities in the picosecond and sub-picosecond range. There is a strong interest for the development of non intercepting longitudinal profile diagnostics for high current proton beams. We present here results of simulations on the expected yield of longitudinal profile monitors using Smith-Purcell radiation for such proton beams.

  20. Quantum Effects Under Migratory Polarization in Nanometer Layers of Proton Semiconductors and Dielectrics at Ultralow Temperatures

    Science.gov (United States)

    Annenkov, Yu. M.; Kalytka, V. A.; Korovkin, M. V.

    2015-05-01

    Quantum mechanism of interlayer polarization in condensed media in an alternating electric field at low and ultralow temperatures is studied. The nonstationary Liouville equation is solved jointly with the stationary Schrödinger equation and operator Poisson equation without taking into account the proton-proton and proton-phonon interaction. The nonequilibrium density matrix is calculated for an ensemble of non-interacting protons moving in a one-dimensional multi-well potential relief of rectangular shape in an alternating polarizing field. With the help of the non-stationary density matrix, anomalous effects associated with the displacement of the low-temperature maximum of the angle of tangent of dielectric loss in the layered crystals to the temperature of liquid helium are investigated. The results of quantum-mechanical calculations of the complex dielectric permittivity spectra (SCDP) can be used to study the tunneling mechanism of spontaneous polarization in ferroelectrics (KDP, DKDP).

  1. Measurement of the longitudinal proton structure function at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-03-15

    The reduced cross sections for ep deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q{sup 2}, the proton structure functions F{sub L} and F{sub 2} have been extracted in the region 5 x 10{sup -4}

  2. RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; DOttavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hahn, H.; Harvey, M.; Hayes, T.; Huang, H.; Ingrassia, P.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Lee, R.C.; Luccio, A.U.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Menga, P.M.; Michnoff, R.; Minty, M.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Pozdeyev, E.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Sivertz, M.; Smith, K.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    During the second half of Run-9, the Relativisitc Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points. The spin orientation of both beams at these collision points was controlled by helical spin rotators, and physics data were taken with different orientations of the beam polarization. Recent developments and improvements will be presented, as well as luminosity and polarization performance achieved during Run-9.

  3. On the east-west longitudinally asymmetric distribution of solar proton events

    Science.gov (United States)

    He, H.-Q.; Wan, W.

    2017-01-01

    A large data set of 78 solar proton events observed near the Earth's orbit during 1996-2011 is investigated. An east-west longitudinal (azimuthal) asymmetry is found to exist in the distribution of flare sources of solar proton events. With the same longitudinal separation between the flare sources and the magnetic field line footpoint of observer, the number of the solar proton events originating from solar sources located on the eastern side of the nominal magnetic footpoint of observer is larger than the number of the solar proton events from solar sources located on the western side. We emphasize the importance of this statistical investigation in two aspects. On the one hand, this statistical finding confirms our previous simulation results obtained by numerically solving five-dimensional Fokker-Planck equation of solar energetic particle (SEP) transport. On the other hand, the east-west longitudinally (azimuthally) asymmetric distribution of solar proton events accumulated over a long time period provides an observational evidence for the effects of perpendicular diffusion on the SEP propagation in the heliosphere. We further point out that, in the sense of perpendicular diffusion, our numerical simulations and statistical results of SEP events confirm each other. We discuss in detail the important effects of perpendicular diffusion on the formation of the east-west azimuthal (longitudinal) asymmetry of SEP distribution in two physical scenarios, i.e. `multiple SEP events with one spacecraft' and `one SEP event with multiple spacecraft'. A functional relation Imax(r) = kr-1.7 quantifying the radial dependence of SEP peak intensities is obtained and utilized in the analysis of physical mechanism. The relationship between our results and those of Dresing et al. is also discussed.

  4. Deeply virtual Compton scattering off longitudinally polarised protons at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, David Francis

    2010-06-15

    This thesis details the simultaneous extraction of three polarisation-dependent asymmetries in the distribution of real photons from the ep{yields}ep{gamma} interaction and its indistinguishable deeply virtual Compton scattering and Bethe-Heitler processes at the HERMES fixed-target experiment at Desy. The data analysed were taken using a longitudinally polarised 27.57 GeV positron beam incident on a longitudinally polarised hydrogen gas target. The extracted asymmetries include two single-spin asymmetries A{sub UL} and A{sub LU} which depend on the polarisation of the target and beam respectively, averaged over all other polarisation states. The double-spin asymmetry A{sub LL} dependent on the product of the beam and target polarisations is extracted for the first time. The asymmetry amplitudes extracted relate to combinations of Generalised Parton Distributions (GPDs), predominantly H and H. The extracted amplitudes are presented across the HERMES kinematic range alongside theoretical predictions from a GPD model based on double distributions. Large sin {phi} and cos(0{phi}) amplitudes are observed for A{sub UL} and A{sub LL} respectively, with an unexpectedly large sin(2{phi}) amplitude for A{sub UL}. The results for the A{sub UL} and A{sub LL} asymmetries are broadly compatible with theory predictions, and the extracted A{sub LU} amplitudes are compatible with HERMES results extracted from a significantly larger data set. It is foreseen that these results will form input to future global data-based GPD models which aim to provide a better understanding of GPDs. (orig.)

  5. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens

    Science.gov (United States)

    Yu, An-Ping; Chen, Gang; Zhang, Zhi-Hai; Wen, Zhong-Quan; Dai, Lu-Ru; Zhang, Kun; Jiang, Sen-Lin; Wu, Zhi-Xiang; Li, Yu-Yan; Wang, Chang-Tao; Luo, Xian-Gang

    2016-12-01

    The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lenses in combination with optical filters. Optical super-oscillation provides a new approach to focusing light beyond the diffraction limit. Here, we propose a planar binary phase lens and experimentally demonstrate the generation of a longitudinally polarized sub-diffraction focal spot by focusing radially polarized light. The lens has a numerical aperture of 0.93 and a long focal length of 200λ for wavelength λ = 632.8 nm, and the generated focal spot has a full-width-at-half-maximum of about 0.456λ, which is smaller than the diffraction limit, 0.54λ. A 5λ-long longitudinally polarized optical needle with sub-diffraction size is also observed near the designed focal point.

  6. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens.

    Science.gov (United States)

    Yu, An-Ping; Chen, Gang; Zhang, Zhi-Hai; Wen, Zhong-Quan; Dai, Lu-Ru; Zhang, Kun; Jiang, Sen-Lin; Wu, Zhi-Xiang; Li, Yu-Yan; Wang, Chang-Tao; Luo, Xian-Gang

    2016-12-12

    The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lenses in combination with optical filters. Optical super-oscillation provides a new approach to focusing light beyond the diffraction limit. Here, we propose a planar binary phase lens and experimentally demonstrate the generation of a longitudinally polarized sub-diffraction focal spot by focusing radially polarized light. The lens has a numerical aperture of 0.93 and a long focal length of 200λ for wavelength λ = 632.8 nm, and the generated focal spot has a full-width-at-half-maximum of about 0.456λ, which is smaller than the diffraction limit, 0.54λ. A 5λ-long longitudinally polarized optical needle with sub-diffraction size is also observed near the designed focal point.

  7. 在200GeV极化质子质子对撞中产生的反Lambda粒子的极化%Polarization of Anti-Lambda in (√s)=200GeV Polarized Proton-Proton Collision

    Institute of Scientific and Technical Information of China (English)

    韩然

    2007-01-01

    We study the polarization of produced (-Λ)in (√s)=200GeV polarized proton-proton collision at RHIC/PHENIX, and also the polarization as a function of its rapidity which may be sensitivity to the quark helicity distributions of the proton and to the polarized fragmentation functions of the quark into the baryon. For polarized data collected in 2003 a very clean (-Λ) peakin (-p)π+ invariant mass spectrum in the mid-rapidity(|η| < 0.35) is obtained. In this letter, we report the calculation process of P(-Λ) as extracted from the data.

  8. Spin Tracking of Polarized Protons in the Main Injector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Lorenzon, W. [Michigan U.; Aldred, C. [Michigan U.

    2016-07-01

    The Main Injector (MI) at Fermilab currently produces high-intensity beams of protons at energies of 120 GeV for a variety of physics experiments. Acceleration of polarized protons in the MI would provide opportunities for a rich spin physics program at Fermilab. To achieve polarized proton beams in the Fermilab accelerator complex, shown in Fig.1.1, detailed spin tracking simulations with realistic parameters based on the existing facility are required. This report presents studies at the MI using a single 4-twist Si-berian snake to determine the depolarizing spin resonances for the relevant synchrotrons. Results will be presented first for a perfect MI lattice, followed by a lattice that includes the real MI imperfections, such as the measured magnet field errors and quadrupole misalignments. The tolerances of each of these factors in maintaining polariza-tion in the Main Injector will be discussed.

  9. First test of a partial Siberian snake for acceleration of polarized protons

    Science.gov (United States)

    Caussyn, D. D.; Baiod, R.; Blinov, B. B.; Chu, C. M.; Courant, E. D.; Crandell, D. A.; Derbenev, Ya. S.; Ellison, T. J. P.; Kaufman, W. A.; Krisch, A. D.; Lee, S. Y.; Minty, M. G.; Nurushev, T. S.; Ohmori, C.; Phelps, R. A.; Raczkowski, D. B.; Ratner, L. G.; Schwandt, P.; Stephenson, E. J.; Sperisen, F.; Przewoski, B. von; Wienands, U.; Wong, V. K.

    1995-09-01

    We recently studied the first acceleration of a spin-polarized proton beam through a depolarizing resonance using a partial Siberian snake. We accelerated polarized protons from 95 to 140 MeV with a constant 10% partial Siberian snake obtained using rampable solenoids. The 10% partial snake suppressed all observable depolarization during acceleration due to the Gγ=2 imperfection depolarizing resonance which occurred near 108 MeV. However, 20% and 30% partial Siberian snakes apparently moved an intrinsic depolarizing resonance, normally near 177 MeV, into our energy range; this caused some interesting, although not-yet-fully understood, depolarization.

  10. Prospects for Measuring $\\Delta$G from Jets at HERA with Polarized Protons and Electrons

    CERN Document Server

    Rädel, G; Feltesse, Joel; Kunne, Fabienne; Maul, M; Mirkes, E; Schäfer, A; Wu, C Y

    1996-01-01

    The measurement of the polarized gluon distribution function Delta G(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes.

  11. Prospects for measuring {Delta}G from jets at HERA with polarized protons and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Roeck, A. de [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feltesse, J. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee (DAPNIA); Kunne, F. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee (DAPNIA); Maul, M. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Schaefer, A. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Wu, C.Y. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Mirkes, E. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik; Raedel, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments

    1996-09-01

    The measurement of the polarized gluon distribution function {Delta}G(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes. (orig.)

  12. Identification of major proton fluence events from nitrates in polar ice cores.

    Science.gov (United States)

    Shea, M A; Smart, D F; Dreschhoff, G A

    1999-06-01

    Large transient concentrations of nitrates in polar ice cores have been identified as the signature of some major solar proton fluence events between 1940 and 1991. We review this solar proton proxy identification technique using nitrate concentration measurements in ice cores from the Arctic and Antarctic. Using this identification technique we go back in time in an attempt to identify major solar proton events during the past several centuries. There is a very large nitrate increase corresponding to the Carrington flare of 1859 evident in the Arctic ice core. Other significant nitrate increases may indicate that major solar proton events occurred toward the end of the last century. The problems associated with this new technique of using nitrates as proxies to identify solar proton events are discussed.

  13. Longitudinal scaling of net-protons in AuAu and pp collisions at RHIC energies

    Science.gov (United States)

    Videbaek, Flemming

    2008-10-01

    BRAHMS has studied net-protons distributions in Au+Au and p+p collisions at √sNN=62.4 and 200 GeV. Net-proton distributions reflect the net-baryon yields and can be used to extract the nuclear stopping in the collisions, thus providing information on baryon number transport and energy available for particle production. The talk will present final and preliminary results from the above mentioned systems. It will be shown that in p+p and in Au+Au central collisions that net-proton distributions exhibit longitudinal scaling once the target contribution to the projectile rapidity range is corrected for. The difference between p+p and Au+Au will be discussed. Aspects of future measurements at the LHC of net-baryons at mid-rapidity will be brought forth.

  14. Quasi-Bessel beams with longitudinally varying polarization state generated by employing spectrum engineering.

    Science.gov (United States)

    Li, Peng; Zhang, Yi; Liu, Sheng; Han, Lei; Cheng, Huachao; Yu, Fan; Zhao, Jianlin

    2016-10-15

    We report on the generation and control of quasi-Bessel beams having not only a uniform axial intensity but also a longitudinally varying polarization state. Based on the optimization routine of the spatial spectrum of the so-called Durnin ring, we generate quasi-Bessel beams possessing longitudinally variant axial intensity with linear or sinusoidal envelopes. By utilizing a Sagnac interferometer, we create and coaxially composite two orthogonally polarized beams with complementary axial intensities to form quasi-Bessel beams with uniform axial intensity but a longitudinally varying polarization state. Furthermore, we demonstrate the possibility and flexibility of manipulating the trajectory, speed, and period of polarization state transformation upon propagation. Our results may enable Bessel beams to be used in other applications including optical communications, material processing, and polarimetry.

  15. Proton elastic form factor ratios to Q2 = 3.5 GeV2 by polarization transfer

    Energy Technology Data Exchange (ETDEWEB)

    Vina Punjabi; Konrad Aniol; F. Baker; J. Berthot; Martine Bertin; William Bertozzi; Auguste Besson; Louis Bimbot; Werner Boeglin; Edward Brash; Daniel Brown; John Calarco; Lawrence Cardman; Zhengwei Chai; C. Chang; Jian-ping Chen; Chudakov; Steve Churchwell; Evaristo Cisbani; Daniel Dale; Raffaele De Leo; Alexandre Deur; Brian Diederich; John Domingo; Martin Epstein; Lars Ewell; Kevin Fissum; A. Fleck; Helene Fonvieille; Salvatore Frullani; Juncai Gao; Franco Garibaldi; Ashot Gasparian; Gerstner; Shalev Gilad; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Javier Gomez; Viktor Gorbenko; Alphonza Green; Jens-ole Hansen; Calvin Howell; Garth Huber; Mauro Iodice; Cornelis De Jager; Stephanie Jaminion; Xiaodong Jiang; Mark Jones; W. Kahl; J.J. Kelly; M. Khayat; L.H. Kramer; G. Kumbartzki; M. Kuss; E. Lakuriki; G. Lavessiere; J.J. LeRose; M. Liang; R.A. Lindgren; N. Liyanage; G.J. Lolos; R. Macri; R. Madey; S. Malov; D.J. Margaziotis; P. Markowitz; K. McCormick; J.I. McIntyre; R.L.J. van der Meer; R. Michaels; B.D. Milbrath; J.Y. Mougey; S.K. Nanda; E.A.J.M. Offermann; Z. Papandreou; L. Pentchev; C.F. Perdrisat; G.G. Petratos; N.M. Piskunov; R.I. Pomatsalyuk; D.L. Prout; G. Quemener; R.D. Ransome; B.A. Raue; Y. Roblin; R. Roche; G. Rutledge; P.M. Rutt; A. Saha; T. Saito; A.J. Sarty; T.P. Smith; P. Sorokin; S. Strauch; R. Suleiman; K. Takahashi; J.A. Templon; L. Todor; P.E. Ulmer; G.M. Urciuoli; P. Vernin; B. Vlahovic; H. Voskanyan; K. Wijesooriya; B.B. Wojtsekhowski; R.J. Woo; F. Xiong; G.D. Zainea; Z.-L. Zhou

    2003-05-01

    The ratio of the proton's elastic electromagnetic form factors, G{sub Ep}/G{sub Mp}, was obtained by measuring P{sub t} and P{sub {ell}}, the transverse and longitudinal recoil proton polarization components, respectively, for the elastic {rvec e}p {yields} e{rvec p} reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV{sup 2}. In the single photon exchange approximation, the ratio G{sub Ep}/G{sub Mp} is directly proportional to the ratio P{sub t}/P{sub {ell}}. The simultaneous measurement of P{sub t} and P{sub {ell}} in a polarimeter reduces systematic uncertainties. The results for the ratio G{sub Ep}/G{sub Mp} show a systematic decrease with increasing Q{sup 2}, indicating for the first time a definite difference in the distribution of charge and magnetization in the proton. The data have been reanalyzed and systematic uncertainties have become significantly smaller than previously published results.

  16. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  17. Elastic scattering of polarized protons on deuterium at 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Weston, G.S.

    1984-07-01

    A specific set of spin transfer coefficients has been measured for proton-deuteron elastic scattering at 800 MeV using an unpolarized liquid deuterium target. The experiment was done using the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility (LAMPF) with a polarized proton beam. The scattered proton spin direction was determined using the Focal Plane Polarimeter (FPP) of the HRS, which employs a carbon analyzer. Some of the spin dependent parameters measured in this experiment are of considerable interest because they provide selective information about the nucleon-nucleon (NN) amplitude. Since the deuteron is the simplest bound nucleus, pd elastic scattering is particularly well suited for testing multiple scattering theories. These measurements will also be used to eventually determine the full pd collision matrix, which contains all possible information about the scattering process. In addition, the experimental setup is described for a polarized proton-polarized deuterium target spin transfer experiment also done at the HRS at 800 MeV incident proton energy. 71 references.

  18. Single-spin asymmetry in electro-production of {pi}{sup +} {pi}{sup -} pairs from a transversely polarized proton target at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiao-Rui

    2008-10-15

    In this thesis, the measurement of an azimuthal amplitude of the asymmetry in the lepto-production of {pi}{sup +}{pi}{sup -} pairs at the HERMES experiment is reported. The experiment was carried out at DESY in Germany, utilizing the longitudinally polarized 27.6 GeV electron/positron beam of the HERA storage ring in combination with a longitudinally or transversely polarized gaseous target internal to the beam pipe. For the present measurement, the transversely polarized proton target was used and the beam polarization was averaged out in order to measure the asymmetry A{sub UT}. A Ring Imaging Cerenkov (RICH) detector allows the precise identification of pions, kaons and protons over essentially the entire momentum range of the experiment. The asymmetry A{sub UT} for {pi}{sup +}{pi}{sup -} pair production was measured for the first time in the world by HERMES. The amplitudes are extracted as functions of different kinematic variables, which can facilitate the comparison with the theoretical models and the extraction of transversity with combination of the measurement of the dihadron fragmentation function. (orig.)

  19. Proton transfer reactions in carbon nanotubes endohedrally functionalized with selected polar amino acid sidechains

    Energy Technology Data Exchange (ETDEWEB)

    Abi, T.G. [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Taraphder, Srabani, E-mail: srabani@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2012-09-11

    Graphical abstract: Free Energies of activation and reaction for intramolecular proton transfer between polar amino acid sidechains and hydroxyl groups inside the core of endohedrally functionalized single walled carbon nanotubes. Highlights: Black-Right-Pointing-Pointer EVB based free energy simulation of proton transfer in hydrophobic confinement. Black-Right-Pointing-Pointer Aminoacid sidechain and OH group suspended within carbon nanotube act as reactants. Black-Right-Pointing-Pointer Donors like His and Glu are efficient in confinement aided by local hydrogen bonds. -- Abstract: We use the empirical-valence-bond (EVB) theory to investigate intramolecular proton transfer reactions between a selected set of polar amino acid sidechains and hydroxyl groups suspended inside carbon nanotubes to model the effect of hydrophobic confinement on the energetics of proton transfer involving (i) translocation of an excess protonic charge (with protonated histidine sidechain as donor) and (ii) transformation of a neutral reactant state to a charge-separated product state (with sidechains of Asp, Glu, Ser and Thr as donor). In both the cases, confinement in hydrophobic medium is found to change the associated free energies compared to their respective values in the bulk solution phase. Presence of stable hydrogen bonding within the pore is found to have a significant effect on both free energies of reaction and activation and thus governs the thermodynamic and kinetic feasibilities of these intramolecular reactions in hydrophobic confinement.

  20. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; AHRENS,L.; BAI,M.; ET AL.

    2005-05-16

    The RHIC spin program requires 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is no space for a full snake to overcome numerous depolarizing resonances. An ac dipole and a partial snake have been used to preserve beam polarization in the past few years. Two helical snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the setup and preliminary results.

  1. An overview of Booster and AGS polarized proton operation during Run 15

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-20

    This note is an overview of the Booster and AGS for the 2015 Polarized Proton RHIC run from an operations perspective. There are some notable differences between this and previous runs. In particular, the polarized source intensity was expected to be, and was, higher this year than in previous RHIC runs. The hope was to make use of this higher input intensity by allowing the beam to be scraped down more in the Booster to provide a brighter and smaller beam for the AGS and RHIC. The RHIC intensity requirements were also higher this run than in previous runs, which caused additional challenges because the AGS polarization and emittance are normally intensity dependent.

  2. Experimental physics with polarized protons, neutrons and deuterons

    CERN Document Server

    Lehar, František; Wilkin, Colin

    2015-01-01

    The monograph gives a comprehensive overview of the diverse aspects of the experimental study of polarization phenomena in nucleon-nucleon and nucleon-deuteron collisions. The special nature of this volume is that it is based on the original physics results and knowledge gained by one of the authors (F. Lehar), who was a respected researcher in the field for nearly fifty years. The results of these experiments provide valuable information on the spin dependence of the forces acting between nucleons in atomic nuclei, of which all matter is ultimately composed. The fundamental importance of the results means that the subject will remain topical for years to come. The book is designed for teachers and students of natural sciences, espe - cially those with interests in nuclear and particle physics, as well as for ex - perimental physicists who are investigating polarization phenomena using accelerators of charged particles. The writing of the book was initiated by F. Lehar who was the driving force beh...

  3. Measurements of the Proton Spin Polarizabilities with Double-Polarized Compton Scattering

    CERN Document Server

    Martel, P P; Aguar-Bartolome, P; Ahrens, J; Akondi, C S; Annand, J R M; Arends, H J; Barnes, W; Beck, R; Bernstein, A; Borisov, N; Braghieri, A; Briscoe, W J; Cherepnya, S; Collicott, C; Costanza, S; Denig, A; Dieterle, M; Downie, E J; Fil'kov, L V; Garni, S; Glazier, D I; Gradl, W; Gurevich, G; Barrientos, P Hall; Hamilton, D; Hornidge, D; Howdle, D; Huber, G M; Jude, T C; Kaeser, A; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Krusche, B; Lazarev, A; Lisin, V; Livingston, K; MacGregor, I J D; Mancell, J; Manley, D M; Meyer, W; Middleton, D G; Mushkarenkov, A; Nefkens, B M K; Neganov, A; Nikolaev, A; Oberle, M; Spina, H Ortega; Ostrick, M; Ott, P; Otte, P B; Oussena, B; Pedroni, P; Polonski, A; Polyansky, V; Prakhov, S; Rajabi, A; Reicherz, G; Rostomyan, T; Sarty, A; Schrauf, S; Schumann, S; Sikora, M H; Starostin, A; Steffen, O; Strakovsky, I I; Strub, T; Supek, I; Thiel, M; Tiator, L; Thomas, A; Unverzagt, M; Usov, Y; Watts, D P; Witthauer, L; Werthmüller, D; Wolfes, M

    2014-01-01

    The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to measure the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the $\\Delta(1232)$ region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields $\\gamma_{E1E1} = -3.5 \\pm 1.2$, $\\gamma_{M1M1}= 3.16 \\pm 0.85$, $\\gamma_{E1M2} = -0.7 \\pm 1.2$, and $\\gamma_{M1E2} = 1.99 \\pm 0.29$, in units of $10^{-4}$ fm$^4$.

  4. Probing non polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)

    CERN Document Server

    Agundez, M; de Vicente, P; Marcelino, N; Roueff, E; Fuente, A; Gerin, M; Guelin, M; Albo, C; Barcia, A; Barbas, L; Bolano, R; Colomer, F; Diez, M C; Gallego, J D; Gomez-Gonzalez, J; Lopez-Fernandez, I; Lopez-Fernandez, J A; Lopez-Perez, J A; Malo, I; Serna, J M; Tercero, F

    2015-01-01

    Cyanogen (NCCN) is the simplest member of the series of dicyanopolyynes. It has been hypothesized that this family of molecules can be important constituents of interstellar and circumstellar media, although the lack of a permanent electric dipole moment prevents its detection through radioastronomical techniques. Here we present the first solid evidence of the presence of cyanogen in interstellar clouds through the detection of its protonated form toward the cold dark clouds TMC-1 and L483. Protonated cyanogen (NCCNH+) has been identified through the J=5-4 and J=10-9 rotational transitions using the 40m radiotelescope of Yebes and the IRAM 30m telescope. We derive beam averaged column densities for NCCNH+ of (8.6+/-4.4)e10 cm-2 in TMC-1 and (3.9+/-1.8)e10 cm-2 in L483, which translate to fairly low fractional abundances relative to H2, in the range (1-10)e-12. The chemistry of protonated molecules in dark clouds is discussed, and it is found that, in general terms, the abundance ratio between the protonated ...

  5. Polarization-transfer measurement to a large-virtuality bound proton in the deuteron

    CERN Document Server

    Yaron, I; Achenbach, P; Arenhövel, H; Beričič, J; Böhm, R; Bosnar, D; Debenjak, L; \\, M; Distler, O; Esser, A; Friščić, I; Gilman, R; Korover, I; Lichtenstadt, J; Merkel, H; Middleton, D G; Mihovilovič, M; Müller, U; Piasetzky, E; Širca, S; Strauch, S; Pochodzalla, J; Ron, G; \\, B; Schlimme, S; Schoth, M; Schulz, F; Sfienti, C; Thiel, M; Tyukin, A; Weber, A

    2016-01-01

    Possible differences between free and bound protons may be observed in the ratio of polarization-transfer components, $P'_x/P'_z$. We report the measurement of $P'_x/P'_z$, in the $^2\\textrm{H}(\\vec{e},e^{\\prime}\\vec{p})n$ reaction at low and high missing momenta. Observed increasing deviation of $P'_x/P'_z$ from that of a free proton as a function of the virtuality, similar to that observed in \\hefour, indicates that the effect in nuclei is due to the virtuality of the knock-out proton and not due to the average nuclear density. The measured differences from calculations assuming free-proton form factors ($\\sim10\\%$), may indicate in-medium modifications.

  6. Measurement of polarization observables of the associated strangeness production in proton proton interactions

    Science.gov (United States)

    Hauenstein, F.; Borodina, E.; Clement, H.; Doroshkevich, E.; Dzhygadlo, R.; Ehrhardt, K.; Eyrich, W.; Gast, W.; Gillitzer, A.; Grzonka, D.; Jowzaee, S.; Klaja, P.; Kober, L.; Kilian, K.; Krapp, M.; Mertens, M.; Moskal, P.; Ritman, J.; Roderburg, E.; Röder, M.; Schroeder, W.; Sefzick, T.; Smyrski, J.; Wintz, P.; Wüstner, P.

    2016-11-01

    The Λ polarization, the analyzing power, and the Λ spin transfer coefficient of the reaction pp → pK + Λ were measured at beam momenta of 2.70GeV/c and 2.95GeV/c corresponding to excess energies of 122MeV and 204MeV. While the analyzing power and the spin transfer coefficient do not change significantly with the excess energy, the Λ polarization varies strongly and changes its sign. As this is the first measurement of polarization observables below an excess energy of 200MeV, the change of the sign of the Λ polarization was not observed before. The high statistics of the data ( ≈ 200 k events for each momentum) enables detailed studies of the dependence of the Λ polarization and the analyzing power on the center-of-mass momentum of the particles. The results of the spin transfer coefficient are in qualitative agreement with the DISTO experiment. The Λ polarization data of 2.95GeV/c are only conform with the DISTO experiment, while both the 2.70GeV/c and 2.95GeV/c data differ strongly from all previous measurements, whether exclusive or inclusive.

  7. Measurement of polarization observables of the associated strangeness production in proton proton interactions

    CERN Document Server

    :,; Borodina, E; Clement, H; Doroshkevich, E; Dzhygadlo, R; Ehrhardt, K; Eyrich, W; Gast, W; Gillitzer, A; Grzonka, D; Jowzaee, S; Klaja, P; Kober, L; Kilian, K; Krapp, M; Mertens, M; Moskal, P; Ritman, J; Roderburg, E; Röder, M; Schroeder, W; Sefzick, T; Smyrski, J; Wintz, P; Wüstner, P

    2016-01-01

    The Lambda polarization, the analyzing power, and the Lambda spin transfer coefficient of the reaction pp -> p K+ Lambda were measured at beam momenta of 2.70 GeV/c and 2.95 GeV/c, corresponding to excess energies of 122 MeV and 204 MeV. While the analyzing power and the spin transfer coefficient do not change significantly with the excess energy, the Lambda polarization varies strongly and changes its sign. As this is the first measurement of polarization observables below an excess energy of 200 MeV, the change of the sign of the Lambda polarization was not observed before. The high statistics of the data (~200 k events for each momentum) enables detailed studies of the dependence of the Lambda polarization and the analyzing power on the center of mass momentum of the particles. The results of the spin transfer coefficient are in agreement with data from the DISTO experiment. No obvious agreement of the Lambda polarization can be found in comparison with data of high momentum measurements.

  8. Letter of Intent for a Drell-Yan Experiment with a Polarized Proton Target

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Reimer, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Brown, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Christian, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Diefenthaler, M. [Univ. of Illinois, Urbana, IL (United States); Peng, J. -C. [Univ. of Illinois, Urbana, IL (United States); Chang, W. -C. [Academia Sinica, Taipei (Taiwan); Chen, Y. -C. [Academia Sinica, Taipei (Taiwan); Sawada, S. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Chang, T. -H. [LIng-Tung Univ. (Taiwan); Huang, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jiang, X. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leitch, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klein, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Liu, K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Liu, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McGaughey, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beise, E. [Univ. of Maryland, College Park, MD (United States); Nakahara, K. [Univ. of Maryland, College Park, MD (United States); Aidala, C. [Univ. of Michigan, Ann Arbor, MI (United States); Lorenzon, W. [Univ. of Michigan, Ann Arbor, MI (United States); Raymond, R. [Univ. of Michigan, Ann Arbor, MI (United States); Badman, T. [Univ. of New Hampshire, Durham, NH (United States); Long, E. [Univ. of New Hampshire, Durham, NH (United States); Slifer, K. [Univ. of New Hampshire, Durham, NH (United States); Zielinski, R. [Univ. of New Hampshire, Durham, NH (United States); Guo, R. -S. [National Kaohsiung Normal Univ. (Taiwan); Goto, Y. [RIKEN, Saitama (Japan); El Fassi, L. [Rutgers Univ., New Brunswick, NJ (United States); Myers, K. [Rutgers Univ., New Brunswick, NJ (United States); Ransome, R. [Rutgers Univ., New Brunswick, NJ (United States); Tadepalli, A. [Rutgers Univ., New Brunswick, NJ (United States); Tice, B. [Rutgers Univ., New Brunswick, NJ (United States); Chen, J. -P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nakano, K. [Tokyo Inst. of Technology (Japan); Shibata, T. -A. [Tokyo Inst. of Technology (Japan); Crabb, D. [Univ. of Virginia, Charlottesville, VA (United States); Day, D. [Univ. of Virginia, Charlottesville, VA (United States); Keller, D. [Univ. of Virginia, Charlottesville, VA (United States); Rondon, O. [Univ. of Virginia, Charlottesville, VA (United States)

    2014-01-01

    It is well known that the proton is a spin-1/2 particle, but how the constituents (quarks and gluons) assemble to this quantized spin is still a mystery. There is a worldwide effort to map out the individual contributions to the proton spin. It is established that the quark spins contribute around 30%, while the gluon intrinsic angular momentum is still under active investigation at the Relativistic Heavy Ion Collider. Fully resolving the proton spin puzzle requires information on the orbital angular momentum (OAM) of both quarks and gluons. Recent studies have shown that the so-called transverse momentum-dependent parton distribution functions (TMDs) can inform us about the OAM of the partons. One of the most important TMDs, and the main focus of this LOI, is the so-called Sivers function. To summarize, we propose to make the first measurement of the Sivers function of sea quarks, which is expected to be non-zero if the sea quarks contribute orbital angular momentum to the proton spin, as expected from the pion cloud model, which also partially explains the E866 results. Thus, we will be able to deduce whether or not sea quark orbital motion contributes significantly to the proton spin. Specifically, we will determine the contribution from the anti-up quarks, with Bjorken-x in the range of ~ 0.1 to 0.5. Drell-Yan production off a polarized proton target has never been measured, and is complementary to the recently approved (stage-1) experiment E1027 at Fermilab, which will measure the Sivers function of the valence quarks using a polarized proton beam on an unpolarized proton target. If the measured sea quark Sivers function is non-zero, we will also determine its sign.

  9. Letter of Intent for a Drell-Yan Experiment with a Polarized Proton Target

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Reimer, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Brown, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Christian, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Diefenthaler, M. [Univ. of Illinois, Urbana, IL (United States); Peng, J. -C. [Univ. of Illinois, Urbana, IL (United States); Chang, W. -C. [Academia Sinica, Taipei (Taiwan); Chen, Y. -C. [Academia Sinica, Taipei (Taiwan); Sawada, S. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Chang, T. -H. [LIng-Tung Univ. (Taiwan); Huang, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jiang, X. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leitch, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klein, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Liu, K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Liu, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McGaughey, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beise, E. [Univ. of Maryland, College Park, MD (United States); Nakahara, K. [Univ. of Maryland, College Park, MD (United States); Aidala, C. [Univ. of Michigan, Ann Arbor, MI (United States); Lorenzon, W. [Univ. of Michigan, Ann Arbor, MI (United States); Raymond, R. [Univ. of Michigan, Ann Arbor, MI (United States); Badman, T. [Univ. of New Hampshire, Durham, NH (United States); Long, E. [Univ. of New Hampshire, Durham, NH (United States); Slifer, K. [Univ. of New Hampshire, Durham, NH (United States); Zielinski, R. [Univ. of New Hampshire, Durham, NH (United States); Guo, R. -S. [National Kaohsiung Normal Univ. (Taiwan); Goto, Y. [RIKEN, Saitama (Japan); El Fassi, L. [Rutgers Univ., New Brunswick, NJ (United States); Myers, K. [Rutgers Univ., New Brunswick, NJ (United States); Ransome, R. [Rutgers Univ., New Brunswick, NJ (United States); Tadepalli, A. [Rutgers Univ., New Brunswick, NJ (United States); Tice, B. [Rutgers Univ., New Brunswick, NJ (United States); Chen, J. -P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nakano, K. [Tokyo Inst. of Technology (Japan); Shibata, T. -A. [Tokyo Inst. of Technology (Japan); Crabb, D. [Univ. of Virginia, Charlottesville, VA (United States); Day, D. [Univ. of Virginia, Charlottesville, VA (United States); Keller, D. [Univ. of Virginia, Charlottesville, VA (United States); Rondon, O. [Univ. of Virginia, Charlottesville, VA (United States)

    2014-01-01

    It is well known that the proton is a spin-1/2 particle, but how the constituents (quarks and gluons) assemble to this quantized spin is still a mystery. There is a worldwide effort to map out the individual contributions to the proton spin. It is established that the quark spins contribute around 30%, while the gluon intrinsic angular momentum is still under active investigation at the Relativistic Heavy Ion Collider. Fully resolving the proton spin puzzle requires information on the orbital angular momentum (OAM) of both quarks and gluons. Recent studies have shown that the so-called transverse momentum-dependent parton distribution functions (TMDs) can inform us about the OAM of the partons. One of the most important TMDs, and the main focus of this LOI, is the so-called Sivers function. To summarize, we propose to make the first measurement of the Sivers function of sea quarks, which is expected to be non-zero if the sea quarks contribute orbital angular momentum to the proton spin, as expected from the pion cloud model which also partially explains the E866 results. Thus, we will be able to deduce whether or not sea quark orbital motion contributes significantly to the proton spin. Specifically, we will determine the contribution from the anti-up quarks, with Bjorken-x in the range of ~ 0.1 to 0.5. Drell-Yan production off a polarized proton target has never been measured and is complementary to the recently approved (stage-1) experiment E1027 at Fermilab, which will measure the Sivers function of the valence quarks using a polarized proton beam on an unpolarized proton target. If the measured sea quark Sivers function is non-zero, we will also determine its sign.

  10. Measurement of Pion and Proton Longitudinal Shower Profiles up to 20 Nuclear Interaction Lengths with the ATLAS Tile Calorimeter

    CERN Document Server

    Hakobyan, H; Carli, T; Henriques-Correia, A M

    2006-01-01

    The response of pions and protons in the energy range of 20 to 180 GeV produced at CERN's SPS H8 test beam line in the ATLAS Iron-Scintillator Tile hadron calorimeter has been measured. The testbeam configuration allowed to measure the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It is found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are laterally to the direction of the impinging particle wider. Including the measured total energy response, the pion to proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion induced showers. The data are compared with Geant4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parameterisation within an accuracy of 5-10 %.

  11. Longitudinal proton probing of ultrafast and high-contrast laser-solid interactions

    Directory of Open Access Journals (Sweden)

    Albertazzi B.

    2013-11-01

    Full Text Available We have performed an experiment aimed at measuring self-generated magnetic fields produced in solids by high electron currents following high-intensity and high contrast short-pulse laser irradiation. This was done using longitudinal high resolution proton deflectometry. The experiment was performed at the Titan-JLF laser facility with a high-power short-pulse beam (700 fs, ∼  110 J split into two beams irradiating two solid targets. One beam is used for the generation of protons and the other beam for the generation of the ultra-high currents of electrons and of the associated magnetic fields. This capability allows us to study the spatio-temporal evolution of the magnetic fields and its dependence on the laser intensity and target material.

  12. Towards radiation pressure acceleration of protons using linearly polarized ultrashort petawatt laser pulses

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Yu, Tae Jun; Choi, Il Woo; Lee, Chang-Lyoul; Nam, Kee Hwan; Nickles, Peter V; Jeong, Tae Moon; Lee, Jongmin

    2013-01-01

    Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10- to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3x1020 W/cm2. The experimental results were further supported by two- and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5x1021 W/cm2.

  13. Proton-induced knockout reactions with polarized and unpolarized beams

    Science.gov (United States)

    Wakasa, T.; Ogata, K.; Noro, T.

    2017-09-01

    Proton-induced knockout reactions provide a direct means of studying the single particle or cluster structures of target nuclei. In addition, these knockout reactions are expected to play a unique role in investigations of the effects of the nuclear medium on nucleon-nucleon interactions as well as the properties of nucleons and mesons. However, due to the nature of hadron probes, these reactions can suffer significant disturbances from the nuclear surroundings and the quantitative theoretical treatment of such processes can also be challenging. In this article, we review the experimental and theoretical progress in this field, particularly focusing on the use of these reactions as a spectroscopic tool and as a way to examine the medium modification of nucleon-nucleon interactions. With regard to the former aspect, the review presents a semi-quantitative evaluation of these reactions based on existing experimental data. In terms of the latter point, we introduce a significant body of evidence that suggests, although does not conclusively prove, the existence of medium effects. In addition, this paper also provides information and comments on other related subjects.

  14. Proton core polarization in low-lying states of 86Sr

    Science.gov (United States)

    Connelly, J. P.; Milliman, T. E.; Heisenberg, J. H.; Hersman, F. W.; Wise, J. E., III; Papanicolas, C. N.

