WorldWideScience

Sample records for longitudinal instability caused

  1. Macroparticle model for longitudinal emittance growth caused by negative mass instability in a proton synchrotron

    CERN Document Server

    MacLachlan, J A

    2004-01-01

    Both theoretical models and beam observations of negative mass instability fall short of a full description of the dynamics and the dynamical effects. Clarification by numerical modeling is now practicable because of the recent proliferation of so-called computing farms. The results of modeling reported in this paper disagree with some predictions based on a long-standing linear perturbation calculation. Validity checks on the macroparticle model are described.

  2. Summary of longitudinal instabilities workshop

    Energy Technology Data Exchange (ETDEWEB)

    Chasman, R.

    1976-01-01

    A five-day ISABELLE workshop on longitudinal instabilities was held at Brookhaven, August 9-13, 1976. About a dozen outside accelerator experts, both from Europe and the U.S.A., joined the local staff for discussions of longitudinal instabilities in ISABELLE. An agenda of talks was scheduled for the first day of the workshop. Later during the week, a presentation was given on the subject ''A more rigorous treatment of Landau damping in longitudinal beam instabilities''. A few progress meetings were held in which disagreements regarding calculations of coupling impedances were clarified. A summary session was held on the last day. Heavy emphasis was put on single bunched beam instabilities in the microwave region extending above the cut-off frequency of the ISABELLE vacuum chamber.

  3. Longitudinal single-bunch instabilities

    International Nuclear Information System (INIS)

    Migliorati, M.; Palumbo, L.; Rome Univ. La Sapienza, Rome

    2001-02-01

    After introducing the concepts of longitudinal wakefield and coupling impedance, it is reviewed the theory of longitudinal single-bunch collective effects in storage rings. From the Fokker-Planck equation it is first derived the stationary solution describing the natural single-bunch regime, and then treat the problem of microwave instability, showing the different approaches used for estimating the threshold current. The lecture is ended with the semi-empirical laws that allow everyone to obtain the single-bunch behaviour above threshold, and with a description of the simulation codes that are now reliable tools for investigating all these effects

  4. Single bunch fast longitudinal instability

    International Nuclear Information System (INIS)

    Wang, J.M.; Pellegrini, C.

    1979-01-01

    Single bunch longitudinal instability producing an increase of the bunch area have been observed in proton synchrotron and storage rings. Signals at microwave frequencies are observed during the bunch blow-up and because of this the effect has been called the microwave instability. A similar increase in bunch area is observed also in electron storage rings, where it is usually referred to as the bunch lengthening effect. This paper is an attempt to obtain a more general theory of this effect. Here we describe the model used and the method of calculation, together with some general results. More detailed results will be given in another paper. The main result is the derivation of a condition for the existence of a fast longitudinal bunch blow-up. This condition is a generalized threshold formula, showing explicitly the dependence on the bunch energy spread and length. This condition is qualitatively in agreement with Boussard's suggestion

  5. Single bunch fast longitudinal instability

    International Nuclear Information System (INIS)

    Wang, J.M.; Pellegrini, C.

    1979-01-01

    Single bunch longitudinal instability producing an increase of the bunch areas has been observed in proton synchrotron and storage rings. Singals at microwave frequencies are observed during the bunch blow-up and because of this the effect has been called the microwave instability. A similar increase in bunch area is observed also in electron storage rings, where it is usually referred to as the bunch lengthening effect. This paper is an attempt to obtain a more general theory of this effect. Here we describe the model used and the method of calculation, together with some general results. The main result of this paper is the derivation of a condition for the existence of a fast longitudinal bunch blow-up. This condition is a generalized threshold formula, showing explicitly the dependence on the bunch energy spread and length

  6. Flutter instability of cantilevered carbon nanotubes caused by magnetic fluid flow subjected to a longitudinal magnetic field

    Science.gov (United States)

    Sadeghi-Goughari, Moslem; Jeon, Soo; Kwon, Hyock-Ju

    2018-04-01

    CNT (Carbon nanotube)-based fluidic systems hold a great potential for emerging medical applications such as drug delivery for cancer therapy. CNTs can be used to deliver anticancer drugs into a target site under a magnetic field guidance. One of the critical issues in designing such systems is how to avoid the vibration induced by the fluid flow, which is undesirable and may even promote the structural instability. The main objective of the present research is to develop a fluid structure interaction (FSI) model to investigate the flutter instability of a cantilevered CNT induced by a magnetic fluid flow under a longitudinal magnetic field. The CNT is assumed to be embedded in a viscoelastic matrix to consider the effect of biological medium around it. To obtain a dynamical model for the system, the Navier-Stokes theory of magnetic-fluid flow is coupled to the Euler-Bernoulli beam model for CNT. The small size effects of the magnetic fluid and CNT are considered through the small scale parameters including Knudsen number (Kn) and the nonlocal parameter. Then, the extended Galerkin's method is applied to solve the FSI governing equations, and to derive the stability diagrams of the system. Results show how the magnetic properties of the fluid flow have an effect on improving the stability of the cantilevered CNT by increasing the flutter velocity.

  7. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel

    2015-01-01

    function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make......Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus...

  8. WELLBORE INSTABILITY: CAUSES AND CONSEQUENCES

    Directory of Open Access Journals (Sweden)

    Borivoje Pašić

    2007-12-01

    Full Text Available Wellbore instability is one of the main problems that engineers meet during drilling. The causes of wellbore instability are often classified into either mechanical (for example, failure of the rock around the hole because of high stresses, low rock strength, or inappropriate drilling practice or chemical effects which arise from damaging interaction between the rock, generally shale, and the drilling fluid. Often, field instances of instability are a result of a combination of both chemical and mechanical. This problem might cause serious complication in well and in some case can lead to expensive operational problems. The increasing demand for wellbore stability analyses during the planning stage of a field arise from economic considerations and the increasing use of deviated, extended reach and horizontal wells. This paper presents causes, indicators and diagnosing of wellbore instability as well as the wellbore stresses model.

  9. Simulation of the longitudinal instabilities of the asymmetric bunches

    International Nuclear Information System (INIS)

    Dai Jianping; Zhao Zhentang

    2002-01-01

    The computational model of the code used to simulate the longitudinal instabilities of the asymmetric bunches was introduced. The growth rates of the longitudinal instabilities of the symmetric bunches got by this code were compared with those got by the code ZAP, and they were almost the same. As an example, the simulation results of the BEPC-II were presented

  10. Experimental study of the longitudinal instability for beam transport

    International Nuclear Information System (INIS)

    Reiser, M.; Wang, J.G.; Guo, W.M.; Wang, D.X.

    1990-01-01

    Theoretical model for beam longitudinal instability in a transport pipe with general wall impedance is considered. The result shows that a capacitive wall tends to stabilize the beam. The experimental study of the instability for a pure resistive-wall is presented, including the design parameters, setup and components for the experiment. 6 refs., 3 figs

  11. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  12. On some properties of longitudinal and transverse coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Kamiya, Yukihide.

    1983-02-01

    Some properties of longitudinal and transverse coupled-bunch instabilities have been investigated theoretically and computationally, mainly based on a rigid-bunch model. In this report, we will study Robinson's stability, sum rules of the instabilities and the cure of instabilities by producing the oscillation frequencies different from bunch to bunch, and also give the numerical examples for KEK-PF storage ring. KEYWORD: storage ring, accelerator, bunched beam, longitudinal instability, transverse instability, coupled-bunch instability. (author)

  13. Thresholds of a bunched beam longitudinal instability in proton synchrotrons

    International Nuclear Information System (INIS)

    Balbekov, V.I.; Ivanov, S.V.

    1986-01-01

    The formulas and graphs for calculating instability thresholds arising during the interaction of a bunched proton beam with narrow-band resonator are given. The instabilities of three types with oscillations of a definite multipolarity, oscillations of some bound multipoles and with microwave oscillations arising as a result of addition of a great number of multipoles. The analysis of the above data shows that the increase of oscillations nonlinearity is accompanied by the growth of instability threshold only in the zone of separated and weakly bound multipoles. The increase of spread of synchrotron frequencies reduces the zone separated multipoles owing to which the microwave bunch instability can be caused by more and more low-frequency resonators. In the microwave zone practically there is no stabilizing effect of synchrotron frequencies spread. The instability threshold of the bunched beam now - where exceeds the microwave level

  14. Longitudinal instability of an induction linac with acceleration

    International Nuclear Information System (INIS)

    Smith, L.; Lee, E.P.

    1993-05-01

    The question arises as to what effect acceleration, which so far has been ignored, has on the longitudinal instability of an induction linac. The answer is not much for the anticipated acceleration rate (1--2 MeV/m) and minimum e-folding distance for the instability (50--500 meters). However, total unstable growth is significantly reduced over distances which are long enough for appreciable acceleration to occur. The purpose of this note is to record a calculation of the instability, including a constant acceleration rate. Some interesting features emerge -- for example, the velocity of the head is a more convenient independent variable than axial position and, for an initial sinusoidal perturbation of velocity in time, the number of oscillations along the pulse is constant; as the pulse shortens in nine the frequency increases

  15. Longitudinal acoustic instabilities in slender solid propellant rockets : linear analysis

    OpenAIRE

    García Schafer, Juan Esteban; Liñán Martínez, Amable

    2001-01-01

    To describe the acoustic instabilities in the combustion chambers of laterally burning solid propellant rockets the interaction of the mean flow with the acoustic waves is analysed, using multiple scale techniques, for realistic cases in which the combustion chamber is slender and the nozzle area is small compared with the cross-sectional area of the chamber. Associated with the longitudinal acoustic oscillations we find vorticity and entropy waves, with a wavelength typically small compared ...

  16. Longitudinal coupled-bunch instability studies in the PS

    CERN Document Server

    Damerau, H

    2017-01-01

    The main longitudinal limitation for LHC-type beams inthe PS are coupled-bunch instabilities. A dedicated proto-typefeedbacksystemusingaFinemetcavityasalongitudinalkicker has been installed. Extensive tests with beam havebeen performed to explore the intensity reach with this feed-back. The maximum intensity with nominal longitudinalemittance at PS extraction has been measured, as well as theemittance required to keep the beam longitudinally stableat the design intensity for the High-Luminosity LHC (HL-LHC). A higher-harmonic cavity is a complementary op-tion to extend the intensity reach beyond the capabilities ofthe coupled-bunch feedback. Preliminary machine develop-ment (MD) studies operating one20MHzor one40MHzRF system as a higher harmonic at the flat-top indicate thebeneficial effect on longitudinal beam stability

  17. Longitudinal beam instabilities in a double RF system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00229208; Gazis, Evangelos

    Operation with a double RF system is essential for many accelerators in order to increase beam stability, to change the bunch shape or to perform various RF manipulations. This is also the case for the operation of the CERN SPS as the LHC proton injector, where in addition to the main RF system, a fourth harmonic RF system is used in bunch shortening mode in order to increase the synchrotron frequency spread inside the bunch and thus to enhance Landau damping of the collective instabilities. In fact the double RF system operation in the SPS is one of the essential means, together with the controlled longitudinal emittance blow-up to significantly increase the longitudinal instability thresholds (single and multi-bunch) and deliver a good quality beam for the LHC. However, for the HiLumi-LHC (HL-LHC) and LHC injector upgrade (LIU) projects higher beam intensities are required. After all upgrades are in place, the main performance limitations of the LHC injector complex are beam instabilities and high intensity...

  18. Nonlinear Longitudinal Mode Instability in Liquid Propellant Rocket Engine Preburners

    Science.gov (United States)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    Nonlinear pressure oscillations have been observed in liquid propellant rocket instability preburner devices. Unlike the familiar transverse mode instabilities that characterize primary combustion chambers, these oscillations appear as longitudinal gas motions with frequencies that are typical of the chamber axial acoustic modes. In several respects, the phenomenon is similar to longitudinal mode combustion instability appearing in low-smoke solid propellant motors. An important feature is evidence of steep-fronted wave motions with very high amplitude. Clearly, gas motions of this type threaten the mechanical integrity of associated engine components and create unacceptably high vibration levels. This paper focuses on development of the analytical tools needed to predict, diagnose, and correct instabilities of this type. For this purpose, mechanisms that lead to steep-fronted, high-amplitude pressure waves are described in detail. It is shown that such gas motions are the outcome of the natural steepening process in which initially low amplitude standing acoustic waves grow into shock-like disturbances. The energy source that promotes this behavior is a combination of unsteady combustion energy release and interactions with the quasi-steady mean chamber flow. Since shock waves characterize the gas motions, detonation-like mechanisms may well control the unsteady combustion processes. When the energy gains exceed the losses (represented mainly by nozzle and viscous damping), the waves can rapidly grow to a finite amplitude limit cycle. Analytical tools are described that allow the prediction of the limit cycle amplitude and show the dependence of this wave amplitude on the system geometry and other design parameters. This information can be used to guide corrective procedures that mitigate or eliminate the oscillations.

  19. Longitudinal beam instability due to the ring impedance at KEK's accelerator test facility damping ring

    International Nuclear Information System (INIS)

    Kim, Eun-San

    2003-01-01

    This paper shows the results of a numerical study of the impedance in the Accelerator Test Facility damping ring. The longitudinal impedance in the damping ring is shown to be inductive. It is shown that the total impedance |Z || /n| is 0.23 Ω and the inductance is L = 14 nH. In the extremely low emittance beam of the damping ring, bunch lengthening is caused by both the effects of potential-well distortion and intra-beam scattering. In this paper, the bunch-lengthening due to the ring impedance is numerically investigated, and the result shows qualitative agreement with the result of an analysis performed using the bunch-length measurement. With the calculated longitudinal impedance, the instability threshold in the damping ring is estimated to be a bunch population of 3.3 x 10 10 by using both a Vlasov equation approach and a multi-particle tracking method.

  20. Studies of the longitudinal instability with an electron beam

    International Nuclear Information System (INIS)

    1993-01-01

    Goals for our first-year period are as follows: To study the evolution of a small perturbation in the current pulse (introduced via the grid voltage on the electron gun) when the beam propagates through our 5-m long periodic solenoid channel. Specifically, to see if the perturbation is reflected from the rear end of the pulse. So far these objectives have been met without any delays. We were able to launch different perturbations on the beam resulting in either a slow space-charge wave or a fast wave or both waves. The relative strength of each wave was found to depend on the electron emission temperature of the cathode. The propagation of these waves on an initially rectangular longitudinal beam profile was measured with fast current monitors and the kinetic energy was measured with sensitive energy analyzers at various positions along the 5-m long solenoidal focusing channel. We have also begun to study the behavior of the waves when they reach the respective edge of the beam. But this work is still of a preliminary nature, and we need to refine the beam conditions and measurements in future studies to reach any firm conclusions. Preparations for the resistive-wall instability experiment are in progress

  1. The longitudinal wall impedance instability in a heavy-ion fusion driver

    International Nuclear Information System (INIS)

    Callahan, D.A.; Langdon, A.B.; Friedman, A.; Haber, I.

    1997-01-01

    For more than ten years [J. Bisognano, I. Haber, L. Smith, IEEE Trans. Nucl. Sci. NS-30, 2501 (1983)], the longitudinal wall impedance instability was thought to be a serious threat to the success of heavy-ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability, driven by the impedance of the induction modules used to accelerate the beam. Early estimates of the instability growth rate predicted tens of e-folds due to the instability which would modulate the current and increase the longitudinal momentum spread and prevent focusing the ion beam on the small spot needed at the target. We have simulated this instability using an r-z particle-in-cell code which includes a model for the module impedance. These simulations, using driver parameters, show that growth due to the instability is smaller than in previous calculations. We have seen that growth is mainly limited to one head to tail transit by a space-charge wave. In addition, the capacitive component of the module impedance, which was neglected in the early work of Lee [E. P. Lee, Proc. Linear Accelerator Conference, (UCRL-86452), Santa Fe, NM, 1981] significantly reduces the growth rate. We have also included in the simulation intermittently applied axial confining fields which are thought to be the major source of perturbations to seed the longitudinal instability. Simulations show the beam can adjust to a systematic error in the longitudinal confining fields while a random error excites the most unstable wavelength of the instability. These simulations show that the longitudinal instability must be taken into account in a driver design, but it is not the major factor it was once thought to be. copyright 1997 American Institute of Physics

  2. Fanconi anemia: causes and consequences of genetic instability.

    Science.gov (United States)

    Kalb, R; Neveling, K; Nanda, I; Schindler, D; Hoehn, H

    2006-01-01

    Fanconi anemia (FA) is a rare recessive disease that reflects the cellular and phenotypic consequences of genetic instability: growth retardation, congenital malformations, bone marrow failure, high risk of neoplasia, and premature aging. At the cellular level, manifestations of genetic instability include chromosomal breakage, cell cycle disturbance, and increased somatic mutation rates. FA cells are exquisitely sensitive towards oxygen and alkylating drugs such as mitomycin C or diepoxybutane, pointing to a function of FA genes in the defense against reactive oxygen species and other DNA damaging agents. FA is caused by biallelic mutations in at least 12 different genes which appear to function in the maintenance of genomic stability. Eight of the FA proteins form a nuclear core complex with a catalytic function involving ubiquitination of the central FANCD2 protein. The posttranslational modification of FANCD2 promotes its accumulation in nuclear foci, together with known DNA maintenance proteins such as BRCA1, BRCA2, and the RAD51 recombinase. Biallelic mutations in BRCA2 cause a severe FA-like phenotype, as do biallelic mutations in FANCD2. In fact, only leaky or hypomorphic mutations in this central group of FA genes appear to be compatible with life birth and survival. The newly discovered FANCJ (= BRIP1) and FANCM (= Hef ) genes correspond to known DNA-maintenance genes (helicase resp. helicase-associated endonuclease for fork-structured DNA). These genes provide the most convincing evidence to date of a direct involvement of FA genes in DNA repair functions associated with the resolution of DNA crosslinks and stalled replication forks. Even though genetic instability caused by mutational inactivation of the FANC genes has detrimental effects for the majority of FA patients, around 20% of patients appear to benefit from genetic instability since genetic instability also increases the chance of somatic reversion of their constitutional mutations. Intragenic

  3. Suppression of Longitudinal Coupled-Bunch Instabilities at the KEK-PF

    International Nuclear Information System (INIS)

    Obina, T.; Tobiyama, M.; Honda, T.; Tadano, M.; Flanagan, J.W.; Mitsuhashi, T.; Cheng, W.X.; Fox, J.D.; Teytelman, D.

    2012-01-01

    A bunch-by-bunch feedback system has been developed to suppress longitudinal coupled-bunch instabilities at the KEK-PF. A longitudinal kicker based on a DAFNE-type overdamped cavity has been designed and installed in the ring, and a general purpose signal processor, called iGp, has been developed by the collaboration of the KEK, SLAC, and INFN-LNF. The entire feedback loop has been closed by the end of June 2007, and the feedback system has successfully suppressed the longitudinal dipole-mode instabilities up to 430 mA.

  4. Refinements to longitudinal, single bunch, coherent instability theory

    Energy Technology Data Exchange (ETDEWEB)

    Koscielniak, S R

    1995-06-01

    For the case of a bunched beam confined to a quadratic potential well, we demonstrate the necessity for considering mode-coupling to correctly obtain the threshold current for the d.c. instability. Further we find the effect upon growth rate and coherent tune shift of evaluating the impedance at a complex frequency. For the case of a bunched beam confined to a cosine potential well, we give an exact analytic expression for the dispersion integral, and calculate (with no approximations), the stability diagram for the Robinson instability taking into account Landau damping. This paper comprises extracts from a lengthy internal report. (author). 2 refs., 4 figs.

  5. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.

    Science.gov (United States)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-08

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  6. Study of longitudinal multibunch instabilities for LHC-type beams at the CERN Proton Synchrotron

    CERN Document Server

    Ventura, Letizia; Migliorati, Mauro; Palumbo, Luigi

    This Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Injector upgrade program (LIU). Longitudinal coupled-bunch (CB) oscillations are an important limitation for the high-brightness beam accelerated in the CERN Proton Synchrotron. Up to present intensities they are suppressed by a dedicated feedback system limited to the first two dominant oscillation modes. In view of the proposed installation of a new wide-band FB system in the framework of the LIU program, measurements have been performed on the old system with the aim of dimensioning the new one. A new simulation program, called LCBC ( Longitudinal Coupled Bunch Simulation), has been used to study the behaviour of the CB FB. By means of this code I have started an extensive simulation campaign to benchmark the code with the theory of coupled bunch and to confirm that the 10 MHz cavity system is the main cause of the coupled bunch instabilities in the CERN PS.

  7. Longitudinal instability in heavy-ion-fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1993-05-01

    A induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls

  8. Transverse and longitudinal coupled bunch instabilities in trains of closely spaced bunches

    International Nuclear Information System (INIS)

    Thompson, K.A.; Ruth, R.D.

    1989-03-01

    Damping rings for the next generation of linear collider may need to contain several bunch trains within which the bunches are quire closely spaced (1 or 2 RF wavelengths). Methods are presented for studying the transverse and longitudinal coupled bunch instabilities, applicable to this problem and to other cases in which the placement of the bunches is not necessarily symmetric. 5 refs., 1 fig

  9. Longitudinal Associations between Marital Instability and Child Sleep Problems across Infancy and Toddlerhood in Adoptive Families

    Science.gov (United States)

    Mannering, Anne M.; Harold, Gordon T.; Leve, Leslie D.; Shelton, Katherine H.; Shaw, Daniel S.; Conger, Rand D.; Neiderhiser, Jenae M.; Scaramella, Laura V.; Reiss, David

    2011-01-01

    This study examined the longitudinal association between marital instability and child sleep problems at ages 9 and 18 months in 357 families with a genetically unrelated infant adopted at birth. This design eliminates shared genes as an explanation for similarities between parent and child. Structural equation modeling indicated that T1 marital…

  10. Longitudinal waves and a beam instability in a relativistic anisotropic plasma

    International Nuclear Information System (INIS)

    Onishchenko, O.G.

    1981-01-01

    Dispersion relations are derived for longitudinal waves in a relativistic plasma with an arbitrary anisotropic particle distribution function. Longitudinal waves with phase velocity lower than the speed of light are shown to exist in such a plasma. The damping rate of longitudinal waves due to the Cerenkov interaction with plasma particles is derived for such a plasma. The instability of a beam of high-energy particles in such a plasma is studied. As the anisotropy of an ultrarelativistic plasma becomes less pronounced, the maximum hydrodynamic growth rate decreases

  11. Longitudinal instabilities in circular accelerator and storage rings

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1981-01-01

    The general problem of the longitudinal stability of bunched beams is reviewed. Although there is no general solution it is possible to identify regions in the frequency-risetime space where we can obtain approximate solutions. The collective oscillation frequency is written, and expressions for the effective coupling impedance are given for the high or low frequency and slow and fast blow-up regimes

  12. LONGITUDINAL AND TRANSVERSAL PLASMA WAVE INSTABILITIES IN TWO COUNTERSTREAMING PLASMAS WITHOUT EXTERNAL FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Buenemann, D

    1963-03-15

    Some aspects of the theory of longitudinal and transversal waves in a collisionless nonrelativistic plasma are treated. A dispersion relation for multicomponent plasmas is derived from the linearized Boltzmann-Vlasov equation using the full set of Maxwell's equations without an external field. The velocity distributions of the plasma streams are assumed to be Maxwellian. For the particular case of two counterstreaming plasmas it is shown that there exists transversal instabilities for all counterstreaming velocities whereas the well known two stream instabilities only exist for velocities greater than a critical velocity. Exact solutions for the onset of the instabilities can be given. This kind of instability may occur for any nonisotropic velocity distribution in a collisionless plasma. (auth)

  13. Longitudinal Single-Bunch Instability in the ILC Damping Rings: Estimate of Current Threshold

    International Nuclear Information System (INIS)

    Venturini, Marco; Venturini, Marco

    2008-01-01

    Characterization of single-bunch instabilities in the International Linear Collider (ILC) damping rings (DRs) has been indicated as a high-priority activity toward completion of an engineering design. In this paper we report on a first estimate of the current thresholds for the instability using numerical and analytical models of the wake potentials associated with the various machine components. The numerical models were derived (upon appropriate scaling) from designs of the corresponding components installed in existing machines. The current thresholds for instabilities were determined by numerical solution of the Vlasov equation for the longitudinal dynamics. For the DR baseline lattice as of Feb. 2007 we find the critical current for instability to be safely above the design specifications leaving room for further optimization of the choice of the momentum compaction

  14. Longitudinal instability studies at the SURF II storage ring at NIST

    International Nuclear Information System (INIS)

    Harkay, K.C.; Sereno, N.S.

    1998-01-01

    Measurements of the longitudinal instability observed in the storage ring at the Synchrotrons Ultraviolet Radiation Facility (SURF II) at the National Institute of Standards and Technology (NET) were performed to understand the mechanism driving the instability. The instability, studied in depth by Ralcowsky and others, manifests itself in broad resonance features in the horizontal and vertical motion spectrum of the synchrotrons light from DC to a few kHz. Also observed are multiple synchrotrons harmonics that modulate the revolution harmonics; these are characteristic of longitudinal phase oscillations. These spectral features of the motion are found to be correlated with the periodic lengthening and shortening of the bunch length on time scales from approximately0.1 ms to 20 ms, depending on machine and radio-frequency (rf) system parameters. In this report, the growth rate of the instability is determined from measurements using an rf pickup electrode. The measured growth rates are compared to computed growth rates from an analytical model. Recommendations are made regarding options to control or mitigate the instability. In light of upgrade plans for SURF III, a few comments are presented about the beam lifetime

  15. Theory of longitudinal instability for bunched electron and proton beams

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1977-01-01

    A discussion is given of an original approach for the treatment of the longitudinal stability of high-intensity proton and electron bunches. The general analysis is divided in three steps. First, a search is made for a stationary bunch distribution which is matched to the external rf forces as well as to the current dependent induced fields. The existence of such distribution is questioned. Second, the stability of the stationary solution is checked by applying a small perturbation and observing whether this is initially damped or not. At this point a stability condition is derived in terms of current, surrounding impedance and bunch size. In the last step one should question what happens to the beam in case the stability condition is not satisfied. The problem here is the determination of the final bunch configuration. The originality of the approach stays in the combination of the three steps. All previous theories either consider only the first step or combine the second and third ones but disregard the first

  16. Rethinking Teacher Turnover: Longitudinal Measures of Instability in Schools

    Science.gov (United States)

    Holme, Jennifer Jellison; Jabbar, Huriya; Germain, Emily; Dinning, John

    2018-01-01

    While there is a robust literature examining the patterns and causes of teacher turnover, few articles to date have critically examined the measures of turnover used in these studies. Yet, an assessment of the way turnover is measured is important, as the measures become the means by which the "problem" of turnover becomes defined and…

  17. The Economic Causes and Consequences of Social Instability in China

    OpenAIRE

    John Knight

    2012-01-01

    Social instability is a concept that economists rarely analyse, and yet it can lurk behind much economic policy-making. China’s leadership has often publicly expressed its concerns to avoid ‘social instability’. It is viewed as a threat both to the political order and to the continued rapid growth of the economy. This threat to growth in turn endangers the maintenance of social stability. This paper examines the likely economic determinants of social instability, using both surveys and ...

  18. Analysis of the high frequency longitudinal instability of bunched beams using a computer model

    International Nuclear Information System (INIS)

    Messerschmid, E.; Month, M.

    1976-01-01

    The effects of high frequency longitudinal forces on bunched beams are investigated using a computer model. These forces are thought to arise from the transfer of energy between the beam and various structures in the vacuum chamber, this coupling being characterized by a longitudinal impedance function. The simulation is performed with a passive cavity-like element. It is found that the instability can be generated if three conditions are fulfilled: (1) the impedance must be sufficiently large, (2) the induced field must have a fast wake, and (3) the frequency of the induced field must be high enough. In particular, it is shown that the coasting beam threshold criterion for the longitudinal impedance accurately describes the onset of instability, if local values along the bunch of energy spread and current are used. It is also found that the very fast initial growth rate is in good agreement with linear theory and that the coasting beam overshoot expression may be used as a rough guide of the limiting growth for unstable bunches. Concerning the wake field, it is shown how the instability tends to disappear as the fields persist longer. It is furthermore demonstrated that as the wavelength of the unstable mode is increased, initially unstable conditions begin to weaken and vanish. This, it should be emphasized, is primarily a result of the strong correlation between the unstable mode frequency and the time rate of attenuation of the induced fields. ISR parameters are used throughout and a correspondence between the microwave instability observed in the ISR bunches and the simulated instability is suggested. (Auth.)

  19. Compensation of longitudinal coupled-bunch instability in the advanced photon source storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Nassiri, A.; Song, J.J.; Kang, Y.W.; Kustom, R.L.

    1997-01-01

    A longitudinal couple-bunch (CB) instability was encountered in the 7-GeV storage ring. This instability was found to depend on the bunch fill pattern as well as on the beam intensity. The beam spectrum exhibited a coupled-bunch signature, which could be reproduced by an analytical model. The oscillations were also observed on a horizontal photon monitor. The beam fluctuations exhibited two periodicities, which were found to be correlated with the rf cavity temperatures. This correlation is consistent with the measured temperature dependence of the higher-order mode (HOM) frequencies. The HOM impedance drives the beam when brought into resonance with the CB mode by the temperature variation. Increasing the inlet cavity water temperature suppressed the instability. The experimental results are compared to an analytical model which characterizes the fill-pattern dependence. Studies to identify the offending HOMs are also presented

  20. Monoradiculopathy and secondary segmental instability caused by postoperative pars interarticularis fracture: a case report.

    Science.gov (United States)

    Kaner, Tuncay; Tutkan, Ibrahim

    2009-04-01

    Instability can develop after lumbar spinal surgery. What is also known as secondary segmental instability is one of the important causes of failed back syndrome. In this paper, we described a 45-year-old female patient who was diagnosed with secondary segmental instability caused by left L3 pars interarticularis fracture after a high lumbar disc surgery and was subsequently treated with re-operation. We evaluated the clinical course, diagnosis, and treatment methods for secondary segmental instability caused by postoperative pars interarticularis fracture. Furthermore, we emphasized the importance of preserving the pars interarticularis during upper lumbar disc surgeries in order to avoid a potential stress fracture.

  1. Essays on political instability : Measurement, causes and consequences

    NARCIS (Netherlands)

    Jong-A-Pin, R.

    2008-01-01

    In political economy, the concept of political instability plays a prominent role as it raises uncertainty with respect to future institutions and economic policies, thereby affecting the incentives of e.g. households, firms, and politicians. This dissertation contains four quantitative studies on

  2. Effect of empty buckets on coupled bunch instability in RHIC Booster: Longitudinal phase-space simulation

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Griffin, J.E.; Khiari, F.Z.

    1988-05-01

    Excitation of large amplitude coherent dipole bunch oscillations by beam induced voltages in spurious narrow resonances are simulated using a longitudinal phase-space tracking code (ESME). Simulation of the developing instability in a high intensity proton beam driven by a spurious parasitic resonance of the rf cavities allows one to estimate the final longitudinal emittance of the beam at the end of the cycle, which puts serious limitations on the machine performance. The growth of the coupled bunch modes is significantly enhanced if a gap of missing bunches is present, which is an inherent feature of the high intensity proton machines. A strong transient excitation of the parasitic resonance by the Fourier components of the beam spectrum resulting from the presence of the gap is suggested as a possible mechanism of this enhancement. 10 refs., 4 figs., 1 tab

  3. An Odontoid Fracture Causing Apnea, Cardiac Instability, and Quadriplegia

    Directory of Open Access Journals (Sweden)

    Christian A. Bowers

    2012-01-01

    Full Text Available Odontoid fractures are typically associated with low rates of acute neurologic deficit and morbidity/mortality in nonelderly patients. In the patient in this case, traumatic injury triggered by a syncopal event led to a combined C1-C2 fracture and a fatal spinal cord injury with apnea, quadriplegia, and cardiovascular instability. We briefly review the anatomical basis for the pathophysiology of cardiac dysfunction following high-cervical spine injury and present an example of a worst-case scenario.

  4. Using the longitudinal space charge instability for generation of vacuum ultraviolet and x-ray radiation

    Directory of Open Access Journals (Sweden)

    E. A. Schneidmiller

    2010-11-01

    Full Text Available Longitudinal space charge (LSC driven microbunching instability in electron beam formation systems of x-ray free-electron lasers (FELs is a recently discovered effect hampering beam instrumentation and FEL operation. The instability was observed in different facilities in infrared and visible wavelength ranges. In this paper we propose to use such an instability for generation of vacuum ultraviolet (VUV and x-ray radiation. A typical longitudinal space charge amplifier (LSCA consists of few amplification cascades (drift space plus chicane with a short undulator behind the last cascade. If the amplifier starts up from the shot noise, the amplified density modulation has a wide band, on the order of unity. The bandwidth of the radiation within the central cone is given by an inverse number of undulator periods. A wavelength compression could be an attractive option for LSCA since the process is broadband, and a high compression stability is not required. LSCA can be used as a cheap addition to the existing or planned short-wavelength FELs. In particular, it can produce the second color for a pump-probe experiment. It is also possible to generate attosecond pulses in the VUV and x-ray regimes. Some user experiments can profit from a relatively large bandwidth of the radiation, and this is easy to obtain in the LSCA scheme. Finally, since the amplification mechanism is broadband and robust, LSCA can be an interesting alternative to the self-amplified spontaneous emission free-electron laser (SASE FEL in the case of using laser-plasma accelerators as drivers of light sources.

  5. Loss of centrioles causes chromosomal instability in vertebrate somatic cells.

    Science.gov (United States)

    Sir, Joo-Hee; Pütz, Monika; Daly, Owen; Morrison, Ciaran G; Dunning, Mark; Kilmartin, John V; Gergely, Fanni

    2013-12-09

    Most animal cells contain a centrosome, which comprises a pair of centrioles surrounded by an ordered pericentriolar matrix (PCM). Although the role of this organelle in organizing the mitotic spindle poles is well established, its precise contribution to cell division and cell survival remains a subject of debate. By genetically ablating key components of centriole biogenesis in chicken DT40 B cells, we generated multiple cell lines that lack centrioles. PCM components accumulated in acentriolar microtubule (MT)-organizing centers but failed to adopt a higher-order structure, as shown by three-dimensional structured illumination microscopy. Cells without centrioles exhibited both a delay in bipolar spindle assembly and a high rate of chromosomal instability. Collectively, our results expose a vital role for centrosomes in establishing a mitotic spindle geometry that facilitates correct kinetochore-MT attachments. We propose that centrosomes are essential in organisms in which rapid segregation of a large number of chromosomes needs to be attained with fidelity.

  6. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  7. Molecular causes and consequences of genetic instability with respect to the FA/BRCA Caretaker Pathway

    OpenAIRE

    Neveling, Kornelia

    2012-01-01

    In the context of this thesis, I investigated the molecular causes and functional consequences of genetic instability using a human inherited disease, Fanconi anemia. FA patients display a highly variable clinical phenotype, including congenital abnormalities, progressive bone marrow failure and a high cancer risk. The FA cellular phenotype is characterized by spontaneous and inducible chromosomal instability, and a typical S/G2 phase arrest after exposure to DNA-damaging agents. So far, 13 g...

  8. Kelvin-Helmholtz instability for a bounded plasma flow in a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Burinskaya, T. M.; Shevelev, M. M.; Rauch, J.-L.

    2011-01-01

    Kelvin-Helmholtz MHD instability in a plane three-layer plasma is investigated. A general dispersion relation for the case of arbitrarily orientated magnetic fields and flow velocities in the layers is derived, and its solutions for a bounded plasma flow in a longitudinal magnetic field are studied numerically. Analysis of Kelvin-Helmholtz instability for different ion acoustic velocities shows that perturbations with wavelengths on the order of or longer than the flow thickness can grow in an arbitrary direction even at a zero temperature. Oscillations excited at small angles with respect to the magnetic field exist in a limited range of wavenumbers even without allowance for the finite width of the transition region between the flow and the ambient plasma. It is shown that, in a low-temperature plasma, solutions resulting in kink-like deformations of the plasma flow grow at a higher rate than those resulting in quasi-symmetric (sausage-like) deformations. The transverse structure of oscillatory-damped eigenmodes in a low-temperature plasma is analyzed. The results obtained are used to explain mechanisms for the excitation of ultra-low-frequency long-wavelength oscillations propagating along the magnetic field in the plasma sheet boundary layer of the Earth’s magnetotail penetrated by fast plasma flows.

  9. Fundamental cavity impedance and longitudinal coupled-bunch instabilities at the High Luminosity Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    P. Baudrenghien

    2017-01-01

    Full Text Available The interaction between beam dynamics and the radio frequency (rf station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf system that measures the cavity field (or beam current and generates the rf power drive. The Large Hadron Collider (LHC rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz can only come from the synchrotron tune spread (Landau damping and will be very small (time constant in the order of 0.1 s. In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters. Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.

  10. Kelvin-Helmholtz instability as a possible cause of edge localized modes

    International Nuclear Information System (INIS)

    Strauss, H.R.

    1992-01-01

    Edge localized modes may be a Kelvin-Helmholtz instability caused by the sheared rotation of H-mode plasmas. The Kelvin-Helmholtz instability is stabilized by coupling to Alfven waves. There is a critical velocity gradient, of the order of the Alfven velocity divided by the magnetic shear length. This is verified in a numerical simulation. The critical velocity shear is consistent with experiment. A non-linear simulation shows how the Kelvin-Helmholtz mode can cause oscillations of the velocity profile. (author). Letter-to-the-editor. 13 refs, 6 figs

  11. Slope instability caused by small variations in hydraulic conductivity

    Science.gov (United States)

    Reid, M.E.

    1997-01-01

    Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.

  12. On losses caused in RF cavities by longitudinal electric fields

    International Nuclear Information System (INIS)

    Halbritter, J.

    1976-02-01

    Rf modes with large longitudinal electric fields (div E vector unequal to 0) at the cavity wall systematically show worse rf properties than modes with div E vector identical with 0; e.g. enlarged rf residual losses. While magnetic residual losses R sub(res) proportional f 2 are due to uncharged inhomogeneities in the oxide coating the metal, the electric residual losses R sub(orthogonal) occur via charged states in the oxide: the recharging of those states by tunnel exchange causes excitation across the energy gap of the superconductor yielding residual losses at high rf field strengths. The interaction of E sub(orthogonal) with the charges generate (longitudinal) phonons showing up as contribution to R sub(orthogonal). The resulting R sub(orthogonal) increases with E sub(orthogonal) and is nearly independent of frequency f, indicating the importance of R sub(orthogonal) for low frequency sc cavities, especially at high field strengths. In addition R sub(orthogonal) can account for the observed large residual losses of strip line modes in narrow junctions and joints between superconductors. (orig.) [de

  13. Transition from convective to absolute Raman instability via the longitudinal relativistic effect by using Vlasov-Maxwell simulations

    Science.gov (United States)

    Wang, Q.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Feng, Q. S.; Zhang, H. C.; He, X. T.

    2018-01-01

    The longitudinal relativistic effect on stimulated Raman backscattering (SRBS) is investigated by using one-dimensional (1D) Vlasov-Maxwell simulations. Using a short backscattered light seed pulse with a very small amplitude, the linear gain spectra of SRBS in the strongly convective regime is presented by combining the relativistic and non-relativistic 1D Vlasov-Maxwell simulations, which is in agreement with the steady-state linear theory. More interestingly, by considering transition from convective to absolute instability due to electron trapping, we successfully predict the critical duration of the seed which can just trigger the kinetic inflation of the excited SRBS after the seed leaves the simulation box. The critical duration in the relativistic case is much shorter than that in the nonrelativistic case, which indicates that the kinetic inflation more easily occurs in the relativistic case than in the nonrelativistic case. In the weakly convective regime, the transition from convective to absolute instability for SRBS can directly occur in the linear regime due to the longitudinal relativistic modification. For the same pump, our simulations first demonstrate that the SRBS excited by a short and small seed pulse is a convective instability in the nonrelativistic case but becomes an absolute instability due to the decrease of the linear Landau damping from the longitudinal relativistic modification in the relativistic case. In more detail, the growth rate of the backscattered light is also in excellent agreement with theoretical prediction.

  14. Causes of Marital Instability in the Port-Harcourt Municipality, Nigeria

    African Journals Online (AJOL)

    Causes of Marital Instability in the Port-Harcourt Municipality, Nigeria: ... clusters of five, viz; absence of love and trust, anti-social vices, economic, socio-cultural and ... are the most positive indicators to marriage stability in our Nigerian homes.

  15. Electron heating caused by the ion-acoustic decay instability in a finite-length system

    International Nuclear Information System (INIS)

    Rambo, P.W.; Woo, W.; DeGroot, J.S.; Mizuno, K.

    1984-01-01

    The ion-acoustic decay instability is investigated for a finite-length plasma with density somewhat below the cutoff density of the electromagnetic driver (napprox.0.7n/sub c/). For this regime, the heating in a very long system can overpopulate the electron tail and cause linear saturation of the low phase velocity electron plasma waves. For a short system, the instability is nonlinearly saturated at larger amplitude by ion trapping. Absorption can be significantly increased by the large-amplitude ion waves. These results compare favorably with microwave experiments

  16. Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Univ. of Chicago, IL (United States)

    2017-03-01

    Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.

  17. Macroeconomic instability: its causes and consequences for the economy of Ukraine

    Directory of Open Access Journals (Sweden)

    Natalia SKOROBOGATOVA

    2016-06-01

    Full Text Available The article deals with the concepts of appearance and elimination of macroeconomic instability, and the Keynesian approach for overcoming issues in Ukraine’s macroeconomic instability. Based on the Ukraine Statistics Service and World Bank data, Ukraine's economy tendencies have been defined: the country has not reached the pre-crisis economic level. The article identifies the reasons of negative balance payments and budget deficit: a decrease in production value, negative trade balance, growth of foreign creditor’s debt, currency instability, an increase in budget spending. The dynamics of income and expenditure within Ukraine budget has been analyzed, and also the destructiveness of existing approaches for the main financial documents has been grounded. Considering Ukraine’s economic and political situation, the main causes of macroeconomic instability are systematized. Government-implemented approaches for overcoming the macroeconomic instability have been suggested. The article introduces an approach for minimizing the negative effects on businesses, based on the timely identification of macroeconomic risks in terms of internal and external management. The possible negative impacts in case the timely decisions are not implemented have been assessed.

  18. Sudden onset odontoid fracture caused by cervical instability in hypotonic cerebral palsy.

    Science.gov (United States)

    Shiohama, Tadashi; Fujii, Katsunori; Kitazawa, Katsuhiko; Takahashi, Akiko; Maemoto, Tatsuo; Honda, Akihito

    2013-11-01

    Fractures of the upper cervical spine rarely occur but carry a high rate of mortality and neurological disabilities in children. Although odontoid fractures are commonly caused by high-impact injuries, cerebral palsy children with cervical instability have a risk of developing spinal fractures even from mild trauma. We herein present the first case of an odontoid fracture in a 4-year-old boy with cerebral palsy. He exhibited prominent cervical instability due to hypotonic cerebral palsy from infancy. He suddenly developed acute respiratory failure, which subsequently required mechanical ventilation. Neuroimaging clearly revealed a type-III odontoid fracture accompanied by anterior displacement with compression of the cervical spinal cord. Bone mineral density was prominently decreased probably due to his long-term bedridden status and poor nutritional condition. We subsequently performed posterior internal fixation surgically using an onlay bone graft, resulting in a dramatic improvement in his respiratory failure. To our knowledge, this is the first report of an odontoid fracture caused by cervical instability in hypotonic cerebral palsy. Since cervical instability and decreased bone mineral density are frequently associated with cerebral palsy, odontoid fractures should be cautiously examined in cases of sudden onset respiratory failure and aggravated weakness, especially in hypotonic cerebral palsy patients. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Primary postural instability: a cause of recurrent sudden falls in the elderly.

    Science.gov (United States)

    Djaldetti, R; Lorberboym, M; Melamed, E

    2006-12-01

    Elderly patients with recurrent falls are frequently diagnosed with an extrapyramidal syndrome. This study aims to characterise a distinct group of patients with recurrent falls and postural instability as a hallmark of the clinical examination. The study took place in the Movement Disorders Unit, Rabin Medical Center, Petah Tiqva, Israel among 26 patients with recurrent falls who had no clinical evidence of a neurodegenerative disease. Medical records, neurological examination and brain imaging studies were assessed. Falls in these patients were sudden, unprovoked, with no vertigo or loss of consciousness. All had postural instability with minimal or no abnormality on the neurological examination. Brain imaging showed diffuse ischaemic changes in 65%. [(123)I]-FPCIT SPECT with the dopamine transporter ligand, performed in five patients, was normal in all. Recurrent falls might be caused by a neurological syndrome that primarily affects balance control. The importance of identifying this disorder is its distinction from other parkinsonian syndromes causing falls.

  20. Odontoid pannus formation in a patient with ankylosing spondylitis causing atlanto-axial instability

    Science.gov (United States)

    Rajak, Rizwan; Wardle, Phil; Rhys-Dillon, Ceril; Martin, James C

    2012-01-01

    Ankylosing spondylitis is one of the commonest inflammatory diseases of the axial skeleton and can be complicated by atlanto-axial instability. This serious and likely underestimated complication can be easily overlooked. However, there are clear features which can help alert suspicion to initiate the appropriate investigations with imaging that is very effective at diagnosing and assessing this complication. The authors report an unusual case where odontoid pannus formation, akin to that seen in rheumatoid arthritis, was the underlying cause. PMID:22665557

  1. Analysis of the Instability Phenomena Caused by Steam in High-Pressure Turbines

    Directory of Open Access Journals (Sweden)

    Paolo Pennacchi

    2011-01-01

    Full Text Available Instability phenomena in steam turbines may happen as a consequence of certain characteristics of the steam flow as well as of the mechanical and geometrical properties of the seals. This phenomenon can be modeled and the raise of the steam flow and pressure causes the increase of the cross coupled coefficients used to model the seal stiffness. As a consequence, the eigenvalues and eigenmodes of the mathematical model of the machine change. The real part of the eigenvalue associated with the first flexural normal mode of the turbine shaft may become positive causing the conditions for unstable vibrations. The original contribution of the paper is the application of a model-based analysis of the dynamic behavior of a large power unit, affected by steam-whirl instability phenomena. The model proposed by the authors allows studying successfully the experimental case. The threshold level of the steam flow that causes instability conditions is analyzed and used to define the stability margin of the power unit.

  2. Studies of Longitudinal Coupled-Bunch Instabilities in the LHC Injectors Chain

    CERN Document Server

    AUTHOR|(CDS)2087149; Migliorati, M

    Among several challenging objectives of the LHC Injectors Upgrade project, one aim is to double the beam intensity of the CERN Proton Synchrotron (PS) in order to achieve the integrated luminosity target of the High-Luminosity LHC project. A known limitation to reach the required high intensity is caused by the longitudinal coupled-bunch (CB) oscillations developing above the PS transition energy. The unwanted oscillations induce large bunch-to-bunch intensity variations not compatible with the specifications of the future LHC-type beams. In 2014 a new longitudinal kicker cavity has been installed, the Finemet cavity, as a part of the new digital coupled-bunch feedback (FB) system. The Finemet cavity allows with its large frequency bandwidth, to damp all the expected oscillation modes simultaneously. In the framework of this PhD study the impedance contribution of this equipment has been analyzed starting from the present knowledge of the machine impedance. A model of both the 10 MHz and the Finemet has been ...

