WorldWideScience

Sample records for longitudinal cyclic strain

  1. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  2. The Cyclic Stress-Strain Curve of Polycrystals

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Rasmussen, K. V.; Winter, A. T.

    1982-01-01

    The internal stresses implied by the Sachs model are estimated for individual PSBs at low plastic strain amplitudes and for homogeneously sheared grains at higher plastic strain amplitudes. The analysis shows that the Sachs model can account semi-quantitatively for experimentally measured cyclic...... stress-strain curves for copper. A similar approximative analysis of the Taylor model cannot account for the data. An interesting feature of the Sachs model is that, although it is assumed that the flow condition is entirely controlled by the PSBs. the predicted cyclic stress-strain curve displays...

  3. Study on elastic-plastic deformation analysis using a cyclic stress-strain curve

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi

    1983-01-01

    This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)

  4. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Rao, G.; Verma, Preeti [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Chakravartty, J.K. [Mechanical Metallurgy Group, Bhabha Atomic Research Center, Trombay 400 085, Mumbai (India); Nudurupati, Saibaba [Nuclear Fuel Complex, Hyderabad 500 062 (India); Mahobia, G.S.; Santhi Srinivas, N.C. [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Vakil, E-mail: vsingh.met@itbhu.ac.in [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-15

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10{sup −2}, 10{sup −3}, and 10{sup −4} s{sup −1}. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.

  5. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Chakravartty, J.K.; Nudurupati, Saibaba; Mahobia, G.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2015-01-01

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10 −2 , 10 −3 , and 10 −4 s −1 . Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C

  6. Low-temperature resistance of cyclically strained aluminum

    International Nuclear Information System (INIS)

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  7. Effect of cyclic plastic pre-strain on low cycle fatigue life

    International Nuclear Information System (INIS)

    Kanno, Satoshi; Nakane, Motoki; Yorikawa, Morio; Takagi, Yoshio

    2010-01-01

    In order to evaluate structural integrity of nuclear components subjected large seismic load which produce locally plastic strain, low cycle fatigue life was examined using cyclic plastic pre-strained materials of austenitic steel (SUS316, SUS316L, SUS304TP: JIS (Japanese Industrial Standards)) and ferritic steel (SFVQ1A, STS480, STPT410, SFVC2B, SS400: JIS). It was not found that cyclic plastic pre-strain up to range of 16%, 2.5 times affected on low cycle fatigue life. The validity of existing procedure of fatigue life estimation based on usage factor was confirmed when large seismic load brought nuclear materials cyclic plastic strain. (author)

  8. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    Science.gov (United States)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  9. Cyclic Elastoplastic Performance of Aluminum 7075-T6 Under Strain- and Stress-Controlled Loading

    Science.gov (United States)

    Agius, Dylan; Wallbrink, Chris; Kourousis, Kyriakos I.

    2017-12-01

    Elastoplastic investigations of aerospace aluminum are important in the development of an understanding of the possible cyclic transient effects and their contribution to the material performance under cyclic loading. Cyclic plasticity can occur in an aerospace aluminum component or structure depending on the loading conditions and the presence of external and internal discontinuities. Therefore, it is vital that the cyclic transient effects of aerospace aluminum are recognized and understood. This study investigates experimentally the cyclic elastoplastic performance of aluminum 7075-T6 loaded in symmetric strain control, and asymmetric stress and strain control. A combination of cyclic hardening and softening was noticed from high strain amplitude symmetric strain-controlled tests and at low stress amplitude asymmetric stress-controlled tests. From asymmetric strain control results, the extent of mean stress relaxation depended on the size of the strain amplitude. Additionally, saturation of the ratcheting strain (plastic shakedown) was also found to occur during asymmetric stress control tests. The experimental results were further analyzed using published microstructure research from the past two decades to provide added explanation of the micro-mechanism contribution to the cyclic transient behavior.

  10. The calculation of dissipated work, elastoplastic cyclic stress and cyclic strain in a structure

    International Nuclear Information System (INIS)

    Wang Xucheng; Xie Yihuan.

    1986-01-01

    With the development of the reactor technique, there is being an increasing interest in the calculation of elastoplastic response of a structure to its complex loading. This paper introduces a constitutive relation of a material for discribing unloading property, and uses it in an analysis of a real structure under a cyclic loading. The results, which include cyclic stress, cyclic strain and dissipated work, are meaningful in the researches of the structure behavior under complex loading and of the structural safety

  11. Simulation of cyclic stress-strain relation under non proportional loading

    International Nuclear Information System (INIS)

    Chen, X.; Zhu, Q.X.; Abel, A.