    1990-11-01

    Electron-scattering cross sections, measured between 0.4 and 3.1 fm-1, have been unfolded to obtain charge transition densities for the low-lying 2+, 4+, 6+, and 8+ states in 86Sr. A comparison is made to analogous levels in 92Mo. Angular momentum recoupling in the 1g9/2 shell of two protons in 92Mo and two neutron holes in 86Sr are the dominant configurations for these levels. Proton core polarization in 86Sr neutron valence transitions diminishes with increasing multipolarity, indicating the residual interaction weakens with increasing momentum transfer.

  15. Three-dimensional parton distribution functions $g_{1T}$ and $h_{1L}^\\perp$ in the polarized proton-antiproton Drell-Yan process

    CERN Document Server

    Zhu, Jiacai

    2011-01-01

    We present predictions of the unweighted and weighted double spin asymmetries related to the transversal helicity distribution $g_{1T}$ and the longitudinal transversity distribution $h_{1L}^\\perp$, two of eight leading-twist transverse momentum dependent parton distributions (TMDs) or 3-dimensional parton distribution functions (3dPDFs), in the polarized proton-antiproton Drell-Yan process at typical kinematics on the Facility for Antiproton and Ion Research (FAIR). We conclude that FAIR is ideal to access the new 3dPDFs towards a detailed picture of the nucleon structure.

  16. Spin flipping a stored vertically polarized proton beam with an RF solenoid

    Science.gov (United States)

    Phelps, R. A.; Blinov, B. B.; Chu, C. M.; Courant, E. D.; Crandell, D. A.; Kaufman, W. A.; Krisch, A. D.; Nurushev, T. S.; Ratner, L. G.; Wong, V. K.; Caussyn, D. D.; Derbenev, Ya. S.; Ellison, T. J. P.; Lee, S. Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E. J.; Przewoski, B. von; Ohmori, C.

    1995-09-01

    A recent experiment in the IUCF cooler ring studied the spin flip of a stored vertically polarized 139 MeV proton beam. This spin flip was accomplished by using an RF solenoid to induce an artificial depolarizing resonance in the ring, and then varying the solenoid's frequency through this resonance value to induce spin flip. We found a polarization loss after multiple spin flips of about 0.00±0.05% per flip and also losses for very long flip times. This device will be useful for reducing systematic errors in polarized beam-internal target scattering asymmetry experiments by enabling experimenters to perform frequent beam polarization reversals in the course of the experiment.

  17. Comparison of polarizations of inclusively produced lambdas and antilambdas by protons, antiprotons, and kaons

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, H.L.

    1985-01-01

    The polarization of lambdas inclusively produced by kaons and protons, and antilambdas inclusively produced by antiprotons were measured at a beam momentum of 176 GeV/c, using a liquid hydrogen target. Data were collected in the range 0.0 < X/sub F/ < 0.8 and 0.2 < P/sub perpendicular/ < 1.5 GeV/c. Non-zero results were obtained for the reactions p + p ..-->.. ..lambda.. + X, anti/sup -/p + p ..-->.. anti-..lambda.. + X and K/sup -/ + p ..-->.. ..lambda.. + X. The polarizations for p ..-->.. ..lambda.., anti-p ..-->.. anti..lambda.. are equal in magnitude, with an average polarization of 0.063 +/- 0.022. The average polarization for K/sup -/ ..-->.. ..lambda.. is -0.419 +/- 0.029. All reactions are consistent with a linear dependence on P/sub perpendicular/.

  18. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    Science.gov (United States)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard

    2016-08-01

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C2 core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H2CCH+ ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C2H3+ has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 1013 W/cm2 and 3.15 × 1013 W/cm2, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C2H3+. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C2 core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C2 core of protonated acetylene.

  19. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light.

    Science.gov (United States)

    Shi, Xuetao; Li, Wen; Schlegel, H Bernhard

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C2 core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H2CCH(+) ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C2H3 (+) has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10(13) W/cm(2) and 3.15 × 10(13) W/cm(2), respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C2H3 (+). The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C2 core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C2 core of protonated acetylene.

  20. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    CERN Document Server

    Cosyn, W; Higinbotham, D W; Hyde, C; Kuhn, S; Nadel-Turonski, P; Park, K; Sargsian, M; Strikman, M; Weiss, C

    2014-01-01

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < p_R < several 100 MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We revie...

  1. 22 MeV polarized proton scattering from 40Ca and effective NN interactions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Analyzing powers and differential cross sections have been measured for elastic scattering of 22 MeV polarized protons from 40Ca, 16O and 12C, and diferential cross sections for inelastic scattering of 22 MeV protons from 3- (3.736 MeV)and 5-(4.491 MeV) states of 40Ca have also been measured. The experimental data for polarized proton elastic scattering have been analyzed with a phenomenological optical potential parameters, the experimental data and theoretical values are in good agreement. In the theoretical frame of microscopic single scattering model, transition densities extracted from electron inelastic scattering and M3Y and Halderson’s effective interactions have been utilized to analyze the experimental data of 22 MeV proton inelastic scattering from 40Ca. Overall, it seems that Halderson’s effective interaction can better describe the experimental data than M3Y although the degree of agreement between experimental and theoretical values needs to be improved.

  2. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm

    Energy Technology Data Exchange (ETDEWEB)

    Cliffe, M. J., E-mail: Matthew.Cliffe@manchester.ac.uk; Rodak, A.; Graham, D. M. [School of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Jamison, S. P. [The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Accelerator Science and Technology Centre, Science and Technology Facilities Council, Darebsury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom)

    2014-11-10

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2 kV/cm. The 76 mm diameter antenna was photo-excited by a 0.5 mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100 kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22 kV/cm with an applied bias field of 38.5 kV/cm.

  3. A measurement of. Delta. sigma. sub L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.

    1990-10-01

    A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.

  4. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, A. [Novosibirsk State Univ. (Russian Federation); Kondratenko, M. [Novosibirsk State Univ. (Russian Federation); Filatov, Yu. N. [Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Novosibirsk State Univ. (Russian Federation); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasily S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  5. Ratios of helicity amplitudes for exclusive ρ{sup 0} electroproduction on transversely polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Justus-Liebig Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI (United States); Akopov, N.; Elbakian, G.; Gharibyan, V.; Marukyan, H.; Petrosyan, A. [Yerevan Physics Institute, Yerevan (Armenia); Akopov, Z.; Borissov, A.; Deconinck, W.; Holler, Y.; Rostomyan, A.; Zihlmann, B. [DESY, Hamburg (Germany); Aschenauer, E.C.; Nowak, W.D. [DESY, Zeuthen (Germany); Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Warsaw (Poland); Belostotski, S.; Kisselev, A.; Manaenkov, S.I.; Veretennikov, D.; Vikhrov, V. [B.P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region (Russian Federation); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands); VU University, Department of Physics and Astronomy, Amsterdam (Netherlands); Bryzgalov, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y. [Institute for High Energy Physics, Moscow Region (Russian Federation); Capitani, G.P.; De Sanctis, E.; Muccifora, V.; Reolon, A.R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy); Ciullo, G.; Lenisa, P.; Pappalardo, L.L.; Statera, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); Contalbrigo, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); De Leo, R.; Lagamba, L.; Vilardi, I. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Dueren, M. [Justus-Liebig Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Ellinghaus, F. [University of Colorado, Nuclear Physics Laboratory, Boulder, CO (United States); Felawka, L. [TRIUMF, Vancouver, BC (Canada); Frullani, S.; Garibaldi, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Gruppo Collegato Sanita, Rome (Italy); Istituto Superiore di Sanita, Rome (Italy); Gavrilov, G. [DESY, Hamburg (Germany); B.P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region (Russian Federation); TRIUMF, Vancouver, BC (Canada); Goloskokov, S.V.; Shutov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Jackson, H.E.; Reimer, P.E. [Argonne National Laboratory, Physics Division, Argonne, IL (United States); Joosten, S. [Ghent University, Department of Physics and Astronomy, Gent (Belgium); University of Illinois, Department of Physics, Urbana, IL (United States); Kaiser, R.; Lehmann, I.; Rosner, G.; Seitz, B. [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Karyan, G. [DESY, Hamburg (Germany); Yerevan Physics Institute, Yerevan (Armenia); Kozlov, V.; Terkulov, A. [Lebedev Physical Institute, Moscow (Russian Federation); Kravchenko, P. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); B.P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region (Russian Federation); Kroll, P.; Schaefer, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Lapikas, L. [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands); Lorenzon, W. [University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI (United States); Miyachi, Y.; Shibata, T.A. [Tokyo Institute of Technology, Department of Physics, Tokyo (Japan); Movsisyan, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); Yerevan Physics Institute, Yerevan (Armenia); Nass, A.; Rith, K. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Riedl, C. [DESY, Zeuthen (Germany); University of Illinois, Department of Physics, Urbana, IL (United States); Ryckbosch, D.; Tytgat, M.; Haarlem, Y. van [Ghent University, Department of Physics and Astronomy, Gent (Belgium); Schnell, G. [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain); Ghent University, Department of Physics and Astronomy, Gent (Belgium); Truty, R. [University of Illinois, Department of Physics, Urbana, IL (United States)

    2017-06-15

    Exclusive ρ{sup 0}-meson electroproduction is studied by the HERMES experiment, using the 27.6 GeV longitudinally polarized electron/positron beam of HERA and a transversely polarized hydrogen target, in the kinematic region 1.0 GeV{sup 2} < Q{sup 2} < 7.0 GeV{sup 2}, 3.0 GeV < W < 6.3 GeV, and -t{sup '} < 0.4 GeV{sup 2}. Using an unbinned maximum-likelihood method, 25 parameters are extracted. These determine the real and imaginary parts of the ratios of several helicity amplitudes describing ρ{sup 0}-meson production by a virtual photon. The denominator of those ratios is the dominant amplitude, the nucleon-helicity-non-flip amplitude F{sub 0(1)/(2)0(1)/(2)}, which describes the production of a longitudinal ρ{sup 0}-meson by a longitudinal virtual photon. The ratios of nucleon-helicity-non-flip amplitudes are found to be in good agreement with those from the previous HERMES analysis. The transverse target polarization allows for the first time the extraction of ratios of a number of nucleon-helicity-flip amplitudes to F{sub 0(1)/(2)0(1)/(2)}. Results obtained in a handbag approach based on generalized parton distributions taking into account the contribution from pion exchange are found to be in good agreement with these ratios. Within the model, the data favor a positive sign for the π - ρ transition form factor. By also exploiting the longitudinal beam polarization, a total of 71 ρ{sup 0} spin-density matrix elements is determined from the extracted 25 parameters, in contrast to only 53 elements as directly determined in earlier analyses. (orig.)

  6. Optimization of AGS Polarized Proton Operation with the Warm Helical Snake

    CERN Document Server

    Takano, Junpei; Bai, Mei; Brown, Kevin A; Gardner, Chris J; Glenn, Joseph; Hattori, Toshiyuki; Huang, Haixin; Luccio, Alfredo U; MacKay, William W; Okamura, Masahiro; Roser, Thomas; Tepikian, Steven; Tsoupas, Nicholaos

    2005-01-01

    A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.

  7. Ratios of helicity amplitudes for exclusive ρ0 electroproduction on transversely polarized proton

    Directory of Open Access Journals (Sweden)

    Manaenkov Serguei

    2017-01-01

    Full Text Available Exclusive ρ0-meson electroproduction is studied by the HERMES experiment, using the 27.6 GeV longitudinally polarized electron/positron beam of HERA and a transversely polarized hydrogen target, in the kinematic region 1.0 GeV2 < Q2 < 7.0 GeV2, 3.0 GeV < W < 6.3 GeV, and −t′ < 0.4 GeV2. Using an unbinned maximum-likelihood method, 25 parameters are extracted. They determine the real and imaginary parts of the ratios of certain helicity amplitudes describing ρ0-meson production by a virtual photon, where the denominator is the dominant amplitude F012012${F_{0{1 \\over 2}}}_{0{1 \\over 2}}$. The latter is the nucleon-helicity-non-flip amplitude, which describes the production of a longitudinal ρ0 meson by a longitudinal virtual photon. The transverse target polarization allows for the first time the extraction of ratios of a number of nucleon-helicity-flip amplitudes to F012012${F_{0{1 \\over 2}}}_{0{1 \\over 2}}$. The ratios of nucleon-helicity-non-flip amplitudes are found to be in good agreement with those from the previous HERMES analysis.

  8. Physics with polarized beams. Report of the ANL Technical Advisory Panel. [Research with polarized proton beams

    Energy Technology Data Exchange (ETDEWEB)

    1975-11-01

    Experimental directions which will be the most useful in developing underlying theories of hadronic collisions are outlined. As a pedagogical device to accomplish this, approximate percentages of a total program which could be devoted to different areas have been quoted. Findings are presented in the form of a short basic report with several long detailed appendices. In the basic report our opinion as to the amount of polarized beam experimental effort that should be applied to the following areas is stated: nucleon-nucleon scattering, quasi-two-body processes, inclusive production, and new or unexplored areas (such as large p/sub T/ and invariance principles). Our reasoning is discussed briefly, however, the details are left for the appendices. Members of the panel present certain aspects of the above areas, which should be useful for planning and/or performing polarized beam experiments. The seven presentations are abstracted separately in ERA.

  9. Generation of Vortex Beams with Strong Longitudinally Polarized Magnetic Field by Using a Metasurface

    CERN Document Server

    Veysi, Mehdi; Capolino, Filippo

    2014-01-01

    A novel method of generation and synthesis of azimuthally E-polarized vortex beams is presented. Along the axis of propagation such beams have a strong longitudinally polarized magnetic field where ideally there is no electric field. We show how these beams can be constructed through the interference of Laguerre-Gaussian beams carrying orbital angular momentum. As an example, we present a metasurface made of double-split ring slot pairs and report a good agreement between simulated and analytical results. Both a high magnetic-to-electric-field contrast ratio and a magnetic field enhancement are achieved. We also investigate the metasurface physical constraints to convert a linearly polarized beam into an azimuthally E- polarized beam and characterize the performance of magnetic field enhancement and electric field suppression of a realistic metasurface. These findings are potentially useful for novel optical spectroscopy related to magnetic dipolar transitions and for optical manipulation of particles with sp...

  10. Longitudinal proton relaxation rates in rabbit tissues after intravenous injection of free and chelated Mn2+

    Energy Technology Data Exchange (ETDEWEB)

    Spiller, M.; Brown, R.D. III; Koenig, S.H.; Wolf, G.L.

    1988-11-01

    The factors that determine the field-dependent increase in 1/T1 of tissue water protons were investigated for MnCl2 and Mn2+ (PDTA) (1,3-propylenediamine-N,N',N'',N'''-tetraacetic acid) introduced intravenously into rabbits. Mn2+ was used in preference to other paramagnetic ions in part because of the distinct NMRD profiles (magnetic field dependence of 1/T1) of free Mn2+ ions, their small chelate complexes, and their macromolecular conjugates, and in part because the relatively low toxicity of Mn2+ is favorable for animal studies. Tissue content of Mn2+ was determined in all samples by inductively coupled plasma analyses the state of Mn2+ in excised tissues was determined from the form of the 1/T1 NMRD profile of water protons; and distribution of contrast agent within tissue and access of water on a T1 time scale were determined by double-exponential analyses of proton relaxation behavior in intact doped tissue, as well as by the change of single-exponential relaxation rates and proton signal intensity upon gentle disruption of the tissue. MnCl2 is found in all tissues, except fat and skeletal muscle, but liver is most avid at low dose, and Mn2+ accumulates in spleen after high doses. Chelation targets Mn2+ to liver and kidney, saturating the liver chemically at relatively low dose. We suggest that pronounced increase in tissue relaxivity results from irrotationally bound Mn2+, ostensibly associated with the polar head groups of cell membranes. Compartmentalization of contrast agent and restricted diffusion of tissue water influences the maximum relaxation rates attainable, so that there is an optimal dose of these contrast agents which is rather low.

  11. Longitudinal proton relaxation rates in rabbit tissues after intravenous injection of free and chelated Mn2+.

    Science.gov (United States)

    Spiller, M; Brown, R D; Koenig, S H; Wolf, G L

    1988-11-01

    The factors that determine the field-dependent increase in 1/T1 of tissue water protons were investigated for MnCl2 and Mn2+ (PDTA) (1,3-propylenediamine-N,N',N'',N'''-tetraacetic acid) introduced intravenously into rabbits. Mn2+ was used in preference to other paramagnetic ions in part because of the distinct NMRD profiles (magnetic field dependence of 1/T1) of free Mn2+ ions, their small chelate complexes, and their macromolecular conjugates, and in part because the relatively low toxicity of Mn2+ is favorable for animal studies. Tissue content of Mn2+ was determined in all samples by inductively coupled plasma analyses the state of Mn2+ in excised tissues was determined from the form of the 1/T1 NMRD profile of water protons; and distribution of contrast agent within tissue and access of water on a T1 time scale were determined by double-exponential analyses of proton relaxation behavior in intact doped tissue, as well as by the change of single-exponential relaxation rates and proton signal intensity upon gentle disruption of the tissue. MnCl2 is found in all tissues, except fat and skeletal muscle, but liver is most avid at low dose, and Mn2+ accumulates in spleen after high doses. Chelation targets Mn2+ to liver and kidney, saturating the liver chemically at relatively low dose. We suggest that pronounced increase in tissue relaxivity results from irrotationally bound Mn2+, ostensibly associated with the polar head groups of cell membranes. Compartmentalization of contrast agent and restricted diffusion of tissue water influences the maximum relaxation rates attainable, so that there is an optimal dose of these contrast agents which is rather low.

  12. Theoretical estimate on tensor-polarization asymmetry in proton-deuteron Drell-Yan process

    Science.gov (United States)

    Kumano, S.; Song, Qin-Tao

    2016-09-01

    Tensor-polarized parton distribution functions are new quantities in spin-1 hadrons such as the deuteron, and they could probe new quark-gluon dynamics in hadron and nuclear physics. In charged-lepton deep inelastic scattering, they are studied by the twist-2 structure functions b1 and b2. The HERMES Collaboration found unexpectedly large b1 values compared to a naive theoretical expectation based on the standard deuteron model. The situation should be significantly improved in the near future by an approved experiment to measure b1 at Thomas Jefferson National Accelerator Facility (JLab). There is also an interesting indication in the HERMES result that finite antiquark tensor polarization exists. It could play an important role in solving a mechanism on tensor structure in the quark-gluon level. The tensor-polarized antiquark distributions are not easily determined from the charged-lepton deep inelastic scattering; however, they can be measured in a proton-deuteron Drell-Yan process with a tensor-polarized deuteron target. In this article, we estimate the tensor-polarization asymmetry for a possible Fermilab Main-Injector experiment by using optimum tensor-polarized parton distribution functions to explain the HERMES measurement. We find that the asymmetry is typically a few percent. If it is measured, it could probe new hadron physics, and such studies could create an interesting field of high-energy spin physics. In addition, we find that a significant tensor-polarized gluon distribution should exist due to Q2 evolution, even if it were zero at a low Q2 scale. The tensor-polarized gluon distribution has never been observed, so it is an interesting future project.

  13. COMPOZER-based longitudinal cross-polarization via dipolar coupling under MAS.

    Science.gov (United States)

    Kamihara, Takayuki; Murakami, Miwa; Noda, Yasuto; Takeda, Kazuyuki; Takegoshi, K

    2014-08-01

    We propose a cross polarization (CP) sequence effective under magic-angle spinning (MAS) which is tolerant to RF field inhomogeneity and Hartmann-Hahn mismatch. Its key feature is that spin locking is not used, as CP occurs among the longitudinal (Z) magnetizations modulated by the combination of two pulses with the opposite phases. We show that, by changing the phases of the pulse pairs synchronized with MAS, the flip-flop term of the dipolar interaction is restored under MAS.

  14. Higgs boson interference in mu^+ mu^- ->chargino_i chargino_j with longitudinally polarized beams

    CERN Document Server

    Kittel, O

    2005-01-01

    We study chargino production at a muon collider with longitudinally polarized beams and center of mass energies around the heavy neutral Higgs boson resonances. We show that the interference of the CP even and CP odd Higgs bosons can be analyzed using the energy distributions of the lepton or W boson from the chargino two-body decays \\tilde\\chi^\\pm_j\\to\\ell^\\mp\\tilde\

  15. Elastic scattering of polarized protons on helium three at 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p-/sup 3/He elastic scattering over the range of q .7 to 4.2 fm/sup -1/. The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since /sup 3/He is one of the simplest nuclei, polarized p-/sup 3/He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for /sup 3/He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs.

  16. Run05 Proton Beam Polarization Measurements by pC-Polarimeter (ver. 1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa,I.; Alekseev, I.; Bazilevsky, A.; Bravar, A.; Bunce, G.; Dhawan, S.; Eyser, K.O.; Gill, R.; Haeberli, W.; Huang, H.; Makdisi, Y.; Nass, A.; Okada, H.; Stephenson, E.; Svirida, D.N.; Wise, T.; Wood, J.; Yip, K.; Zelenski, A.

    2008-07-01

    The polarization of the proton beams [1, 2] at the Relativistic Heavy Ion Collider (RHIC)[3] RHIC ring. The H-Jet polarimeter is located at the collision point allowing measurements of absolute normalization is provided by the hydrogen polarimeter, which measures over 1 {approx} 2 another measurement rather than measuring the absolute polarization. both beams. Two identical pC-polarimeters are equipped in the yellow and blue rings, where carbon ribbon target, providing fast feedback to beam operations and experiments. The days to obtain {approx} 5% statistical uncertainty (in Run05). Thus, the operation of the carbon is measured using both an atomic beam source hydrogen gas jet (H-Jet)[4, 5] and proton-carbon polarimeters was focused on better control of relative stability between one measurement to statistical accuracy within 20 to 30 seconds using an ultra-thin (typically 6 {approx} 8 {micro}g/cm{sup 2}) the rings are separated. The pC-polarimeter measures relative polarization to a few percent.

  17. Measurement of neutral current deep inelastic e{sup +}p scattering cross sections with longitudinally polarized positrons with ZEUS at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wlasenko, Michal

    2009-05-15

    Measurements of neutral current deep inelastic scattering of protons colliding with longitudinally polarized positrons, performed with data recorded in years 2006 and 2007 with the ZEUS detector, corresponding to an integrated luminosity of L=113.3 pb{sup -1}, are presented. The single-differential cross sections d{sigma}/dQ{sup 2}, d{sigma}/dx, d{sigma}/dy and the double-differential reduced cross section {sigma} were measured in the kinematic region of 185polarization asymmetry A{sup +} and the generalized structure function x F{sub 3} were extracted. All measurements agree well with the predictions of the Standard Model. (orig.)

  18. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, H.; AHRENS, L.A.; BAI, M.; BRAVAR, A.; BROWN, K.; COURANT, E.D.; GARDNER, C.; GLENN, J.W.; LUCCIO, A.U.; MACKAY, W.W.; PTITSYN, V.; ROSER, T.; TEPIKIAN, S.; TSOUPAS, N.; WOOD, J.; YIP, K.; ZELENSKI, A.; ZENO, K.

    2006-06-26

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  19. Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes

    Science.gov (United States)

    Huang, H.; Ahrens, L. A.; Bai, M.; Bravar, A.; Brown, K.; Courant, E. D.; Gardner, C.; Glenn, J. W.; Lin, F.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Ptitsyn, V.; Roser, T.; Takano, J.; Tepikian, S.; Tsoupas, N.; Wood, J.; Yip, K.; Zelenski, A.; Zeno, K.

    2007-06-01

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  20. Polarized proton-deuteron scattering as a test of time-reversal invariance

    Science.gov (United States)

    Uzikov, Yu. N.; Haidenbauer, J.

    2016-09-01

    Scattering of protons with transversal polarization pyp on deuterons with tensor polarization Px z provides a null-test signal for time-reversal (T) invariance violating but parity (P) conserving effects. We calculate the corresponding null-test observable at beam energies 100 -1000 MeV within the spin-dependent Glauber theory considering T-violating P-conserving nucleon-nucleon interactions. The S -wave component of the deuteron wave function as well as the D wave are taken into account and the latter is found to play an important role for the magnitude and the energy dependence of the observable in question. Specifically, with inclusion of the D wave the maximum of the obtained signal is shifted to higher beam energies, i.e., to 700 -800 MeV.

  1. Polarized proton-deuteron scattering as a test of time-reversal invariance

    CERN Document Server

    Uzikov, Yu N

    2016-01-01

    Scattering of protons with transversal polarization $p_y^p$ on deuterons with tensor polarization $P_{xz}$ provides a null-test signal for time-reversal (T) invariance violating but parity (P) conserving effects. We calculate the corresponding null-test observable at beam energies 100-1000 MeV within the spin-dependent Glauber theory considering T-violating P-conserving nucleon-nucleon interactions. The S-wave component of the deuteron wave function as well as the D-wave are taken into account and the latter is found to play an important role for the magnitude and the energy dependence of the observable in question. Specifically, with inclusion of the D wave the maximum of the obtained signal is shifted to higher beam energies, i.e. to 700-800 MeV.

  2. Polarization transfer for inclusive proton-nucleus inelastic scattering at 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Fergerson, R.; McGill, J.; Glashausser, C.; Jones, K.; Nanda, S.; Sun Zuxun; Barlett, M.; Hoffmann, G.; Marshall, J.; McClelland, J.; and others

    1988-11-01

    The polarization-transfer observables D/sub N//sub N/, D/sub S//sub S/, D/sub L//sub L/, D/sub L//sub S/, and D/sub S//sub L/ have been measured at 800 MeV for polarized proton inelastic scattering from /sup 1/H, /sup 2/H, and /sup 12/C with energy losses up to about 400 MeV. The scattering angles in the laboratory were 5/sup 0/, 11/sup 0/, and 20/sup 0/. No large differences between the observables for the three targets were seen. The data for /sup 12/C in the quasielastic region are reasonably well explained by nonrelativistic and relativistic models of one-step quasifree scattering. Specifically nuclear effects appear small in both the quasielastic and delta regions.

  3. Evaluating the dynamic aperture evaluation for the new RHIC 250 GeV polarized proton lattice

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X.; Luo, Y.; Fischer, W.; Huang, H.; Tepikian, S.

    2011-03-28

    To increase luminosity in the Relativistic Heavy Ion Collider's (RHIC's) polarized proton 250 GeV operations, we are considering reducing {beta}* to 0.65 m at the interaction points (IPs), and increasing bunch intensity. The new working point near the 2/3 integer will used on the ramp to preserve polarization. In addition, we plan to adjust the betatron-phase advances between IP6 and IP8 to (k+1/2)*{pi} so to lower the dynamic beta-beat from the beam-beam interaction. The effects of all these changes will impact the dynamic aperture, and hence, it must be evaluated carefully. In this article, we present the results of tracking the dynamic aperture with the proposed lattices.

  4. Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target

    CERN Document Server

    Chen, S; Burkert, V D; Eugenio, P; Adams, G; Amarian, M; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Beard, K; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Bonner, B E; Bouchigny, S; Boiarinov, S; Bosted, P; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Cazes, A; Cole, P L; Collins, P; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Credé, V; Cummings, J P; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Fatemi, R; Fedotov, G; Feldman, G; Feuerbach, R J; Forest, T A; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Golovatch, E; Gonenc, A; Gothe, R W; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hardie, J; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Huertas, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Jüngst, H G; Keith, C; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klusman, M; Kossov, M; Kramer, L H; Kubarovski, V; Kühn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Ji Li; Lima, A C S; Livingston, K; Lü, H; Lukashin, K; MacCormick, M; Markov, N; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R C; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Moteabbed, M; Müller, J; Mutchler, G S; Nadel-Turonski, P; Napolitano, J; Nasseripour, R; Natasha, N; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Philips, S A; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Polli, E; Popa, I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Rowntree, D; Rubin, P D; Sabatie, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Shaw, J; Shvedunov, N V; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A V; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Suleiman, R; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S I; Todor, L; Tur, C; Ungaro, M; Vanderhaeghen, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zana, L; Zhang, J; Zhao, B; Zhao, Z002613222 100 L; Abazov, V M

    2006-01-01

    The longitudinal target-spin asymmetry A_UL for the exclusive electroproduction of high energy photons was measured for the first time in p(e,e'p\\gamma). The data have been accumulated at Jefferson Lab with the CLAS spectrometer using 5.7 GeV electrons and a longitudinally polarized NH_3 target. A significant azimuthal angular dependence was observed, resulting from the interference of the Deeply Virtual Compton Scattering and Bethe-Heitler processes. The amplitude of the sin(phi) moment is 0.252 +/- 0.042(stat) +/- 0.020(sys). Theoretical calculations are in good agreement with the magnitude and the kinematic dependence of the target-spin asymmetry, which is sensitive to the generalized parton distributions H and H-tilde.

  5. Measurement of deeply virtual compton scattering with a polarized-proton target.

    Science.gov (United States)

    Chen, S; Avakian, H; Burkert, V D; Eugenio, P; Adams, G; Amarian, M; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Beard, K; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Bonner, B E; Bouchigny, S; Boiarinov, S; Bosted, P; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Cazes, A; Cole, P L; Collins, P; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Crede, V; Cummings, J P; DeMasi, R; DeVita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Fatemi, R; Fedotov, G; Feldman, G; Feuerbach, R J; Forest, T A; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Golovatch, E; Gonenc, A; Gothe, R W; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hardie, J; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Huertas, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Juengst, H G; Keith, C; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klusman, M; Kossov, M; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Li, Ji; Lima, A C S; Livingston, K; Lu, H; Lukashin, K; MacCormick, M; Markov, N; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Moteabbed, M; Mueller, J; Mutchler, G S; Nadel-Turonski, P; Napolitano, J; Nasseripour, R; Natasha, N; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Philips, S A; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Popa, I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabian, Y G; Shaw, J; Shvedunov, N V; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Suleiman, R; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S; Todor, L; Tur, C; Ungaro, M; Vanderhaeghen, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zana, L; Zhang, J; Zhao, B; Zhao, Z

    2006-08-18

    The longitudinal target-spin asymmetry AUL for the exclusive electroproduction of high-energy photons was measured for the first time in ep-->e;'pgamma. The data have been accumulated at JLab with the CLAS spectrometer using 5.7 GeV electrons and a longitudinally polarized NH3 target. A significant azimuthal angular dependence was observed, resulting from the interference of the deeply virtual Compton scattering and Bethe-Heitler processes. The amplitude of the sinvarphi moment is 0.252+/-0.042stat+/-0.020sys. Theoretical calculations are in good agreement with the magnitude and the kinematic dependence of the target-spin asymmetry, which is sensitive to the generalized parton distributions H and H.

  6. Recoil polarization observables in the electroproduction of K mesons and Λ's from the proton

    Science.gov (United States)

    Maxwell, Oren V.

    2014-09-01

    A model developed previously to investigate the electromagnetic production of strangeness from the proton is used to investigate single and double recoil polarization observables in the reaction ep →e'K+Λ in the relativistic impulse approximation. The formalism is based on a tree-level, effective Lagrangian model, which incorporates a variety of baryon resonances with spins up to 5/2 and the two kaon resonances, K(892) and K1(1270). The parameters of the model were fit to a large pool of photoproduction data from the CLAS, GRAAL, SAPHIR, and LEPS collaborations and to CLAS data for the virtual photoproduction structure functions σU,σT,σL,σTT,σLT, and σLT'. Using two different versions of this model, results are presented for three recoil polarization asymmetries that have been measured recently at CLAS. A new fit is then presented which incorporates the new polarization data in the fitted data set. Results obtained with this new fit are presented for six recoil polarization asymmetries and compared with results from one of the previous fits.

  7. Longitudinal and transverse polarizations in the deep inelastic reactions; Polarisations longitudinale et transverse dans les reactions inelastiques profondes

    Energy Technology Data Exchange (ETDEWEB)

    Bressan, A.

    1996-07-01

    This course is an introduction to the dominant effects of longitudinal and transverse spin in deep inelastic reactions. Only the effects present to the `leading twist` are attacked. The mass and transverse impulsion of partons are neglected. We will attach to bring out the respective specificities of longitudinal and transverse polarizations. (N.C.).

  8. Two-pion production in proton-proton collisions with polarized beam - Roper versus single {delta} excitation

    Energy Technology Data Exchange (ETDEWEB)

    Erhardt, Arthur; Clement, Heinz; Doroshkevich, Evgueny; Ehrhardt, Katharina; Wagner, Gerhard J. [Physikalisches Institut der Universitaet Tuebingen (Germany)

    2008-07-01

    The pp{yields}pp{pi}{sup +}{pi}{sup -} reaction was measured with a polarized proton beam at T{sub p}=750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed-pulse technique for Quirl and Central Calorimeter provided positive {pi}{sup +} identification in addition to the standard particle identification. Differential cross sections as well as vector analyzing powers have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find large analyzing power values up to A{sub y}=0.3. At these measurements the dominating reaction mechanism is the excitation of the Roper resonance and its decay into the {pi}{sup +}{pi}{sup -} channel either directly or via {delta} excitation. From invariant M{sub {pi}}{sub {pi}} mass and {pi}{pi} opening angle distributions we find the direct decay into the {sigma} channel to be the dominating decay - at variance with the PDG values, but in favor of the monopole character of the Roper excitation. Since Roper excitation and decay do not result in significant analyzing powers, the reason for the measured large values may be found in small reaction amplitudes, where single {delta} excitation is connected with s-wave pion rescattering - a process not sensed so far experimentally.

  9. The Statistical and Numerical Study of the Longitudinally Asymmetric Distribution of Solar Proton Events Affecting the Earth Environment of 1996-2011

    CERN Document Server

    He, Hongqing

    2015-01-01

    Large solar proton events (SPEs) affect the solar-terrestrial space environment and become a very important aspect in space weather research. In this work, we statistically investigate 78 solar proton events of 1996-2011 and find that there exists a longitudinally asymmetric distribution of flare sources of the solar proton events observed near 1 AU, namely, with the same longitude separation between magnetic field line footpoint of observer and flare sources, the number of the solar proton events originating from sources located at eastern side of the nominal magnetic footpoint of observer is much larger than that of the solar proton events originating from sources located at western side. A complete model calculation of solar energetic particle (SEP) propagation in the three-dimensional Parker interplanetary magnetic field is presented to give a numerical explanation for this longitudinally asymmetric distribution phenomenon. We find that the longitudinally asymmetric distribution of solar proton events res...

  10. Measurement of neutrino and proton asymmetry in the decay of polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.

    2007-05-09

    The Standard Model of Particle Physics is in excellent agreement with all experimental results. However, it is not believed to be the most fundamental theory. It requires, for example, too many free parameters and is not able to explain the existence of effects such as parity-violation or CP-violation. Thus measurements have to be performed to probe the Standard Model and to search for ''new physics''. An ideal laboratory for this is the decay of the free polarized neutron. In this thesis, we present measurements of the neutrino asymmetry B and the proton asymmetry C in neutron decay. These coefficients describe the correlation between neutron spin and momentum of the respective particle, and provide detailed information on the structure of the underlying theory. The experiment was performed using the electron spectrometer PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined electron-proton detector to reconstruct the neutrino in a coincidence measurement. The uncertainty of our neutrino asymmetry result, B=0.9802(50), is comparable to the present best measurement, and, for the first time ever, we obtained a precise value for the proton asymmetry, C=-0.2377(36). Both results are used to analyze neutron decay for hints on ''Physics beyond the Standard Model'' by studying possible admixtures of right-handed currents and of scalar and tensor couplings to the interaction. (orig.)

  11. Single Spin Asymmetry $A_N$ in Polarized Proton-Proton Elastic Scattering at $\\sqrt{s}=200$ GeV

    CERN Document Server

    Adamczyk, L; Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Alekseev, I; Alford, J; Anderson, B D; Anson, C D; Arkhipkin, D; Aschenauer, E; Averichev, G S; Balewski, J; Banerjee, A; Barnovska, Z; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bruna, E; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, P; Chwastowski, J; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; de Souza, R Derradi; Dhamija, S; Didenko, L; Ding, F; Dion, A; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Elnimr, M; Engelage, J; Eppley, G; Eun, L; Evdokimov, O; Fatemi, R; Fazio, S; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Geurts, F; Gibson, A; Gliske, S; Gorbunov, Y N; Grebenyuk, O G; Grosnick, D; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Huo, L; Igo, G; Jacobs, W W; Jena, C; Joseph, J; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Kettler, D; Kikola, D P; Kiryluk, J; Kisel, I; Kisiel, A; Kizka, V; Klein, S R; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Koroleva, L; Korsch, W; Kotchenda, L; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, L; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Lu, Y; Luo, X; Luszczak, A; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Mall, O I; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Mioduszewski, S; Mitrovski, M K; Mohammed, Y; Mohanty, B; Mondal, M M; Morozov, B; Munhoz, M G; Mustafa, M K; Naglis, M; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nogach, L V; Novak, J; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Olson, D; Ostrowski, P; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Porter, J; Poskanzer, A M; Powell, C B; Prindle, D; Pruneau, C; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Raniwala, R; Raniwala, S; Ray, R L; Redwine, R; Reed, R; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Ruan, L; Rusnak, J; Sahoo, N R; Sakrejda, I; Salur, S; Sandacz, A; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, B; Schmitz, N; Schuster, T R; Seele, J; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shao, M; Sharma, B; Sharma, M; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Steadman, S G; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Tlusty, D; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen, J A; Jr.,; Varma, R; Vasconcelos, G M S; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Witzke, W; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Xue, L; Yang, Y; Yang, Y; Yepes, P; Yi, Y; Yip, K; Yoo, I-K; Zawisza, M; Zbroszczyk, H; Zhang, J B; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2012-01-01

    We report a high precision measurement of the transverse single spin asymmetry $A_N$ at $\\sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transfer $t$ range $0.003 \\leqslant |t| \\leqslant 0.035$ $\\GeVcSq$, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of $A_N$ and its $t$-dependence are consistent with the absence of a hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this $\\sqrt{s}$, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

  12. Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on a longitudinally polarized deuterium target

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physical Institute, Yerevan (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)

    2010-08-15

    Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle {phi} around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization are shown to be compatible with those from an unpolarized deuterium target, which is expected for incoherent scattering dominant at larger momentum transfer. Furthermore, the results for the single target-spin asymmetry and for the double-spin asymmetry are found to be compatible with the corresponding asymmetries previously measured on a hydrogen target. For coherent scattering on the deuteron at small momentum transfer to the target, these findings imply that the tensor contribution to the cross section is small. Furthermore, the tensor asymmetry is found to be compatible with zero. (orig.)

  13. Analyzing power in elastic scattering of 6He from polarized proton target at 71 MeV/nucleon

    CERN Document Server

    Sakaguchi, S; Uesaka, T; Tanifuji, M; Amos, K; Aoi, N; Hashimoto, Y; Hiyama, E; Ichikawa, M; Ichikawa, Y; Ishikawa, S; Itoh, K; Itoh, M; Iwasaki, H; Karataglidis, S; Kawabata, T; Kawahara, T; Kuboki, H; Maeda, Y; Matsuo, R; Nakao, T; Okamura, H; Sakai, H; Sasamoto, Y; Sasano, M; Satou, Y; Sekiguchi, K; Shinohara, M; Suda, K; Suzuki, D; Takahashi, Y; Tamii, A; Wakui, T; Yako, K; Yamaguchi, M; Yamamoto, Y

    2011-01-01

    The vector analyzing power has been measured for the elastic scattering of neutron-rich 6He from polarized protons at 71 MeV/nucleon making use of a newly constructed solid polarized proton target operated in a low magnetic field and at high temperature. Two approaches based on local one-body potentials were applied to investigate the spin-orbit interaction between a proton and a 6He nucleus. An optical model analysis revealed that the spin-orbit potential for 6He is characterized by a shallow and long-ranged shape compared with the global systematics of stable nuclei. A semimicroscopic analysis with a alpha+n+n cluster folding model suggests that the interaction between a proton and the alpha core is essentially important in describing the p+6He elastic scattering. The data are also compared with fully microscopic analyses using non-local optical potentials based on nucleon-nucleon g-matrices.