  3. X-band microwave generation caused by plasma-sheath instability

    International Nuclear Information System (INIS)

    Bliokh, Y.; Felsteiner, J.; Slutsker, Ya. Z.

    2012-01-01

    It is well known that oscillations at the electron plasma frequency may appear due to instability of the plasma sheath near a positively biased electrode immersed in plasma. This instability is caused by transit-time effects when electrons, collected by this electrode, pass through the sheath. Such oscillations appear as low-power short spikes due to additional ionization of a neutral gas in the electrode vicinity. Herein we present first results obtained when the additional ionization was eliminated. We succeeded in prolonging the oscillations during the whole time a positive bias was applied to the electrode. These oscillations could be obtained at much higher frequency than previously reported (tens of GHz compared to few hundreds of MHz) and power of tens of mW. These results in combination with presented theoretical estimations may be useful, e.g., for plasma diagnostics.

  4. Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists

    Science.gov (United States)

    Villasenor Aguilar, Jose Maria

    Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end

  5. Transverse to longitudinal phase space coupling in an electron beam for suppression of microbunching instability

    Directory of Open Access Journals (Sweden)

    Dazhang Huang

    2016-10-01

    Full Text Available The microbunching instability developed during the beam compression process in the linear accelerator (LINAC of a free-electron laser (FEL facility has always been a problem that degrades the lasing performance, and even no FEL is able to be produced if the beam quality is destroyed too much by the instability. A common way to suppress the microbunching instability is to introduce extra uncorrelated energy spread by the laser heater that heats the beam through the interaction between the electron and laser beam, as what has been successfully implemented in the Linac Coherent Light Source and Fermi@Elettra. In this paper, a simple and effective scheme is proposed to suppress the microbunching instability by adding two transverse gradient undulators (TGU before and after the magnetic bunch compressor. The additional uncorrelated energy spread and the density mixing from the transverse spread brought up by the first TGU results in significant suppression of the instability. Meanwhile, the extra slice energy spread and the transverse emittance can also be effectively recovered by the second TGU. The magnitude of the suppression can be easily controlled by varying the strength of the magnetic fields of the TGUs. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the LINAC of an x-ray free-electron laser facility.

  6. Fiber amplifiers under thermal loads leading to transverse mode instability

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard

    2014-01-01

    Transverse mode instability (TMI) in rare-earth doped fiber amplifiers operating above an average power threshold is caused by intermodal stimulated thermal Rayleigh scattering due to quantum defect heating. We investigate thermally induced longitudinal waveguide perturbations causing power...

  7. The Internal Causes of Political Instability in the Republic of Turkey

    Directory of Open Access Journals (Sweden)

    Sergey Borisovich Druzhilovsky

    2016-01-01

    Full Text Available The article examines the causes of the permanent political instability in the Turkish Republic, which leads to frequent change of governments, degradation of political parties and changing of policies. On the example of the activities of different cabinets it is showen that the basis of their instability is the frequent creation of coalition governments consisting of parties that stand on different ideological positions. Inter-party antagonism, in its turn, is a consequence of the split of the Turkish society along civilizational, ethnic and religious grounds, which determines the different political orientation of the various layers of the Turkish society. At the same time the article shows the examples of the undoubted efficiency of one-party governments, however they never get support from the opposition parties, and eventually also fail to effectively and consistently implement their proposed policies. The author also deals with a policy of the ruling today in Turkey, the Islamist Party of Justice and Development, which after several years of successful political and economic reforms to date entered the period of deep crisis and is increasingly losing its authority and influence both in Turkey and in neighboring countries.

  8. Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability

    Science.gov (United States)

    Wei, Lai; Zeng, Jing; Chi, Maoru; Wang, Jianbin

    2017-09-01

    In particular locations of the high-speed track, the worn wheel profile matched up with the worn rail profile will lead to an extremely high-conicity wheel-rail contact. Consequently, the bogie hunting instability arises, which further results in the so-called carbody shaking phenomenon. In this paper, the carbody elastic vibrations of a high-speed vehicle in service are firstly introduced. Modal tests are conducted to identity the elastic modes of the carbody. The ride comfort and running safety indices for the tested vehicle are evaluated. The rigid-flexible coupling dynamic model for the high-speed passenger car is then developed by using the FE and MBS coupling approach. The rail profiles in those particular locations are measured and further integrated into the simulation model to reproduce the bogie hunting and carbody elastic vibrations. The effects of wheel and rail wear on the vehicle system response, e.g. wheelset bifurcation graph and carbody vibrations, are studied. Two improvement measures, including the wheel profile modification and rail grinding, are proposed to provide possible solutions. It is found that the wheel-rail contact conicity can be lowered by decreasing wheel flange thickness or grinding rail corner, which is expected to improve the bogie hunting stability under worn rail and worn wheel conditions. The carbody elastic vibrations caused by bogie hunting instability can be further restrained.

  9. Buckling Instability Causes Inertial Thrust for Spherical Swimmers at All Scales

    Science.gov (United States)

    Djellouli, Adel; Marmottant, Philippe; Djeridi, Henda; Quilliet, Catherine; Coupier, Gwennou

    2017-12-01

    Microswimmers, and among them aspirant microrobots, generally have to cope with flows where viscous forces are dominant, characterized by a low Reynolds number (Re). This implies constraints on the possible sequences of body motion, which have to be nonreciprocal. Furthermore, the presence of a strong drag limits the range of resulting velocities. Here, we propose a swimming mechanism which uses the buckling instability triggered by pressure waves to propel a spherical, hollow shell. With a macroscopic experimental model, we show that a net displacement is produced at all Re regimes. An optimal displacement caused by nontrivial history effects is reached at intermediate Re. We show that, due to the fast activation induced by the instability, this regime is reachable by microscopic shells. The rapid dynamics would also allow high-frequency excitation with standard traveling ultrasonic waves. Scale considerations predict a swimming velocity of order 1 cm /s for a remote-controlled microrobot, a suitable value for biological applications such as drug delivery.

  10. PTEN C-Terminal Deletion Causes Genomic Instability and Tumor Development

    Directory of Open Access Journals (Sweden)

    Zhuo Sun

    2014-03-01

    Full Text Available Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as PtenΔC. Mice heterozygous for PtenΔC develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.

  11. Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability.

    Science.gov (United States)

    Le Guen, Tangui; Jullien, Laurent; Touzot, Fabien; Schertzer, Michael; Gaillard, Laetitia; Perderiset, Mylène; Carpentier, Wassila; Nitschke, Patrick; Picard, Capucine; Couillault, Gérard; Soulier, Jean; Fischer, Alain; Callebaut, Isabelle; Jabado, Nada; Londono-Vallejo, Arturo; de Villartay, Jean-Pierre; Revy, Patrick

    2013-08-15

    Hoyeraal-Hreidarsson syndrome (HHS), a severe variant of dyskeratosis congenita (DC), is characterized by early onset bone marrow failure, immunodeficiency and developmental defects. Several factors involved in telomere length maintenance and/or protection are defective in HHS/DC, underlining the relationship between telomere dysfunction and these diseases. By combining whole-genome linkage analysis and exome sequencing, we identified compound heterozygous RTEL1 (regulator of telomere elongation helicase 1) mutations in three patients with HHS from two unrelated families. RTEL1 is a DNA helicase that participates in DNA replication, DNA repair and telomere integrity. We show that, in addition to short telomeres, RTEL1-deficient cells from patients exhibit hallmarks of genome instability, including spontaneous DNA damage, anaphase bridges and telomeric aberrations. Collectively, these results identify RTEL1 as a novel HHS-causing gene and highlight its role as a genomic caretaker in humans.

  12. Beam dynamics and longitudinal instabilities in heavy-ion-fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1992-01-01

    An induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls. (Author) tab., 10 refs

  13. Beam dynamics and longitudinal instabilities in heavy ion fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1992-08-01

    An induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls

  14. Weak oceanic heat transport as a cause of the instability of glacial climates

    Energy Technology Data Exchange (ETDEWEB)

    Colin de Verdiere, Alain [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans, Alain Colin de Verdiere, Brest 3 (France); Te Raa, L. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands); Netherlands Organisation for Applied Scientific Research TNO, The Hague (Netherlands)

    2010-12-15

    The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean - atmosphere - sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard - Oeschger events, may be internal instabilities of the climate system

  15. Asymptotic analysis of the longitudinal instability of a heavy ion induction linac

    International Nuclear Information System (INIS)

    Lee, E.P.; Smith, L.

    1990-09-01

    An Induction Linac accelerating high ion currents at sub-relativistic energies is predicted to exhibit unstable growth of current fluctuations at low frequencies. The instability is driven by the interaction between the beam and complex impedance of the induction modules. In general, the detailed form of the growing disturbance depends on the initial perturbation and ratio of pulse length to accelerator length, as well as the specific form of the impedance. An asymptotic analysis of the several regimes of interest is presented. 1 ref

  16. Current filamentation caused by the electrochemical instability in a fully ionized plasma

    International Nuclear Information System (INIS)

    Haines, M.G.; Marsh, F.

    1983-01-01

    This chapter is primarily concerned with the non-linear development of electrothermal instabilities in a fully ionized plasma discharge in which the current is predominantly carried parallel to an applied magnetic field, as in the Tokamak configuration. Discusses instabilities with wave-number K perpendicular to magnetic field B and current J; the non-linear steady state; amplitude of the filaments; and runaway electrons and ion acoustic instabilities. Concludes that the steady non-linear amplitude of the fully developed instability shows a spiky filamentary structure with the possibility of the generation of runaway electrons and ion acoustic turbulence in the current maxima. Finds that the addition of bremsstrahlung radiation loss enhances the instability, reducing the critical ratio of T /SUB e/ to T /SUB i/ for its onset, and yielding a maximum ion temperature attainable by Joule heating and equipartition

  17. Secondary knee instability caused by fracture of the stabilizing insert in a dual-articular total knee

    DEFF Research Database (Denmark)

    Boesen, Morten P; Jensen, Tim Toftgaard; Husted, Henrik

    2004-01-01

    A case of a fractured polyethylene stabilizing insert causing secondary knee instability in a Dual-articular total knee arthroplasty (TKA) is presented. A 65-year-old woman who underwent surgery with a Dual-articular TKA 4 years earlier had a well-functioning prosthesis until a fall, after which......-articular knee....

  18. Morphological instability of Ag films caused by phase transition in the underlying Ta barrier layer

    Energy Technology Data Exchange (ETDEWEB)

    Mardani, Shabnam, E-mail: shabnam.mardani@angstrom.uu.se; Vallin, Örjan; Wätjen, Jörn Timo; Norström, Hans; Olsson, Jörgen; Zhang, Shi-Li, E-mail: shili.zhang@angstrom.uu.se [Solid State Electronics, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-75121 (Sweden)

    2014-08-18

    Wide-bandgap (WBG) semiconductor technologies are maturing and may provide increased device performance in many fields of applications, such as high-temperature electronics. However, there are still issues regarding the stability and reliability of WBG devices. Of particular importance is the high-temperature stability of interconnects for electronic systems based on WBG-semiconductors. For metallization without proper encapsulation, morphological degradation can occur at elevated temperatures. Sandwiching Ag films between Ta and/or TaN layers in this study is found to be electrically and morphologically stabilize the Ag metallization up to 800 °C, compared to 600 °C for uncapped films. However, the barrier layer plays a key role and TaN is found to be superior to Ta, resulting in the best achieved stability, whereas the difference between Ta and TaN caps is negligible. The β-to-α phase transition in the underlying Ta barrier layer is identified as the major cause responsible for the morphological instability observed above 600 °C. It is shown that this phase transition can be avoided using a stacked Ta/TaN barrier.

  19. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    International Nuclear Information System (INIS)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis

    2010-01-01

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of ≥10 5 G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of ∼2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.

  20. Nonlinear features of the longitudinal instability for high-current machines

    International Nuclear Information System (INIS)

    Hofmann, I.; Boine-Frankenheim, O.

    1999-01-01

    We present results from experiments at the GSI machines as well as computer simulation for space charge dominated coasting beams (below transition). It is found that for the high-current machines presently under discussion the actual challenge lies in the nonlinear regime. Experiments are in good agreement with theory and simulation in the linear regime; for the nonlinear regime and long-time evolution rsp. saturation our experimental results show good agreement in some aspects, like wave steepening. To analyze the final momentum distribution we still depend on simulation, which shows that the behavior differs substantially, depending on whether the working point in the impedance plane lies close to the real (resistive dominated) or imaginary (space charge dominated) axis, or in between. For the space-charge-dominated regime (Re Z<< Im Z) it is found by computer simulation that for currents far above the Keil-Schnell threshold self-stabilization occurs by formation of a momentum tail, hence linear instability criteria can be practically ignored. It is shown here that the global impedance distribution is of crucial importance

  1. Causes of death among females-investigating beyond maternal causes: a community-based longitudinal study.

    Science.gov (United States)

    Melaku, Yohannes Adama; Weldearegawi, Berhe; Aregay, Alemseged; Tesfay, Fisaha Haile; Abreha, Loko; Abera, Semaw Ferede; Bezabih, Afework Mulugeta

    2014-09-10

    In developing countries, investigating mortality levels and causes of death among all age female population despite the childhood and maternal related deaths is important to design appropriate and tailored interventions and to improve survival of female residents. Under Kilite-Awlealo Health and Demographic Surveillance System, we investigated mortality rates and causes of death in a cohort of female population from 1st of January 2010 to 31st of December 2012. At the baseline, 33,688 females were involved for the prospective follow-up study. Households under the study were updated every six months by fulltime surveillance data collectors to identify vital events, including deaths. Verbal Autopsy (VA) data were collected by separate trained data collectors for all identified deaths in the surveillance site. Trained physicians assigned underlining causes of death using the 10th edition of International Classification of Diseases (ICD). We assessed overall, age- and cause-specific mortality rates per 1000 person-years. Causes of death among all deceased females and by age groups were ranked based on cause specific mortality rates. Analysis was performed using Stata Version 11.1. During the follow-up period, 105,793.9 person-years of observation were generated, and 398 female deaths were recorded. This gave an overall mortality rate of 3.76 (95% confidence interval (CI): 3.41, 4.15) per 1,000 person-years. The top three broad causes of death were infectious and parasitic diseases (1.40 deaths per 1000 person-years), non-communicable diseases (0.98 deaths per 1000 person-years) and external causes (0.36 per 1000 person-years). Most deaths among reproductive age female were caused by Human Deficiency Virus/Acquired Immune Deficiency Virus (HIV/AIDS) and tuberculosis (0.14 per 1000 person-years for each cause). Pregnancy and childbirth related causes were responsible for few deaths among women of reproductive age--3 out of 73 deaths (4.1%) or 5.34 deaths per 1,000 person

  2. Evaluation of bridge instability caused by dynamic scour based on fractal theory

    International Nuclear Information System (INIS)

    Lin, Tzu-Kang; Shian Chang, Yu; Wu, Rih-Teng; Chang, Kuo-Chun

    2013-01-01

    Given their special structural characteristics, bridges are prone to suffer from the effects of many hazards, such as earthquakes, wind, or floods. As most of the recent unexpected damage and destruction of bridges has been caused by hydraulic issues, monitoring the scour depth of bridges has become an important topic. Currently, approaches to scour monitoring mainly focus on either installing sensors on the substructure of a bridge or identifying the physical parameters of a bridge, which commonly face problems of system survival or reliability. To solve those bottlenecks, a novel structural health monitoring (SHM) concept was proposed by utilizing the two dominant parameters of fractal theory, including the fractal dimension and the topothesy, to evaluate the instability condition of a bridge structure rapidly. To demonstrate the performance of this method, a series of experiments has been carried out. The function of the two parameters was first determined using data collected from a single bridge column scour test. As the fractal dimension gradually decreased, following the trend of the scour depth, it was treated as an alternative to the fundamental frequency of a bridge structure in the existing methods. Meanwhile, the potential of a positive correlation between the topothesy and the amplitude of vibration data was also investigated. The excellent sensitivity of the fractal parameters related to the scour depth was then demonstrated in a full-bridge experiment. Moreover, with the combination of these two parameters, a safety index to detect the critical scour condition was proposed. The experimental results have demonstrated that the critical scour condition can be predicted by the proposed safety index. The monitoring system developed greatly advances the field of bridge scour health monitoring and offers an alternative choice to traditional scour monitoring technology. (paper)

  3. Causes of genome instability: the effect of low dose chemical exposures in modern society

    Science.gov (United States)

    Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  4. Loss of RMI2 Increases Genome Instability and Causes a Bloom-Like Syndrome.

    Directory of Open Access Journals (Sweden)

    Damien F Hudson

    2016-12-01

    Full Text Available Bloom syndrome is a recessive human genetic disorder with features of genome instability, growth deficiency and predisposition to cancer. The only known causative gene is the BLM helicase that is a member of a protein complex along with topoisomerase III alpha, RMI1 and 2, which maintains replication fork stability and dissolves double Holliday junctions to prevent genome instability. Here we report the identification of a second gene, RMI2, that is deleted in affected siblings with Bloom-like features. Cells from homozygous individuals exhibit elevated rates of sister chromatid exchange, anaphase DNA bridges and micronuclei. Similar genome and chromosome instability phenotypes are observed in independently derived RMI2 knockout cells. In both patient and knockout cell lines reduced localisation of BLM to ultra fine DNA bridges and FANCD2 at foci linking bridges are observed. Overall, loss of RMI2 produces a partially active BLM complex with mild features of Bloom syndrome.

  5. Germ-line CAG repeat instability causes extreme CAG repeat expansion with infantile-onset spinocerebellar ataxia type 2

    DEFF Research Database (Denmark)

    Vinther-Jensen, Tua; Ek, Jakob; Duno, Morten

    2013-01-01

    The spinocerebellar ataxias (SCA) are a genetically and clinically heterogeneous group of diseases, characterized by dominant inheritance, progressive cerebellar ataxia and diverse extracerebellar symptoms. A subgroup of the ataxias is caused by unstable CAG-repeat expansions in their respective ...... of paternal germ-line repeat sequence instability of the expanded SCA2 locus.European Journal of Human Genetics advance online publication, 10 October 2012; doi:10.1038/ejhg.2012.231....

  6. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.

    Science.gov (United States)

    Pack, Min; Kaneelil, Paul; Kim, Hyoungsoo; Sun, Ying

    2018-05-01

    Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

  7. Nucleation of frictional instability caused by fluid pressurization in subducted blueschist

    NARCIS (Netherlands)

    Sawai, M.; Niemeijer, A.R.; Plümper, O.; Hirose, T.; Spiers, C.J.

    2016-01-01

    Pore pressure is an important factor in controlling the slip instability of faults and thus the generation of earthquakes. Particularly slow earthquakes are widespread in subduction zones and usually linked to the occurrence of high pore pressure. Yet the influence of fluid pressure and effective

  8. Sausage mode instability of thin current sheets as a cause of magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    J. Büchner

    Full Text Available Observations have shown that, prior to substorm explosions, thin current sheets are formed in the plasma sheet of the Earth's magnetotail. This provokes the question, to what extent current-sheet thinning and substorm onsets are physically, maybe even causally, related. To answer this question, one has to understand the plasma stability of thin current sheets. Kinetic effects must be taken into account since particle scales are reached in the course of tail current-sheet thinning. We present the results of theoretical investigations of the stability of thin current sheets and about the most unstable mode of their decay. Our conclusions are based upon a non-local linear dispersion analysis of a cross-magnetic field instability of Harris-type current sheets. We found that a sausage-mode bulk current instability starts after a sheet has thinned down to the ion inertial length. We also present the results of three-dimensional electromagnetic PIC-code simulations carried out for mass ratios up to Mi / me=64. They verify the linearly predicted properties of the sausage mode decay of thin current sheets in the parameter range of interest.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms · Space plasma physics (magnetic reconnection

  9. Minor or occult ankle instability as a cause of anterolateral pain after ankle sprain.

    Science.gov (United States)

    Vega, Jordi; Peña, Fernando; Golanó, Pau

    2016-04-01

    The aim of this study was to determine which intra-articular injuries are associated with chronic anterolateral pain and functional instability after an ankle sprain. From 2008 to 2010, records of all patients who underwent ankle joint arthroscopy with anterolateral pain and functional instability after an ankle sprain were reviewed. A systematic arthroscopic examination of the intra-articular structures of the ankle joint was performed. Location and characteristics of the injuries were identified and recorded. A total of 36 ankle arthroscopic procedures were reviewed. A soft-tissue occupying mass over the lateral recess was present in 18 patients (50%). A partial injury of the anterior talofibular ligament (ATFL) was observed in 24 patients (66.6%). Cartilage abrasion due to the distal fascicle of the anteroinferior tibiofibular ligament coming into contact with the talus was seen in 21 patients (58.3%), but no thickening of the ligament was observed. Injury to the intra-articular posterior structures, including the transverse ligament in 19 patients (52.7%) and the posterior surface of the distal tibia in 21 patients (58.3%), was observed. Intra-articular pathological findings have been observed in patients affected by anterolateral pain after an ankle sprain. Despite no demonstrable abnormal lateral laxity, morphologic ATFL abnormality has been observed on arthroscopic evaluation. An injury of the ATFL is present in patients with chronic anterolateral pain and functional instability after an ankle sprain. A degree of microinstability due to a deficiency of the ATFL could explain the intra-articular pathological findings and the patients' complaints. IV.

  10. A mutation in the centriole-associated protein centrin causes genomic instability via increased chromosome loss in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Marshall Wallace F

    2005-05-01

    Full Text Available Abstract Background The role of centrioles in mitotic spindle function remains unclear. One approach to investigate mitotic centriole function is to ask whether mutation of centriole-associated proteins can cause genomic instability. Results We addressed the role of the centriole-associated EF-hand protein centrin in genomic stability using a Chlamydomonas reinhardtii centrin mutant that forms acentriolar bipolar spindles and lacks the centrin-based rhizoplast structures that join centrioles to the nucleus. Using a genetic assay for loss of heterozygosity, we found that this centrin mutant showed increased genomic instability compared to wild-type cells, and we determined that the increase in genomic instability was due to a 100-fold increase in chromosome loss rates compared to wild type. Live cell imaging reveals an increased rate in cell death during G1 in haploid cells that is consistent with an elevated rate of chromosome loss, and analysis of cell death versus centriole copy number argues against a role for multipolar spindles in this process. Conclusion The increased chromosome loss rates observed in a centrin mutant that forms acentriolar spindles suggests a role for centrin protein, and possibly centrioles, in mitotic fidelity.

  11. Outbreeding causes developmental instability in Drosophila subobscura

    DEFF Research Database (Denmark)

    Kurbalija, Zorana; Stamenkovic-Radak, Marina; Pertoldi, C.

    2010-01-01

    A possible effect of interpopulation hybridization is either outbreeding depression, as a consequence of breakdown of coadapted gene complexes which can increase developmental instability (DI) of the traits, or increased heterozygosity, which can reduce DI. One of the principal methods commonly...... used to estimate DI is the variability of fluctuating asymmetry (FA). We analysed the effect of interpopulation hybridization in Drosophila subobscura through the variability in the wing size and the FA of wing length and width for both sexes in parental, F1 and F2 generations. The results of the wing...... size per se in intra- and interpopulation hybrids of D. subobscura do not explicitly reveal the significance of either of the two hypotheses. However, the results of the FA of the wing traits give a different insight. The FA of wing length and width generally increases in interpopulation crosses in F1...

  12. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2018-05-15

    Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5  cells mL -1 and 0.69-4.37 × 10 5  cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary

  13. Plathelminth abundance in North Sea salt marshes: environmental instability causes high diversity

    Science.gov (United States)

    Armonies, Werner

    1986-09-01

    Although supralittoral salt marshes are habitats of high environmental instability, the meiofauna is rich in species and abundance is high. The community structure of free-living Plathelminthes (Turbellaria) in these salt marshes is described. On an average, 104 individuals are found below an area of 10 cm2. The average species density in ungrazed salt marshes is 11.3 below 10 cm2 and 45.2 below 100 cm2, indicating strong small-scale heterogenity. The faunal similarity between sediment and the corresponding above-ground vegetation is higher than between adjacent sample sites. Species prefer distinct ranges of salinity. In the lower part of the supralittoral salt marshes, the annual fluctuations of salinity are strongest and highly unpredictable. This region is richest in plathelminth species and abundance; diversity is highest, and the faunal composition of parallel samples is quite similar. In the upper part of the supralittoral salt marshes, the annual variability of salinity is lower, plathelminths are poor in species diversity and abundance. Parallel samples often have no species in common. Thus, those salt marsh regions with the most unstable environment are inhabited by the most diverse species assemblage. Compared to other littoral zones of the North Sea, however, plathelminth diversity in salt marshes is low. The observed plathelminth diversity pattern can apparently be explained by the “dynamic equilibrium model” (Huston, 1979).

  14. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability

    Science.gov (United States)

    Woodward, Jessica; Taylor, Gillian C.; Soares, Dinesh C.; Boyle, Shelagh; Sie, Daoud; Read, David; Chathoth, Keerthi; Vukovic, Milica; Tarrats, Nuria; Jamieson, David; Campbell, Kirsteen J.; Blyth, Karen; Acosta, Juan Carlos; Ylstra, Bauke; Arends, Mark J.; Kranc, Kamil R.; Jackson, Andrew P.; Bickmore, Wendy A.

    2016-01-01

    Chromosomal instability is a hallmark of cancer, but mitotic regulators are rarely mutated in tumors. Mutations in the condensin complexes, which restructure chromosomes to facilitate segregation during mitosis, are significantly enriched in cancer genomes, but experimental evidence implicating condensin dysfunction in tumorigenesis is lacking. We report that mice inheriting missense mutations in a condensin II subunit (Caph2nes) develop T-cell lymphoma. Before tumors develop, we found that the same Caph2 mutation impairs ploidy maintenance to a different extent in different hematopoietic cell types, with ploidy most severely perturbed at the CD4+CD8+ T-cell stage from which tumors initiate. Premalignant CD4+CD8+ T cells show persistent catenations during chromosome segregation, triggering DNA damage in diploid daughter cells and elevated ploidy. Genome sequencing revealed that Caph2 single-mutant tumors are near diploid but carry deletions spanning tumor suppressor genes, whereas P53 inactivation allowed Caph2 mutant cells with whole-chromosome gains and structural rearrangements to form highly aggressive disease. Together, our data challenge the view that mitotic chromosome formation is an invariant process during development and provide evidence that defective mitotic chromosome structure can promote tumorigenesis. PMID:27737961

  15. Effects of Convective Transport of Solute and Impurities on Defect-Causing Kinetics Instabilities

    Science.gov (United States)

    Vekilov, Peter G.; Higginbotham, Henry Keith (Technical Monitor)

    2001-01-01

    For in-situ studies of the formation and evolution of step patterns during the growth of protein crystals, we have designed and assembled an experimental setup based on Michelson interferometry with the surface of the growing protein crystal as one of the reflective surfaces. The crystallization part of the device allows optical monitoring of a face of a crystal growing at temperature stable within 0.05 C in a developed solution flow of controlled direction and speed. The reference arm of the interferometer contains a liquid-crystal element that allows controlled shifts of the phase of the interferograms. We employ an image processing algorithm which combines five images with a pi/2 phase difference between each pair of images. The images are transferred to a computer by a camera capable of capturing 6-8 frames per second. The device allows data collection data regarding growth over a relatively large area (approximately .3 sq. mm) in-situ and in real time during growth. The estimated dept resolution of the phase shifting interferometry is about 100 A. The lateral resolution, depending on the zoom ratio, varies between 0.3 and 0.6 micrometers. We have now collected quantitative results on the onset, initial stages and development of instabilities in moving step trains on vicinal crystal surfaces at varying supersaturation, position on the facet, crystal size and temperature with the proteins ferritin, apoferritin and thaumatin. Comparisons with theory, especially with the AFM results on the molecular level processes, see below, allow tests of the rational for the effects of convective flows and, as a particular case, the lack thereof, on step bunching.

  16. "Sausage-string" appearance of arteries and arterioles can be caused by an instability of the blood vessel wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Beierholm, Ulrik; Mikkelsen, Rene

    2002-01-01

    Vascular damage induced by acute hypertension is preceded by a peculiar pattern where blood vessels show alternating regions of constrictions and dilations ("sausages on a string"). The pattern occurs in the smaller blood vessels, and it plays a central role in causing the vascular damage. A rela...... phenomenon. Experimental data suggest that the structural changes induced by the instability may cause secondary damage to the wall of small arteries and arterioles in the form of endothelial hyperpermeability followed by local fibrinoid necrosis of the vascular wall.......Vascular damage induced by acute hypertension is preceded by a peculiar pattern where blood vessels show alternating regions of constrictions and dilations ("sausages on a string"). The pattern occurs in the smaller blood vessels, and it plays a central role in causing the vascular damage....... A related vascular pattern has been observed in larger vessels from several organs during angiography. In the larger vessels the occurrence of the pattern does not appear to be related to acute hypertension. A unifying feature between the phenomenon in large and small vessels seems to be an increase...

  17. Phase instability of alloys caused by transmutation effects during neutron irradiation

    International Nuclear Information System (INIS)

    Platov, Yu.M.; Pletnev, M.N.

    1994-01-01

    A theory of the phase changes in a two-phase binary A-B alloy in the coarsening condition caused by burnout of solute B due to nuclear reactions is presented. It is shown that this burnout process introduces diffusion redistribution of solute between second phase precipitates and solid solution. The burnout induced solute flux away from second phase precipitates to solid solution maintaining the concentration of element B in the vicinity to its solubility limit and stimulates, thus, the second phase particle dissolution. This occurs in addition to a process decreasing their sizes as a result of direct burnout of atoms B in the precipitates. In the framework of the theory developed here, analytical expressions describing time evolution of the precipitate size distributions, changes of mean radius and number density of the precipitates, and second phase dissolution times are obtained. On the basis of these results and numerical calculations for aluminium-scandium alloy, it is shown that the burnout processes can induce essential phase changes, and thus cause significant changes of the properties of irradiated materials at high neutron fluences. ((orig.))

  18. A longitudinal study on psychosocial causes and consequences of Internet gaming disorder in adolescence.

    Science.gov (United States)

    Wartberg, Lutz; Kriston, Levente; Zieglmeier, Matthias; Lincoln, Tania; Kammerl, Rudolf

    2018-04-06

    In 2013, Internet gaming disorder (IGD) was incorporated in the current version of the DSM-5. IGD refers to a problematic use of video games. Longitudinal studies on the etiology of IGD are lacking. Furthermore, it is currently unclear to which extent associated psychopathological problems are causes or consequences of IGD. In the present survey, longitudinal associations between IGD and adolescent and parental mental health were investigated for the first time, as well as the temporal stability of IGD. In a cross-lagged panel design study, family dyads (adolescent with a parent each) were examined in 2016 (t1) and again 1 year later (2017, t2). Overall, 1095 family dyads were assessed at t1 and 985 dyads were re-assessed at t2 with standardized measures of IGD and several aspects of adolescent and parental mental health. Data were analyzed with structural equation modeling (SEM). Male gender, a higher level of hyperactivity/inattention, self-esteem problems and IGD at t1 were predictors of IGD at t2. IGD at t1 was a predictor for adolescent emotional distress at t2. Overall, 357 out of the 985 adolescents received a diagnosis of IGD at t1 or t2: 142 (14.4%) at t1 and t2, 100 (10.2%) only at t1, and 115 (11.7%) only at t2. Hyperactivity/inattention and self-esteem problems seem to be important for the development of IGD. We found first empirical evidence that IGD could prospectively contribute to a deterioration of adolescent mental health. Only a subgroup of affected adolescents showed IGD consistently over 1 year.

  19. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging

    Science.gov (United States)

    Pekcevik, Yeliz; Mitchell, Charles H; Mealy, Maureen A; Orman, Gunes; Lee, In H; Newsome, Scott D; Thompson, Carol B; Pardo, Carlos A; Calabresi, Peter A; Levy, Michael; Izbudak, Izlem

    2016-01-01

    Background Although spinal magnetic resonance imaging (MRI) findings of neuromyelitis optica (NMO) have been described, there is limited data available that help differentiate NMO from other causes of longitudinally extensive transverse myelitis (LETM). Objective To investigate the spinal MRI findings of LETM that help differentiate NMO at the acute stage from multiple sclerosis (MS) and other causes of LETM. Methods We enrolled 94 patients with LETM into our study. Bright spotty lesions (BSL), the lesion distribution and location were evaluated on axial T2-weighted images. Brainstem extension, cord expansion, T1 darkness and lesion enhancement were noted. We also reviewed the brain MRI of the patients during LETM. Results Patients with NMO had a greater amount of BSL and T1 dark lesions (p < 0.001 and 0.003, respectively). The lesions in NMO patients were more likely to involve greater than one-half of the spinal cord’s cross-sectional area; to enhance and be centrally-located, or both centrally- and peripherally-located in the cord. Of the 62 available brain MRIs, 14 of the 27 whom were NMO patients had findings that may be specific to NMO. Conclusions Certain spinal cord MRI features are more commonly seen in NMO patients and so obtaining brain MRI during LETM may support diagnosis. PMID:26209588

  20. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome.

    Science.gov (United States)

    Sarkar, Koustav; Han, Seong-Su; Wen, Kuo-Kuang; Ochs, Hans D; Dupré, Loïc; Seidman, Michael M; Vyas, Yatin M

    2017-12-15

    Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. We sought to define how dysfunctional gene transcription is causally linked to the degree of T H cell deficiency and genomic instability in the XLT/WAS clinical spectrum. In human T H 1- or T H 2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in T H 1 cells relative to T H 2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (T H 1 genes) in T H 1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (T H 2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. Transcriptional R-loop imbalance is a novel molecular defect causative in T H 1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum

  1. Causes and consequences of occupational stress in emergency nurses, a longitudinal study.

    Science.gov (United States)

    Adriaenssens, Jef; De Gucht, Veronique; Maes, Stan

    2015-04-01

    This longitudinal study examines the influence of changes over time in work and organisational characteristics on job satisfaction, work engagement, emotional exhaustion, turnover intention and psychosomatic distress in emergency room nurses. Organisational and job characteristics of nurses are important predictors of stress-health outcomes. Emergency room nurses are particularly exposed to stressful work-related events and unpredictable work conditions. The study was carried out in 15 emergency departments of Belgian general hospitals in 2008 (T1) and 18 months later (T2) (n = 170). Turnover rates between T1 and T2 were high. Important changes over time were found in predictors and outcomes. Changes in job demand, control and social support predicted job satisfaction, work engagement and emotional exhaustion. In addition, changes in reward, social harassment and work agreements predicted work engagement, emotional exhaustion and intention to leave, respectively. Work-related interventions are important to improve occupational health in emergency room nurses and should focus on lowering job demands, increasing job control, improving social support and a well-balanced reward system. Nursing managers should be aware of the causes and consequences of occupational stress in emergency room nurses in order to enable preventive interventions. © 2013 John Wiley & Sons Ltd.

  2. Carpal instability

    International Nuclear Information System (INIS)

    Schmitt, R.; Froehner, S.; Coblenz, G.; Christopoulos, G.

    2006-01-01

    This review addresses the pathoanatomical basics as well as the clinical and radiological presentation of instability patterns of the wrist. Carpal instability mostly follows an injury; however, other diseases, like CPPD arthropathy, can be associated. Instability occurs either if the carpus is unable to sustain physiologic loads (''dyskinetics'') or suffers from abnormal motion of its bones during movement (''dyskinematics''). In the classification of carpal instability, dissociative subcategories (located within proximal carpal row) are differentiated from non-dissociative subcategories (present between the carpal rows) and combined patterns. It is essential to note that the unstable wrist initially does not cause relevant signs in standard radiograms, therefore being ''occult'' for the radiologic assessment. This paper emphasizes the high utility of kinematographic studies, contrast-enhanced magnetic resonance imaging (MRI) and MR arthrography for detecting these predynamic and dynamic instability stages. Later in the natural history of carpal instability, static malalignment of the wrist and osteoarthritis will develop, both being associated with significant morbidity and disability. To prevent individual and socio-economic implications, the handsurgeon or orthopedist, as well as the radiologist, is challenged for early and precise diagnosis. (orig.)

  3. Foreign Language Learning Motivation in Higher Education: A Longitudinal Study of Motivational Changes and Their Causes

    Science.gov (United States)

    Busse, Vera; Walter, Catherine

    2013-01-01

    This article reports on a study involving first-year modern foreign languages students enrolled in German degree courses at two major universities in the United Kingdom. It explores the experience of these students from a motivational angle. A longitudinal mixed-methods approach was employed in order to address the time- and context-sensitive…

  4. Novel magnetic resonance imaging evaluation for valgus instability of the knee caused by medial collateral ligament injury

    International Nuclear Information System (INIS)

    Ikuma, Hisanori; Abe, Nobuhiro; Furumatsu, Takayuki; Uchida, Youichiro; Fujiwara, Kazuo; Nishida, Keiichiro; Ozaki, Toshifumi

    2008-01-01

    Instability of the knee after the medial collateral ligament (MCL) injury is usually assessed with the manual valgus stress test, even though, in recent years, it has become possible to apply magnetic resonance imaging (MRI) to the assessment of the damage of the ligament. The valgus instability of 24 patients (12 isolated injuries and 12 multiple ligament injuries) who suffered MCL injury between 1993 and 1998 was evaluated with the Hughston and Eilers classification, which involves radiographic assessment under manual valgus stress to the injured knees. We developed a novel system for classifying the degree of injury to the MCL by calculating the percentage of injured area based on MRI and investigated the relationship between this novel MRI classification and the magnitude of valgus instability by the Hughston and Eilers classification. There was a significant correlation between the 2 classifications (p=0.0006). On the other hand, the results using other MRI based classification systems, such as the Mink and Deutsch classification and the Petermann classification, were not correlated with the findings by the Hughston and Eilers classification in these cases (p>0.05). Since MRI is capable of assessing the injured ligament in clinical practice, this novel classification system would be useful for evaluating the stability of the knee and choosing an appropriate treatment following MCL injury. (author)

  5. Instabilities in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Mikhailovsky, A.B.

    1983-01-01

    The plasma inhomogeneity across the magnetic field causes a wide class of instabilities which are called instabilities of an inhomogeneous plasma or gradient instabilities. The instabilities that can be studied in the approximation of a magnetic field with parallel straight field lines are treated first, followed by a discussion of the influence of shear on these instabilities. The instabilities of a weakly inhomogeneous plasma with the Maxwellian velocity distribution of particles caused by the density and temperature gradients are often called drift instabilities, and the corresponding types of perturbations are the drift waves. An elementary theory of drift instabilities is presented, based on the simplest equations of motion of particles in the field of low-frequency and long-wavelength perturbations. Following that is a more complete theory of inhomogeneous collisionless plasma instabilities which uses the permittivity tensor and, in the case of electrostatic perturbations, the scalar of permittivity. The results are used to study the instabilities of a strongly inhomogeneous plasma. The instabilities of a plasma in crossed fields are discussed and the electromagnetic instabilities of plasma with finite and high pressure are described. (Auth.)

  6. Commissioning of FPGA-based Transverse and Longitudinal Bunch-by-Bunch Feedback System for the TLS

    International Nuclear Information System (INIS)

    Hu, K. H.; Kuo, C. H.; Lau, W. K.; Yeh, M. S.; Hsu, S. Y.; Chou, P. J.; Wang, M. H.; Lee, Demi; Chen, Jenny; Wang, C. J.; Hsu, K. T.; Kobayashi, K.; Nakamura, T.; Dehler, M.

    2006-01-01

    Multi-bunch instabilities deteriorate beam quality, increasing beam emittance, or even causing beam loss in the synchrotron light source. The feedback system is essential to suppress multi-bunch instabilities caused by the impedances of beam ducts, and trapped ions. A new FPGA based transverse and longitudinal bunch-by-bunch feedback system have been commissioned at the Taiwan Light Source recently, A single feedback loop is used to simultaneously suppress the horizontal and the vertical multi-bunch instabilities. Longitudinal instabilities caused by cavity-like structures are suppressed by the longitudinal feedback loop. The same FPGA processor is employed in the transverse feedback and the longitudinal feedback system respectively. Diagnostic memory is included in the system to capture the bunch oscillation signal, which supports various studies

  7. Focal ischaemia caused by instability of cerebrovascular tone during attacks of hemiplegic migraine. A regional cerebral blood flow study

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E

    1987-01-01

    During the course of hemiplegic migraine in 3 patients, changes in regional cerebral blood flow (rCBF) were recorded by the intracarotid 133Xe method and a 254 multidetector camera covering one hemisphere. The rCBF measurements were performed in conjunction with cerebral angiography. During...... the patients developed transient motor and/or sensory deficits and subsequently severe headache. No signs of arterial occlusion were found. In the over and underperfused regions blood flow fluctuated rapidly because of instability of cerebrovascular tone, defined as transient constriction of the smallest...

  8. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  9. The associations between US state and local social spending, income inequality, and individual all-cause and cause-specific mortality: The National Longitudinal Mortality Study.

    Science.gov (United States)

    Kim, Daniel

    2016-03-01

    To investigate government state and local spending on public goods and income inequality as predictors of the risks of dying. Data on 431,637 adults aged 30-74 and 375,354 adults aged 20-44 in the 48 contiguous US states were used from the National Longitudinal Mortality Study to estimate the impacts of state and local spending and income inequality on individual risks of all-cause and cause-specific mortality for leading causes of death in younger and middle-aged adults and older adults. To reduce bias, models incorporated state fixed effects and instrumental variables. Each additional $250 per capita per year spent on welfare predicted a 3-percentage point (-0.031, 95% CI: -0.059, -0.0027) lower probability of dying from any cause. Each additional $250 per capita spent on welfare and education predicted 1.6-percentage point (-0.016, 95% CI: -0.031, -0.0011) and 0.8-percentage point (-0.008, 95% CI: -0.0156, -0.00024) lower probabilities of dying from coronary heart disease (CHD), respectively. No associations were found for colon cancer or chronic obstructive pulmonary disease; for diabetes, external injury, and suicide, estimates were inverse but modest in magnitude. A 0.1 higher Gini coefficient (higher income inequality) predicted 1-percentage point (0.010, 95% CI: 0.0026, 0.0180) and 0.2-percentage point (0.002, 95% CI: 0.001, 0.002) higher probabilities of dying from CHD and suicide, respectively. Empirical linkages were identified between state-level spending on welfare and education and lower individual risks of dying, particularly from CHD and all causes combined. State-level income inequality predicted higher risks of dying from CHD and suicide. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  10. Overexpression of eIF-5A2 in mice causes accelerated organismal aging by increasing chromosome instability

    Directory of Open Access Journals (Sweden)

    Chen Leilei

    2011-05-01

    Full Text Available Abstract Background Amplification of 3q26 is one of the most frequent genetic alterations in many human malignancies. Recently, we isolated a novel oncogene eIF-5A2 within the 3q26 region. Functional study has demonstrated the oncogenic role of eIF-5A2 in the initiation and progression of human cancers. In the present study, we aim to investigate the physiological and pathological effect of eIF-5A2 in an eIF-5A2 transgenic mouse model. Methods An eIF-5A2 transgenic mouse model was generated using human eIF-5A2 cDNA. The eIF-5A2 transgenic mice were characterized by histological and immunohistochemistry analyses. The aging phenotypes were further characterized by wound healing, bone X-ray imaging and calcification analysis. Mouse embryo fibroblasts (MEF were isolated to further investigate molecular mechanism of eIF-5A2 in aging. Results Instead of resulting in spontaneous tumor formation, overexpression of eIF-5A2 accelerated the aging process in adult transgenic mice. This included decreased growth rate and body weight, shortened life span, kyphosis, osteoporosis, delay of wound healing and ossification. Investigation of the correlation between cellular senescence and aging showed that cellular senescence is not required for the aging phenotypes in eIF-5A2 mice. Interestingly, we found that activation of eIF-5A2 repressed p19 level and therefore destabilized p53 in transgenic mouse embryo fibroblast (MEF cells. This subsequently allowed for the accumulation of chromosomal instability, such as errors in cell dividing during metaphase and anaphase. Additionally, a significantly increase in number of aneuploidy cells (p Conclusion These observations suggest that eIF-5A2 mouse models could accelerate organismal aging by increasing chromosome instability.

  11. A longitudinal epidemiological comparison of suicide and other causes of death in Italian children and adolescents.

    Science.gov (United States)

    Pompili, Maurizio; Vichi, Monica; De Leo, Diego; Pfeffer, Cynthia; Girardi, Paolo

    2012-02-01

    The objective of the study is to evaluate temporal trends, gender effects and methods of completed suicide amongst children and adolescent (aged 10-17) when compared with temporal trends of deaths from other causes. Data were extracted from the Italian Mortality Database, which is collected by the Italian National Census Bureau (ISTAT) and processed by the Statistics Unit of National Centre for Epidemiology, Surveillance and Health Promotion (CNESPS) at the National Institute of Health (Istituto Superiore di Sanità). A total of 1,871 children and adolescents, age 10-17 years, committed suicide in Italy from 1971 to 2003 and 109 died by suicide during the last 3-year period of observation (2006-2008). The average suicide rate over the entire period of observation was 0.91 per 100,000; the rate was 1.21 for males and 0.59 for females. During the study period, the general mortality of children and adolescents, age 10-17 years, decreased dramatically, the average annual percentage change decrease was of -3.3% (95% CI -4.4 to -1.9) for males and -2.9% (95% IC -4.4 to -2.5) for females. The decrease was observed, for both genders, for all causes of deaths except suicide. For males, the most frequent method was hanging (54.5%), followed by shooting/fire arms (19.6%), falls/jumping from high places (12.7%); for females, the most frequent method, jumping from high places/falls, accounted for 35.7% of suicides during the whole study period. In conclusion, this study highlights that over the course of several decades suicide is a far less preventable cause of death as compared to other causes of death amongst children and adolescents. Our study demonstrated that suicide rates in adolescents are not a stable phenomenon over the 40 years period of study. It suggested that rates for males and females differed and varied in different ways during specific time periods of this study. National suicide prevention actions should parallel prevention measures implemented to reduce

  12. All-Cause Mortality Among Belgian Military Radar Operators: A 40-Year Controlled Longitudinal Study

    International Nuclear Information System (INIS)

    Degrave, Etienne; Autier, Philippe; Grivegnee, Andre-Robert; Zizi, Martin

    2005-01-01

    Background: It has been suggested that exposure to radiofrequency/microwaves radiations could be associated with greater health hazards and higher mortality. Methods: The all-cause mortality of 27,671 Belgian militaries who served from 1963 until 1994 in battalions equipped with radars for anti-aircraft defence was studied over the period 1968-2003. End of the seventies, technical modifications brought to the shielding of the micro-wave generators resulted in a reduction in irradiations. A control group was formed by 16,128 militaries who served during the same period in the same military area but who were never exposed to radars. Administrative procedures for identifying militaries and their vital status were equivalent in the radar and the control groups. Results: The age-standardized mortality ratio (SMR) in the radar battalions was 1.05 (95% CI: 0.95-1.16) in professional militaries, and 0.80 (95% CI: 0.75-0.85) in conscripts. In professional militaries no difference in mortality was found according to duration (less than, or five years or more) or to period of service (before 1978 or after 1977). Conclusions: During a 40-year period of observation, we found no increase in all-cause mortality in Belgian militaries who were in close contact with radar equipments of anti-aircraft defence battalions

  13. Suicide and other causes of mortality in bipolar disorder: a longitudinal study.

    Science.gov (United States)

    Dutta, Rina; Boydell, Jane; Kennedy, Noel; VAN Os, Jim; Fearon, Paul; Murray, Robin M

    2007-06-01

    The high risk of suicide in bipolar disorder is well recognized, but may have been overestimated. There is conflicting evidence about deaths from other causes and little known about risk factors for suicide. We aimed to estimate suicide and mortality rates in a cohort of bipolar patients and to identify risk factors for suicide. All patients who presented for the first time with a DSM-IV diagnosis of bipolar I disorder in a defined area of southeast London over a 35-year period (1965-1999) were identified. Mortality rates were compared with those of the 1991 England and Wales population, indirectly standardized for age and gender. Univariate and multivariate analyses were used to test potential risk factors for suicide. Of the 239 patients in the cohort, 235 (98.3%) were traced. Forty-two died during the 4422 person-years of follow-up, eight from suicide. The standardized mortality ratio (SMR) for suicide was 9.77 [95% confidence interval (CI) 4.22-19.24], which, although significantly elevated compared to the general population, represented a lower case fatality than expected from previous literature. Deaths from all other causes were not excessive for the age groups studied in this cohort. Alcohol abuse [hazard ratio (HR) 6.81, 95% CI 1.69-27.36, p=0.007] and deterioration from pre-morbid level of functioning up to a year after onset (HR 5.20, 95% CI 1.24-21.89, p=0.024) were associated with increased risk of suicide. Suicide is significantly increased in unselected bipolar patients but actual case fatality is not as high as previously claimed. A history of alcohol abuse and deterioration in function predict suicide in bipolar disorder.