    1995-01-01

    A series of cyclic constitutive experiments have been conducted on 42 Cr Mo steel on MTS809 machine under tension-torsional loading. Thin-walled tube specimen were used. Two kinds of cruciform strain path have been investigated. The paper suggests a simple method for the calculation of stable cyclic stress and strain values based on a modified endochronic constitutive theory by redefined intrinsic time scale. (author). 6 refs., 3 figs

  12. Cyclic mechanical behavior of 316L: Uniaxial LCF and strain-controlled ratcheting tests

    International Nuclear Information System (INIS)

    Facheris, G.; Janssens, K.G.F.

    2013-01-01

    Highlights: ► Characterization of cyclic plastic deformation behavior of plate and tubular 316L. ► Strain-controlled ratcheting response between room temperature and 200 °C. ► Isotropic cyclic hardening is dependent on the yield criterion used. ► Ratcheting induced hardening mostly affects the kinematic hardening component. ► Ratcheting induced hardening is related to the mean strain and the ratcheting rate. -- Abstract: With the purpose of analyzing the fatigue behavior under loading conditions relevant for the primary cooling circuit of a light water nuclear reactor, a set of uniaxial low cycle fatigue and strain-controlled ratcheting tests (also named ‘cyclic tension tests’) has been performed at room temperature and at 200 °C on specimens manufactured from two different batches of stainless steel grade 316L. The experiments have been repeated varying strain amplitude, cyclic ratcheting rate and ratcheting direction in order to investigate the influence on the cyclic deformation behavior. In strain-controlled ratcheting tests, the stress response is found to be a superposition of two hardening mechanisms: the first one due to the zero mean strain cycling and the second one linked with the monotonic drifting of mean plastic strain. An approach is proposed to distinguish the effect of each mechanism and the influence of the test parameters on the hardening mechanisms is discussed

  13. Regulation of thrombomodulin expression and release in human aortic endothelial cells by cyclic strain.

    Directory of Open Access Journals (Sweden)

    Fiona A Martin

    Full Text Available Thrombomodulin (TM, an integral membrane glycoprotein expressed on the lumenal surface of vascular endothelial cells, promotes anti-coagulant and anti-inflammatory properties. Release of functional TM from the endothelium surface into plasma has also been reported. Much is still unknown however about how endothelial TM is regulated by physiologic hemodynamic forces (and particularly cyclic strain intrinsic to endothelial-mediated vascular homeostasis.This study employed human aortic endothelial cells (HAECs to investigate the effects of equibiaxial cyclic strain (7.5%, 60 cycles/min, 24 hrs, and to a lesser extent, laminar shear stress (10 dynes/cm2, 24 hrs, on TM expression and release. Time-, dose- and frequency-dependency studies were performed.Our initial studies demonstrated that cyclic strain strongly downregulated TM expression in a p38- and receptor tyrosine kinase-dependent manner. This was in contrast to the upregulatory effect of shear stress. Moreover, both forces significantly upregulated TM release over a 48 hr period. With continuing focus on the cyclic strain-induced TM release, we noted both dose (0-7.5% and frequency (0.5-2.0 Hz dependency, with no attenuation of strain-induced TM release observed following inhibition of MAP kinases (p38, ERK-1/2, receptor tyrosine kinase, or eNOS. The concerted impact of cyclic strain and inflammatory mediators on TM release from HAECs was also investigated. In this respect, both TNFα (100 ng/ml and ox-LDL (10-50 µg/ml appeared to potentiate strain-induced TM release. Finally, inhibition of neither MMPs (GM6001 nor rhomboids (3,4-dichloroisocoumarin had any effect on strain-induced TM release. However, significantly elevated levels (2.1 fold of TM were observed in isolated microparticle fractions following 7.5% strain for 24 hrs.A preliminary in vitro investigation into the effects of cyclic strain on TM in HAECs is presented. Physiologic cyclic strain was observed to downregulate TM

  14. Plastic strain accumulation during asymmetric cyclic loading of Zircaloy-2 at room temperature

    International Nuclear Information System (INIS)

    Rajpurohit, R.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2016-01-01

    Asymmetric cyclic loading leads to accumulation of cyclic plastic strain and reduces the fatigue life of components. This phenomenon is known as ratcheting fatigue. Zircaloy-2 is a important structural material in nuclear reactors and used as pressure tubes and fuel cladding in pressurized light and heavy water nuclear reactors. Due to power fluctuations, these components experience plastic strain cycles in the reactor and their life is reduced due to strain cycles. Power fluctuations also cause asymmetric straining of the material and leads to accumulation of plastic strain. The present investigation deals with the effect of the magnitude of mean stress, stress amplitude and stress rate on hardening/softening behavior of Zircaloy-2 under asymmetric cyclic loading, at room temperature. It was observed that plastic strain accumulation increased with mean stress and stress amplitude; however, it decreased with stress rate. (author)

  15. Cyclic behavior of Ta at low temperatures under low stresses and strain rates

    International Nuclear Information System (INIS)

    Stickler, C.; Knabl, W.; Stickler, R.; Weiss, B.