  14. Persistent longitudinal variations in 8 years of CIPS/AIM polar mesospheric clouds

    Science.gov (United States)

    Liu, Xiao; Yue, Jia; Xu, Jiyao; Yuan, Wei; Russell, James M.; Hervig, M. E.; Nakamura, Takuji

    2016-07-01

    The Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite provides an opportunity to study the longitudinal variation in polar mesospheric cloud (PMC). We examined the longitudinal variation in PMC albedo using 8 years (2007-2014) of observations from the CIPS instrument. The results show that the PMC albedo in the Southern Hemisphere (SH), especially in the latitude band of 80°S-85°S, is persistently low ( 65% relative to the rest of the hemisphere) within 60°W to 150°W longitude. In the Northern Hemisphere (NH), however, PMC albedo is found to be relatively zonally asymmetry. Harmonic analyses show that the persistent longitudinal variation in the SH PMC albedo is due to zonal wave numbers 1 through 4 (WN1-WN4) processes with minima in the longitude range of 60°W-150°W. The influence of temperature and H2O on the longitudinal variation of the PMC albedo is discussed based on results obtained using a simple 0-D PMC model and temperature from the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) and H2O from MLS. The modeled region of low ice mass in the SH is generally consistent with that of low PMC albedo seen in CIPS. Tidal analyses using the SABER temperatures indicate that the nonmigrating semidiurnal tides with modes of S0, W1, and E1 might be the main drivers of the persistent longitudinal variations of PMC albedo in the SH. Nonmigrating tides are much weaker in the NH and consistent with the observed lack of longitudinal variability in PMC albedo.

  15. High-intensity polarized H-(proton), deuteron and 3He++ion source development at BNL.

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski,A.

    2008-06-23

    New techniques for the production of polarized electron, H{sup -} (proton), D (D+) and {sup 3}H{sup ++} ion beams are discussed. Feasibility studies of these techniques are in progress at BNL. An Optically Pumped Polarized H{sup -} Ion Source (OPPIS) delivers beam for polarization studies in RHIC. The polarized deuteron beam will be required for the deuteron Electron Dipole Moment (EDM) experiment, and the {sup 3}H{sup ++} ion beam is a part of the experimental program for the future eRHIC (Electron Ion) collider.

  16. Spin asymmetries in one-jet production at RHIC with polarized proton beams the effects of a hadrophilic Z

    CERN Document Server

    Taxil, P

    1996-01-01

    We show that the measurement of some parity violating asymmetry in the production of a large ET jet could reveal the presence of a new hadrophilic Z' such as the one recently introduced to interpret possible departures from the Standard Model predictions both at LEP and at CDF. Such a measurement could be perform within a few years by the RHIC Spin Collaboration (RSC) using the Relativistic Heavy Ion Collider (RHIC) as a polarized proton-proton collider.

  17. Spin-orbit-induced longitudinal spin-polarized currents in nonmagnetic solids

    Science.gov (United States)

    Wimmer, S.; Seemann, M.; Chadova, K.; Ködderitzsch, D.; Ebert, H.

    2015-07-01

    For certain nonmagnetic solids with low symmetry the occurrence of spin-polarized longitudinal currents is predicted. These arise due to an interplay of spin-orbit interaction and the particular crystal symmetry. This result is derived using a group-theoretical scheme that allows investigating the symmetry properties of any linear response tensor relevant to the field of spintronics. For the spin conductivity tensor it is shown that only the magnetic Laue group has to be considered in this context. Within the introduced general scheme also the spin Hall and additional related transverse effects emerge without making reference to the two-current model. Numerical studies confirm these findings and demonstrate for (Au1-xPtx)4Sc that the longitudinal spin conductivity may be on the same order of magnitude as the conventional transverse one. The presented formalism only relies on the magnetic space group and therefore is universally applicable to any type of magnetic order.

  18. Recent results of high-energy spin phenomena of gluons and sea-quarks in polarized proton-proton collisions at RHIC at BNL

    CERN Document Server

    Surrow, Bernd

    2013-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized proton collisions at $\\sqrt{s}=200\\,$GeV and $\\sqrt{s}=500\\,$GeV to gain a deeper insight into the spin structure and dynamics of the proton. One of the main objectives of the spin physics program at RHIC is the precise determination of the polarized gluon distribution function. The STAR detector is well suited for the reconstruction of various final states involving jets, $\\pi^{0}$, $\\pi^{\\pm}$, e$^{\\pm}$ and $\\gamma$, which allows to measure several different processes. Recent results suggest a gluon spin contribution to the proton spin at the same level as the quark spin contribution itself. The production of $W$ bosons in polarized p+p collisions at $\\sqrt{s}=500\\,$GeV opens a new era in the study of the spin-flavor structure of the proton. $W^{-(+)}$ bosons are produced in $\\bar{u}+d\\;(\\bar{d}+u)$ collisions and can be detected through their leptonic...

  19. Longitudinal polarization of hyperon and anti-hyperon in semi-inclusive deep-inelastic scattering

    CERN Document Server

    Zhou, Shan-shan; Liang, Zuo-tang; Xu, Qing-hua

    2009-01-01

    We make a detailed study of the longitudinal polarization of hyperons and anti-hyperons in semi-inclusive deep-inelastic lepton-nucleon scattering. We present the numerical results for spin transfer in quark fragmentation processes, analyze the possible origins for a difference between the polarization for hyperon and that for the corresponding anti-hyperon. We present the results obtained in the case that there is no asymmetry between sea and anti-sea distribution in nucleon as well as those obtained when such an asymmetry is taken into account. We compare the results with the available data such as those from COMPASS and make predictions for future experiments including those at even higher energies such as at eRHIC.

  20. Double resonance experiments in low magnetic field: dynamic polarization of protons by (14)N and measurement of low NQR frequencies.

    Science.gov (United States)

    Seliger, J; Zagar, V

    2009-08-01

    The possibilities of dynamically polarizing proton spin system via the quadrupole (14)N spin system in low magnetic field are analyzed. The increase of the proton magnetization is calculated. The polarization rate of the proton spin system is related to the transition probabilities per unit time between the (14)N quadrupole energy levels and proton energy levels. The experiments performed in 1,3,5-triazine confirm the results of the theoretical analysis. A new double resonance technique is proposed for the measurement of nuclear quadrupole resonance frequencies nu(Q) of the order of 100kHz and lower. The technique is based on magnetic field cycling between a high and a low static magnetic field and observation of the proton NMR signal in the high magnetic field. In the low magnetic field the quadrupole nuclei and protons resonantly interact at the proton Larmor frequency nu(H)=nu(Q)/2. The quadrupole nuclei are simultaneously excited by a resonant rf magnetic field oriented along the direction of the low static magnetic field. The experimental procedure is described and the sensitivity of the new technique is estimated. Some examples of the measurement of low (14)N and (2)H nuclear quadrupole resonance frequencies are presented.

  1. Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam

    CERN Document Server

    Tojo, J; Bai, M; Bassalleck, B; Bunce, G M; Deshpande, A A; Doskow, J; Eilerts, S W; Fields, D E; Goto, Y; Huang, H; Hughes, V; Imai, K; Ishihara, M; Kanavets, V P; Kurita, K; Kwiatkowski, K K; Lewis, B; Lozowski, W R; Makdisi, Y I; Meyer, H O; Morozov, B V; Nakamura, M; Von Przewoski, B; Rinckel, T; Roser, T; Rusek, A; Saitô, N; Smith, B; Svirida, D N; Syphers, M J; Taketani, A; Thomas, T L; Underwood, D; Wolfe, D; Yamamoto, K; Zhu, L

    2002-01-01

    The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, $9.0\\times10^{-3}<-t<4.1\\times10^{-2}$ (GeV/$c)^{2}$, was measured with a 21.7 GeV/$c$ polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, $r_5$, was obtained from the analyzing power to be $\\text{Re} r_5=0.088\\pm 0.058$ and $\\text{Im} r_5=-0.161\\pm 0.226$.

  2. Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at sqrt{s} = 200 GeV

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Barber, B; Barnovska, Z; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Bridgeman, A; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Grosnick, D; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Haque, R; Harris, J W; Hays-Wehle, J P; He, W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Korsch, W; Kotchenda, L; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Munhoz, M G; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nogach, L V; Noh, S Y; Nord, P M; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Peterson, A; Pile, P; Planinic, M; Pluta, J; Plyku, D; Pochron, W; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandacz, A; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schaub, J; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8 < {\\eta} < 2.0 in polarized proton-proton collisions at sqrt{s} = 200 GeV are presented. Neutral pions were detected using the endcap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5 < p_T < 16 GeV/c and is found to be within the scale uncertainty of a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry, A_LL, is measured in the same pseudorapidity range. This quantity is sensitive to the gluonic contribution to the proton spin, {\\Delta}g(x), at low Bjorken-x (down to x approx 0.01), where it is less constrained by measurements at central pseudorapidity. The measured A_LL is consistent with model predictions. The parity-violating asymmetry, A_L, is also measured and found to be consistent with zero. The transverse single-spin asymmetry, A_N, is measured wit...

  3. Proton elastic form factor ratios to Q{sup 2} = 3.5 GeV{sup 2} by polarization transfer

    Energy Technology Data Exchange (ETDEWEB)

    V. Punjabi; C.F. Perdrisat; et al

    2005-01-01

    The ratio of the proton elastic electromagnetic form factors, G{sub E{sub p}}/G{sub M{sub p}}, was obtained by measuring P{sub t} and P{sub {ell}}, the transverse and longitudinal recoil proton polarization components, respectively, for the elastic {rvec e}p {yields} e{rvec p} reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV{sup 2}. In the single-photon exchange approximation, the ratio G{sub E{sub p}}/G{sub M{sub p}} is directly proportional to the ratio P{sub t}/P{sub {ell}}. The simultaneous measurement of P{sub t} and P{sub {ell}} in a polarimeter reduces systematic uncertainties. The results for the ratio G{sub E{sub p}}/G{sub M{sub p}} show a systematic decrease with increasing Q{sup 2}, indicating for the first time a definite difference in the distribution of charge and magnetization in the proton. The data have been re-analyzed and systematic uncertainties have become significantly smaller than previously published results.

  4. Spin-Dependent Electron Scattering from Polarized Protons and Deuterons with the BLAST Experiment at MIT-Bates

    Science.gov (United States)

    Hasell, Douglas K.; Milner, Richard G.; Redwine, Robert P.; Alarcon, Ricardo; Gao, Haiyan; Kohl, Michael; Calarco, John R.

    2011-11-01

    The Bates Large Acceptance Spectrometer Toroid (BLAST) experiment was operated at the MIT-Bates Linear Accelerator Center from 2003 until 2005. The experiment was designed to exploit the power of a polarized electron beam incident on polarized targets of hydrogen and deuterium to measure, in a systematic manner, the neutron, proton, and deuteron form factors as well as other aspects of the electromagnetic interaction on few-nucleon systems. We briefly describe the experiment, and present and discuss the numerous results obtained.

  5. Measurements of double-helicity asymmetries in inclusive J /ψ production in longitudinally polarized p +p collisions at √{s }=510 GeV

    Science.gov (United States)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Chujo, T.; Citron, Z.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Glenn, A.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; He, X.; Hemmick, T. K.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kanda, S.; Kang, J. H.; Kang, J. S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, H.-J.; Kim, M.; Kim, Y. K.; Kimelman, B.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotov, D.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lajoie, J. G.; Lebedev, A.; Lee, K. B.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Velkovska, J.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Yoo, J. H.; Yoon, I.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-12-01

    We report the double-helicity asymmetry, ALL J /ψ, in inclusive J /ψ production at forward rapidity as a function of transverse momentum pT and rapidity |y |. The data analyzed were taken during √{s }=510 GeV longitudinally polarized p +p collisions at the Relativistic Heavy Ion Collider in the 2013 run using the PHENIX detector. At this collision energy, J /ψ particles are predominantly produced through gluon-gluon scatterings, thus ALL J /ψ is sensitive to the gluon polarization inside the proton. We measured ALL J /ψ by detecting the decay daughter muon pairs μ+μ- within the PHENIX muon spectrometers in the rapidity range 1.2 helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-x region x ≈2 ×10-3. Thus our new results could be used to further constrain the gluon polarization for x <5 ×10-2.

  6. Double Spin Asymmetries A_NN and A_SS at sqrt{s}=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC

    CERN Document Server

    Bültmann, S; Bogdanov, A A; Chiang, I H; Chrien, R E; Chwastowski, J; De, K; Drees, A; Gill, R L; Guler, N; Guryn, W; Haguenauer, M; Kanavets, V P; Khodinov, A; Koroleva, L I; Landgraf, J; Li, J; Ljubicic, T A; Lynn, D; Morozov, B V; Nurushev, S B; Ozturk, N; Pawlik, B; Pearson, C; Pile, P; Rijssenbeek, M; Runtzo, M F; Rusek, A; Sakitt, M; Sandacz, A; Strikhanov, M N; Svirida, D N; Tepikian, S; Whitehead, L; Yeung, S; Yip, K

    2006-01-01

    We present the first measurements of the double spin asymmetries A_NN and A_SS at sqrt{s}=200 GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). The data were collected in the four momentum transfer t range 0.01<|t|<0.03 (GeV/c)^2. The measured asymmetries, which are consistent with zero, allow us to estimate upper limits on the double helicity-flip amplitudes phi_2 and phi_4 at small t as well as on the difference Delta(sigma_T) between the total cross sections for transversely polarized protons with antiparallel or parallel spin orientations.

  7. Anomalous excited-state dynamics of lucifer yellow CH in solvents of high polarity: evidence for an intramolecular proton transfer.

    Science.gov (United States)

    Panda, Debashis; Mishra, Padmaja P; Khatua, Saumyakanti; Koner, Apurba L; Sunoj, Raghavan B; Datta, Anindya

    2006-05-04

    The photophysics of the fluorescent probe Lucifer yellow CH has been investigated using fluorescence spectroscopic and computational techniques. The nonradiative rate is found to pass through a minimum in solvents of intermediate empirical polarity. This apparently anomalous behavior is rationalized by considering the possibility of predominance of different kinds of nonradiative processes, viz. intersystem crossing (ISC) and excited-state proton transfer (ESPT), in solvents of low and high empirical polarity, respectively. The feasibility of the proton transfer is examined by the structure determined by the density functional theory (DFT) calculations. The predicted energy levels based on the time-dependent density functional theory (TD-DFT) method in the gas phase identifies the energy gap between the S(1) and nearest triplet state to be close enough to facilitate ISC. Photophysical investigation in solvent mixtures and in deuterated solvents clearly indicates the predominance of the solvent-mediated intramolecular proton transfer in the excited state of the fluorophore in protic solvents.

  8. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. Y.; Yan, X. Q.; Chen, J. E.; He, X. T. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China) and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871 (China); Ma, W. J.; Bin, J. H.; Schreiber, J.; Tajima, T.; Habs, D. [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Am Coulombwall 1, 85748 Garching (Germany) and Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany)

    2013-01-15

    We report an efficient and stable scheme to generate {approx}200 MeV proton bunch by irradiating a two-layer targets (near-critical density layer+solid density layer with heavy ions and protons) with a linearly polarized Gaussian pulse at intensity of 6.0 Multiplication-Sign 10{sup 20} W/cm{sup 2}. Due to self-focusing of laser and directly accelerated electrons in the near-critical density layer, the proton energy is enhanced by a factor of 3 compared to single-layer solid targets. The energy spread of proton is also remarkably reduced. Such scheme is attractive for applications relevant to tumor therapy.

  9. Measurement of the Beam-Recoil Polarization in Low-Energy Virtual Compton Scattering from the Proton

    CERN Document Server

    Doria, L; Achenbach, P; Gayoso, C Ayerbe; Baumann, D; Bensafa, I; Benali, M; Beričič, J; Bernauer, J C; Böhm, R; Bosnar, D; Correa, L; D'Hose, N; Defaÿ, X; Ding, M; Distler, M O; Fonvieille, H; Friedrich, J; Friedrich, J M; Laveissière, G; Makek, M; Marroncle, J; Merkel, H; Mihovilovič, M; Müller, U; Nungesser, L; Pasquini, B; Pochodzalla, J; Postavaru, O; Potokar, M; Ryckbosch, D; Majos, S Sánchez; Schlimme, B S; Seimetz, M; Širca, S; Tamas, G; Van de Vyver, R; Van Hoorebeke, L; Van Overloop, A; Walcher, Th; Weinriefer, M

    2015-01-01

    Double-polarization observables in the reaction $\\vec{e}p \\rightarrow e'\\vec{p'}\\gamma{}$ have been measured at $Q^2=0.33 (GeV/c)^2$. The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function $P_{LT}^\\perp$ is extracted for the first time, with the value $(-15.4 \\pm 3.3 (stat.)^{+1.5}_{-2.4} (syst.)) GeV^{-2}$, using the low-energy theorem for Virtual Compton Sattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.

  10. Measurement of proton polarization in. pi. /sup 0/ photoproduction at theta/sub. pi. //sub =/* = 70/sup 0/ in a linearly polarized photon beam

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R.O.; Avakyan, E.O.; Avetisyan, A.E.; Agaronyan, A.V.; Asatryan, R.A.; Bagdasaryan, A.S.; Vartapetyan, G.A.; Gavalyan, V.G.; Garibyan, Y.A.; Dallakyan, K.R.; and others

    1987-11-01

    The energy dependence of the P/sub x//sub z/ and P/sub y/ components of the polarization vector of the recoil protons has been measured in the photoproduction of ..pi../sup 0/ mesons in hydrogen for an angle theta/sub ..pi..//sub =/* = 70/sup 0/ in the energy range E/sub ..gamma../ = 0.78--1.17 GeV. The results of the measurements are compared with the predictions of various theoretical analyses

  11. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    Science.gov (United States)

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  12. Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson

    Energy Technology Data Exchange (ETDEWEB)

    Stefanis, N.G., E-mail: stefanis@tp2.ruhr-uni-bochum.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Pimikov, A.V., E-mail: pimikov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2016-01-15

    Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized ρ-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson–Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.

  13. Chimera distribution amplitudes for the pion and the longitudinally polarized $\\rho$-meson

    CERN Document Server

    Stefanis, N G

    2016-01-01

    Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized $\\rho$-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson-Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.

  14. Improving the quality of proton beams via double targets driven by an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    Yanxia Xu

    2016-10-01

    Full Text Available A new scheme is proposed to improve the quality of proton beams via ultra-intense laser pulse interacting with double plasma targets, which consist of a pre-target with relatively low density and a main target with high density. Both one- and two-dimensional Particle-in-Cell simulations show that, the using of an appropriate pre-target can help to obtain a much stronger longitudinal charge separation field in contrast to using only the main target. And proton beam with lower momentum divergence, better monochromaticity and collimation, as well as higher current density is generated. Moreover, due to the strengthened coupling between the laser pulse and targets, the energy conversion from laser pulse to protons is also increased.

  15. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q^2 = 8.5 GeV^2

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, A J.R.; Jones, M K; Luo, W; Meziane, M; Pentchev, L; Perdrisat, C F; Punjabi, V; Wesselmann, F R; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Marsh, A; Matulenko, Y; Maxwell, J; Mbianda, G; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nedev, S; Nuruzzaman,; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvingnon, P; Subedi, R; Tomasi-Gustafsson, E; Vasiliev, A; Veilleux, M; Wojtsekhowski, B B; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X

    2010-06-01

    Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon’s quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this Letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5  GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the nonperturbative regime.

  16. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q^2 = 8.5 GeV^2

    CERN Document Server

    Puckett, A J R; Jones, M K; Luo, W; Meziane, M; Pentchev, L; Perdrisat, C F; Punjabi, V; Wesselmann, F R; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Marsh, A; Matulenko, Y; Maxwell, J; Mbianda, G; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nedev, S; Nuruzzaman,; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Subedi, R; Tomasi-Gustafsson, E; Vasiliev, A; Veilleux, M; Wojtsekhowski, B B; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L

    2010-01-01

    Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime.

  17. Proton magnetic resonance with parahydrogen induced polarization. Imaging strategies and continuous generation

    Energy Technology Data Exchange (ETDEWEB)

    Dechent, Jan Falk Frederik

    2012-12-17

    A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for {sup 1}H, the most widely used nucleus in NMR and MRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones. Here, I describe a method giving rise to high {sup 1}H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences. Hyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization. These two achievements open up alternative opportunities to use the standard MRI nucleus {sup 1}H for e.g. metabolic imaging in the future.

  18. Impact of the January 2012 solar proton event on polar mesospheric clouds

    Science.gov (United States)

    Bardeen, C. G.; Marsh, D. R.; Jackman, C. H.; Hervig, M. E.; Randall, C. E.

    2016-08-01

    We use data from the Aeronomy of Ice in the Mesosphere mission and simulations using the Whole Atmosphere Community Climate Model to determine the impact of the 23-30 January 2012 solar proton event (SPE) on polar mesospheric clouds (PMCs) and mesospheric water vapor. We see a small heating and loss of ice mass on 26 January that is consistent with prior results but is not statistically significant. We also find a previously unreported but statistically significant ~10% increase in ice mass and in water vapor in the sublimation area in the model that occurs in the 7 to 14 days following the start of the event. The magnitude of the response to the January 2012 SPE is small compared to other sources of variability like gravity waves and planetary waves; however, sensitivity tests suggest that with larger SPEs this delayed increase in ice mass will increase, while there is little change in the loss of ice mass early in the event. The PMC response to SPEs in models is dependent on the gravity wave parameterization, and temperature anomalies from SPEs may be useful in evaluating and tuning gravity wave parameterizations.

  19. Beam-Recoil Polarization Measurement of π0 Electroproduction on the Proton in the Region of the Roper Resonance

    Science.gov (United States)

    Štajner, S.; Achenbach, P.; Beranek, T.; Beričič, J.; Bernauer, J. C.; Bosnar, D.; Böhm, R.; Correa, L.; Denig, A.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friedrich, J. M.; Friščić, I.; Kegel, S.; Kohl, Y.; Merkel, H.; Mihovilovič, M.; Müller, J.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Schlimme, B. S.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Thiel, M.; Tiator, L.; Tyukin, A.; Weber, A.; Yaron, I.; A1 Collaboration

    2017-07-01

    The helicity-dependent recoil proton polarizations Px' and Pz' as well as the helicity-independent component Py have been measured in the p (e →,e'p →)π0 reaction at four-momentum transfer Q2≃0.1 GeV2, center-of-mass proton emission angle θp*≃9 0 ° , and invariant mass W ≃1440 MeV . This first precise measurement of double-polarization observables in the energy domain of the Roper resonance P11(1440 ) by exploiting recoil polarimetry has allowed for the extraction of its scalar electroexcitation amplitude at an unprecedentedly low value of Q2, establishing a powerful instrument for probing the interplay of quark and meson degrees of freedom in the nucleon.

  20. Measurement of double polarization observables in meson photoproduction off the proton with the CBELSA/TAPS experiment

    CERN Document Server

    Hartmann, Jan

    2014-01-01

    One of the remaining problems within the standard model is to gain a good understanding of the low energy regime of QCD, where perturbative methods fail. One key towards a better understanding is baryon spectroscopy. Unfortunately, in the past most baryon spectroscopy data have been obtained only using $\\pi$ N scattering. To gain access to resonances with small $\\pi$ N partial width, photoproduction experiments, investigating various final states, provide essential information. In order to extract the contributing resonances, partial wave analyses need to be performed. Here, the complete experiment is required to unambiguously determine the contributing amplitudes. This involves the measurement of carefully chosen single and double polarization observables. The Crystal Barrel/TAPS experiment with a longitudinally or transversely polarized target and an energy tagged, linearly or circularly polarized photon beam allows the measurement of a large set of polarization observables. Due to its good energy resolutio...

  1. Single-spin azimuthal asymmetry in exclusive electroproduction of {pi}{sup +} mesons on transversely polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Inst. (Armenia); Akopov, Z. [DESY, Hamburg (DE)] (and others)

    2009-07-15

    Exclusive electroproduction of {pi}{sup +} mesons was studied by scattering 27.6 GeV positrons or electrons off a transversely polarized hydrogen target. The single-spin azimuthal asymmetry with respect to target polarization was measured as a function of the Mandelstam variable t, the Bjorken scaling variable x{sub B}, and the virtuality Q{sup 2} of the exchanged photon. The extracted Fourier components of the asymmetry were found to be consistent with zero, except one that was found to be large and that involves interference of contributions from longitudinal and transverse virtual photons. (orig.)

  2. Measurement of top quark polarization in top-antitop events from proton-proton collisions at √s = 7 TeV using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard

    2013-01-01

    This Letter presents measurements of the polarization of the top quark in top–antitop quark pair events, using 4.7 fb$^{¯1}$ of proton–proton collision data recorded with the ATLAS detector at the Large Hadron Collider at √s = 7 TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of $\\alpha_l P$, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving (CPC) or a CP violating (CPV) production process. The measurements obtained, $\\alpha_l P_{CPC} = −0.035± 0.014(stat) ± 0.037(syst)$ and $\\alpha_l P_{CPV} = 0.020 ± 0.016(stat)^{+0.013} _{-0.017}(syst)$, are in good agreement with the Standard Model prediction of negligible top quark polarization.

  3. Fast scaling of energetic protons generated in the interaction of linearly polarized femtosecond petawatt laser pulses with ultrathin targets

    Science.gov (United States)

    Kim, I. Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Choi, Il Woo; Lee, Chang-Lyoul; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Nam, Chang Hee

    2015-12-01

    Laser-driven proton/ion acceleration is a rapidly developing research field attractive for both fundamental physics and applications such as hadron therapy, radiography, inertial confinement fusion, and nuclear/particle physics. Laser-driven proton/ion beams, compared to those obtained in conventional accelerators, have outstanding features such as low emittance, small source size, ultra-short duration and huge acceleration gradient of ∼1 MeV μm-1. We report proton acceleration from ultrathin polymer targets irradiated with linearly polarized, 30-fs, 1-PW Ti:sapphire laser pulses. A maximum proton energy of 45 MeV with a broad and modulated profile was obtained when a 10-nm-thick target was irradiated at a laser intensity of 3.3 × 1020 W/cm2. The transition from slow (I1/2) to fast scaling (I) of maximum proton energy with respect to laser intensity I was observed and explained by the hybrid acceleration mechanism including target normal sheath acceleration and radiation pressure acceleration in the acceleration stage and Coulomb-explosion-assisted free expansion in the post acceleration stage.

  4. EPR detected polarization transfer between Gd3+ and protons at low temperature and 3.3 T: The first step of dynamic nuclear polarization

    Science.gov (United States)

    Nagarajan, Vijayasarathi; Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon; Goldfarb, Daniella

    2010-06-01

    Electron-electron double resonance pulsed electron paramagnetic resonance (EPR) at 95 GHz (3.3 T) is used to follow the dynamics of the electron spin polarization during the first stages of dynamic nuclear polarization in solids. The experiments were performed on a frozen solution of Gd+3 (S =7/2) in water/glycerol. Focusing on the central |-1/2⟩→|+1/2⟩ transition we measured the polarization transfer from the Gd3+ electron spin to the adjacent H1 protons. The dependence of the echo detected EPR signal on the length of the microwave irradiation at the EPR "forbidden" transition corresponding to an electron and a proton spin flip is measured for different powers, showing dynamics on the microsecond to millisecond time scales. A theoretical model based on the spin density matrix formalism is suggested to account for this dynamics. The central transition of the Gd3+ ion is considered as an effective S =1/2 system and is coupled to H1 (I =1/2) nuclei. Simulations based on a single electron-single nucleus four level system are shown to deviate from the experimental results and an alternative approach taking into account the more realistic multinuclei picture is shown to agree qualitatively with the experiments.

  5. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning.

    Science.gov (United States)

    Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V

    2016-06-14

    Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  6. Azimuthal asymmetries in hard exclusive meson muoproduction off transversely polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Wolbeek, Johannes ter

    2015-04-15

    In 2010, the COMPASS experiment at CERN took data with a 160 GeV μ{sup +} beam and a transversely polarized NH{sub 3} target. In this thesis, this data is analyzed for azimuthal target spin asymmetries, including five single spin and three double spin asymmetries in hard exclusive ω meson production. This thesis is the worldwide first analysis investigating on azimuthal asymmetries in exclusive ω muoproduction (μ'p→μ'+p'+ω→μ'+p'+π{sup +}π{sup -}π{sup 0}). The analysis is confronted with several challenges beside the small cross section of the examined process. The detection of two photons in the final state requires an excellent performance of the electromagnetic calorimeters as well as a good understanding of the detector. To increase the yield of reconstructed γ pairs from a decaying π{sup 0} meson, a decay product of the ω meson, extensive studies relating to performance of the calorimeters were necessary. Firstly the time information of the calorimeters had to be parametrized in dependence of the cluster energy to ensure the assignment of beam particle and photon due to a correlation in time. Secondly, a parametrization of the invariant mass of the photon pair was performed in terms of the energy of the reconstructed π{sup 0}, for the better discrimination of signal and background. In the setup with the transversely polarized target, the recoiled proton cannot be detected. Thus in order to ensure the exclusivity of the process, the missing energy is calculated. The signal region, defined at vertical stroke E{sub miss} vertical stroke < 3GeV, contains ω mesons from exclusive events as well as from semi-inclusive production. Hence the understanding of non-exclusive background is essential for the further analysis. For this purpose, a semiinclusive Monte Carlo sample is studied. In order to reach a better agreement of the Monte Carlo and data, like-sign samples from both, real data and Monte Carlo, are compared and the

  7. Measurement Of Inclusive Forward Neutral Pion Production In 200 Gev Polarized Proton-proton Collisions At Rhic

    CERN Document Server

    Wang, Y

    2004-01-01

    Measurement of inclusive forward π0 production in the first polarized p-p collision at s = 200 GeV was achieved using a prototype Forward (neutral) Pion Detector. The invariant differential cross section was consistent with next-to-leading order perturbative QCD calculation. Large positive analyzing power was found for large Feynman-x (xF > 0.3). In addition, a new analysis program was developed for the upgraded Forward Pion Detector (FPD).

  8. The First Transverse Single Spin Measurement in High Energy Polarized Proton-Nucleus Collision at the PHENIX experiment at RHIC

    Science.gov (United States)

    Nakagawa, I.

    2016-08-01

    Large single spin asymmetries in very forward neutron production seen using the PHENIX zero-degree calorimeters are a long established feature of transversely polarized proton-proton collisions at RHIC. Neutron production near zero degrees is well described by the one-pion exchange framework. The absorptive correction to the OPE generates the asymmetry as a consequence of a phase shift between the spin flip and non-spin flip amplitudes. However, the amplitude predicted by the OPE is too small to explain the large observed asymmetries. A model introducing interference of pion and a 1-Reggeon exchanges has been successful in reproducing the experimental data. During the RHIC experiment in year 2015, RHIC delivered polarized proton collisions with Au and Al nuclei for the first time, enabling the exploration of the mechanism of transverse single-spin asymmetries with nuclear collisions. The observed asymmetries showed surprisingly strong A-dependence in the inclusive forward neutron production, while the existing framework which was successfull in p+p only predicts moderate A- dependence. Thus the observed data are absolutely unexpected and unpredicted. In this report, experimental and theoretical efforts are discussed to disentangle the observed A-dependence using somewhat semi-inclusive type measurements and Monte-Carlo study, respectively.

  9. The donut and dynamic polarization effects in proton channeling through carbon nanotubes

    DEFF Research Database (Denmark)

    Borka, D.; Mowbray, Duncan; Miskovic, Z.L.

    2010-01-01

    We investigate the angular and spatial distributions of protons with an energy of 0.223 MeV after channeling them through an (11, 9) single-wall carbon nanotube of 0.2 mu m length. The proton incident angle is varied between 0 and 10 mrad, being close to the critical angle for channeling. We show...... that, as the proton incident angle increases and approaches the critical angle for channeling, a ring-like structure is developed in the angular distribution-the donut effect. We demonstrate that it is the rainbow effect. If the proton incident angle is between zero and half of the critical angle...... for channeling, the image force affects considerably the number and positions of the maxima of the angular and spatial distributions. However, if the proton incident angle is close to the critical angle for channeling, its influence on the angular and spatial distributions is considerably decreased. We...

  10. Spin-rotation parameter Q for elastic scattering of 800 MeV polarized protons from WO, UCa, and SYPb

    Energy Technology Data Exchange (ETDEWEB)

    Fergerson, R.W.

    1985-10-01

    The spin-rotation parameter Q was measured for WO, UCa, and SYPb using the 800 MeV proton beam produced at the Clinton P. Anderson Meson Physics Facility. The experiment was carried out using the High Resolution Spectrometer equipped with a focal-plane polarimeter to determine the scattered polarization components in all three directions. These data (when combined with previous cross section and analyzing power data) determine the amplitude describing the elastic scattering of protons from these spin-zero nuclei to within an overall phase. Q is shown to be more sensitive than either the cross section or analyzing power to differences between the nonrelativistic and relativistic scattering theories that describe the proton-nucleus reaction in terms of fundamental proton-nucleon input. The nonrelativistic predictions for Q generally lie below the data but consistently have the correct structure. The relativistic predictions for the UCa and SYPb Q data are quite good (better than the nonrelativistic predictions). The relativistic predictions for the WO Q data show much more structure than is evident in the data. 51 refs., 39 figs., 4 tabs.

  11. Longitudinal monitoring of demineralization peripheral to orthodontic brackets using cross polarization optical coherence tomography.

    Science.gov (United States)

    Nee, Alexander; Chan, Kenneth; Kang, Hobin; Staninec, Michal; Darling, Cynthia L; Fried, Daniel

    2014-05-01

    The aim of this study was to test the hypothesis that cross-polarization optical coherence tomography (CP-OCT) can be used to longitudinally monitor demineralization peripheral to orthodontic brackets in an extended clinical study. A high-speed CP-OCT system was used to acquire 3D volumetric images of the area at the base of orthodontic brackets over a period of 12 months after placement. The reflectivity was measured at 3-month intervals for 12 months to determine if there was increased demineralization. Two teeth were monitored on 20 test subjects and the brackets were bonded using two types of adhesives. This was a randomized controlled clinical study with a split mouth design such that each subject served as his or her own control. On one side, the control premolar was bonded with a bonding agent (Adper Scotchbond from 3M ESPE, St. Paul, MN) and composite (Transbond XT from 3M Unitek, Monrovia, CA) that lacked fluoride. On the other side, the experimental premolar was bonded with a fluoride releasing glass ionomer cement (GC Fuji Ortho LC from GC America, Alsip, IL). There was a small but significant increase in the calculated lesion depth and integrated reflectivity over that depth (ΔR) for both adhesive types (pfluoride releasing glass ionomer cement and the conventional composite. CP-OCT was able to measure a significant increase in demineralization (p<0.0001) at the base of orthodontic brackets over a period of 12 months. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Measurement of the longitudinal proton structure function in diffraction at the H1 experiment and prospects for diffraction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Salek, David

    2011-05-15

    A measurement of the longitudinal diffractive structure function F{sub L}{sup D} using the H1 detector at HERA is presented. The structure function is extracted from first measurements of the diffractive cross section ep{yields}eXY at centre of mass energies {radical}(s) of 225 and 252 GeV at high values of inelasticity y, together with a new measurement at {radical}(s) of 319 GeV, using data taken in 2006 and 2007. Previous H1 data at {radical}(s) of 301 GeV complete the kinematic coverage needed to extract F{sub L}{sup D} in the range of photon virtualities 2.5proton longitudinal momentum loss 10{sup -4}7 GeV{sup 2} and compared to the analogous quantity for inclusive DIS. (orig.)

  13. Polarization creation in proton-rich {sup 28}P via charge exchange reactions and measurement of its electric quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Mihara, M. [Osaka University, Department of Physics (Japan); Zhou, D. M.; Zheng, Y. N. [CIAE (China); Nishimura, D. [Osaka University, Department of Physics (Japan); Nagatomo, T. [International Christian University (Japan); Yuan, D. Q. [CIAE (China); Momota, S. [Kochi University of Technology (Japan); Izumikawa, T. [Niigata University, RI Center (Japan); Zuo, Y.; Fan, P.; Zhu, S. Y. [CIAE (China); Ohtsubo, T. [Niigata University (Japan); Fukuda, M. [Osaka University, Department of Physics (Japan); Namiki, Y.; Nagashima, M. [Niigata University (Japan); Minamisono, T. [Fukui University of Technology (Japan); Kameda, D. [RIKEN (Japan); Sumikama, T. [Tokyo University of Science (Japan); Kitagawa, A. [NIRS (Japan); and others

    2010-06-15

    The degrees of polarization of proton rich nucleus {sup 28}P produced in charge exchange reactions {sup 28}Si + {sup 9}Be {yields} {sup 28}P + X, and {sup 28}Si + {sup 1}H {yields} {sup 28}P + X have been observed at 100A MeV. Utilizing thus obtained polarized nuclei, the magnetic moment of {sup 28}P was remeasured, and vertical bar {mu}({sup 28}P) vertical bar = 0.3115 (34) {mu}{sub N} was obtained. {beta}-nuclear quadrupole resonance ({beta}-NQR) of {sup 28}P implanted in {alpha}-Al{sub 2}O{sub 3} have been observed for the first time, in order to measure the electric quadrupole moment of this nucleus.

  14. Energy loss and longitudinal wakefield of relativistic short proton bunches in electron clouds

    Directory of Open Access Journals (Sweden)

    O. Boine-Frankenheim

    2012-05-01

    Full Text Available The aim of our study is the numerical computation of the wakefield and energy loss per unit length for relativistic, short (<10  ns proton bunches interacting with an electron cloud inside the beam pipe. We present analytical expressions for the energy loss in the impulse kick approximation. For the simulation of the wakefields a 2D self-consistent, electrostatic particle-in-cell (PIC code is employed. Results for the energy loss and for the wakefields are presented for the parameter scope of the CERN LHC and SPS. For selected parameters the results are compared to a three-dimensional (3D electromagnetic PIC code.