  14. Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg.

    Science.gov (United States)

    Reliene, Ramune; Yamamoto, Mitsuko L; Rao, P Nagesh; Schiestl, Robert H

    2010-12-01

    Fanconi anemia (FA) results from mutations in the FANC genes and is characterized by bone marrow failure, birth defects, and a high incidence of cancer. FANCG is a part of the FA core complex that is responsible for monoubiquitination of FANCD2 and FANCI. The precise role of the FA pathway is not well understood, although it may be involved in homologous recombination (HR), nonhomologous end joining, and translesion synthesis (TLS). Fancd2(-/-) mice have a more severe phenotype than Fancg(-/-), and other FA core complex-deficient mice, although both Fancg and Fancd2 belong to the same FA pathway. We hypothesized that Fancd2 deficiency results in a more severe phenotype because Fancd2 also has a FA pathway-independent function in the maintenance of genomic integrity. To test this hypothesis, we determined the level of DNA damage and genomic instability in Fancd2(-/-), Fancg(-/-), and wild-type controls. Fancd2(-/-) mice displayed a higher magnitude of chromosomal breakage and micronucleus formation than the wild-type or Fancg(-/-) mice. Also, DNA strand breaks were increased in Fancd2(-/-) but not in Fancg(-/-) mice. In addition, Fancd2(-/-) mice displayed an elevated frequency of DNA deletions, resulting from HR at the endogenous p(un) locus. In contrast, in Fancg(-/-) mice, the frequency of DNA deletions was decreased. Thus, Fancd2 but not Fancg deficiency results in elevated chromosomal/DNA breakage and permanent genome rearrangements. This provides evidence that Fancd2 plays an additional role in the maintenance of genomic stability than Fancg, which might explain the higher predisposition to cancer seen in the Fancd2(-/-) mice.

  15. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation.

    Science.gov (United States)

    Bornstein, Sophia; White, Ruth; Malkoski, Stephen; Oka, Masako; Han, Gangwen; Cleaver, Timothy; Reh, Douglas; Andersen, Peter; Gross, Neil; Olson, Susan; Deng, Chuxia; Lu, Shi-Long; Wang, Xiao-Jing

    2009-11-01

    Smad4 is a central mediator of TGF-beta signaling, and its expression is downregulated or lost at the malignant stage in several cancer types. In this study, we found that Smad4 was frequently downregulated not only in human head and neck squamous cell carcinoma (HNSCC) malignant lesions, but also in grossly normal adjacent buccal mucosa. To gain insight into the importance of this observation, we generated mice in which Smad4 was deleted in head and neck epithelia (referred to herein as HN-Smad4-/- mice) and found that they developed spontaneous HNSCC. Interestingly, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited increased genomic instability, which correlated with downregulated expression and function of genes encoding proteins in the Fanconi anemia/Brca (Fanc/Brca) DNA repair pathway linked to HNSCC susceptibility in humans. Consistent with this, further analysis revealed a correlation between downregulation of Smad4 protein and downregulation of the Brca1 and Rad51 proteins in human HNSCC. In addition to the above changes in tumor epithelia, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited severe inflammation, which was associated with increased expression of TGF-beta1 and activated Smad3. We present what we believe to be the first single gene-knockout model for HNSCC, in which both HNSCC formation and invasion occurred as a result of Smad4 deletion. Our results reveal an intriguing connection between Smad4 and the Fanc/Brca pathway and highlight the impact of epithelial Smad4 loss on inflammation.

  16. Coherent Instabilities of ILC Damping Ring

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; Stupakov, G.; Bane, K.; /SLAC

    2006-09-27

    The paper presents the first attempt to estimates the ILC damping ring impedance and compare thresholds of the classical instabilities for several designs initially proposed for the DR. The work was carried out in the spring of 2006. Since then the choice of the DR is narrowed. Nevertheless, the analysis described may be useful for the next iterations of the beam stability. Overall, the conventional instabilities will have little impact on the ring performance provided the careful design of the ring minimizes the impedance below acceptable level indicated above. The only exception is the transverse CB instability. The longitudinal CB is less demanding. However, even the transverse CB instability would have threshold current above nominal provided the aperture in the wigglers is increased from 8 mm to 16 mm. The microwave instability needs more studies. Nevertheless, we should remember that the ILC DR is different from existing high-current machines at least in two respects: absence of the beam-beam tune spread stabilizing beams in colliders, and unusual strict requirements for low emittance. That may cause new problems such as bunch emittance dilution due to high-frequency wakes (BPMs, grooves), etc. Even if such a possibility exists, it probably universal for all machines and ought be addressed in the design of vacuum components rather than have effect on the choice of the machine design.

  17. Modes of storage ring coherent instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered. (LEW)

  18. Modes of storage ring coherent instabilities

    International Nuclear Information System (INIS)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered

  19. Economic costs of electrical system instability and power outages caused by snakes on the Island of Guam

    Science.gov (United States)

    Fritts, T.H.

    2002-01-01

    The Brown Tree Snake, Boiga irregularis, is an introduced species on Guam where it causes frequent electrical power outages. The snake's high abundance, its propensity for climbing, and use of disturbed habitats all contribute to interruption of Guam's electrical service and the activities that depend on electrical power. Snakes have caused more than 1600 power outages in the 20-yr period of 1978–1997 and most recently nearly 200 outages per year. Single outages spanning the entire island and lasting 8 or more hours are estimated to cost in excess of $3,000,000 in lost productivity, but the costs of outages that involve only parts of the island or those of shorter durations are more difficult to quantify. Costs to the island's economy have exceeded $4.5 M $4.5M"> per year over a 7-yr period without considering repair costs, damage to electrical equipment, and lost revenues. Snakes pose the greatest problem on high voltage transmission lines, on transformers, and inside electrical substations.

  20. Simulations of longitudinal beam dynamics of space-charge dominated beams for heavy ion fusion

    International Nuclear Information System (INIS)

    Miller, D.A.C.

    1994-12-01

    The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted

  1. Observed versus predicted cardiovascular events and all-cause death in HIV infection: a longitudinal cohort study.

    Science.gov (United States)

    De Socio, Giuseppe Vittorio; Pucci, Giacomo; Baldelli, Franco; Schillaci, Giuseppe

    2017-06-12

    The aim of the study was to assess the applicability of an algorithm predicting 10-year cardiovascular disease (CVD) generated in the setting of the Framingham Heart Study to a real-life, contemporary Italian cohort of HIV-positive subjects. The study was an observational longitudinal cohort study. The probability for 10-year CVD events according to the Framingham algorithm was assessed in 369 consecutive HIV-positive participants free from overt CVD enrolled in 2004, who were followed for a median of 10.0 years (interquartile range, 9.1-10.1). Cardiovascular events included myocardial infarction, hospitalized heart failure, revascularized angina, sudden cardiac death, stroke, peripheral arterial disease. Over 3097 person-years of observation, we observed a total of 34 CVD events, whereas Framingham algorithm predicted the occurrence of 34.3 CVD events. CVD event rate was 11.0/1000 person-years of follow-up. In a receiver operating characteristics curve analysis, Framingham risk equation showed an excellent predictive value for incident CVD events (c-statistics, 0.83; 95% confidence interval, 0.76-0.90). In a multivariable Cox analysis, age, smoking and diabetes were independent predictors of CVD events. All-cause death rate was 20.0/1000 person-years of follow-up (n = 62 deaths). Causes of death included liver diseases (18), malignancies (14), AIDS-related (11); cardiovascular (9) and others (10). In a Cox analysis, age, AIDS diagnosis and chronic hepatitis were independent predictors of death. Observed CVD events in HIV-infected patients were well predicted by Framingham algorithm. Established major CVD risk factors are the strongest determinants of CVD morbidity in an Italian contemporary cohort of HIV-positive subjects. Interventions to modify traditional risk factors are urgently needed in HIV people.

  2. Functional Instability of the Ankle Joint: Etiopathogenesis

    Directory of Open Access Journals (Sweden)

    Aydan ÖRSÇELİK

    2016-09-01

    Full Text Available Ankle sprain is one of the most common sports injuries. Chronic ankle instability is a common complication of ankle sprains. Two causes of chronic ankle instability are mechanical instability and functional instability. It is important to understand functional instability etiopathogenesis of the ankle joint in order to guide diagnosis and treatment. This article aims to understand the etiopathogenesis of functional ankle instability.

  3. Isolated pulmonary regurgitation causes decreased right ventricular longitudinal function and compensatory increased septal pumping in a porcine model

    DEFF Research Database (Denmark)

    Kopic, S; Stephensen, S S; Heiberg, E

    2017-01-01

    AIM: Longitudinal ventricular contraction is a parameter of cardiac performance with predictive power. Right ventricular (RV) longitudinal function is impaired in patients with free pulmonary regurgitation (PR) following corrective surgery for Tetralogy of Fallot (TOF). It remains unclear whether...... received a stent in the pulmonary valve orifice, inducing PR. After 2-3 months, animals were subjected to cardiac magnetic resonance imaging. A subset of animals (n = 6) then underwent percutaneous pulmonary valve replacement (PPVR) with follow-up 1 month later. Longitudinal, lateral and septal...

  4. Left ventricular global longitudinal strain is predictive of all-cause mortality independent of aortic stenosis severity and ejection fraction.

    Science.gov (United States)

    Ng, Arnold C T; Prihadi, Edgard A; Antoni, M Louisa; Bertini, Matteo; Ewe, See Hooi; Ajmone Marsan, Nina; Leung, Dominic Y; Delgado, Victoria; Bax, Jeroen J

    2017-07-28

    Left ventricular (LV) global longitudinal strain (GLS) may identify subclinical myocardial dysfunction in patients with aortic stenosis (AS). The aims of the present retrospective single centre study were to determine the independent prognostic value of LV GLS over LV ejection fraction (EF) and the role of LV GLS to further risk stratify severe AS patients before aortic valve replacement. A total of 688 patients (median age 72 years, 61.2% men) with mild (n = 130), moderate (n = 264) and severe AS (n = 294) were included. LV GLS was determined by 2D speckle tracking echocardiography. A total of 114 (16.6%) patients died before surgery during the study. When patients with severe AS and normal LVEF were dichotomized based on the median LV GLS value (-14.0%), patients with normal LVEF and 'preserved' LV GLS of ≤ -14% had significantly higher survival than patients with 'impaired' LV GLS of > -14%. There was no difference in survival between patients with normal LVEF but 'impaired' LV GLS ( > -14%) and patients with impaired LVEF (log-rank P = 0.34). LV GLS was independently associated with all-cause mortality on multivariable Cox regression analysis (hazard ratio 1.17, 95% confidence interval 1.09-1.26; P optimal timing of aortic valve replacement. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  5. New diagnostics and cures for coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Prabhakar, S.

    2000-01-01

    Electromagnetic interaction between a charged particle beam and its surroundings causes collective instabilities, which must be controlled if the new light sources and colliders are to meet their design goals. Control requires a combination of passive damping and fast active feedback on an unprecedented technological scale. Efficient instability diagnosis techniques are also needed for machines with large numbers of bunches. This thesis describes new methods of measuring and analyzing coupled-bunch instabilities in circular accelerators, and demonstrates the existence of a new cure. A new technique is demonstrated for simultaneous measurement of growth rates, damping rates and coherent tune shifts of all unstable coupled-bunch eigenmodes from a single 10-25-ms transient snapshot of beam motion. The technique has been used to locate and quantify beam impedance resonances at PEP-II, ALS and SPEAR. This method is faster than existing spectral scan methods by at least an order of magnitude, and has the added advantage of revealing coupled-bunch dynamics in the linear small-signal regime. A method is also presented for estimating beam impedance from multi-bunch fill shape and synchronous phase measurements. Phase space tracking of multi-bunch instabilities is introduced as a ''complete instability diagnostic.'' Digitized multi-bunch data is analyzed offline, to estimate the phase space trajectories of bunches and modes. Availability of phase space trajectories is shown to open up a variety of possibilities, including measurement of reactive impedance, and diagnosis of the fast beam-ion instability. Knowledge gained from longitudinal measurements (all made using a digital longitudinal feedback system) has been used to optimize cavity temperatures, tuner positions and feedback parameters, and also to identify sources of beam noise at the three machines. A matrix-based method is presented for analyzing the beneficial effect of bunch-to-bunch tune variation on instability

  6. Genomic instability following irradiation

    International Nuclear Information System (INIS)

    Hacker-Klom, U.B.; Goehde, W.

    2001-01-01

    Ionising irradiation may induce genomic instability. The broad spectrum of stress reactions in eukaryontic cells to irradiation complicates the discovery of cellular targets and pathways inducing genomic instability. Irradiation may initiate genomic instability by deletion of genes controlling stability, by induction of genes stimulating instability and/or by activating endogeneous cellular viruses. Alternatively or additionally it is discussed that the initiation of genomic instability may be a consequence of radiation or other agents independently of DNA damage implying non nuclear targets, e.g. signal cascades. As a further mechanism possibly involved our own results may suggest radiation-induced changes in chromatin structure. Once initiated the process of genomic instability probably is perpetuated by endogeneous processes necessary for proliferation. Genomic instability may be a cause or a consequence of the neoplastic phenotype. As a conclusion from the data available up to now a new interpretation of low level radiation effects for radiation protection and in radiotherapy appears useful. The detection of the molecular mechanisms of genomic instability will be important in this context and may contribute to a better understanding of phenomenons occurring at low doses <10 cSv which are not well understood up to now. (orig.)

  7. Identification of longitudinal tissue pO2 gradients as one cause for vascular hypoxia in window chamber tumors

    International Nuclear Information System (INIS)

    Dewhirst, Mark W.; Ong, Edgardo T.; Braun, Rod D.; Evans, Sydney M.; Wilson, David

    1997-01-01

    resonance microangiography verified this orientation. PQI of the tumor surface indicated greater hypoxia with blue vs green light excitation (p<0.03 for 10th and 25th %tiles and for %pixels<10mmHg). Since green light penetrates more deeply than blue light, this suggests that the surface pO2 is lower than the pO2 within the tumor. In contrast, illumination of the fascial surface with blue light indicated less hypoxia compared with illumination of the tumor surface (p<0.05 for 10th and 25th %tiles and for %pixels<10mmHg). There was no significant difference between pO2 distribution data for blue and green light excitation from the fascial surface and there were no significant differences in pO2 distribution data for green light excitation when viewed from either surface. Conclusions: The PQI data suggest that the upper surface of the tumor is more hypoxic, since blue light excitation yields lower pO2 distributions than green light excitation. This is further verified in the subset of chambers where blue light excitation of the fascial surface showed higher pO2 distributions vs. the tumor surface. These results indicate that there are longitudinal gradients in vascular pO2 in this tumor model that are created by the orientation of the arteriolar input being constrained to one surface of the tumor. Arteriolar supply is often limited in other tumors as well, suggesting that this may be a common phenomenon. This is a contributing cause of tumor hypoxia that has not been previously reported

  8. Study on mechanism of combustion instability in a dump gas turbine combustor

    International Nuclear Information System (INIS)

    Lee, Yeon Joo; Lee, Jong Ho; Jeon, Chong Hwan; Chang, Yonng June

    2002-01-01

    Combustion instabilities are an important concern associated with lean premixed combustion. Laboratory-scale dump combustor was used to understand the underlying mechanisms causing combustion instabilities. Experiments were conducted at atmospheric pressure and sound level meter was used to track the pressure fluctuations inside the combustor. Instability maps and phase-resolved OH chemiluminescence images were obtained at several conditions to investigate the mechanism of combustion instability and relations between pressure wave and heat release rate. It showed that combustion instability was susceptible to occur at higher value of equivalence ratio (>0.6) as the mean velocity was decreased. Instabilities exhibited a longitudinal mode with a dominant frequency of ∼341.8 Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instabilities occurred. Rayleigh index distribution gave a hint about the location where the strong coherence of pressure and heat release existed. These results also give an insight to the control scheme of combustion instabilities. Emission test revealed that NO x emissions were affected by not only equivalence but also combustion instability

  9. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  10. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation.

    Science.gov (United States)

    Gröschl, Benedikt; Bettstetter, Marcus; Giedl, Christian; Woenckhaus, Matthias; Edmonston, Tina; Hofstädter, Ferdinand; Dietmaier, Wolfgang

    2013-04-01

    DUSP4 (MKP-2), a member of the mitogen-activated protein kinase phosphatase (MKP) family and potential tumor suppressor, negatively regulates the MAPKs (mitogen-activated protein kinases) ERK, p38 and JNK. MAPKs play a crucial role in cancer development and progression. Previously, using microarray analyses we found a conspicuously frequent overexpression of DUSP4 in colorectal cancer (CRC) with high frequent microsatellite instability (MSI-H) compared to microsatellite stable (MSS) CRC. Here we studied DUSP4 expression on mRNA level in 38 CRC (19 MSI-H and 19 MSS) compared to matched normal tissue as well as in CRC cell lines by RT-qPCR. DUSP4 was overexpressed in all 19 MSI-H tumors and in 14 MSS tumors. Median expression levels in MSI-H tumors were significantly higher than in MSS-tumors (p CRC cell lines showed 6.8-fold higher DUSP4 mRNA levels than MSS cell lines. DUSP4 expression was not regulated by promoter methylation since no methylation was found by quantitative methylation analysis of DUSP4 promoter in CRC cell lines neither in tumor samples. Furthermore, no DUSP4 mutation was found on genomic DNA level in four CRC cell lines. DUSP4 overexpression in CRC cell lines through DUSP4 transfection caused upregulated expression of MAPK targets CDC25A, CCND1, EGR1, FOS, MYC and CDKN1A in HCT116 as well as downregulation of mismatch repair gene MSH2 in SW480. Furthermore, DUSP4 overexpression led to increased proliferation in CRC cell lines. Our findings suggest that DUSP4 acts as an important regulator of cell growth within the MAPK pathway and causes enhanced cell growth in MSI-H CRC. Copyright © 2012 UICC.

  11. Tearing instabilities in turbulence

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2009-01-01

    Full text: Effects of micro-turbulence on tearing instabilities are investigated by numerically solving a reduced set of two-fluid equations. Micro-turbulence excites both large-scale and small-scale Fourier modes through energy transfer due to nonlinear mode coupling. The energy transfer to large scale mode does not directly excite tearing instability but it gives an initiation of tearing instability. When tearing instability starts to grow, the excited small scale mode plays an important role. The mixing of magnetic flux by micro-turbulence is the dominant factor of non-ideal MHD effect at the resonant surface and it gives rise to magnetic reconnection which causes tearing instability. Tearing instabilities were investigated against static equilibrium or flowing equilibrium so far. On the other hand, the recent progress of computer power allows us to investigate interactions between turbulence and coherent modes such as tearing instabilities in magnetically confined plasmas by means of direct numerical simulations. In order to investigate effects of turbulence on tearing instabilities we consider a situation that tearing mode is destabilized in a quasi-equilibrium including micro-turbulence. We choose an initial equilibrium that is unstable against kinetic ballooning modes and tearing instabilities. Tearing instabilities are current driven modes and thus they are unstable for large scale Fourier modes. On the other hand kinetic ballooning modes are unstable for poloidal Fourier modes that are characterized by ion Larmor radius. The energy of kinetic ballooning modes spreads over wave number space through nonlinear Fourier mode coupling. We present that micro-turbulence affects tearing instabilities in two different ways by three-dimensional numerical simulation of a reduced set of two-fluid equations. One is caused by energy transfer to large scale modes, the other is caused by energy transfer to small scale modes. The former is the excitation of initial

  12. Beam instability Workshop - plenary sessions

    International Nuclear Information System (INIS)

    2001-01-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions

  13. Beam instability Workshop - plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions.

  14. “Pseudo-thyroid lobe”: A diagnostic conundrum caused by ossified anterior longitudinal ligament on bone scan

    International Nuclear Information System (INIS)

    Zaman, Maseeh Uz; Fatima, Nosheen; Sajjad, Zafar; Zaman, Unaiza; Zaman, Areeba; Tahseen, Rabia

    2015-01-01

    Radionuclide bone imaging is one of the most commonly performed nuclear medicine procedure around the world and characterized by its high sensitivity and relatively low specificity. False positive findings on a bone scan are very common; however, dense uptake over unilateral ossified anterior longitudinal ligament appearing as single thyroid lobe on a bone scan has not been described in the literature

  15. Optical damage in reduced Z-cut LiNbO3 crystals caused by longitudinal photovoltaic and pyroelectric effects

    International Nuclear Information System (INIS)

    Kostritskii, S. M.; Aillerie, M.

    2012-01-01

    The marked optical damage was observed in thin Z-cut plates of the deeply reduced nominally pure LiNbO 3 crystals, when a 514.5-nm-laser beam with ordinary polarization was focused on the ±Z face. The longitudinal photovoltaic and pyroelectric effects are shown to be responsible for most of the important peculiarities of the optical damage dynamics. The anisotropy in the behavior between the +Z and -Z faces has been explained by interference of the different kinds of pyroelectric and photovoltaic effects to the space-charge field with an altering relative sign.

  16. Mortality among immigrants in England and Wales by major causes of death, 1971-2012: A longitudinal analysis of register-based data.

    Science.gov (United States)

    Wallace, Matthew; Kulu, Hill

    2015-12-01

    Recent research has found a migrant mortality advantage among immigrants relative to the UK-born population living in England and Wales. However, while all-cause mortality is useful to show differences in mortality between immigrants and the host population, it can mask variation in mortality patterns from specific causes of death. This study analyses differences in the causes of death among immigrants living in England and Wales. We extend previous research by applying competing-risks survival analysis to study a large-scale longitudinal dataset from 1971 to 2012 to directly compare causes of death. We confirm low all-cause mortality among nearly all immigrants, except immigrants from Scotland, Northern Ireland and the Republic of Ireland (who have high mortality). In most cases, low all-cause mortality among immigrants is driven by lower mortality from chronic diseases (in nearly all cases by lower cancer mortality and in some cases by lower mortality from cardiovascular diseases (CVD)). This low all-cause mortality often coexists with low respiratory disease mortality and among non-western immigrants, coexists with high mortality from infectious diseases; however, these two causes of death contribute little to mortality among immigrants. For men, CVD is the leading cause of death (particularly among South Asians). For women, cancer is the leading cause of death (except among South Asians, for whom CVD is also the leading cause). Differences in CVD mortality over time remain constant between immigrants relative to UK-born, but immigrant cancer patterns shows signs of some convergence to the cancer mortality among the UK-born (though cancer mortality is still low among immigrants by age 80). The study provides the most up-to-date, reliable UK-based analysis of immigrant mortality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies.

    Science.gov (United States)

    Aikawa, Takeshi; Kanazono, Shinichi; Yoshigae, Yuki; Sharp, Nicholas J H; Muñana, Karen R

    2007-07-01

    To describe diagnostic findings, surgical technique, and outcome in dogs with thoracic spinal canal stenosis and vertebral instability secondary to congenital vertebral anomalies. Retrospective clinical study. Dogs (n=9) with thoracic spinal canal stenosis. Medical records (1995-1996; 2000-2006) of 9 dogs with a myelographic diagnosis of spinal canal stenosis and/or vertebral instability secondary to congenital vertebral anomaly that were surgically managed by vertebral stabilization with or without laminectomy were reviewed. Data on pre- and postoperative neurologic status, diagnostic findings, surgical techniques, and outcomes were retrieved. Follow-up evaluations were performed at 1, 2, and 6 months. Long-term outcome was assessed by means of clinical examination or owner telephone interviews. Spinal cord compression was confirmed by myelography, and in 2 dogs, dynamic compression by stress myelography. Eight dogs regained the ability to ambulate postoperatively. One dog with a partial recovery regained voluntary movement but did not become ambulatory. Spinal cord injury secondary to congenital vertebral anomaly may have a good outcome when treated by vertebral stabilization with or without laminectomy. Adequate stabilization of the vertebrae and improved neurologic outcome were achieved in most dogs. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate with or without laminectomy is an effective treatment for spinal canal stenosis and vertebral instability secondary to congenital thoracic vertebral anomalies.

  18. Multifragmentation: Surface instabilities or statistical decay

    International Nuclear Information System (INIS)

    Moretto, L.G.; Tso, K.; Delis, D.; Colonna, N.; Wozniak, G.J.

    1992-11-01

    Boltzmann-Nordheim-Vlasov calculations show multifragmentation that seems to originate from surface instabilities. These instabilities are traced to a sheet instability caused by the proximity interaction. Experimental data, on the other hand, suggest that multifragmentation may be dominated by phase space

  19. Multifragmentation: surface instabilities or statistical decay?

    International Nuclear Information System (INIS)

    Moretto, L.G.; Tso, K.; Delis, D.; Colonna, N.; Wozniak, G.J.

    1993-01-01

    Boltzmann-Nordheim-Vlasov calculations show multifragmentation that seems to originate from surface instabilities. These instabilities are traced to a sheet instability caused by the proximity interaction. Experimental data, on the other hand, suggest that multifragmentation may be dominated by phase space. (author)

  20. Capitalists, managers, professionals and mortality: findings from the Barcelona social class and all cause mortality longitudinal study.

    Science.gov (United States)

    Muntaner, Carles; Borrell, Carme; Solà, Judit; Marì-Dell'olmo, Marc; Chung, Haejoo; Rodríguez-Sanz, Maica; Benach, Joan; Noh, Samuel

    2009-11-01

    To examine the effects of Neo-Marxian social class (i.e. measured as relations of control over productive assets) and potential mediators such as labour-market position, work organization, material deprivation and health behaviours upon mortality in Barcelona, Spain. Longitudinal data from the Barcelona 2000 Health Interview Survey (n = 7526) with follow-up interviews through the municipal census in 2008 (95.97% response rate) were used. Using data on relations of property, organizational power, and education, social classes were grouped according to Wright's scheme: capitalists, petit bourgeoisie, managers, supervisors, and skilled, semi-skilled and unskilled workers. Social class, measured as relations of control over productive assets, is an important predictor of mortality among working-class positions for men but not for women. Workers (hazard ratio 1.60, 95% confidence interval 1.10-2.35), managers and small employers had a higher risk of death than capitalists. The extensive use of conventional gradient measures of social stratification has neglected sociological measurements of social class conceptualized as relations of control over productive assets. This concept is capable of explaining how social inequalities are generated. To confirm the protective effect of the capitalist class position and the ''contradictory class location hypothesis'', additional efforts are needed to properly measure class among low-level supervisors, capitalists, managers, and small employers.

  1. Dynamic ultrasound of peroneal tendon instability.

    Science.gov (United States)

    Pesquer, Lionel; Guillo, Stéphane; Poussange, Nicolas; Pele, Eric; Meyer, Philippe; Dallaudière, Benjamin

    2016-07-01

    Ankle snapping may be caused by peroneal tendon instability. Anterior instability occurs after traumatic superior peroneal retinaculum injury, whereas peroneal tendon intrasheath subluxation is atraumatic. Whereas subluxation is mainly dynamic, ultrasound allows for the diagnosis and classification of peroneal instability because it allows for real-time exploration. The purpose of this review is to describe the anatomic and physiologic bases for peroneal instability and to heighten the role of dynamic ultrasound in the diagnosis of snapping.

  2. Simulation, measurement, and mitigation of beam instability caused by the kicker impedance in the 3-GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Shobuda, Y.; Hotchi, H.; Harada, H.; Hayashi, N.; Kinsho, M.; Tamura, F.; Tani, N.; Yamamoto, M.; Watanabe, Y.; Chin, Yong Ho; Holmes, J. A.

    2018-02-01

    The transverse impedance of eight extraction pulsed kicker magnets is a strong beam instability source in the 3-GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex. Significant beam instability occurs even at half of the designed 1 MW beam power when the chromaticity (ξ ) is fully corrected for the entire acceleration cycle by using ac sextupole (SX) fields. However, if ξ is fully corrected only at the injection energy by using dc SX fields, the beam is stable. In order to study realistic beam instability scenarios, including the effect of space charge and to determine practical measures to accomplish 1 MW beam power, we enhance the orbit particle tracking code to incorporate all realistic time-dependent machine parameters, including the time dependence of the impedance itself. The beam stability properties beyond 0.5 MW beam power are found to be very sensitive to a number of parameters in both simulations and measurements. In order to stabilize a beam at 1 MW beam power, two practical measures based on detailed and systematic simulation studies are determined, namely, (i) proper manipulation of the betatron tunes during acceleration and (ii) reduction of the dc SX field to reduce the ξ correction even at injection. The simulation results are well reproduced by measurements, and, as a consequence, an acceleration to 1 MW beam power is successfully demonstrated. In this paper, details of the orbit simulation and the corresponding experimental results up to 1 MW of beam power are presented. To further increase the RCS beam power, beam stability issues and possible measures beyond 1 MW beam power are also considered.

  3. Hemodynamic Instability after Low-Energy Thigh Contusion Caused by Injury to the Femoral Artery: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Juan Miguel Rodríguez-Roiz

    2016-01-01

    Full Text Available Acute vascular injuries have been described in relation to high-energy trauma accidents or in patients undergoing surgery in the femoral area. We describe a healthy patient who sustained a direct, low-energy contusion in the thigh and presented haemodynamic instability. Arteriography was used to locate the point of bleeding, and embolisation and vessel occlusion were carried out to stop the haemorrhage. The genetic study identified the COL3A1 gene mutation; accordingly, the patient was diagnosed with the Ehlers-Danlos syndrome type IV (vascular type.

  4. Suppression of Genomic Instabilities Caused by Chromosome Mis-segregation: A Perspective From Studying BubR1 and Sgo1

    Science.gov (United States)

    Dai, Wei

    2013-01-01

    Aneuploidy is a major manifestation of chromosomal instability, which is defined as a numerical abnormality of chromosomes in diploid cells. It is highly prevalent in a variety of human malignancies. Increased chromosomal instability is the major driving force for tumor development and progression. To suppress genomic stability during cell division, eukaryotic cells have evolved important molecular mechanisms, commonly referred to as checkpoints. The spindle checkpoint ensures that cells with defective mitotic spindles or a defective interaction between the spindles and kinetochores do not initiate chromosomal segregation during mitosis. Extensive studies have identified and characterized more than a dozen genes that play important roles in the regulation of the spindle checkpoint in mammalian cells. During the past decade, we have carried out extensive investigation of the role of BubR1 (Bub1-related kinase) and Sgo1 (shugoshin 1), two important gene products that safeguard accurate chromosome segregation during mitosis. This mini-review summarizes our studies, as well as those by other researchers in the field, on the functions of these two checkpoint proteins and their molecular regulation during mitosis. Further elucidation of the molecular mechanisms of the spindle checkpoint regulation has the potential to identify important mitotic targets for rational anticancer drug design. PMID:20040454

  5. Suppression of Genomic Instabilities Caused by Chromosome Mis-segregation: A Perspective From Studying BubR1 and Sgo1

    Directory of Open Access Journals (Sweden)

    Wei Dai

    2009-12-01

    Full Text Available Aneuploidy is a major manifestation of chromosomal instability, which is defined as a numerical abnormality of chromosomes in diploid cells. It is highly prevalent in a variety of human malignancies. Increased chromosomal instability is the major driving force for tumor development and progression. To suppress genomic stability during cell division, eukaryotic cells have evolved important molecular mechanisms, commonly referred to as checkpoints. The spindle checkpoint ensures that cells with defective mitotic spindles or a defective interaction between the spindles and kinetochores do not initiate chromosomal segregation during mitosis. Extensive studies have identified and characterized more than a dozen genes that play important roles in the regulation of the spindle checkpoint in mammalian cells. During the past decade, we have carried out extensive investigation of the role of BubR1 (Bub1-related kinase and Sgo1 (shugoshin 1, two important gene products that safeguard accurate chromosome segregation during mitosis. This mini-review summarizes our studies, as well as those by other researchers in the field, on the functions of these two checkpoint proteins and their molecular regulation during mitosis. Further elucidation of the molecular mechanisms of the spindle checkpoint regulation has the potential to identify important mitotic targets for rational anticancer drug design.

  6. Effects of sample attrition in a longitudinal study of the association between alcohol intake and all-cause mortality

    DEFF Research Database (Denmark)

    Thygesen, Lau C; Johansen, Christoffer; Keiding, Niels

    2008-01-01

    of this study were to characterize participants who dropped out and to evaluate whether the missing information influenced the association between alcohol intake and all-cause mortality. Design and participants Data on the 18 974 participants in the Copenhagen City Heart Study, with four measures of alcohol...... intake and other life-style factors during 28 years of follow-up, were linked with nation-wide registers on socio-economic covariates, mortality and disease incidence. Logistic regression was used to describe life-style and socio-economic determinants of attrition, and Poisson regression was used...

  7. Coherent instabilities of proton beams in accelerators and storage rings - experimental results, diagnosis and cures

    International Nuclear Information System (INIS)

    Schnell, W.

    1977-01-01

    The author discusses diagnosis and cure of proton beam instabilities in accelerators and storage rings. Coasting beams and bunched beams are treated separately and both transverse and longitudinal instabilities are considered. (B.D.)

  8. Contrasts Between Young Males Dying by Suicide, Those Dying From Other Causes and Those Still Living: Observations From the National Longitudinal Survey of Adolescent to Adult Health.

    Science.gov (United States)

    Feigelman, William; Joiner, Thomas; Rosen, Zohn; Silva, Caroline; Mueller, Anna S

    2016-07-02

    Utilizing Add Health longitudinal data, we compared 21 male suicide casualties to 10,101 living respondents identifying suicide correlates. 21 suicide decedents completed surveys in 1994/1995 (Wave 1) and 11 completed at Wave 3; responses were compared with Chi-square and oneway ANOVA tests. Suicide decedents were prone to higher delinquency and fighting at Wave 1, but not at Wave 3. At Wave 1 suicide decedents remained undistinguished from living respondents in depression, self-esteem, and drug uses. Yet, after Wave 3, the 11 respondents dying by suicide showed significantly higher depression, drug use and lower self-esteem. Delinquency trends can readily understood, but more complex causes are needed to account for unexpected changes in self-esteem, depression and drug uses.

  9. Beam Instabilities in Circular Particle Accelerators

    CERN Document Server

    AUTHOR|(CDS)2067185

    2017-01-01

    The theory of impedance-induced bunched-beam coherent instabilities is reviewed following Laclare's formalism, adding the effect of an electronic damper in the transverse plane. Both single-bunch and coupled-bunch instabilities are discussed, both low-intensity and high-intensity regimes are analysed, both longitudinal and transverse planes are studied, and both short-bunch and long-bunch regimes are considered. Observables and mitigation measures are also examined.

  10. Instability following total knee arthroplasty.

    Science.gov (United States)

    Rodriguez-Merchan, E Carlos

    2011-10-01

    Background Knee prosthesis instability (KPI) is a frequent cause of failure of total knee arthroplasty. Moreover, the degree of constraint required to achieve immediate and long-term stability in total knee arthroplasty (TKA) is frequently debated. Questions This review aims to define the problem, analyze risk factors, and review strategies for prevention and treatment of KPI. Methods A PubMed (MEDLINE) search of the years 2000 to 2010 was performed using two key words: TKA and instability. One hundred and sixty-five initial articles were identified. The most important (17) articles as judged by the author were selected for this review. The main criteria for selection were that the articles addressed and provided solutions to the diagnosis and treatment of KPI. Results Patient-related risk factors predisposing to post-operative instability include deformity requiring a large surgical correction and aggressive ligament release, general or regional neuromuscular pathology, and hip or foot deformities. KPI can be prevented in most cases with appropriate selection of implants and good surgical technique. When ligament instability is anticipated post-operatively, the need for implants with a greater degree of constraint should be anticipated. In patients without significant varus or valgus malalignment and without significant flexion contracture, the posterior cruciate ligament (PCL) can be retained. However, the PCL should be sacrificed when deformity exists particularly in patients with rheumatoid arthritis, previous patellectomy, previous high tibial osteotomy or distal femoral osteotomy, and posttraumatic osteoarthritis with disruption of the PCL. In most cases, KPI requires revision surgery. Successful outcomes can only be obtained if the cause of KPI is identified and addressed. Conclusions Instability following TKA is a common cause of the need for revision. Typically, knees with deformity, rheumatoid arthritis, previous patellectomy or high tibial osteotomy, and

  11. Measurements of a Fast Vertical Instability in the PEP-II HER

    International Nuclear Information System (INIS)

    Matter, Regina S.

    2000-01-01

    The HER beam current was limited to tens of mA by a strong vertical coupled bunch instability during PEP-II commissioning in July '98. In the absence of transverse feedback, vertical oscillations were seen to be unstable at currents as low as 5 mA. The instability has been observed by using the HER longitudinal feedback electronics to digitize and store the vertical beam signal used for transverse feedback. This note presents measurements of modal growth and damping rates at two different vacuum pressures for 291 bunch uniform fills as well as 100 and 150 bunch train measurements. In some cases the unstable modes maintain a constant residual amplitude when feedback is on, and exhibit nonlinear behavior when feedback is switched off. Knowledge of the shape, speed and spectral location of the modal transients should help in diagnosing the cause of instability

  12. Longitudinal trends in HbA1c and associations with comorbidity and all-cause mortality in Asian patients with type 2 diabetes: A cohort study.

    Science.gov (United States)

    Luo, Miyang; Lim, Wei Yen; Tan, Chuen Seng; Ning, Yilin; Chia, Kee Seng; van Dam, Rob M; Tang, Wern Ee; Tan, Ngiap Chuan; Chen, Richard; Tai, E Shyong; Venkataraman, Kavita

    2017-11-01

    This study examined longitudinal trends in HbA1c in a multi-ethnic Asian cohort of diabetes patients, and the associations of these trends with future risk of acute myocardial infarction (AMI), stroke, end stage renal failure (ESRD) and all-cause mortality. 6079 participants with type 2 diabetes mellitus in Singapore were included. HbA1c measurements for the five years previous to recruitment were used to identify patterns of HbA1c trends. Outcomes were recorded through linkage with the National Disease Registry. The median follow-up for longitudinal trends in HbA1c was 4.1years and for outcomes was between 7.0 and 8.3years. HbA1c patterns were identified using latent class growth modeling, and associations with outcomes were analyzed using Cox proportional hazards models. Four distinct HbA1c patterns were observed; "low-stable" (72·2%), "moderate-stable" (22·0%), "moderate-increase" (2·9%), and "high-decrease" (2·8%). The risk of comorbidities and death was significantly higher in moderate-increase and high-decrease groups compared to the low-stable group; the hazard ratios for stroke, ESRD, and death for moderate increase group were 3.22 (95%CI 1.27-8.15), 4.76 (95%CI 1.92-11.83), and 1.88 (95%CI 1.15-3.07), respectively, and for high-decrease group were 2.16 (95%CI 1.02-4.57), 3.05 (95%CI 1.54-6.07), and 2.79 (95%CI 1.97-3.95), respectively. Individuals in the moderate-increase group were significantly younger, with longer diabetes duration, and greater proportions of Malays and Indians. Deteriorating HbA1c pattern and extremely high initial HbA1c are associated with increased risk of long-term comorbidities and death. Therapeutic interventions to alter longitudinal HbA1c trends may be helpful in reducing this risk. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Hidden spondylolisthesis: unrecognized cause of low back pain? Prospective study about the use of dynamic projections in standing and recumbent position for the individuation of lumbar instability

    International Nuclear Information System (INIS)

    Landi, Alessandro; Gregori, Fabrizio; Marotta, Nicola; Donnarumma, Pasquale; Delfini, Roberto

    2015-01-01

    Dynamic X-rays (DXR) are widely recognized as an effective method to detect lumbar instability (LI). They are usually performed with the patient in standing position (SDXR). In our opinion, standing position inhibits micromovements of the lumbar segment interested by the listhesis, thanks to paravertebral muscles antalgic contraction and augmented tone. We aim to demonstrate that DXR in recumbent position (RDXR), reducing the action of paravertebral muscles, can discover hypermovements not evidenced in SDXR. Between January 2011 and January 2013, we studied 200 consecutive patients with lumbar degenerative disease with MRI, SDXR, and RDXR. We aimed to find a correlation between low back or radicular pain and the presence of a spondylolisthesis not showed by the SDXR, but showed by the RDXR. We analysed 200 patients: of the 133 not pathologic in SDXR, 43 patients (32.3 %) showed an hypermovement in RDXR (p = 0.0001) without any significant correlation between hidden listhesis and age, sex, or level involved. The aim of our study is to determine whether in patients with lumbalgy without evidence of listhesis in SDXR, pain can be attributed to a faccettal syndrome or to a spondylolisthesis. Consequence of pain is augmented muscular tone of the paravertebral musculature, particularly in standing position. Augmented muscular tone tries to inhibit the pain generator, attempting to limit the slippage of the involved segment. In patients examined in RDXR, the tone of paravertebral musculature is reduced, showing the hidden spondylolisthesis. (orig.)

  14. Hidden spondylolisthesis: unrecognized cause of low back pain? Prospective study about the use of dynamic projections in standing and recumbent position for the individuation of lumbar instability

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Alessandro; Gregori, Fabrizio; Marotta, Nicola; Donnarumma, Pasquale; Delfini, Roberto [University of Rome - Policlinico Umberto I, Department of Neurology and Psychiatry, Division of Neurosurgery, Rome (Italy)

    2015-03-26

    Dynamic X-rays (DXR) are widely recognized as an effective method to detect lumbar instability (LI). They are usually performed with the patient in standing position (SDXR). In our opinion, standing position inhibits micromovements of the lumbar segment interested by the listhesis, thanks to paravertebral muscles antalgic contraction and augmented tone. We aim to demonstrate that DXR in recumbent position (RDXR), reducing the action of paravertebral muscles, can discover hypermovements not evidenced in SDXR. Between January 2011 and January 2013, we studied 200 consecutive patients with lumbar degenerative disease with MRI, SDXR, and RDXR. We aimed to find a correlation between low back or radicular pain and the presence of a spondylolisthesis not showed by the SDXR, but showed by the RDXR. We analysed 200 patients: of the 133 not pathologic in SDXR, 43 patients (32.3 %) showed an hypermovement in RDXR (p = 0.0001) without any significant correlation between hidden listhesis and age, sex, or level involved. The aim of our study is to determine whether in patients with lumbalgy without evidence of listhesis in SDXR, pain can be attributed to a faccettal syndrome or to a spondylolisthesis. Consequence of pain is augmented muscular tone of the paravertebral musculature, particularly in standing position. Augmented muscular tone tries to inhibit the pain generator, attempting to limit the slippage of the involved segment. In patients examined in RDXR, the tone of paravertebral musculature is reduced, showing the hidden spondylolisthesis. (orig.)

  15. 3-D nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed

  16. No associations between self-reported knee joint instability and radiographic features in knee osteoarthritis patients prior to Total Knee Arthroplasty: A cross-sectional analysis of the Longitudinal Leiden Orthopaedics Outcomes of Osteo-Arthritis study (LOAS) data.

    Science.gov (United States)

    Leichtenberg, Claudia S; Meesters, Jorit J L; Kroon, Herman M; Verdegaal, Suzan H M; Tilbury, Claire; Dekker, Joost; Nelissen, Rob G H H; Vliet Vlieland, Thea P M; van der Esch, Martin

    2017-08-01

    To describe the prevalence of self-reported knee joint instability in patients with pre-surgery knee osteoarthritis (OA) and to explore the associations between self-reported knee joint instability and radiological features. A cross-sectional study including patients scheduled for primary Total Knee Arthroplasty (TKA). Self-reported knee instability was examined by questionnaire. Radiological features consisted of osteophyte formation and joint space narrowing (JSN), both scored on a 0 to three scale. Scores >1 are defined as substantial JSN or osteophyte formation. Regression analyses were provided to identify associations of radiological features with self-reported knee joint instability. Two hundred and sixty-five patients (mean age 69years and 170 females) were included. Knee instability was reported by 192 patients (72%). Substantial osteophyte formation was present in 78 patients (41%) reporting and 33 patients (46%) not reporting knee joint instability. Substantial JSN was present in 137 (71%) and 53 patients (73%), respectively. Self-reported knee instability was not associated with JSN (relative to score 0, odds ratios (95% CI) of score 1, 2 and 3 were 0.87 (0.30-2.54), 0.98 (0.38-2.52), 0.68 (0.25-1.86), respectively) or osteophyte formation (relative to score 0, odds ratios (95% CI) of score 1, 2 and 3 were 0.77 (0.36-1.64), 0.69 (0.23-1.45), 0.89 (0.16-4.93), respectively). Stratified analysis for pain, age and BMI showed no associations between self-reported knee joint instability and radiological features. Self-reported knee joint instability is not associated with JSN or osteophyte formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Orphans and political instability.

    Science.gov (United States)

    Breuning, Marijke; Ishiyama, John

    2011-01-01

    This study investigates the security implications of growing orphan populations, particularly in Sub-Saharan Africa. Little has been written about the security implications of this especially vulnerable group of children. Are growing orphan populations associated with increases in political instability as has been suggested? Using data from several sources, we employ regression analysis to test whether Sub-Saharan African countries with larger proportions of orphans and those with increasing orphan populations experience higher rates of political instability. We find that the increase in the orphan population is related to an increasing incidence of civil conflict, but do not find a similar relationship for the proportion of orphans. In addition, we find that the causes of orphanhood matter. We conclude that increases in orphan populations (rather than simple proportions) are destabilizing. We suggest possible avenues for mediating the security risks posed by growing orphan populations.

  18. Imaging of patellofemoral instability

    International Nuclear Information System (INIS)

    Waldt, S.; Rummeny, E.J.

    2012-01-01

    Patellofemoral instability remains a diagnostic and therapeutic challenge due to its multifactorial genesis. The purpose of imaging is to systematically analyze predisposing factors, such as trochlear dysplasia, patella alta, tibial tuberosity-trochlear groove (TT-TG) distance, rotational deformities of the lower limb and patellar tilt. In order to evaluate anatomical abnormalities with a sufficient diagnostic accuracy, standardized measurement methods and implementation of various imaging modalities are necessary. Diagnosis of acute and often overlooked lateral patellar dislocation can be established with magnetic resonance imaging (MRI) because of its characteristic patterns of injury. Damage to the medial patellofemoral ligament (MPFL) has a significance just as high as the predisposing risk factors in relation to the cause of chronic instability. (orig.) [de

  19. Incidence and main causes of severe maternal morbidity in São Luís, Maranhão, Brazil: a longitudinal study

    Directory of Open Access Journals (Sweden)

    Ana Paula Pierre Moraes

    Full Text Available CONTEXT AND OBJECTIVE: Evaluation of severe maternal morbidity has been used in monitoring of maternal health. The objective of this study was to estimate its incidence and main causes in São Luís, Maranhão, Brazil. DESIGN AND SETTING: Prospective longitudinal study, carried out in two public high-risk maternity hospitals and two public intensive care units (ICUs for referral of obstetric cases from the municipality. METHODS: Between March 1, 2009, and February 28, 2010, all cases of severe maternal morbidity according to the Mantel and Waterstone criteria were identified. The sociodemographic and healthcare characteristics of the extremely severe cases were compared with the less severe cases, using the Fisher, Χ2, Student t and Mann-Whitney tests, with a significance level of < 0.05. RESULTS: 127 cases of severe maternal morbidity were identified among 8,493 deliveries, i.e. an incidence of 15.0/1000 deliveries. Out of 122 cases interviewed, 121 cases were within the Waterstone criteria and 29 were within the Mantel criteria, corresponding to incidences of 14.1/1000 and 3.4/1000 deliveries, respectively. These rates were lower than those described in the literature, possibly due to case loss. The main causes were hypertension during pregnancy, which was more frequent in less severe cases (P = 0.001 and obstetric hemorrhage, which was more common among extremely severe cases (P = 0.01. CONCLUSIONS: Direct obstetric disorders were the main causes of severe maternal morbidity in São Luís, Maranhão. Investigation and monitoring of severe morbidity may contribute towards improving obstetric care in the municipality.

  20. Cavitation instabilities in hydraulic machines

    International Nuclear Information System (INIS)

    Tsujimoto, Y

    2013-01-01

    Cavitation instabilities in hydraulic machines, hydro turbines and turbopump inducers, are reviewed focusing on the cause of instabilities. One-dimensional model of hydro turbine system shows that the overload surge is caused by the diffuser effect of the draft tube. Experiments show that this effect also causes the surge mode oscillations at part load. One dimensional model of a cavitating turbopump inducer shows that the mass flow gain factor, representing the cavity volume increase caused by the incidence angle increase is the cause of cavitation surge and rotating cavitation. Two dimensional model of a cavitating turbopump inducer shows that various modes of cavitation instabilities start to occur when the cavity length becomes about 65% of the blade spacing. This is caused by the interaction of the local flow near the cavity trailing edge with the leading edge of the next blade. It was shown by a 3D CFD that this is true also for real cases with tip cavitation. In all cases, it was shown that cavitation instabilities are caused by the fundamental characteristics of cavities that the cavity volume increases with the decrease of ambient pressure or the increase of the incidence angle

  1. Threshold of decay instability in an inhomogeneous plasma (Leningrad 1973)

    International Nuclear Information System (INIS)

    Piliia, A.D.

    It is shown that in a spatially inhomogeneous plasma there can exist an absolute decay instability with a threshold lower than that found earlier. This instability arises when two parametrically coupled waves have turning points inside the plasma layer. The cause of the instability is a positive inverse coupling, caused by a nonlinear conversion and a reflection of the waves

  2. Single bunch instabilities in an SSC

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1984-01-01

    In this note coherent instability thresholds are estimated for the SSC and discuss some of the subsequent design restrictions. The various instabilities are set out in a block diagram with the essential features of each. The assumption is made that long wavelength coupled bunch effects can be cured effectively by a feedback system (both longitudinal and transverse) and that the impedance of the feedback system is such as to cancel that of the environment (at low frequency). Alternatively, the long wake field is assumed to be exactly canceled, on the average, by a feedback wake field. This leaves only single bunch effects. Thresholds for fast-blowup are discussed both in the longitudinal and transverse and the transverse mode coupling instability more familiar in electron/positron storage rings is covered. The impedances considered are a broadband impedance and the resistive wall impedance

  3. Association of Cognitive Function With Cause-Specific Mortality in Middle and Older Age: Follow-up of Participants in the English Longitudinal Study of Ageing.

    Science.gov (United States)

    Batty, G David; Deary, Ian J; Zaninotto, Paola

    2016-02-01

    We examined the little-tested associations between general cognitive function in middle and older age and later risk of death from chronic diseases. In the English Longitudinal Study of Ageing (2002-2012), 11,391 study participants who were 50-100 years of age at study induction underwent a battery of cognitive tests and provided a range of collateral data. In an analytical sample of 9,204 people (4,982 women), there were 1,488 deaths during follow-up (mean duration, 9.0 years). When we combined scores from 4 cognition tests that represented 3 acknowledged key domains of cognitive functioning (memory, executive function, and processing speed), cognition was inversely associated with deaths from cancer (per each 1-standard-deviation decrease in general cognitive function score, hazard ratio = 1.21, 95% CI: 1.10, 1.33), cardiovascular disease (hazard ratio = 1.71, 95% CI: 1.55, 1.89), other causes (hazard ratio = 2.07, 95% CI: 1.79, 2.40), and respiratory illness (hazard ratio = 2.48, 95% CI: 2.12, 2.90). Controlling for a range of covariates, such as health behaviors and socioeconomic status, and left-censoring to explore reverse causality had very little impact on the strength of these relationships. These findings indicate that cognitive test scores can provide relatively simple indicators of the risk of death from an array of chronic diseases and that these associations appear to be independent of other commonly assessed risk factors. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Analysis of fluid structural instability in water

    International Nuclear Information System (INIS)

    Piccirillo, N.

    1997-02-01

    Recent flow testing of stainless steel hardware in a high pressure/high temperature water environment produced an apparent fluid-structural instability. The source of instability was investigated by studying textbook theory and by performing NASTRAN finite element analyses. The modal analyses identified the mode that was being excited, but the flutter instability analysis showed that the design is stable if minimal structural damping is present. Therefore, it was suspected that the test hardware was the root cause of the instability. Further testing confirmed this suspicion

  5. Sheet Beam Klystron Instability Analysis

    International Nuclear Information System (INIS)

    Bane, K.

    2009-01-01

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly

  6. Posterolateral elbow joint instability

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Søjbjerg, Jens Ole; Nielsen, K K

    1998-01-01

    Thirty-five osteoligamentous elbows were included in a study on the kinematics of posterolateral elbow joint instability during the pivot shift test (PST) before and after separate ligament cuttings in the lateral collateral ligament complex (LCLC). Division of the annular ligament or the lateral...... ulnar collateral ligament caused no laxity during the PST. Division of the lateral collateral ligament caused maximal laxity of 4 degrees and 23 degrees during forced PST in valgus and external rotation (supination), respectively. Cutting of the LCLC at the ulnar or the humeral insertion was necessary...... for any PST stressed elbow joint laxity to occur. Total division of the LCLC induced a maximal laxity of 7.9 degrees and 37 degrees during forced PST in valgus and external rotation (supination), respectively. This study suggests the lateral collateral ligament to be the primary soft tissue constraint...

  7. Jeans instability of self-gravitating magnetized strongly coupled plasma

    International Nuclear Information System (INIS)

    Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K

    2012-01-01

    We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.

  8. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  9. Simulations relevant to the beam instability in the foreshock

    Science.gov (United States)

    Cairns, I. H.; Nishikawa, K.-I.

    1989-01-01

    The results presently obtained from two-dimensional simulations of the reactive instability for Maxwellian beams and cutoff distributions are noted to be consistent with recent suggestions that electrons backstreaming into earth's foreshock have steep-sided cutoff distributions, which are initially unstable to the reactive instability, and that the back-reaction to the wave growth causes the instability to pass into its kinetic phase. It is demonstrated that the reactive instability is a bunching instability, and that the reactive instability saturates and passes over into the kinetic phase by particle trapping.

  10. Ring RF and longitudinal dynamics in the SNS

    International Nuclear Information System (INIS)

    Blaskiewicz, M.; Brennan, J.M.; Brodowski, J.; Delong, J.; Meth, M.; Onillon, E.; Zaltsman, A.

    2000-01-01

    Average beam currents of 40 A will be present in the Spallation Neutron Source. Even though the entire cycle time is only one synchrotron oscillation the longitudinal phase space determines peak beam current and momentum spread. Both factors play a role in space charge and instability dynamics. Longitudinal simulations with beam loading and longitudinal space charge have been done in the design phase

  11. Neutron star pulsations and instabilities

    International Nuclear Information System (INIS)

    Lindblom, L.

    2001-01-01

    Gravitational radiation (GR) drives an instability in certain modes of rotating stars. This instability is strong enough in the case of the r-modes to cause their amplitudes to grow on a timescale of tens of seconds in rapidly rotating neutron stars. GR emitted by these modes removes angular momentum from the star at a rate which would spin it down to a relatively small angular velocity within about one year, if the dimensionless amplitude of the mode grows to order unity. A pedagogical level discussion is given here on the mechanism of GR instability in rotating stars, on the relevant properties of the r-modes, and on our present understanding of the dissipation mechanisms that tend to suppress this instability in neutron stars. The astrophysical implications of this GR driven instability are discussed for young neutron stars, and for older systems such as low mass x-ray binaries. Recent work on the non-linear evolution of the r-modes is also presented. (author)

  12. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  13. Longitudinal tracking studies for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K.

    1995-01-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed

  14. Bunched beam longitudinal stability

    International Nuclear Information System (INIS)

    Baartman, R.

    1991-05-01

    Instabilities driven by narrow-band impedances can be stabilized by Landau damping arising from the synchrotron frequency spread due to the nonlinearity of the rf wave-form. We calculate stability diagrams for various phase space distributions. We find that distributions without tails are unstable in the 'negative mass' regime (inductive impedance below transition or capacitive impedance above transition). We also find that longitudinal instability thresholds of the (usually neglected) higher order radial modes are lower than expected. For example, the next to lowest dipole mode has a lower threshold than the lowest sextupole mode even though the latter has the larger growth rate in the absence of Landau damping. (Author) 5 refs., 5 figs

  15. Numerical analysis of free surface instabilities in the IFMIF lithium target

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Moeslang, A.

    2007-01-01

    The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV/125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Different kinds of instability mechanisms in the liquid jet flow have been evaluated and classified based on analytical and experimental data. Numerical investigations of the target free surface flow have been performed. Previous numerical investigations have shown in principle the suitability of CFD code Star- CD for the simulation of the Li-target flow. The main objective of this study is detailed numerical analysis of instabilities in the Li-jet flow caused by boundary layer relaxation near the nozzle exit, transition to the turbulence flow and back wall curvature. A number of CFD models are developed to investigate the formation of instabilities on the target surface. Turbulence models are validated on the experimental data. Experimental observations have shown that the change of the nozzle geometry at the outlet such as a slight divergence of the nozzle surfaces or nozzle edge defects causes the flow separation and occurrence of longitudinal periodic structures on the free surface with an amplitude up to 5 mm. Target surface fluctuations of this magnitude can lead to the penetration of the deuteron beam in the target structure and cause the local overheating of the back plat. Analysis of large instabilities in the Li-target flow combined with the heat distribution in lithium depending on the free surface shape is performed in this study. (orig.)

  16. Role of microsatellite instability in colon cancer

    Directory of Open Access Journals (Sweden)

    M. Yu. Fedyanin

    2012-01-01

    Full Text Available Coloncancer is among leading causes of cancer morbidity and mortality both inRussiaand worldwide. Development of molecular biology lead to decoding of carcinogenesis and tumor progression mechanisms. These processes require accumulation of genetic and epigenetic alterations in a tumor cell.Coloncancer carcinogenesis is characterized by mutations cumulation in genes controlling growth and differentiation of epithelial cells, which leads to their genetic instability. Microsatellite instability is a type of genetic instability characterized by deterioration of mismatch DNA repair. This leads to faster accumulation of mutations in DNA. Loss of mismatch repair mechanism can easily be diagnosed by length of DNA microsatellites. These alterations are termed microsatellite instability. They can be found both in hereditary and sporadic colon cancers. This review covers the questions of microsatellite instability, its prognostic and predictive value in colon cancer.

  17. Helical instability in film blowing process: Analogy to buckling instability

    Science.gov (United States)

    Lee, Joo Sung; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The film blowing process is one of the most important polymer processing operations, widely used for producing bi-axially oriented film products in a single-step process. Among the instabilities observed in this film blowing process, i.e., draw resonance and helical motion occurring on the inflated film bubble, the helical instability is a unique phenomenon portraying the snake-like undulation motion of the bubble, having the period on the order of few seconds. This helical instability in the film blowing process is commonly found at the process conditions of a high blow-up ratio with too low a freezeline position and/or too high extrusion temperature. In this study, employing an analogy to the buckling instability for falling viscous threads, the compressive force caused by the pressure difference between inside and outside of the film bubble is introduced into the simulation model along with the scaling law derived from the force balance between viscous force and centripetal force of the film bubble. The simulation using this model reveals a close agreement with the experimental results of the film blowing process of polyethylene polymers such as low density polyethylene and linear low density polyethylene.

  18. Topographic-driven instabilities in terrestrial bodies

    Science.gov (United States)

    Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.

    2013-12-01

    Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.

  19. Microwave instability across the transition energy

    International Nuclear Information System (INIS)

    Lee, S.Y.; Wang, J.M.

    1985-01-01

    It is well known that during the acceleration of hadrons in a storage ring, the beam always goes above the microwave instability threshold near the transition energy γ /SUB t/ . The reason is that the longitudinal revolution frequency spread of the beam which otherwise provides Landau damping vanishes at the transition energy. The amount of the beam dilution near the transition energy is determined by /tau/ /SUB th/ , the length of time when the beam stays unstable, and the growth rate of the instability. It is pointed out in this paper that /tau/ /SUB th/ is proportional to the fourth power of γ /SUB t/ , and thus the choice of a large γ /SUB t/ is not desirable from this point of view. An analysis is also given of the microwave instability induced beam dilution for the proposed Relativistic Heavy Ion Collider at BNL

  20. Microwave instability across the transition energy

    International Nuclear Information System (INIS)

    Lee, S.Y.; Wang, J.M.

    1985-01-01

    It is well known that during the acceleration of hadrons in a storage ring, the beam always goes above the microwave instability threshold near the transition energy γ/sub t/. The reason is that the longitudinal revolution frequency spread of the beam which otherwise provides Landau damping vanishes at the transition energy. The amount of the beam dilution near the transition energy is determined by tau/sub th/, the length of time when the beam stays unstable, and the growth rate of the instability. It is pointed out in this paper that tau/sub th/ is proportional to the fourth power of γ/sub t/, and thus the choice of a large γ/sub t/ is not desirable from this point of view. An analysis is also given of the microwave instability induced beam dilution for the proposed Relativistic Heavy Ion Collider at BNL

  1. Studies of intense-laser plasma instabilities

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Krása, Josef; Badziak, J.; Jungwirth, Karel; Krouský, Eduard; Margarone, Daniele; Parys, P.

    2013-01-01

    Roč. 272, May (2013), 94-98 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528; GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser plasma instabilities * self-generated magnetic field * longitudinal structure of the expanding plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  2. Corona-induced electrohydrodynamic instabilities in low conducting liquids

    Energy Technology Data Exchange (ETDEWEB)

    Vega, F.; Perez, A.T. [Depto. Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes, s/n. 41012, Sevilla (Spain)

    2003-06-01

    The rose-window electrohydrodynamic (EHD) instability has been observed when a perpendicular field with an additional unipolar ion injection is applied onto a low conducting liquid surface. This instability has a characteristic pattern with cells five to 10 times greater than those observed in volume instabilities caused by unipolar injection. We have used corona discharge from a metallic point to perform some measurements of the rose-window instability in low conducting liquids. The results are compared to the linear theoretical criterion for an ohmic liquid. They confirmed that the minimum voltage for this instability is much lower than that for the interfacial instability in high conducting liquids. This was predicted theoretically in the dependence of the critical voltage as a function of the non-dimensional conductivity. It is shown that in a non-ohmic liquid the rose window appears as a secondary instability after the volume instability. (orig.)

  3. Instability connected with a beam of run-away electrons in the Tokamak TM-3

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Razumova, K.A.; Sokolov, Yu.A.

    The study of the instability of runaway electrons on the Tokamak TM-3 is continued. The longitudinal energy of runaway electrons that have undergone deceleration during instability is estimated from measurements of superhigh frequency radiation of plasma. A connection was found between the effect of a small fraction of energy protons (observed previously with a low plasma concentration) and the instability being studied. As instability develops, the longitudinal energy of runaway electrons is partially transformed to the transverse degree of freedom of these electrons and is partially transmitted to the basic plasma component

  4. Longitudinal Space Charge in the SPS

    CERN Document Server

    Lasheen, Alexandre

    2016-01-01

    Longitudinal instabilities due to the SPS beam coupling impedance are a major issue for future projects and it is essential to have an accurate SPS impedance model to study them. The longitudinal space charge effect can be modelled by a pure reactive impedance and should also be included in simulations as it may have an impact at low energy. In this Note, the effect of the longitudinal space charge in the SPS is evaluated by taking into account the variation of the transverse beam size and vacuum chamber geometry along the ring. Scaling laws are used to investigate what are the most important parameters for the evaluation of the longitudinal space charge impedance.

  5. Optical damage in reduced Z-cut LiNbO{sub 3} crystals caused by longitudinal photovoltaic and pyroelectric effects

    Energy Technology Data Exchange (ETDEWEB)

    Kostritskii, S. M. [RPC Optolink, Sosnovaya al., d. 6 A, str.2, NPL-3-1, Zelenograd, Moscow, 124489 (Russian Federation); Aillerie, M. [LMOPS, University Paul Verlaine of Metz and Supelec, 2 rue E. Belin, 57070 Metz (France)

    2012-01-01

    The marked optical damage was observed in thin Z-cut plates of the deeply reduced nominally pure LiNbO{sub 3} crystals, when a 514.5-nm-laser beam with ordinary polarization was focused on the {+-}Z face. The longitudinal photovoltaic and pyroelectric effects are shown to be responsible for most of the important peculiarities of the optical damage dynamics. The anisotropy in the behavior between the +Z and -Z faces has been explained by interference of the different kinds of pyroelectric and photovoltaic effects to the space-charge field with an altering relative sign.

  6. New instability strip for hot degenerates

    International Nuclear Information System (INIS)

    Starrfield, S.G.; Cox, A.N.; Hodson, S.W.

    1980-01-01

    A new kind of variable star, designated as PG1159-035 is distinguished not only by the complete lack of hydrogen in its spectrum but also by an effective temperature that exceeds 8 x 10 4 K. The star does not fall near any of the known regions of instability in the HR diagram which suggests that the instability mechanism will not be helium and hydrogen ionization as in the Cepheid variables. The more unusual compositions are examined in order to discover the cause of the instability in PG1159-035

  7. Joint Instability and Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Darryl Blalock

    2015-01-01

    Full Text Available Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA. Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  8. Joint instability and osteoarthritis.

    Science.gov (United States)

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  9. Jeans instability of rotating magnetized quantum plasma: Influence of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, H., E-mail: hjoshi8525@yahoo.com [Department of Physics, Mewar University, Chittorgarh (Raj.) India (India); Pensia, R. K. [Department of Physics, Govt. Girls College, Neemuch (M.P.) India (India)

    2015-07-31

    The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.

  10. Hydromagnetic instability in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Kruskal, M D; Gottlieb, M B; Johnson, J L; Goldman, L M [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    It was noted that when there is a uniform externally imposed longitudinal field much larger than the field of the discharge current, one should expect instabilities in the form of a lateral displacement of the plasma column into a helix of large pitch. At the wavelength of fastest growth the e-folding time approximates the time it takes a sound wave in the plasma to traverse the radius of the plasma column. This problem has been re-examines under the conditions which might be expected to occur in the stellarator during ohmic heating, including the presence of external conductors. The theory is applied to the stellarator; and it is shown that the external conductors are in fact unimportant. The important effects due to the finite length of the Machine are discussed and the effects of more general current distributions are considered. The results from the experiments are given.

  11. Generalized laser filamentation instability coupled to cooling instability

    International Nuclear Information System (INIS)

    Liang, E.P.; Wong, J.; Garrison, J.

    1984-01-01

    We consider the propagation of laser light in an initially slightly nonuniform plasma. The classical dispersion relation for the laser filamentation growth rate (see e.g., B. Langdon, in the 1980 Lawrence Livermore National Laboratory Laser Program Annual Report, pp. 3-56, UCRL-50021-80, 1981) can be generalized to include other acoustical effects. For example, we find that the inclusion of potential imbalances in the heating and cooling rates of the ambient medium due to density and temperature perturbations can cause the laser filamentation mode to bifurcate into a cooling instability mode at long acoustic wavelengths. We also attempt to study semi-analytically the nonlinear evolution of this and related instabilities. These results have wide applications to a variety of chemical gas lasers and phenomena related to laser-target interactions (e.g., jet-like behavior)

  12. Chromosomal instability determines taxane response

    DEFF Research Database (Denmark)

    Swanton, C.; Nicke, B.; Schuett, M.

    2009-01-01

    chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these "CIN-survival'' genes is associated with poor outcome in estrogen receptor......-positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane...

  13. Attribution of Causes of Weight Loss and Weight Gain to 3-Year Mortality in Older Adults: Results From the Longitudinal Aging Study Amsterdam

    NARCIS (Netherlands)

    Wijnhoven, H.A.H.; van Zon, S.K.R.; Twisk, J.; Visser, M.

    2014-01-01

    Background: Weight loss is associated with a higher mortality risk in old age, but the underlying cause may impact this association. We examined associations between causes of intentional and unintentional weight loss and weight gain and mortality. Methods: We used data of five triannual examination

  14. Attribution of Causes of Weight Loss and Weight Gain to 3-Year Mortality in Older Adults : Results From the Longitudinal Aging Study Amsterdam

    NARCIS (Netherlands)

    Wijnhoven, Hanneke A. H.; van Zon, Sander K. R.; Twisk, Jos; Visser, Marjolein

    2014-01-01

    Background. Weight loss is associated with a higher mortality risk in old age, but the underlying cause may impact this association. We examined associations between causes of intentional and unintentional weight loss and weight gain and mortality. Methods. We used data of five triannual examination

  15. Numerical MHD study for plasmoid instability in uniform resistivity

    Science.gov (United States)

    Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji

    2017-11-01

    The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.

  16. Hydrodynamic instabilities in inertial fusion

    International Nuclear Information System (INIS)

    Hoffman, N.M.

    1994-01-01

    This report discusses topics on hydrodynamics instabilities in inertial confinement: linear analysis of Rayleigh-Taylor instability; ablation-surface instability; bubble rise in late-stage Rayleigh-Taylor instability; and saturation and multimode interactions in intermediate-stage Rayleigh-Taylor instability

  17. Does more education cause lower BMI, or do lower-BMI individuals become more educated? Evidence from the National Longitudinal Survey of Youth 1979.

    Science.gov (United States)

    Benson, Rebecca; von Hippel, Paul T; Lynch, Jamie L

    2017-03-21

    More educated adults have lower average body mass index (BMI). This may be due to selection, if adolescents with lower BMI attain higher levels of education, or it may be due to causation, if higher educational attainment reduces BMI gain in adulthood. We test for selection and causation in the National Longitudinal Survey of Youth 1979, which has followed a representative US cohort from age 14-22 in 1979 through age 47-55 in 2012. Using ordinal logistic regression, we test the selection hypothesis that overweight and obese adolescents were less likely to earn high school diplomas and bachelor's degrees. Then, controlling for selection with individual fixed effects, we estimate the causal effect of degree completion on BMI and obesity status. Among 18-year-old women, but not among men, being overweight or obese predicts lower odds of attaining higher levels of education. At age 47-48, higher education is associated with lower BMI, but 70-90% of the association is due to selection. Net of selection, a bachelor's degree predicts less than a 1 kg reduction in body weight, and a high school credential does not reduce BMI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Single-mode coherent synchrotron radiation instability

    Directory of Open Access Journals (Sweden)

    S. Heifets

    2003-06-01

    Full Text Available The microwave instability driven by the coherent synchrotron radiation (CSR has been previously studied [S. Heifets and G. V. Stupakov, Phys. Rev. ST Accel. Beams 5, 054402 (2002] neglecting effect of the shielding caused by the finite beam pipe aperture. In practice, the unstable mode can be close to the shielding threshold where the spectrum of the radiation in a toroidal beam pipe is discrete. In this paper, the CSR instability is studied in the case when it is driven by a single synchronous mode. A system of equations for the beam-wave interaction is derived and its similarity to the 1D free-electron laser theory is demonstrated. In the linear regime, the growth rate of the instability is obtained and a transition to the case of continuous spectrum is discussed. The nonlinear evolution of the single-mode instability, both with and without synchrotron damping and quantum diffusion, is also studied.

  19. Surface instabilities in shock loaded granular media

    Science.gov (United States)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  20. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mohamad; Broderick, Avery E. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Pfrommer, Christoph [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Puchwein, Ewald, E-mail: mshalaby@live.ca [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-10-20

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders of magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.

  1. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    International Nuclear Information System (INIS)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip; Pfrommer, Christoph; Lamberts, Astrid; Puchwein, Ewald

    2017-01-01

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders of magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.

  2. Coherent betatron instability in the Tevatron

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Harrison, M.; Ng, K.Y.

    1988-01-01

    The coherent betatron instability was first observed during the recent 1987-88 Tevatron fixed target run. In this operating mode 1000 consecutive bunches are loaded into the machine at 150 GeV with a bunch spacing of 18.8 /times/ 10 -9 sec (53 MHz). The normalized transverse emittance is typically 15 π /times/ 10 -6 m rad in each plane with a longitudinal emittance of about 1.5 eV-sec. The beam is accelerated to 800 GeV in 13 sec. and then it is resonantly extracted during a 23 sec flat top. As the run progressed the bunch intensities were increased until at about 1.4 /times/ 10 10 ppb (protons per bunch) we experienced the onset of a coherent horizontal oscillation taking place in the later stages of the acceleration cycle (>600 GeV). This rapidly developing coherent instability results in a significant emittance growth, which limits machine performance and in a catastrophic scenario it even prevents extraction of the beam. In this paper we will present a simple analytic description of the observed instability. We will show that a combination of a resistive wall coupled bunch effect and a single bunch slow head-tail instability is consistent with the above observations. Finally, a systematic numerical analysis of our model (growth-time vs chromaticity plots) points to the existence of the ≥1 slow head-tail modes as a plausible mechanism for the observed coherent instability. This last claim, as mentioned before, does not have conclusive experimental evidence, although it is based on a very good agreement between the measured values of the instability growth-time and the ones calculated on the basis of our model. 4 refs., 3 figs

  3. Lower extremity strength, systemic inflammation and all-cause mortality: Application to the "fat but fit" paradigm using cross-sectional and longitudinal designs.

    Science.gov (United States)

    Buckner, Samuel L; Loenneke, Jeremy P; Loprinzi, Paul D

    2015-10-01

    No study has applied the "fat-but-fit" paradigm with respect to muscular strength as an index of fitness, despite muscular strength being independently associated with functional ability and mortality. To examine the relationship between lower extremity muscular strength, C-reactive protein (CRP), and all-cause mortality among normal weight, overweight and obese individuals. Data from the 1999-2002 NHANES were used (N=2740 adults; ≥ 50 years). CRP values were obtained from a blood sample. Lower body isokinetic knee extensor strength (IKES) was assessed using a Kin Kom MP isokinetic dynamometer. Participant data was linked to death certificate data from the National Death Index to ascertain all-cause mortality status. Participants were classified, based on body mass index (BMI) and strength as: normal weight and unfit (fit (≥ 75th IKES percentile); overweight and fit; and obese and fit. Independent of physical activity and other confounders, compared to those who were normal weight and unfit, unfit overweight (β=.14, p=0.009), unfit obese (β=.33, pfit (β=.17, p=0.008) participants, had higher CRP levels. However, there was no difference in CRP levels between normal weight and unfit participants and overweight and fit participants (β=0.04, p=0.35). Compared to normal weight unfit adults, overweight fit (HR=0.28; 95% CI: 0.11-0.70; p=0.008) adults had a lower hazard rate for all-cause mortality. These finding suggest that increased lower body strength, independent of physical activity, may reduce premature all-cause mortality and attenuate systemic inflammation among overweight adults. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Relation between early life socioeconomic position and all cause mortality in two generations. A longitudinal study of Danish men born in 1953 and their parents

    DEFF Research Database (Denmark)

    Osler, Merete; Andersen, Anne-Marie Nybo; Batty, G David

    2005-01-01

    wealth was the indicator that remained significantly associated with adult all cause mortality in a model also including parental social position and the intellectual climate of the family in 1968. In the men born in 1953 the influence of material wealth was strongest for deaths later in adult life....... CONCLUSION: Father's occupational social class is associated with adult mortality in all members of the mother-father-offspring triad. Material wealth seems to be an explanatory factor for this association....

  5. Methylene Blue Is Effective to Reverse Refractory Hemodynamic Instability due to Dimethoate Poisoning

    Directory of Open Access Journals (Sweden)

    Nick Youssefi

    2015-09-01

    Conclusion:MB treatment was effective to reverse hypotension and restore hemodynamic instability caused by dimethoate poisoning. This index case may pave way to further investigation of MB therapy for OP-induced hemodynamic instabilities.

  6. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  7. Character of decay instability

    International Nuclear Information System (INIS)

    Polovin, R.V.; Demutskii, V.P.

    1981-01-01

    If the initial wave is unstable in the upper half plane Im ω>0 and there are no branch points of the quasiwave number, or if waves traveling in the same direction coalesce at a branch point, the instability is convective. On the other hand, if a branch point k(ω) does exist in the upper half-plane Im ω>0, and not all the waves that merge at this point travel in the same direction, the instability is absolute. A Green's function that describes the evolution of the perturbations of the initial wave in space and in time is constructed. The growth rates of the decay instability of the harmonics are determined. The produced waves are richer in harmonics than the initial waves. It is shown that the decay instability of an Alfven wave is absolute

  8. Spondylolisthesis and Posterior Instability

    International Nuclear Information System (INIS)

    Niggemann, P.; Beyer, H.K.; Frey, H.; Grosskurth, D.; Simons, P.; Kuchta, J.

    2009-01-01

    We present the case of a patient with a spondylolisthesis of L5 on S1 due to spondylolysis at the level L5/S1. The vertebral slip was fixed and no anterior instability was found. Using functional magnetic resonance imaging (MRI) in an upright MRI scanner, posterior instability at the level of the spondylolytic defect of L5 was demonstrated. A structure, probably the hypertrophic ligament flava, arising from the spondylolytic defect was displaced toward the L5 nerve root, and a bilateral contact of the displaced structure with the L5 nerve root was shown in extension of the spine. To our knowledge, this is the first case described of posterior instability in patients with spondylolisthesis. The clinical implications of posterior instability are unknown; however, it is thought that this disorder is common and that it can only be diagnosed using upright MRI

  9. Spondylolisthesis and Posterior Instability

    Energy Technology Data Exchange (ETDEWEB)

    Niggemann, P.; Beyer, H.K.; Frey, H.; Grosskurth, D. (Privatpraxis fuer Upright MRT, Koeln (Germany)); Simons, P.; Kuchta, J. (Media Park Klinik, Koeln (Germany))

    2009-04-15

    We present the case of a patient with a spondylolisthesis of L5 on S1 due to spondylolysis at the level L5/S1. The vertebral slip was fixed and no anterior instability was found. Using functional magnetic resonance imaging (MRI) in an upright MRI scanner, posterior instability at the level of the spondylolytic defect of L5 was demonstrated. A structure, probably the hypertrophic ligament flava, arising from the spondylolytic defect was displaced toward the L5 nerve root, and a bilateral contact of the displaced structure with the L5 nerve root was shown in extension of the spine. To our knowledge, this is the first case described of posterior instability in patients with spondylolisthesis. The clinical implications of posterior instability are unknown; however, it is thought that this disorder is common and that it can only be diagnosed using upright MRI.

  10. Genomic instability and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B [Harvard School of Public Health, Boston, MA 02115 (United States)

    2003-06-01

    Genomic instability is a hallmark of cancer cells, and is thought to be involved in the process of carcinogenesis. Indeed, a number of rare genetic disorders associated with a predisposition to cancer are characterised by genomic instability occurring in somatic cells. Of particular interest is the observation that transmissible instability can be induced in somatic cells from normal individuals by exposure to ionising radiation, leading to a persistent enhancement in the rate at which mutations and chromosomal aberrations arise in the progeny of the irradiated cells after many generations of replication. If such induced instability is involved in radiation carcinogenesis, it would imply that the initial carcinogenic event may not be a rare mutation occurring in a specific gene or set of genes. Rather, radiation may induce a process of instability in many cells in a population, enhancing the rate at which the multiple gene mutations necessary for the development of cancer may arise in a given cell lineage. Furthermore, radiation could act at any stage in the development of cancer by facilitating the accumulation of the remaining genetic events required to produce a fully malignant tumour. The experimental evidence for such induced instability is reviewed. (review)

  11. Genomic instability and radiation

    International Nuclear Information System (INIS)

    Little, John B

    2003-01-01

    Genomic instability is a hallmark of cancer cells, and is thought to be involved in the process of carcinogenesis. Indeed, a number of rare genetic disorders associated with a predisposition to cancer are characterised by genomic instability occurring in somatic cells. Of particular interest is the observation that transmissible instability can be induced in somatic cells from normal individuals by exposure to ionising radiation, leading to a persistent enhancement in the rate at which mutations and chromosomal aberrations arise in the progeny of the irradiated cells after many generations of replication. If such induced instability is involved in radiation carcinogenesis, it would imply that the initial carcinogenic event may not be a rare mutation occurring in a specific gene or set of genes. Rather, radiation may induce a process of instability in many cells in a population, enhancing the rate at which the multiple gene mutations necessary for the development of cancer may arise in a given cell lineage. Furthermore, radiation could act at any stage in the development of cancer by facilitating the accumulation of the remaining genetic events required to produce a fully malignant tumour. The experimental evidence for such induced instability is reviewed. (review)

  12. [Capsular retensioning in anterior unidirectional glenohumeral instability].

    Science.gov (United States)

    Benítez Pozos, Leonel; Martínez Molina, Oscar; Castañeda Landa, Ezequiel

    2007-01-01

    To present the experience of the Orthopedics Service PEMEX South Central Hospital in the management of anterior unidirectional shoulder instability with an arthroscopic technique consisting of capsular retensioning either combined with other anatomical repair procedures or alone. Thirty-one patients with anterior unidirectional shoulder instability operated-on between January 1999 and December 2005 were included. Fourteen patients underwent capsular retensioning and radiofrequency, and in 17 patients, capsular retensioning was combined with suture anchors. Patients with a history of relapsing glenohumeral dislocations and subluxations, with anterior instability with or without associated Bankart lesions were selected; all of them were young. The results were assessed considering basically the occurrence of instability during the postoperative follow-up. No cases of recurring instability occurred. Two cases had neuroma and one experienced irritation of the suture site. Six patients had residual limitation of combined lateral rotation and abduction movements, of a mean of 10 degrees compared with the healthy contralateral side. The most frequent incident was the leak of solutions to the soft tissues. Capsular retensioning, whether combined or not with other anatomical repair techniques, has proven to result in a highly satisfactory rate of glenohumeral stabilization in cases of anterior unidirectional instabilities. The arthroscopic approach offers the well-known advantages of causing less damage to the soft tissues, and a shorter time to starting rehabilitation therapy and exercises.

  13. Feedback control of coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.

    1993-05-01

    The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques

  14. Architectures and Algorithms for Control and Diagnostics of Coupled-Bunch Instabilities in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, Dmitry

    2003-07-08

    Modern light sources and circular colliders employ large numbers of high-intensity particle bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via resonant structures causes coherent instabilities at high beam currents. Achieving high luminosity requires the control of such unstable motion. Feedback control is challenging due to wideband nature of the problem with up to 250 MHz bandwidths required. This thesis presents digital signal processing architectures and diagnostic techniques for control of longitudinal and transverse coupled-bunch instabilities. Diagnostic capabilities integrated into the feedback system allow one to perform fast transient measurements of unstable dynamics by perturbing the beam from the controlled state via feedback and recording the time-domain response. Such measurements enable one to thoroughly characterize plant (beam) dynamics as well as performance of the feedback system. Beam dynamics can change significantly over the operating range of accelerator currents and energies . Here we present several methods for design of robust stabilizing feedback controllers. Experimental results from several accelerators are presented. A new baseband architecture for transverse feedback is described that compactly implements the digital processing functions using field-programmable gate array devices. The architecture is designed to be software configurable so that the same hardware can be used for instability control in different accelerators.

  15. A weak microwave instability with potential well distortion and radial mode coupling

    International Nuclear Information System (INIS)

    Chao, A.; Chen, Bo; Oide, Katsunobu

    1995-07-01

    In attempts to minimize the impedance of an accelerator by smoothing out its vacuum chamber, improvements are typically first made by reducing the inductive part of the impedance. As the inductance is reduced, however, the impedance becomes increasingly relatively resistive, and as a consequence, the nature of potential well distortion changes qualitatively. An inductive impedance lengthens the bunch (above transition) while maintaining more or less a head-tail symmetry of the bunch longitudinal distribution. A resistive impedance does not change the bunch length as much, but tends to cause a large head-tail asymmetry. We explore two ways which might in principle allevial this instability mechanism. (i) add a higher harmonic cavity: A higher harmonic rf voltage with appropriate and amplitude may compensate for the head-tail asymmetry and thus raise the instability threshold. (ii) operate the accelerator with a negative momentum compaction factor η:(12) With η > 0, the distorted beam distribution leans toward the head of the bunch; the bunch tail sees large wakefields. Operating with η < 0 could conceivably help because the beam distribution now leans toward the tail of the bunch. Both (i) and (ii) were explored in this paper. We found that a higher harmonic cavity of a modest voltage can indeed eliminate this instability, while the advantage of operating with η< 0 is less obvious

  16. Architectures and Algorithms for Control and Diagnostics of Coupled-Bunch Instabilities in Circular Accelerators

    International Nuclear Information System (INIS)

    Teytelman, Dmitry

    2003-01-01

    Modern light sources and circular colliders employ large numbers of high-intensity particle bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via resonant structures causes coherent instabilities at high beam currents. Achieving high luminosity requires the control of such unstable motion. Feedback control is challenging due to wideband nature of the problem with up to 250 MHz bandwidths required. This thesis presents digital signal processing architectures and diagnostic techniques for control of longitudinal and transverse coupled-bunch instabilities. Diagnostic capabilities integrated into the feedback system allow one to perform fast transient measurements of unstable dynamics by perturbing the beam from the controlled state via feedback and recording the time-domain response. Such measurements enable one to thoroughly characterize plant (beam) dynamics as well as performance of the feedback system. Beam dynamics can change significantly over the operating range of accelerator currents and energies . Here we present several methods for design of robust stabilizing feedback controllers. Experimental results from several accelerators are presented. A new baseband architecture for transverse feedback is described that compactly implements the digital processing functions using field-programmable gate array devices. The architecture is designed to be software configurable so that the same hardware can be used for instability control in different accelerators

  17. Isotope separation of uranium by laser: tuning and frequency instability

    International Nuclear Information System (INIS)

    Broglia, M.; Massimi, M.; Spoglia, U.; Zampetti, P.

    1983-01-01

    Intensity measurements of laser induced fluorescence in an uranium atomic beam are affected by the axial mode structure of the commercial pulsed dye laser used and by its strong frequency instability. Qualitative and quantitative evaluations on the possible causes of frequency instability are reported

  18. Kinetic simulations of Rayleigh-Taylor instabilities

    International Nuclear Information System (INIS)

    Sagert, Irina; Bauer, Wolfgang; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance

    2014-01-01

    We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is in the linear regime, we compare its position and shape to the analytic prediction. Despite the broadening of the fluid interface we see a good agreement with the analytic solution. At later times we observe the development of a mushroom like shape caused by secondary Kelvin-Helmholtz instabilities as seen in hydrodynamic simulations and consistent with experimental observations.

  19. Pattern formation - Instabilities in sand ripples

    DEFF Research Database (Denmark)

    Hansen, J. L.; v. Hecke, M.; Haaning, A.

    2001-01-01

    Sand ripples are seen below shallow wavy water and are formed whenever water oscillates over a bed of sand. Here we analyse the instabilities that can upset this perfect patterning when the ripples are subjected to large changes in driving amplitude or frequency, causing them to deform both...

  20. Plasma physics and instabilities

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.

    1981-01-01

    These lectures procide an introduction to the theory of plasmas and their instabilities. Starting from the Bogoliubov, Born, Green, Kirkwood, and Yvon (BBGKY) hierarchy of kinetic equations, the additional concept of self-consistent fields leads to the fundamental Vlasov equation and hence to the warm two-fluid model and the one-fluid MHD, or cold, model. The properties of small-amplitude waves in magnetized (and unmagnetized) plasmas, and the instabilities to which they give rise, are described in some detail, and a complete chapter is devoted to Landau damping. The linear theory of plasma instabilities is illustrated by the current-driven electrostatic kind, with descriptions of the Penrose criterion and the energy principle of ideal MHD. There is a brief account of the application of feedback control. The non-linear theory is represented by three examples: quasi-linear velocity-space instabilities, three-wave instabilities, and the stability of an arbitrarily largeamplitude wave in a plasma. (orig.)

  1. Synergistic effects of cognitive impairment on physical disability in all-cause mortality among men aged 80 years and over: Results from longitudinal older veterans study.

    Directory of Open Access Journals (Sweden)

    Wan-Chen Yu

    is a major risk factor for all-cause mortality among men aged 80 years and older, and risk increased synergistically when cognitive impairment was present. Cognitive impairment alone without physical disability did not increase mortality risk in this population.

  2. Synergistic effects of cognitive impairment on physical disability in all-cause mortality among men aged 80 years and over: Results from longitudinal older veterans study.

    Science.gov (United States)

    Yu, Wan-Chen; Chou, Ming-Yueh; Peng, Li-Ning; Lin, Yu-Te; Liang, Chih-Kuang; Chen, Liang-Kung

    2017-01-01

    risk factor for all-cause mortality among men aged 80 years and older, and risk increased synergistically when cognitive impairment was present. Cognitive impairment alone without physical disability did not increase mortality risk in this population.

  3. Fingerprints of dynamical instabilities

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Colonna, M.; Guarnera, A.

    1993-01-01

    It is explained why any reduced descriptions, such as mean field approximation, are stochastic in nature. It is shown that the introduction of this stochastic dynamics leads to a predictive theory in a statistical sens whatever the individual trajectories are characterized by the occurrence of bifurcations, instabilities or phase transitions. Concerning nuclear matter, the spinodal instability is discussed. In such a critical situation, the possibility to replace the stochastic part of the collision integral in the Boltzmann-Langevin model by the numerical noise associated with the finite number of test particles in ordinary BUU treatment is studied. It is shown that the fingerprints of these instabilities are kept during the evolution because of the relatively long recombination time compared with the typical time scales imposed by the Coulomb repulsion and the possible collective expansion. (author) 5 refs., 12 figs

  4. Instability and star evolution

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.

    1981-01-01

    The observational data are discussed which testify that the phenomena of dynamical instability of stars and stellar systems are definite manifestations of their evolution. The study of these phenomena has shown that the instability is a regular phase of stellar evolution. It has resulted in the recognition of the most important regularities of the process of star formation concerning its nature. This became possible due to the discovery in 1947 of stellar associations in our Galaxy. The results of the study of the dynamical instability of stellar associations contradict the predictions of classical hypothesis of stellar condensation. These data supplied a basis for a new hypothesis on the formation of stars and nebulae by the decay of superdense protostars [ru

  5. STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL

    Directory of Open Access Journals (Sweden)

    S. Lyabuk

    2017-06-01

    Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.

  6. Observation of the ion resonance instability

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Notte, J.; Fajans, J.

    1993-01-01

    Observation of the ion resonance instability in a pure electron plasma trap contaminated with a small population of ions is reported. The ion population is maintained by ionization of the background gas. The instability causes the plasma to move steadily off-center while undergoing l=1 diocotron oscillations. The observed scaling of the maximum growth point is presented, and the growth rate and its dependence on ion density are discussed. Several aspects of the observed behavior are not in agreement with previous theory but derive from the transitory nature of the ion population

  7. Self-Induced Faraday Instability Laser

    Science.gov (United States)

    Perego, A. M.; Smirnov, S. V.; Staliunas, K.; Churkin, D. V.; Wabnitz, S.

    2018-05-01

    We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.

  8. Simulation of Instability at Transition Energy with a New Impedance Model for CERN PS

    CERN Document Server

    Wang, Na; Biancacci, Nicolo; Migliorati, Mauro; Persichelli, Serena; Sterbini, Guido

    2016-01-01

    Instabilities driven by the transverse impedance are proven to be one of the limitations for the high intensity reach of the CERN PS. Since several years, fast single bunch vertical instability at transition energy has been observed with the high intensity bunch serving the neu-tron Time-of-Flight facility (n-ToF). In order to better understand the instability mechanism, a dedicated meas-urement campaign took place. The results were compared with macro-particle simulations with PyHEADTAIL based on the new impedance model developed for the PS. Instability threshold and growth rate for different longitu-dinal emittances and beam intensities were studied.

  9. Instabilities and nonequilibrium structures

    International Nuclear Information System (INIS)

    Tirapegui, E.; Villarroel, D.

    1987-01-01

    Physical systems can be studied both near to and far from equilibrium where instabilities appear. The behaviour in these two regions is reviewed in this book, from both the theoretical and application points of view. The influence of noise in these situations is an essential feature which cannot be ignored. It is therefore discussed using phenomenological and theoretical approaches for the numerous problems which still remain in the field. This volume should appeal to mathematicians and physicists interested in the areas of instability, bifurcation theory, dynamical systems, pattern formation, nonequilibrium structures and statistical mechanics. (Auth.)

  10. RINGED ACCRETION DISKS: INSTABILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  11. Microbunch Instability Theory and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.

    2005-01-26

    Over the last years there have been several reports of quasiperiodic bursts of coherent synchrotron radiation (CSR) in electron rings in the microwave and far-infrared range. The observations were made on synchrotron radiation light sources which include the Synchrotron Ultraviolet Radiation Facility SURF II [1], the VUV ring at the National Synchrotron Light Source at BNL [2, 3], second generation light sources MAX-I [4], BESSY II [5], and ALS [6]. General features of those observations can be summarized as follows. Above a threshold current, there is a strongly increased radiation of the beam in the range of wavelengths shorter than the bunch length, {lambda} < {sigma}{sub 2}. At large currents, this radiation is observed as a sequence of random bursts. In the bursting regime, intensity of the radiation scales approximately as square of the number of particles in the bunch, indicating a coherent nature of the phenomenon. It is generally accepted that the source of this radiation is related to the microbunching of the beam arising from development of a microwave instability caused by the coherent synchrotron radiation of the beam. A relativistic electron beam moving in a circular orbit in free space can radiate coherently if the wavelength of the synchrotron radiation exceeds the length of the bunch. In accelerators coherent radiation of the bunch is usually suppressed by the shielding effect of the conducting walls of the vacuum chamber [7-9], which gives an exponential cutoff of wavelengths greater than a certain threshold. However, an initial density fluctuation with a characteristic length much shorter than the shielding threshold would radiate coherently. If the radiation reaction force is such that it results in the growth of the initial fluctuation one can expect an instability that leads to micro-bunching of the beam and an increased coherent radiation at short wavelengths. A possibility of CSR instability was pointed out in Refs. [10, 11].