  15. Dependence of proton beam polarization on ion source transition configurations; Determination de la polarisation du faisceau de protons pour les quatre configurations des transitions de la source d`ions

    Energy Technology Data Exchange (ETDEWEB)

    Arvieux, J.; Ausset, P.; Ball, J.; Beauvais, P.Y.; Bedfer, Y.; Chamouard, P.A.; Fontaine, J.M.; Kunne, R.; Lagniel, J.M.; Sans, J.L. [Laboratoire National Saturne - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Allgower, Ch.; Kasprzyk, T.E.; Spinka, H.M. [ANL-HEP, Argonne (United States); Bystricky, J.; Lehar, F.; Lesquen, A. de [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Demiere, Ph.; Rapin, D.; Teglia, A. [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire; Janout, Z. [Czech Technical Univ., Prague (Czech Republic). Faculty of Civil Engineering; Kalinnikov, V.A.; Khachaturov, B.A.; Popov, A.A. [Laboratory of Nuclear Problems, JINR, Moscow (Russian Federation); Prokofiev, A.N.; Vikhrov, V.V.; Zhdanov, A.A. [Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1997-12-31

    Considerable anomalies were observed in recorded pp elastic scattering spin dependent data at several proton beam energies at SATURNE II. These results suggested that the discrepancies are related to the polarized ion source. In order to understand the observed effects, the proton beam polarizations for each ion source state were determined separately. Convenient procedures, allowing to determine the beam polarization from a beam-line polarimeter are presented. Two distinct experiments are necessary for this purpose. In the first one the LEFT-RIGHT instrumental asymmetry of the beam polarimeter arms is determined. In the second one this correction factor is applied to asymmetries measured with the beam from the polarized ion source in different polarization states. Both experiments determined the scattering asymmetries for all four polarized source states as functions of different source parameters. The measurements were carried out at the proton beam kinetic energy 0.80 GeV, where the pp elastic scattering analyzing power is at its maximum. Results show that the so called `unpolarized states` of the source are polarized, whereas the absolute values of the beam polarizations in `polarized states` are equal. It was observed that the hexapole lens of the ion source provides some beam polarization in the absence of any transition. The beam polarization as function of the hexapole current, of the transition efficiencies and of the rotation solenoid current has been studied. It is also shown, how one way obtain a strictly unpolarized beam using the polarized source only. The results obtained with the SATURNE II ion source HYPERION may be also valid for other accelerators and sources. (authors) 10 refs.

  16. Hunting for Contact Interactions at HERA with polarized lepton and proton beams

    CERN Document Server

    Virey, J M

    1999-01-01

    We explore the discovery and analysis potentials of the HERA collider, with and without polarized beams, in search for electron-quark contact interactions in the neutral current channel. We find that the sensitivity to contact interactions when both beams are polarized is similar to the unpolarized case, and is better than in the case where one has only lepton polarization. We emphasize that the measurement of spin asymmetries in such a polarized context could give some crucial informations on the chiral structure of these postulated new interactions. The experimental conditions are carefully taken into account.

  17. TDDFT study of the polarity controlled ion-pair separation in an excited-state proton transfer reaction.

    Science.gov (United States)

    Liu, Yu-Hui; Mehata, Mohan Singh; Lan, Sheng-Cheng

    2014-07-15

    6-Hydroxyquinoline (6HQ) is an ideal photoacid system for exploring excited-state proton transfer (ESPT) reactions. We have previously (Mahata et al. (2002)) shown that the ESPT reaction between 6HQ and trimethylamine (TMA) leads to an "unusual" emission in the 440-450 nm range, containing two decay components (∼5 ns and ∼12 ns). The observed results suggest the presence of a contact ion-pair and a solvent separated ion-pair. In this work, density functional theory (DFT) and time-dependent density functional theory (TD-DFT) have been employed to study the nature of the contact ion-pair formed between 6HQ and TMA and to determine why the decay component ∼12 ns is absent in a non-polar solvent. Calculations of the hydrogen-bonded complexes formed between 6HQ and TMA and its ESPT reaction product, namely 6HQ-TMA and 6HQ-TMA-PT, respectively, have been carried out, both in the electronic ground and excited states. Moreover, by using the CPCM model, different dielectric constants have been introduced into the calculations. On increasing the dielectric constant, the hydrogen bond in 6HQ-TMA-PT becomes weaker and the hydrogen bond length becomes larger; this effectively facilitates the proton transfer reaction and formation of separated ion-pair. Thus, the separation and diffusion of the contact ion-pair can be controlled by changing the polarity of the surroundings.

  18. The spin-dependent structure function $g_1(x)$ of the proton from polarized deep-inelastic muon scattering

    CERN Document Server

    Adeva, B; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; Görtz, S; Gracia, G; De Groot, N; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Grosse-Perdekamp, M; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Rodríguez, M; Rondio, Ewa; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K

    1997-01-01

    We present a new measurement of the virtual photon proton asymmetry $A_1^{\\rm p}$ from deep inelastic scattering of polarized muons on polarized protons in the kinematic range $0.0008 1$ GeV$^{2}$. A perturbative QCD evolution in next-to-leading order is used to determine $g_1^{\\rm p}(x)$ at a constant $Q^2$. At $Q^{2} = 10$ GeV$^{2}$ we find, in the measured range, $\\int_{0.003}^{0.7} g_{1}^{\\rm p}(x){\\rm d}x = 0.139 \\pm 0.006~({\\rm stat})\\pm 0.008~({\\rm syst)} \\pm 0.006~({\\rm evol})$. The value of the first moment $\\Gamma_{1}^{\\rm p} = \\int_{0}^{1} g_{1}^{\\rm p}(x){\\rm d}x$ of $g_{1}^{\\rm p}$ depends on the approach used to describe the behaviour of $g_{1}^{\\rm p}$ at low $x$. We find that the Ellis-Jaffe sum rule is violated. With our published result for $\\Gamma_{1}^{\\rm d}$ we confirm the Bjorken sum rule with an accuracy of $\\approx 15\\%$ at the one standard deviation level.

  19. Polarization transmission at RHIC, numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Meot F.; Bai, M.; Liu, C.; Minty, M.; Ranjbar, V.

    2012-05-20

    Typical tracking simulations regarding the transmission of the polarization in the proton-proton collider RHIC are discussed. They participate in general studies aimed at understanding and improving polarization performances during polarized proton-proton runs.

  20. Azimuthal asymmetries in hard exclusive meson muoproduction off transversely polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Wolbeek, Johannes ter

    2015-04-15

    In 2010, the COMPASS experiment at CERN took data with a 160 GeV μ{sup +} beam and a transversely polarized NH{sub 3} target. In this thesis, this data is analyzed for azimuthal target spin asymmetries, including five single spin and three double spin asymmetries in hard exclusive ω meson production. This thesis is the worldwide first analysis investigating on azimuthal asymmetries in exclusive ω muoproduction (μ'p→μ'+p'+ω→μ'+p'+π{sup +}π{sup -}π{sup 0}). The analysis is confronted with several challenges beside the small cross section of the examined process. The detection of two photons in the final state requires an excellent performance of the electromagnetic calorimeters as well as a good understanding of the detector. To increase the yield of reconstructed γ pairs from a decaying π{sup 0} meson, a decay product of the ω meson, extensive studies relating to performance of the calorimeters were necessary. Firstly the time information of the calorimeters had to be parametrized in dependence of the cluster energy to ensure the assignment of beam particle and photon due to a correlation in time. Secondly, a parametrization of the invariant mass of the photon pair was performed in terms of the energy of the reconstructed π{sup 0}, for the better discrimination of signal and background. In the setup with the transversely polarized target, the recoiled proton cannot be detected. Thus in order to ensure the exclusivity of the process, the missing energy is calculated. The signal region, defined at vertical stroke E{sub miss} vertical stroke < 3GeV, contains ω mesons from exclusive events as well as from semi-inclusive production. Hence the understanding of non-exclusive background is essential for the further analysis. For this purpose, a semiinclusive Monte Carlo sample is studied. In order to reach a better agreement of the Monte Carlo and data, like-sign samples from both, real data and Monte Carlo, are compared and the

  1. TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemen, L. [Univ Cincinnati (United States)

    2015-06-15

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  2. Deficiency in the voltage-gated proton channel Hv1 increases M2 polarization of microglia and attenuates brain damage from photothrombotic ischemic stroke.

    Science.gov (United States)

    Tian, Dai-Shi; Li, Chun-Yu; Qin, Chuan; Murugan, Madhuvika; Wu, Long-Jun; Liu, Jun-Li

    2016-10-01

    Microglia become activated during cerebral ischemia and exert pro-inflammatory or anti-inflammatory role dependent of microglial polarization. NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in microglia plays an important role in neuronal damage after ischemic stroke. Recently, NOX and ROS are consistently reported to participate in the microglial activation and polarization; NOX2 inhibition or suppression of ROS production are shown to shift the microglial polarization from M1 toward M2 state after stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. However, the effect of Hv1 proton channel on microglial M1/M2 polarization state after cerebral ischemia remains unknown. In this study, we investigated the role of microglial Hv1 proton channel in modulating microglial M1/M2 polarization during the pathogenesis of ischemic cerebral injury using a mouse model of photothrombosis. Following photothrombotic ischemic stroke, wild-type mice presented obvious brain infarct, neuronal damage, and impaired motor coordination. However, mice lacking Hv1 (Hv1(-/-)) were partially protected from brain damage and motor deficits compared to wild-type mice. These rescued phenotypes in Hv1(-/-) mice in ischemic stroke is accompanied by reduced ROS production, shifted the microglial polarization from M1 to M2 state. Hv1 deficiency was also found to shift the M1/M2 polarization in primary cultured microglia. Our study suggests that the microglial Hv1 proton channel is a unique target for modulation of microglial M1/M2 polarization in the pathogenesis of ischemic stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent generation of reactive oxygen species (ROS) in the brain. ROS participate in microglial activation and polarization. However, the effect of Hv1 on microglial M1/M2 polarization state after

  3. Beam Measurements of the Longitudinal impedance of the CERN Super Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2090034; Petrache, Costel

    One of the main challenges of future physics projects based on particle accelerators is the need for high intensity beams. However, collective effects are a major limitation which can deteriorate the beam quality or limit the maximum intensity due to losses. The CERN SPS, which is the last injector for the LHC, is currently unable to deliver the beams required for future projects due to longitudinal instabilities. The numerous devices in the machine (accelerating RF cavities, injection and extraction magnets, vacuum flanges. etc.) lead to variations in the geometry and material of the chamber through which the beam is travelling. The electromagnetic interaction within the beam (space charge) and of the beam with its environment are described by a coupling impedance which affects the motion of the particles and leads to instabilities for high beam intensities. Consequently, the critical impedance sources should be identified and solutions assessed. To have a reliable impedance model of an accelerator, the...

  4. Measurement of Pion and Proton Response and Longitudinal Shower Profiles up to 20 Nuclear Interaction Lengths with the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, J; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clement, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; Gonzalez, V; Gorini, B; Grenier, P; Gris, P; Gruwe, M; Guarino, V; Guicheney, C; Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higon, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; LeCompte, T; Lefevre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajicek, M; Lomakin, Y; Lupi, A; Maidanchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F; Miagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Myagkov, A; Nemecek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Novakova, J; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J; Pina, J; Pinhao, J; Podlyski, F; Portell Bueso, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachua, B; Sanchis, E; Sanders, H; Santoni, C; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L P; Schlager, G; Schlereth, J; Seixas, J M; Sellden, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sissakian, A; Sjolin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spano, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Unel, G; Usai, G; Valero, A; Valkar, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2010-01-01

    The response of pions and protons in the energy range of 20 to 180 GeV produced at CERN's SPS H8 test beam line in the ATLAS iron-scintillator Tile hadron calorimeter has been measured. The test-beam configuration allowed to measure the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It is found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion to proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parameterization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parameterised as a function of the b...

  5. Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

    Science.gov (United States)

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H. P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.; Bosman, M.; Bromberg, C.; Budagov, J.; Burckhart-Chromek, D.; Caprini, M.; Caloba, L.; Calvet, D.; Carli, T.; Carvalho, J.; Cascella, M.; Castelo, J.; Castillo, M. V.; Cavalli-Sforza, M.; Cavasinni, V.; Cerqueira, A. S.; Clement, C.; Cobal, M.; Cogswell, F.; Constantinescu, S.; Costanzo, D.; Corso-Radu, A.; Cuenca, C.; Damazio, D. O.; Davidek, T.; De, K.; Del Prete, T.; Di Girolamo, B.; Dita, S.; Djobava, T.; Dobson, M.; Dotti, A.; Downing, R.; Efthymiopoulos, I.; Eriksson, D.; Errede, D.; Errede, S.; Farbin, A.; Fassouliotis, D.; Febbraro, R.; Fenyuk, A.; Ferdi, C.; Ferrer, A.; Flaminio, V.; Francis, D.; Fullana, E.; Gadomski, S.; Gameiro, S.; Garde, V.; Gellerstedt, K.; Giakoumopoulou, V.; Gildemeister, O.; Gilewsky, V.; Giokaris, N.; Gollub, N.; Gomes, A.; Gonzalez, V.; Gorini, B.; Grenier, P.; Gris, P.; Gruwe, M.; Guarino, V.; Guicheney, C.; Gupta, A.; Haeberli, C.; Hakobyan, H.; Haney, M.; Hellman, S.; Henriques, A.; Higon, E.; Holmgren, S.; Hurwitz, M.; Huston, J.; Iglesias, C.; Isaev, A.; Jen-La Plante, I.; Jon-And, K.; Joos, M.; Junk, T.; Karyukhin, A.; Kazarov, A.; Khandanyan, H.; Khramov, J.; Khubua, J.; Kolos, S.; Korolkov, I.; Krivkova, P.; Kulchitsky, Y.; Kurochkin, Yu.; Kuzhir, P.; Le Compte, T.; Lefevre, R.; Lehmann, G.; Leitner, R.; Lembesi, M.; Lesser, J.; Li, J.; Liablin, M.; Lokajicek, M.; Lomakin, Y.; Lupi, A.; Maidanchik, C.; Maio, A.; Makouski, M.; Maliukov, S.; Manousakis, A.; Mapelli, L.; Marques, C.; Marroquim, F.; Martin, F.; Mazzoni, E.; Merritt, F.; Miagkov, A.; Miller, R.; Minashvili, I.; Miralles, L.; Montarou, G.; Mosidze, M.; Myagkov, A.; Nemecek, S.; Nessi, M.; Nodulman, L.; Nordkvist, B.; Norniella, O.; Novakova, J.; Onofre, A.; Oreglia, M.; Pallin, D.; Pantea, D.; Petersen, J.; Pilcher, J.; Pina, J.; Pinhão, J.; Podlyski, F.; Portell, X.; Poveda, J.; Pribyl, L.; Price, L. E.; Proudfoot, J.; Ramstedt, M.; Richards, R.; Roda, C.; Romanov, V.; Rosnet, P.; Roy, P.; Ruiz, A.; Rumiantsev, V.; Russakovich, N.; Saltó, O.; Salvachua, B.; Sanchis, E.; Sanders, H.; Santoni, C.; Saraiva, J. G.; Sarri, F.; Satsunkevitch, I.; Says, L.-P.; Schlager, G.; Schlereth, J.; Seixas, J. M.; Selldèn, B.; Shalanda, N.; Shevtsov, P.; Shochet, M.; Silva, J.; Da Silva, P.; Simaitis, V.; Simonyan, M.; Sissakian, A.; Sjölin, J.; Solans, C.; Solodkov, A.; Soloviev, I.; Solovyanov, O.; Sosebee, M.; Spanò, F.; Stanek, R.; Starchenko, E.; Starovoitov, P.; Stavina, P.; Suk, M.; Sykora, I.; Tang, F.; Tas, P.; Teuscher, R.; Tokar, S.; Topilin, N.; Torres, J.; Tremblet, L.; Tsiareshka, P.; Tylmad, M.; Underwood, D.; Unel, G.; Usai, G.; Valero, A.; Valkar, S.; Valls, J. A.; Vartapetian, A.; Vazeille, F.; Vichou, I.; Vinogradov, V.; Vivarelli, I.; Volpi, M.; White, A.; Zaitsev, A.; Zenine, A.; Zenis, T.

    2010-04-01

    The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.

  6. Neutral transition metal hydrides as acids in hydrogen bonding and proton transfer: media polarity and specific solvation effects.

    Science.gov (United States)

    Levina, Vladislava A; Filippov, Oleg A; Gutsul, Evgenii I; Belkova, Natalia V; Epstein, Lina M; Lledos, Agusti; Shubina, Elena S

    2010-08-18

    Structural, spectroscopic, and electronic features of weak hydrogen-bonded complexes of CpM(CO)(3)H (M = Mo (1a), W (1b)) hydrides with organic bases (phosphine oxides R(3)PO (R = n-C(8)H(17), NMe(2)), amines NMe(3), NEt(3), and pyridine) are determined experimentally (variable temperature IR) and computationally (DFT/M05). The intermediacy of these complexes in reversible proton transfer is shown, and the thermodynamic parameters (DeltaH degrees , DeltaS degrees ) of each reaction step are determined in hexane. Assignment of the product ion pair structure is made with the help of the frequency calculations. The solvent effects were studied experimentally using IR spectroscopy in CH(2)Cl(2), THF, and CH(3)CN and computationally using conductor-like polarizable continuum model (CPCM) calculations. This complementary approach reveals the particular importance of specific solvation for the hydrogen-bond formation step. The strength of the hydrogen bond between hydrides 1 and the model bases is similar to that of the M-H...X hydrogen bond between 1 and THF (X = O) or CH(3)CN (X = N) or between CH(2)Cl(2) and the same bases. The latter competitive weak interactions lower the activities of both the hydrides and the bases in the proton transfer reaction. In this way, these secondary effects shift the proton transfer equilibrium and lead to the counterintuitive hampering of proton transfer upon solvent change from hexane to moderately polar CH(2)Cl(2) or THF.

  7. Longitudinal metabolic changes in the hippocampus and thalamus of the maternal brain revealed by proton magnetic resonance spectroscopy.

    Science.gov (United States)

    Zhou, Iris Y; Chan, Russell W; Ho, Leon C; Wu, Ed X

    2013-10-11

    Pregnancy is accompanied by dramatic hormonal changes, which are essential for the display of maternal behaviors. Reproductive hormones have been shown to remodel the neuronal structure and function of the female brain. However, most previous studies have examined the structural and functional changes elicited by transient fluctuations in reproductive hormones. The impact of naturally elevated and more sustained hormonal alterations during pregnancy and lactation are not fully understood. Further alterations in neurochemistry, which may result in substantial changes in the structure and function of neurons that are associated with behavioral modifications in the maternal female, are difficult to capture in a longitudinal and non-invasive manner. In this study, neurobiological alterations during pregnancy and motherhood were investigated longitudinally using non-invasive proton magnetic resonance spectroscopy ((1)H MRS) at 7T in regions related to learning and memory, such as the hippocampus, and in structures involved in alertness and attention, such as the thalamus. Pregnant primiparous rats (N=15) were studied at three days before mating, gestational day 17, lactation day 7 and post-weaning day 7. Age-matched nulliparous female rats (N=9) served as non-pregnant controls. Significantly higher N-acetylaspartate (NAA) levels were observed in the hippocampus and thalamus of rats at gestational day 17. These increases may be associated with increased dendritic sprouting, synaptogenesis or neurogenesis, thereby facilitating supporting behaviors that involve spatial learning and memory and alleviating fear and stress. The (1)H MRS detection of ongoing neurochemical changes induced by pregnancy, especially in the hippocampus, can shed light on the neurochemical underpinnings of behavioral modifications, including the improvement in spatial learning and memory, during pregnancy.

  8. Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    CERN Document Server

    Airapetian, A; Akopov, Z; Amarian, M; Ammosov, V V; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Baturin, V; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brüll, A; Bryzgalov, V V; Capitani, G P; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; Devitsin, E G; Di Nezza, P; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G M; Ellinghaus, F; Elschenbroich, U; Ely, J; Fabbri, R; Fantoni, A; Feshchenko, A; Felawka, L; Fox, B; Franz, J; Frullani, S; Gärber, Y; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Garutti, E; Gaskell, D; Gavrilov, G E; Karibian, V; Graw, G; Grebenyuk, O; Greeniaus, L G; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Henoch, M; Hertenberger, R; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Kinney, E; Kiselev, A; Königsmann, K C; Kopytin, M; Korotkov, V A; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Lindemann, T; Lipka, K; Lorenzon, W; Lü, J; Maiheu, B; Makins, N C R; Marianski, B; Marukyan, H O; Masoli, F; Mexner, V; Meyners, N; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M A; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Orlandi, G; Pickert, N; Potashov, S Yu; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Ryckbosch, D; Salomatin, Yu I; Sanjiev, I; Savin, I; Scarlett, C; Schäfer, A; Schill, C; Schnell, G; Schüler, K P; Schwind, A; Seele, J; Seidl, R; Seitz, B; Shanidze, R G; Shearer, C; Shibata, T A; Shutov, V B; Simani, M C; Sinram, K; Stancari, M D; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Tkabladze, A V; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Vetterli, Martin C; Vikhrov, V; Vincter, M G; Visser, J; Vogel, C; Vogt, M; Volmer, J; Weiskopf, C; Wendland, J; Wilbert, J; Ybeles-Smit, G V; Yen, S; Zihlmann, B; Zohrabyan, H G; Zupranski, P

    2004-01-01

    The nuclear polarization of $\\mathrm{H}_2$ molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surface

  9. J/Psi Polarization in 800-GeV p-Cu Interactions

    CERN Document Server

    Chang, T H; Brown, C N; Carey, T A; Cooper, W E; Gagliardi, C A; Garvey, G T; Geesaman, D F; Hawker, E A; He, X C; Isenhower, L D; Kaplan, D M; Kaufman, S B; Koetke, D D; Kyle, G S; McGaughey, P L; Lee, W M; Leitch, M J; Moss, J M; Müller, B A; Papavassiliou, V; Peng, J C; Petitt, G; Reimer, P E; Sadler, M E; Sondheim, W E; Stankus, P W; Towell, R S; Tribble, R E; Vasilev, M A; Webb, J C; Willis, J L; Young, G R

    2003-01-01

    We present measurements of the polarization of the $ J/\\psi $ produced in 800-GeV proton interactions with a copper target. Polarization of the $ J/\\psi $ is sensitive to the $ c \\bar{c} $ production and hadronization processes. A longitudinal polarization is observed at large $ x_{F} $, while at small $ x_{F} $ the state is produced essentially unpolarized or slightly transversely polarized. No significant variation of the polarization is observed versus $ p_{T} $.

  10. Polarization observables in the longitudinal basis for pseudo-scalar meson photoproduction using a density matrix approach

    CERN Document Server

    Dey, Biplab; Ireland, David G; Meyer, Curtis A

    2010-01-01

    The complete expression for the intensity in pseudo-scalar meson photoproduction with a polarized beam, target, and recoil baryon is derived using a density matrix approach that offers great economy of notation. A Cartesian basis with spins for all particles quantized along a single direction, the longitudinal beam direction, is used for consistency and clarity in interpretation. A single spin-quantization axis for all particles enables the amplitudes to be written in a manifestly covariant fashion with simple relations to those of the well-known CGLN formalism. Possible sign discrepancies between theoretical amplitude-level expressions and experimentally measurable intensity profiles are dealt with carefully. Our motivation is to provide a coherent framework for coupled-channel partial-wave analysis of several meson photoproduction reactions, incorporating recently published and forthcoming polarization data from Jefferson Lab.

  11. Polarization observables in the longitudinal basis for pseudo-scalar meson photoproduction using a density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Biplab Dey, Michael E. McCracken, David G. Ireland, Curtis A. Meyer

    2011-05-01

    The complete expression for the intensity in pseudo-scalar meson photoproduction with a polarized beam, target, and recoil baryon is derived using a density matrix approach that offers great economy of notation. A Cartesian basis with spins for all particles quantized along a single direction, the longitudinal beam direction, is used for consistency and clarity in interpretation. A single spin-quantization axis for all particles enables the amplitudes to be written in a manifestly covariant fashion with simple relations to those of the well-known CGLN formalism. Possible sign discrepancies between theoretical amplitude-level expressions and experimentally measurable intensity profiles are dealt with carefully. Our motivation is to provide a coherent framework for coupled-channel partial-wave analysis of several meson photoproduction reactions, incorporating recently published and forthcoming polarization data from Jefferson Lab.

  12. Fabrication of Proton-Exchange Waveguide Using Stoichiometric LiTaO3 for Guided Wave Electrooptic Modulators with Polarization-Reversed Structure

    Directory of Open Access Journals (Sweden)

    Hiroshi Murata

    2008-01-01

    Full Text Available Optical waveguides were fabricated on z-cut stoichiometric LiTaO3 (SLT by using the proton-exchange method. The surface index change for the extraordinary ray on the SLT substrate resulting from the proton exchange was 0.017, which coincided well with congruent LiTaO3 substrates. The proton exchange coefficient in the SLT was 0.25×10−12 cm2/s. The application of the SLT waveguide to a quasi-velocity-matched travelling-wave electrooptic modulator with periodically polarization-reversed structure is also reported.

  13. Analyzing power measurements of coulomb - nuclear interference with polarized protons at 185-GeV/c and 200-GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, Nural [Univ. of Iowa, Iowa City, IA (United States)

    1990-12-01

    The analysing power AN of proton-proton scattering in the Coulomb-nuclear interference region has been measured using the 185 GeV /c and 200 GeV /c Fermilab polarized proton beams. In the region of 3.0 x 10-3 to 5.0 x 10-2 (GeVIc)2 four-momentum-transfer , squared, the results are found to be consistent with theoretical prediction within statistical unce~tainties.

  14. Baryon spectroscopy with polarization observables from CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-01

    The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS). These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results will be given.

  15. Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering

    CERN Document Server

    Alekseev, M G; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Diaz, V; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M., Jr; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu.A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konopka, R; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Kramer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu.V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmitt, L; Schopferer, S; Schroder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A

    2010-01-01

    Double-spin asymmetries for production of charged pions and kaons in semi-inclusive deep-inelastic muon scattering have been measured by the COMPASS experiment at CERN. The data, obtained by scattering a 160 GeV muon beam off a longitudinally polarised NH_3 target, cover a range of the Bjorken variable x between 0.004 and 0.7. A leading order evaluation of the helicity distributions for the three lightest quarks and antiquark flavours derived from these asymmetries and from our previous deuteron data is presented. The resulting values of the sea quark distributions are small and do not show any sizable dependence on x in the range of the measurements. No significant difference is observed between the strange and antistrange helicity distributions, both compatible with zero. The integrated value of the flavour asymmetry of the helicity distribution of the light-quark sea, \\Delta u-bar - \\Delta d-bar, is found to be slightly positive, about 1.5 standard deviations away from zero.

  16. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization.

    Science.gov (United States)

    Demchenko, Alexander P; Tang, Kuo-Chun; Chou, Pi-Tai

    2013-02-01

    Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.

  17. Double-Relativistic-Electron-Layer Proton Acceleration With High-Contrast Circular-Polarization Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yong-sheng; WANG; Nai-yan; TANG; Xiu-zhang; SHI; Yi-jin

    2012-01-01

    <正>Laser-ion acceleration has been the focus of international research for many years. However, obtaining mono-energetic proton beams larger than 100 MeV is still a challenge. Although the field strength in laser-plasma acceleration is 3-4 orders higher than that in classic accelerators, it quickly decreases to zero in 1-2 pulse durations for target normal sheath acceleration (TNSA), which is dominated

  18. Direct Solar Wind Proton Access into Permanently Shadowed Lunar Polar Craters

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.

    2011-01-01

    Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that solar wind protons clearly access the floor of an idealized, shadowed lunar crater through a combination of thermal and ambipolar processes, in effect creating a plasma "miniwake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. The support of the National Lunar Science institute, the DREAM institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.

  19. Analysis of the longitudinal dependence of the downstream fluence of large solar energetic proton events

    Science.gov (United States)

    Pacheco, Daniel; Sanahuja, Blai; Aran, Angels; Agueda, Neus; Jiggens, Piers

    2016-07-01

    Simulations of the solar energetic particle (SEP) intensity-time profiles are needed to estimate the radiation environment for interplanetary missions. At present, the physics-based models applied for such a purpose, and including a moving source of particles, are not able to model the portion of the SEP intensity enhancement occurring after the coronal/interplanetary shock crossing by the observer (a.k.a. the downstream region). This is the case, for example, of the shock-and-particle model used to build the SOLPENCO2 code. SOLPENCO2 provides the statistical modelling tool developed in the ESA/SEPEM project for interplanetary missions with synthetic SEP event simulations for virtual spacecraft located at heliocentric distances between 0.2 AU and 1.6 AU (http://dev.sepem.oma.be/). In this work we present an analysis of 168 individual SEP events observed at 1 AU from 1988 to 2013. We identify the solar eruptive phenomena associated with these SEP events, as well as the in-situ passage of interplanetary shocks. For each event, we quantify the amount of fluence accounted in the downstream region, i.e. after the passage of the shock, at the 11 SEPEM reference energy channels (i.e., from 5 to 300 MeV protons). First, from the subset of SEP events simultaneously detected by near Earth spacecraft (using SEPEM reference data) and by one of the STEREO spacecraft, we select those events for which the downstream region can be clearly determined. From the 8 selected multi-spacecraft events, we find that the western observations of each event have a minor downstream contribution than their eastern counterpart, and that the downstream-to-total fluence ratio of these events decreases as a function of the energy. Hence, there is a variation of the downstream fluence with the heliolongitude in SEP events. Based on this result, we study the variation of the downstream-to-total fluence ratios of the total set of individual events. We confirm the eastern-to-western decrease of the

  20. Upsilonium polarization as a touchstone in uderstanding the proton dynamics in QCD

    CERN Document Server

    Baranov, S P

    2007-01-01

    In the framework of the k_t-factorization approach, the production of \\U mesons at the Fermilab Tevatron and CERN LHC is considered, and the predictions on the spin alignment parameter $\\alpha$ are presented. We argue that measuring the polarization of quarkonium states can serve as a crucial test discriminating two competing theoretical approaches to parton dynamics in QCD.

  1. Self-similarity of proton spin and z-scaling

    CERN Document Server

    Tokarev, M

    2015-01-01

    The concept of z-scaling previously developed for analysis of inclusive reactions in proton-proton collisions is applied for description of processes with polarized particles. Hypothesis of self-similarity of the proton spin structure is discussed. The possibility of extracting information on spin-dependent fractal dimensions of hadrons and fragmentation process from the cross sections and asymmetries is justified. The double longitudinal spin asymmetry A_{LL} of jet and pi0-meson production and the coefficient of polarization transfer D_{LL} measured in proton-proton collisions at sqrt s = 200 GeV at RHIC are analyzed in the framework of z-scaling. The spin-dependent fractal dimension of proton is estimated.

  2. Collisionless damping of circularly polarized nonlinear Alfvén waves in solar wind plasmas with and without beam protons

    Energy Technology Data Exchange (ETDEWEB)

    Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama City, Toyama 930-8555 (Japan); Hada, T. [Department of Earth System Science and Technology, Kyushu University, 6-1, Kasuga City, Fukuoka 816-8580 (Japan); Tsubouchi, K., E-mail: nariyuki@edu.u-toyama.ac.jp [Graduate School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-10-01

    The damping process of field-aligned, low-frequency right-handed polarized nonlinear Alfvén waves (NAWs) in solar wind plasmas with and without proton beams is studied by using a two-dimensional ion hybrid code. The numerical results show that the obliquely propagating kinetic Alfvén waves (KAWs) excited by beam protons affect the damping of the low-frequency NAW in low beta plasmas, while the nonlinear wave-wave interaction between parallel propagating waves and nonlinear Landau damping due to the envelope modulation are the dominant damping process in high beta plasmas. The nonlinear interaction between the NAWs and KAWs does not cause effective energy transfer to the perpendicular direction. Numerical results suggest that while the collisionless damping due to the compressibility of the envelope-modulated NAW plays an important role in the damping of the field-aligned NAW, the effect of the beam instabilities may not be negligible in low beta solar wind plasmas.

  3. Elastic and inelastic scattering of 0. 8 GeV polarized protons from /sup 24/Mg and /sup 26/Mg

    Energy Technology Data Exchange (ETDEWEB)

    Blanpied, G.S.; Ritchie, B.G.; Barlett, M.L.; Hoffmann, G.W.; McGill, J.A.; Milner, E.C.; Jones, K.W.; Nanda, S.K.; de Swiniarski, R.

    1988-05-01

    Data on 800 MeV polarized proton scattering on /sup 24/Mg and /sup 26/Mg are presented. Angular distributions and analyzing power data have been extracted from fits to 26 peaks in the spectra for /sup 24/Mg and 23 peaks in /sup 26/Mg. Although there are a variety of shapes for the angular distributions, the analyzing power data for all states are positive and similar in magnitude and seem to be consistent with a two-body operator for the excitation with a spin structure much like that for the free proton-nucleon system. Evidence for a level in /sup 26/Mg at 8.03 MeV with J>4 is presented. Comparison between the observed angular distribution, coupled channels, and distorted wave Born approximation calculations, and the angular distributions of excited states in neighboring nuclei, support the assignment of J/sup ..pi../ = 5/sup -/ or 6/sup +/. Coupled channels calculations for the 0/sup +/, 2/sup +/, 4/sup +/, and 6/sup +/ members of the ground state rotational bands of /sup 24/Mg and /sup 26/Mg are compared to the data. Deformation parameters from distorted wave Born approximation calculations are determined for most of the angular distributions.

  4. Radiative Corrections to Polarized Inelastic Scattering in Coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Igor Akushevich; Andrei Afanasev; G.I. Gakh; Mykola Merenkov

    2001-09-01

    The complete analysis of the model-independent leading radiative corrections to cross-section and polarization observables in semi-inclusive deep-inelastic electron-nucleus scattering with detection of a proton and scattered electron in coincidence has been performed. The basis of the calculations consists of the Drell-Yan like representation in electrodynamics for both spin-independent and spin-dependent parts of the cross-section in terms of the electron structure functions. The applications to the polarization transfer effect from longitudinally polarized electron beam to detected proton as well as to scattering by the polarized target are considered.

  5. The effect of the longitudinal polarization component in multi-axial nulling interferometry for exoplanet detection

    NARCIS (Netherlands)

    Spronck, J.F.P.; Pereira, S.F.

    2009-01-01

    We show a fundamental limitation of multi-axial beam combiners in nulling interferometry. The longitudinal electric field induced by the focusing optics can drastically limit the performance of such a nulling interferometer. We further analyze the filtering capabilities of a single-mode optical fibe

  6. Effects of transversity in deep-inelastic scattering by polarized protons

    CERN Document Server

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Bacchetta, A; Belostotski, S; Bianchi, N; Blok, H P; Borissov, A; Bowles, J; Brodski, I; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Dueren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hill, G; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Izotov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Kobayashi, N; Korotkov, V; Kozlov, V; Kravchenko, P; Lagamba, L; Lamb, R; Lapikas, L; Lehmann, I; Lenisa, P; Linden-Levy, L A; Ruiz, A Lopez; Lorenzon, W; Lu, X -G; Lu, X -R; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Manfre, L; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Pickert, N; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schaefer, A; Schnell, G; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Trzcinski, A; Tytgat, M; van der Nat, P B; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Vogel, C; Wang, S; Yaschenko, S; Ye, H; Ye, Z; Yen, S; Yu, W; Zeiler, D; Zihlmann, B; Zupranski, P

    2010-01-01

    Single-spin asymmetries for pions and charged kaons are measured in semi-inclusive deep-inelastic scattering of positrons and electrons off a transversely nuclear-polarized hydrogen target. The dependence of the cross section on the azimuthal angles of the target polarization (phi_S)and the produced hadron (phi) is found to have a substantial sin(phi+phi_S) modulation for the production of pi+, pi- and K+. This Fourier component can be interpreted in terms of non-zero transversity distribution functions and non-zero favored and disfavored Collins fragmentation functions with opposite sign. For pi0 and K- production the amplitude of this Fourier component is consistent with zero.

  7. Evidence for a New Resonance from Polarized Neutron-Proton Scattering

    Science.gov (United States)

    Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bhatt, H.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Coderre, D.; Czerwiński, E.; Demmich, K.; Doroshkevich, E.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goslawski, P.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Hauenstein, F.; Heijkenskjöld, L.; Hejny, V.; Hodana, M.; Höistad, B.; Hüsken, N.; Jany, A.; Jany, B. R.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khan, F. A.; Khoukaz, A.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krapp, M.; Krzemień, W.; Kulessa, P.; Kupść, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Mikirtychiants, M.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Ozerianska, I.; Perez del Rio, E.; Piskunov, N. M.; Podkopał, P.; Prasuhn, D.; Pricking, A.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Redmer, C. F.; Ritman, J.; Roy, A.; Rudy, Z.; Sawant, S.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Serdyuk, V.; Siudak, R.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Täschner, A.; Trzciński, A.; Varma, R.; Wagner, G. J.; Wolke, M.; Wrońska, A.; Wüstner, P.; Wurm, P.; Yamamoto, A.; Yurev, L.; Zabierowski, J.; Zieliński, M. J.; Zink, A.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; Workman, R. L.; Briscoe, W. J.; Strakovsky, I. I.; WASA-at-COSY Collaboration

    2014-05-01

    Exclusive and kinematically complete high-statistics measurements of quasifree polarized n→p scattering have been performed in the energy region of the narrow resonancelike structure d* with I(JP)=0(3+), M ≈2380 MeV, and Γ ≈70 MeV observed recently in the double-pionic fusion channels pn→dπ0π0 and pn→dπ+π-. The experiment was carried out with the WASA detector setup at COSY having a polarized deuteron beam impinged on the hydrogen pellet target and utilizing the quasifree process d →p→np +pspectator. This allowed the np analyzing power, Ay, to be measured over a broad angular range. The obtained Ay angular distributions deviate systematically from the current SAID SP07 NN partial-wave solution. Incorporating the new Ay data into the SAID analysis produces a pole in the D33-G33 waves in support of the d* resonance hypothesis.

  8. One 4-Twist Helix Snake to Maintain Polarization in 8-120 GeV Proton Rings

    CERN Document Server

    Antoulinakis, F; Tai, A; Aidala, C A; Courant, E D; Krisch, A D; Lorenzon, W; Myers, P D; Raymond, R S; Sivers, D W; Leonova, M A; Derbenev, Y S; Morozov, V S; Kondratenko, A M

    2013-01-01

    Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings because the Lorentz contraction of a solenoid's integral B dl would require impractically long high-field solenoids. High energy rings, such as Brookhaven's 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab's 120 GeV Main Injector, we searched for a new type of single Siberian snake, which should overcome all depolarizing resonances in the 8.9 - 120 GeV range. We found that one snake made of one 4-twist helix and 2 short dipoles could maintain the polarization. This snake design might also be used at other rings, such as Japan's 30 GeV J-PARC, the 12 - 24 GeV NICA proton-deuteron collider at JINR-Dubna, and perhaps RHIC's injector, the 25 GeV AGS.

  9. Examination of the relationship between riometer-derived absorption and the integral proton flux in the context of modeling polar cap absorption

    Science.gov (United States)

    Fiori, R. A. D.; Danskin, D. W.

    2016-11-01

    Energetic protons can penetrate into the ionosphere increasing ionization in the D region causing polar cap absorption that may potentially block high-frequency radio communications for transpolar flights. The protons are guided by the geomagnetic field into the high-latitude polar cap region. Riometers monitor variations in ionospheric absorption by observing the level of background cosmic radio noise. Current polar cap absorption modeling techniques are based on the linear relationship between absorption and the square root of the integral proton flux, which has previously only been demonstrated using data from a single high-latitude polar station. The proportionality constant describing this relationship is evaluated for two different polar cap absorption events occurring 7-11 March 2012 and 23 January 2012 to 1 February 2012. Examination of the proportionality constant using data from riometers distributed between 60° and 90° magnetic latitude reveals a previously unreported latitudinal dependence for data at magnetic latitudes of ≤66.8° on the dayside and ≤70.8° on the nightside. Incorporating the latitudinal dependence into the current D Region Absorption Prediction absorption model improves the agreement between measurement-derived and modeled parameters by increasing the correlation coefficient between data sets, reducing the root-mean-square error, and reducing the bias.