  12. Assessment of Flow Instability in Passive Auxiliary Feedwater System (PAFS) Using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech., Yongin (Korea, Republic of); Cheon, Jong; Kim, Han-Gon [KHNP, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, the occurrence possibility of both instabilities in PAFS is assessed with the best-estimate thermal hydraulic code, RELAP5. From the RELAP5 code analysis, the Ledinegg instability might not occur in PAFS. The DWO might occur in PAFS but the effect of the oscillation on the heat removal capacity of PAFS was not large. Therefore, it is concluded that PAFS is safe in terms of flow instabilities. Since PAFS is two-phase flow system, flow instabilities may occur. Flow instabilities may cause the severe deterioration of heat removal capability of PAFS due to the reduction of the condensate flow. For the reliable operation of PAFS, it is required to assess the flow instabilities in PAFS. The Ledinegg-type instability and the Density Wave Oscillation (DWO) are the representative static flow instability and the dynamic flow instability, respectively.

  13. Strings, vortex rings, and modes of instability

    Directory of Open Access Journals (Sweden)

    Steven S. Gubser

    2015-03-01

    Full Text Available We treat string propagation and interaction in the presence of a background Neveu–Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scale which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross–Pitaevskii Lagrangian, and also how it compares to the action for giant gravitons.

  14. Fluid Instabilities of Magnetar-Powered Supernovae

    Science.gov (United States)

    Chen, Ke-Jung

    2017-05-01

    Magnetar-powered supernova explosions are competitive models for explaining very luminous optical transits. Until recently, these explosion models were mainly calculated in 1D. Radiation emitted from the magnetar snowplows into the previous supernovae ejecta and causes a nonphysical dense shell (spike) found in previous 1D studies. This suggests that strong fluid instabilities may have developed within the magnetar-powered supernovae. Such fluid instabilities emerge at the region where luminous transits later occur, so they can affect the consequent observational signatures. We examine the magnetar-powered supernovae with 2D hydrodynamics simulations and find that the 1D dense shell transforms into the development of Rayleigh-Taylor and thin shell instabilities in 2D. The resulting mixing is able to fragment the entire shell and break the spherical symmetry of supernovae ejecta.

  15. Prediction of flow instability during natural convection

    International Nuclear Information System (INIS)

    Farhadi, Kazem

    2005-01-01

    The occurrence of flow excursion instability during passive heat removal for Tehran Research Reactor (TRR) has been analyzed at low-pressure and low-mass rate of flow conditions without boiling taking place. Pressure drop-flow rate characteristics in the general case are determined upon a developed code for this purpose. The code takes into account variations of different pressure drop components caused by different powers as well as different core inlet temperatures. The analysis revealed the fact that the instability can actually occur in the natural convection mode for a range of powers per fuel plates at a predetermined inlet temperature with fixed geometry of the core. Low mass rate of flow and high sub-cooling are the two important conditions for the occurrence of static instability in the TRR. The calculated results are compared with the existing data in the literature. (author)

  16. Dynamics of Longitudinal Phase-Space Modulations in an rf Compressor for Electron Beams

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Free Electron Lasers (FELs) operating in the UV or x-ray radiation spectrum require peak beam currents that are generally higher than those obtainable by present electron sources, thus making bunch compression necessary. Compression, however, may heighten the effects of collective forces and degrade the beam quality. In this paper they provide a framework for investigating some of these effects in rf compressors by focusing on the longitudinal dynamics of small-amplitude density perturbations, which have the potential to cause the disruptive appearance of the so-called microbunching instability. They develop a linear theory valid for low-to-moderate compression factors under the assumption of a 1D impedance model of longitudinal space charge and provide validation against macroparticle simulations.

  17. Computational and Experimental Investigation of Liquid Propellant Rocket Combustion Instability

    Data.gov (United States)

    National Aeronautics and Space Administration — Combustion instability has been a problem faced by rocket engine developers since the 1940s. The complicated phenomena has been highly unpredictable, causing engine...

  18. Buneman instability and Pierce instability in a collisionless bounded plasma

    International Nuclear Information System (INIS)

    Iizuka, Satoru; Saeki, Koichi; Sato, Noriyoshi; Hatta, Yoshisuke

    1983-01-01

    A systematic experiment is performed on the Buneman instability and the Pierce instability in a bounded plasma consisting of beam electrons and stationary ions. Current fluctuations are confirmed to be induced by the Buneman instability. On the other hand, the Pierce instability gives rise to a current limitation. The phenomena are well explained by Mikhailovskii's theory taking account of ion motion in a bounded plasma. (author)

  19. Magnetohydrodynamic instability in annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.

    2006-01-01

    In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift

  20. Adolescent patellar instability: current concepts review.

    Science.gov (United States)

    Clark, D; Metcalfe, A; Wogan, C; Mandalia, V; Eldridge, J

    2017-02-01

    Patellar instability most frequently presents during adolescence. Congenital and infantile dislocation of the patella is a distinct entity from adolescent instability and measurable abnormalities may be present at birth. In the normal patellofemoral joint an increase in quadriceps angle and patellar height are matched by an increase in trochlear depth as the joint matures. Adolescent instability may herald a lifelong condition leading to chronic disability and arthritis. Restoring normal anatomy by trochleoplasty, tibial tubercle transfer or medial patellofemoral ligament (MPFL) reconstruction in the young adult prevents further instability. Although these techniques are proven in the young adult, they may cause growth arrest and deformity where the physis is open. A vigorous non-operative strategy may permit delay of surgery until growth is complete. Where non-operative treatment has failed a modified MPFL reconstruction may be performed to maintain stability until physeal closure permits anatomical reconstruction. If significant growth remains an extraosseous reconstruction of the MPFL may impart the lowest risk to the physis. If minor growth remains image intensifier guided placement of femoral intraosseous fixation may impart a small, but acceptable, risk to the physis. This paper presents and discusses the literature relating to adolescent instability and provides a framework for management of these patients. Cite this article: Bone Joint J 2017;99-B:159-70. ©2017 The British Editorial Society of Bone & Joint Surgery.

  1. Elbow joint instability

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Henriksen, M G; Søjbjerg, Jens Ole

    1994-01-01

    The effect of simultaneous ulnar and radial collateral ligament division on the kinematics of the elbow joint is studied in a cadaveric model. Severance of the anterior part of the ulnar collateral ligament and the annular ligament led to significant elbow joint instability in valgus and varus...

  2. Structural and Material Instability

    DEFF Research Database (Denmark)

    Cifuentes, Gustavo Cifuentes

    This work is a small contribution to the general problem of structural and material instability. In this work, the main subject is the analysis of cracking and failure of structural elements made from quasi-brittle materials like concrete. The analysis is made using the finite element method. Three...

  3. Agricultural Markets Instability

    NARCIS (Netherlands)

    Garrido, A.; Brümmer, B.; M'Barek, R.; Gielen-Meuwissen, M.P.M.; Morales-Opazo, C.

    2016-01-01

    Since the financial and food price crises of 2007, market instability has been a topic of major concern to agricultural economists and policy professionals. This volume provides an overview of the key issues surrounding food prices volatility, focusing primarily on drivers, long-term implications of

  4. Comment on critical instability

    International Nuclear Information System (INIS)

    King, S.F.; Suzuki, Mahiko

    1992-01-01

    We discuss the problem of the mass splitting between top and bottom quarks, within the context of Nambu-Jona-Lasinio type models involving top and bottom quark condensates. We interpret the phenomenon of 'critical instability' recently proposed to account for such a mass splitting as the fine-tuning of two vacuum expectation values in a composite two-Higgs doublet model. (orig.)

  5. Midflexion instability in primary total knee replacement: a review

    Directory of Open Access Journals (Sweden)

    Ramappa Manjunath

    2015-01-01

    Full Text Available Introduction: Midflexion instability in primary total knee replacement (TKR is an evolving concept. Successful treatment of instability requires an understanding of the different types of instability. Methods: A literature review was performed to identify information pertinent to midflexion instability in primary total knee replacement, utilising PRISMA guidelines. Databases searched included Embase, Medline, All of the Cochrane Library, PubMed and cross references. Results: Three factors, i.e., elevated joint line, multiradii femoral component and medial collateral ligament (MCL laxity, were identified to influence midflexion instability. Literature suggested mediolateral instability at 30–60° of flexion as diagnostic of midflexion instability. Literature search also revealed paucity in clinical studies analysing midflexion instability. Most of the evidence was obtained from cadaveric studies for elevated joint line and MCL laxity. Clinical studies on multiradii femoral component were limited by their small study size and early followup period. Conclusion: Elevated joint line, multiradii femoral component and MCL laxity have been suggested to cause midflexion laxity in primary TKR. Due to limitations in available evidence, this review was unable to raise the strength of overall evidence. Future well-designed clinical studies are essential to make definitive conclusions. This review serves as a baseline for future researchers and creates awareness for routine assessment of midflexion instability in primary total knee replacement.

  6. Instabilities in the plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    1975-03-01

    The plasma focus was studied by many research teams in view of a possible approach to controlled thermonuclear fusion. Though it is questionable whether the plasma focus will ever lead to a fusion reactor, it nevertheless constitutes a strong source of neutron, X- and gamma radiation for simulating fusion reactor conditions. Furthermore, the plasma focus yields very high temperatures (10 7 K) and densities (> 10 19 cm -3 ) and thus provides interesting conditions for the study of high density plasmas. This review paper starts with a description of the compression stage of the focussing plasma, using a snow-plough model. It is shown that sophisticated MHD calculations substantiate the snowplough theory, but are not suited to describe the phenomena in the final compressed stage. For this purpose, a particle-in-cell calculation is employed, yielding a beam-beam collision model for the neutron production. Experimental evidence indicates that neutron production is associated with the appearence of m = O instabilities and is the direct result of collisions between anomalously accelerated ions. One of the mechanisms of ion acceleration are strong local electric fields. Another possible mechanism can bee seen in beam-plasma instabilities caused by runaway electrons. The analytical derivation of the dispersion relation for plasma focus conditions including runaway effect is discussed (orig.) [de

  7. Tracking Code for Microwave Instability

    International Nuclear Information System (INIS)

    Heifets, S.; SLAC

    2006-01-01

    To study microwave instability the tracking code is developed. For bench marking, results are compared with Oide-Yokoya results [1] for broad-band Q = 1 impedance. Results hint to two possible mechanisms determining the threshold of instability

  8. Instabilities in thin tunnel junctions

    International Nuclear Information System (INIS)

    Konkin, M.K.; Adler, J.G.

    1978-01-01

    Tunnel junctions prepared for inelastic electron tunneling spectroscopy are often plagued by instabilities in the 0-500-meV range. This paper relates the bias at which the instability occurs to the barrier thickness

  9. Nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.

    1975-01-01

    A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)

  10. Flame Driving of Longitudinal Instabilities in Liquid Fueled Dump Combustors

    Science.gov (United States)

    1988-10-01

    for the first * natural frequency of 80 Hz. As the flame length is much smaller than the acoustic wavelength at 80 Hz the pressure is constant over...release at different locations along the flame. The reason for this is that the flame length is equivalent to several vortical wavelengths as is evident...pressure minimum there was a large radla- flame length . In all cases, it was ?ound that the tion signal at the driving frequency. On the theory

  11. The effect of spin induced magnetization on Jeans instability of viscous and resistive quantum plasma

    International Nuclear Information System (INIS)

    Sharma, Prerana; Chhajlani, R. K.

    2014-01-01

    The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In the case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to be modified due to the viscosity and quantum correction in which the Jeans condition of instability is influenced only by quantum parameter. The other non-gravitating Alfven mode in this direction is affected by finite electrical resistivity, spin induced magnetization, and viscosity. The numerical study for the growth rate of Jeans instability is carried out for both in the transverse and longitudinal direction of propagation to the magnetic field. The effect of various parameters on the growth rate of Jeans instability in quantum plasma is analysed

  12. A theory of two-stream instability in two hollow relativistic electron beams

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1993-01-01

    Stability properties of two-stream instability of two hollow electron beams are investigated. The equilibrium configuration consists of two intense relativistic hollow electron beams propagating through a grounded conducting cylinder. Analysis of the longitudinal two-stream instability is carried out within the framework of the linearized Vlasov--Maxwell equations for the equilibrium distribution function, in which beam electrons have a Lorentzian distribution in the axial momentum. Dispersion relation of the longitudinal two-stream instability is derived. Stability criteria from this dispersion relation indicate that the normalized velocity difference Δβ between the beams should be within a certain range of value to be unstable. Growth rate of the instability is a substantial fraction of the real frequency, thereby indicating that the longitudinal two-stream instability is an effective means of beam current modulation. Transverse instability of hollow electron beams is also investigated. Dispersion relation of the coupled transverse oscillation of the beams is derived and numerical investigation of this dispersion relation is carried out. Growth rate of the kink instability is a substantial fraction of the diocotron frequency, which may pose a serious threat to the two-stream klystron

  13. Longitudinal split of the posterior cruciate ligament: description of a new MR finding and evaluation of its potential clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Cha, J.H. [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Chung, H.W., E-mail: chung@amc.seoul.k [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Kwon, J.W. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Choi, B.K.; Lee, S.H.; Shin, M.J. [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-03-15

    Aim: To evaluate the clinical significance of the intra-substance longitudinal split of the posterior cruciate ligament (LS-PCL) and to evaluate its potential clinical significance on MRI. Materials and methods: The databases of two centres were searched for LS-PCL, 6917 knee magnetic resonance imaging (MRI) examinations undertaken were retrospectively reviewed. LS-PCL was defined as increased signal intensity in a PCL in the longitudinal direction, but with an intact ligament outer surface on MRI. Twelve patients were enrolled in this study. Available arthroscopic results, degree of posterior knee instability, and changes in MRI findings, or the degree of instability during follow-up (FU), were reviewed from the patients medical records and via their MRI images. MRI images were reviewed by two musculoskeletal radiologists in consensus for presence and location of LS-PCL and any combined injuries: menisci lesions, ligament injuries, and bone marrow changes. Results: Seven of 12 patients (58.3%) had morphological or functional evidence of PCL injury or insufficiency according to the change of posterior instability on FU stress testing (n = 3), insufficiency during arthroscopy (n = 2), or decreased extent and altered shape of the PCL split on the FU MRI (n = 3). One patient revealed both change of posterior instability on FU stress testing and insufficiency during arthroscopy. Combined injuries were revealed in seven patients. Five patients had isolated LS-PCL: two patients underwent arthroscopic PCL reconstructions; and another three patients revealed knee instability on stress testing. Conclusion: Although LS-PCL has not been described before, it can be a type of partial tear of the PCL, which causes PCL insufficiency.

  14. A trickle instability

    Science.gov (United States)

    Bossa, Benjamin

    2005-11-01

    We address the problem of the free fall of a long, horizontal and narrow liquid layer squeezed in a vertical open Hele-Shaw cell. The layer destabilizes as it falls down, evolving into a series of liquid blobs linked together by thin bridges, which ultimately break, leaving the initially connex fluid layer as a set a disjointed drops. The mechanism of this instability is the onset of a vertical pressure gradient due to the curvature difference of the moving contact line between the advancing interface and the rear interface. This instability, whose growth rate scales with a non-trivial power of the capillary number, amplifies indifferently a broad band of wavenumbers because of the flat shape of its dispersion relation in the thin layer limit. We will finally comment on the nature of the final fragmentation process and drop size distributions.

  15. Instability and internet design

    Directory of Open Access Journals (Sweden)

    Sandra Braman

    2016-09-01

    Full Text Available Instability - unpredictable but constant change in one’s environment and the means with which one deals with it - has replaced convergence as the focal problem for telecommunications policy in general and internet policy in particular. Those who designed what we now call the internet during the first decade of the effort (1969-1979, who in essence served simultaneously as its policy-makers, developed techniques for coping with instability of value for network designers today and for those involved with any kind of large-scale sociotechnical infrastructure. Analysis of the technical document series that was medium for and record of that design process reveals coping techniques that began with defining the problem and went on to include conceptual labour, social practices, and technical approaches.

  16. Linear waves and instabilities

    International Nuclear Information System (INIS)

    Bers, A.

    1975-01-01

    The electrodynamic equations for small-amplitude waves and their dispersion relation in a homogeneous plasma are outlined. For such waves, energy and momentum, and their flow and transformation, are described. Perturbation theory of waves is treated and applied to linear coupling of waves, and the resulting instabilities from such interactions between active and passive waves. Linear stability analysis in time and space is described where the time-asymptotic, time-space Green's function for an arbitrary dispersion relation is developed. The perturbation theory of waves is applied to nonlinear coupling, with particular emphasis on pump-driven interactions of waves. Details of the time--space evolution of instabilities due to coupling are given. (U.S.)

  17. Cosmic ray driven instability

    International Nuclear Information System (INIS)

    Dorfi, E.A.; Drury, L.O.

    1985-01-01

    The interaction between energetic charged particles and thermal plasma, which forms the basis of diffusive shock acceleration, leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homoeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can in addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves

  18. Instability in dynamic fracture

    Science.gov (United States)

    Fineberg, J.; Marder, M.

    1999-05-01

    The fracture of brittle amorphous materials is an especially challenging problem, because the way a large object shatters is intimately tied to details of cohesion at microscopic scales. This subject has been plagued by conceptual puzzles, and to make matters worse, experiments seemed to contradict the most firmly established theories. In this review, we will show that the theory and experiments fit within a coherent picture where dynamic instabilities of a crack tip play a crucial role. To accomplish this task, we first summarize the central results of linear elastic dynamic fracture mechanics, an elegant and powerful description of crack motion from the continuum perspective. We point out that this theory is unable to make predictions without additional input, information that must come either from experiment, or from other types of theories. We then proceed to discuss some of the most important experimental observations, and the methods that were used to obtain the them. Once the flux of energy to a crack tip passes a critical value, the crack becomes unstable, and it propagates in increasingly complicated ways. As a result, the crack cannot travel as quickly as theory had supposed, fracture surfaces become rough, it begins to branch and radiate sound, and the energy cost for crack motion increases considerably. All these phenomena are perfectly consistent with the continuum theory, but are not described by it. Therefore, we close the review with an account of theoretical and numerical work that attempts to explain the instabilities. Currently, the experimental understanding of crack tip instabilities in brittle amorphous materials is fairly detailed. We also have a detailed theoretical understanding of crack tip instabilities in crystals, reproducing qualitatively many features of the experiments, while numerical work is beginning to make the missing connections between experiment and theory.

  19. Stability of higher-order longitudinal modes in a bunched beam without mode coupling

    International Nuclear Information System (INIS)

    Satoh, K.

    1981-05-01

    The theory of longitudinal instabilities of bunched beams was proposed by F. Sacherer. Starting from the Vlasov equation, he derived the integral equation for the perturbed distribution function. While the general method to solve the integral equation was given by Sacherer, a number of other papers discussing longitudinal bunched beam instability have also been published. Here we want to propose another formalism with which we can treat the integral equation without mode coupling for the case of a Gaussian bunch. We then generalize the formalism for the other bunch distributions, and derive a practical method to analyze the instability for the case of a parabolic bunch. While the solution of the Sacherer equation that we find is not new, we present another approach to solve it. Since the integral equation for the transverse instability is similar to that for the longitudinal instability, this formalism is also useful for the transverse case. 12 figs., 4 figs

  20. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  1. Analyses of MHD instabilities

    International Nuclear Information System (INIS)

    Takeda, Tatsuoki

    1985-01-01

    In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)

  2. Ion temperature gradient instability

    International Nuclear Information System (INIS)

    1989-01-01

    Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc

  3. Mood instability and impulsivity as trait predictors of suicidal thoughts.

    Science.gov (United States)

    Peters, Evyn M; Balbuena, Lloyd; Marwaha, Steven; Baetz, Marilyn; Bowen, Rudy

    2016-12-01

    Impulsivity, the tendency to act quickly without adequate planning or concern for consequences, is a commonly cited risk factor for suicidal thoughts and behaviour. There are many definitions of impulsivity and how it relates to suicidality is not well understood. Mood instability, which describes frequent fluctuations of mood over time, is a concept related to impulsivity that may help explain this relationship. The purpose of this study was to determine whether impulsivity could predict suicidal thoughts after controlling for mood instability. This study utilized longitudinal data from the 2000 Adult Psychiatric Morbidity Survey (N = 2,406). There was a time interval of 18 months between the two waves of the study. Trait impulsivity and mood instability were measured with the Structured Clinical Interview for DSM-IV Axis II Personality Disorders. Logistic regression analyses were used to evaluate baseline impulsivity and mood instability as predictors of future suicidal thoughts. Impulsivity significantly predicted the presence of suicidal thoughts, but this effect became non-significant with mood instability included in the same model. Impulsivity may be a redundant concept when predicting future suicidal thoughts if mood instability is considered. The significance is that research and therapy focusing on mood instability along with impulsivity may be useful in treating the suicidal patient. Mood instability and impulsivity both predict future suicidal thoughts. Impulsivity does not predict suicidal thoughts after controlling for mood instability. Assessing and treating mood instability could be important aspects of suicide prevention and risk management. © 2015 The British Psychological Society.

  4. Instabilities in passive dispersion oscillating fiber ring cavities

    Science.gov (United States)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Biancalana, Fabio; Trillo, Stefano

    2017-05-01

    We investigate theoretically and experimentally the development of instabilities in passive ring cavities with stepwise longitudinal variation of the dispersion. We derive an extended version of the Lugiato-Lefever equation that permits to model dispersion oscillating cavities and we demonstrate that this equation is valid well beyond the mean field approximation. We review the theory of Turing (modulational) and Faraday (parametric) instability in inhomogeneous fiber cavities. We report the experimental demonstration of the generation of stable Turing and Faraday temporal patterns in the same device, which can be controlled by changing the detuning and/or the input power. Moreover, we experimentally record the round-trip-to-round-trip dynamics of the spectrum, which shows that Turing and Faraday instabilities not only differ by their characteristic frequency but also by their dynamical behavior. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  5. Internato Longitudinal

    Directory of Open Access Journals (Sweden)

    Marcelo Marcos Piva Demarzo

    Full Text Available O internato médico tem gerado recorrente debate frente às transformações curriculares em andamento no País. A despeito das discussões, um modelo de internato consonante com essas mudanças ainda não foi consistentemente delineado. Neste ensaio, trazemos uma proposta de matriz estruturante para o internato médico. Propomos que o internato médico seja realizado durante os seis anos do curso, de forma longitudinal, tendo como eixo estruturante a clínica da Atenção Básica (AB. Esse modelo de "internato longitudinal" prevê a introdução progressiva na prática clínica, iniciando-se pela AB nos dois primeiros anos, acrescentando-se progressivamente os ambulatórios de especialidades, os estágios hospitalares e demais atividades práticas, alcançando-se, dessa forma, o rol de diversidade e complexidade previsto para o egresso da escola médica.

  6. Trisomy 21 and facial developmental instability.

    Science.gov (United States)

    Starbuck, John M; Cole, Theodore M; Reeves, Roger H; Richtsmeier, Joan T

    2013-05-01

    The most common live-born human aneuploidy is trisomy 21, which causes Down syndrome (DS). Dosage imbalance of genes on chromosome 21 (Hsa21) affects complex gene-regulatory interactions and alters development to produce a wide range of phenotypes, including characteristic facial dysmorphology. Little is known about how trisomy 21 alters craniofacial morphogenesis to create this characteristic appearance. Proponents of the "amplified developmental instability" hypothesis argue that trisomy 21 causes a generalized genetic imbalance that disrupts evolutionarily conserved developmental pathways by decreasing developmental homeostasis and precision throughout development. Based on this model, we test the hypothesis that DS faces exhibit increased developmental instability relative to euploid individuals. Developmental instability was assessed by a statistical analysis of fluctuating asymmetry. We compared the magnitude and patterns of fluctuating asymmetry among siblings using three-dimensional coordinate locations of 20 anatomic landmarks collected from facial surface reconstructions in four age-matched samples ranging from 4 to 12 years: (1) DS individuals (n = 55); (2) biological siblings of DS individuals (n = 55); 3) and 4) two samples of typically developing individuals (n = 55 for each sample), who are euploid siblings and age-matched to the DS individuals and their euploid siblings (samples 1 and 2). Identification in the DS sample of facial prominences exhibiting increased fluctuating asymmetry during facial morphogenesis provides evidence for increased developmental instability in DS faces. We found the highest developmental instability in facial structures derived from the mandibular prominence and lowest in facial regions derived from the frontal prominence. Copyright © 2013 Wiley Periodicals, Inc.

  7. Design of the APS transverse and longitudinal damping system

    International Nuclear Information System (INIS)

    Sellyey, W.; Barr, D.; Kahana, E.; Votaw, A.

    1994-01-01

    The main sources of instabilities in the Advanced Photon Source (APS) storage ring are expected to be higher-order modes (HOMs) of the accelerating cavities and the resistive wall impedance of the small insertion devices beam tubes. Extensive efforts are being made to reduce the Qs of HOMs. The maximum operating current of the ring will be 300 mA. At this current, analysis of measurements on cavity prototypes shows that the transverse growth rates will be less than 500/sec above radiation damping. The longitudinal growth rate due to HOMs is predicted to never exceed the radiation damping of 213/sec. The largest transverse resistive wall growth rate is calculated to be 2720/sec when 54 evenly spaced rigid bunches are used to produce 300 mA. There will be 26 additional unstable modes. The sum of these growth rates is 17,163/sec. Thus, it is clear that an effective transverse damping system will be needed and that the strength of this damper will be dominated by the resistive wall modes. A longitudinal damper system will also be built. This will provide damping about 2/3 times that due to synchrotron radiation. The most serious disturbances which can initiate instabilities will take place at injection. Typically, each bunch in the ring will be accumulated by injecting 115 of the final charge five times. A standard mode of operation is used in this paper in which there will be 54 evenly spaced bunches around the ring. During the ring filling process, the highest growth rates will occur when the last fifth of a bunch is injected into the last bunch. The largest expected vertical excursion of 1/5 of a bunch is about 5 mm. Anything larger will cause the bunch to scrape in the insertion device sections

  8. THE SATURATION OF SASI BY PARASITIC INSTABILITIES

    International Nuclear Information System (INIS)

    Guilet, Jerome; Sato, Jun'ichi; Foglizzo, Thierry

    2010-01-01

    The standing accretion shock instability (SASI) is commonly believed to be responsible for large amplitude dipolar oscillations of the stalled shock during core collapse, potentially leading to an asymmetric supernovae explosion. The degree of asymmetry depends on the amplitude of SASI, but the nonlinear saturation mechanism has never been elucidated. We investigate the role of parasitic instabilities as a possible cause of nonlinear SASI saturation. As the shock oscillations create both vorticity and entropy gradients, we show that both Kelvin-Helmholtz and Rayleigh-Taylor types of instabilities are able to grow on a SASI mode if its amplitude is large enough. We obtain simple estimates of their growth rates, taking into account the effects of advection and entropy stratification. In the context of the advective-acoustic cycle, we use numerical simulations to demonstrate how the acoustic feedback can be decreased if a parasitic instability distorts the advected structure. The amplitude of the shock deformation is estimated analytically in this scenario. When applied to the set up of Fernandez and Thompson, this saturation mechanism is able to explain the dramatic decrease of the SASI power when both the nuclear dissociation energy and the cooling rate are varied. Our results open new perspectives for anticipating the effect, on the SASI amplitude, of the physical ingredients involved in the modeling of the collapsing star.

  9. A photoionization instability in the early intergalactic medium

    Science.gov (United States)

    Hogan, Craig J.

    1992-01-01

    It is argued that any fairly uniform source of ionizing photons can be the cause of an instability in the pregalactic medium on scales larger than a photon path length. Underdense regions receive more ionizing energy per atom and reach higher temperature and entropy, driving the density down still further. Fluctuations created by this instability can lead to the formation of structures resembling protogalaxies and intergalactic clouds, obviating the need for gas clouds or density perturbations of earlier cosmological provenance, as is usually assumed in theories of galaxy and structure formation. Characteristic masses for clouds produced by the instability, with log mass in solar units plotted against log radius in kpc, are illustrated.

  10. Instability of warped discs

    Science.gov (United States)

    Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-05-01

    Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further, if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which, in general, yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term that would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ < 0) but is here modified by the warp to include ∂(ν1|ψ|)/∂|ψ| < 0, and (2) a similar condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.

  11. Neuromuscular control and ankle instability.

    Science.gov (United States)

    Gutierrez, Gregory M; Kaminski, Thomas W; Douex, Al T

    2009-04-01

    Lateral ankle sprains (LAS) are common injuries in athletics and daily activity. Although most are resolved with conservative treatment, others develop chronic ankle instability (AI)-a condition associated with persistent pain, weakness, and instability-both mechanical (such as ligamentous laxity) and functional (neuromuscular impairment with or without mechanical laxity). The predominant theory in AI is one of articular deafferentation from the injury, affecting closed-loop (feedback/reflexive) neuromuscular control, but recent research has called that theory into question. A considerable amount of attention has been directed toward understanding the underlying causes of this pathology; however, little is known concerning the neuromuscular mechanisms behind the development of AI. The purpose of this review is to summarize the available literature on neuromuscular control in uninjured individuals and individuals with AI. Based on available research and reasonable speculation, it seems that open-loop (feedforward/anticipatory) neuromuscular control may be more important for the maintenance of dynamic joint stability than closed-loop control systems that rely primarily on proprioception. Therefore, incorporating perturbation activities into patient rehabilitation schemes may be of some benefit in enhancing these open-loop control mechanisms. Despite the amount of research conducted in this area, analysis of individuals with AI during dynamic conditions is limited. Future work should aim to evaluate dynamic perturbations in individuals with AI, as well as subjects who have a history of at least one LAS and never experienced recurrent symptoms. These potential findings may help elucidate some compensatory mechanisms, or more appropriate neuromuscular control strategies after an LAS event, thus laying the groundwork for future intervention studies that can attempt to reduce the incidence and severity of acute and chronic lateral ankle injury.

  12. System Detects Vibrational Instabilities

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1990-01-01

    Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.

  13. Evaporation and Antievaporation Instabilities

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2017-10-01

    Full Text Available We review (antievaporation phenomena within the context of quantum gravity and extended theories of gravity. The (antievaporation effect is an instability of the black hole horizon discovered in many different scenarios: quantum dilaton-gravity, f ( R -gravity, f ( T -gravity, string-inspired black holes, and brane-world cosmology. Evaporating and antievaporating black holes seem to have completely different thermodynamical features compared to standard semiclassical black holes. The purpose of this review is to provide an introduction to conceptual and technical aspects of (antievaporation effects, while discussing problems that are still open.

  14. Family Structure Transitions and Child Development: Instability, Selection, and Population Heterogeneity

    OpenAIRE

    Lee, Dohoon; McLanahan, Sara

    2015-01-01

    A growing literature documents the importance of family instability for child wellbeing. In this article, we use longitudinal data from the Fragile Families and Child Wellbeing Study to examine the impacts of family instability on children’s cognitive and socioemotional development in early and middle childhood. We extend existing research in several ways: (1) by distinguishing between the number and types of family structure changes; (2) by accounting for time-varying as well as time-constan...

  15. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    Science.gov (United States)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  16. Feedback stabilization of plasma instabilities

    International Nuclear Information System (INIS)

    Cap, F.F.

    1977-01-01

    This paper reviews the theoretical and experimental aspects of feedback stabilization. After giving an outline of a general theoretical model for electrostatic instabilities the author provides a theoretical analysis of the suppression of various types of instability. Experiments which have been carried out on the feedback stabilization of various types of plasma instability are reported. An extensive list of references is given. (B.R.H.)

  17. Thermal Shrinkage for Shoulder Instability

    OpenAIRE

    Toth, Alison P.; Warren, Russell F.; Petrigliano, Frank A.; Doward, David A.; Cordasco, Frank A.; Altchek, David W.; O’Brien, Stephen J.

    2010-01-01

    Thermal capsular shrinkage was popular for the treatment of shoulder instability, despite a paucity of outcomes data in the literature defining the indications for this procedure or supporting its long-term efficacy. The purpose of this study was to perform a clinical evaluation of radiofrequency thermal capsular shrinkage for the treatment of shoulder instability, with a minimum 2-year follow-up. From 1999 to 2001, 101 consecutive patients with mild to moderate shoulder instability underwent...

  18. Political Instability and Economic Growth

    OpenAIRE

    Alberto Alesina; Sule Ozler; Nouriel Roubini; Phillip Swagel

    1992-01-01

    This paper investigates the relationship between political instability and per capita GDP growth in a sample of 113 countries for the period 1950-1982. We define ?political instability? as the propensity of a government collapse, and we estimate a model in which political instability and economic growth are jointly determined. The main result of this paper is that in countries and time periods with a high propensity of government collapse, growth is significantly lower than otherwise. This ef...

  19. Understanding Kelvin-Helmholtz instability in paraffin-based hybrid rocket fuels

    Science.gov (United States)

    Petrarolo, Anna; Kobald, Mario; Schlechtriem, Stefan

    2018-04-01

    Liquefying fuels show higher regression rates than the classical polymeric ones. They are able to form, along their burning surface, a low viscosity and surface tension liquid layer, which can become unstable (Kelvin-Helmholtz instability) due to the high velocity gas flow in the fuel port. This causes entrainment of liquid droplets from the fuel surface into the oxidizer gas flow. To better understand the droplets entrainment mechanism, optical investigations on the combustion behaviour of paraffin-based hybrid rocket fuels in combination with gaseous oxygen have been conducted in the framework of this research. Combustion tests were performed in a 2D single-slab burner at atmospheric conditions. High speed videos were recorded and analysed with two decomposition techniques. Proper orthogonal decomposition (POD) and independent component analysis (ICA) were applied to the scalar field of the flame luminosity. The most excited frequencies and wavelengths of the wave-like structures characterizing the liquid melt layer were computed. The fuel slab viscosity and the oxidizer mass flow were varied to study their influence on the liquid layer instability process. The combustion is dominated by periodic, wave-like structures for all the analysed fuels. Frequencies and wavelengths characterizing the liquid melt layer depend on the fuel viscosity and oxidizer mass flow. Moreover, for very low mass flows, no wavelength peaks are detected for the higher viscosity fuels. This is important to better understand and predict the onset and development of the entrainment process, which is connected to the amplification of the longitudinal waves.

  20. Görtler instability of the axisymmetric boundary layer along a cone

    International Nuclear Information System (INIS)

    ITOH, Nobutake

    2014-01-01

    Exact partial differential equations are derived to describe Görtler instability, caused by a weakly concave wall, of axisymmetric boundary layers with similar velocity profiles that are decomposed into a sequence of ordinary differential systems on the assumption that the solution can be expanded into inverse powers of local Reynolds number. The leading terms of the series solution are determined by solving a non-parallel version of Görtler’s eigenvalue problem and lead to a neutral stability curve and finite values of critical Görtler number and wave number for stationary and longitudinal vortices. Higher-order terms of the series solution indicate Reynolds-number dependence of Görtler instability and a limited validity of Görtler’s approximation based on the leading terms only. The present formulation is simply applicable to two-dimensional boundary layers of similar profiles, and critical Görtler number and wave number of the Blasius boundary layer on a flat plate are given by G 2c  = 1.23 and β 2c  = 0.288, respectively, if the momentum thickness is chosen as the reference length. (paper)

  1. Görtler instability of the axisymmetric boundary layer along a cone

    Science.gov (United States)

    ITOH, Nobutake

    2014-10-01

    Exact partial differential equations are derived to describe Görtler instability, caused by a weakly concave wall, of axisymmetric boundary layers with similar velocity profiles that are decomposed into a sequence of ordinary differential systems on the assumption that the solution can be expanded into inverse powers of local Reynolds number. The leading terms of the series solution are determined by solving a non-parallel version of Görtler’s eigenvalue problem and lead to a neutral stability curve and finite values of critical Görtler number and wave number for stationary and longitudinal vortices. Higher-order terms of the series solution indicate Reynolds-number dependence of Görtler instability and a limited validity of Görtler’s approximation based on the leading terms only. The present formulation is simply applicable to two-dimensional boundary layers of similar profiles, and critical Görtler number and wave number of the Blasius boundary layer on a flat plate are given by G2c = 1.23 and β2c = 0.288, respectively, if the momentum thickness is chosen as the reference length.

  2. Width of electromagnetic wave instability spectrum in tungsten plate

    International Nuclear Information System (INIS)

    Rinkevich, A.B.

    1995-01-01

    Based on the study of high-frequency signal modulation and spectrum analysis of the envelope a measurement of spectrum width for electromagnetic wave instability was carried out under conditions of current pulse action on tungsten plate in magnetic field. The existence of amplitude-frequency wave modulation was revealed. The width of current disturbance spectrum in a specimen was evaluated. Current disturbances are shown to cause the instability of electromagnetic wave. 11 refs.; 6 figs

  3. Experiment and simulation on the thermal instability of a heavily deformed Cu-Fe composite

    International Nuclear Information System (INIS)

    Qu Lei; Wang Engang; Zuo Xiaowei; Zhang Lin; He Jicheng

    2011-01-01

    Research highlights: → Fe fibers undergo thermal instability at temperature above 600 deg. C. → Longitudinal boundary splitting is the dominant instability process. → Instability of cylindrical fibers is controlled by breakup, growth and coarsening. → Breakup times can be predicted by Rayleigh perturbation model accurately. → The increase of fiber diameters is due to the coarsening and growth. - Abstract: The thermal instability of the Fe fibers in the heavily deformed Cu-12.8 wt.%Fe composites is investigated experimentally and numerically. The fiber evolution is characterized by a field emission scanning electron microscopy (FESEM). The results show that the dominant instability of the Fe fibers is the longitudinal boundary splitting which is determined by the greater cross sectional aspect ratio (width/thickness, w/t) and the larger ratio of boundary to interfacial energy (γ B /γ S ). The longitudinal boundary splitting makes the ribbon-like Fe fibers evolve into a series of cylindrical fibers. Then the cylindrical Fe fibers undergo the instability process in terms of the breakup, growth and coarsening concurrently. The breakup times are accurately predicted by the Rayleigh perturbation model. The growth process primarily contributes to the higher increasing rate of the fiber radius during isothermal annealing at 700 deg. C than that calculated by the coarsening theory developed for cylindrical fibers, since the Cu-matrix of composites is highly supersaturated after casting/cold-working process.

  4. Instabilities in mimetic matter perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Gorji, Mohammad Ali [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161 Shahrood (Iran, Islamic Republic of)

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  5. Discrete instability in the DNA double helix

    International Nuclear Information System (INIS)

    Tabi, Conrad Bertrand; Mohamadou, Alidou; Kofane, Timoleon Crepin

    2009-06-01

    Modulational instability (MI) is explored in the framework of the base-rotor model of DNA dynamics. We show in fact that, the helicoidal coupling introduced in the spin model of DNA reduces the system to a modified discrete sine-Gordon (sG) equation. The MI criterion is thus modified and displays interesting features because of the helicoidal coupling. This is confirmed in the numerical analysis where a critical value of the helicoidal coupling constant is derived. In the simulations, we have found that a train of pulses are generated when the lattice is subjected to MI, in agreement with analytical results obtained in a modified discrete sG equation. Also, the competitive effects of the harmonic longitudinal and helicoidal constants on the dynamics of the system are notably pointed out. In the same way, it is shown that MI can lead to energy localization which is high for some values of the helicoidal coupling constant. (author)

  6. Double Arc Instability in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, N.; Kusano, K., E-mail: n-ishiguro@isee.nagoya-u.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan (Japan)

    2017-07-10

    The stability of the magnetic field in the solar corona is important for understanding the causes of solar eruptions. Although various scenarios have been suggested to date, the tether-cutting reconnection scenario proposed by Moore et al. is one of the widely accepted models to explain the onset process of solar eruptions. Although the tether-cutting reconnection scenario proposes that the sigmoidal field formed by internal reconnection is the magnetic field in the pre-eruptive state, the stability of the sigmoidal field has not yet been investigated quantitatively. In this paper, in order to elucidate the stability problem of the pre-eruptive state, we developed a simple numerical analysis in which the sigmoidal field is modeled by a double arc electric current loop and its stability is analyzed. As a result, we found that the double arc loop is more easily destabilized than the axisymmetric torus, and it becomes unstable even if the external field does not decay with altitude, which is in contrast to the axisymmetric torus instability. This suggests that tether-cutting reconnection may well work as the onset mechanism of solar eruptions, and if so, the critical condition for eruption under a certain geometry may be determined by a new type of instability rather than by the torus instability. Based on them, we propose a new type of instability called double arc instability (DAI). We discuss the critical conditions for DAI and derive a new parameter κ , defined as the product of the magnetic twist and the normalized flux of the tether-cutting reconnection.

  7. Instability characteristics of fluidelastic instability of tube rows in crossflow

    International Nuclear Information System (INIS)

    Chen, S.S.; Jendrzejczyk, J.A.

    1986-04-01

    An experimental study is reported to investigate the jump phenomenon in critical flow velocities for tube rows with different pitch-to-diameter ratios and the excited and intrinsic instabilities for a tube row with a pitch-to-diameter ratio of 1.75. The experimental data provide additional insights into the instability phenomena of tube arrays in crossflow. 9 refs., 10 figs

  8. Kinetic instabilities in relativistic plasmas: the Harris instability revisited

    International Nuclear Information System (INIS)

    Tautz, R.C.

    2008-01-01

    Plasma instabilities that generate aperiodic fluctuations are of outstanding importance in the astrophysical context. Two prominent examples are the electromagnetic Weibel instability and the electrostatic Harris instability, which operate in initially non-magnetized and magnetized plasmas, respectively. In this talk, the original formulation of the Harris instability will be reviewed and generalizations will be presented such as the inclusion of (1) relativistic effects, (2) ion effects, and (3) mode coupling. It will be shown that, with these modifications, a powerful method has been developed for the determination of both the existence and the growth rate of low-frequency instabilities. Applications can be found in astrophysical jets, where the rest frame can be used and so no parallel motion is present. At the end of the talk, how the particle composition of gamma-ray burst jets can be predicted using the Harris technique. (author)

  9. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  10. Phenomena, dynamics and instabilities of vortex pairs

    International Nuclear Information System (INIS)

    Williamson, C H K; Asselin, D J; Leweke, T; Harris, D M

    2014-01-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex–vortex interactions and vortex–wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies. (paper)

  11. Water level measurement uncertainty during BWR instability

    International Nuclear Information System (INIS)

    Torok, R.C.; Derbidge, T.C.; Healzer, J.M.

    1994-01-01

    This paper addresses the performance of the water-level measurement system in a boiling water reactor (BWR) during severe instability oscillations which, under some circumstances, can occur during an anticipated transient without SCRAM (ATWS). Test data from a prototypical mock-up of the water-level measurement system was used to refine and calibrate a water-level measurement system model. The model was then used to predict level measurement system response, using as boundary conditions vessel pressures calculated by ppercase RETRAN for an ATWS/instability event.The results of the study indicate that rapid pressure changes in the reactor pressure vessel which cause oscillations in downcomer water level, coupled with differences in instrument line lengths, can produce errors in the sensed water level. Using nominal parameters for the measurement system components, a severe instability transient which produced a 0.2 m peak-to-minimum water-level oscillation in the vessel downcomer was predicted to produce pressure difference equivalent to a 0.7 m level oscillation at the input to the differential pressure transmitter, 0.5 m oscillation at the output of the transmitter, and an oscillation of 0.3 m on the water-level indicator in the control room. The level measurement system error, caused by downcomer water-level oscillations and instrument line length differential, is mitigated by damping both in the differential pressure transmitter used to infer level and in the control room display instrument. ((orig.))

  12. Longwave instabilities and patterns in fluids

    CERN Document Server

    Shklyaev, Sergey

    2017-01-01

    This book summarizes the main advances in the field of nonlinear evolution and pattern formation caused by longwave instabilities in fluids. It will allow readers to master the multiscale asymptotic methods and become familiar with applications of these methods in a variety of physical problems.  Longwave instabilities are inherent to a variety of systems in fluid dynamics, geophysics, electrodynamics, biophysics, and many others. The techniques of the derivation of longwave amplitude equations, as well as the analysis of numerous nonlinear equations, are discussed throughout. This book will be of value to researchers and graduate students in applied mathematics, physics, and engineering, in particular within the fields of fluid mechanics, heat and mass transfer theory, and nonlinear dynamics. .

  13. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  14. Simulation and quasilinear theory of proton firehose instability

    Energy Technology Data Exchange (ETDEWEB)

    Seough, Jungjoon [Korean Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Faculty of Human Development, University of Toyama, 3190, Gofuku, Toyama City, Toyama, 930-8555 (Japan); Yoon, Peter H. [University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Hwang, Junga [Korean Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Korea, University of Science and Technology, Daejeon (Korea, Republic of)

    2015-01-15

    The electromagnetic proton firehose instability is driven by excessive parallel temperature anisotropy, T{sub ∥} > T{sub ⊥} (or more precisely, parallel pressure anisotropy, P{sub ∥} > P{sub ⊥}) in high-beta plasmas. Together with kinetic instabilities driven by excessive perpendicular temperature anisotropy, namely, electromagnetic proton cyclotron and mirror instabilities, its role in providing the upper limit for the temperature anisotropy in the solar wind is well-known. A recent Letter [Seough et al., Phys. Rev. Lett. 110, 071103 (2013)] employed quasilinear kinetic theory for these instabilities to explain the observed temperature anisotropy upper bound in the solar wind. However, the validity of quasilinear approach has not been rigorously tested until recently. In a recent paper [Seough et al., Phys. Plasmas 21, 062118 (2014)], a comparative study is carried out for the first time in which quasilinear theory of proton cyclotron instability is tested against results obtained from the particle-in-cell simulation method, and it was demonstrated that the agreement was rather excellent. The present paper addresses the same issue involving the proton firehose instability. Unlike the proton cyclotron instability, however, it is found that the quasilinear approximation enjoys only a limited range of validity, especially for the wave dynamics and for the relatively high-beta regime. Possible causes and mechanisms responsible for the discrepancies are speculated and discussed.

  15. Instabilities in the aether

    International Nuclear Information System (INIS)

    Carroll, Sean M.; Dulaney, Timothy R.; Gresham, Moira I.; Tam, Heywood

    2009-01-01

    We investigate the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector 'aether' fields. Models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. There are precisely three kinetic terms that are not manifestly unstable: a sigma model (∂ μ A ν ) 2 , the Maxwell Lagrangian F μν F μν , and a scalar Lagrangian (∂ μ A μ ) 2 . The timelike sigma-model case is well defined and stable when the vector norm is fixed by a constraint; however, when it is determined by minimizing a potential there is necessarily a tachyonic ghost, and therefore an instability. In the Maxwell and scalar cases, the Hamiltonian is unbounded below, but at the level of perturbation theory there are fewer degrees of freedom and the models are stable. However, in these two theories there are obstacles to smooth evolution for certain choices of initial data.