  10. Nuclear spin response of sup 40 Ca to 800 MeV polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Bimbot, L.; Fergerson, R.W.; Glashausser, C.; Jones, K.W.; Baker, F.T.; Beatty, D.; Cupps, V.; Green, A.; Nanda, S. (Institut de Physique Nucleaire, F-91406 Orsay, France (FR) Rutgers University, New Brunswick, NJ 08903 Los Alamos National Laboratory, Los Alamos, New Mexico 87545 University of Georgia, Athens, Georgia 30602 Continuous Electron Beam Accelerator Facility, Newport News, Virginia 23606)

    1990-12-01

    Doubly differential cross sections and spin-flip probabilities have been measured for 800-MeV proton scattering on {sup 40}Ca at 3.2{degree}, 4{degree}, 5{degree}, and 7{degree} in the laboratory, for excitation energies up to 45 MeV. The features of these observables in the continuum are discussed. The data indicate that nuclear spin excitations are enhanced at high excitation energy for angles corresponding to momentum transfers around 100 MeV/{ital c}, as previously observed for incident energies around 300 MeV. The relative nuclear spin response derived from these data is roughly independent of energy. This suggests that the dominance of spin-transfer excitation at high excitation energies for momentum transfers around 100 MeV/{ital c} is an intrinsic feature of the nuclear structure of {sup 40}Ca.

  11. Evidence for a New Resonance from Polarized Neutron-Proton Scattering

    CERN Document Server

    Adlarson, P; Bardan, W; Bashkanov, M; Bergmann, F S; Berlowski, M; Bhatt, H; Buescher, M; Ciepa, H Calen I; Clement, H; Coderre, D; Czerwinski, E; Demmich, K; Doroshkevich, E; Engels, R; Erven, A; Erven, W; Eyrich, W; Fedorets, P; Foehl, K; Fransson, K; Goldenbaum, F; Goslawski, P; Goswami, A; Grigoyev, K; Gullstroem, C -O; Hauenstein, F; Heijkenskjoeld, L; Hejny, V; Hodana, M; Hoistad, B; Huesken, N; Jany, A; Jany, B R; Jarczyk, L; Johansson, T; Kamys, B; Kemmerling, G; Khan, F A; Khoukaz, A; Kirrilov, D A; Kistryn, S; Kleines, H; Klos, B; Krapp, M; Krzemien, W; Kulessa, P; Kupsc, A; Lalwani, K; Lersch, D; Lorentz, B; Magiera, A; Maier, R; Marciniewski, P; Marianski, B; Mikirtychiants, M; Morsch, H -P; Moskal, P; Ohm, H; Ozerianska, I; del Rio, E Perez; Piskunov, N M; Podkopal, P; Prasuhn, D; Pricking, A; Pszczel, D; Pysz, K; Pysniak, A; Redmer, C F; Ritman, J; Roy, A; Rudy, Z; Sawant, S; Schadmand, S; Sefzick, T; Serdyuk, V; Siudak, R; Skorodko, T; Skurzok, M; Smyrski, J; Sopov, V; Stassen, R; Stepaniak, J; Stephan, E; Sterzenbach, G; Stockhorst, H; Stroeher, H; Szczurek, A; Taeschner, A; Trzcinski, A; Varma, R; Wagner, G J; Wolke, M; Wronska, A; Wuestner, P; Wurm, P; Yamamoto, A; Yurev, L; Zabierowski, J; Zielinski, M J; Zink, A; Zlomanczuk, J; Zupranski, P; Zurek, M; Workman, R L; Briscoe, W J; Strakovsky, I I

    2014-01-01

    Exclusive and kinematically complete high-statistics measurements of quasifree polarized $\\vec{n}p$ scattering have been performed in the energy region of the narrow resonance structure $d^*$ with $I(J^P) = 0(3^+)$, $M~\\approx$~2380~MeV/$c^2$ and $\\Gamma \\approx$ 70 MeV observed recently in the double-pionic fusion channels $pn \\to d\\pi^0\\pi^0$ and $pn \\to d\\pi^+\\pi^-$. The experiment was carried out with the WASA detector setup at COSY having a polarized deuteron beam impinged on the hydrogen pellet target and utilizing the quasifree process $\\vec{d}p \\to np + p_{spectator}$. That way the $np$ analyzing power $A_y$ was measured over a large angular range. The obtained $A_y$ angular distributions deviate systematically from the current SAID SP07 NN partial-wave solution. Incorporating the new $A_y$ data into the SAID analysis produces a pole in the $^3D_3 - ^3G_3$ waves as expected from the $d^*$ resonance hypothesis.

  12. Beam polarization asymmetry and the electromagnetic production of kaons from protons

    Science.gov (United States)

    Maxwell, Oren V.

    2012-12-01

    The beam polarization asymmetry in the reaction ep→e'K+Λ has been investigated in a tree-level effective Lagrangian model. The model incorporates most of the well-established baryon resonances with spins up to (5)/(2), four less well-established nucleon resonances with larger mass, and the two kaon resonances K(892) and K1(1270). The off-shell structure of the electromagnetic vertices was accounted for by the inclusion of electromagnetic form factors at those vertices. The free parameters of the model were fitted in a previous study to a large pool of photoproduction data from the CLAS, GRAAL, SAPHIR, and LEPS collaborations and to CLAS data for the virtual photoproduction structure functions σU, σT, σL, σTT, and σLT. Using this model, results were obtained for the beam polarization asymmetry structure function σLT' and compared with CLAS data. Two new fits to the combined photoproduction and electroproduction data with the σLT' data included were then generated. The first of these includes contributions from all of the resonances included in the previous study; the second excludes contributions from the N(2080) and N(2200) resonances. The results of both fits for both photoproduction and electroproduction observables are compared with the results of the previous fit and the data.

  13. Recoil polarization measurements of the proton electromagnetic form factor ratio to Q2 = 8.5  GeV2.

    Science.gov (United States)

    Puckett, A J R; Brash, E J; Jones, M K; Luo, W; Meziane, M; Pentchev, L; Perdrisat, C F; Punjabi, V; Wesselmann, F R; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Marsh, A; Matulenko, Y; Maxwell, J; Mbianda, G; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nedev, S; Nuruzzaman; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Subedi, R; Tomasi-Gustafsson, E; Vasiliev, A; Veilleux, M; Wojtsekhowski, B B; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L

    2010-06-18

    Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this Letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5  GeV2. By extending the range of Q2 for which G(E)(p) is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the nonperturbative regime.

  14. Measurement of high-Q(2) neutral current deep inelastic e(+) p scattering cross sections with a longitudinally polarized positron beam at HERA

    NARCIS (Netherlands)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruemmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; Del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Goettlicher, P.; Grabowska-Bold, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Huettmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H. -P.; Januschek, F.; Jones, T. W.; Juengst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Koetz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Loehr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I. -A.; Mergelmeyer, S.; Miglioranzi, S.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schoenberg, V.; Schoerner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terron, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vazquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Abdullah, W. A. T. Wan; Whitmore, J. J.; Wichmann, K.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yaguees-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Zarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.

    2013-01-01

    Measurements of neutral current cross sections for deep inelastic scattering in e(+)p collisions at HERA with a longitudinally polarized positron beam are presented. The single-differential cross-sections d sigma=dQ(2), d sigma=dx and d sigma=dy and the reduced cross section (sigma) over tilde are m

  15. Measurements of double-helicity asymmetries in inclusive $J/\\psi$ production in longitudinally polarized $p+p$ collisions at $\\sqrt{s}=510$ GeV

    CERN Document Server

    Adare, A.; Ajitanand, N.N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E.T.; Awes, T.C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N.S.; Bannier, B.; Barish, K.N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D.S.; Bok, J.S.; Boyle, K.; Brooks, M.L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Campbell, S.; Chen, C. -H.; Chi, C.Y.; Chiu, M.; Choi, I.J.; Choi, J.B.; Chujo, T.; Citron, Z.; Csanád, M.; Csörgő, T.; Danley, T.W.; Datta, A.; Daugherity, M.S.; David, G.; DeBlasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E.J.; Ding, L.; Dion, A.; Diss, P.B.; Do, J.H.; Drees, A.; Drees, K.A.; Durham, J.M.; Durum, A.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D.E.; Finger, M.; Finger,, M.; Fokin, S.L.; Frantz, J.E.; Franz, A.; Frawley, A.D.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Glenn, A.; Goto, Y.; Grau, N.; Greene, S.V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J.S.; Hahn, K.I.; Hamagaki, H.; Hamilton, H.F.; Han, S.Y.; Hanks, J.; Hasegawa, S.; Haseler, T.O.S.; Hashimoto, K.; He, X.; Hemmick, T.K.; Hill, J.C.; Hollis, R.S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ivanishchev, D.; Jacak, B.V.; Jeon, S.J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B.M.; Joo, E.; Joo, K.S.; Jouan, D.; Jumper, D.S.; Kanda, S.; Kang, J.H.; Kang, J.S.; Kawall, D.; Kazantsev, A.V.; Key, J.A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kim, C.; Kim, D.H.; Kim, D.J.; Kim, E. -J.; Kim, G.W.; Kim, H. -J.; Kim, M.; Kim, Y.K.; Kimelman, B.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotov, D.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lajoie, J.G.; Lebedev, A.; Lee, K.B.; Lee, S.; Lee, S.H.; Leitch, M.J.; Leitgab, M.; Li, X.; Lim, S.H.; Liu, M.X.; Lynch, D.; Makdisi, Y.I.; Makek, M.; Manion, A.; Manko, V.I.; Mannel, E.; McCumber, M.; McGaughey, P.L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A.C.; Miller, A.J.; Milov, A.; Mishra, D.K.; Mitchell, J.T.; Miyasaka, S.; Mizuno, S.; Mohanty, A.K.; Montuenga, P.; Moon, T.; Morrison, D.P.; Moukhanova, T.V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J.L.; Nagy, M.I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Netrakanti, P.K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A.S.; O'Brien, E.; Ogilvie, C.A.; Orjuela Koop, J. D.; Osborn, J.D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, J.S.; Park, S.; Pate, S.F.; Patel, L.; Patel, M.; Peng, J. -C.; Perepelitsa, D.V.; Perera, G.D.N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R.P.; Purschke, M.L.; Rak, J.; Ramson, B.J.; Ravinovich, I.; Read, K.F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S.D.; Rosati, M.; Rowan, Z.; Rubin, J.G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B.K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T. -A.; Shigaki, K.; Shimomura, M.; Shukla, P.; Sickles, A.; Silva, C.L.; Silvermyr, D.; Singh, B.K.; Singh, C.P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R.A.; Sondheim, W.E.; Sorensen, S.P.; Sourikova, I.V.; Stankus, P.W.; Stepanov, M.; Stoll, S.P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M.J.; Tarafdar, S.; Taranenko, A.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C.L.; Towell, M.; Towell, R.; Towell, R.S.; Tserruya, I.; van Hecke, H.W.; Vargyas, M.; Velkovska, J.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X.R.; Watanabe, D.; Watanabe, Y.; Watanabe, Y.S.; Wei, F.; Whitaker, S.; White, A.S.; Wolin, S.; Woody, C.L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y.L.; Yanovich, A.; Yoo, J.H.; Yoon, I.; Younus, I.; Yu, H.; Yushmanov, I.E.; Zajc, W.A.; Zelenski, A.; Zhou, S.; Zou, L.

    2016-01-01

    We report the double helicity asymmetry, $A_{LL}^{J/\\psi}$, in inclusive $J/\\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\\sqrt{s}=510$ GeV longitudinally polarized $p

  16. Hydrogen-1 NMR relaxation time studies in membrane: anesthetic systems; Variacao dos tempos de relaxacao longitudinal de protons em sistemas membranares contendo anestesicos locais

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, L.M.A.; Fraceto, L.; Paula, E. de [Universidade Estadual de Campinas, SP (Brazil). Dept. de Bioquimica; Franzoni, L.; Spisni, A. [Universita degli Studi di Parma, Parma (Italy). Ist. di Chimica Biologica

    1997-12-31

    The study of local anesthetics`(LA) interaction with model phospholipid membranes is justified by the direct correlation between anesthetic`s hydrophobicity and its potency/toxicity. By the same reason, uncharged LA species seems to play a crucial role in anesthesia. Most clinically used LA are small amphiphilics with a protonated amine group (pKa around 8). Although both charged (protonated) and uncharged forms can coexist at physiological pH, it has been shown (Lee, Biochim. Biophys. Acta 514:95, 1978; Screier et al. Biochim. Biophys. Acta 769:231, 1984) that the real anesthetic pka can be down-shifted, due to differential partition into membranes, increasing the ratio of uncharged species at pH 7.4. We have measured {sup 1}H-NMR longitudinal relaxation times (T{sub 1}) for phospholipid and three local anesthetics (tetracaine, lidocaine, benzocaine), in sonicated vesicles at a 3:1 molar ratio. All the LA protons have shown smaller T{sub 1} in this system than in isotropic phases, reflecting LA immobilization caused by insertion in the membrane. T{sub 1} values for the lipid protons in the presence of LA were analyzed, in an attempt to identify specific LA:lipid contact regions. (author) 13 refs., 3 figs., 1 tabs.

  17. Determination of strange form factors of nucleon by parity violation asymmetry by polarized electron-proton elastic scattering; Mesure des facteurs de forme etranges du nucleon par asymetrie de violation de parite dans la diffusion elastique electron polarise-proton

    Energy Technology Data Exchange (ETDEWEB)

    Jardillier, Johann [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1999-09-21

    In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q{sup 2} = 0.5 (GeV/c){sup 2}, a strange quarks contribution of (1.0 {+-} 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)

  18. The Spin Structure Function of the Proton from SLAC Experiment E155

    Energy Technology Data Exchange (ETDEWEB)

    McKee, P

    2004-02-17

    Experiment E155 at the Stanford Linear Accelerator Center (SLAC) measured the longitudinal and transverse deep inelastic structure functions of the proton and deuteron using a polarized, 48.3 GeV electron beam and solid polarized targets of ammonia ({sup 15}NH{sub 3}) for proton measurements and lithium deuteride ({sup 6}Li{sup 2}H) for deuteron measurements. Three electromagnetic spectrometers at angles of 2.75{sup o}, 5.5{sup o}, and 10.5{sup o} measured the scattered electrons. This work presents an analysis of the longitudinal structure function of the proton, g{sub 1}{sup p}(x, Q{sup 2}). Included is a re-analysis of the proton target polarization data that for the first time corrects a problem encountered which altered those measurements.

  19. Longitudinal polar optical phonons in InN/GaN single and double het- erostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ardali, Sukru; Tiras, Engin [Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey); Gunes, Mustafa; Balkan, Naci [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Ajagunna, Adebowale Olufunso; Iliopoulos, Eleftherios; Georgakilas, Alexandros [Microelectronics Research Group, IESL, FORTH and Physics Department, University of Crete, P.O. Box 1385, 71110 Heraklion-Crete (Greece)

    2011-05-15

    Longitudinal optical phonon energy in InN epi-layers has been determined independently from the Raman spectroscopy and temperature dependent Hall mobility measurements. Raman spectroscopy technique can be used to obtain directly the LO energy where LO phonon scattering dominates transport at high temperature. Moreover, the Hall mobility is determined by the scattering of electrons with LO phonons so the data for the temperature dependence of Hall mobility have been used to calculate the effective energy of longitudinal optical phonons.The samples investigated were (i) single heterojunction InN with thicknesses of 1.08, 2.07 and 4.7 {mu}m grown onto a 40 nm GaN buffer and (ii) GaN/InN/AlN double heterojunction samples with InN thicknesses of 0.4, 0.6 and 0.8 {mu}m. Hall Effect measurements were carried out as a function of temperature in the range between T = 1.7 and 275 K at fixed magnetic and electric fields. The Raman spectra were obtained at room temperature. In the experiments, the 532 nm line of a nitrogen laser was used as the excitation source and the light was incident onto the samples along of the growth direction (c-axis). The results, obtained from the two independent techniques suggest the following: (1) LO phonon energies obtained from momentum relaxation experiments are generally slightly higher than those obtained from the Raman spectra. (2) LO phonon energy for the single heterojunctions does not depend on the InN thickness. (3) In double heterostructures, with smaller InN thicknesses and hence with increased strain, LO phonon energy increases by 3% (experimental accuracy is < 1%) when the InN layer thickness increases from 400 to 800 nm (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Dynamic polarization of protons in 2,3-butanediol doped with Cr(V)- complex and in other materials containing adjacent hydroxyl groups

    CERN Document Server

    Guckelsberger, K

    1977-01-01

    Results are given on 2,3-butanediol doped with Cr(V)-complex as a material for polarized proton targets. It is shown to be an improvement over the presently used 1,2-propanediol since its chemical composition is slightly more favourable and its melting point is near room temperature. Maximum polarization, nuclear relaxation time, reversal time, minimum power requirement, radiation resistance, and annealing temperature are all very similar to 1,2-propanediol. A review of other materials containing adjacent hydroxyl groups is made, and conclusions are drawn as to their possible use as target materials. (17 refs).

  1. Measurement of analyzing power for the reaction $$\\vec p + CH_2$$ at polarized proton momentum of 7.5 GeV/c (ALPOM2 proposal)

    Energy Technology Data Exchange (ETDEWEB)

    Balandin, V. P.; Baskakov, A. E.; Basilev, S. N.; Brash, E.; Bushuev, Yu. P.; Gavrishchuk, O. P.; Glagolev, V. V.; Jones, M. K.; Kadykov, M. G.; Khandaker, M.; Kirillov, D. A.; Kiryushin, Yu. T.; Kostyukhov, E. V.; Kuzmin, N. A.; Livanov, A. N.; Manyakov, P. K.; Martinska, G.; Meziane, M.; Movchan, S. A.; Mušinsky, J.; Pentchev, L.; Perdrisat, C. F.; Piskunov, N. M.; Povtoreiko, A. A.; Punjabi, V.; Rukoyatkin, P. A.; Shindin, R. A.; Shutov, A. V.; Shutova, N. A.; Sitnik, I. M.; Slepnev, V. M.; Slepnev, I. V.; Sychkov, S. Ya.; Tomasi-Gustafsson, E.; Vasiliev, S. E.; Vishnevsky, A. V.; Yukaev, A. I.; Urban, J.; Wojtsekhowski, B.

    2014-01-01

    An accurate data base for the analyzing power of thick CH2 analyzers for high energy protons has been at the basis of several research efforts in a number of laboratories. Starting in the late eighties such data were collected at SATURNE in Saclay, and with the Synchrophasotron in Dubna, and led to an extensive program of study of polarization phenomena in pd interaction, either backward elastic scattering or breakup [1–6]. At about the same time it became evident that measuring polarization observables in elastic ep was going to be the best approach to determine the form factors of the proton, G Ep and G Mp , as had been predicted by Akhiezer and Rekalo [7].

  2. Investigation of low-energy dipole modes in the heavy deformed nucleus {sup 154}Sm via inelastic polarized proton scattering at zero degree

    Energy Technology Data Exchange (ETDEWEB)

    Krugmann, Andreas; Martin, Dirk; Neumann-Cosel, Peter von; Pietralla, Norbert; Poltoratska, Iryna; Ponomarev, Vladimir [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Tamii, Atsushi [RCNP, Osaka University (Japan); Iwamoto, Chihiro [Konan University (Japan); Yoshida, Kenichi [Niigata University (Japan); Collaboration: E350-Collaboration

    2013-07-01

    Polarized proton scattering has been measured on the heavy deformed nucleus {sup 154}Sm at extreme forward angles with 300 MeV protons at RCNP, Osaka. The aim is to investigate the impact of ground state deformation on the properties of the pygmy dipole resonance (PDR) and the spin M1 resonance claimed to show a double-hump structure in heavy deformed nuclei. The (p,p') cross sections can be decomposed into E1 and M1 parts in two independent ways based either on a multipole decomposition of the cross sections or spin transfer observables. The analysis of polarization transfer observables shows dominant non-spinflip cross sections in the excitation energy region 5-9 MeV with a resonance structure interpreted as the PDR, while the spinflip M1 strength shows a broad distribution between 5 and 10 MeV.

  3. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  4. Feasibility of the Spin-Light Polarimetry Technique for Longitudinally Polarized Electron Beams

    Directory of Open Access Journals (Sweden)

    Mohanmurthy Prajwal

    2014-03-01

    Full Text Available A novel polarimeter based on the asymmetry in the spatial distribution of synchrotron radiation (SR will make for a fine addition to the existing Møller and Compton polarimeters. The spin light polarimeter consists of a set of wiggler magnet along the beam that generate synchrotron radiation. The spatial distribution of synchrotron radiation will be measured by ionization chambers. The up-down (below and above the wiggle spatial asymmetry in the transverse plain is used to quantify the polarization of the beam. As a part of the design process, effects of a realistic wiggler magnetic field and an extended beam size were studied. The perturbation introduced by these effects was found to be negligible. Lastly, a full fledged GEANT-4 simulation was built to study the response of the ionization chamber (IC.

  5. Feasibility of the Spin-Light Polarimetry Technique for Longitudinally Polarized Electron Beams

    CERN Document Server

    Mohanmurthy, Prajwal

    2013-01-01

    A novel polarimeter based on the asymmetry in the spacial distribution of synchrotron radiation will make for a fine addition to the existing M{\\o}ller and Compton polarimeters. The spin light polarimeter consists of a set of wiggler magnet along the beam that generate synchrotron radiation. The spacial distribution of synchrotron radiation will be measured by ionization chambers. The up-down (below and above the wiggle) spacial asymmetry in the transverse plain is used to quantify the polarization of the beam. As a part of the design process, effects of a realistic wiggler magnetic field and an extended beam size were studied. The perturbation introduced by these effects was found to be negligible. Lastly, a full fledged GEANT-4 simulation was built to study the response of the ionization chamber.

  6. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    CERN Document Server

    Mohanmurthy, Prajwal

    2014-01-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of $<$ 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  7. Measurement of recoil-proton polarization in. pi. /sup 0/-meson photoproduction at an angle theta(0 = 60/sup 0/ in the resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R.O.; Avakyan, O.; Avetisyan, A.; Armaganyan, A.A.; Arutyunyan, L.G.; Akopov, N.Z.; Bagdasaryan, A.S.; Vartapetyan, G.A.; Garibyan, Y.A.; Danagulyan, S.S.

    1983-02-01

    We report measurements of the energy dependence of the P/sub y/ component of the recoil-proton polarization vector in the reaction ..gamma..p..-->..p..pi../sup 0/ for a pion-production angle theta(0 = 60/sup 0/ in the region of ..gamma..-ray energies E/sub ..gamma../ = 0.8--1.5 GeV. The results of the measurements are compared with the predictions of various theoretical analyses.

  8. Measurement of polarization of recoil protons in. pi. /sup 0/ photoproduction for THETAsup(*)sub(. pi. sup(0))=60 deg in the resonance range

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R.O.; Avakyan, Eh.O.; Avetisyan, A.Eh. (Erevanskij Fizicheskij Inst. (USSR))

    1983-02-01

    The energy dependence of the Psub(y) component of the recoil proton polarization vector in the reaction ..gamma..p ..-->.. p..pi../sup 0/ is presented for the pion production angle thetasub(..pi..sup(2))*=60 deg and ..gamma..-quantum energies Esub(..gamma..)=(0.8-1.5) GeV. The measurement results are compared to the results of various theoretical analyses.

  9. Measurement of top quark polarization in top-antitop events from proton-proton collisions at √s=7  TeV using the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adye, T; Aefsky, S; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmad, A; Ahsan, M; Aielli, G; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Atlay, N B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belloni, A; Beloborodova, O L; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernard, C; Bernat, P; Bernhard, R; Bernius, C; Bernlochner, F U; Berry, T; Bertella, C; Bertolucci, F; Besana, M I; Besjes, G J; Bessidskaia, O; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brost, E; Brown, G; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Buehrer, F; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Caso, C; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Chow, B K B; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coffey, L; Cogan, J G; Coggeshall, J; Colas, J; Cole, B; Cole, S; Colijn, A P; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Courneyea, L; Cowan, G; Cox, B E; Cranmer, K; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Damiani, D S; Daniells, A C; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliot, F; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Doi, Y; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Dufour, M-A; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Dwuznik, M; Ebke, J; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Engelmann, R; Engl, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giuliani, C; Giunta, M; Gjelsten, B K; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haefner, P; Hageboeck, S; Hajduk, Z; Hakobyan, H; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hard, A S; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernandez, C M; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmgren, S O; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M K; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leonhardt, K; Leontsinis, S; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Lukas, W; Luminari, L; Lund, E; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Madaras, R J; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattmann, J; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mazzanti, M; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Molfetas, A; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Ntekas, K; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero y Garzon, G; Otono, H; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perepelitsa, D V; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petteni, M; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Radeka, V; Radescu, V; Radloff, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisinger, I; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Ritsch, E; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodrigues, L; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarrazin, B; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spighi, R; Spigo, G; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Tuna, A N; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webb, S; Weber, M S; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Williams, S; Willis, W; Willocq, S; Wilson, J A; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zenin, O; Zeniš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Zivković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    2013-12-06

    This Letter presents measurements of the polarization of the top quark in top-antitop quark pair events, using 4.7  fb(-1) of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at √s=7  TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of α(ℓ)P, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving or a maximally CP violating production process. The measurements obtained, α(ℓ)P(CPC)=-0.035±0.014(stat)±0.037(syst) and α(ℓ)P(CPV)=0.020±0.016(stat)(-0.017)(+0.013)(syst), are in good agreement with the standard model prediction of negligible top quark polarization.

  10. Measurements of cosmic-ray proton and helium spectra from the BESS-Polar long-duration balloon flights over Antarctica

    CERN Document Server

    Abe, K; Haino, S; Hams, T; Hasegawa, M; Horikoshi, A; Itazaki, A; Kim, K C; Kumazawa, T; Kusumoto, A; Lee, M H; Makida, Y; Matsuda, S; Matsukawa, Y; Matsumoto, K; Mitchell, J W; Myers, Z; Nishimura, J; Nozaki, M; Orito, R; Ormes, J F; Picot-Clemente, N; Sakai, K; Sasaki, M; Seo, E S; Shikaze, Y; Shinoda, R; Streitmatter, R E; Suzuki, J; Takasugi, Y; Takeuchi, K; Tanaka, K; Thakur, N; Yamagami, T; Yamamoto, A; Yoshida, T; Yoshimura, K

    2015-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.2-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.3-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from AMS-01, ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.3 GV to 160 GV a...

  11. EISCAT and ESRAD radars observations of polar mesosphere winter echoes during solar proton events on 11-12 November 2004

    Energy Technology Data Exchange (ETDEWEB)

    Belova, E.; Kirkwood, S.; Sergienko, T. [Swedish Institute of Space Physics, Kiruna (Sweden)

    2013-09-01

    Polar mesosphere winter echoes (PMWE) were detected by two radars, ESRAD at 52 MHz located near Kiruna, Sweden, and EISCAT at 224 MHz located near Tromsoe, Norway, during the strong solar proton event on 11-12 November 2004. PMWE maximum volume reflectivity was estimated to be 3 x 10{sup -15}m{sup -1} for ESRAD and 2 x 10{sup -18}m{sup -1} for EISCAT. It was found that the shape of the echo power spectrum is close to Gaussian inside the PMWE layers, and outside of them it is close to Lorentzian, as for the standard ion line of incoherent scatter (IS). The EISCAT PMWE spectral width is about 5-7 m{sup -1} at 64-67 km and 7-10 m{sup -1} at 68-70 km. At the lower altitudes the PMWE spectral widths are close to those for the IS ion line derived from the EISCAT data outside the layers. At the higher altitudes the PMWE spectra are broader by 2-4 m{sup -1} than those for the ion line. The ESRAD PMWE spectral widths at 67-72 km altitude are 3-5 m{sup -1}, that is, 2-4 m{sup -1} larger than ion line spectral widths modelled for the ESRAD radar. The PMWE spectral widths for both EISCAT and ESRAD showed no dependence on the echo strength. It was found that all these facts cannot be explained by turbulent origin of the echoes. We suggested that evanescent perturbations in the electron gas generated by the incident infrasound waves may explain the observed PMWE spectral widths. However, a complete theory of radar scatter from this kind of disturbance needs to be developed before a full conclusion can be made. (orig.)

  12. EISCAT and ESRAD radars observations of polar mesosphere winter echoes during solar proton events on 11–12 November 2004

    Directory of Open Access Journals (Sweden)

    E. Belova

    2013-07-01

    Full Text Available Polar mesosphere winter echoes (PMWE were detected by two radars, ESRAD at 52 MHz located near Kiruna, Sweden, and EISCAT at 224 MHz located near Tromsø, Norway, during the strong solar proton event on 11–12 November 2004. PMWE maximum volume reflectivity was estimated to be 3 × 10−15 m−1 for ESRAD and 2 × 10−18 m−1 for EISCAT. It was found that the shape of the echo power spectrum is close to Gaussian inside the PMWE layers, and outside of them it is close to Lorentzian, as for the standard ion line of incoherent scatter (IS. The EISCAT PMWE spectral width is about 5–7 m s−1 at 64–67 km and 7–10 m s−1 at 68–70 km. At the lower altitudes the PMWE spectral widths are close to those for the IS ion line derived from the EISCAT data outside the layers. At the higher altitudes the PMWE spectra are broader by 2–4 m s−1 than those for the ion line. The ESRAD PMWE spectral widths at 67–72 km altitude are 3–5 m s−1, that is, 2–4 m s−1 larger than ion line spectral widths modelled for the ESRAD radar. The PMWE spectral widths for both EISCAT and ESRAD showed no dependence on the echo strength. It was found that all these facts cannot be explained by turbulent origin of the echoes. We suggested that evanescent perturbations in the electron gas generated by the incident infrasound waves may explain the observed PMWE spectral widths. However, a complete theory of radar scatter from this kind of disturbance needs to be developed before a full conclusion can be made.

  13. Measurement of the Proton and Deuteron Spin Structure Functions G1 and G2

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Al

    2003-04-02

    The SLAC experiment E155 was a deep-inelastic scattering experiment that scattered polarized electrons off polarized proton and deuteron targets in the effort to measure precisely the proton and deuteron spin structure functions. The nucleon structure functions g{sub 1} and g{sub 2} are important quantities that help test our present models of nucleon structure. Such information can help quantify the constituent contributions to the nucleon spin. The structure functions g{sub 1}{sup p} and G{sub 1}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.9 and 1 {le} Q{sup 2} {le} 40 GeV{sup 2} by scattering 48.4 GeV longitudinally polarized electrons off longitudinally polarized protons and deuterons. In addition, the structure functions g{sub 2}{sup p} and g{sub 2}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.7 and 1 {le} Q{sup 2} {le} 17 GeV{sup 2} by scattering 38.8 GeV longitudinally polarized electrons off transversely polarized protons and deuterons. The measurements of g{sub 1} confirm the Bjorken sum rule and find the net quark polarization to be {Delta}{Sigma} = 0.23 {+-} 0.04 {+-} 0.6 while g{sub 2} is found to be consistent with the g{sub 2}{sup WW} model.

  14. A Measurement of the transverse polarization of Lambda hyperons produced in inelastic p N reactions at 450 GeV proton energy

    CERN Document Server

    Fanti, V; Musa, L; Nappi, A; Setzu, M G; Moore, R W; Munday, D J; Parker, M A; Takach, S F; White, T O; Barr, Giles David; Bocquet, G; Bremer, J; Ceccucci, Augusto; Cogan, J; Cundy, Donald C; Doble, Niels T; Fischer, G; Funk, W; Gatignon, L; Gianoli, A; Gonidec, A; Grafström, P; Kubischta, Werner; Marzulli, V M; Kesseler, G; Matheys, J P; Norton, Alan Robert; Palestini, S; Panzer-Steindel, B; Schinzel, D; Taureg, Hans; Velasco, M; Vossnack, O; Wahl, H; Kekelidze, V D; Kozhevnikov, I V; Potrebenikov, Yu K; Khristov, P Z; Tatishvili, G T; Tkachev, A L; Bertolotto, L; Boyle, O; Hay, B; McKay, N E; Oakland, G; Parsons, H; Peach, Kenneth J; Talamonti, C; Walker, A; Dalpiaz, Pietro; Duclos, J; Formica, A; Frabetti, P L; Martini, M; Petrucci, F; Porcu, M; Rossi, F; Savrié, M; Simani, C; Bizzeti, A; Calvetti, M; Lenti, M; Michetti, A; Becker, H G; Beier, T; Blümer, H; Buchholz, P; Coward, D H; Ebersberger, C; Kalter, A; Kleinknecht, K; Koch, U; Köpke, L; Leber, F; Luitz, S; Renk, B; Scheidt, J; Schmidt, J; Schönharting, V; Wilhelm, R; Zeitnitz, O; Chollet, J C; Crépé, S; Fayard, Louis; Iconomidou-Fayard, L; Ocariz, J; Unal, G; Anzivino, Giuseppina; Cenci, P; Lubrano, P; Pepé, M; Calafiura, P; Carosi, R; Casali, R; Cerri, C; Costantini, F; Fantechi, R; Giudici, Sergio; Gorini, B; Mannelli, I; Pierazzini, G M; Sozzi, M; Chèze, J B; De Beer, M; Debu, P; Mazzucato, E; Peyaud, B; Schanne, S; Steinkamp, O; Turlay, René; Vallage, B; Augustin, I; Bender, M; Holder, M; Ziolkowski, M; Arcidiacono, R; Biino, C; Govi, G; Maas, P; Marchetto, F; Menichetti, E; Dibon, Heinz; Jeitler, Manfred; Markytan, Manfred; Mikulec, I; Neuhofer, Günther; Pernicka, Manfred; Taurok, Anton

    1999-01-01

    A study of the polarization of Lambda hyperons produced in inelastic pN reactions induced by the 450 GeV proton beam from the CERN SPS has been performed with the NA48 detector. The Lambda hyperons were detected at a fixed angle of $9 4.2 mrad in the momentum range from 50 GeV/c to 200 GeV/c. The polarization changes from -0.053+or-0.034 to -0.298+or-0.074 for a transverse momentum range of the Lambda between 0.28 GeV/c and 0.86 GeV/c. The Lambda polarization is $9 consistent with zero. (13 refs).

  15. Measurement of the transverse polarization of $\\Lambda$ and $\\bar{\\Lambda}$ hyperons produced in proton--proton collisions at $\\sqrt{s}$=7 TeV using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dwuznik, Michal; Dyndal, Mateusz; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffmann, Dirk; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Stefan; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smith, Matthew; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-01-01

    The transverse polarization of $\\Lambda$ and $\\bar\\Lambda$ hyperons produced in proton--proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 $\\mu$b$^{-1}$ of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman $x_{\\rm F}$ from $5\\times 10^{-5}$ to 0.01 and transverse momentum $p_{\\rm T}$ from 0.8 to 15 GeV is $-0.010 \\pm 0.005({\\rm stat}) \\pm 0.004({\\rm syst})$ for $\\Lambda$ and $0.002 \\pm 0.006({\\rm stat}) \\pm 0.004({\\rm syst})$ for $\\bar\\Lambda$. It is also measured as a function of $x_{\\rm F}$ and $p_{\\rm T}$, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the $x_{\\rm F}$ range covered by this mesurement.

  16. Form factor ratio from unpolarized elastic electron-proton scattering

    Science.gov (United States)

    Pacetti, Simone; Tomasi-Gustafsson, Egle

    2016-11-01

    A reanalysis of unpolarized electron-proton elastic scattering data is done in terms of the electric to magnetic form factor squared ratio. This observable is in principle more robust against experimental correlations and global normalizations. The present analysis shows indeed that it is a useful quantity that contains reliable and coherent information. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are compatible within the experimental errors. Limits are set on the kinematics where the physical information on the form factors can be safely extracted. The results presented in this work bring a decisive piece of information to the controversy on the deviation of the proton form factors from the dipole dependence.

  17. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Science.gov (United States)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four

  18. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Directory of Open Access Journals (Sweden)

    N. Tsoupas

    2013-04-01

    Full Text Available The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to

  19. Analyzing power in inclusive. pi. sup + and. pi. sup - production at high x sub F with a 200 GeV polarized proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.L.; Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Phillips, G.C.; Roberts, J.B.; Skeens, J.; White, J.L. (T.W. Bonner Nuclear Lab., Rice Univ., Houston, TX (United States)); Akchurin, N.; Langland, J.; Onel, Y. (Dept. of Physics, Univ. of Iowa, Iowa City, IA (United States)); Belikov, N.I.; Derevschikov, A.A.; Grachov, O.A.; Matulenko, Yu.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N. (Inst. of High Energy Physics, Serpukhov (USSR)); Bystricky, J.; Lehar, F.; Lesquen, A. de (CEN-Saclay, 91 - Gif-sur-Yvette (France)); Cossairt, J.D.; Read, A.L. (Fermi National Accelerator Lab., Batavia, IL (United States)); En' yo, H.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S. (Dept. of Physics, Kyoto Univ. (Japan)); Grosnick, D.P.; Hill, D.A.; Lopiano, D.; Ohashi, Y.; Spinka, H.; Stanek, R; FNAL E704 Collaboration

    1991-08-01

    The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in {chi}{sub F} is observed in which A{sub N} increases from 0 to 0.42 with increasing {chi}{sub F} for the {pi}{sup +} data and decreases from 0 to -0.38 with increasing {chi}{sub F} for {pi}{sup -} data. The kinematic range covered is 0.2{<=}{chi}{sub F}{<=}0.9 and 0.2{<=}p{sub T}{<=}2.0 GeV/c. In a simple model our data indicate that at large {chi}{sub F} the transverse spin of the proton is correlated with that of its quark constituents. (orig.).

  20. Tagged spectator DIS on a polarized spin-1 target

    CERN Document Server

    Cosyn, W; Weiss, C

    2016-01-01

    We discuss the process of deep-inelastic electron scattering (DIS) on the polarized deuteron with detection of a nucleon in the nuclear fragmentation region ("spectator tagging"). We cover (a) the general structure of the semi-inclusive DIS cross section on a spin-1 target; (b) the tagged structure functions in the impulse approximation, where deuteron structure is described by the $NN$ light-front wave function; (c) the extraction of free neutron structure through on-shell extrapolation in the recoil proton momentum. As an application we consider the extraction of the neutron spin structure function $g_{1n}$ through polarized electron scattering on the longitudinally polarized deuteron with proton tagging and on-shell extrapolation. Such measurements would be possible at an Electron-Ion Collider (EIC) with polarized deuteron beams and forward proton detectors.

  1. Large-amplitude, circularly polarized, compressive, obliquely propagating electromagnetic proton cyclotron waves throughout the Earth's magnetosheath: low plasma β conditions

    Energy Technology Data Exchange (ETDEWEB)

    Remya, B.; Reddy, R. V.; Lakhina, G. S. [Indian Institute of Geomagnetism, Kalamboli Highway, New Panvel, Navi Mumbai, Maharashtra (India); Tsurutani, B. T.; Falkowski, B. J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Echer, E. [Instituto Nacional de Pesquisas Espaciais (INPE), Avenida Astronautas, 1758, P.O. Box 515, Sao Jose dos Campos, SP (Brazil); Glassmeier, K.-H., E-mail: remyaphysics@gmail.com [Institute for Geophysics and Extraterrestrial Physics (IGEP), Mendelssohnstr.3, D-38106, Braunschweig (Germany)

    2014-09-20

    During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf} > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.

  2. A longitudinal study of cognition, proton MR spectroscopy and synaptic and neuronal pathology in aging wild-type and AbetaPPswe-PS1dE9 mice.

    NARCIS (Netherlands)

    Jansen, D.; Zerbi, V.; Janssen, C.I.F.; Dederen, P.J.W.C.; Mutsaers, M.P.; Hafkemeijer, A.; Janssen, A.L.; Nobelen, C.L.; Veltien, A.A.; Asten, J.J.A. van; Heerschap, A.; Kiliaan, A.J.