  16. Instabilities in electromagnetic quasilevitation.

    Science.gov (United States)

    Spragg, Kirk; Letout, Sebastien; Ernst, R; Sneyd, Alfred; Fautrelle, Yves

    2014-05-01

    We investigate free-surface instabilities occurring in various industrial processes involving liquid metal. Of particular interest is the behavior of the free surface of a pool of liquid metal when it is submitted to an alternating magnetic field. Experimentally, we study the effect of a vertical alternating medium-frequency magnetic field on an initially circular pool. We observe various types of behavior according to magnetic field amplitude, e.g., axisymmetric deformations, azimuthal mode structures, slow radial oscillation of the pool perimeter, and random rotation of the pool around its center. Drop rotation could be attributed to nonsymmetric shape deformations. The effect of oxidation leads to drastic changes in pool behavior. The experimental results are then compared to a linear stability analysis of the free surface of a circular liquid drop.

  17. From instabilities to multifragmentation

    International Nuclear Information System (INIS)

    Chomaz, P.; Jacquot, B.; Colonna, M.; Guarnera, A.

    1994-01-01

    The main purpose of this article is to show that, in many physical situations, the spinodal decomposition of unstable systems can be correctly described by stochastic mean-field approaches. Such theories predict that the occurrence of spinodal instability leading the multifragmentation of an expended nuclear system, can be signed through the observation of time scales for the fragment formation of the order of 100 fm/c and of typical fragment size around A=20. We will finally discuss the fact that these fragments are formed at finite temperature and so can subsequently decay in flight. Finally, we will give some hints about possible experimental signals of such first order phase transitions. (authors). 12 refs., 5 figs

  18. From instabilities to multifragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P.; Jacquot, B. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Colonna, M.; Guarnera, A. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Istituto Nazionale di Fisica Nucleare, Bologna (Italy)

    1994-12-31

    The main purpose of this article is to show that, in many physical situations, the spinodal decomposition of unstable systems can be correctly described by stochastic mean-field approaches. Such theories predict that the occurrence of spinodal instability leading the multifragmentation of an expended nuclear system, can be signed through the observation of time scales for the fragment formation of the order of 100 fm/c and of typical fragment size around A=20. We will finally discuss the fact that these fragments are formed at finite temperature and so can subsequently decay in flight. Finally, we will give some hints about possible experimental signals of such first order phase transitions. (authors). 12 refs., 5 figs.

  19. Saturation of equatorial inertial instability

    NARCIS (Netherlands)

    Kloosterziel, R.C.; Orlandi, P.; Carnevale, G.F.

    2015-01-01

    Inertial instability in parallel shear flows and circular vortices in a uniformly rotating system ( $f$f-plane) redistributes absolute linear momentum or absolute angular momentum in such a way as to neutralize the instability. In previous studies we showed that, in the absence of other

  20. Internal rotor friction instability

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  1. Dynamical Instability and Soliton Concept

    International Nuclear Information System (INIS)

    Kartavenko, V.G.

    1994-01-01

    The problem of dynamical instability and clustering (stable fragments formation) in a breakup of excited nuclear systems are considered from the points of view of the soliton concept. It is noted that the volume (spinodal) instability can be associated with nonlinear terms, and the surface (Rayleigh-Taylor type) instability, with the dispersion terms in the evolution equations. The spinodal instability and the Rayleigh-Taylor instability may compensate each other and lead to stable quasi-soliton type objects. The simple analytical model is presented to illustrate this physical picture. The time evolution of an initially compressed cold nuclear system is analysed in the framework of the inverse mean-field method. It is demonstrated that the nonlinearity and dispersion terms of the evolution equations can lead to clusterization in the final channel. 8 p

  2. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  3. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  4. Thermal shrinkage for shoulder instability.

    Science.gov (United States)

    Toth, Alison P; Warren, Russell F; Petrigliano, Frank A; Doward, David A; Cordasco, Frank A; Altchek, David W; O'Brien, Stephen J

    2011-07-01

    Thermal capsular shrinkage was popular for the treatment of shoulder instability, despite a paucity of outcomes data in the literature defining the indications for this procedure or supporting its long-term efficacy. The purpose of this study was to perform a clinical evaluation of radiofrequency thermal capsular shrinkage for the treatment of shoulder instability, with a minimum 2-year follow-up. From 1999 to 2001, 101 consecutive patients with mild to moderate shoulder instability underwent shoulder stabilization surgery with thermal capsular shrinkage using a monopolar radiofrequency device. Follow-up included a subjective outcome questionnaire, discussion of pain, instability, and activity level. Mean follow-up was 3.3 years (range 2.0-4.7 years). The thermal capsular shrinkage procedure failed due to instability and/or pain in 31% of shoulders at a mean time of 39 months. In patients with unidirectional anterior instability and those with concomitant labral repair, the procedure proved effective. Patients with multidirectional instability had moderate success. In contrast, four of five patients with isolated posterior instability failed. Thermal capsular shrinkage has been advocated for the treatment of shoulder instability, particularly mild to moderate capsular laxity. The ease of the procedure makes it attractive. However, our retrospective review revealed an overall failure rate of 31% in 80 patients with 2-year minimum follow-up. This mid- to long-term cohort study adds to the literature lacking support for thermal capsulorrhaphy in general, particularly posterior instability. The online version of this article (doi:10.1007/s11420-010-9187-7) contains supplementary material, which is available to authorized users.

  5. Instability timescale for the inclination instability in the solar system

    Science.gov (United States)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  6. Magnetically-Driven Convergent Instability Growth platform on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benage, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jenkins, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-01

    Hydrodynamic instability growth is a fundamentally limiting process in many applications. In High Energy Density Physics (HEDP) systems such as inertial confinement fusion implosions and stellar explosions, hydro instabilities can dominate the evolution of the object and largely determine the final state achievable. Of particular interest is the process by which instabilities cause perturbations at a density or material interface to grow nonlinearly, introducing vorticity and eventually causing the two species to mix across the interface. Although quantifying instabilities has been the subject of many investigations in planar geometry, few have been done in converging geometry. During FY17, the team executed six convergent geometry instability experiments. Based on earlier results, the platform was redesigned and improved with respect to load centering at installation making the installation reproducible and development of a new 7.2 keV, Co He-a backlighter system to better penetrate the liner. Together, the improvements yielded significantly improved experimental results. The results in FY17 demonstrate the viability of using experiments on Z to quantify instability growth in cylindrically convergent geometry. Going forward, we will continue the partnership with staff and management at LANL to analyze the past experiments, compare to hydrodynamics growth models, and design future experiments.

  7. Control of secondary instability of the crossflow and Görtler-like vortices (Success and problems)

    Science.gov (United States)

    Kozlov, Viktor V.; Grek, Genrich R.

    The secondary instability on a group of crossflow vortices developing in a swept wing boundary layer is described. It is shown that, for travelling waves, there is a region of linear development, and the growth rate of disturbances appreciably depends on the separation between the vortices. Methods of controlling the secondary instability of the vortices by a controlled wave and local suction are proposed and substantiated. The stability of a flat plate boundary layer modulated by G&ou ml;rtler-like stationary vortices is described. Vortices were generated inside the boundary layer by means of roughness elements arranged in a regular array along the spanwise (z) direction. Transition is not caused directly by these structures, but by the growth of small amplitude travelling waves riding on top of the steady vortices. This situation is analogous to the transition process in Görtler and cross-flows. The waves were found to amplify up to a stage where higher harmonics are gener ated, leading to turbulent breakdown and disintegration of the spanwise boundary layer structure. For strong modulations, the observed instability is quite powerful, and can be excited "naturally" by small uncontrollable background disturbances. Controlled oscillations were then introduced by means of a vibrating ribbon, allowing a detailed investigation of the wave characteristics. The instability seems to be associated with the spanwise gradients of the mean flow, , and at all z-positions, the maximum wave amplitude was found at a wall-normal position where the mean velocity is equal to the phase velocity of the wave, U(y)=c, i.e., at the local critical layer. Unstable waves were observed at frequency well above those for which Tollmien-Schlichting (TS) waves amplify in the Blasius boundary layer. Excitation at lower frequencies and milder basic flow modulation showed that TS-type waves may a lso develop. Study of the transition control in that flow by means of riblets shows that the effect

  8. R-loops: targets for nuclease cleavage and repeat instability.

    Science.gov (United States)

    Freudenreich, Catherine H

    2018-01-11

    R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.

  9. Exploring Longitudinal Risk-return Relationships

    DEFF Research Database (Denmark)

    Andersen, Torben J.; Bettis, Richard A.

    2015-01-01

    We study a longitudinal fit model of adaptation and its association with the longitudinal risk-return relationship. The model allows the firm to adjust its position in response to partial learning about a changing environment characterized by two path-dependent processes—a random walk and a stoch......We study a longitudinal fit model of adaptation and its association with the longitudinal risk-return relationship. The model allows the firm to adjust its position in response to partial learning about a changing environment characterized by two path-dependent processes—a random walk...... can lead to the inverse longitudinal risk-return relationships observed empirically. We discuss this apparent paradox and the possible resolution between mindless and conscious behavior as plausible causes of the longitudinal Bowman Paradox....

  10. Canonical momenta and numerical instabilities in particle codes

    International Nuclear Information System (INIS)

    Godfrey, B.B.

    1975-01-01

    A set of warm plasma dispersion relations appropriate to a large class of electromagnetic plasma simulation codes is derived. The numerical Cherenkov instability is shown by analytic and numerical analysis of these dispersion relations to be the most significant nonphysical effect involving transverse electromagnetic waves. The instability arises due to a spurious phase shift between resonant particles and light waves, caused by a basic incompatibility between the Lagrangian treatment of particle positions and the Eulerian treatment of particle velocities characteristic of most PIC--CIC algorithms. It is demonstrated that, through the use of canonical momentum, this mismatch is alleviated sufficiently to completely eliminate the Cherenkov instability. Collateral effects on simulation accuracy and on other numerical instabilities appear to be minor

  11. Nutation instability of spinning solid rocket motor spacecraft

    Directory of Open Access Journals (Sweden)

    Dan YANG

    2017-08-01

    Full Text Available The variation of mass, and moment of inertia of a spin-stabilized spacecraft leads to concern about the nutation instability. Here a careful analysis on the nutation instability is performed on a spacecraft propelled by solid rocket booster (SRB. The influences of specific solid propellant designs on transversal angular velocity are discussed. The results show that the typical SRB of End Burn suppresses the non-principal axial angular velocity. On the contrary, the frequently used SRB of Radial Burn could amplify the transversal angular velocity. The nutation instability caused by a design of Radial Burn could be remedied by the addition of End Burn at the same time based on the study of the combination design of both End Burn and Radial Burn. The analysis of the results proposes the design conception of how to control the nutation motion. The method is suitable to resolve the nutation instability of solid rocket motor with complex propellant patterns.

  12. Simulations relevant to the beam instability in the foreshock

    International Nuclear Information System (INIS)

    Cairns, I.H.; Nishikawa, K.I.

    1989-01-01

    Electrons backstreaming into Earth's foreshock generate waves near the plasma frequency f p by the beam instability. Tow versions of the beam instability exist: the reactive version, in which narrow-band waves grow by bunching the electrons in space, and the kinetic version, in which broadband growth occurs by a maser mechanism. Recently, it has been suggested that (1) the backstreaming electrons have steep-sided cutoff distributions which are initially unstable to the reactive instability, (2) the back reaction to the wave growth causes the instability to pass into its kinetic phase, and (3) the kinetic instability saturates by quasi-linear relaxation. In this paper the authors present two-dimensional simulations of the reactive instability for Maxwellian beams and cutoff distributions. They demonstrate that the reactive instability is a bunching instability and that the reactive instability saturates and passes over into the kinetic phase by particle trapping.A reactive/kinetic transition is shown to most likely occur within 1 km and 50 km of the bow shock. They suggest that the frequency of the intense narrow-band waves decrease from above f p to perhaps 0.9f p (dependent on the beam density) with increasing penetration into the high beam speed region of the foreshock, before the wave frequency rises again as the waves become broadband deeper in the foreshock. Both the simulation results and numerical solutions of the dispersion equation indicate that for the observed beam parameters the center frequency of the waves near the foreshock boundary should be between 0.9f p and 0.98f p , rather than above f p as previously believed. The simulation results indicate that the effects of spatial inhomogeneity are vital for a quantitative understanding of the foreshock waves

  13. Numerical methods on flow instabilities in steam generator

    International Nuclear Information System (INIS)

    Yoshikawa, Ryuji; Hamada, Hirotsugu; Ohshima, Hiroyuki; Yanagisawa, Hideki

    2008-06-01

    The phenomenon of two-phase flow instability is important for the design and operation of many industrial systems and equipment, such as steam generators. The designer's job is to predict the threshold of flow instability in order to design around it or compensate for it. So it is essential to understand the physical phenomena governing such instability and to develop computational tools to model the dynamics of boiling systems. In Japan Atomic Energy Agency, investigations on heat transfer characteristics of steam generator are being performed for the development of Sodium-cooled Fast Breeder Reactor. As one part of the research work, the evaluations of two-phase flow instability in the steam generator are being carried out experimentally and numerically. In this report, the numerical methods were studied for two-phase flow instability analysis in steam generator. For numerical simulation purpose, the special algorithm to calculate inlet flow rate iteratively with inlet pressure and outlet pressure as boundary conditions for the density-wave instability analysis was established. There was no need to solve property derivatives and large matrices, so the spurious numerical instabilities caused by discontinuous property derivatives at boiling boundaries were avoided. Large time-step was possible. The flow instability in single heat transfer tube was successfully simulated with homogeneous equilibrium model by using the present algorithm. Then the drift-flux model including the effects of subcooled boiling and two phase slip was adopted to improve the accuracy. The computer code was developed after selecting the correlations of drift velocity and distribution parameter. The capability of drift flux model together with the present algorithm for simulating density-wave instability in single tube was confirmed. (author)

  14. Ion cyclotron instability saturation and turbulent plasma heating in the presence of ions moving across the magnetic field

    International Nuclear Information System (INIS)

    Mikhajlenko, V.S.; Stepanov, K.N.

    1981-01-01

    Ion cyclotron instability saturation is considered in terms of the turbulence theory when there is a beam of heavy ions with large thermal longitudinal velocity spread. The instability excitation is due to a cyclotron interaction with ions of the beam under the anomalous Doppler effect. The instability is shown to be saturated due to an induced plasma ion scattering of ion cyclotron waves when the beam ion charge number Zsub(b) is approximately 1. Decay processes, wave scattering by virtual wave polarization clouds and resonance broadening due to random walk of plasma ions in turbulent instability fields appear to be unimportant. For Zsub(b)>>1 the induced wave scattering by the beam ions is the main process determining the nonlinear stage of the instability. Estimates are given for the oscillation energy density in the instability saturation state and for the turbulent heating rate of plasma and beam ions [ru

  15. Investigation of Parametric Instability of the Planetary Gear under Speed Fluctuations

    Directory of Open Access Journals (Sweden)

    Xinghui Qiu

    2017-01-01

    Full Text Available Planetary gear is widely used in engineering and usually has symmetrical structure. As the number of teeth in contact changes during rotation, the time-varying mesh stiffness parametrically excites the planetary gear and may cause severe vibrations and instabilities. Taking speed fluctuations into account, the time-varying mesh stiffness is frequency modulated, and therefore sideband instabilities may arise and original instabilities are significantly affected. Considering two different speed fluctuations, original and sideband instabilities are numerically and analytically investigated. A rotational lumped-parameter model of the planetary gear is developed, in which the time-varying mesh stiffness, input speed fluctuations, and damping are considered. Closed-form approximations of instability boundaries for primary and combination instabilities are obtained by perturbation analysis and verified by numerical analysis. The effects of speed fluctuations and damping on parametric instability are systematically examined. Because of the frequency modulation, whether a parametric instability occurs cannot be simply predicted by the planet meshing phase which is applicable to constant speed. Besides adjusting the planet meshing phase, speed fluctuation supplies a new thought to minimize certain instability by adjusting the amplitude or frequency of the speed fluctuation. Both original and sideband instabilities are shrunken by damping, and speed fluctuation further shrinks the original instability.

  16. Size effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2006-01-01

    growth is here analyzed for such cases. A finite strain generalization of a higher order strain gradient plasticity theory is applied for a power-law hardening material, and the numerical analyses are carried out for an axisymmetric unit cell containing a spherical void. In the range of high stress...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...... as the void grows to a size well above the characteristic material length....

  17. Beam instability studies at the APS

    International Nuclear Information System (INIS)

    Teng, L.C.

    1994-01-01

    The Argonne Advanced Photon Source, APS (Fig. 1), is a 7-GeV positron storage ring with a circumference of 1104 m. It has a ''third generation, DBA or Chasman-Green'' lattice composed of 40 sectors each having a ∼6 m long zero-dispersion straight-section for accommodating insertion devices. Neighboring straight-sections are connected by a 360 degrees/40 = 9 degrees double-bend-achromatic bending section designed to produce the smallest emittance attainable with reasonable component parameter values and dynamic apertures. Thus, it is a very strongly focusing lattice with v x = 35.22 and v y = 14.30. The beam chamber of the storage ring including all rf, vacuum and photon beam components is designed to ensure that a beam current > 100 mA can be stably stored. We expect that the maximum stable beam current could be as high as 300 mA. This paper will give some details of the studies and computations to ensure the stability of such a beam. The discussions will be organized in the following three parts: Coupled-bunch instability caused by the higher-order modes (HOMs) of the rf cavities; Single-bunch instability due to the resistive wall impedance; and Single-bunch instability due to broadband impedances arising from beam chamber irregularities

  18. Feedback stabilization of electrostatic reactive instabilities

    International Nuclear Information System (INIS)

    Richards, R.K.

    1976-01-01

    A general theory for the feedback stabilization of electrostatic reactive instabilities is developed which includes the effects of dissipation in the plasma and frequency dependence in the sensor-suppressor elements and in the external feedback circuit. This theory is compared to experiments involving particular reactive instability, an interchange mode, found in a magnetic mirror device; these results are found to be in good agreement with theory. One noteworthy result is that a frequency dependence in the overall gain and phase shift of the feedback loop can cause destabilization at large gain. Multimode feedback stabilization is studied using the spatial variation of two interchange modes to separate them such that each can be acted upon individually by the feedback system. The transfer function of the plasma is also examined. This analysis is used for mode identification and location of the pole positions. As an example of using feedback as a diagnostic tool, instability induced transport is studied. Here feedback is used to control the amplitude of fluctuations at saturation

  19. Control of longitudinal collective behavior in the Muon Collider rings

    International Nuclear Information System (INIS)

    Cheng, Wen-Hao

    1997-05-01

    The longitudinal bunch collective effects in a Muon Collider ring are theoretically examined. The situation involves an intense bunch, a short bunch, a small momentum compaction, a rather large impedance compared with the stability threshold criterion, and luminosity life time limited by muon decay to a thousand turns. Qualitative descriptions of stability are given and a scaling law for the instability threshold is derived. Numerical simulation results for the impedance-related instabilities are given for two cases of current interest - a 250 GeV x 250 GeV demonstration machine and a 2 TeV x 2 TeV high energy machine. The results of these simulations are in good agreement with the predictions of the scaling law and show that the longitudinal collective effects are controllable with a proper choice of parameters (viz. rf voltage, rf frequency, linear and non-linear longitudinal chromaticity)

  20. Resistive instabilities in tokamaks

    International Nuclear Information System (INIS)

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed

  1. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  2. Evolution of longitudinal equilibrium distribution in the adiabatic regime

    International Nuclear Information System (INIS)

    Wei, J.; Lee, S.Y.; Ruggiero, A.G.

    1990-01-01

    Evolution of longitudinal equilibrium distribution of a hadron bunch under the beam-environment interaction is investigated based on a self-consistent solution of the Vlasov equation. The effect of this interaction on the distribution can be characterized by a dimensionless quantity in analogy to the one describing the microwave-instability criterion. In the case that the coupling impedance (Z/n) is reactive and frequency independent, the change in the distribution results in a stabilization that keeps the bunch below the instability threshold; microwave instability is thus eliminated. Monte Carlo simulation for the microwave instability agrees with analytic solution of the Vlasov equation provided that bunch shape distortion due to the coupling is taken into account

  3. Helping Others? The Effects of Childhood Poverty and Family Instability on Prosocial Behavior.

    Science.gov (United States)

    Lichter, Daniel T.; Shanahan, Michael J.; Gardner, Erica L.

    2002-01-01

    Examines the relationship between poverty and family instability during childhood on prosocial behavior (volunteerism) during late adolescence. Data from the National Longitudinal Survey of Youth (NLSY), including mother and family records, indicate that adolescents, particularly males, from single parent families are less likely than those from…

  4. Contact instabilities of anisotropic and inhomogeneous soft elastic films

    Science.gov (United States)

    Tomar, Gaurav; Sharma, Ashutosh

    2012-02-01

    Anisotropy plays important roles in various biological phenomena such as adhesion of geckos and grasshoppers enabled by the attachment pods having hierarchical structures like thin longitudinal setae connected with threads mimicked by anisotropic films. We study the contact instability of a transversely isotropic thin elastic film when it comes in contact proximity of another surface. In the present study we investigate the contact stability of a thin incompressible transversely isotropic film by performing linear stability analysis. Based on the linear stability analysis, we show that an approaching contactor renders the film unstable. The critical wavelength of the instability is a function of the total film thickness and the ratio of the Young's modulus in the longitudinal direction and the shear modulus in the plane containing the longitudinal axis. We also analyze the stability of a thin gradient film that is elastically inhomogeneous across its thickness. Compared to a homogeneous elastic film, it becomes unstable with a longer wavelength when the film becomes softer in going from the surface to the substrate.

  5. Faraday instability and Faraday patterns in a superfluid Fermi gas

    International Nuclear Information System (INIS)

    Tang Rongan; Xue Jukui; Li Haocai

    2011-01-01

    With the consideration of the coupling between the transverse width and the longitudinal density, the parametric excitations related to Faraday waves in a cigar-shaped superfluid Fermi gas are studied. A Mathieu equation is obtained, and it is demonstrated firstly that the excited actual 3D Faraday pattern is the combination of the longitudinal Faraday density wave and the corresponding transverse width fluctuation in the longitudinal direction. The Faraday instability growth index and the kinematic equations of the Faraday density wave and the width fluctuation along the Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS) crossover are also given for the first time. It is found that the 3D Faraday pattern presents quite different behaviours (such as the excitations and the motions) when the system crosses from the BEC side to the BCS side. The coupling not only plays an important role in the parametric excitation, but also determines the dominant wavelength of the spatial structure. Along the crossover, the coupling effects are more significant in the BCS side. The final numerical investigation verifies these results and gives a detailed study of the parametric excitations (i.e. Faraday instability) and the 3D pattern formation.

  6. Tunnelling instability via perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Graffi, S. (Bologna Univ. (Italy). Dip. di Matematica); Grecchi, V. (Moderna Univ. (Italy). Dip. di Matematica); Jona-Lasinio, G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)

    1984-10-21

    The semiclassical limit of low lying states in a multiwell potential is studied by rigorous perturbative techniques. In particular tunnelling instability and localisation of wave functions is obtained in a simple way under small deformations of symmetric potentials.

  7. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, É lisabeth; Hinch, John

    2011-01-01

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations

  8. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  9. Instability of ties in compression

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since...... exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie...

  10. Predicting Catastrophic BGP Routing Instabilities

    National Research Council Canada - National Science Library

    Nguyen, Lien

    2004-01-01

    .... Currently, this critical function is performed by the Border Gateway Protocol (BGP) version 4 RF01771. Like all routing protocols, BGP is vulnerable to instabilities that reduce its effectiveness...

  11. Genomic instability and radiation effects

    International Nuclear Information System (INIS)

    Christian Streffer

    2007-01-01

    Complete text of publication follows. Cancer, genetic mutations and developmental abnormalities are apparently associated with an increased genomic instability. Such phenomena have been frequently shown in human cancer cells in vitro and in situ. It is also well-known that individuals with a genetic predisposition for cancer proneness, such as ataxia telangiectesia, Fanconi anaemia etc. demonstrate a general high genomic instability e.g. in peripheral lymphocytes before a cancer has developed. Analogous data have been found in mice which develop a specific congenital malformation which has a genetic background. Under these aspects it is of high interest that ionising radiation can increase the genomic instability of mammalian cells after exposures in vitro an in vivo. This phenomenon is expressed 20 to 40 cell cycles after the exposure e.g. by de novo chromosomal aberrations. Such effects have been observed with high and low LET radiation, high LET radiation is more efficient. With low LET radiation a good dose response is observed in the dose range 0.2 to 2.0 Gy, Recently it has been reported that senescence and genomic instability was induced in human fibroblasts after 1 mGy carbon ions (1 in 18 cells are hit), apparently bystander effects also occurred under these conditions. The instability has been shown with DNA damage, chromosomal aberrations, gene mutation and cell death. It is also transferred to the next generation of mice with respect to gene mutations, chromosomal aberrations and congenital malformations. Several mechanisms have been discussed. The involvement of telomeres has gained interest. Genomic instability seems to be induced by a general lesion to the whole genome. The transmission of one chromosome from an irradiated cell to an non-irradiated cell leads to genomic instability in the untreated cells. Genomic instability increases mutation rates in the affected cells in general. As radiation late effects (cancer, gene mutations and congenital

  12. Aerodynamic instability: A case history

    Science.gov (United States)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  13. Surgical treatment of chest instability

    International Nuclear Information System (INIS)

    Kitka, M.; Masek, M.

    2015-01-01

    Fractures of the ribs is the most common thoracic injury after blunt trauma. Chest wall instability (flail chest) is a common occurrence in the presence of multiple ribs fracture. Unilateral or bilateral fractures more ribs anteriorly or posteriorly will produce enough instability that paradoxical respiratory motion results in hypoventilation of an unacceptable degree. Open approach and surgical stabilisation of the chest preserved pulmonary function, improved pain control, minimized posttraumatic deformities and shorter back to work time. (author)

  14. Beam Instabilities in Hadron Synchrotrons

    CERN Document Server

    Métral, E; Bartosik, H; Biancacci, N; Buffat, X; Esteban Muller, J F; Herr, W; Iadarola, G; Lasheen, A; Li, K; Oeftiger, A; Pieloni, T; Quartullo, D; Rumolo, G; Salvant, B; Schenk, M; Shaposhnikova, E; Tambasco, C; Timko, H; Zannini, C; Burov, A; Banfi, D; Barranco, J; Mounet, N; Boine-Frankenheim, O; Niedermayer, U; Kornilov, V; White, S

    2016-01-01

    Beam instabilities cover a wide range of effects in particle accelerators and they have been the subjects of intense research for several decades. As the machines performance was pushed new mechanisms were revealed and nowadays the challenge consists in studying the interplays between all these intricate phenomena, as it is very often not possible to treat the different effects separately. The aim of this paper is to review the main mechanisms, discussing in particular the recent developments of beam instability theories and simulations.

  15. Microsatellite instability in bladder cancer

    DEFF Research Database (Denmark)

    Gonzalez-Zulueta, M; Ruppert, J M; Tokino, K

    1993-01-01

    Somatic instability at microsatellite repeats was detected in 6 of 200 transitional cell carcinomas of the bladder. Instabilities were apparent as changes in (GT)n repeat lengths on human chromosome 9 for four tumors and as alterations in a (CAG)n repeat in the androgen receptor gene on the X...... or larger (> 2 base pairs) alterations in repeat length. All six tumors were low stage (Ta-T1), suggesting that these alterations can occur early in bladder tumorigenesis....

  16. Waves and instabilities in plasmas

    International Nuclear Information System (INIS)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations

  17. Instability of enclosed horizons

    Science.gov (United States)

    Kay, Bernard S.

    2015-03-01

    We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.

  18. History of shoulder instability surgery.

    Science.gov (United States)

    Randelli, Pietro; Cucchi, Davide; Butt, Usman

    2016-02-01

    The surgical management of shoulder instability is an expanding and increasingly complex area of study within orthopaedics. This article describes the history and evolution of shoulder instability surgery, examining the development of its key principles, the currently accepted concepts and available surgical interventions. A comprehensive review of the available literature was performed using PubMed. The reference lists of reviewed articles were also scrutinised to ensure relevant information was included. The various types of shoulder instability including anterior, posterior and multidirectional instability are discussed, focussing on the history of surgical management of these topics, the current concepts and the results of available surgical interventions. The last century has seen important advancements in the understanding and treatment of shoulder instability. The transition from open to arthroscopic surgery has allowed the discovery of previously unrecognised pathologic entities and facilitated techniques to treat these. Nevertheless, open surgery still produces comparable results in the treatment of many instability-related conditions and is often required in complex or revision cases, particularly in the presence of bone loss. More high-quality research is required to better understand and characterise this spectrum of conditions so that successful evidence-based management algorithms can be developed. IV.

  19. Ionospheric modification and parametric instabilities

    International Nuclear Information System (INIS)

    Fejer, J.A.

    1979-01-01

    Thresholds and linear growth rates for stimulated Brillouin and Raman scattering and for the parametric decay instability are derived by using arguments of energy transfer. For this purpose an expression for the ponderomotive force is derived. Conditions under which the partial pressure force due to differential dissipation exceeds the ponderomotive force are also discussed. Stimulated Brillouin and Raman scattering are weakly excited by existing incoherent backscatter radars. The parametric decay instability is strongly excited in ionospheric heating experiments. Saturation theories of the parametric decay instability are therefore described. After a brief discussion of the purely growing instability the effect of using several pumps is discussed as well as the effects of inhomogenicity. Turning to detailed theories of ionospheric heating, artificial spread F is discussed in terms of a purely growing instability where the nonlinearity is due to dissipation. Field-aligned short-scale striations are explained in terms of dissipation of the parametrically excited Langmuir waves (plasma oscillations): they might be further amplified by an explosive instability (except the magnetic equator). Broadband absorption is probably responsible for the 'overshoot' effect: the initially observed level of parametrically excited Langmuir waves is much higher than the steady state level

  20. Nonsnaking doubly diffusive convectons and the twist instability

    Energy Technology Data Exchange (ETDEWEB)

    Beaume, Cédric, E-mail: ced.beaume@gmail.com; Knobloch, Edgar, E-mail: knobloch@berkeley.edu [Department of Physics, University of California, Berkeley, California 94720 (United States); Bergeon, Alain, E-mail: alain.bergeon@imft.fr [Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France and CNRS, IMFT, F-31400 Toulouse (France)

    2013-11-15

    Doubly diffusive convection in a three-dimensional horizontally extended domain with a square cross section in the vertical is considered. The fluid motion is driven by horizontal temperature and concentration differences in the transverse direction. When the buoyancy ratio N = −1 and the Rayleigh number is increased the conduction state loses stability to a subcritical, almost two-dimensional roll structure localized in the longitudinal direction. This structure exhibits abrupt growth in length near a particular value of the Rayleigh number but does not snake. Prior to this filling transition the structure becomes unstable to a secondary twist instability generating a pair of stationary, spatially localized zigzag states. In contrast to the primary branch these states snake as they grow in extent and eventually fill the whole domain. The origin of the twist instability and the properties of the resulting localized structures are investigated for both periodic and no-slip boundary conditions in the extended direction.

  1. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh–Taylor Instability

    International Nuclear Information System (INIS)

    Li-Feng, Wang; Wen-Hua, Ye; Ying-Jun, Li

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh–Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T) = κ SH [1 + f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse [Phys. Rev. Lett. 98 (2007) 245001]. (physics of gases, plasmas, and electric discharges)

  2. Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang Lifeng; Ye Wenhua; Li Yingjun

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)

  3. Estimates of CSR Instability Thresholds for Various Storage Rings

    CERN Document Server

    Zimmermann, Frank

    2010-01-01

    We review the key predictions and conditions by several authors for the onset of longitudinal instabilities due to coherent synchrotron radiation (CSR), and evaluate them numerically for various storage rings, namely the KEKB High Energy Ring (HER) & Low Energy Ring (LER), SuperKEKB HER & LER, old and new designs of the SuperKEKB Damping Ring (DR), SuperB HER & LER, CLIC DR (2009 and 2010 design parameters), SLC DR, and ATF DR. We show that the theoretical uncertainty in the instability onset is at least at the level of 20-30% in bunch intensity. More importantly, we present some doubts about the general applicability for many of these storage rings of some commonly used formulae. To cast further light on these questions, an experiment at lower beam energy on the ATF Damping Ring is proposed.

  4. On the conventive instability evolution in a rotating gas disk

    International Nuclear Information System (INIS)

    Nikonov, S.V.; Solov'ev, L.S.

    1986-01-01

    The mechanism of formation of spiral configuration in a rotating gravitating gas disk, caused by the nonlinear development of the convective instability, is considered. The mechanism suggested may be considered as the model of formation of the galaxy spiral configuration in a rotating pregalactic gas disk due to the development of the convective instability. Unlike the popular at present conception of ''density waves'', formation of the spiral configuration, from this point of view, is the single process of the development of instability in the pregalactic gas cloud. The further advantageous star formation in the vicinity of the central region, in a strip and sleeves is caused by higher concentration of gas density and temperature in these regions

  5. Controlling chaos in the current-driven ion acoustic instability

    International Nuclear Information System (INIS)

    Fukuyama, T.; Taniguchi, K.; Kawai, Y.

    2002-01-01

    Control of intermittent chaos caused by the current-driven ion acoustic instability is attempted and the controlling mechanism is investigated. When a small negative dc voltage is applied to the chaotic system as a perturbation, the system changes from a chaotic state to a periodic state while maintaining the instability, indicating that the chaotic state caused by the ion acoustic instability is well controlled by applying a small negative dc voltage. A hysteresis structure is observed on the V-I curve of the mesh grid to which the negative dc voltage to control is applied. Furthermore, when a negative dc voltage is applied to the state which shows a laminar structure existing under same experimental conditions, the system becomes chaotic via a bifurcation. Driven-chaos is excited when a negative dc voltage is applied to the laminar state. Applying a small negative dc voltage leads to controlling intermittent chaos while exciting driven-chaos

  6. Assessing Whether Oil Dependency in Venezuela Contributes to National Instability

    Directory of Open Access Journals (Sweden)

    Adam Kott

    2012-08-01

    Full Text Available The focus of this article is on what role, if any, oil has on Venezuela's instability. When trying to explain why a resource-rich country experiences slow or negative growth, experts often point to the resource curse. The following pages explore the traditional theory behind the resource curse as well as alternative perspectives to this theory such as ownership structure and the correlation between oil prices and democracy. This article also explores the various forms of instability within Venezuela and their causes. Finally, the article looks at President Hugo Chavez's political and economic policies as well as the stagnation of the state oil company, Petroleos de Venezuela (PDVSA. This article dispels the myth that the resource curse is the source of destabilization in many resource dependent countries. Rather than a cause of instability, this phenomenon is a symptom of a much larger problem that is largely structural.

  7. E-P instability in the NSNS accumulator ring

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A.G.; Blaskiewicz, M.

    1997-08-01

    It has been speculated that the intensity limitation observed in the Los Alamos Proton Storage Ring (PSR) is caused by a coherent instability induced by the presence of pockets of electrons generated by scattering with the molecules of the vacuum residual gas. A theoretical explanation of the e-p instability of course does exist, and is similar to the one developed for the ion-induced instability in electron storage rings. Considering the large beam power (3 MW) involved in the NSNS Accumulator Ring, and the consequences caused by even a small amount of beam loss, we need to carefully assess the effects of electrons that may be generated in the vacuum chamber.

  8. Are transaction taxes a cause of financial instability?

    Science.gov (United States)

    Fontini, Fulvio; Sartori, Elena; Tolotti, Marco

    2016-05-01

    We analyze a stylized market where N boundedly rational agents may decide to trade or not a share of a risky asset at subsequent trading dates. Agents' payoff depends on returns, which are endogenously determined taking into account observed and forecasted demand and an exogenous transaction tax. We study the time evolutions of demand, returns and market activity. We show that the introduction of a transaction tax generally helps in reducing variability of returns and market activity. On the other hand, there are market conditions under which a low taxation may lead the market into a very unstable phase characterized by the fluctuation of the fundamentals around two different regimes; indeed, under these circumstances, heteroscedasticity of time series is detected and statistically analyzed.

  9. Breast tumor copy number aberration phenotypes and genomic instability

    International Nuclear Information System (INIS)

    Fridlyand, Jane; Jain, Ajay N; McLennan, Jane; Ziegler, John; Chin, Koei; Devries, Sandy; Feiler, Heidi; Gray, Joe W; Waldman, Frederic; Pinkel, Daniel; Albertson, Donna G; Snijders, Antoine M; Ylstra, Bauke; Li, Hua; Olshen, Adam; Segraves, Richard; Dairkee, Shanaz; Tokuyasu, Taku; Ljung, Britt Marie

    2006-01-01

    Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

  10. Mechanism of injury and instability of cervical cord injuries without remarkable Xp evidence of injury

    International Nuclear Information System (INIS)

    Ueta, Takayoshi; Shiba, Keiichiro; Katsuki, Masaaki; Shirasawa, Kenzo; Murao, Tetsu; Mori, Eiji; Yoshimura, Toyoaki; Ishibashi, Yuichi; Ryu, Seiman

    1989-01-01

    In 27 patients with no radiographic evidence of injury, spinal cord injury was depicted as low signal intensity on MRI. In 4 patients who had spontaneous reduction of the anterior dislocation, remarkable instability was observed. Among the other 23 patients, two patients had each two injured sites, and the remaining patients had only one injuried site. Injured sites were not correlated with the development of spondylosis or the antero-posterior diameter of the spinal canal, but well correlated with ossification of the posterior longitudinal ligament. Many of the patients had surgical evidence of horizontal rupture of the anterior longitudinal ligament and intervertebral disk. In these cases, although the spinal cord was instable at the level of extension, it was stable at the level of midline flection. Excessively extended injury with no associated anterior longitudinal ligament was considered attributable to the strictured spinal canal. (Namekawa, K)

  11. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage.

    Science.gov (United States)

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-07-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, Ppatellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.

  12. Profiles of Genomic Instability in High-Grade Serous Ovarian Cancer Predict Treatment Outcome

    DEFF Research Database (Denmark)

    Wang, Zhigang C.; Birkbak, Nicolai Juul; Culhane, Aedín C.

    2012-01-01

    Purpose: High-grade serous cancer (HGSC) is the most common cancer of the ovary and is characterized by chromosomal instability. Defects in homologous recombination repair (HRR) are associated with genomic instability in HGSC, and are exploited by therapy targeting DNA repair. Defective HRR cause...

  13. Housing Instability and Children's Health Insurance Gaps.

    Science.gov (United States)

    Carroll, Anne; Corman, Hope; Curtis, Marah A; Noonan, Kelly; Reichman, Nancy E

    To assess the extent to which housing instability is associated with gaps in health insurance coverage of preschool-age children. Secondary analysis of data from the Early Childhood Longitudinal Study-Birth Cohort, a nationally representative study of children born in the United States in 2001, was conducted to investigate associations between unstable housing-homelessness, multiple moves, or living with others and not paying rent-and children's subsequent health insurance gaps. Logistic regression was used to adjust for potentially confounding factors. Ten percent of children were unstably housed at age 2, and 11% had a gap in health insurance between ages 2 and 4. Unstably housed children were more likely to have gaps in insurance compared to stably housed children (16% vs 10%). Controlling for potentially confounding factors, the odds of a child insurance gap were significantly higher in unstably housed families than in stably housed families (adjusted odds ratio 1.27; 95% confidence interval 1.01-1.61). The association was similar in alternative model specifications. In a US nationally representative birth cohort, children who were unstably housed at age 2 were at higher risk, compared to their stably housed counterparts, of experiencing health insurance gaps between ages 2 and 4 years. The findings from this study suggest that policy efforts to delink health insurance renewal processes from mailing addresses, and potentially routine screenings for housing instability as well as referrals to appropriate resources by pediatricians, would help unstably housed children maintain health insurance. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  14. Applied longitudinal analysis

    CERN Document Server

    Fitzmaurice, Garrett M; Ware, James H

    2012-01-01

    Praise for the First Edition "". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis.""-Journal of the American Statistical Association   Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of lo

  15. Application of Detailed Chemical Kinetics to Combustion Instability Modeling

    Science.gov (United States)

    2016-01-04

    Clearance Number 15692 Clearance Date 12/3/2015 14. ABSTRACT A comparison of a single step global reaction and the detailed GRI -Mech 1.2 for combustion...comparison of a single step global reaction and the detailed GRI -Mech 1.2 for com- bustion instability modeling in a methane-fueled longitudinal-mode...methane as the fuel. We use the GRI -Mech 1.2 kinetics mechanism for methane oxidation.11 The GRI -Mech 1.2 was chosen over 2.11 because the only

  16. REB-instability with magneto-active inhomogeneous warm plasma

    International Nuclear Information System (INIS)

    El-Shorbagy, K.H.

    2000-07-01

    The beam-plasma heating due to a relativistic electron beam (REB) under the effect of an external static magnetic field is investigated. It is considered that a longitudinal 1-D oscillations exist in the plasma, which is inhomogeneous and bounded in the direction of the beam propagation. It is found that the variation in the plasma density has a profound effect on the spatial beam-plasma instability. Besides, the external static magnetic field and warmness of plasma electron leads to more power absorption from the electron beam, and consequently an auxiliary plasma heating. (author)

  17. REB-Instability with Magneto-Active Inhomogeneous Warm Plasma

    International Nuclear Information System (INIS)

    El-Shorbagy, Kh.H.

    2000-01-01

    The beam-plasma heating due to a relativistic electron beam (REB) under the effect of an external static magnetic field is investigated. It is considered that a longitudinal 1-D oscillations exist in the plasma, which is inhomogeneous and bounded in the direction of the beam propagation. It is found that the variation in the plasma density has a profound effect on the spatial beam-plasma instability. Besides, the external static magnetic field and warmness of plasma electron leads to more power absorption from the electron beam, and consequently an auxiliary plasma heating

  18. Instability during bunch shortening of an electron-cooled beam

    Directory of Open Access Journals (Sweden)

    M. Takanaka

    2003-10-01

    Full Text Available Bunch shortening causes an electron-cooled beam to be space charge dominated at low energies. Instability during the bunch shortening has been studied using a particle-tracking program where the 3D space-charge field due to the beam is calculated with a simplifying model.

  19. Simple model with damping of the mode-coupling instability

    Energy Technology Data Exchange (ETDEWEB)

    Pestrikov, D V [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-08-01

    In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)

  20. Mexican-Origin Women's Employment Instability. Working Paper No. 51.

    Science.gov (United States)

    De Anda, Roberto M.

    This paper compares the causes and consequences of employment instability among Mexican-origin women, White women, and White men. Data came from the work experience supplement in the March 1995 file of the Current Population Survey for a sample that included 1,399 Mexican-origin women, 17,092 White women, and 24,440 White men. All were experienced…

  1. Kinetic theory of tearing instabilities

    International Nuclear Information System (INIS)

    Drake, J.F.; Lee, Y.C.

    1977-01-01

    The transition of the tearing instability from the collisional to the collisionless regime is investigated kinetically using a Fokker--Planck collision operator to represent electron-ion collisions. As a function of the collisionality of the plasma, the tearing instability falls into three regions, which are referred to as collisionless, semi-collisional, and collisional. The width Δ of the singular layer around kxB 0 =0 is limited by electron thermal motion along B 0 in the collisional and semi-collisional regimes and is typically smaller than rho/sub i/, the ion Larmor radius. Previously accepted theories, which are based on the assumption Δvery-much-greater-thanrho/sub i/, are found to be valid only in the collisional regime. The effects of density and temperature gradients on the instabilities are also studied. The tearing instability is only driven by the temperature gradient in the collisional and semi-collisional regimes. Numerical calculations indicate that the semi-collisional tearing instability is particularly relevant to present day high temperature tokamak discharges

  2. Radiation-induced chromosomal instability

    International Nuclear Information System (INIS)

    Ritter, S.

    1999-01-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/μm) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  3. Faraday instability on patterned surfaces

    Science.gov (United States)

    Feng, Jie; Rubinstein, Gregory; Jacobi, Ian; Stone, Howard

    2013-11-01

    We show how micro-scale surface patterning can be used to control the onset of the Faraday instability in thin liquid films. It is well known that when a liquid film on a planar substrate is subject to sufficient vibrational accelerations, the free surface destabilizes, exhibiting a family of non-linear standing waves. This instability remains a canonical problem in the study of spontaneous pattern formation, but also has practical uses. For example, the surface waves induced by the Faraday instability have been studied as a means of enhanced damping for mechanical vibrations (Genevaux et al. 2009). Also the streaming within the unstable layer has been used as a method for distributing heterogeneous cell cultures on growth medium (Takagi et al. 2002). In each of these applications, the roughness of the substrate significantly affects the unstable flow field. We consider the effect of patterned substrates on the onset and behavior of the Faraday instability over a range of pattern geometries and feature heights where the liquid layer is thicker than the pattern height. Also, we describe a physical model for the influence of patterned roughness on the destabilization of a liquid layer in order to improve the design of practical systems which exploit the Faraday instability.

  4. Kinetic theory of tearing instability

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Dobrott, D.; Wang, T.S.

    1975-01-01

    The guiding-center kinetic equation with Fokker-Planck collision term is used to study, in cylindrical geometry, a class of dissipative instabilities of which the classical tearing mode is an archetype. Variational solution of the kinetic equation obviates the use of an approximate Ohm's law or adiabatic assumption, as used in previous studies, and it provides a dispersive relation which is uniformly valid for any ratio of wave frequency to collision frequency. One result of using the rigorous collision operator is the prediction of a new instability. This instability, driven by the electron temperature gradient, is predicted to occur under the long mean-free path conditions of present tokamak experiments, and has significant features in common with the kink-like oscillations observed in such experiments

  5. Hydrodynamick instabilities on ICF capsules

    International Nuclear Information System (INIS)

    Haan, S.W.

    1991-01-01

    This article summarizes our current understanding of hydrodynamic instabilities as relevant to ICF. First we discuss classical, single mode Rayleigh-Taylor instability, and nonlinear effects in the evolution of a single mode. Then we discuss multimode systems, considering: (1) the onset of nonlinearity; (2) a second order mode coupling theory for weakly nonlinear effects, and (3) the fully nonlinear regime. Two stabilization mechanisms relevant to ICF are described next: gradient scale length and convective stabilization. Then we describe a model which is meant to estimate the weakly nonlinear evolution of multi-mode systems as relevant to ICF, given the short-wavelength stabilization. Finally, we discuss the relevant code simulation capability, and experiments. At this time we are quite optimistic about our ability to estimate instability growth on ICF capsules, but further experiments and simulations are needed to verify the modeling. 52 refs

  6. [Patellar instability : diagnosis and treatment].

    Science.gov (United States)

    Ngo, Trieu Hoai Nam; Martin, Robin

    2017-12-13

    The aim of this paper is to present recent advances in surgical management of patellar instability. Several anatomical factors were reported to promote instability. We propose to classify them in two groups. Extra articular factors are valgus and torsion deformity. Articular factors include trochlea and patella dysplasia, tibial tubercle lateralization and medial patellofemoral ligament (MPFL) insufficiency. Acute patellar dislocations are treated conservatively, with exception for osteochondral and MPFL avulsion fractures that require acute reinsertion. Surgery is considered for recurrent instability. As we aim for a correction of all contributing elements, we prefer a two stages approach. Extra articular factors are treated first by osteotomy, followed by articular factors after 4-6 months. This allows separate rehabilitation protocols.

  7. Pierce instability and bifurcating equilibria

    International Nuclear Information System (INIS)

    Godfrey, B.B.