    2013-01-01

    Proton magnetic resonance spectroscopy ((1)H MRS) is a valuable tool in Alzheimer's disease research, investigating the functional integrity of the brain. The present longitudinal study set out to characterize the neurochemical profile of the hippocampus, measured by single voxel (1)H MRS at 7

  3. Measurement of proton polarization in the reaction. gamma. /ital p//r arrow//ital p/. pi. /sup 0/ at an angle theta/sup *//sub. pi. /sup 0//=80/degree/ in a linearly polarized photon beam

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R. O.; Avakyan, E. O.; Avetisyan, A. E.; Aivazyan, R. B.; Arestakesyan, G. A.; Bagdasryan, A. S.; Vartapetyan, G. A.; Garibyan, Y. A.; Eganov, V. S.; Karapetyan, A. P.; and others

    1988-12-01

    Measurements are reported of the energy dependence of the /ital p//sub /ital xz// and /ital P//sub /ital y// components of the polarization vector of the recoil protons in the reaction ..gamma../ital p//r arrow//ital p/..pi../sup 0/ for a ..pi../sup 0/-meson production angle theta/sup *//sub ..pi../sup 0// =80/degree/ in the c.m.s. in the ..gamma..-ray energy range /ital E//sub ..gamma../=730--1066 MeV. The experimental data are compared with the results of various phenomenological analyses.

  4. Dirac Coupled-channel Analyses of Polarized Proton Scatterings to the 2$^+$ Gamma Vibrational Band in $^{24}$Mg and $^{26}$Mg

    CERN Document Server

    Shim, Sugie

    2016-01-01

    Dirac coupled channel calculations are performed phenomenologically for the high-lying excited states that belong to the 2$^+$ gamma vibrational band at the 800-MeV polarized proton inelastic scatterings from the s-d shell nuclei, $^{24}$Mg and $^{26}$Mg. Optical potential model is used and scalar and time-like vector potentials are considered as direct potentials. First-order vibrational collective models are used to obtain the transition optical potentials in order to accommodate the high-lying excited vibrational collective states. The complicated Dirac coupled channel equations are solved phenomenologically to reproduce the differential cross section and analyzing power data by varying the optical potential and deformation parameters. It is found that the relativistic Dirac coupled channel calculation could describe the high-lying excited states of the 2$^+$ gamma vibrational band at the 800-MeV polarized proton inelastic scatterings from s-d shell nuclei $^{24}$Mg and $^{26}$Mg reasonably well, showing b...

  5. Proton and charge transfer reactions dynamics of a hydroxyflavone derivative in a polar solvent and in a cyclodextrin nanocavity

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M.; Organero, J.A. [Departamento de Quimica Fisica, Seccion de Quimicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, S.N., 45071 Toledo (Spain); Douhal, A. [Departamento de Quimica Fisica, Seccion de Quimicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, S.N., 45071 Toledo (Spain)], E-mail: Abderrazzak.douhal@uclm.es

    2007-09-25

    In this work, we report on the observation of ultrafast intramolecular charge- and proton-transfer reactions of 4'-dimethylaminoflavonol (DMAF) in N,N-dimethyl formamide and in {gamma}-cyclodextrin ({gamma}-CD) solution. Upon femtosecond excitation an intramolecular charge transfer (ICT) reaction takes place to produce an ICT structure in {approx}200 fs. This structure may undergo a proton transfer reaction to generate a zwitterionic (Z) form in 2-3 ps, or relaxes in its potential energy well, to later equilibrate with that of Z in hundreds of ps. Addition of {gamma}-CD does not significantly affect the fast dynamics of the formed anion. The fs-emission signals of the parent molecule, 3-hydroxyflavone, indicate that the dimethyl amino group in DMAF enhances the rate constant of intermolecular proton-transfer and intramolecular charge-transfer reactions.

  6. Spin asymmetries in squark and gluino production at polarized hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gehrmann, T. [Institut fuer Theoretische Physik, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: gehrt@physik.unizh.ch; Maitre, D. [Institut fuer Theoretische Physik, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: maitreda@physik.unizh.ch; Wyler, D. [Institut fuer Theoretische Physik, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: wyler@physik.unizh.ch

    2004-12-20

    We study the production cross sections for squarks and gluinos in collision of longitudinally polarized hadrons. The corresponding polarized partonic cross sections are computed in leading order supersymmetric QCD. The resulting asymmetries are evaluated for the polarized proton collider RHIC, as well as for hypothetical polarized options of the Tevatron and the LHC. These asymmetries turn out to be sizable over a wide range of supersymmetric particle masses. Once supersymmetric particles are discovered in unpolarized collisions, a measurement of the spin asymmetries would thus potentially help to establish the properties of the newly discovered particles and open a window to detailed sparticle spectroscopy at future polarized hadron colliders.

  7. Polarization of Lambda and Anti-Lambda in 920 GeV Fixed-Target Proton-Nucleus Collisions

    CERN Document Server

    Abt, I; Agari, M; Albrecht, H; Aleksandrov, A; Amaral, V S; Amorim, A; Aplin, S J; Aushev, V; Bagaturia, Yu S; Balagura, V; Bargiotti, M; Barsukova, O; Bastos, J; Batista, J; Bauer, C; Bauer, T S; Belkov, A; Belkov, Ar; Belotelov, I; Bertin, A; Bobchenko, B M; Böcker, M; Bogatyrev, A; Böhm, G; Brauer, M; Bruinsma, M; Bruschi, M; Buchholz, P; Buran, T; Carvalho, J; Conde, P; Cruse, C; Dam, M; Danielsen, K M; Danilov, M; De Castro, S; Deppe, H; Dong, X; Dreis, H B; Egorytchev, V; Ehret, K; Eisele, F; Emeliyanov, D; Erhan, S; Essenov, S; Fabbri, L; Faccioli, P; Feuerstack-Raible, M; Flammer, J; Fominykh, B A; Funcke, M; Garrido, L; Gellrich, A; Giacobbe, B; Glass, J; Goloubkov, D; Golubkov, Y; Golutvin, A; Golutvin, I A; Gorbounov, I; Gorisek, A; Gouchtchine, O; Goulart, D C; Gradl, S; Gradl, W; Grimaldi, F; Guilitsky, Yu; Hansen, J D; Hernández, J M; Hofmann, W; Hohlmann, M; Hott, T; Hulsbergen, W; Husemann, U; Igonkina, O; Ispiryan, M; Jagla, T; Jiang, C; Kapitza, H; Karabekyan, S; Karpenko, N; Keller, S; Kessler, J; Khasanov, F; Kiryushin, Yu T; Kisel, I; Klinkby, E; Knöpfle, K T; Kolanoski, H; Korpar, S; Krauss, C; Kreuzer, P; Krizan, P; Krücker, D; Kupper, S; Kvaratskheliia, T; Lanyov, A; Lau, K; Lewendel, B; Lohse, T; Lomonosov, B N; Männer, R; Mankel, R; Masciocchi, S; Massa, I; Matchikhilian, I; Medin, G; Medinnis, M; Mevius, M; Michetti, A; Mikhailov, Yu; Mizuk, R; Muresan, R; Zur Nedden, M; Negodaev, M; Nörenberg, M; Nowak, S; Núñez-Pardo de Vera, M T; Ouchrif, M; Ould-Saada, F; Padilla, C; Peralta, D; Pernack, R; Pestotnik, R; Petersen, B AA; Piccinini, M; Pleier, M A; Poli, M; Popov, V; Pose, D; Prystupa, S; Pugatch, V; Pylypchenko, Y; Pyrlik, J; Reeves, K; Ressing, D; Rick, H; Riu, I; Robmann, P; Rostovtseva, I; Rybnikov, V; Sánchez, F; Sbrizzi, A; Schmelling, M; Schmidt, B; Schreiner, A; Schröder, H; Schwanke, U; Schwartz, A J; Schwarz, A S; Schwenninger, B; Schwingenheuer, B; Sciacca, F; Semprini-Cesari, N; Shuvalov, S; Silva, L; Sozuer, L; Solunin, S; Somov, A; Somov, S; Spengler, J; Spighi, R; Spiridonov, A A; Stanovnik, A; Staric, M; Stegmann, C; Subramanian, H S; Symalla, M; Tikhomirov, I; Titov, M; Tsakov, I; Uwer, U; Van Eldik, C; Vasilev, Yu; Villa, M; Vitale, A; Vukotic, I; Wahlberg, H; Walenta, Albert H; Walter, M; Wang, J J; Wegener, D; Werthenbach, U; Wolters, H; Wurth, R; Wurz, A; Zaitsev, Yu; Zavertyaev, M V; Zeuner, T; Zhelezov, A; Zheng, Z; Zimmermann, R; Zivko, T; Zoccoli, A

    2006-01-01

    A measurement of the polarization of Lambda and Anti-Lambda baryons produced in pC and pW collisions at sqrt(s)=41.6 GeV has been performed with the HERA-B spectrometer. The measurements cover the kinematic range of 0.6 GeV/c < p_T<1.2 GeV/c in transverse momentum and -0.15polarization results from the two different targets agree within the statistical error. In the combined data set, the largest deviation from zero, +0.054 +- 0.029, is measured for x_F < -0.07. Zero polarization is expected at x_F=0 in the absence of nuclear effects. The polarization results for the Lambda agree with a parametrization of previous measurements which were performed at positive x_F values, where the Lambda polarization is negative. Results of Anti-Lambda polarization measurements are consistent with zero.

  8. Measurement of parity-violating spin asymmetries in W$^{\\pm}$ production at midrapidity in longitudinally polarized $p$$+$$p$ collisions

    CERN Document Server

    Adare, A; Ajitanand, N N; Akiba, Y; Akimoto, R; Alexander, J; Alfred, M; Aoki, K; Apadula, N; Aramaki, Y; Asano, H; Aschenauer, E C; Atomssa, E T; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bai, X; Bandara, N S; Bannier, B; Barish, K N; Bassalleck, B; Bathe, S; Baublis, V; Baumann, C; Baumgart, S; Bazilevsky, A; Beaumier, M; Beckman, S; Belmont, R; Berdnikov, A; Berdnikov, Y; Black, D; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Butsyk, S; Campbell, S; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choi, S; Choudhury, R K; Christiansen, P; Chujo, T; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Cronin, N; Crossette, N; Csanád, M; Csörgő, T; Dairaku, S; Danley, D; Datta, A; Daugherity, M S; David, G; DeBlasio, K; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Ding, L; Dion, A; Diss, P B; Do, J H; Donadelli, M; D'Orazio, L; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Edwards, S; Efremenko, Y V; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Feege, N; Fields, D E; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fusayasu, T; Gainey, K; Gal, C; Gallus, P; Garg, P; Garishvili, A; Garishvili, I; Ge, H; Giordano, F; Glenn, A; Gong, X; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guragain, H; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamilton, H F; Han, S Y; Hanks, J; Hasegawa, S; Haseler, T O S; Hashimoto, K; Hayano, R; Hayashi, S; He, X; Hemmick, T K; Hester, T; Hill, J C; Hollis, R S; Homma, K; Hong, B; Horaguchi, T; Hoshino, T; Hotvedt, N; Huang, J; Huang, S; Ichihara, T; Iinuma, H; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Iordanova, A; Isenhower, D; Isinhue, A; Ivanishchev, D; Jacak, B V; Javani, M; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Johnson, B M; Joo, E; Joo, K S; Jouan, D; Jumper, D S; Kamin, J; Kanda, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kawall, D; Kazantsev, A V; Kempel, T; Key, J A; Khachatryan, V; Khandai, P K; Khanzadeev, A; Kihara, K; Kijima, K M; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E -J; Kim, G W; Kim, H -J; Kim, M; Kim, Y -J; Kim, Y K; Kimelman, B; Kinney, E; Kistenev, E; Kitamura, R; Klatsky, J; Kleinjan, D; Kline, P; Koblesky, T; Kofarago, M; Komkov, B; Koster, J; Kotchetkov, D; Kotov, D; Krizek, F; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, G H; Lee, J; Lee, K B; Lee, K S; Lee, S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Leitgab, M; Lewis, B; Li, X; Lim, S H; Levy, L A Linden; Liu, M X; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Manion, A; Manko, V I; Mannel, E; Maruyama, T; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Midori, J; Mignerey, A C; Miller, A J; Milov, A; Mishra, D K; Mitchell, J T; Miyasaka, S; Mizuno, S; Mohanty, A K; Mohapatra, S; Montuenga, P; Moon, H J; Moon, T; Morrison, D P; Moskowitz, M; Moukhanova, T V; Murakami, T; Murata, J; Mwai, A; Nagae, T; Nagamiya, S; Nagashima, K; Nagle, J L; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Netrakanti, P K; Nihashi, M; Niida, T; Nishimura, S; Nouicer, R; Novak, T; Novitzky, N; Nukariya, A; Nyanin, A S; Obayashi, H; O'Brien, E; Ogilvie, C A; Oide, H; Okada, K; Koop, J D Orjuela; Osborn, J D; Oskarsson, A; Ozaki, H; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J S; Park, S; Park, S K; Pate, S F; Patel, L; Patel, M; Pei, H; Peng, J -C; Perepelitsa, D V; Perera, G D N; Peressounko, D Yu; Perry, J; Petti, R; Pinkenburg, C; Pinson, R; Pisani, R P; Purschke, M L; Qu, H; Rak, J; Ramson, B J; Ravinovich, I; Read, K F; Reynolds, D; Riabov, V; Riabov, Y; Richardson, E; Rinn, T; Riveli, N; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rowan, Z; Rubin, J G; Ryu, M S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sako, H; Samsonov, V; Sarsour, M; Sato, S; Sawada, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seele, J; Seidl, R; Sekiguchi, Y; Sen, A; Seto, R; Sett, P; Sexton, A; Sharma, D; Shaver, A; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, B K; Singh, C P; Singh, V; Skolnik, M; Slunečka, M; Snowball, M; Solano, S; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Steinberg, P; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Stone, M R; Sugitate, T; Sukhanov, A; Sumita, T; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Tieulent, R; Timilsina, A; Todoroki, T; Tomášek, M; Torii, H; Towell, C L; Towell, M; Towell, R; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; van Hecke, H W; Vargyas, M

    2015-01-01

    We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.

  9. Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\\sqrt{s}$ = 200 GeV

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Anderson, D M; Aoyama, R; Aparin, A; Arkhipkin, D; Aschenauer, E C; Ashraf, M U; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Brown, D; Bunzarov, I; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, X; Chen, J H; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Elsey, N; Engelage, J; Eppley, G; Esha, R; Esumi, S; Evdokimov, O; Ewigleben, J; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Federicova, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, X; Huang, B; Huang, T; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jentsch, A; Jia, J; Jiang, K; Jowzaee, S; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulathunga, N; Kumar, L; Lacey, R; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, W; Li, C; Li, X; Li, Y; Li, X; Lin, T; Lisa, M A; Liu, F; Liu, Y; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Luo, S; Ma, Y G; Ma, G L; Ma, R; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Miller, Z W; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Nonaka, T; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Przybycien, M; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Ray, R L; Reed, R; Rehbein, M J; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roth, J D; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Sharma, A; Sharma, M K; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sugiura, T; Sumbera, M; Summa, B; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, D N; Tang, A H; Tang, Z; Taranenko, A; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, J S; Wang, F; Wang, Y; Wang, Y; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, H; Xu, Q H; Xu, Y F; Xu, N; Xu, Z; Xu, J; Yang, Y; Yang, S; Yang, Y; Yang, Y; Yang, C; Yang, Q; Ye, Z; Ye, Z; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, Y; Zhang, J; Zhang, X P; Zhang, J B; Zhang, Z; Zhang, S; Zhang, J; Zhang, S; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-01-01

    We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

  10. CP asymmetries with Longitudinal and Transverse Beam Polarizations in Neutralino Production and Decay into the Z^0 Boson at the ILC

    CERN Document Server

    Bartl, Alfred; Kernreiter, T; Kittel, O

    2007-01-01

    We study neutralino production at the linear collider with the subsequent two-body decays ~chi^0_i -> ~chi^0_n Z^0 and Z^0 -> l^+ l^-, with l=e, mu, tau, or Z^0 -> q q- with q=c,b. We show that transverse electron and positron beam polarizations allow the definition of unique CP observables. These are azimuthal asymmetries in the distributions of the final leptons or quarks. We calculate these CP asymmetries and the cross sections in the Minimal Supersymmetric Standard Model with complex higgsino and gaugino parameters mu and M_1. For final quark pairs, we find CP asymmetries as large as 30%. We discuss the significances for observing the CP asymmetries at the International Linear Collider (ILC). Finally we compare the CP asymmetries with those asymmetries which require unpolarized and/or longitudinally polarized beams only.

  11. CP asymmetries with longitudinal and transverse beam polarizations in neutralino production and decay into the Z0 boson at the ILC

    Science.gov (United States)

    Bartl, Alfred; Hohenwarter-Sodek, Karl; Kernreiter, Thomas; Kittel, Olaf

    2007-09-01

    We study neutralino production at the linear collider with the subsequent two-body decays tilde chi0i → tilde chi0nZ0 and Z0 → ell bar-ell, with ell = e, μ, τ, or Z0 → qbar q with q = c, b. We show that transverse electron and positron beam polarizations allow the definition of unique CP observables. These are azimuthal asymmetries in the distributions of the final leptons or quarks. We calculate these CP asymmetries and the cross sections in the Minimal Supersymmetric Standard Model with complex higgsino and gaugino parameters μ and M1. For final quark pairs, we find CP asymmetries as large as 30%. We discuss the significances for observing the CP asymmetries at the International Linear Collider (ILC). Finally we compare the CP asymmetries with those asymmetries which require unpolarized and/or longitudinally polarized beams only.

  12. Structure of Proton

    CERN Document Server

    Fayyazuddin, A

    2003-01-01

    Electron--proton scattering in elastic and highly inelastic region is reviewed in a unified approach. The importance of parity--violating scattering due to electro--weak interference in probing the structure of proton is emphasized. The importance of longitudnal spin--spin asymmetry as well as parity violating longitudnal asymmetry to extract the structure functions of proton in both regions are discussed. The recoil polarization of proton in the elastic scattering is also discussed.

  13. Neutral Pion Double Helicity Asymmetry in Polarized Proton-Proton Collisions at √s=200 GeV at STAR

    Science.gov (United States)

    Leight, William

    2012-03-01

    One of the primary goals of the spin physics program at the STAR experiment is to constrain the polarized gluon distribution function δ(g)(x,Q^2) by measuring the double helicity asymmetry, ALL, of various final-state channels. Neutral pions are a potentially powerful final state because they are copiously produced in p+p collisions and have few backgrounds. STAR can identify neutral pions using its large-acceptance electromagnetic calorimeter, combined with a track veto from the STAR Time Projection Chamber. I will present progress towards measuring an ALL for neutral pions using ˜14 pb-1 of integrated luminosity taken during the 2009 200 GeV p+p run.

  14. A brief report on the statistical study of net electric current in solar active regions with longitudinal fields of opposite polarity

    Institute of Scientific and Technical Information of China (English)

    Yu Gao

    2013-01-01

    Dynamic processes occurring in solar active regions are dominated by the solar magnetic field.As of now,observations using a solar magnetograph have supplied us with the vector components of a solar photospheric magnetic field.The two transverse components of a photospheric magnetic field allow us to compute the amount of electric current.We found that the electric current in areas with positive (negative) polarity due to the longitudinal magnetic field have both positive and negative signs in an active region,however,the net current is found to be an order-ofmagnitude less than the mean absolute magnitude and has a preferred sign.In particular,we have statistically found that there is a systematic net electric current from areas with negative (positive) polarity to areas with positive (negative) polarity in solar active regions in the northern (southern) hemisphere,but during the solar minimum this tendency is reversed over time at some latitudes.The result indicates that there is weak net elecTRic current in areas of solar active regions with opposite polarity,thus providing further details about the hemispheric helicity rule found in a series of previous studies.

  15. Generating monoenergetic proton beam by using circularly polarlzed laser

    Institute of Scientific and Technical Information of China (English)

    LIU Bi-Cheng; YAN Xue-Qing; LIN Chen; Lu Yuan-Rong; GUO Zhi-Yu; FANG Jia-Xun; SHENG Zheng-Ming; LI Yu-Tong; CHEN Jia-Er

    2009-01-01

    The interaction of ultrashort intense circularly polarized laser with ultra thin overdense foil is studied by particle-in-cell simulation and analytic model.It is found that with the balance between pondermotive force and electrostatic force,highly quasi-monoenergetic proton beam can be generated by Phase Stable Acceleration(PSA)process.As in conventional accelerators,ion will be accelerated and bunched up in the longitudinal direction at the same time.

  16. Single spin asymmetry AN in polarized proton–proton elastic scattering √s=200 GeV

    NARCIS (Netherlands)

    Adamczyk, L.; Agakishiev, G.; La Pointe, S.L.; Zyzak, M.

    2013-01-01

    We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy √s = 200 GeV in elastic proton–proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003 |t| 0.035 (GeV/c)2, the region of a

  17. Stable single-polarization single-longitudinal-mode linear cavity erbium-doped fiber laser based on structured chirped fiber Bragg grating.

    Science.gov (United States)

    Yin, Bin; Liu, Zhibo; Feng, Suchun; Bai, Yunlong; Li, Haisu; Jian, Shuisheng

    2015-01-01

    A novel linear cavity erbium-doped fiber (EDF) laser based on a structured chirped fiber Bragg grating (CFBG) filter is proposed for stable single-polarization (SP) single-longitudinal-mode (SLM) operation. For the first time, to the best of our knowledge, a structured CFBG filter with an ultranarrow transmission band which is generated by tapering directly on CFBG is used to select the laser longitudinal mode. The SLM operation is obtained by using the structured CFBG together with an unpumped EDF acting as a saturable absorber. The fluctuations of the laser peak power and center wavelength are less than 0.07 dB and 1 pm in 1 h, respectively. The stable SP operation is achieved by using the inline broadband polarizer. The measured 20 dB laser linewidth is about 27.7 kHz, which indicates the laser linewidth is approximately 1.39 kHz FWHM.

  18. Noncoplanarity in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Timmermans, RGE; Gibson, BF; Li, Y; Liou, MK

    2002-01-01

    Using the soft-photon approximation, we address the issue of the importance of noncoplanarity effects in proton-proton bremsstrahlung, We investigate the noncoplanar cross section as a function of the noncoplanarity angle (φ) over bar for the entire range of the photon polar angle psi(gamma). The (φ

  19. Precision Measurement of Parity Violation in Polarized Cold Neutron Capture on the Proton the NPD $\\gamma$ Experiment

    CERN Document Server

    Lauss, Bernhard; Carlini, R D; Chupp, T E; Chen, W; Corvig, S; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gericke, M T; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ito, T; Jones, G L; Kandes, M; Leuschner, M; Lozowski, B; Mahurin, R; Mason, M; Masuda, Y; Mei, J; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P -N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H; Bernhard, Lauss

    2006-01-01

    The NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the $\\gamma$ emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon ($\\pi NN$) coupling constant {\\it f$^1_{\\pi}$}

  20. On the relations between proton influx and D-region electron densities during the polar-cap absorption event of 28-29 October 2003

    Directory of Open Access Journals (Sweden)

    J. K. Hargreaves

    2005-11-01

    Full Text Available Observations by incoherent-scatter radar have been applied to explore relationships between the fluxes of incident protons and the resulting D-region electron densities during a polar-cap radio-absorption event. Using proton flux data from a GOES geosynchronous satellite, the energy band having the greatest influence at a selected height is estimated by a process of trial and error, and empirical relationships are defined. The height profiles of the effective recombination coefficient are determined for day and night, and the transition over the evening twilight is investigated for the height range 60-70 km.

    The results show that the day-night change is confined to heights below 80 km, night-time values at the lower levels being consistent with a balance between negative ions and electrons controlled by 3-body attachment and collisional detachment. The daytime results confirm that, contrary to the prediction of some chemical models, a square-law continuity equation may be strictly applied. It is confirmed that, as previously reported, the timing of the sunset change varies with altitude.

  1. On the relations between proton influx and D-region electron densities during the polar-cap absorption event of 28-29 October 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hargreaves, J.K. [Dept. of Communication Systems, Univ. of Lancaster, Bailrigg, Lancaster (United Kingdom); Centre for Astrophysics, Univ. of Central Lancashire, Preston (United Kingdom); Birch, M.J. [Centre for Astrophysics, Univ. of Central Lancashire, Preston (United Kingdom); Dept. of Computing, Univ. of Central Lancashire, Preston (United Kingdom)

    2005-07-01

    Observations by incoherent-scatter radar have been applied to explore relationships between the fluxes of incident protons and the resulting D-region electron densities during a polar-cap radio-absorption event. Using proton flux data from a GOES geosynchronous satellite, the energy band having the greatest influence at a selected height is estimated by a process of trial and error, and empirical relationships are defined. The height profiles of the effective recombination coefficient are determined for day and night, and the transition over the evening twilight is investigated for the height range 60-70 km. The results show that the day-night change is confined to heights below 80 km, night-time values at the lower levels being consistent with a balance between negative ions and electrons controlled by 3-body attachment and collisional detachment. The daytime results confirm that, contrary to the prediction of some chemical models, a square-law continuity equation may be strictly applied. It is confirmed that, as previously reported, the timing of the sunset change varies with altitude. (orig.)

  2. Transverse spin effects in proton-proton scattering and $Q \\bar Q$ production

    OpenAIRE

    Goloskokov, S. V.

    2002-01-01

    We discuss transverse spin effects caused by the spin-flip part of the Pomeron coupling with the proton. The predicted spin asymmetries in proton-proton scattering and QQ production in proton-proton and lepton-proton reactions are not small and can be studied in future polarized experiments.

  3. Proton-Proton and Proton-Antiproton Colliders

    Science.gov (United States)

    Scandale, Walter

    2015-02-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  4. Leading and Next-to-Leading Order Gluon Polarization in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muoproduction

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2013-01-01

    The gluon polarisation in the nucleon was measured using open charm production by scattering 160 GeV/c polarised muons off longitudinally polarised protons or deuterons. The data were taken by the COMPASS collaboration between 2002 and 2007. A detailed account is given of the analysis method that includes the application of neural networks. Several decay channels of $D^0$ mesons are investigated. Longitudinal spin asymmetries of the D meson production cross-sections are extracted in bins of $D^0$ transverse momentum and energy. At leading order QCD accuracy the average gluon polarisation is determined as $(\\Delta g/g)^{LO}=-0.06 \\pm 0.21 (stat.) \\pm 0.08 (syst.)$ at the scale $ \\approx 13$ (GeV/c)$^2$ and an average gluon momentum fraction $\\approx$ 0.11. The average gluon polarisation is also obtained at next-to-leading order QCD accuracy as $(\\Delta g/g) NLO = -0.13 \\pm 0.15 (stat.) \\pm 0.15 (syst.)$ at the scale $ \\approx $ 13 (GeV/c)$^2$ and $ \\approx $ 0.20.

  5. QED radiative effects in the processes of exclusive photon electroproduction from polarized protons with the next-to-leading accuracy

    CERN Document Server

    Akushevich, Igor; Shumeiko, Nikolai M

    2014-01-01

    Radiative effects in the electroproduction of photons in polarized $ep$-scattering are calculated with the next-to-leading (NLO) accuracy. The contributions of loops and two photon emission were presented in analytical form. The covariant approach of Bardin and Shumeiko was used to extract the infrared divergence. All contributions to the radiative correction were presented in the form of the correction to the leptonic tensor thus allowing for further applications in other experiments, e.g., deep inelastic scattering. The radiative corrections (RC) to the cross sections and polarization asymmetries were analyzed numerically for kinematical conditions of the current measurement at Jefferson Lab. Specific attention was paid on analyzing kinematical conditions for the process with large radiative effect when momenta of two photons in the final state are collinear to momenta of initial and final electrons, respectively.

  6. QED radiative effects in the processes of exclusive photon electroproduction from polarized protons with the next-to-leading accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Akushevich, Igor V. [Duke University, JLAB; Ilyichev, Alexander [Byelorussian State University; Shumeiko, Nikolai M [Byelorussian State University

    2014-08-01

    Radiative effects in the electroproduction of photons in polarized ep-scattering are calculated with the next-to-leading (NLO) accuracy. The contributions of loops and two photon emission were presented in analytical form. The covariant approach of Bardin and Shumeiko was used to extract the infrared divergence. All contributions to the radiative correction were presented in the form of the correction to the leptonic tensor thus allowing for further applications in other experiments, e.g., deep inelastic scattering. The radiative corrections (RC) to the cross sections and polarization asymmetries were analyzed numerically for kinematical conditions of the current measurement at Jefferson Lab. Specific attention was paid on analyzing kinematical conditions for the process with large radiative effect when momenta of two photons in the final state are collinear to momenta of initial and final electrons, respectively.

  7. The Influence of Proton Pump Inhibitors on the Fecal Microbiome of Infants with Gastroesophageal Reflux—A Prospective Longitudinal Interventional Study

    Directory of Open Access Journals (Sweden)

    Christoph Castellani

    2017-10-01

    Full Text Available Proton pump inhibitors (PPIs are the standard therapy for gastroesophageal reflux disease. In adults, PPI treatment is associated with Clostridium difficile infections (CDI. In contrast to adults the microbiome of infants develops from sterility at birth toward an adult-like profile in the first years of life. The effect of PPIs on this developing microbiome has never been studied. The aim of the present study was to determine the effect of oral PPIs on the fecal microbiome in infants with gastroesophageal reflux disease (GERD. In this prospective longitudinal study 12 infants with proven GERD received oral PPIs for a mean period of 18 weeks (range 8–44. Stool samples were collected before (“before PPI” and 4 weeks after initiation of PPI therapy (“on PPI”. A third sample was obtained 4 weeks after PPI discontinuation (“after PPI”. The fecal microbiome was determined by NGS based 16S rDNA sequencing. This trial was registered with clinicaltrials.gov (NCT02359604. In a comparison of “before PPI” and “on PPI” neither α- nor β-diversity changed significantly. On the genus level, however, the relative abundances showed a decrease of Lactobacillus and Stenotrophomonas and an increase of Haemophilus. After PPI therapy there was a significant increase of α- and β-diversity. Additionally, the relative abundances of the phyla Firmicutes, Bacteroidetes, and Proteobacteria were significantly changed and correlated to patients' age and the introduction of solid foods. PPI treatment has only minor effects on the fecal microbiome. After discontinuation of PPI treatment the fecal microbiome correlated to patients' age and nutrition.

  8. Polarization properties of linearly polarized parabolic scaling Bessel beams

    Science.gov (United States)

    Guo, Mengwen; Zhao, Daomu

    2016-10-01

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge.

  9. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  10. The photoproduction of φ-mesons off protons by using a beam of linearly polarized photons at threshold energies

    Science.gov (United States)

    Salamanca Bernal, Julian Andres

    Observables from vector meson photoproduction by linearly-polarized photons can be expressed in term of bilinear combinations of helicity amplitudes parameterized by the Spin Density Matrix Elements (SDMEs). These SDMEs give straightforward relations for understanding the nature of the parity exchange at threshold energies, as well as for extracting signatures of the Okubo-Zweig-Iizuka violation. Measurement of SDMEs for g⃗ p →φp in the photon energy range of 1.7 to 1.9 GeV (momentum transfer squared t range of -1.2 to -0.25 GeV2) and 1.9 to 2.1 GeV (t range of -1.4 to -0.25 GeV 2) from the g8b experimental data collected in the summer of 2005 in the Hall B of Jefferson Lab are reported herein.

  11. Polarized Compton Scattering Experiments at the Mainz Microtron

    Science.gov (United States)

    Martel, Philippe

    2017-01-01

    Interactions between an electromagnetic wave and a proton are described at the basic level by the mass, charge, and anomalous magnetic moment of the proton. Such a description, however, assumes a point-like particle, something the proton is certainly not. The internal structure of the proton leads to higher order terms, such as the scalar and vector polarizabilities, in the interaction. To study these polarizabilities, a multi-experiment program has been undertaken at the Mainz Microtron to measure observables in Compton scattering that exhibit dependence on these parameters. This program has made use of the A2 tagged photon beam, with either a linear or circular polarization, proton targets of either unpolarized LH2 or frozen-spin butanol with transverse or longitudinal polarization, as well as the nearly 4 π detection capability of the Crystal Ball and TAPS detectors. The first of these measurements, the double-polarization asymmetry Σ2 x, also the first of its kind, has already been published. Measurements of the beam asymmetry Σ3 and another double-polarization asymmetry Σ2 z have also been performed and are in various stages of analysis and publication. This talk will discuss the status of these measurements, as well as various fitting studies that are being performed with the data in hand, and plans for future measurements. on behalf of the A2 collaboration at MAMI.

  12. Polarization of Lyman-α and Balmer-α emission in proton-hydrogen collisions: a study using first-order Born-Faddeev-type equations

    Science.gov (United States)

    Fathi, R.; Bolorizadeh, M. A.; Shojaei Akbarabadi, F.; Brunger, M. J.

    2012-10-01

    A three-body Born-Faddeev model is devised to calculate the total cross sections of Balmer-α and Lyman-α emissions, for the excitation of hydrogen atoms by proton impact in the energy range of 100 keV-7 MeV. In addition, the polarization alignment factor A20 is calculated and compared against available experimental data to further test the theory. Specifically, here we use the Faddeev-Watson-Lovelace formalism to study the excitation of atomic hydrogen from its ground state to the excited states of n = 2 and 3 and magnetic sublevels l = 0, 1 and 2, wherever applicable. The first-order electronic, A(1)e, and the first-order nuclear, A(1)n, amplitudes are considered in order to calculate the excitation transition matrix (TPT), while a near-the-shell condition is assumed throughout. In addition, our results were used to calculate the first-order form factors. The present results are compared, where possible, with those of other theoretical and experimental works that are currently available in the literature.

  13. Longitudinal double-spin asymmetry $A_1^{\\rm p}$ and spin dependent structure function $g_1^{\\rm p}$ of the proton at small values of $x$ and $Q^2$

    CERN Document Server

    Aghasyan, M; The COMPASS collaboration; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Antoshkin, A; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badelek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Bressan, A; Buechele, M; Burtsev, V E; Chang, W -C; Chatterjee, C; Chiosso, M; Choi, I; Chumakov, A G; Chung, S -U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Duennweber, W; Dusaev, R R; Dziewiecki, M; Efremov, A; Eversheim, P D; Faessler, M; Ferrero, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grasso, A; Gridin, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d'Hose, N; Hsieh, C -Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Joerg, P; Kabuss, E; Kerbizi, A; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Koivuniemi, J H; Kolosov, V N; Kondo, K; Koenigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kral, Z; Kraemer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Kuznetsov, I I; Kveton, A; Lednev, A A; Levchenko, E A; Levillain, M; Levorato, S; Lian, Y -S; Lichtenstadt, J; Longo, R; Lyubovitskij, V E; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Mamon, S A; Marianski, B; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofavov, E; Mitrofanov, N; Miyachi, Y; Moretti, A; Nagaytsev, A; Nerling, F; Neyret, D; Novy, J; Nowak, W -D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J -C; Pereira, F; Pesek, M; Peskova, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Rogacheva, N; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schoenning, K; Seder, E; Selyunin, A; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Tasevsky, M; Tessaro, S; Tessarotto, F; Thiel, A; Tomsa, J; Tosello, F; Tskhay, V; Uhl, S; Vasilishin, B I; Vauth, A; Veloso, J; Vidon, A; Virius, M; Wallner, S; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M

    2017-01-01

    We present a precise measurement of the proton longitudinal double-spin asymmetry $A_1^{\\rm p}$ and the proton spin-dependent structure function $g_1^{\\rm p}$ at photon virtualities $0.006~({\\rm GeV}/c)^2< Q^2< 1~ ({\\rm GeV}/c)^2$ in the Bjorken $x$ range of $4 \\times 10^{-5} < x < 4 \\times 10^{-2}$. The results are based on data collected by the COMPASS Collaboration at CERN using muon beam energies of $160~{\\rm GeV}$ and $200~ {\\rm GeV}$. The statistical precision is more than tenfold better than that of the previous measurement in this region. In the whole range of $x$, the measured values of $A_1^{\\rm p}$ and $g_1^{\\rm p}$ are found to be positive. It is for the first time that spin effects are found at such low values of $x$.

  14. Measurement of Inclusive ep Cross Sections at High Q2 at sqrt(s) = 225 and 252 GeV and of the Longitudinal Proton Structure Function FL at HERA

    CERN Document Server

    Andreev, V.; Baghdasaryan, S.; Begzsuren, K.; Belousov, A.; Belov, P.; Boudry, V.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Dainton, J.B.; Daum, K.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R.C.W.; Herbst, M.; Hildebrandt, M.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, A.W.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lubimov, V.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nowak, G.; Nowak, K.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Raspereza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P.D.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zhang, Z.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2014-01-01

    Inclusive ep double differential cross sections for neutral current deep inelastic scattering are measured with the H1 detector at HERA. The data were taken with a lepton beam energy of 27.6 GeV and two proton beam energies of Ep = 460 and 575 GeV corresponding to centre-of-mass energies of 225 and 252 GeV, respectively. The measurements cover the region of 6.5 *10^{-4}<=x<= 0.65 for 35<=Q^2<=800 GeV^2 up to y = 0.85. The measurements are used together with previously published H1 data at Ep = 920 GeV and lower Q2 data at Ep = 460, 575 and 920 GeV to extract the longitudinal proton structure function FL in the region 1.5<=Q^2 <=800 GeV^2.

  15. Search for effects beyond the Born approximation in polarization transfer observables in $\\vec{e}p$ elastic scattering

    CERN Document Server

    Meziane, M; Jones, M K; Luo, W; Pentchev, L; Perdrisat, C F; Puckett, A J R; Punjabi, V; Wesselmann, F R; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Ates, O; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Kang, H; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Markowitz, P; Marsh, A; Matulenko, Y; Maxwell, J; Mbianda, G; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nuruzzaman,; Nedev, S; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P E; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Subedi, R; Suleiman, R; Tomasi-Gustafsson, E; Vasiliev, A; Vanderhaeghen, M; Veilleux, M; Wojtsekhowski, B B; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L

    2010-01-01

    Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton form factor ratio $G_{Ep}/G_{Mp}$ obtained from cross section and polarization measurements. One possible explanation for this difference is a two-photon-exchange contribution. We report the results of the JLab Hall C $GEp2\\gamma$ experiment, which measured the kinematical dependence of polarization transfer observables in elastic electron-proton scattering at $Q^2=2.5$ GeV$^2$, in search of effects beyond the Born approximation. For a wide range of values of the kinematic factor $\\epsilon$ ($\\epsilon=$0.15, 0.63, and 0.77), the proton polarization component ratio and the longitudinal polarization transfer component were measured with statistical uncertainties of $\\pm$0.01 and $\\pm$0.006 and systematic uncertainties of 0.013 and 0.01, respectively.