    1981-01-01

    The report investigates the connection between equilibrium bifurcations and occurrence of the Pierce instability. Electrons flowing from one ground plane to a second through an ion background possess a countable infinity of static equilibria, of which only one is uniform and force-free. Degeneracy of the uniform and simplest non-uniform equilibria at a certain ground plan separation marks the onset of the Pierce instability, based on a newly derived dispersion relation appropriate to all the equilibria. For large ground plane separations the uniform equilibrium is unstable and the non-uniform equilibrium is stable, the reverse of their stability properties at small separations. Onset of the Pierce instability at the first bifurcation of equilibria persists in more complicated geometries, providing a general criterion for marginal stability. It seems probable that bifurcation analysis can be a useful tool in the overall study of stable beam generation in diodes and transport in finite cavities

  8. Performance through Deformation and Instability

    Science.gov (United States)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  9. Nonlinear evolution of the lower-hybrid drift instability

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Forslund, D.W.; Quest, K.B.; Winske, D.

    1984-01-01

    The results of simulations of the lower-hybrid drift instability in a neutral sheet configuration are described. The simulations use an implicit formulation to relax the usual time step limitations and thus extend previous explicit calculations to weaker gradients, larger mass ratios, and long times compared with the linear growth time. The numerical results give the scaling of the saturation level, heating rates, resistivity, and cross-field diffusion and a demonstration by comparison with a fluid electron model that dissipation in the lower-hybrid drift instability is caused by electron kinetic effects

  10. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  11. Instabilities of higher dimensional compactifications

    International Nuclear Information System (INIS)

    Accetta, F.S.

    1987-02-01

    Various schemes for cosmological compactification of higher dimensional theories are considered. Possible instabilities which drive the ground state with static internal space to de Sitter-like expansion of all dimensions are discussed. These instabilities are due to semiclassical barrier penetration and classical thermal fluctuations. For the case of the ten dimensional Chapline-Manton action, it is possible to avoid such difficulties by balancing one-loop Casimir corrections against monopole contributions from the field strength H/sub MNP/ and fermionic condensates. 10 refs

  12. Radiation-induced transgenerational instability.

    Science.gov (United States)

    Dubrova, Yuri E

    2003-10-13

    To date, the analysis of mutation induction has provided an irrefutable evidence for an elevated germline mutation rate in the parents directly exposed to ionizing radiation and a number of chemical mutagens. However, the results of numerous publications suggest that radiation may also have an indirect effect on genome stability, which is transmitted through the germ line of irradiated parents to their offspring. This review describes the phenomenon of transgenerational instability and focuses on the data showing increased cancer incidence and elevated mutation rates in the germ line and somatic tissues of the offspring of irradiated parents. The possible mechanisms of transgenerational instability are also discussed.

  13. Taming Instabilities in Plasma Discharges

    International Nuclear Information System (INIS)

    Klinger, T.; Krahnstover, N. O.; Mausbach, T.; Piel, A.

    2000-01-01

    Recent experimental work on taming instabilities in plasma discharges is discussed. Instead of suppressing instabilities, it is desired to achieve control over their dynamics, done by perturbing appropriately the current flow in the external circuit of the discharge. Different discrete and continuous feedback as well as open-loop control schemes are applied. Chaotic oscillations in plasma diodes are controlled using the OGY discrete feedback scheme. This is demonstrated both in experiment and computer simulation. Weakly developed ionization wave turbulence is tamed by continuous feedback control. Open-loop control of stochastic fluctuations - stochastic resonance - is demonstrated in a thermionic plasma diode. (author)

  14. Longitudinal and transverse wake potentials in SLAC

    International Nuclear Information System (INIS)

    Bane, K.; Wilson, P.

    1980-01-01

    In a machine with short bunches of high peak currents, such as the SLAC collider, one needs to know the longitudinal wake potential, for the higher mode losses, and the transverse wake potential, since, for bunches passing slightly off axis, the induced transverse forces will tend to cause beam break up. The longitudinal and transverse wakes of the SLAC structure presented here, were calculated by computer using the modal method, and including an analytic extension for higher modes. (Auth.)

  15. Cases of coupled vibrations and prametric instability in rotating machines

    OpenAIRE

    Luneno, Jean-Claude

    2012-01-01

    The principal task in this research project was to analyse the causes and consequences of coupled vibrations and parametric instability in hydropower rotors; where both horizontal and vertical machines are involved. Vibration is a well-known undesirable behavior of dynamical systems characterised by persistent periodic, quasi-periodic or chaotic motions. Vibrations generate noise and cause fatigue, which initiates cracks in mechanical structures. Motions coupling can in some cases augment the...

  16. CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS

    International Nuclear Information System (INIS)

    Kite, Edwin S.; Manga, Michael; Gaidos, Eric

    2011-01-01

    Feedbacks that can destabilize the climates of synchronously rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable planets maintain stable surface liquid water over geologic time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, are expected to be in synchronous rotation (tidally locked). In this paper, we investigate two hypothetical feedbacks that can destabilize climate on planets in synchronous rotation. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runaway positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. We call this feedback enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, a further decrease in pressure will occur. This substellar dissolution feedback can also cause a runaway climate shift. We use an idealized energy balance model to map out the conditions under which these instabilities may occur. In this simplified model, the weathering runaway can shrink the habitable zone and cause geologically rapid 10 3 -fold atmospheric pressure shifts within the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure. It can only cause runaway changes for small, deep oceans and highly soluble atmospheric gases. Both

  17. CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kite, Edwin S.; Manga, Michael [Department of Earth and Planetary Science, University of California at Berkeley, CA 94720 (United States); Gaidos, Eric, E-mail: edwin.kite@gmail.com [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2011-12-10

    Feedbacks that can destabilize the climates of synchronously rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable planets maintain stable surface liquid water over geologic time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, are expected to be in synchronous rotation (tidally locked). In this paper, we investigate two hypothetical feedbacks that can destabilize climate on planets in synchronous rotation. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runaway positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. We call this feedback enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, a further decrease in pressure will occur. This substellar dissolution feedback can also cause a runaway climate shift. We use an idealized energy balance model to map out the conditions under which these instabilities may occur. In this simplified model, the weathering runaway can shrink the habitable zone and cause geologically rapid 10{sup 3}-fold atmospheric pressure shifts within the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure. It can only cause runaway changes for small, deep oceans and highly soluble atmospheric

  18. Transit-time instability in Hall thrusters

    International Nuclear Information System (INIS)

    Barral, Serge; Makowski, Karol; Peradzynski, Zbigniew; Dudeck, Michel

    2005-01-01

    Longitudinal waves characterized by a phase velocity of the order of the velocity of ions have been recurrently observed in Hall thruster experiments and simulations. The origin of this so-called ion transit-time instability is investigated with a simple one-dimensional fluid model of a Hall thruster discharge in which cold ions are accelerated between two electrodes within a quasineutral plasma. A short-wave asymptotics applied to linearized equations shows that plasma perturbations in such a device consist of quasineutral ion acoustic waves superimposed on a background standing wave generated by discharge current oscillations. Under adequate circumstances and, in particular, at high ionization levels, acoustic waves are amplified as they propagate, inducing strong perturbation of the ion density and velocity. Responding to the subsequent perturbation of the column resistivity, the discharge current generates a standing wave, the reflection of which sustains the generation of acoustic waves at the inlet boundary. A calculation of the frequency and growth rate of this resonance mechanism for a supersonic ion flow is proposed, which illustrates the influence of the ionization degree on their onset and the approximate scaling of the frequency with the ion transit time. Consistent with experimental reports, the traveling wave can be observed on plasma density and velocity perturbations, while the plasma potential ostensibly oscillates in phase along the discharge

  19. Instabilities constraint and relativistic mean field parametrization

    International Nuclear Information System (INIS)

    Sulaksono, A.; Kasmudin; Buervenich, T.J.; Reinhard, P.-G.; Maruhn, J.A.

    2011-01-01

    Two parameter sets (Set 1 and Set 2) of the standard relativistic mean field (RMF) model plus additional vector isoscalar nonlinear term, which are constrained by a set of criteria 20 determined by symmetric nuclear matter stabilities at high densities due to longitudinal and transversal particle–hole excitation modes are investigated. In the latter parameter set, δ meson and isoscalar as well as isovector tensor contributions are included. The effects in selected finite nuclei and nuclear matter properties predicted by both parameter sets are systematically studied and compared with the ones predicted by well-known RMF parameter sets. The vector isoscalar nonlinear term addition and instability constraints have reasonably good effects in the high-density properties of the isoscalar sector of nuclear matter and certain finite nuclei properties. However, even though the δ meson and isovector tensor are included, the incompatibility with the constraints from some experimental data in certain nuclear properties at saturation point and the excessive stiffness of the isovector nuclear matter equation of state at high densities as well as the incorrect isotonic trend in binding the energies of finite nuclei are still encountered. It is shown that the problem may be remedied if we introduce additional nonlinear terms not only in the isovector but also in the isoscalar vectors. (author)

  20. Parental Socioeconomic Instability and Child Obesity.

    Science.gov (United States)

    Jones, Antwan

    2018-01-01

    Using data from the 1986 to 2010 National Longitudinal Study of Youth (NLSY) and the NLSY Child and Young Adult Supplement, this research explores how changes in parental socioeconomic status relate to child obesity over time. Results from linear mixed-effects models indicate that maternal educational gains and maternal employment transitions significantly increased their child's body mass index (BMI). This finding suggests that mothers who work may have less time to devote to monitoring their child's food intake and physical activity, which places their children at higher risks of becoming overweight or obese over time. Conversely, father's work transitions and educational gains contribute to decreases in child's BMI. Thus, work instability and increasing educational attainment for the traditional breadwinner of the household corresponds to better child weight outcomes. Results also suggest that there are racial differences in child BMI that remain after adjusting for changes in socioeconomic status, which indicate that the same structural disadvantages that operate to keep minorities in lower social class standings in society also work to hinder minorities from advancing among and out of their social class. Policy implications related to curbing child obesity are discussed.

  1. Instability of drift Alfven wave accompanying polar magnetic storm

    International Nuclear Information System (INIS)

    Higuchi, Yoshihiro

    1974-01-01

    As the micro plasma instability due to the plasma non-uniformity in magnetosphere, there is the instability of drift Alfven wave. With the data obtained with the network of multiple observation points for geomagnetism, attempt was made to prove the hypothesis that the instability of drift Alfven wave due to the electron temperature gradient at the inner boundary of plasma sheet may be one of the causes for the geomagnetic pulsation (Pi 1) accompanying polar magnetic storm. Up to date, final conclusion is yet impossible as to the problems in it due to the discussion based on the data from widely separated observation points. The installation of economically efficient multi-point observation network is necessary for the solution. (Mori, K.)

  2. Instability of (CTGn•(CAGn trinucleotide repeats and DNA synthesis

    Directory of Open Access Journals (Sweden)

    Liu Guoqi

    2012-02-01

    Full Text Available Abstract Expansion of (CTGn•(CAGn trinucleotide repeat (TNR microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTGn and (CAGn repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTGn•(CAGn instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTGn•(CAGn TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTGn•(CAGn instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTGn•(CAGn TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.

  3. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    Science.gov (United States)

    Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong

    2017-08-01

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.

  4. Analytic study of resistive instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Magnus

    2003-05-01

    In a fusion plasma there is always a small amount of resistivity that may cause instabilities. Although their rather slow growth rates they can be of major importance for fusion plasma confinement. In this work a MAPLE-code was rewritten and simplified to make it possible to analytically solve the linearized MHD-equations with resistivity in an RFP-configuration. By using the MHD-equations and expanding the unknown perturbed quantities u{sub 1r}(r) and B{sub 1r}(r) as Taylor series and solving each coefficient we could get eigenvalues, dispersion relations and a relation between the growth rate and the resistivity. The new code was first used to solve two cases with no resistivity and simple unstable equilibria which after running gave the correct expected results. The difference from running the original code with these two cases was the greater speed of the calculations and the less memory needed. Then by using an ideal MHD-stable equilibrium in a plasma with no resistivity the code gave us solutions which unfortunately were not of the expected kind but the time of the calculations was still very fast. The resistivity was finally added to the code with the ideal MHD-stable equilibrium. The program also this time gave incorrect results. We could, however, see from a relation between the growth rate and the resistivity that the solution may be approximately correct in this domain. Although we did not get all the correct results we have to consider the fact that we got results, that were not possible before. Before this work was carried out we could not get any results at all in the resistive cue because of the very long memory demanding expressions. In future work and studies it is not only possible to get the desired eigenvalues {gamma} as function of {eta} but also possible to get expressions for eigenfunctions, dispersion relations and other significant relations with a number of variable parameters. We could also use the method for any geometry and possibly for

  5. Analytic study of resistive instabilities

    International Nuclear Information System (INIS)

    Svensson, Magnus

    2003-05-01

    In a fusion plasma there is always a small amount of resistivity that may cause instabilities. Although their rather slow growth rates they can be of major importance for fusion plasma confinement. In this work a MAPLE-code was rewritten and simplified to make it possible to analytically solve the linearized MHD-equations with resistivity in an RFP-configuration. By using the MHD-equations and expanding the unknown perturbed quantities u 1r (r) and B 1r (r) as Taylor series and solving each coefficient we could get eigenvalues, dispersion relations and a relation between the growth rate and the resistivity. The new code was first used to solve two cases with no resistivity and simple unstable equilibria which after running gave the correct expected results. The difference from running the original code with these two cases was the greater speed of the calculations and the less memory needed. Then by using an ideal MHD-stable equilibrium in a plasma with no resistivity the code gave us solutions which unfortunately were not of the expected kind but the time of the calculations was still very fast. The resistivity was finally added to the code with the ideal MHD-stable equilibrium. The program also this time gave incorrect results. We could, however, see from a relation between the growth rate and the resistivity that the solution may be approximately correct in this domain. Although we did not get all the correct results we have to consider the fact that we got results, that were not possible before. Before this work was carried out we could not get any results at all in the resistive cue because of the very long memory demanding expressions. In future work and studies it is not only possible to get the desired eigenvalues γ as function of η but also possible to get expressions for eigenfunctions, dispersion relations and other significant relations with a number of variable parameters. We could also use the method for any geometry and possibly for non

  6. Instabilities in the 'on' phase of the plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    1990-07-01

    In the operation of large plasma focus devices, e.g. POSEIDON, there appear saturation phenomena in the neutron production when the charging energy of the condensor bank approaches its nominal value. This saturation is attributed to the action of impurities. It is assumed that there appear instabilities which are in part caused by impurities. In order to be able to answer this question, the linear dispersion relation was derived from a three-fluid theory (electrons, ions and neutrals) with the aid of the computer algebra (CA) code MACSYMA. The inversion of the 17x17 matrix (it is assumed that v a =v i and T a =T i ) and solution of the determinant was carried out on a CONVEX C 120 computer using the CA code MAPLE. The calculation of the zeros was done with a modified CPZERO program from the SLATEC library. There appear four instabilities in the rundown phase of the plasma focus, two of them gradient driven. The first two are unstable electrostatic waves with very high phase velocities, thus they do not contribute to anomalous dissipation. The third is identified as a gradient driven space charge instability which may possibly lead to current chopping. The electron acoustic wave instability, here gradient driven, is the fourth. It was found in a previous study of MPD thruster instabilities. (orig.)

  7. Numerical Investigation of Three-dimensional Instability of Standing Waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  8. Lending sociodynamics and economic instability

    Science.gov (United States)

    Hawkins, Raymond J.

    2011-11-01

    We show how the dynamics of economic instability and financial crises articulated by Keynes in the General Theory and developed by Minsky as the Financial Instability Hypothesis can be formalized using Weidlich’s sociodynamics of opinion formation. The model addresses both the lending sentiment of a lender in isolation as well as the impact on that lending sentiment of the behavior of other lenders. The risk associated with lending is incorporated through a stochastic treatment of loan dynamics that treats prepayment and default as competing risks. With this model we are able to generate endogenously the rapid changes in lending opinion that attend slow changes in lending profitability and find these dynamics to be consistent with the rise and collapse of the non-Agency mortgage-backed securities market in 2007/2008. As the parameters of this model correspond to well-known phenomena in cognitive and social psychology, we can both explain why economic instability has proved robust to advances in risk measurement and suggest how policy for reducing economic instability might be formulated in an experimentally sound manner.

  9. Kinetic theory of Jeans instability

    NARCIS (Netherlands)

    Trigger, S.A.; Ershkovic, A.I.; Heijst, van G.J.F.; Schram, P.P.J.M.

    2004-01-01

    Kinetic treatment of the Jeans gravitational instability, with collisions taken into account, is presented. The initial-value problem for the distribution function which obeys the kinetic equation, with the collision integral conserving the number of particles, is solved. Dispersion relation is

  10. Cinerama sickness and postural instability.

    Science.gov (United States)

    Bos, Jelte E; Ledegang, Wietse D; Lubeck, Astrid J A; Stins, John F

    2013-01-01

    Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min after watching a 1 h 3D aviation documentary in a cinema. Sickness was significantly larger right after the movie than before, and in a lesser extent still so after 45 min. The average standard deviation of the lateral centre of pressure excursions was significantly larger only right afterwards. When low-pass filtered at 0.1 Hz, lateral and for-aft excursions were both significantly larger right after the movie, while for-aft excursions then remained larger even after 45 min. Speculating on previous findings, we predict more sickness and postural instability in 3D than in 2D movies, also suggesting a possible, but yet unknown risk for work-related activities and vehicle operation. Watching motion pictures may be sickening and posturally destabilising, but effects in a cinema are unknown. We, therefore, carried out an observational study showing that sickness then is mainly an issue during the exposure while postural instability is an issue afterwards.

  11. Faraday instability in deformable domains

    International Nuclear Information System (INIS)

    Pucci, G.

    2013-01-01

    Hydrodynamical instabilities are usually studied either in bounded regions or free to grow in space. In this article we review the experimental results of an intermediate situation, in which an instability develops in deformable domains. The Faraday instability, which consists in the formation of surface waves on a liquid experiencing a vertical forcing, is triggered in floating liquid lenses playing the role of deformable domains. Faraday waves deform the lenses from the initial circular shape and the mutual adaptation of instability patterns with the lens boundary is observed. Two archetypes of behaviour have been found. In the first archetype a stable elongated shape is reached, the wave vector being parallel to the direction of elongation. In the second archetype the waves exceed the response of the lens border and no equilibrium shape is reached. The lens stretches and eventually breaks into fragments that have a complex dynamics. The difference between the two archetypes is explained by the competition between the radiation pressure the waves exert on the lens border and its response due to surface tension.

  12. Evaluation of instability after transtrochanteric anterior rotational osteotomy for nontraumatic osteonecrosis of the femoral head

    International Nuclear Information System (INIS)

    Hiranuma, Yasunari; Atsumi, Takashi; Kajiwara, Toshihisa; Tamaoki, Satoshi; Asakura, Yasuhiro

    2009-01-01

    Transtrochanteric anterior rotational osteotomy results in improvement of joint congruity and prevention of progressive collapse and osteoarthritic changes in patients with femoral head osteonecrosis. However, this procedure remains controversial for patients with extensive collapse due to potential osteoarthritis caused by postoperative instability. The purpose of this study was to evaluate hip instability after osteotomy and determine the relation between instability and radiological and clinical outcomes. In all, 27 hips of 24 patients that were followed up for a mean period of 3.8 years were included. Instability was defined as more than 1 mm translation of the femoral head in transverse computed tomography scans obtained at 0 deg and 45 deg flexion of the hip joint. Hips were divided into instability and stability groups. Eleven hips (40%) developed instability after surgery. Osteophytes on the femoral head in 10 hips of the instability group and 2 hips of the stability group had increased in size at follow-up. There was a significant relation between postoperative instability and osteophyte formation. Joint space narrowing was not seen in any of the cases. There was no significant difference between the groups in either the postoperative intact ratio of the femoral head or the Japanese Orthopaedic Association hip score. Neither instability nor osteophyte formation on the femoral head after transtrochanteric anterior rotational osteotomy correlated with progressive osteoarthritic changes or clinical outcome in the presence of an adequate femoral head intact ratio facing the weight-bearing area. (author)

  13. Experimental study of flow instability and CHF in a natural circulation system with subcooled boiling

    International Nuclear Information System (INIS)

    Yang, R.C.; Shi, D.Q.; Lu, Z.Q.; Zheng, R.C.; Wang, Y.

    1996-01-01

    Experimental study has been performed to investigate flow instability and critical heat flux (CHF) in a natural circulation system with subcooled boiling. In the experiments three kinds of heated sections were used. Freon-12 was used as the working medium. The experiments show which one of the two phenomena, flow instability and CHF condition, may first occur in the system depends on not only the heat input power to the heated section and the parameters of the working medium, but also the construction of the heated section. The occurrence of the flow instability mainly depends on the total heat input power to the heated section and the CHF condition is mainly caused by the local heat flux of the heated section. In the experiments two kinds of flow instability, flow instability with high frequency and flow instability with low frequency, were found. But they all belong to density wave instability. The influence of the parameters of the working medium on the onset of the flow instability and CHF condition in the system were investigated. The stability boundaries were determined through the experiments. By means of dimensional analysis of integral equations, a common correlation describing the threshold condition of onset of the flow instability was obtained

  14. Potential-well distortion and mode-mixing instability in proton machines

    Energy Technology Data Exchange (ETDEWEB)

    Ng, King-Yuen [Fermi National Accelerator Lab., Batavia, IL (United States)

    1996-08-01

    In proton machines, potential-well distortion leads to small amount of bunch lengthening with minimal head-tail asymmetry. Longitudinal mode-mixing instability occurs at higher azimuthal modes. When the driving resonance is of broad-band, the threshold corresponds to the Boussard-modified Keil-Schnell criterion for microwave instability. When the driving resonance is narrower than the bunch spectrum, the threshold corresponds to a similar criterion derived before. The thresholds are higher when the machine operates below transition. (author)

  15. Broadband impedance calculations and single bunch instabilities estimations of of the HLS-II storage ring

    Science.gov (United States)

    Zhang, Qing-Kun; Wang, Lin; Li, Wei-Min; Gao, Wei-Wei

    2015-12-01

    The upgrade project of the Hefei Light Source storage ring is under way. In this paper, the broadband impedances of resistive wall and coated ceramic vacuum chamber are calculated using the analytic formula, and the wake fields and impedances of other designed vacuum chambers are simulated by CST code, and then a broadband impedance model is obtained. Using the theoretical formula, longitudinal and transverse single bunch instabilities are discussed. With the carefully-designed vacuum chamber, we find that the thresholds of the beam instabilities are higher than the beam current goal. Supported by Natural Science Foundation of China (11175182, 11175180)

  16. Possible parametric instabilities of beat waves in a transversely magnetized plasma

    International Nuclear Information System (INIS)

    Salimullah, M.

    1988-05-01

    The effect of an external magnetic field on the various possible parametric instabilities of the longitudinal beat wave at the difference frequency of two incident laser beams in a hot plasma has been thoeretically investigated. The kinetic equation is employed to obtain the nonlinear response of the magnetized electrons due to the nonlinear coupling of the beat wave with the low-frequency electrostatic plasma modes. It is noted that the growth rates of the three-wave and the four-wave parametric instabilities can be influenced by the external transverse magnetic field. (author). 20 refs, 3 figs

  17. Liquid conductor model of instabilities in a pinched discharge

    Energy Technology Data Exchange (ETDEWEB)

    Dattnery, A; Lehnert, B [Dept. of Electronics, Royal Institute of Technology, Stockholm (Sweden); Lundquist, S [Swedish State Power Board (Sweden)

    1958-07-01

    The pinched gas discharge experiments seem to have been handicapped by the great speed with which the instability develops as well as by the light coming from impurities instead of the main body of pinched gas. In the present work a liquid conductor is used in order to study the structure of the instabilities. The study of a pinch was made with and without the axial magnetic field. In cases with a magnetic field, the currents and fields were chosen so as to give a longitudinal magnetic field equal to or three times the azimuthal field at the boundary of the mercury stream. The study of the results shows that in the case without an external magnetic field there is a similarity between the behavior of the pinch in a stream of mercury and in an ionized gas column. The stabilizing action of the surface tension is small and the instabilities develop easily. The case with an external magnetic field is more complicated. The magnetic lines of force are not frozen into the medium; they can 'escape' from the medium. In this case the magnetic field has no stabilizing effect. The influence of conducting walls around the mercury column will be studied in forthcoming experiments.

  18. Impedance and instability threshold estimates in the main injector I

    International Nuclear Information System (INIS)

    Martens, M.A.; Ng, K.Y.

    1994-03-01

    One of the important considerations in the design of the Main Injector is the beam coupling impedances in the vacuum chamber and the stability of the beam. Along with the higher intensities comes the possibility of instabilities which lead to growth in beam emittances and/or the loss of beam. This paper makes estimations of the various impedances and instability thresholds based on impedance estimations and measurements. Notably missing from this paper is any analysis of transition crossing and its potential limitations on beam intensity and beam emittance. Future work should consider this issue. The body of the work contains detailed analysis of the various impedance estimations and instability threshold calculations. The calculations are based on the Main Injector beam intensity of 6 x 10 10 protons per bunch, 95% normalized transverse emittances of 20π mm-mrad, and 95% normalized longitudinal emittance of 0.1 eV-s at 8.9 GeV injection energy and 0.25 eV-s at 150 GeV flattop energy. The conclusions section summarizes the results in the paper and is meant to be readable by itself without referring to the rest of the paper. Also in the conclusion section are recommendations for future investigations

  19. Restoration of longitudinal images.

    Science.gov (United States)

    Hu, Y; Frieden, B R

    1988-01-15

    In this paper, a method of restoring longitudinal images is developed. By using the transfer function for longitudinal objects, and inverse filtering, a longitudinal image may be restored. The Fourier theory and sampling theorems for transverse images cannot be used directly in the longitudinal case. A modification and reasonable approximation are introduced. We have numerically established a necessary relationship between just-resolved longitudinal separation (after inverse filtering), noise level, and the taking conditions of object distance and lens diameter. An empirical formula is also found to well-fit the computed results. This formula may be of use for designing optical systems which are to image longitudinal details, such as in robotics or microscopy.

  20. Nonlinear behavior of the radiative condensation instability

    International Nuclear Information System (INIS)

    McCarthy, D.; Drake, J.F.

    1991-01-01

    An investigation of the nonlinear behavior of the radiative condensation instability is presented in a simple one-dimensional magnetized plasma. It is shown that the radiative condensation is typically a nonlinear instability---the growth of the instability is stronger once the disturbance reaches finite amplitude. Moreover, classical parallel thermal conduction is insufficient by itself to saturate the instability. Radiative collapse continues until the temperature in the high density condensation falls sufficiently to reduce the radiation rate

  1. A general approach to optomechanical parametric instabilities

    International Nuclear Information System (INIS)

    Evans, M.; Barsotti, L.; Fritschel, P.

    2010-01-01

    We present a simple feedback description of parametric instabilities which can be applied to a variety of optical systems. Parametric instabilities are of particular interest to the field of gravitational-wave interferometry where high mechanical quality factors and a large amount of stored optical power have the potential for instability. In our use of Advanced LIGO as an example application, we find that parametric instabilities, if left unaddressed, present a potential threat to the stability of high-power operation.

  2. Observation of Parametric Instability in Advanced LIGO.

    Science.gov (United States)

    Evans, Matthew; Gras, Slawek; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana X; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Adams, Carl; Aston, Stuart; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; Pele, Arnaud; Romie, Janeen; Thomas, Michael; Thorne, Keith; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Sigg, Daniel; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Heinze, Matthew; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong

    2015-04-24

    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.

  3. Casimir effect and thermodynamics of horizon instabilities

    International Nuclear Information System (INIS)

    Hartnoll, Sean A.

    2004-01-01

    We propose a dual thermodynamic description of a classical instability of generalized black hole spacetimes. From a thermodynamic perspective, the instability is due to negative compressibility in regions where the Casimir pressure is large. The argument indicates how the correspondence between thermodynamic and classical instability for horizons may be extended to cases without translational invariance

  4. Plasma instabilities and turbulence in non-Abelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, Sebastian Herwig Juergen

    2010-02-17

    Several aspects of the thermalisation process in non-Abelian gauge theories are investigated. Both numerical simulations in the classical statistical approximation and analytical computations in the framework of the two-particle-irreducible effective action are carried out and their results are compared to each other. The physical quantities of central importance are the correlation functions of the gauge field in Coulomb and temporal axial gauge as well as the gauge invariant energy-momentum tensor. Following a general introduction, the theoretical framework of the ensuing investigations is outlined. In doing so, the range of validity of the employed approximation schemes is discussed as well. The first main part of the thesis is concerned with the early stage of the thermalisation process where particular emphasis is on the role of plasma instabilities. These investigations are relevant to the phenomenological understanding of present heavy ion collision experiments. First, an ensemble of initial conditions motivated by the ''colour glass condensate'' is developed which captures characteristic properties of the plasma created in heavy ion collisions. Here, the strong anisotropy and the large occupation numbers of low-momentum degrees of freedom are to be highlighted. Numerical calculations demonstrate the occurrence of two kinds of instabilities. Primary instabilities result from the specific initial conditions. Secondary instabilities are caused by nonlinear fluctuation effects of the preceding primary instabilities. The time scale associated with the instabilities is of order 1 fm/c. It is shown that the plasma instabilities isotropize the initially strongly anisotropic ensemble in the domain of low momenta (instabilities in an idealised setup is investigated. In the second part, the

  5. Plasma instabilities and turbulence in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Scheffler, Sebastian Herwig Juergen

    2010-01-01

    Several aspects of the thermalisation process in non-Abelian gauge theories are investigated. Both numerical simulations in the classical statistical approximation and analytical computations in the framework of the two-particle-irreducible effective action are carried out and their results are compared to each other. The physical quantities of central importance are the correlation functions of the gauge field in Coulomb and temporal axial gauge as well as the gauge invariant energy-momentum tensor. Following a general introduction, the theoretical framework of the ensuing investigations is outlined. In doing so, the range of validity of the employed approximation schemes is discussed as well. The first main part of the thesis is concerned with the early stage of the thermalisation process where particular emphasis is on the role of plasma instabilities. These investigations are relevant to the phenomenological understanding of present heavy ion collision experiments. First, an ensemble of initial conditions motivated by the ''colour glass condensate'' is developed which captures characteristic properties of the plasma created in heavy ion collisions. Here, the strong anisotropy and the large occupation numbers of low-momentum degrees of freedom are to be highlighted. Numerical calculations demonstrate the occurrence of two kinds of instabilities. Primary instabilities result from the specific initial conditions. Secondary instabilities are caused by nonlinear fluctuation effects of the preceding primary instabilities. The time scale associated with the instabilities is of order 1 fm/c. It is shown that the plasma instabilities isotropize the initially strongly anisotropic ensemble in the domain of low momenta (< or similar 1 GeV). Essential results can be translated from the gauge group SU(2) to SU(3) by a simple rescaling procedure. Finally, the role of Nielsen-Olesen instabilities in an idealised setup is investigated. In the second part, the quasi

  6. Lifetime improvement and beam stabilization by longitudinal phase modulation at the DELTA electron storage ring; Lebensdauerverbesserung und Strahlstabilisierung durch longitudinale Phasenmodulation am Elektronenspreicherring DELTA

    Energy Technology Data Exchange (ETDEWEB)

    Fuersch, Jonathan

    2014-10-16

    In DELTA especially at high beam currents often the occurence of an instability of a longitudinal oscillation mode is observed. In the framework of the present thesis first with different procedure the cause of the longitudinal oscillation mode, which is especially strongly excited at high beam currents, is searched for. Thereby connections between the occurrence of this mode and parameters from the region of the storage-ring high-frequency system is observed. It is shown by comparison of different procedures, simulation calculations, and experimental pre-examinations, that especially by a phase modulation of the storage-ring high frequency an essential improvement of especially the longitudinal beam stability and the beam lifetime can be reached. For the durable and reliable improvement of these beam properties in the framework of the present thesis a system for the longitudinal phase modulation of the after-acceleration voltage in the cavity resonator of the DELTA storage ring is concipated, developed, constructed, taken in operation, and tested. Finally the results aimed hereby are presented and discussed.

  7. Decreased systolic blood pressure is associated with increased risk of all-cause mortality in patients with type 2 diabetes and renal impairment: A nationwide longitudinal observational study of 27,732 patients based on the Swedish National Diabetes Register.

    Science.gov (United States)

    Svensson, Maria K; Afghahi, Henri; Franzen, Stefan; Björk, Staffan; Gudbjörnsdottir, Soffia; Svensson, Ann-Marie; Eliasson, Björn

    2017-05-01

    Previous studies have shown a U-shaped relationship between systolic blood pressure and risk of all-cause of mortality in patients with type 2 diabetes and renal impairment. To evaluate the associations between time-updated systolic blood pressure and time-updated change in systolic blood pressure during the follow-up period and risk of all-cause mortality in patients with type 2 diabetes and renal impairment. A total of 27,732 patients with type 2 diabetes and renal impairment in the Swedish National Diabetes Register were followed for 4.7 years. Time-dependent Cox models were used to estimate risk of all-cause mortality. Time-updated mean systolic blood pressure is the average of the baseline and the reported post-baseline systolic blood pressures. A time-updated systolic blood pressure blood pressure > 10 mmHg between the last two observations was associated with higher risk of all-cause mortality (-10 to -25 mmHg; hazard ratio: 1.24, 95% confidence interval: 1.17-1.32). Both low systolic blood pressure and a decrease in systolic blood pressure during the follow-up are associated with a higher risk of all-cause mortality in patients with type 2 diabetes and renal impairment.

  8. Mitigation of radiation-pressure-induced angular instability of a Fabry–Perot cavity consisting of suspended mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, Koji, E-mail: knagano@icrr.u-tokyo.ac.jp [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Enomoto, Yutaro; Nakano, Masayuki [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Kawamura, Seiji [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan)

    2016-12-01

    To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system. - Highlights: • High laser power could cause angular instability to a suspended Fabry–Perot cavity. • To mitigate the instability, the control system using radiation pressure is applied. • Mitigating the radiation-pressure-induced angular instability is demonstrated. • It is also confirmed that the cavity would be unstable without the control system.

  9. Lattice instability and soft phonons in single-crystal La/sub 2-//sub x/Sr/sub x/CuO4

    International Nuclear Information System (INIS)

    Boeni, P.; Axe, J.D.; Shirane, G.

    1988-01-01

    The dispersion of the low-lying phonon branches of several doped and undoped single crystals of La/sub 2-//sub x/Sr/sub x/CuO 4 have been investigated by using inelastic-neutron-scattering techniques. The zone-center modes are in good agreement with Raman measurements. The reported peaks in the phonon density of states show up at energies that correspond to extrema in the dispersion curves of the transverse and longitudinal acoustic branches near the zone boundary. The tetragonal-to-orthorhombic phase transition is caused by a softening of transverse-optic-phonon mode at the X point. The rotational nature of the soft mode leads to moderate weak electron-phonon coupling and the mode is unlikely to enhance significantly conventional phonon mediated superconductivity. We did not observe any evidence for the predicted breathing-mode instability near the zone boundary

  10. Nonlinear electron magnetohydrodynamics physics. IV. Whistler instabilities

    International Nuclear Information System (INIS)

    Urrutia, J. M.; Stenzel, R. L.; Strohmaier, K. D.

    2008-01-01

    A very large low-frequency whistler mode is excited with magnetic loop antennas in a uniform laboratory plasma. The wave magnetic field exceeds the ambient field causing in one polarity a field reversal, and a magnetic topology resembling that of spheromaks in the other polarity. These propagating ''whistler spheromaks'' strongly accelerate the electrons and create non-Maxwellian distributions in their toroidal current ring. It is observed that the locally energized electrons in the current ring excite new electromagnetic instabilities and emit whistler modes with frequencies unrelated to the applied frequency. Emissions are also observed from electrons excited in X-type neutral lines around the antenna. The properties of the excited waves such as amplitudes, frequency spectra, field topologies, propagation, polarization, growth, and damping have been investigated. The waves remain linear (B wave 0 ) and convert a small part of the electron kinetic energy into wave magnetic energy (B wave 2 /2μ 0 e )

  11. Painful glenohumeral joint instability in athletes

    International Nuclear Information System (INIS)

    Rossi, F.; Dragoni, S.; Giombini, A.

    1991-01-01

    Instability of the glenohumeral joints is a common cause of chronic shoulder pain and disability in athletes using repetitive arm movements in elevation and external rotation. A series of 29 athletes with persistent shoulder discomfort for transient subluxation was evaluated with plain radiography and tomography in right axillary projection. The purpose was to detect abnormalities in the osseous glenoid rim. Twenty-six patients (89.6% of all cases studied) had various degrees of skeletal damage, including 18 fractures (69.2%) of the anterior rim, 2 (7.6%) of the posterior rim, and 6 cases (23.07%) of local degenerative changes; 3 cases were negative for skeletal damages. The results of this study demontrate conventional radiography to be useful in the diagnostic assessment of shoulder pain in athletes, where similar problems must be promptly detected and not ignored

  12. Multiple sclerosis and employment: Associations of psychological factors and work instability.

    Science.gov (United States)

    Wicks, Charlotte Rose; Ward, Karl; Stroud, Amanda; Tennant, Alan; Ford, Helen L

    2016-10-12

    People with multiple sclerosis often stop working earlier than expected. Psychological factors may have an impact on job retention. Investigation may inform interventions to help people stay in work. To investigate the associations between psychological factors and work instability in people with multiple sclerosis. A multi-method, 2-phased study. Focus groups were held to identify key themes. Questionnaire packs using validated scales of the key themes were completed at baseline and at 8-month follow-up. Four key psychological themes emerged. Out of 208 study subjects 57.2% reported medium/high risk of job loss, with marginal changes at 8 months. Some psychological variables fluctuated significantly, e.g. depression fell from 24.6% to 14.5%. Work instability and anxiety and depression were strongly correlated (χ2 p work instability, and baseline depression levels also predicted later work instability (Hosmer-Lemeshow test 0.899; Nagelkerke R Square 0.579). Psychological factors fluctuated over the 8-month follow-up period. Some psychological variables, including anxiety and depression, were significantly associated with, and predictive of, work instability. Longitudinal analysis should further identify how these psychological attributes impact on work instability and potential job loss in the longer term.

  13. Stripes instability of an oscillating non-Brownian iso-dense suspension of spheres

    Science.gov (United States)

    Roht, Y. L.; Ippolito, I.; Hulin, J. P.; Salin, D.; Gauthier, G.

    2018-03-01

    We analyze experimentally the behavior of a non-Brownian, iso-dense suspension of spheres submitted to periodic square wave oscillations of the flow in a Hele-Shaw cell of gap H. We do observe an instability of the initially homogeneous concentration in the form of concentration variation stripes transverse to the flow. The wavelength of these regular spatial structures scales roughly as the gap of the cell and is independent of the particle concentration and of the period of oscillation. This instability requires large enough particle volume fractions φ≥ 0.25 and a gap large enough compared to the sphere diameter (H/d ≥ 8) . Mapping the domain of the existence of this instability in the space of the control parameters shows that it occurs only in a limited range of amplitudes of the fluid displacement. The analysis of the concentration distribution across the gap supports a scenario of particle migration towards the wall followed by an instability due to a particle concentration gradient with a larger concentration at the walls. In order to account for the main features of this stripes instability, we use the theory of longitudinal instability due to normal stresses difference and recent observations of a dependence of the first normal stresses difference on the particle concentration.

  14. Framing a Conflict! How Media Report on Earthquake Risks Caused by Gas Drilling: A Longitudinal Analysis Using Machine Learning Techniques of Media Reporting on Gas Drilling from 1990 to 2015

    NARCIS (Netherlands)

    Opperhuizen, A.E. (Alette Eva); K. Schouten (Kim); E-H. Klijn (Erik-Hans)

    2018-01-01

    textabstractUsing a new analytical tool, supervised machine learning (SML), a large number of newspaper articles is analysed to answer the question how newspapers frame the news of public risks, in this case of earthquakes caused by gas drilling in The Netherlands. SML enabled the study of 2265 news

  15. How Strong Is the Evidence that Illicit Drug Use by Young People Is an Important Cause of Psychological or Social Harm? Methodological and Policy Implications of a Systematic Review of Longitudinal, General Population Studies

    Science.gov (United States)

    MacLeod, John; Oakes, Rachel; Oppenkowski, Thomas; Stokes-Lampard, Helen; Copello, Alex; Crome, Ilana; Davey Smith, George; Egger, Matthias; Hickman, Mathew; Judd, Ali

    2004-01-01

    Recreational use of illicit drugs (i.e. use not associated with a diagnosed drug problem) may cause psychological and social harm. A recent systematic review found that evidence for this was equivocal. Extensive evidence was only available in relation to cannabis use. This was relatively consistently associated with lower educational attainment…

  16. History and Physical Examination for Shoulder Instability.

    Science.gov (United States)

    Haley, Col Chad A

    2017-09-01

    Glenohumeral instability frequently occurs in young active individuals especially those engaged in athletic and military activities. With advanced imaging and arthroscopic evaluation, our understanding of the injury patterns associated with instability has significantly improved. The majority of instability results from a traumatic anterior event which presents with common findings in the history, examination, and imaging studies. As such, a comprehensive evaluation of the patient is important to correctly diagnose the instability patterns and thus provide appropriate treatment intervention. With the correct diagnosis and improved surgical techniques, the majority of patients with instability can return to preinjury levels.

  17. Electromagnetic theory of the radiative Pierce instability

    International Nuclear Information System (INIS)

    Klochkov, D.N.; Rukhadze, A.A.

    1997-01-01

    A study is made of the radiative Pierce instability of a relativistic electron beam propagating in a waveguide in the presence of an infinitely strong magnetic field. The perturbation theory is used to find the growth rates and conditions of instability over a broad range of the beam current. It is shown that, under the Pierce boundary conditions, the instability is Raman in nature, and there is no current threshold for the instability. This allows the instability saturation level to be accurately determined from the condition for the violation of the Cherenkov resonance and the radiation efficiency to be estimated

  18. Corruption, Political Instability and Economic Development in the Economic Community of West African States (ECOWAS): Is There a Causal Relationship?

    OpenAIRE

    Nurudeen Abu; Mohd Zaini Abd Karim; Mukhriz Izraf Azman Aziz

    2015-01-01

    Despite the abundant research on economic development, corruption and political instability, little research has attempted to examine whether there is a causal relationship among them. This paper examines the causal relationship among corruption, political instability and economic development in the ECOWAS using the Granger causality test within a multivariate cointegration and error-correction framework for the 1996 - 2012 period. The findings indicate that political instability Granger-caus...

  19. Feedback control of resistive instabilities

    International Nuclear Information System (INIS)

    White, R.B.; Rutherford, P.H.; Furth, H.P.; Park, W.; Liu Chen

    1986-01-01

    Resistive instabilities are responsible for much of the global behavior and the determination of the possible domains of operation of Tokamaks. Their successful control could have definite advantages, even making available new regimes of operation. Elimination of sawtoothing might allow operation with higher currents and more peaked current profiles, with q on axis well below unity. In this work different feedback schemes are explored. Simple analytical derivations of the effects of local heating and current drive feedback are presented. Although control of modes with m ≥ 2 is fairly straighforward, the control of the m = 1 mode is more difficult because of its proximity to ideal instability. The most promising scheme utilizes high energy trapped particles

  20. Instability after total hip arthroplasty

    Science.gov (United States)

    Werner, Brian C; Brown, Thomas E

    2012-01-01

    Instability following total hip arthroplasty (THA) is an unfortunately frequent and serious problem that requires thorough evaluation and preoperative planning before surgical intervention. Prevention through optimal index surgery is of great importance, as the management of an unstable THA is challenging even for an experienced joints surgeon. However, even after well-planned surgery, a significant incidence of recurrent instability still exists. Non-operative management is often successful if the components are well-fixed and correctly positioned in the absence of neurocognitive disorders. If conservative management fails, surgical options include revision of malpositioned components; exchange of modular components such as the femoral head and acetabular liner; bipolar arthroplasty; tripolar arthroplasty; use of a larger femoral head; use of a constrained liner; soft tissue reinforcement and advancement of the greater trochanter. PMID:22919568

  1. Feedback control of resistive instabilities

    International Nuclear Information System (INIS)

    White, R.B.; Rutherford, P.H.; Furth, H.P.; Park, W.; Chen, L.

    1985-12-01

    Resistive instabilities are responsible for much of the global behavior and the determination of the possible domains of operation of tokamaks. Their successful control could have definite advantages, even making available new regimes of operation. Elimination of sawtoothing might allow operation with higher currents and more peaked current profiles, with q on axis well below unity. In this work different feedback schemes are explored. Simple analytical derivations of the effects of local heating and current drive feedback are presented. Although control of modes with m greater than or equal to 2 is fairly straightforward, the control of the m = 1 mode is more difficult because of its proximity to ideal instability. The most promising scheme utilizes high energy trapped particles. 20 refs., 3 figs

  2. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  3. A cosmic ray driven instability

    Science.gov (United States)

    Dorfi, E. A.; Drury, L. O.

    1985-01-01

    The interaction between energetic charged particles and thermal plasma which forms the basis of diffusive shock acceleration leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homogeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves.

  4. Modulational instability of coupled waves

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Bingham, R.

    1989-01-01

    The collinear propagation of an arbitrary number of finite-amplitude waves is modeled by a system of coupled nonlinear Schroedinger equations; one equation for each complex wave amplitude. In general, the waves are modulationally unstable with a maximal growth rate larger than the modulational growth rate of any wave alone. Moreover, waves that are modulationally stable by themselves can be driven unstable by the nonlinear coupling. The general theory is then applied to the relativistic modulational instability of two laser beams in a beat-wave accelerator. For parameters typical of a proposed beat-wave accelerator, this instability can seriously distort the incident laser pulse shapes on the particle-acceleration time scale, with detrimental consequences for particle acceleration

  5. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  6. Laser driven hydrodynamic instability experiments

    International Nuclear Information System (INIS)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-01-01

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes

  7. Finite temperature instability for compactification

    International Nuclear Information System (INIS)

    Accetta, F.S.; Kolb, E.W.

    1986-03-01

    We consider finite temperature effects upon theories with extra dimensions compactified via vacuum stress energy (Casimir) effects. For sufficiently high temperature, a static configuration for the internal space is impossible. At somewhat lower temperatures, there is an instability due to thermal fluctuations of radius of the compact dimensions. For both cases, the Universe can evolve to a de Sitter-like expansion of all dimensions. Stability to late times constrains the initial entropy of the universe. 28 refs., 1 fig., 2 tabs

  8. Instability of colliding metastable strings

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research

    2013-04-15

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  9. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  10. Instability of colliding metastable strings

    International Nuclear Information System (INIS)

    Hiramatsu, Takashi; Kobayashi, Tatsuo; Ookouchi, Yutaka; Kyoto Univ.

    2013-04-01

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  11. Longitudinal categorical data analysis

    CERN Document Server

    Sutradhar, Brajendra C

    2014-01-01

    This is the first book in longitudinal categorical data analysis with parametric correlation models developed based on dynamic relationships among repeated categorical responses. This book is a natural generalization of the longitudinal binary data analysis to the multinomial data setup with more than two categories. Thus, unlike the existing books on cross-sectional categorical data analysis using log linear models, this book uses multinomial probability models both in cross-sectional and longitudinal setups. A theoretical foundation is provided for the analysis of univariate multinomial responses, by developing models systematically for the cases with no covariates as well as categorical covariates, both in cross-sectional and longitudinal setups. In the longitudinal setup, both stationary and non-stationary covariates are considered. These models have also been extended to the bivariate multinomial setup along with suitable covariates. For the inferences, the book uses the generalized quasi-likelihood as w...