  16. Electronic device for measuring the polarization parameter in the {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange reaction on a polarized proton target; Un appareillage electronique destine a la mesure du parametre de polarisation dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n sur cible de protons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Brehin, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-12-15

    An electronic apparatus has been constructed to measure the polarization parameter P{sub 0}(t) in {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of {gamma} rays from the {pi}{sup 0} decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [French] Un appareillage electronique a ete realise pour mesurer le parametre de polarisation P{sub 0}(t) dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n a 5,9 GeV/c et 11,2 GeV/c sur une cible de protons polarises. Ce dispositif assure le declenchement d'une chambre a etincelles a plaques lourdes, permettant de visualiser les {gamma} de desitegration du {pi}{sup 0}, lorsque le neutron associe presente les caracteristiques convenables en direction et en energie. Le neutron est detecte par un ensemble de 32 compteurs et son energie est mesuree par une methode de temps de vol. Les circuits composant cet appareillage sont decrits ainsi que les methodes d'etalonnage et de verification utilisees. (auteur)

  17. The Proton Form Factor Ratio Measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Vina A. [Norfolk State University, Norfolk, VA (United States); Perdrisat, Charles F. [William and Mary College, Williamsburg, VA (United States)

    2014-03-01

    The ratio of the proton form factors, G{sub Ep}/G{sub Mp}, has been measured from Q{sup 2} of 0.5 GeV{sup 2} to 8.5 GeV{sup 2}, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q{sup 2}, for values above ~1 GeV{sup 2}, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, G{sub Ep}, G{sub Mp}, G{sub En} and G{sub Mn}. There is an approved experiment at JLab, GEP(V), to continue the ratio measurements to 12 GeV{sup 2}. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.

  18. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Cristiano V. [Sapienza Univ. of Rome (Italy)

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will

  19. Qweak A Precision Measurement of the Proton's Weak Charge

    CERN Document Server

    Mitchell, G S; Averett, T D; Birchall, J; Bowman, J D; Carlini, R D; Chattopadhyay, S; Davis, C A; Doornbos, J; Dunne, J A; Ent, R; Erler, J; Falk, W R; Finn, J M; Forest, T A; Gaskell, D J; Grimm, K H; Hagner, C; Hersman, F W; Holtrop, M; Johnston, K; Jones, R T; Joo, K; Keppel, C E; Korkmaz, E J; Kowalski, S; Lee, L; Lung, A; Mack, D; Majewski, S R; Mitchell, G S; Mkrtchyan, H G; Morgan, N; Opper, A K; Page, S A; Penttila, S I; Pitt, M; Poelker, M; Porcelli, T; Ramsay, W D; Ramsey-Musolf, M J; Roche, J; Simicevic, N; Smith, G R; Suleiman, R; Taylor, S; Van Oers, W T H; Wells, S B; Wilburn, W S; Wood, S A; Zorn, C; Mitchell, Gregory S.

    2003-01-01

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low $Q^2$ of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton $Q_w^p = 1-4 \\sin^2 \\theta_w$ is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.

  20. The Proton Form Factor Ratio Measurements at Jefferson Lab

    CERN Document Server

    Punjabi, Vina

    2014-01-01

    The ratio of the proton form factors, GEp/GMp, has been measured from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q2, for values above ? 1 GeV2, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, GEp, GMp, GEn and GMn. There is an approved experiment at JLab, GEP(V), to continue...

  1. Measurement of the spin asymmetry of the beam in the polarized virtual Compton scattering on the proton. Study of the nucleon's energy spectra through the QCD-type potential model; Mesure de l'asymetrie de spin de faisceau en diffusion compton virtuelle polarisee sur le proton. Etude du spectre d'energie du nucleon par le modele de potentiel de type QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bensafa, I.K

    2006-05-15

    The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q{sup 2} = 0.35 GeV{sup 2}) to measure the beam asymmetry in the ep {yields} ep{gamma} and ep {yields} ep{pi}{sup 0} reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for {pi}{sup 0}) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles ({gamma}{sup *}N {yields} {pi}N). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the {delta}(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)

  2. Proton polarizability effect in the Lamb shift of the hydrogen atom

    CERN Document Server

    Martynenko, A P

    2006-01-01

    The proton polarizability correction to the Lamb shift of electronic and muonic hydrogen is calculated on the basis of isobar model and experimental data on the structure functions of deep inelastic lepton-nucleon scattering. The contributions of the Born terms, vector-meson exchanges and nucleon resonances are taken into account in the construction of the photoabsorption cross sections for transversely and longitudinally polarized virtual photons sigma_{T,L}.

  3. The polarized double cell target of the SMC

    CERN Document Server

    Adams, D; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Neganov, B S; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993 to 1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials $-$ butanol, ammonia, and deuterated butanol, with maximum degrees of polarization of 94, 91, and 60 \\%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses. The achieved accuracies were between 2.0 and 3.2 \\%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, the ...

  4. Tomographic image of the proton

    CERN Document Server

    Dupre, Raphael; Vanderhaeghen, Marc

    2016-01-01

    We determine, based on the latest experimental Deep Virtual Compton Scattering experimental data, the dependence of the spatial size of the proton on the quark's longitudinal momentum. This results in a three-dimensional momentum-space image and tomography of the proton.

  5. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  6. Feasibility study of a transversely polarized target in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Bertold [Helmholtz Institut Mainz (Germany)

    2014-07-01

    PANDA (Antiproton Annihilation at Darmstadt) is a key project at the Facility for Antiproton and Ion Research (FAIR), currently under construction at the GSI Darmstadt. PANDA is a state of the art detector for antiproton-proton fixed target experiments. A transversely polarized target in PANDA would allow the determination of the proton electromagnetic form factors in the time-like region with unprecedented accuracy and the first-time extraction of their imaginary part, opening a new window for investigating the nucleon structure. As a first step for achieving a transverse target polarization, the target region has to be shielded against the 2 T longitudinal magnetic flux from the solenoid of the PANDA spectrometer. We present numerical simulations and experimental results on intense magnetic flux shielding using a high temperature superconducting hollow cylinder.

  7. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    CERN Document Server

    Jones, Donald

    2016-01-01

    The Qweak experiment which ran at Jefferson Lab in Newport News, VA, measured the weak charge of the proton $Q_W^p$ via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The Standard Model predicts a small parity-violating asymmetry of scattering rates between electron right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 with a measured parity-violating asymmetry of $-279\\pm 35(\\text{stat})\\pm 31$ (syst) parts per billion (ppb). This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be $Q_W^p=0.064\\pm0.012$, in agreement with the Standard Model prediction of $Q_W^p(SM)=0.0708\\pm0.0003$. The results of the full dataset are expected to decrease the statistical error from the initial publication by a facto...

  8. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  9. Polarized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    de Florian, D.; Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Sassot, R. (Laboratorio de Fisica Teorica, Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67-1900 La Plata (Argentina))

    1995-01-01

    We analyze spin-dependent parton distributions consistent with the most recent measurements of the spin-dependent deep inelastic scattering structure functions and obtained in the framework of the spin dilution model. Predictions for the doubly polarized proton-proton Drell-Yan asymmetry, for the high [ital p][sub [ital T

  10. Longitudinal dynamics and tomography in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Stogin, J. [Princeton Univ., Princeton, NJ (United States); Sen, T. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Moore, R. S. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2012-01-10

    Motivated by the desire to understand the longitudinal effects of beam-beam forces, we study the longitudinal dynamics of protons and anti-protons at injection and top energy in the Tevatron. Multi-turn data of the longitudinal profiles are captured to reveal information about frequencies of oscillation, and changes in the bunch distributions. Tomographic reconstruction is used to create phase space maps which are subsequently used to find the momentum distributions. Changes in these distributions for both proton and anti-proton beams are also followed through the operational cycle. We report too on the details of interesting dynamics and some unexpected findings.

  11. Measurement of inclusive ep cross sections at high Q{sup 2} at √(s) = 225 and 252 GeV and of the longitudinal proton structure function F{sub L} at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Belov, P.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Petrukhin, A.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Radescu, V.; Raspereza, A.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Bradt, G. [Oxford University, Department of Physics, Oxford (United Kingdom); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Buniatyan, A.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Rostovtsev, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Cantun Avila, K.B.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Ceccopieri, F.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Olivier, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Universitaet Wuppertal, Fachbereich C, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C. [CPPM, Aix-Marseille Univ, CNRS/IN2P3, Marseille (France); Dobre, M.; Rotaru, M. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Dossanov, A. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Max-Planck-Institut fuer Physik, Munich (Germany); Dubak, A. [Max-Planck-Institut fuer Physik, Munich (Germany); University of Montenegro, Faculty of Science, Podgorica (Montenegro); Egli, S.; Hildebrandt, M.; Horisberger, R. [Paul Scherrer Institut, Villigen (Switzerland); Feltesse, J.; Perez, E.; Schoeffel, L. [CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette (France); Ferencei, J. [Slovak Academy of Sciences, Institute of Experimental Physics, Kosice (Slovakia); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P.; Turnau, J. [Institute for Nuclear Physics, Cracow (Poland); Grab, C. [ETH, Institut fuer Teilchenphysik, Zurich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics, Lancaster (United Kingdom); Herbst, M.; Jung, A.W.; Schultz-Coulon, H.C. [Universitaet Heidelberg, Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Hladka, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Jung, H. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); DESY, Hamburg (Germany); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (RU); Kogler, R.; Nowak, K. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (DE); Kostka, P.; Lange, W.; Naumann, T. [DESY, Zeuthen (DE); Landon, M.P.J.; Rizvi, E.; Traynor, D. [University of London, School of Physics and Astronomy, Queen Mary, London (GB); Lubimov, V. [Institute for Theoretical and Experimental Physics, Moscow (RU); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (DE); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (CH); Newman, P.R.; Thompson, P.D. [School of Physics and Astronomy, University of Birmingham, Birmingham (GB); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (ME); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Oxfordshire (GB); Soloviev, Y. [DESY, Hamburg (DE); Lebedev Physical Institute, Moscow (RU); Stella, B. [Universita di Roma Tre (IT); INFN Roma 3, Dipartimento di Fisica, Rome (IT); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (BE); Charles University, Faculty of Mathematics and Physics, Prague (CZ); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (BG); Wegener, D. [Institut fuer Physik, TU Dortmund, Dortmund (DE); Collaboration: H1 Collaboration

    2014-04-15

    Inclusive ep double differential cross sections for neutral current deep inelastic scattering are measured with the H1 detector at HERA.The data were taken with a lepton beam energy of 27.6 GeV and two proton beam energies of E{sub p} = 460 and 575 GeV corresponding to centre-of-mass energies of 225 and 252 GeV, respectively. The measurements cover the region of 6.5 x 10{sup -4} ≤ x ≤ 0.65 for 35 ≤ Q{sup 2} ≤ 800 GeV{sup 2} up to y = 0.85. The measurements are used together with previously published H1 data at E{sub p} = 920 GeV and lower Q{sup 2} data at E{sub p} = 460, 575 and 920 GeV to extract the longitudinal proton structure function F{sub L} in the region 1.5 ≤ Q{sup 2} ≤ 800 GeV{sup 2}. (orig.)

  12. Measurement of the Spin-Dependent \\\\ Structure Functions of the Proton and the Deuteron

    CERN Multimedia

    2002-01-01

    % NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent stucture functions g$ _{1} $(x) of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...

  13. Exploring universality of transversity in proton-proton collisions

    Science.gov (United States)

    Radici, Marco; Ricci, Alessandro M.; Bacchetta, Alessandro; Mukherjee, Asmita

    2016-08-01

    We consider the azimuthal correlations of charged hadron pairs with large total transverse momentum and small relative momentum, produced in proton-proton collisions with one transversely polarized proton. One of these correlations directly probes the chiral-odd transversity parton distribution in connection with a chiral-odd interference fragmentation function. We present predictions for this observable based on previous extractions of transversity (from charged pion pair production in semi-inclusive deep-inelastic scattering) and of the interference fragmentation function (from the production of back-to-back charged pion pairs in electron-positron annihilations). All analyses are performed in the framework of collinear factorization. We compare our predictions to the recent data on proton-proton collisions released by the STAR Collaboration at RHIC, and we find them reasonably compatible. This comparison confirms for the first time the predicted role of transversity in proton-proton collisions, and it allows us to test its universality.

  14. Exploring universality of transversity in proton-proton collisions

    CERN Document Server

    Radici, Marco; Bacchetta, Alessandro; Mukherjee, Asmita

    2016-01-01

    We consider the azimuthal correlations of charged hadron pairs with large total transverse momentum and small relative momentum, produced in proton-proton collisions with one transversely polarized proton. One of these correlations directly probes the chiral-odd transversity parton distribution in connection with a chiral-odd interference fragmentation function. We present predictions for this observable based on previous extractions of transversity (from charged pion pair production in semi-inclusive deep-inelastic scattering) and of the interference fragmentation function (from the production of back-to-back charged pion pairs in electron-positron annihilations). All analyses are performed in the framework of collinear factorization. We compare our predictions to the recent data on proton-proton collisions released by the STAR collaboration at RHIC, and we find them reasonably compatible. This comparison confirms for the first time the predicted role of transversity in proton-proton collisions and it allows...

  15. Polarized nuclear target based on parahydrogen induced polarization

    Energy Technology Data Exchange (ETDEWEB)

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  16. Longitudinally polarized subwavelength beam generated by focusing radially modulated Bessel-Gaussian beam%聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束

    Institute of Scientific and Technical Information of China (English)

    于永江; 陈建农; 闫金良; 王菲菲

    2011-01-01

    Longitudinally polarized subwavelength beams have found many applications such as particle acceleration, single molecule dipole detection, second harmonic generation imaging, longitudinally polarization confocal microscopy. We present a radially modulated Bessel-Gaussian beam model which produces longitudinally polarized beams with high purity after being focused by high numerical aperture objective. Based on the vector diffraction theory, the electric field intensity distribution, magnetic field intensity distribution and energy flux density near the focal plane are numerically simulated.The result shows that the full-width at half-maximum is as small as 0.4λ. The method does not require a physical annulus or annular phase filter and it features high energy efficiency, high resolution, thus improving application performances.%亚波长尺寸纵向偏振光束在粒子加速,单个分子偶极矩测量,二次谐波成像和纵向偏振共焦显微镜等方面有非常广泛的应用.本文提出径向调制的Bessel-Gaussian光束模型,经高数值孔径显微物镜聚焦可以获得高纯度的纵向偏振光束.利用矢量衍射理论数值模拟了焦点附近光强分布、磁场分布和能流密度空间分布.结果表明光斑半高全宽度可以达到0.4λ.该方法无需环形孔径或环形相位滤波器,光能利用率高,分辨率好,达到改进各种应用的效果.

  17. Modeling of S-Nitrosothiol-Thiol Reactions of Biological Significance: HNO Production by S-Thiolation Requires a Proton Shuttle and Stabilization of Polar Intermediates.

    Science.gov (United States)

    Ivanova, Lena V; Cibich, Daniel; Deye, Gregory; Talipov, Marat R; Timerghazin, Qadir K

    2017-02-07

    Nitroxyl (HNO), a reduced form of the important gasotransmitter nitric oxide, exhibits its own unique biological activity. A possible biological pathway of HNO formation is the S-thiolation reaction between thiols and S-nitrosothiols (RSNOs). Our density functional theory (DFT) calculations suggested that S-thiolation proceeds through a proton transfer from the thiol to the RSNO nitrogen atom, which increases electrophilicity of the RSNO sulfur, followed by nucleophilic attack by thiol, yielding a charge-separated zwitterionic intermediate structure RSS(+) (R)N(H)O(-) (Zi), which decomposes to yield HNO and disulfide RSSR. In the gas phase, the proton transfer and the S-S bond formation are asynchronous, resulting in a high activation barrier (>40 kcal mol(-1) ), making the reaction infeasible. However, the barrier can decrease below the S-N bond dissociation energy in RSNOs (≈30 kcal mol(-1) ) upon transition into an aqueous environment that stabilizes Zi and provides a proton shuttle to synchronize the proton transfer and the S-S bond formation. These mechanistic features suggest that S-thiolation can easily lend itself to enzymatic catalysis and thus can be a possible route of endogenous HNO production.

  18. Probing Sea Quark and Gluon Polarization at STAR

    CERN Document Server

    Stevens, Justin R

    2014-01-01

    One of the primary goals of the spin program at the Relativistic Heavy Ion Collider (RHIC) is to determine the polarization of the sea quarks and gluons in the proton. The polarization of the sea quarks is probed through the production of $W^{-(+)}$ bosons via the annihilation of $\\bar{u}+d\\,(\\bar{d}+u)$, at leading order. In this proceedings we report measurements of the single-spin asymmetry, $A_{L}$, for $W$ boson production at $\\sqrt{s} = 510$ GeV, and the new constraints these results place on the antiquark helicity distributions. Recent results on the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive and di-jet production at $\\sqrt{s} = 200$ GeV are also presented. The inclusive jet results provide the first experimental indication of non-zero gluon polarization in the $x$ range probed at RHIC.

  19. Contact-interaction Faddeev equation and, inter alia, proton tensor charges

    Science.gov (United States)

    Xu, Shu-Sheng; Chen, Chen; Cloët, Ian C.; Roberts, Craig D.; Segovia, Jorge; Zong, Hong-Shi

    2015-12-01

    A confining, symmetry-preserving, Dyson-Schwinger equation treatment of a vector ⊗ vector contact interaction is used to formulate Faddeev equations for the nucleon and Δ -baryon in which the kernel involves dynamical dressed-quark exchange and whose solutions therefore provide momentum-dependent Faddeev amplitudes. These solutions are compared with those obtained in the static approximation and with a QCD-kindred formulation of the Faddeev kernel. They are also used to compute a range of nucleon properties, amongst them: the proton's σ -term; the large Bjorken-x values of separate ratios of unpolarized and longitudinally polarized valence u - and d -quark parton distribution functions; and the proton's tensor charges, which enable one to directly determine the effect of dressed-quark electric dipole moments (EDMs) on neutron and proton EDMs.

  20. Measurement of longitudinal single-spin asymmetries for $W^{\\pm}$ boson production in polarized $p+p$ collisions at $\\sqrt{s}=510$ GeV at STAR

    CERN Document Server

    Gunarathne, Devika

    2015-01-01

    $W^\\pm$ boson production in longitudinally polarized $p+p$ collisions provides unique and clean access to the individual helicity polarizations of $u$ / $d$ quarks and anti-quarks. Due to the maximal violation of parity in the coupling, $W$ bosons couple to left-handed quarks and right-handed anti-quarks and hence offer direct probes of their respective helicity distributions in the nucleon. These can be extracted from measured parity-violating longitudinal single-spin asymmetries, $A_L$, for $W^{+(-)}$ boson production as a function of the decay lepton (positron) pseudo-rapidity $\\eta$. The STAR experiment is well equipped to measure $A_L$ for $W^\\pm$ boson production for $|\\eta|<1$. The published STAR $A_L$ results (2011 and 2012 data combined) have been used by several theoretical analyses suggesting a significant impact in constraining the helicity distributions of anti-$u$ and anti-$d$ quarks. In 2013 the STAR experiment has collected a large data sample of $\\sim$250 pb$^{-1}$ which is more than 3 tim...

  1. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  2. Gluon-spin contribution to the proton spin from the double-helicity asymmetry in inclusive pi0 production in polarized p+p collisions at [sqrt]s=200 GeV.

    Science.gov (United States)

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aphecetche, L; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chand, P; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Citron, Z; Cole, B A; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Das, K; David, G; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Gustafsson, H-A; Henni, A Hadj; Haggerty, J S; Hamagaki, H; Han, R; Hartouni, E P; Haruna, K; Haslum, E; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; He, X; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Imrek, J; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Kawall, D; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, S H; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Koster, J; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Layton, D; Lebedev, A; Lee, D M; Lee, K B; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Liebing, P; Liska, T; Litvinenko, A; Liu, H; Liu, M X; Li, X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masek, L; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mikes, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niita, T; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Okada, H; Okada, K; Oka, M; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ruzicka, P; Rykov, V L; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakashita, K; Samsonov, V; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Semenov, V; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunecka, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Togawa, M; Toia, A; Tomásek, L; Tomita, Y; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Veicht, A; Velkovska, J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Walker, D; Wang, X R; Watanabe, Y; Wei, F; Wessels, J; White, S N; Williamson, S; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zolin, L

    2009-07-01

    The double helicity asymmetry in neutral pion production for pT=1 to 12 GeV/c was measured with the PHENIX experiment to access the gluon-spin contribution, DeltaG, to the proton spin. Measured asymmetries are consistent with zero, and at a theory scale of micro2=4 GeV2 a next to leading order QCD analysis gives DeltaG[0.02,0.3]=0.2, with a constraint of -0.7polarized deep inelastic scattering data. We also consider the dependence of the DeltaG constraint on the choice of the theoretical scale, a dominant uncertainty in these predictions.

  3. Inelastic scattering of polarized protons and a possible hexadecapole-shape transition between the light /sup 74,76,78/Se and the heavy /sup 80,82/Se isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuki, S.; Higo, T.; Ohsawa, T.; Shiba, T.; Yanabu, Y.; Ogino, K.; Kadota, Y.; Haga, K.; Sakamoto, N.; Kume, K.; Matoba, M.

    1983-11-07

    The ground-state band up to the 4/sup +/ state in the even /sup 74approximately82/Se isotopes was studied by inelastic scattering of polarized protons at 65 MeV. Both the cross-section sigma(theta) and the analyzing-power A(theta) measurements leading to the 4/sup +/ state in the light /sup 74,76,78/Se isotopes show quite different shapes from those in the heavy /sup 80,82/Se isotopes. Coupled-channels analyses show that both the sigma(theta) and A(theta) distributions are well reproduced with a positive deformation parameter ..beta../sub 4/ in /sup 74,76,78/Se, but with a negative ..beta../sub 4/ in /sup 80,82/Se, indicating a hexadecapole-shape transition between /sup 78/Se and /sup 80/Se.

  4. Analyzing power of inclusive production of. pi. sup + ,. pi. sup minus , and K sub S sup 0 by polarized protons at 13. 3 and 18. 5 GeV/ c

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Corcoran, M.D.; Krishna, N.M.; Kruk, J.W.; Miettinen, H.E.; Moss, R.M.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B.; Stevenson, P.M.; Tonse, S.R. (T. W. Bonner Laboratories, Physics Department, Rice University, Houston, Texas 77251 (US)); Birman, A.; Chung, S.U.; Etkin, A.; Fernow, R.C.; Kirk, H.; Protopopescu, S.D.; Willutzki, H. (Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (USA)); Hallman, T.; Madansky, L. (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (USA)); Bar-Yam, Z.; Dowd, J.; Kern, W.; King, E. (Department of Physics, Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747 (USA)); Mayes, B.W.; Pinsky, L.S. (Physics Department, University of Houston, Houston, Texas 77004 (USA))

    1990-01-01

    We have measured the analyzing power in {pi}{sup +}, {pi}{sup {minus}}, and {ital K}{sub {ital S}}{sup 0} production by a polarized proton beam at 13.3 and 18.5 GeV/{ital c}. The data cover the central and the beam fragmentation region, in the transverse-momentum range up to 2 GeV/{ital c}. The results indicate that sizable effects are present at high {ital x}{sub {ital F}} and also persist into the hard-scattering region for {ital K}{sub {ital S}}{sup 0} and {pi}{sup +}. A zero value of the analyzing power was observed for {pi}{sup {minus}} production.

  5. Measurement of the $\\Upsilon$(1S), $\\Upsilon$(2S) and $\\Upsilon$(3S) polarizations in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard

    2013-01-01

    The polarizations of the Y(1S), Y(2S), and Y(3S) mesons are measured in proton-proton collisions at $\\sqrt{s}$ = 7 TeV, using a data sample of Y(nS) to oppositely charged muon pair decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9 inverse femtobarns. The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters lambda[theta], lambda[phi], and lambda[theta,phi], as well as the frame-invariant quantity lambda-tilde, are presented as a function of the Y(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges abs(y) < 0.6 and 0.6 < abs(y) < 1.2. No evidence of large transverse or longitudinal polarizations has been seen in the explored kinematic region.

  6. Measurement of the Υ1S, Υ2S, and Υ3S polarizations in pp collisions at sqrt[s] = 7 TeV.

    Science.gov (United States)

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Mohammadi, A; Reis, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Malek, M; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Vilela Pereira, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, D; Zhang, L; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Florent, A; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sgandurra, L; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Autermann, C; Beranek, S; Calpas, B; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Thüer, S; Weber, M; Bontenackels, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H

    2013-02-22

    The polarizations of the Υ(1S), Υ(2S), and Υ(3S) mesons are measured in proton-proton collisions at sqrt[s] = 7 TeV, using a data sample of Υ(nS) → μ +μ- decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9 fb(-1). The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters λ[symbol see text], λ(φ), and λ([symbol see text]φ), as well as the frame-invariant quantity λ, are presented as a function of the Υ(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges |y|<0.6 and 0.6<|y|<1.2. No evidence of large transverse or longitudinal polarizations is seen in the explored kinematic region.

  7. Measurement of the Υ(1S), Υ(2S), and Υ(3S) Polarizations in pp Collisions at s=7TeV

    Science.gov (United States)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.

    2013-02-01

    The polarizations of the Υ(1S), Υ(2S), and Υ(3S) mesons are measured in proton-proton collisions at s=7TeV, using a data sample of Υ(nS)→μ+μ- decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9fb-1. The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters λϑ, λφ, and λϑφ, as well as the frame-invariant quantity λ˜, are presented as a function of the Υ(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges |y|<0.6 and 0.6<|y|<1.2. No evidence of large transverse or longitudinal polarizations is seen in the explored kinematic region.

  8. Polarization properties of linearly polarized parabolic scaling Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com

    2016-10-07

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.

  9. Nuclear Structure Observable with Polarized Target and Polarized Real Photon Beam at Mainz Microtron

    Science.gov (United States)

    Paudyal, Dilli

    2016-09-01

    The nucleon polarizabilities are fundamental structure observables, like the nucleon mass or charge. While the electric (αE 1) and magnetic (βM 1) scalar polarizabilities of the nucleon have been measured, little effort has been made to extract the spin dependent polarizabilities. These nucleon polarizabilities, γE1E1 ,γM1M1 ,γM1E2 and γE1M2 describe the spin response of a proton to electric and magnetic dipole and quadrupole interactions. We plan to extract them using polarized photon beam and polarized target at the MAMI tagged photon facility in Mainz, Germany. This requires precise measurement of the double polarization observable ∑2 z which is sensitive to these polarizabilities. The ∑2 z is measured via a circularly polarized photon beam on a longitudinally polarized butanol target in the resonance region (E = 250 - 310 MeV). Together with constraints from αE 1 and βM 1, the forward spin polarizability (γ0) , and QCD based models, should allow us to extract all four spin polarizabilities. This presentation will be focused on the preliminary experimental results for the measurement of ∑2 z at different energies and angles. Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

  10. Proton Therapy

    Science.gov (United States)

    ... IMRT) Brain Tumor Treatment Brain Tumors Prostate Cancer Lung Cancer Treatment Lung Cancer Head and Neck Cancer Images related to Proton Therapy Videos related to Proton Therapy Sponsored by Please ...

  11. Proton Decay

    OpenAIRE

    Hikosaka, Koki

    2002-01-01

    We discuss the status of supersymmetric grand unified theories [SUSY GUTs] with regards to the observation of proton decay. In this talk we focus on SUSY GUTs in 4 dimensions. We outline the major theoretical uncertainties present in the calculation of the proton lifetime and then present our best estimate of an absolute upper bound on the predicted proton lifetime. Towards the end, we consider some new results in higher dimensional GUTs and the ramifications for proton decay.

  12. Proton, Helium and Minor Ion Interactions with Circularly Polarized Alfven and Ion-cyclotron waves in the Expanding Solar Wind: Hybrid Simulations

    Science.gov (United States)

    Velli, M.; Liewer, P. C.; Goldstein, B. E.

    2000-05-01

    We present simulations of parallel propagating Alfvén waves in the accelerating solar wind and their interactions with protons, alpha particles, and minor ions using an expanding box hybrid code (Liewer et al., 1999). In this model, the average solar wind flow speed is a given external function, and the simulation domain follows a plasma parcel as it expands both in the radial and transverse directions accordingly: the decrease of Alfvén speed and density with distance from the Sun are taken into account self-consistently. It is therefore possible to carry out a detailed study of frequency drifting and the coming into resonance with the waves at different radial locations of particles with differing charge to mass ratios. Simulations of monochromatic waves as well as waves with well-developed spectra are presented for plasmas with one, two and three ion species. We observe preferential heating and acceleration of protons and minor ions. Under some conditions, we obtain the scaling observed in coronal hole solar wind: the heavy ion temperature is proportional to its mass (Liewer et al., 2000). A comparison with predictions from models based on such quasi-linear or linear analyses will also be presented. P. C. Liewer, M. Velli and B. E. Goldstein, in Solar Wind Nine, S. Habbal, R. Esser, J. V. Hollweg, P. A. Isenberg, eds., (AIP Conference Proceedings 471, 1999) 449. P. C. Liewer, M. Velli, and B. E. Goldstein, in Proc. ACE 2000 Conference (2000) to be published.

  13. Design of a proton-electron beam overlap monitor for the new RHIC electron lens, based on detecting energetic backscattered electrons

    Energy Technology Data Exchange (ETDEWEB)

    Thieberger T.; Beebe, E.; Fischer, W.; Gassner, D.; Gu, X.; Hamdi, K.; Hock, J.; Minty, M.; Miller, T.; Montag, C.; Pikin, A.

    2012-04-15

    The optimal performance of the two electron lenses that are being implemented for high intensity polarized proton operation of RHIC requires excellent collinearity of the {approx}0.3 mm RMS wide electron beams with the proton bunch trajectories over the {approx}2m interaction lengths. The main beam overlap diagnostic tool will make use of electrons backscattered in close encounters with the relativistic protons. These electrons will spiral along the electron guiding magnetic field and will be detected in a plastic scintillator located close to the electron gun. A fraction of these electrons will have energies high enough to emerge from the vacuum chamber through a thin window thus simplifying the design and operation of the detector. The intensity of the detected electrons provides a measure of the overlap between the e- and the opposing proton beams. Joint electron arrival time and energy discrimination may be used additionally to gain some longitudinal position information with a single detector per lens.

  14. Optimization of the combined proton acceleration regime with a target composition scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yao, W. P. [Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871 (China); Graduate School, China Academy of Engineering Physics, Beijing 100088 (China); Li, B. W., E-mail: li-baiwen@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Zheng, C. Y.; Liu, Z. J. [Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Yan, X. Q. [Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871 (China); Qiao, B. [Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-01-15

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CH target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 10{sup 22} W cm{sup −2}, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.

  15. On the rich eight branch spectrum of the oblique propagating longitudinal waves in partially spin polarized electron-positron-ion plasmas

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider oblique propagating longitudinal waves in this systems. We report presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas we find four branches: the Langmuir wave, the positron-acoustic wave and pair of waves having spin nature, they are the SEAW and, as we called it, spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, Trivelpiece-Gould wave, pair of positron-acoustic waves, pair of SEAWs, and pair of SEPAWs. Thus, for the first time, we r...

  16. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum–classical approximation. II. Proton transfer reaction in non-polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, H.; Yamada, A.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-05-07

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum–classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute–solvent interactions.

  17. Time reversal invariance in polarized neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, E.G.

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 {times} 10{sup {minus}4} or better. With higher neutron flux a statistical sensitivity of the order 3 {times} 10{sup {minus}5} is ultimately expected. The decay of free polarized neutrons (n {yields} p + e + {bar v}{sub e}) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta ({sigma}{sub n} {center_dot} p{sub p} {times} p{sub e}). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.

  18. G{sub Ep}/G{sub Mp} ratio by polarization transfer in ep {yields} ep

    Energy Technology Data Exchange (ETDEWEB)

    Mark K. Jones; Konrad A. Aniol; F.T. Baker; J. Berthot; Pierre Bertin; William Bertozzi; A. Besson; Louis Bimbot; Werner Boeglin; Ed Brash; D. Brown; John Calarco, Larry S. Cardman; C.-C. Chang; Jian-ping Chen; Eugene Chudakov; Steve Churchwell; Evaristo Cisbani; Dan Dale; R. De Leo; Alexandre Deur; Brian Diederich; John Domingo; Martin B. Epstein; Lars Ewell; Kevin Fissum; A. Fleck; Helene Fonvieille; Salvatore Frullani; J. Gao; Franco Garibaldi; Ashot Gasparian; G. Gerstner; Shalev Gilad; Ron Gilman.; Alexander Glamazdin; Charles Glashausser; Javier Gomez; V. Gorbenko; A. Green; Jens-Ole Hansen; Howell, C.R.; Huber, G.M.; Mauro Iodice; Kees de Jager; Stephanie Jaminion; Xiangdong Jiang; William Kahl; James J. Kelly; M. Khayat; Laird H. Kramer; G. Kumbartzki; Michael Kuss; E. Lakuriki; G. Lavessiere; John J. LeRose; Meme Liang; Richard Lindgren; Nilanga Liyanage; George Lolos; R. Macri; Richard Madey; Sergey Malov; Dimitri Margaziotis; Pete Markowitz; Kathy McCormick; Justin McIntyre; R.L. van der Meer; R. Michaels; B.D. Milbrath; Jean Mougey; S.K. Nanda; E.A.J.M. Offerman; Z. Papandreou; Charles F. Perdrisat; Gerassimos G. Petratos; N.M. Piskunov; R.I. Pomatsalyuk; David Prout; Vina Punjabi; Gilles Quemener; Ronald Ransome; Brian Raue; Yves Roblin; Rikki Roche; Gary Rutledge; Paul Rutt; Arun Saha; Teijiro Saito; Adam Sarty; Timothy Smith; P. Sorokin; Steffen Strauch; R. Suleiman; K. Takahashi; Jeff Templon; Luminita Todor; Paul E. Ulmer; Guido M. Urciuoli; Pascal Vernin; B. Vlahovic; H. Voskanyan, H.; Krishni Wijesooriya; Bogdan Wojtsekhowski; R.J. Woo; F. Xiong; George Dan Zainea; Z.-L. Zhou

    2000-02-14

    The ratio of the proton's elastic electromagnetic form factors, G{sub Ep}/G{sub Mp} was obtained by measuring P{sub t} and P{ell}, the transverse and the longitudinal recoil proton polarization, respectively. For elastic ep {yields} ep, G{sub Ep}/G{sub Mp} is proportional to P{sub t}/P{ell}. Simultaneous measurement of P{sub t} and P{ell} in a polarimeter provides good control of the systematic uncertainty. The results for the ratio G{sub Ep}/G{sub Mp} show a systematic decrease as Q{sup 2} increases from 0.5 to 3.5 GeV{sup 2}, indicating for the first time a definite difference in the spatial distribution of charge and magnetization currents in the proton.

  19. ω Meson Production in Proton-Proton Collisions

    Science.gov (United States)

    Ullrich, W.; Abdel-Bary, M.; Brinkmann, K.-Th.; Clement, H.; Dietrich, J.; Doroshkevich, E.; Dshemuchadse, S.; Ehrhardt, K.; Erhardt, A.; Eyrich, W.; Freiesleben, H.; Gillitzer, A.; Jäkel, R.; Karsch, L.; Kilian, K.; Kuhlmann, E.; Marcello, S.; Morsch, H. P.; Pizzolotto, C.; Ritman, J.; Roderburg, E.; Schroeder, W.; Schulte-Wissermann, M.; Teufel, A.; Ucar, A.; Wenzel, R.; Wintz, P.; Wüstner, P.; Zupranski, P.

    One of the experimental programs at the TOF spectrometer located at the COSY-accelerator (Forschungszentrum Jülich, Germany) is the study of ω-meson production in proton proton collisions (pp → ppω). Recently, a measurement was performed with a polarized beam at an excess energy of ɛ = 129 MeV, which offers the possibility to analyze polarization observables of this reaction channel for the first time. The analyzing power (Ay) of the pp → ppω-reaction was determined to be compatible with zero.

  20. Synthesis, crystallographic, spectral, and spectrophotometric studies of proton transfer complex of 1,2-dimethylimidazole with 3,5-dinitrobenzoic acid in different polar solvents

    Science.gov (United States)

    Miyan, Lal; Zulkarnain; Ahmad, Afaq

    2017-04-01

    The molecular interaction between 1, 2-dimethylimidazole (DMI) and 3,5-dinitrobenzoic acid (DNBA) has been investigated in methanol at room temperature. The stoichiometry of the synthesized CT complex was found to be 1:1 using the straight line method of Benesi-Hildebrand equation. The structure of the resulting CT complex was isolating and characterized using X-ray crystallography, FTIR and 1H NMR spectroscopic techniques. The thermal composition and stability of the CT complex were analyzed using thermogravimetric and differential thermal analysis (TGA and DTA). UV-visible spectrophotometric technique was used to the determine the various important physical parameters such as formation constant (KCT), molar extinction coefficient (εCT), energy of interaction (ECT), ionization potential (ID), resonance energy (RN), free energy (ΔG°), oscillator strength (ƒ) and transition dipole moment (μN). The effect of polarity of the solvent and concentration of acceptor on these parameters have been investigated. The results indicate that charge transfer complex (CTC) is more stable in less polar solvent due to the high value of the formation constant. A polymeric network through hydrogen bonding interaction between neighboring moieties was observed. This has also been attributed to the formation of 1:1 type CT complex.

  1. A longitudinal study of cognition, proton MR spectroscopy and synaptic and neuronal pathology in aging wild-type and AβPPswe-PS1dE9 mice.

    Directory of Open Access Journals (Sweden)

    Diane Jansen

    Full Text Available Proton magnetic resonance spectroscopy ((1H MRS is a valuable tool in Alzheimer's disease research, investigating the functional integrity of the brain. The present longitudinal study set out to characterize the neurochemical profile of the hippocampus, measured by single voxel (1H MRS at 7 Tesla, in the brains of AβPPSswe-PS1dE9 and wild-type mice at 8 and 12 months of age. Furthermore, we wanted to determine whether alterations in hippocampal metabolite levels coincided with behavioral changes, cognitive decline and neuropathological features, to gain a better understanding of the underlying neurodegenerative processes. Moreover, correlation analyses were performed in the 12-month-old AβPP-PS1 animals with the hippocampal amyloid-β deposition, TBS-T soluble Aβ levels and high-molecular weight Aβ aggregate levels to gain a better understanding of the possible involvement of Aβ in neurochemical and behavioral changes, cognitive decline and neuropathological features in AβPP-PS1 transgenic mice. Our results show that at 8 months of age AβPPswe-PS1dE9 mice display behavioral and cognitive changes compared to age-matched wild-type mice, as determined in the open field and the (reverse Morris water maze. However, there were no variations in hippocampal metabolite levels at this age. AβPP-PS1 mice at 12 months of age display more severe behavioral and cognitive impairment, which coincided with alterations in hippocampal metabolite levels that suggest reduced neuronal integrity. Furthermore, correlation analyses suggest a possible role of Aβ in inflammatory processes, synaptic dysfunction and impaired neurogenesis.

  2. Proton Therapy

    Science.gov (United States)

    Oelfke, Uwe

    Proton therapy is one of the most rapidly developing new treatment technologies in radiation oncology. This treatment approach has — after roughly 40 years of technical developments — reached a mature state that allows a widespread clinical application. We therefore review the basic physical and radio-biological properties of proton beams. The main physical aspect is the elemental dose distribution arising from an infinitely narrow proton pencil beam. This includes the physics of proton stopping powers and the concept of CSDA range. Furthermore, the process of multiple Coulomb scattering is discussed for the lateral dose distribution. Next, the basic terms for the description of radio-biological properties of proton beams like LET and RBE are briefly introduced. Finally, the main concepts of modern proton dose delivery concepts are introduced before the standard method of inverse treatment planning for hadron therapy is presented.

  3. Proton Form Factor Measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Charles Perdrisat; Vina Punjabi

    2004-09-27

    In two experiments at Jefferson Lab in Hall A, the first one in 1998 and the second in 2000, the ratio of the electromagnetic form factors of the proton was obtained by measuring P{sub t} and P{sub ell}, the transverse and longitudinal recoil proton polarization components, respectively, in {rvec e}p {yields} e{rvec p}; the ratio G{sub E{sub p}}/G{sub M{sub p}} is proportional to P{sub t}/P{sub {ell}}. Simultaneous measurement of P{sub t} and P{sub {ell}} provides good control of the systematic uncertainty. The first measurement of G{sub E{sub p}}/G{sub M{sub p}} ratio was made to Q{sup 2} = 3.5 GeV{sup 2} and the second measurement to Q{sup 2} = 5.6 GeV{sup 2}. The results from these two experiments indicate that the ratio scales like 1/Q{sup 2}, in stark contrast with cross section data analyzed by the Rosenbluth separation method which gives a constant value for this ratio. The incompatibility of the recoil polarization results with most of the Rosenbluth separation results appears now well established above Q{sup 2} of about 3 GeV{sup 2}. The consensus at the present time is that the interference of the two-photon exchange with the Born term, which had been deemed negligible until recently, might explain the discrepancy between the results of the two techniques; the possibility that the discrepancy is due to incomplete radiative correction has also been recently discussed.

  4. Feasibility study of a transversely polarized target in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Heybat; Deiseroth, Malte; Khaneft, Dmitry; Noll, Oliver; Valente, Roserio; Zambrana, Manuel [Helmholtz-Institut Mainz (Germany); Johannes Gutenberg-Universitaet Mainz (Germany); Ahmed, Samer [Helmholtz-Institut Mainz (Germany); Capozza, Luigi; Dbeyssi, Alaa; Froehlich, Bertold; Lin, Dexu; Maas, Frank; Mora Espi, Maria Carmen; Morales Morales, Cristina; Rodriguez Pineiro, David; Zimmermann, Iris [Helmholtz-Institut Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2015-07-01

    The PANDA (Antiproton Annihilation at Darmstadt) spectrometer, located at the Facility for Antiproton and Ion Research (FAIR), is an excellent tool for exploring the nucleon structure. An unpolarized target allows the determination of the electromagnetic time-like form factor of the proton. An additional experiment in which the target is transversely polarized is necessary for the first-time extraction of their imaginary part. A transverse polarization requires the shielding of the 2 T longitudinal field from the PANDA-Solenoid at the target volume and an additional transverse holding field. We present results from our first experiment at the Institut fuer Kernphysik in Mainz on intense magnetic flux shielding using a BSCCO (bismuth strontium calcium copper oxide) thin-wall hollow cylinder at 4.2 K and a 1.4 T external magnetic field and compare this to numerical calculations.

  5. Lifetime and production rate of NOx in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October–November 2003

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-07-01

    Full Text Available We present altitude dependent lifetimes of NOx, determined with MIPAS/ENVISAT, for the southern polar region after the solar proton event in October–November 2003. Varying in latitude and decreasing in altitude they range from about two days at 64 km to about 20 days at 44 km. The lifetimes are controlled by transport, mixing and photolysis. We infer dynamical lifetimes by comparison of the observed decay to photolytical lifetimes calculated with the SLIMCAT 3-D Model. Photochemical loss contributes to the observed NOx depletion by 10% at 44 km, increasing with altitude to 35% at 62 km at a latitude of –63° S. At higher latitudes, the contribution of photochemical loss can be even more important. In addition, we show the correlation of modeled ionization rates and observed NOx densities under consideration of the determined lifetimes of NOx, and calculate altitude dependent effective production rates of NOx due to ionization. For that we compare ionization rates of the AIMOS data base with the MIPAS measurements for the whole Austral polar summer 2003/04. We derive effective NOx-production rates to be applied to the AIMOS ionization rates which range from about 0.2 NOx-molecules per ion pair at 44 km to 0.9 NOx-molecules per ion pair at 54 km at a latitude of –63° S. At –73° S, the NOx-production rate ranges from about 0.2 NOx-molecules per ion pair at 44 km to 1.0 NOx-molecules per ion pair at 60 km. These effective production rates are considerably lower than predicted by box model simulations which could hint at an overestimation of the modeled ionization rates.

  6. The RHIC polarized H- ion source

    Science.gov (United States)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  7. Lifetime and production rate of NOx in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October–November 2003

    Directory of Open Access Journals (Sweden)

    F. Friederich

    2013-03-01

    Full Text Available We present altitude-dependent lifetimes of NOx, determined with MIPAS/ENVISAT (the Michelson Interferometer for Passive Atmospheric Sounding/the European Environment Satellite, for the Southern polar region after the solar proton event in October–November 2003. Between 50° S and 90° S and decreasing in altitude they range from about two days at 64 km to about 20 days at 44 km. The lifetimes are controlled by transport, mixing and photochemistry. We infer estimates of dynamical lifetimes by comparison of the observed decay to photochemical lifetimes calculated with the SLIMCAT 3-D Model. Photochemical loss contributes to the observed NOx depletion by 0.1% at 44 km, increasing with altitude to 45% at 64 km. In addition, we show the correlation of modelled ionization rates and observed NOx densities under consideration of the determined lifetimes of NOx, and calculate altitude-dependent effective production rates of NOx due to ionization. For that we compare ionization rates of the AIMOS data base with the MIPAS measurements from 15 October–31 December 2003. We derive effective NOx-production rates to be applied to the AIMOS ionization rates which range from about 0.2 NOx-molecules per ion pair at 44 km to 0.7 NOx-molecules per ion pair at 62 km. These effective production rates are considerably lower than predicted by box model simulations which could hint at an overestimation of the modelled ionization rates.

  8. Generation of an ultralong pure longitudinal magnetization needle with high axial homogeneity using an azimuthally polarized beam modulated by pure multi-zone plate phase filter

    Science.gov (United States)

    Yan, Weichao; Nie, Zhongquan; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2017-08-01

    Based on the vector diffraction theory and the inverse Faraday effect in the magneto-optic film, light-induced magnetization distributions, for a high numerical aperture focusing configuration with an azimuthally polarized beam modulated by an optimized pure multi-zone plate phase filter, are investigated. By making use of the compeletely destructive interference of its inter circle with the π phase shift between adjacent sub-annuli, and the capability to extend the constructive interference in the propagating direction through its narrow outer annulus modulated by three misplaced helical phases, an ultralong (107λ ) magnetization needle with both transverse super-resolution (0.37λ ) and uniform axial field strength is achieved in the focal region. The perfect magnetization needle and the accessible method give a guide for ultrahigh density magnetic storage, fabricating magnetic lattices for spin wave operation, as well as atomic trapping.

  9. Double Spin Asymmetries of Inclusive Hadron Electroproductions from a Transversely Polarized $^3\\rm{He}$ Target

    CERN Document Server

    Zhao, Y X; Aniol, K; Annand, J R M; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A M; Dutta, C; Dutta, D; Fassi, L El; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Katich, J; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Camacho, C Muñoz; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J -C; Phillips, S K; Posik, M; Puckett, A J R; Qian, X; Qiang, Y; Rakhman, A; Ransome, R; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Širca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, W A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Wang, Y; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2015-01-01

    We report the measurement of beam-target double-spin asymmetries ($A_\\text{LT}$) in the inclusive production of identified hadrons, $\\vec{e}~$+$~^3\\text{He}^{\\uparrow}\\rightarrow h+X$, using a longitudinally polarized 5.9 GeV electron beam and a transversely polarized $^3\\rm{He}$ target. Hadrons ($\\pi^{\\pm}$, $K^{\\pm}$ and proton) were detected at 16$^{\\circ}$ with an average momentum $$=2.35 GeV/c and a transverse momentum ($p_{T}$) coverage from 0.60 to 0.68 GeV/c. Asymmetries from the $^3\\text{He}$ target were observed to be non-zero for $\\pi^{\\pm}$ production when the target was polarized transversely in the horizontal plane. The $\\pi^{+}$ and $\\pi^{-}$ asymmetries have opposite signs, analogous to the behavior of $A_\\text{LT}$ in semi-inclusive deep-inelastic scattering.

  10. Polarization, motion, and fragmentation. Exploring the role of quarks in the nucleon through semi-inclusive longitudinal spin asymmetries at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Joshua George

    2009-11-15

    The motivation for this work was to improve upon prior analyses that extracted the quark helicity distributions, {delta}(x), of the proton. Chapter 4 contains several new double-spin asymmetries which are results in their own right. The ph? dependence is plotted for the first time with HERMES data which is uniquely hadron separated. The hadron charge difference asymmetry is presented which, in combination with the quark helicity densities can put limits on fragmentation symmetry breaking in semi-inclusive DIS. Additionally, a novel method of unfolding yields (reducing smearing effects from detector resolution limitations and QED radiation) was developed and presented here for the first time which potentially allows new kinds of asymmetries to be constructed which were unavailable before. Also, this chapter describes the method by which the first ever three dimensionally binned SIDIS double-spin asymmetries were produced. These asymmetries, which will be used as the data inputs for the {delta}(x) extraction, are valuable inputs to world fits being performed by theorists. Chapter 5 further explores this idea of fragmentation symmetry breaking with Monte Carlo studies of fragmentation functions. These studies test assumptions which are frequently made in the interpretation of asymmetries like the hadron charge difference of the prior chapter and suggest that these assumptions should be approached with some caution. Also, a technique for tuning and more importantly propagating systematic uncertainty through non-analytic Monte Carlo models, like the Lund-String model which provides an essential input to the {delta}(x) extraction, is developed (orig.)

  11. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  12. Polarized nuclear target based on parahydrogen induced polarization

    Energy Technology Data Exchange (ETDEWEB)

    Budker, D., E-mail: dbudker@gmail.com [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ledbetter, M.P. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Appelt, S. [Central Institute for Electronics, Research Center Juelich, D-52425 Juelich (Germany); Bouchard, L.S. [Department of Chemistry and Biochemistry, California NanoSystems Institute, Biomedical Engineering IDP, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095 (United States); Wojtsekhowski, B. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100Hz) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam. -- Highlights: Black-Right-Pointing-Pointer Novel concept for polarized nuclear targets. Black-Right-Pointing-Pointer The target features fast reversal and operates at near-zero magnetic field. Black-Right-Pointing-Pointer Based on the technique of parahydrogen induced polarization that is revolutionizing NMR and enables NMR/MRI without magnets. Black-Right-Pointing-Pointer Competitive figure-of-merit for polarized targets.

  13. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  14. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  15. Proton therapy - Present and future.

    Science.gov (United States)

    Mohan, Radhe; Grosshans, David

    2017-01-15

    In principle, proton therapy offers a substantial clinical advantage over conventional photon therapy. This is because of the unique depth-dose characteristics of protons, which can be exploited to achieve significant reductions in normal tissue doses proximal and distal to the target volume. These may, in turn, allow escalation of tumor doses and greater sparing of normal tissues, thus potentially improving local control and survival while at the same time reducing toxicity and improving quality of life. Protons, accelerated to therapeutic energies ranging from 70 to 250MeV, typically with a cyclotron or a synchrotron, are transported to the treatment room where they enter the treatment head mounted on a rotating gantry. The initial thin beams of protons are spread laterally and longitudinally and shaped appropriately to deliver treatments. Spreading and shaping can be achieved by electro-mechanical means to treat the patients with "passively-scattered proton therapy" (PSPT) or using magnetic scanning of thin "beamlets" of protons of a sequence of initial energies. The latter technique can be used to treat patients with optimized intensity modulated proton therapy (IMPT), the most powerful proton modality. Despite the high potential of proton therapy, the clinical evidence supporting the broad use of protons is mixed. It is generally acknowledged that proton therapy is safe, effective and recommended for many types of pediatric cancers, ocular melanomas, chordomas and chondrosarcomas. Although promising results have been and continue to be reported for many other types of cancers, they are based on small studies. Considering the high cost of establishing and operating proton therapy centers, questions have been raised about their cost effectiveness. General consensus is that there is a need to conduct randomized trials and/or collect outcomes data in multi-institutional registries to unequivocally demonstrate the advantage of protons. Treatment planning and plan

  16. Gluons and the spin of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Kubelskyi, Oleksandr

    2010-12-23

    The structure of the proton and the origin of the proton spin has been a puzzle for many years. The EMC collaboration at CERN provided the first experimental data on the spin structure of the proton. The result was almost zero net contribution from quarks. Over the past 20 years new measurements of polarized parton distributions became available. The present value of the quark contribution to the proton spin is one third. The remaining 60 percent of the proton spin come from the gluons and orbital angular momentum of quarks and gluons. We investigate how the spin of the proton originates from the spin of its constituents. We study the proton using the phenomenologically accessible parameters such as distribution functions for quarks and gluons. The basic understanding of the proton structure (and in particular its spin structure) is important for interpreting the results of the LHC, which in turn can be used to refine the present knowledge. The proton spin structure gives a detailed information about the dynamical structure of the proton. Based on the present experimental data we suggest that the gluons and quarks play equally important role in the structure of the proton. (orig.)

  17. The RHIC polarized source upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.; Ritter, J.; Steski, D.; Zubets, V.

    2010-09-27

    The RHIC polarized H{sup -} ion source is being upgraded to higher intensity (5-10 mA) and polarization for use in the RHIC polarization physics program at enhanced luminosity RHIC operation. The higher beam peak intensity will allow reduction of the transverse beam emittance at injection to AGS to reduce polarization losses in AGS. There is also a planned RHIC luminosity upgrade by using the electron beam lens to compensate the beam-beam interaction at collision points. This upgrade is also essential for future BNL plans for a high-luminosity electron - proton (ion) Collider eRHIC.

  18. Proton geriatrics

    Science.gov (United States)

    Kephart, Thomas W.; Nakagawa, Norio

    1984-07-01

    An SO(10) model with particle spectrum and low energy gauge group identical to that of minimal SU (5) below MX but with a nonstandard charge assignment is shown to agree with the experimental best value of sin2θw(Mw) and the lower bound on the proton lifetime.

  19. Proton Radiobiology

    Directory of Open Access Journals (Sweden)

    Francesco Tommasino

    2015-02-01

    Full Text Available In addition to the physical advantages (Bragg peak, the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE, protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed.

  20. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  1. Elimination of the {sup 12} C and {sup 16} O in the elastic scattering of {sup 14} C by polarized protons; Eliminacion de las componentes de {sup 12} C y {sup 16} O en la dispersion elastica de {sup 14} C por protones polarizados

    Energy Technology Data Exchange (ETDEWEB)

    Avila A, O.L.; Ramirez T, J.J.; Murillo O, G.; Fernandez B, M

    1991-04-15

    The study of the elastic scattering of {sup 14} C for polarized protons it provides information on the nuclear structure of {sup 15} N. In the Tandem accelerator of the Nuclear Center in collaboration with the University of Notre Dame is carrying out this study to energy between 5.0 and 9.0 MeV in steps of 10 keV. The measures of differential section and vectorial analyzer power are subjected to shift analysis of phase being able to determine the parameters of the excited levels of {sup 15} N that are it angular momentum, parity, level width and elastic width. The details of this experiment are presented in the ACEL-9102 technical report while in this work it was discussed the way in that contributions of {sup 12} C and {sup 16} O are eliminated that are present as impurities in our target of {sup 14} C. At small angles the elastic components of these impurities are shoveled with the elastic of {sup 14} C. In the experiment carried out in the Nuclear Center were take measures of differential section for 6 angles; 35, 45, 55, 65, 145 and 165 using surface barrier detectors. It is observed that it exists shovels at 35, 45, 55 and 65 while at 145 and 165 the {sup 12} C, the {sup 14} C and the {sup 16} O are totally separate. With the purpose of being able to subtract of the elastic of {sup 14} C the proportion of {sup 12} C, it was decided to bombard a target of {sup 12} C leaving the same geometry that had been used to bombard {sup 14} C. With this also carried out the reaction {sup 12} C (p,p) {sup 12} C between 5.0 and 9.0 MeV in steps of 50 keV. Starting from these spectra are the integration (yield) of the elastic of {sup 12} C. (Author)

  2. Polarization Phenomena in Small-Angle Photoproduction of $e^+ e^-$ Pairs and the Gerasimov-Drell-Hearn Sum Rule

    CERN Document Server

    Lvov, A I; Drechsel, D; Scherer, S

    1998-01-01

    Photoproduction of $e^+e^-$ pairs at small angles is investigated as a tool to determine the functions $f_1$ and $f_2$ entering the real-photon forward Compton scattering amplitude. The method is based on an interference of the Bethe-Heitler and the virtual Compton scattering mechanisms, generating an azimuthal asymmetry in the $e^+$ versus $e^-$ yield. The general case of a circularly polarized beam and a longitudinally polarized target allows one to determine both the real and imaginary parts of $f_1$ as well as $f_2$. The imaginary part of $f_2$ requires target polarization only. We calculate cross sections and asymmetries of the reaction $p(\\gamma,e^+e^-)p$, estimate corrections and backgrounds, and propose suitable kinematical regions to perform the experiment. Our investigation shows that photoproduction of $e^+e^-$-pairs off the proton and light nuclei may serve as a rather sensitive test of the validity of the Gerasimov-Drell-Hearn sum rule.

  3. Measurements of the Neutron Longitudinal Spin Asymmetry A1n and Flavor Decomposition in the Valence Quark Region

    Energy Technology Data Exchange (ETDEWEB)

    Flay, David J. [Temple University, Philadelphia, PA (United States)

    2014-08-01

    The current data for the nucleon-virtual photon longitudinal spin asymmetry A1 on the proton and neutron have shown that the ratio of the polarized-to-unpolarized down-quarkparton distribution functions,Dd=d, tends towards -1/2 at large x, in disagreement with the perturbative QCD prediction that Dd/d approaches 1 but more in line with constituent quark models. As a part of experiment E06-014 in Hall A of Jefferson Lab, double-spin asymmetries were measured in the scattering of a longitudinally polarized electron beam of energies 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target in the deep inelastic scattering and resonance region, allowing for the extraction of the neutron asymmetry An1 and the ratios Dd/d and Du/u. We will discuss our analysis of the data and present results for A1 and g1/F1 on both 3He and the neutron, and the resulting quark ratios for the up and down quarks in the kinematic range of 0.2

  4. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  5. G{sub E{sub p}}/G{sub M{sub p}} ratio by polarization transfer in e --> p --> ep -->

    Energy Technology Data Exchange (ETDEWEB)

    Mark Jones; Konrad Aniol; F. Baker; J. Berthot; Pierre Bertin; William Bertozzi; Auguste Besson; Louis Bimbot; Werner Boeglin; Edward Brash; D. Brown; John Calarco; Lawrence Cardman; C. Chang; Jian-Ping Chen; Eugene Chudakov; Steve Churchwell; Evaristo Cisbani; Daniel Dale; Raffaele De Leo; Alexandre Deur; Brian Diederich; John Domingo; Martin Epstein; Lars Ewell; Kevin Fissum; A Fleck; Helene Fonvieille; Salvatore Frullani; Juncai Gao; Franco Garibaldi; Ashot Gasparian; G. M. Gerstner; Shalev Gilad; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Javier Gomez; Viktor Gorbenko; Alphonza Green; Jens-Ole Hansen; Calvin Howell; Garth Huber; Mauro Iodice; Cornelis de Jager; Stephanie Jaminion; Xiaodong Jiang; William E. Kahl; James Kelly; Mohammad Khayat; Laird Kramer; Gerfried Kumbartzki; Michael Kuss; E. Lakuriki; Geraud Laveissiere; John LeRose; Meihua Liang; Richard Lindgren; Nilanga Liyanage; George Lolos; R. Macri; Richard Madey; Sergey Malov; Demetrius Margaziotis; Pete Markowitz; Kathy McCormick; Justin McIntyre; Rob van der Meer; Robert Michaels; Brian Milbrath; Jean Mougey; Sirish Nanda; Ed Offermann; Zisis Papandreou; Charles Perdrisat; Gerassimos Petratos; Nikolai Piskunov; Roman Pomatsalyuk; David Prout; Vina Punjabi; Gilles Quemener; Ronald Ransome; Brian Raue; Yves Roblin; Julie Roche; Gary Rutledge; Paul Rutt; Arunava Saha; Teijiro Saito; Adam Sarty; T. P. Smith; P. Sorokin; Steffen Strauch; Riad Suleiman; Kazunori Takahashi; Jeffrey Templon; Luminita Todor; Paul Ulmer; Guido Urciuoli; Pascal Vernin; Branislav Vlahovic; H. Voskanian; Krishni Wijesooriya; Bogdan Wojtsekhowski; Rhett Woo; Feng Xiong; Dan Zainea; Zilu Zhou

    2000-02-14

    The ratio of the proton's elastic electromagnetic form factors, G{sub E{sub p}}/G{sub M{sub p}} was obtained by measuring P{sub i} and P{sub l}, the transverse and the longitudinal recoil proton polarization, respectively. For elastic ep to ep, G{sub E{sub p}}/G{sub M{sub p}} is proportional to P{sub t}/P{sub l}. Simultaneous measurement of P{sub t} and P{sub l} in a polarimeter provides good control of the systematic uncertainty. The results for the ratio G{sub E{sub p}}/G{sub M{sub p}} show a systematic decrease as Q{sup 2} increases from 0.5 to 3.5 GeV{sup 2}, indicating for the first time a definite difference in the spatial distribution of charge and magnetization currents in the proton.

  6. Transverse relaxation of scalar-coupled protons.

    Science.gov (United States)

    Segawa, Takuya F; Baishya, Bikash; Bodenhausen, Geoffrey

    2010-10-25

    In a preliminary communication (B. Baishya, T. F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 2009, 131, 17538-17539), we recently demonstrated that it is possible to obtain clean echo decays of protons in biomolecules despite the presence of homonuclear scalar couplings. These unmodulated decays allow one to determine apparent transverse relaxation rates R(2) (app) of individual protons. Herein, we report the observation of R(2) (app) for three methyl protons, four amide H(N) protons, and all 11 backbone H(α) protons in cyclosporin A. If the proton resonances overlap, their R(2) (app) rates can be measured by transferring their magnetization to neighboring (13)C nuclei, which are less prone to overlap. The R(2) (app) rates of protons attached to (13)C are faster than those attached to (12)C because of (13)C-(1)H dipolar interactions. The differences of these rates allow the determination of local correlation functions. Backbone H(N) and H(α) protons that have fast decay rates R(2) (app) also feature fast longitudinal relaxation rates R(1) and intense NOESY cross peaks that are typical of crowded environments. Variations of R(2) (app) rates of backbone H(α) protons in similar amino acids reflect differences in local environments.

  7. Unbiased polarized PDFs upgraded with new inclusive DIS data

    CERN Document Server

    Nocera, Emanuele R

    2015-01-01

    I present a determination of longitudinally-polarized parton distribution functions of the proton from inclusive deep-inelastic scattering data: NNPDFpol1.0+. This determination, based on the NNPDF methodology, upgrades a previous analysis, NNPDFpol1.0, in two respects: first, it includes all new data sets which have recently become available from the COMPASS experiment at CERN and from the E93-009, EG1-DVCS and E06-014 experiments at JLAB; second, it uses the state-of-the-art unpolarized parton set NNPDF3.0 as a baseline for the reconstruction of fitted observables and for the determination of positivity constraints. I discuss the impact of both these new inputs on the uncertainty of parton distribution functions.

  8. Linear polarization of gluons and photons in unpolarized collider experiments

    NARCIS (Netherlands)

    Pisano, Cristian; Boer, Daniel; Brodsky, Stanley J.; Buffing, Maarten G. A.; Mulders, Piet J.

    2013-01-01

    We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed

  9. Baryon spectroscopy with polarization observables from CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States)

    2016-08-01

    Meson photoproduction is an important tool in the study of baryon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly and circularly polarized tagged photon beams, longitudinally and transversely polarized nucleon targets, and recoil polarizations. An overview of these experimental studies and recent results will be given.

  10. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; Van Goethem, M. -J.; van Beuzekom, M.; Klaver, T.; Visser, J.; Brandenburg, S.; Biegun, A. K.

    2016-01-01

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  11. Precise determination of the spin structure function $\\mathbf{g_1}$ of the proton, deuteron and neutron

    CERN Document Server

    Airapetian, A; Akopov, Z; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, H; Borisov, A; Borysenko, A; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gabbert, D; Gärber, Y; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Giordano, F; Grebenyuk, O; Gregor, I M; Guler, H; Gute, A; Hadjidakis, C; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Stösslein, U; Streit, J; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Veretennikov, D; Vikhrov, V; Vogel, C; Wang, S; Weiskopf, C; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P

    2006-01-01

    Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \\leq x \\leq 0.9$ and $0.18 $ GeV$^2$ $\\leq Q^2 \\leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \\leq 0.021$, a value of $0.330 \\pm 0.011\\mathrm{(theo.)}\\pm0.025\\mathrm{(exp.)}\\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.

  12. Measurement of the virtual-photon asymmetry A2 and the spin-structure function g2 of the proton

    CERN Document Server

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Bianchi, N; Blok, H P; Borissov, A; Bowles, J; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Ruiz, A López; Lorenzon, W; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Manfré, L; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Muccifora, V; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P

    2011-01-01

    A measurement of the virtual-photon asymmetry A_2(x,Q^2) and of the spin-structure function g_2(x,Q^2) of the proton are presented for the kinematic range 0.004 < x < 0.9 and 0.18 GeV^2 < Q^2 < 20 GeV^2. The data were collected by the HERMES experiment at the HERA storage ring at DESY while studying inclusive deep-inelastic scattering of 27.6 GeV longitudinally polarized leptons off a transversely polarized hydrogen gas target. The results are consistent with previous experimental data from CERN and SLAC. For the x-range covered, the measured integral of g_2(x) converges to the null result of the Burkhardt-Cottingham sum rule. The x^2 moment of the twist-3 contribution to g_2(x) is found to be compatible with zero.

  13. Proton Therapy Dose Characterization and Verification

    Science.gov (United States)

    2013-10-01

    shows a deviation in the polar WET plot at 15 degrees between the planning CT (green) and the corrected CBCT (blue) at the time of treatment...Pennsylvania is Figure 8. Detection of proton range differences between CBCT and planning CT images. The polar plot measures the water equivalent...dose wtrllin orout\\ide I’TVs was >114% of cl:te presclibed dose ( Fig. 1 D-G~ OVerall, procon p lans Tltft2 ilnd •d;.pdve pr-oton pla.n5 bdd

  14. Spin Filtering of Stored (Anti)Protons: from FILTEX to COSY to AD to FAIR

    OpenAIRE

    Nikolaev, N; Pavlov, F.

    2007-01-01

    We review the theory of spin filtering of stored (anti)protons by multiple passage through the polarized internal target (PIT). Implications for the antiproton polarization buildup in the proposed PAX experiment at FAIR GSI are discussed.

  15. Parity Violation in Forward Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, IV, Grady Wilson [Princeton Univ., NJ (United States)

    2001-01-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton at Jefferson Laboratory. The kinematic point (θlab = 12.3 deg. and (Q2) = 0.48 (GeV/c)2) is chosen to provide sensitivity to the strange electric form factor GsE. A 3.36 GeV beam of longitudinally polarized electrons was scattered from protons in a liquid hydrogen target. The scattered flux was detected by a pair of spectrometers which focussed the elastically-scattered electrons onto total-absorption detectors. The detector signals were integrated and digitized by a custom data acquisition system. A feedback system reduced systematic errors by controlling helicity-correlated beam intensity differences at the sub-ppm (part per million) level. The experimental result, A = 14.5 +/- 2.0 (stat) ± 1.1 (syst) ppm, is consistent with the electroweak Standard Model with no additional contributions from strange quarks. In particular, the measurement implies GSE + 0.39 GsM = 0.023 ± 0.040 ± 0.026 (ζGnE), where the last uncertainty is due to the estimated uncertainty in the neutron electric form factor GnE . This result represents the first experimental constraint of the strange electric form factor.

  16. Proton acceleration from magnetized overdense plasmas

    Science.gov (United States)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-01-01

    Proton acceleration by an ultraintense short pulse circularly polarized laser from an overdense three dimensional (3D) particle-in-cell (PIC) 3D-PIC simulations. The axial magnetic field modifies the dielectric constant of the plasma, which causes a difference in the behaviour of ponderomotive force in case of left and right circularly polarized laser pulse. When the laser is right circularly polarized, the ponderomotive force gets enhanced due to cyclotron effects generating high energetic electrons, which, on reaching the target rear side accelerates the protons via target normal sheath acceleration process. On the other hand, in case of left circular polarization, the effects get reversed causing a suppression of the ponderomotive force at a short distance and lead towards a rise in the radiation pressure, which results in the effective formation of laser piston. Thus, the axial magnetic field enhances the effect of radiation pressure in case of left circularly polarized laser resulting in the generation of high energetic protons at the target front side. The transverse motion of protons get reduced as they gyrate around the axial magnetic field which increases the beam collimation to some extent. The optimum thickness of the overdense plasma target is found to be increased in the presence of an axial magnetic field.

  17. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  18. Ion-proton pulsars

    Science.gov (United States)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  19. Ion-proton pulsars

    CERN Document Server

    Jones, P B

    2016-01-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  20. Pion content of the nucleon in polarized semi-inclusive DIS

    Energy Technology Data Exchange (ETDEWEB)

    Melnitchouk, W. [Univ. of Regensburg (Germany); Thomas, A.W. [Univ. of Adelaide (Australia)

    1994-04-01

    An explicit pionic component of the nucleon may be identified by measuring polarized {Delta}{sup ++} fragments produced in deep-inelastic scattering (DIS) off polarized protons. The pion-exchange model predicts highly correlated polarizations of the {Delta}{sup ++} and target proton, in marked contrast with the competing diquark fragmentation process.

  1. ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, A. M. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058, Russia; Kondratenko, M. A. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058, Russia; Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei; Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Filatov, Yuri [MIPT, Dolgoprudniy, Moscow Region, Russia

    2016-05-01

    In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, we propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.

  2. Twist-3 fragmentation effects for ALT in light hadron production from proton–proton collisions

    Directory of Open Access Journals (Sweden)

    Y. Koike

    2016-01-01

    Full Text Available We compute the contribution from the twist-3 fragmentation function for light hadron production in collisions between transversely and longitudinally polarized protons, i.e., p↑p→→hX, which can cause a double-spin asymmetry (DSA ALT. This is a naïve T-even twist-3 observable that we analyze in collinear factorization using both Feynman gauge and lightcone gauge as well as give a general proof of color gauge invariance. So far only twist-3 effects in the transversely polarized proton have been studied for ALT in p↑p→→hX. However, there are indications that the naïve T-odd transverse single-spin asymmetry (SSA AN in p↑p→hX is dominated not by such distribution effects but rather by a fragmentation mechanism. Therefore, one may expect similarly that the fragmentation contribution is important for ALT. Given possible plans at RHIC to measure this observable, it is timely to provide a calculation of this term.

  3. Quasi-free photoproduction of pion-pairs off protons and neutrons

    CERN Document Server

    Oberle, M

    2014-01-01

    Beam-helicity asymmetries and mass-differential cross sections have been measured at the MAMI accelerator in Mainz for the photoproduction of neutral and mixed-charge pion pairs in the reactions $\\boldsymbol{\\gamma}p\\rightarrow n\\pi^0\\pi^+$ and $\\boldsymbol{\\gamma}p\\rightarrow p\\pi^0\\pi^0$ off free protons and $\\boldsymbol{\\gamma}d \\rightarrow (p)p\\pi^0\\pi^-$, $\\boldsymbol{\\gamma}d\\rightarrow (n)p\\pi^0\\pi^0$ and $\\boldsymbol{\\gamma}d\\rightarrow (n)n\\pi^0\\pi^+$, $\\boldsymbol{\\gamma}d\\rightarrow (p)n \\pi^0\\pi^0$ off quasi-free nucleons bound in the deuteron for incident photon energies up to 1.4 GeV. Circularly polarized photons were produced in bremsstrahlung processes of longitudinally polarized electrons and tagged with the Glasgow-Mainz magnetic spectrometer. The decay products (photons, protons, neutrons, and charged pions) were detected in the $4\\pi$ electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. Using a full kinematic reconstruction of the final state, excellent agreement wa...

  4. Δ(1232) resonance contribution to two-photon exchange in electron-proton scattering revisited

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Qing [Southeast University, Department of Physics, NanJing (China); Yang, Shin Nan [National Taiwan University, Department of Physics and Center for Theoretical Sciences, Taipei (China)

    2015-08-15

    We revisit the question of the contributions of the two-photon exchange with Δ(1232) excitation to the electron-proton scattering in a hadronic model. Three improvements over the previous calculations are made, namely, correct vertex function for γN→Δ, realistic γNΔ form factors, and coupling constants. The discrepancy between the values of R≡μ{sub p} G{sub E}/G{sub M} extracted from Rosenbluth technique and polarization transfer method can be reasonably accounted for if the data of Andivahis et al. (Phys. Rev. D 50, 5491 (1994)) are analyzed. However, substantial discrepancy remains if the data of Qattan et al. (nucl-ex/0610006) are used. For the ratio R{sup ±} between e{sup ±} p scatterings, our predictions appear to be in satisfactory agreement with the preliminary data from VEPP-3. The agreement between our model predictions and the recent measurements on single spin asymmetry, transverse and longitudinal recoil proton polarizations ranges from good to poor. (orig.)

  5. Review of polarized ion sources (invited).

    Science.gov (United States)

    Zelenski, A

    2010-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H(-) ion (proton), D(-) (D(+)), and (3)He(++) ion beams are discussed. Feasibility studies of these techniques are in progress at BNL and other laboratories. Polarized deuteron beams will be required for the polarization program at the Dubna Nuclotron and at the deuteron electric dipole moment experiment at BNL. Experiments with polarized (3)He(++) ion beams are a part of the experimental program at the future electron ion collider.

  6. Mechanism of ({sup 14}N, {sup 12}B) reactions at intermediate energy leading to large spin-polarization of {sup 12}B

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuoka, Shin-ichi [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Shimoda, Tadashi; Miyatake, Hiroari [and others

    1996-05-01

    To study mechanisms of the ({sup 14}N, {sup 12}B) reactions at intermediate energies, double differential cross section and nuclear spin-polarization of the {sup 12}B projectile-like fragments have been measured as a function of longitudinal momentum in the angular range of 0deg - 9deg. Large spin-polarization of the reaction products {sup 12}B has been observed in the {sup 9}Be({sup 14}N, {sup 12}B) reaction at 39.3 MeV/u. The momentum distributions at forward angles exhibit characteristic features which can not be understood by the current projectile fragmentation picture. It is shown that by assuming the existence of direct two-proton transfer process in addition to the fragmentation process, both the cross section and polarization of {sup 12}B fragments are successfully explained. The target and incident energy dependence of the momentum distribution are also explained reasonably. (author)

  7. Qweak: A Precision Measurement of the Proton's Weak Charge

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Todd Averett; James Birchall; James Bowman; Roger Carlini; Swapan Chattopadhyay; Charles Davis; J. Doornbos; James Dunne; Rolf Ent; Jens Erler; Willie Falk; John Finn; Tony Forest; David Gaskell; Klaus Grimm; C. Hagner; F. Hersman; Maurik Holtrop; Kathleen Johnston; R.T. Jones; Kyungseon Joo; Cynthia Keppel; Elie Korkmaz; Stanley Kowalski; Lawrence Lee; Allison Lung; David Mack; Stanislaw Majewski; Gregory Mitchell; Hamlet Mkrtchyan; Norman Morgan; Allena Opper; Shelley Page; Seppo Penttila; Mark Pitt; Benard Poelker; Tracy Porcelli; William Ramsay; Michael Ramsey-musolf; Julie Roche; Neven Simicevic; Gregory Smith; Riad Suleiman; Simon Taylor; Willem Van Oers; Steven Wells; W.S. Wilburn; Stephen Wood; Carl Zorn

    2004-02-05

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q{sup 2} of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Q{sub w}{sup p} = 1-4 sin{sup 2} {theta}{sub w} is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.

  8. Dynamic nuclear polarization studies on deuterated nitroxyl spin probes.

    Science.gov (United States)

    David Jebaraj, D; Utsumi, Hideo; Milton Franklin Benial, A

    2017-10-01

    Detailed dynamic nuclear polarization and electron spin resonance studies were carried out for 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl, 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl,3-methoxycarbonyl-2,2,5,5-tetramethy pyrolidine-1-oxyl nitroxyl radicals and their corresponding deuterated nitroxyl radicals, used in Overhauser-enhanced magnetic resonance imaging for the first time. The dynamic nuclear polarization parameters such as dynamic nuclear polarization (DNP) factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for deuterated nitroxyl radicals. DNP enhancement increases with agent concentration up to 3 mm and decreases above 3 mm. The proton spin-lattice relaxation time and the longitudinal relaxivity parameters were estimated. The leakage factor increases with increasing agent concentration up to 3 mm and reaches plateau in the region 3-5 mm. The coupling parameter shows the interaction between the electron and nuclear spins to be mainly dipolar in origin. DNP spectrum exhibits that the full width at half maximum values are higher for undeuterated nitroxyl radicals compared with deuterated nitroxyl radicals, which leads to the increase in DNP enhancement. The ESR parameters such as, the line width, line shape, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g-factor were calculated. The narrow line width was observed for deuterated nitroxyl radicals compared with undeuterated nitroxyl radicals, which leads to the higher saturation parameter value and DNP enhancement. The novelty of the work permits clear understanding of the DNP parameters determining the higher DNP enhancement compared with the undeuterated nitroxyl radicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    CERN Document Server

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  10. Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei.

    Science.gov (United States)

    Venkatesh, Amrit; Hanrahan, Michael P; Rossini, Aaron J

    Fast magic angle spinning (MAS) and proton detection has found widespread application to enhance the sensitivity of solid-state NMR experiments with spin-1/2 nuclei such as (13)C, (15)N and (29)Si, however, this approach is not yet routinely applied to half-integer quadrupolar nuclei. Here we have investigated the feasibility of using fast MAS and proton detection to enhance the sensitivity of solid-state NMR experiments with half-integer quadrupolar nuclei. The previously described dipolar hetero-nuclear multiple quantum correlation (D-HMQC) and dipolar refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) pulse sequences were used for proton detection of half-integer quadrupolar nuclei. Quantitative comparisons of signal-to-noise ratios and the sensitivity of proton detected D-HMQC and D-RINEPT and direct detection spin echo and quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) solid-state NMR spectra, demonstrate that one dimensional proton detected experiments can provide sensitivity similar to or exceeding that obtainable with direct detection QCPMG experiments. 2D D-HMQC and D-RINEPT experiments provide less sensitivity than QCPMG experiments but proton detected 2D hetero-nuclear correlation solid-state NMR spectra of half-integer nuclei can still be acquired in about the same time as a 1D spin echo spectrum. Notably, the rarely used D-RINEPT pulse sequence is found to provide similar, or better sensitivity than D-HMQC in some cases. Proton detected D-RINEPT benefits from the short longitudinal relaxation times (T1) normally associated with half-integer quadrupolar nuclei, it can be combined with existing signal enhancement methods for quadrupolar nuclei, and t1-noise in the indirect dimension can easily be removed by pre-saturation of the (1)H nuclei. The rapid acquisition of proton detected 2D HETCOR solid-state NMR spectra of a range of half-integer quadrupolar nuclei such as (17)O, (27)Al, (35)Cl and (71)Ga is demonstrated. Copyright

  11. Experimental effects of orbit on polarization loss in RHIC

    Energy