  12. Chromosomal instability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1995-01-01

    There is accumulating evidence indicating genomic instability can manifest multiple generations after cellular exposure to DNA damaging agents. For instance, some cells surviving exposure to ionizing radiations show delayed reproductive cell death, delayed mutation and / or delayed chromosomal instability. Such instability, especially chromosome destabilization has been implicated in mutation, gene amplification, cellular transformation, and cell killing. To investigate chromosomal instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells. The relationship between delayed chromosomal destabilization and other endpoints of genomic instability, namely; delayed mutation and gene amplification will be discussed, as will the potential cytogenetic and molecular mechanisms contributing to delayed chromosomal instability

  13. Simulation of instabilities in the presence of beam feedback

    International Nuclear Information System (INIS)

    Myers, S.; Vancraeynest, J.

    1985-01-01

    The effect of longitudinal and transverse instabilities in electron storage rings is simulated by tracking many superparticles for many turns through a model of a machine lattice. This lattice model is defined by a series of machine elements such as RF stations (including longitudinal and transverse wake fields), beam pick-ups, feedback kicker magnets, etc. The machine elements may be interconnected in any specified way so as to produce for example feedback on the longitudinal or transverse beam motion. Each superparticle is treated in six-dimensional phase space and the effects of quantum excitation and radiation damping are included. Insofar as possible the program has been structured to allow study of all known single-beam effects (such as synchro-betatron resonances, transverse mode coupling etc.) in the presence or the absence of some form of beam feedback. The primary goal of the program was to study the effect of a reactive beam feedback system on the threshold for transverse mode coupling. (orig.)

  14. Is auxin involved in the induction of genetic instability in barley homeotic double mutants?

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Rančelis, Vytautas

    2018-02-01

    The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.

  15. Understanding Etna flank instability through numerical models

    Science.gov (United States)

    Apuani, Tiziana; Corazzato, Claudia; Merri, Andrea; Tibaldi, Alessandro

    2013-02-01

    As many active volcanoes, Mount Etna shows clear evidence of flank instability, and different mechanisms were suggested to explain this flank dynamics, based on the recorded deformation pattern and character. Shallow and deep deformations, mainly associated with both eruptive and seismic events, are concentrated along recognised fracture and fault systems, mobilising the eastern and south-eastern flank of the volcano. Several interacting causes were postulated to control the phenomenon, including gravity force, magma ascent along the feeding system, and a very complex local and/or regional tectonic activity. Nevertheless, the complexity of such dynamics is still an open subject of research and being the volcano flanks heavily urbanised, the comprehension of the gravitative dynamics is a major issue for public safety and civil protection. The present research explores the effects of the main geological features (in particular the role of the subetnean clays, interposed between the Apennine-Maghrebian flysch and the volcanic products) and the role of weakness zones, identified by fracture and fault systems, on the slope instability process. The effects of magma intrusions are also investigated. The problem is addressed by integrating field data, laboratory tests and numerical modelling. A bi- and tri-dimensional stress-strain analysis was performed by a finite difference numerical code (FLAC and FLAC3D), mainly aimed at evaluating the relationship among geological features, volcano-tectonic structures and magmatic activity in controlling the deformation processes. The analyses are well supported by dedicated structural-mechanical field surveys, which allowed to estimate the rock mass strength and deformability parameters. To take into account the uncertainties which inevitably occur in a so complicated model, many efforts were done in performing a sensitivity analysis along a WNW-ESE section crossing the volcano summit and the Valle del Bove depression. This was

  16. Electromagnetic Weible Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T perpendi c ular b /T parallelb >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r w . The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T perpendi c ularb /T parallelb ) Weibel >> (T perpendi c ularb /T parallelb ) Harris ) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability

  17. CISP: Simulation Platform for Collective Instabilities in the BRing of HIAF project

    Science.gov (United States)

    Liu, J.; Yang, J. C.; Xia, J. W.; Yin, D. Y.; Shen, G. D.; Li, P.; Zhao, H.; Ruan, S.; Wu, B.

    2018-02-01

    To simulate collective instabilities during the complicated beam manipulation in the BRing (Booster Ring) of HIAF (High Intensity heavy-ion Accelerator Facility) or other high intensity accelerators, a code, named CISP (Simulation Platform for Collective Instabilities), is designed and constructed in China's IMP (Institute of Modern Physics). The CISP is a scalable multi-macroparticle simulation platform that can perform longitudinal and transverse tracking when chromaticity, space charge effect, nonlinear magnets and wakes are included. And due to its well object-oriented design, the CISP is also a basic platform used to develop many other applications (like feedback). Several simulations, completed by the CISP in this paper, agree with analytical results very well, which shows that the CISP is fully functional now and it is a powerful platform for the further collective instability research in the BRing or other accelerators. In the future, the CISP can also be extended easily into a physics control system for HIAF or other facilities.

  18. Family Instability and Exposure to Violence in the Early Life Course.

    Science.gov (United States)

    Cavanagh, Shannon E; Stritzel, Haley; Smith, Chelsea; Crosnoe, Robert

    2017-10-11

    Family instability has been linked with a host of outcomes across the early life course. This study extends this literature by connecting instability with violence in the community by examining the associations among family structure, family structure change, and secondary exposure to violence during adolescence across diverse segments of the population. Using longitudinal data from the Project on Human Development in Chicago Neighborhoods study, we found that living with a single parent and experiencing family structure changes were associated with secondary exposure to violence. Multiple group models suggest that partner change translated into more exposure for boys than girls. Findings also suggest that family instability may lead to more secondary exposure to violence for African American youth. © 2017 Society for Research on Adolescence.

  19. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    Science.gov (United States)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  20. Analysis of a three-cell cavity which suppresses instabilities associated with the accelerating mode

    International Nuclear Information System (INIS)

    Yamazaki, Y.; Kageyama, T.

    1994-01-01

    In a large ring with extremely heavy beam loading such as a B-factory it is possible that the accelerating mode, itself, gives rise to a longitudinal coupled-bunch instability. In order to solve this problem Shintake proposed to attach a storage cavity to an accelerating cavity. The present paper shows that the system can be put into practical use, if one adds a coupling cavity in between the two cavities. (author)

  1. Treatment options for patellofemoral instability in sports traumatology

    Directory of Open Access Journals (Sweden)

    Philippe M. Tscholl

    2013-09-01

    Full Text Available Patellofemoral instability not only involves lateral patellar dislocation, patellar mal-tracking or subluxation but can also cause a limiting disability for sports activities. Its underlying causes are known as morphological anomalies of the patellofemoral joint or the mechanical axis, femorotibial malrotation, variants of the knee extensor apparatus, and ligamentous insufficiencies often accompanied by poor proprioception. Athletes with such predisposing factors are either suffering from unspecific anterior knee pain or from slightly traumatic or recurrent lateral patellar dislocation Treatment options of patellar instability are vast, and need to be tailored individually depending on the athlete’s history, age, complaints and physical demands. Different conservative and surgical treatment options are reviewed and discussed, especially limited expectations after surgery.

  2. The Impact of Educational Status on 10-Year (2004-2014 Cardiovascular Disease Prognosis and All-cause Mortality Among Acute Coronary Syndrome Patients in the Greek Acute Coronary Syndrome (GREECS Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Venetia Notara

    2016-07-01

    Full Text Available Objectives: The association between educational status and 10-year risk for acute coronary syndrome (ACS and all-cause mortality was evaluated. Methods: From October 2003 to September 2004, 2172 consecutive ACS patients from six Greek hospitals were enrolled. In 2013 to 2014, a 10-year follow-up (2004-2014 assessment was performed for 1918 participants (participation rate, 88%. Each patient’s educational status was classified as low (14 years. Results: Overall all-cause mortality was almost twofold higher in the low-education group than in the intermediate-education and high-education groups (40% vs. 22% and 19%, respectively, p<0.001. Additionally, 10-year recurrent ACS events (fatal and non-fatal were more common in the low-education group than in the intermediate-education and high-education groups (42% vs. 30% and 35%, p<0.001, and no interactions between sex and education on the investigated outcomes were observed. Moreover, patients in the high-education group were more physically active, had a better financial status, and were less likely to have hypertension, diabetes, or ACS than the participants with the least education (p<0.001; however, when those characteristics and lifestyle habits were accounted for, no moderating effects regarding the relationship of educational status with all-cause mortality and ACS events were observed. Conclusions: A U-shaped association may be proposed for the relationship between ACS prognosis and educational status, with participants in the low-education and high-education groups being negatively affected by other factors (e.g., job stress, depression, or loneliness. Public health policies should be aimed at specific social groups to reduce the overall burden of cardiovascular disease morbidity.

  3. Conflicts again? Resource exploitation and political instability in Melanesia

    Directory of Open Access Journals (Sweden)

    Kowasch, Matthias

    2014-09-01

    Full Text Available Most of the Melanesian countries are caracterized by political instability. At the same time, they possess enormous deposits of natural resources. The paper analyses the correlation between conflict and resource wealth. The authors explain that social relationships, identities and land are the things that matter in Melanesia. ‘Resource wealth’ is an amplifying factor, but not the main cause of violent disputes.

  4. Nonlinear evolution of single spike in Richtmyer-Meshkov instability

    International Nuclear Information System (INIS)

    Fukuda, Y.; Nishihara, K.; Wouchuk, J.G.

    2000-01-01

    Nonlinear evolution of single spike structure and vortex in the Richtmyer-Meshkov instability is investigated with the use of a two-dimensional hydrodynamic code. It is shown that singularity appears in the vorticity left by transmitted and reflected shocks at a corrugated interface. This singularity results in opposite sign of vorticity along the interface that causes double spiral structure of the spike. (authors)

  5. Free electron laser and microwave instability interplay in a storage ring

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2004-06-01

    Full Text Available Collective effects, such as the microwave instability, influence the longitudinal dynamics of an electron beam in a storage ring. In a storage ring free electron laser (FEL they can compete with the induced beam heating and thus be treated as a further concomitant perturbing source of the beam dynamics. Bunch length and energy spread measurements, carried out at the Super-ACO storage ring, can be correctly interpreted according to a broad-band impedance model. Quantitative estimations of the relative role that is played by the microwave instability and the laser heating in shaping the beam longitudinal dynamics have been obtained by the analysis of the equilibrium laser power. It has been performed in terms of either a theoretical limit, implemented with the measured beam longitudinal characteristics, or the numerical results obtained by a macroparticle tracking code, which includes the laser pulse propagation. Such an analysis, carried out for different operating points of the Super-ACO storage ring FEL, indicates that the laser heating counteracts the microwave instability.

  6. Studies of thermal-hydrodynamic flow instability, (3)

    International Nuclear Information System (INIS)

    Suzuoki, Akira

    1978-01-01

    In the flow system in which large density change occurs midway, sometimes steady flow cannot be maintained according to the conditions, and pulsating flow or the scamper of flow occurs. This phenomenon is called flow instability, and is noticed as one of the causes to obstruct the normal operation in boilers, BWRs and the steam generators for FBRs with parallel evaporating tube system. In the pulsating instability, there are density wave oscillation and pressure wave oscillation. The author has studied the density wave oscillation occurring in the steam generators for FBRs and in this paper, the role played by two-phase flow regarding the occurrence of flow instability, and the effect of the existence of interphase slip on the role played by two-phase flow are reported. The theoretical analysis and the results of the analysis taking a steam generator heated with sodium as the example are described. Regarding flow stability, two-phase flow part generates the variation of weight velocity with different phase in steam single phase part, accepting enthalpy variation in water single phase part. In this action, the effect of interphase slip was observed, and the variation of reverse phase is apt to occur in slip flow as compared with homogeneous flow. Accordingly, flow instability is apt to occur in slip flow. (Kako, I.)

  7. KELVIN-HELMHOLTZ INSTABILITY OF A CORONAL STREAMER

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L.; Gan, W. Q. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China); Inhester, B., E-mail: lfeng@pmo.ac.cn [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str.2, D-37191 Katlenburg-Lindau (Germany)

    2013-09-10

    Shear-flow-driven instability can play an important role in energy transfer processes in coronal plasma. We present for the first time the observation of a kink-like oscillation of a streamer that is probably caused by the streaming kink-mode Kelvin-Helmholtz instability (KHI). The wave-like behavior of the streamer was observed by the Large Angle and Spectrometric Coronagraph Experiment C2 and C3 on board the SOlar and Heliospheric Observatory. The observed wave had a period of about 70-80 minutes, and its wavelength increased from 2 R{sub Sun} to 3 R{sub Sun} in about 1.5 hr. The phase speeds of its crests and troughs decreased from 406 {+-} 20 to 356 {+-} 31 km s{sup -1} during the event. Within the same heliocentric range, the wave amplitude also appeared to increase with time. We attribute the phenomena to the MHD KHI, which occurs at a neutral sheet in a fluid wake. The free energy driving the instability is supplied by the sheared flow and sheared magnetic field across the streamer plane. The plasma properties of the local environment of the streamer were estimated from the phase speed and instability threshold criteria.

  8. Transverse instability excited by rf deflecting modes for PEP

    International Nuclear Information System (INIS)

    Chao, A.W.; Yao, C.Y.

    1979-11-01

    We have looked at the possible transverse instability effects which are caused by the deflecting modes of the rf cavities in PEP. The results are obtained by applying the expression of the instability damping rate. We have assumed that there equal bunches equally spaced in PEP. We have worked out the equivalent for a single bunch beam. The effect of chromaticity ξ is included as a frequency shift in the bunch mode spectra. We rewrite this result in terms of the transverse wake field instead of the impedance. We include an application of the Sacherer formalism to the case of resistive wall. The resulting expression of the damping rate contains two terms. The first term corresponds to the effect of the short wake fields; it agrees with the result of the head-tail instability as derived by Sands. A numerical estimate of this resistive-wall head tail case for PEP is given. It re-confirms that the resistive wall instability is not a serious problem for PEP. The second term gives the effect of long wake fields and it agrees with the result of Courant and Sessler. 10 refs., 2 figs

  9. Multimaterial Control of Instability in Soft Mechanical Metamaterials

    Science.gov (United States)

    Janbaz, Shahram; McGuinness, Molly; Zadpoor, Amir A.

    2018-06-01

    Soft mechanical metamaterials working on the basis of instability have numerous potential applications in the context of "machine materials." Controlling the onset of instability is usually required when rationally designing such metamaterials. We study the isolated and modulated effects of geometrical design and material distribution on the onset of instability in multimaterial cellular metamaterials. We use multimaterial additive manufacturing to fabricate cellular specimens whose unit cells are divided into void space, a square element, and an intermediate ligament. The ratio of the elastic modulus of the ligament to that of the square element [(EL)/(ES)] is changed by using different material types. Computational models are also developed, validated against experimental observations, and used to study a wide range of possible designs. The critical stress can be adjusted independently from the critical strain by changing the material type while keeping [(EL)/(ES)] constant. The critical strain shows a power-law relationship with [(EL)/(ES)] within the range [(EL)/(ES)]=0.1 - 10 . The void shape design alters the critical strain by up to threefold, while the combined effects of the void shape and material distribution cause up to a ninefold change in the critical strain. Our findings highlight the strong influence of material distribution on the onset of the instability and buckling mode.

  10. Single-Bunch Instability Driven by the Electron Cloud Effect in the Positron Damping Ring of the International Linear Collider

    International Nuclear Information System (INIS)

    Pivi, Mauro; Raubenheimer, Tor O.; Ghalam, Ali; Harkay, Katherine; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej; Zimmermann, Frank

    2005-01-01

    Collective instabilities caused by the formation of an electron cloud (EC) are a potential limitation to the performances of the damping rings for a future linear collider. In this paper, we present recent simulation results for the electron cloud build-up in damping rings of different circumferences and discuss the single-bunch instabilities driven by the electron cloud

  11. Theoretical background of healthcare management in the conditions of social and economic instability

    Directory of Open Access Journals (Sweden)

    Shuldyakov V.A.

    2015-03-01

    Full Text Available Purpose: to develop fundamental basis of science based healthcare management in social and economic instability. Public health state (1998-2008, selected region was characterized by cardiovascular health parameters (Code IX, ICD-10. Systematic review was performed according to PRISMA guidelines. Dynamic characteristics of major cardiovascular diseases in social and economic instability considered as a cause of a population system destabilization were reconstructed. Conclusion. Fundamentals of science based healthcare management in social and economic instability include long- and short-term prognosis of public health characteristics as the result of multifactor external influences on cardiovascular diseases prevalence.

  12. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage

    International Nuclear Information System (INIS)

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S.

    2016-01-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, P<0.05) with the longest time at the central area. Positive correlation was seen between mean T2 relaxation time and morphological grading (Pearson correlation coefficiency, P<0.001). T2 increased with severity of morphological grading from 0 to 3 (mixed model, P<0.001), but no statistical difference was seen between grades 3 and 4. In patellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage. (orig.)

  13. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  14. Laser driven hydrodynamic instability experiments

    International Nuclear Information System (INIS)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1992-01-01

    We have conducted an extensive series of experiments on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime; multimode foils allow an assessment of the degree of mode coupling; and surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes. Experimental results and comparisons with theory and simulations are presented

  15. Spatiotemporal chaos involving wave instability.

    Science.gov (United States)

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  16. Risk bubbles and market instability

    Science.gov (United States)

    Marsili, Matteo; Raffaelli, Giacomo

    2006-10-01

    We discuss a simple model of correlated assets capturing the feedback effects induced by portfolio investment in the covariance dynamics. This model predicts an instability when the volume of investment exceeds a critical value. Close to the critical point the model exhibits dynamical correlations very similar to those observed in real markets. Maximum likelihood estimates of the model's parameter for empirical data indeed confirms this conclusion. We show that this picture is confirmed by the empirical analysis for different choices of the time horizon.

  17. Longitudinal beam dynamics

    International Nuclear Information System (INIS)

    Tecker, F

    2014-01-01

    The course gives a summary of longitudinal beam dynamics for both linear and circular accelerators. After discussing different types of acceleration methods and synchronism conditions, it focuses on the particle motion in synchrotrons

  18. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  19. Mode-locking via dissipative Faraday instability.

    Science.gov (United States)

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  20. Longitudinal dynamics and stability in beams for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Grote, D.P.

    1996-01-01

    Successful transport of induction-driven beams for heavy-ion fusion requires careful control of the longitudinal space charge. The usual control technique is the periodic application of time-varying longitudinal electric fields, called 'ears', that on the average, balance the space-charge field. this technique is illustrated using a fluid/envelope code CIRCE, and the sensitivity of the method to errors in these ear fields is illustrated. The possibility that periodic ear fields also excite the longitudinal instability is examined

  1. Development of a longitudinal feedback cavity for the beam feedback system

    International Nuclear Information System (INIS)

    Huang Gang; Chen Huaibi; Huang Wenhui; Tong Dechun; Lin Yuzheng; Zhao Zhentang

    2003-01-01

    Longitudinal beam feedback system is widely used to damp coupling bunch instability. Kicker is one of the key components of the longitudinal feedback system. A prototype cavity of longitudinal feedback kicker is developed according to the parameter of BEPC II. The usage of nose cone in the kicker design increased the shunt impedance. In order to avoid the extra tapper in the storage ring, the racetrack shape beam pipe is applied in the kicker. The impedance and the bandwidth of the kicker is measured by the coaxial line impedance measurement platform and the result achieved the design goals

  2. How does political instability affect economic growth?

    OpenAIRE

    Aisen, Ari; Veiga, Francisco José

    2011-01-01

    The purpose of this paper is to empirically determine the effects of political instability on economic growth. Using the system-GMM estimator for linear dynamic panel data models on a sample covering up to 169 countries, and 5-year periods from 1960 to 2004, we find that higher degrees of political instability are associated with lower growth rates of GDP per capita. Regarding the channels of transmission, we find that political instability adversely affects growth by lowering the rates of pr...

  3. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tensio...... of principal overall strain. For other orientations surface instabilities are seen when non-associated plastic flow is taken into account. Compared to tension, smaller compressive deformations are needed in order to initiate a surface instability....

  4. Electron Cloud Build Up and Instability in the CLIC Damping Rings

    CERN Document Server

    Rumolo, G; Papaphilippou, Y

    2008-01-01

    Electron cloud can be formed in the CLIC positron damping ring and cause intolerable tune shift and beam instability. Build up simulations with the Faktor2 code, developed at CERN, have been done to predict the cloud formation in the arcs and wigglers of the damping rings. HEADTAIL simulations have been used to study the effect of this electron cloud on the beam and assess the thresholds above which the electron cloud instability would set in.

  5. Secondary instabilities of hypersonic stationary crossflow waves

    Science.gov (United States)

    Edelman, Joshua B.

    A sharp, circular 7° half-angle cone was tested in the Boeing/AFOSR Mach-6 Quiet Tunnel at 6° angle of attack. Using a variety of roughness configurations, measurements were made using temperature-sensitive paint (TSP) and fast pressure sensors. High-frequency secondary instabilities of the stationary crossflow waves were detected near the aft end of the cone, from 110° to 163° from the windward ray. At least two frequency bands of the secondary instabilities were measured. The secondary instabilities have high coherence between upstream and downstream sensor pairs. In addition, the amplitudes of the instabilities increase with the addition of roughness elements near the nose of the cone. Two of the measured instabilities were captured over a range of axial Reynolds numbers of about 1 - 2 million, with amplitudes ranging from low to turbulent breakdown. For these instabilities, the wave speed and amplitude growth can be calculated. The wave speeds were all near the edge velocity. Measured growth before breakdown for the two instabilities are between e3 and e4 from background noise levels. The initial linear growth rates for the instabilities are near 50 /m. Simultaneous measurement of two frequency bands of the secondary instabilities was made during a single run. It was found that each mode was spatially confined within a small azimuthal region, and that the regions of peak amplitude for one mode correspond to regions of minimal amplitude for the other.

  6. Pearling Instabilities of a Viscoelastic Thread

    Science.gov (United States)

    Deblais, A.; Velikov, K. P.; Bonn, D.

    2018-05-01

    Pearling instabilities of slender viscoelastic threads have received much attention, but remain incompletely understood. We study the instabilities in polymer solutions subject to uniaxial elongational flow. Two distinctly different instabilites are observed: beads on a string and blistering. The beads-on-a-string structure arises from a capillary instability whereas the blistering instability has a different origin: it is due to a coupling between stress and polymer concentration. By varying the temperature to change the solution properties we elucidate the interplay between flow and phase separation.

  7. Review of two-phase instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong

    1997-06-01

    KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs

  8. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  9. Fringe instability in constrained soft elastic layers.

    Science.gov (United States)

    Lin, Shaoting; Cohen, Tal; Zhang, Teng; Yuk, Hyunwoo; Abeyaratne, Rohan; Zhao, Xuanhe

    2016-11-04

    Soft elastic layers with top and bottom surfaces adhered to rigid bodies are abundant in biological organisms and engineering applications. As the rigid bodies are pulled apart, the stressed layer can exhibit various modes of mechanical instabilities. In cases where the layer's thickness is much smaller than its length and width, the dominant modes that have been studied are the cavitation, interfacial and fingering instabilities. Here we report a new mode of instability which emerges if the thickness of the constrained elastic layer is comparable to or smaller than its width. In this case, the middle portion along the layer's thickness elongates nearly uniformly while the constrained fringe portions of the layer deform nonuniformly. When the applied stretch reaches a critical value, the exposed free surfaces of the fringe portions begin to undulate periodically without debonding from the rigid bodies, giving the fringe instability. We use experiments, theory and numerical simulations to quantitatively explain the fringe instability and derive scaling laws for its critical stress, critical strain and wavelength. We show that in a force controlled setting the elastic fingering instability is associated with a snap-through buckling that does not exist for the fringe instability. The discovery of the fringe instability will not only advance the understanding of mechanical instabilities in soft materials but also have implications for biological and engineered adhesives and joints.

  10. Electromagnetic theory of the radiative Pierce instability

    International Nuclear Information System (INIS)

    Klochkov, D.N.; Rukhadze, A.A.

    1997-01-01

    The radiative Pierce instability of a relativistic electron beam in a waveguide stabilized by an infinite strong magnetic field is considered. the increment and conditions for instability development in a wide interval of the beam currents are determined on the basis of the perturbation theory. It is shown that the instability has always the Raman character and is threshold less in current for the Pierce boundary conditions. It permits sufficiently strictly to define the instability saturation level from breaking the resonance condition and to estimate the radiation efficiency

  11. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  12. Radiation-induced instability of human genome

    International Nuclear Information System (INIS)

    Ryabchenko, N.N.; Demina, Eh.A.

    2014-01-01

    A brief review is dedicated to the phenomenon of radiation-induced genomic instability where the increased level of genomic changes in the offspring of irradiated cells is characteristic. Particular attention is paid to the problems of genomic instability induced by the low-dose radiation, role of the bystander effect in formation of radiation-induced instability, and its relationship with individual radiosensitivity. We believe that in accordance with the paradigm of modern radiobiology the increased human individual radiosensitivity can be formed due to the genome instability onset and is a significant risk factor for radiation-induced cancer

  13. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  14. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  15. Damage-induced tensile instability

    International Nuclear Information System (INIS)

    Hult, J.

    1975-01-01

    The paper presents a unified description of ductile and brittle rupture phenomena in structural components under tensile loading with particular emphasis on creep rupture. Two structural elements are analyzed in detail: 1) the uniform tensile bar subject to a Heaviside history of tensile force and superimposed such loadings, i.e. staircase histories, and 2) the thinwalled spherical pressure vessel subject to a Heaviside history of internal pressure. For both these structures the conditions for instantaneous as well as delayed rupture are analysed. It is shown that a state of mechanical instability will be reached at a certain load or after a certain time. The cases of purely ductile rupture and purely brittle fracture are identified as two limiting cases of this general instability phenomenon. The Kachanov-Rabotnov damage law implies that a structural component will fail in tension only when it has reached a state of complete damage, i.e. zero load carrying capacity. The extended law predicts failure at an earlier stage of the deterioration process and is therefore more compatible with experimental observation. Further experimental support is offered by predictions for staircase loading histories, both step-up and step-down type. The presented damage theory here predicts strain histories which are in closer agreement with test data than predictions based on other phenomenological theories

  16. Adhesional instabilities and gecko locomotion

    Science.gov (United States)

    Williams, John A.

    2015-01-01

    Geckos possess a remarkable ability to run rapidly on both walls and ceilings and in recent years the mechanisms that underlie this facility have come under close scrutiny. It is now generally agreed that one of the principal mechanisms of adhesion relies on the action of van der Waal forces acting between the final extremely fine structure of the gecko toe and the underlying substrate. High speed video analysis shows that adhesive contact is both made and broken in intervals of less than 20 ms and this suggests that the mechanism of detachment is one of adhesive instability rather than steady-state peeling. By considering the gecko seta/spatula as a Euler-Bernoulli cantilever it is possible to model this instability in non-dimensional terms and thus to test the analysis at a much larger scale with more conventional engineering materials. When applied to the scale and material combination appropriate to a gecko spatula, the predicted critical load, of around 10 nN, is close to values that have been observed using and AFM cantilever and a single detached spatula.

  17. Adhesional instabilities and gecko locomotion

    International Nuclear Information System (INIS)

    Williams, John A

    2015-01-01

    Geckos possess a remarkable ability to run rapidly on both walls and ceilings and in recent years the mechanisms that underlie this facility have come under close scrutiny. It is now generally agreed that one of the principal mechanisms of adhesion relies on the action of van der Waal forces acting between the final extremely fine structure of the gecko toe and the underlying substrate. High speed video analysis shows that adhesive contact is both made and broken in intervals of less than 20 ms and this suggests that the mechanism of detachment is one of adhesive instability rather than steady-state peeling. By considering the gecko seta/spatula as a Euler–Bernoulli cantilever it is possible to model this instability in non-dimensional terms and thus to test the analysis at a much larger scale with more conventional engineering materials. When applied to the scale and material combination appropriate to a gecko spatula, the predicted critical load, of around 10 nN, is close to values that have been observed using and AFM cantilever and a single detached spatula. (paper)

  18. Option price and market instability

    Science.gov (United States)

    Baaquie, Belal E.; Yu, Miao

    2017-04-01

    An option pricing formula, for which the price of an option depends on both the value of the underlying security as well as the velocity of the security, has been proposed in Baaquie and Yang (2014). The FX (foreign exchange) options price was empirically studied in Baaquie et al., (2014), and it was found that the model in general provides an excellent fit for all strike prices with a fixed model parameters-unlike the Black-Scholes option price Hull and White (1987) that requires the empirically determined implied volatility surface to fit the option data. The option price proposed in Baaquie and Cao Yang (2014) did not fit the data during the crisis of 2007-2008. We make a hypothesis that the failure of the option price to fit data is an indication of the market's large deviation from its near equilibrium behavior due to the market's instability. Furthermore, our indicator of market's instability is shown to be more accurate than the option's observed volatility. The market prices of the FX option for various currencies are studied in the light of our hypothesis.

  19. The linear electric motor: Instability at 1,000 g's

    International Nuclear Information System (INIS)

    Hunter, S.

    1997-01-01

    When fluid of high density is supported against gravity by a less dense liquid, the system is unstable, and microscopic perturbations grow at the interface between the fluids. This phenomenon, called the Rayleigh-Taylor instability, also occurs when a bottle of oil-and-vinegar salad dressing is turned upside down. The instability causes spikes of the dense fluid to penetrate the light fluid, while bubbles of the lighter fluid rise into the dense fluid. The same phenomenon occurs when a light fluid is used to accelerate a dense fluid, causing the two fluids to mix at a very high rate. For example, during the implosion of an ICF capsule, this instability can cause enough mixing to contaminate, cool, and degrade the yield of the thermonuclear fuel. The LEM is an excellent tool for studying this instability, but what is it? Think of a miniature high-speed electric train (the container) hurtling down a track (the electrodes) while diagnostic equipment (optical and laser) photographs it. The LEM, consists of four linear electrodes, or rails, that carry an electrical current to a pair of sliding armatures on the container. A magnetic field is produced that works in concert with the rail-armature current to accelerate the container--just as in an electric motor, but in a linear fashion rather than in rotation. The magnetic field is augmented with elongated coils just as in a conventional electric motor. This configuration also helps hold the armatures against the electrodes to prevent arcing. The electrical energy (0.6 megajoules) is provided by 16 capacitor banks that can be triggered independently to produce different acceleration profiles (i.e., how the acceleration varies with time)

  20. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Energy Technology Data Exchange (ETDEWEB)

    Kaothekar, Sachin, E-mail: sackaothekar@gmail.com [Department of Physics, Mahakal Institute of Technology, Ujjain-456664, Madhya Pradesh (India)

    2016-08-15

    I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  1. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Directory of Open Access Journals (Sweden)

    Sachin Kaothekar

    2016-08-01

    Full Text Available I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  2. Nonlinear modulation of torsional waves in elastic rod. [Instability

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, M; Sugimoto, N [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science

    1977-06-01

    Nonlinear Schroedinger equation, which describes the nonlinear modulation of dispersive torsional waves in an elastic rod of circular cross-section, is derived by the derivative expansion method. It is found, for the lowest dispersive mode, that the modulational instability occurs except in the range of the carrier wavenumber, 2.799longitudinal modes.

  3. Simulation of beam instabilities in a superconducting linear collider

    International Nuclear Information System (INIS)

    Aune, B.; Mosnier, A.; Napoly, O.

    1992-01-01

    Some results on the short range and long range wakefields effects due to the SC cavities on a beam emerging from a TESLA linac are presented. First, the intrabunch energy spread is estimated after the usual linac phase optimisation. Next, multibunch transverse instability is studied with several schemes of constant beta FODO focusing. In both cases, the parameters of a realistic 1.3 Ghz TESLA cavity and the parameters of the two machines 'Top-Factory' and '1/2 TESLA' are considered. It is concluded that the longitudinal wake effect is not a problem in both machines and that a rather weak focusing scheme is sufficient to keep the emittance at the 10 -6 m rad design value. (author) 6 refs.; 9 figs.; 3 tabs

  4. Colon and rectal cancer survival by tumor location and microsatellite instability: the Colon Cancer Family Registry.

    Science.gov (United States)

    Phipps, Amanda I; Lindor, Noralane M; Jenkins, Mark A; Baron, John A; Win, Aung Ko; Gallinger, Steven; Gryfe, Robert; Newcomb, Polly A

    2013-08-01

    Cancers in the proximal colon, distal colon, and rectum are frequently studied together; however, there are biological differences in cancers across these sites, particularly in the prevalence of microsatellite instability. We assessed the differences in survival by colon or rectal cancer site, considering the contribution of microsatellite instability to such differences. This is a population-based prospective cohort study for cancer survival. This study was conducted within the Colon Cancer Family Registry, an international consortium. Participants were identified from population-based cancer registries in the United States, Canada, and Australia. Information on tumor site, microsatellite instability, and survival after diagnosis was available for 3284 men and women diagnosed with incident invasive colon or rectal cancer between 1997 and 2002, with ages at diagnosis ranging from 18 to 74. Cox regression was used to calculate hazard ratios for the association between all-cause mortality and tumor location, overall and by microsatellite instability status. Distal colon (HR, 0.59; 95% CI, 0.49-0.71) and rectal cancers (HR, 0.68; 95% CI, 0.57-0.81) were associated with lower mortality than proximal colon cancer overall. Compared specifically with patients with proximal colon cancer exhibiting no/low microsatellite instability, patients with distal colon and rectal cancers experienced lower mortality, regardless of microsatellite instability status; patients with proximal colon cancer exhibiting high microsatellite instability had the lowest mortality. Study limitations include the absence of stage at diagnosis and cause-of-death information for all but a subset of study participants. Some patient groups defined jointly by tumor site and microsatellite instability status are subject to small numbers. Proximal colon cancer survival differs from survival for distal colon and rectal cancer in a manner apparently dependent on microsatellite instability status. These

  5. Family Structure Transitions and Child Development: Instability, Selection, and Population Heterogeneity.

    Science.gov (United States)

    Lee, Dohoon; McLanahan, Sara

    2015-08-01

    A growing literature documents the importance of family instability for child wellbeing. In this article, we use longitudinal data from the Fragile Families and Child Wellbeing Study to examine the impacts of family instability on children's cognitive and socioemotional development in early and middle childhood. We extend existing research in several ways: (1) by distinguishing between the number and types of family structure changes; (2) by accounting for time-varying as well as time-constant confounding; and (3) by assessing racial/ethnic and gender differences in family instability effects. Our results indicate that family instability has a causal effect on children's development, but the effect depends on the type of change, the outcome assessed, and the population examined. Generally speaking, transitions out of a two-parent family are more negative for children's development than transitions into a two-parent family. The effect of family instability is stronger for children's socioemotional development than for their cognitive achievement. For socioemotional development, transitions out of a two-parent family are more negative for white children, whereas transitions into a two-parent family are more negative for Hispanic children. These findings suggest that future research should pay more attention to the type of family structure transition and to population heterogeneity.

  6. The political instability of the Middle East and its impact on oil production and trade

    International Nuclear Information System (INIS)

    Mabro, R.

    1992-01-01

    The political instability characterizing the Middle East is reviewed against and background of the region's recent history. The presence of oil and of Israel, regarded by other countries in the region as an alien implant, are seen as the special causes of particularly unstable political conditions. The impact of unsettling political events on oil supply is then explored, revealing that the causes of political instability continue, and so do the risks and dangers of future oil supply disruptions. Decolonization does not solve the underlying problems that cause instability. Underdevelopment is an ill which persists after achievement of independence. The balance of power in the world is so uneven that large nations are still tempted to interfere in the affairs of smaller ones, causing resentment and frustration. Mature democratic systems are not widespread in most parts of the developing world, and authoritarian regimes tend to be destabilizing

  7. Beam measurements of the SPS longitudinal impedance

    CERN Document Server

    Lasheen, A

    2017-01-01

    Longitudinal instabilities are one of the main limitationsin the CERN SPS to reach the beam parameters requiredfor the High Luminosity LHC project. In preparation tothe SPS upgrade, possible remedies are studied by perform-ing macroparticle simulations using the machine impedancemodel obtained from electromagnetic simulations and mea-surements. To benchmark the impedance model, the resultsof simulations are compared with various beam measure-ments. In this study, the reactive part of the impedance wasprobed by measuring the quadrupole frequency shift withintensity, obtained from bunch length oscillations at mis-matched injection into the SPS. This method was appliedover many last years to follow up the evolution of the SPSimpedance, injecting bunches with the same bunch length.A novel approach, giving significantly more information,consists in varying the injected bunch length. The compari-son of these measurements with macroparticle simulationsallowed to test the existing model and identify some missingSPS i...

  8. Control and Protection Cooperation Strategy for Voltage Instability

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Sun, Haishun

    2012-01-01

    Most cascaded blackouts are caused by unexpected backup relay operations due to low voltage or overload state caused by post fault load restoration dynamics. If such state can be sensed and adjusted appropriately prior to those relay actions, system stability might be sustained. This paper proposed...... a control and protection cooperation strategy to prevent post fault voltage instability. The multi-agent technology is applied for the strategy implementation; the criteria based on wide area measured apparent impedances are defined to choose the control strategy, such as tap changer adjusting or load...

  9. Shoulder instability in professional football players.

    Science.gov (United States)

    Leclere, Lance E; Asnis, Peter D; Griffith, Matthew H; Granito, David; Berkson, Eric M; Gill, Thomas J

    2013-09-01

    Shoulder instability is a common problem in American football players entering the National Football League (NFL). Treatment options include nonoperative and surgical stabilization. This study evaluated how the method of treatment of pre-NFL shoulder instability affects the rate of recurrence and the time elapsed until recurrence in players on 1 NFL team. Retrospective cohort. Medical records from 1980 to 2008 for 1 NFL team were reviewed. There were 328 players included in the study who started their career on the team and remained on the team for at least 2 years (mean, 3.9 years; range, 2-14 years). The history of instability prior to entering the NFL and the method of treatment were collected. Data on the occurrence of instability while in the NFL were recorded to determine the rate and timing of recurrence. Thirty-one players (9.5%) had a history of instability prior to entering the NFL. Of the 297 players with no history of instability, 39 (13.1%) had a primary event at a mean of 18.4 ± 22.2 months (range, 0-102 months) after joining the team. In the group of players with prior instability treated with surgical stabilization, there was no statistical difference in the rate of recurrence (10.5%) or the timing to the instability episode (mean, 26 months) compared with players with no history of instability. Twelve players had shoulder instability treated nonoperatively prior to the NFL. Five of these players (41.7%) had recurrent instability at a mean of 4.4 ± 7.0 months (range, 0-16 months). The patients treated nonoperatively had a significantly higher rate of recurrence (P = 0.02) and an earlier time of recurrence (P = 0.04). The rate of contralateral instability was 25.8%, occurring at a mean of 8.6 months. Recurrent shoulder instability is more common in NFL players with a history of nonoperative treatment. Surgical stabilization appears to restore the rate and timing of instability to that of players with no prior history of instability.

  10. Relativistic Buneman instability in the laser breakout afterburner

    International Nuclear Information System (INIS)

    Albright, B. J.; Yin, L.; Bowers, Kevin J.; Hegelich, B. M.; Flippo, K. A.; Kwan, T. J. T.; Fernandez, J. C.

    2007-01-01

    A new laser-driven ion acceleration mechanism has been identified in particle-in-cell simulations of high-contrast-ratio ultraintense lasers with very thin (10 s of nm) solid targets [Yin et al., Laser and Particle Beams 24, 291 (2006); Yin et al., Phys. Plasmas 13, 072701 (2007)]. After a brief period of target normal sheath acceleration (TNSA), 'enhanced' TNSA follows. In this stage, the laser rapidly heats all the electrons in the target as the target thickness becomes comparable to the skin depth and enhanced acceleration of the ions results. Then, concomitant with the laser penetrating the target, a large accelerating longitudinal electric field is generated that co-moves with the ions. This last phase has been termed the laser 'breakout afterburner' (BOA). Earlier work suggested that the BOA was associated with the Buneman instability that efficiently converts energy from the drift of the electrons into the ions. In this Brief Communication, this conjecture is found to be consistent with particle-in-cell simulation data and the analytic dispersion relation for the relativistic Buneman instability

  11. Simulation of the interchange instability in a magnetospheric substorm site

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2006-07-01

    Full Text Available We perform modeling of the interchange instability driven by longitudinal pressure asymmetry in the region of the pressure buildup that forms in the inner magnetosphere at the substorm growth phase. The simulation refers to the dawnward side of the Harang discontinuity and times after Bz IMF turning northward. The solution for the equilibrium state indicates tailward flows associated with vortices, which is in agreement with a previous finding of Ashour-Abdalla et al. (1999, 2002. We show that in the regions of equilibrium field-aligned currents (FACs, small initial perturbations in pVγ (p is the isotropic plasma pressure, V is the unit magnetic flux tube volume, γ=5/3 the adiabatic exponent, set up as ripples inclined to azimuth, grow in time. For the background FAC of ~10-6 A/m2, the linear growth rate of the instability is ~6 min. Starting from the 12th min of evolution, the perturbations exhibit nonlinear deformations, develop undulations and front steepening. An interesting peculiarity in the distribution of the associated small-scale FACs is that they become asymmetric with time. Specifically, the downward currents are more localised, reaching densities up to 15×10-6 A/m2 at the nonlinear stage. The upward FACs are more dispersed. When large enough, these currents are likely to produce the aurora. We also run our simulation for the initial perturbations of large transverse scales in order to demonstrate that the interchange instability can be responsible for pressure and cross-tail current spatial variations of great extent.

  12. Testing the gravitational instability hypothesis?

    Science.gov (United States)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  13. Interfacial instabilities in vibrated fluids

    Science.gov (United States)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  14. The role of proprioception and neuromuscular stability in carpal instabilities.

    Science.gov (United States)

    Hagert, E; Lluch, A; Rein, S

    2016-01-01

    Carpal stability has traditionally been defined as dependent on the articular congruity of joint surfaces, the static stability maintained by intact ligaments, and the dynamic stability caused by muscle contractions resulting in a compression of joint surfaces. In the past decade, a fourth factor in carpal stability has been proposed, involving the neuromuscular and proprioceptive control of joints. The proprioception of the wrist originates from afferent signals elicited by sensory end organs (mechanoreceptors) in ligaments and joint capsules that elicit spinal reflexes for immediate joint stability, as well as higher order neuromuscular influx to the cerebellum and sensorimotor cortices for planning and executing joint control. The aim of this review is to provide an understanding of the role of proprioception and neuromuscular control in carpal instabilities by delineating the sensory innervation and the neuromuscular control of the carpus, as well as descriptions of clinical applications of proprioception in carpal instabilities. © The Author(s) 2015.

  15. PSR experience with beam losses, instabilities and space charge effects

    International Nuclear Information System (INIS)

    Macek, R.J.

    1998-01-01

    Average current from the PSR has been limited to ∼70 μA at 20 Hz by beam losses of 0.4 to 0.5 μA which arise from two principal causes, production of H 0 excited states and stored-beam scattering in the stripper foil. To reduce beam losses, an upgrade from the two-step H 0 injection to direct H - injection is underway and will be completed in 1998. Peak intensity from the PSR is limited by a strong instability that available evidence indicates is the two-stream e-p instability. New evidence for the e-p hypothesis is presented. At operating intensities, the incoherent space charge tune shift depresses both horizontal and vertical tunes past the integer without additional beam loss although some intensity-dependent emittance growth is observed. copyright 1998 American Institute of Physics

  16. Myc-dependent genome instability and lifespan in Drosophila.

    Directory of Open Access Journals (Sweden)

    Christina Greer

    Full Text Available The Myc family of transcription factors are key regulators of cell growth and proliferation that are dysregulated in a large number of human cancers. When overexpressed, Myc family proteins also cause genomic instability, a hallmark of both transformed and aging cells. Using an in vivo lacZ mutation reporter, we show that overexpression of Myc in Drosophila increases the frequency of large genome rearrangements associated with erroneous repair of DNA double-strand breaks (DSBs. In addition, we find that overexpression of Myc shortens adult lifespan and, conversely, that Myc haploinsufficiency reduces mutation load and extends lifespan. Our data provide the first evidence that Myc may act as a pro-aging factor, possibly through its ability to greatly increase genome instability.

  17. PSR experience with beam losses, instabilities and space charge effects

    International Nuclear Information System (INIS)

    Macek, Robert J.

    1998-01-01

    Average current from the PSR has been limited to ∼70 μA at 20 Hz by beam losses of 0.4 to 0.5 μA which arise from two principal causes, production of H 0 excited states and stored-beam scattering in the stripper foil. To reduce beam losses, an upgrade from the two-step H 0 injection to direct H - injection is underway and will be completed in 1998. Peak intensity from the PSR is limited by a strong instability that available evidence indicates is the two-stream e-p instability. New evidence for the e-p hypothesis is presented. At operating intensities, the incoherent space charge tune shift depresses both horizontal and vertical tunes past the integer without additional beam loss although some intensity-dependent emittance growth is observed

  18. Influence of velocity shear on the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Satyanarayana, P.; Huba, J.D.; Ossakow, S.L.

    1982-01-01

    The influence of a transverse velocity shear on the Rayleigh-Taylor instability is investigated. It is found that a sheared velocity flow can substantially reduce the growth rate of the Rayleigh-Taylor instability in short wavelength regime (i.e., kL>1 where L is the scale length of the density inhomogeneity), and causes the growth rate to maximize at kL<1.0. Applications of this result to ionospheric phenomena [equatorial spread F (ESF) and ionospheric plasma clouds] are discussed. In particular, the effect of shear could account for, at times, the 100's of km modulation observed on the bottomside of the ESF ionosphere and the km scale size wavelengths observed in barium cloud prompt striation phenomena

  19. Analysis of Vaneless Diffuser Stall Instability in a Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    Elias Sundström

    2017-11-01

    Full Text Available Numerical simulations based on the large eddy simulation approach were conducted with the aim to explore vaneless diffuser rotating stall instability in a centrifugal compressor. The effect of the impeller blade passage was included as an inlet boundary condition with sufficiently low flow angle relative to the tangent to provoke the instability and cause circulation in the diffuser core flow. Flow quantities, velocity and pressure, were extracted to accumulate statistics for calculating mean velocity and mean Reynolds stresses in the wall-to-wall direction. The paper focuses on the assessment of the complex response of the system to the velocity perturbations imposed, the resulting pressure gradient and flow curvature effects.

  20. Low-frequency instabilities of electron-hole plasmas in crossed fields

    International Nuclear Information System (INIS)

    Schneider, W.; Kirchesch, P.

    1978-01-01

    Using local point-contact probes, we observed two types of low-frequency instabilities in n-InSb at 85 K if the samples were exposed to crossed fields. One is a local density instability with threshold frequencies of f = 1 ... 20 Mc, the other a more turbulent current instability. The threshold values of U 0 and B for the onset of these instabilities and the dependence of their amplitudes on the fields have been measured. If a rectangular semiconductor slab is placed in crossed fields, regions of high electric field strength at opposite edges of the contacts are caused by the distortion of the Hall field, giving rise to the generation of electron-hole plasmas by impact ionization. These plasmas are the sources of the observed instabilities. This is especially evident in the case of the local density instability, which originates at the anode high field corner. Several possible reasons for the development of the instabilities are discussed. (orig.) [de