    2001-01-01

    The cyclic stress-strain response of recrystallized technically pure Ta was investigated in the stress range well below the technical flow stress, for temperatures between 173 K and 423 K, at loading rates between 0.042 Mpa/s and 4.2 Mpa/s with resulting plastic strains between -5 up to 1X10 -2 . Cyclic hardening-softening curves were recorded in multiple step tests. Cyclic stress strain curves exhibit straight portions associated with microplastic, transition range and macroplastic deformation mechanisms. The microstructure of the deformed specimens was characterized by SEM and TEM techniques which revealed typical dislocation arrangements related to plastic strain amplitudes and test temperatures. A mechanism of the microstrain deformation of Ta is proposed. (author)

  16. Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    Directory of Open Access Journals (Sweden)

    Kulesa Anna

    2016-03-01

    Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

  17. Strain gradient effects on cyclic plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  18. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  19. Micromechanical modelling of the cyclic stress-strain behaviour of nickel polycrystals

    International Nuclear Information System (INIS)

    Steckmeyer, A.; Sauzay, M.; Weidner, A.; Hieckmann, E.

    2012-01-01

    A crystalline elasto-plasticity model is proposed to describe the cyclic behaviour of face-centred cubic crystals. It is based on many experimental observations correlating the observed dislocation structures with the orientations of corresponding crystals. The model distinguishes between two families of crystals. The first family gathers crystals for which the tension-compression loading axis is located in the centre of the standard stereo-graphic triangle. These crystals, in which bundle and/or slip band dislocation structures are usually observed, are subjected to single slip deformation. The second family gathers crystals in which labyrinths or wall dislocation structures develop. These crystals are subjected to multiple slip deformation. Crystalline plasticity parameters are adjusted using only the single crystal cyclic stress strain curves measured for one orientation of each of the two families. The relevance of the model is evaluated through finite elements calculations of the uniaxial cyclic deformation of texture-free nickel polycrystals at room temperature. The macroscopic predictions are in reasonable agreement with experimental data concerning both the cyclic stress-strain curve and the hysteresis loops provided either large grain sizes or intermediate to high plastic strains are considered. By construction, the modelling is unable to predict grain size effect observed at low plastic strain. The distributions of the mean grain plastic strains become narrower as the macroscopic plastic strain amplitude increases, which appears consistent with the large scattering in high-cycle fatigue lifetimes usually observed. On the contrary, the distributions of mean grain axial stresses get broader, in agreement with neutron and X-ray diffraction measurement values published in the literature. The influence of the material parameters is then discussed. Finally, the cumulative probability curves of the number of cycles to fatigue microcrack nucleation are deduced

  20. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Horiuchi, Rie; Akimoto, Takayuki; Hong, Zhang; Ushida, Takashi

    2012-01-01

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: ► The expression of Nanog, which is an essential regulator of “stemness” was reduced during embryonic stem (ES) cell differentiation. ► Cyclic mechanical strain attenuated the reduction of Nanog expression. ► Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  1. Effect of cyclic pre-strain on low cycle fatigue life at middle high temperature

    International Nuclear Information System (INIS)

    Nakane, Motoki; Kanno, Satoshi; Takagi, Yoshio

    2011-01-01

    This study examined the effect of cyclic plastic pre-strain on low cycle fatigue life at middle high temperature to evaluate the structural integrity of the nuclear components introduced plastic strain to the local portion by the large seismic load. The materials selected in this study were austenitic steel (SUS316NG) and ferritic steel (SFVQ1A, STS410: JIS (Japanese Industrial Standards). The low cycle fatigue tests at RT and middle high temperature (300 degrees C) were carried out using cyclic plastic pre-strained materials. The results obtained here show that the damage by the cyclic plastic pre-strain, which is equivalent to usage factor UF=0.2, does not affect the fatigue lives of the materials. In addition, it is confirmed that the estimation based on the usage factor UF can also be useful for the life prediction at 300 degrees C as well as RT. (author)

  2. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Rie [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Hong, Zhang [Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Ushida, Takashi [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  3. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  4. Design and Validation of a Cyclic Strain Bioreactor to Condition Spatially-Selective Scaffolds in Dual Strain Regimes

    Directory of Open Access Journals (Sweden)

    J. Matthew Goodhart

    2014-03-01

    Full Text Available The objective of this study was to design and validate a unique bioreactor design for applying spatially selective, linear, cyclic strain to degradable and non-degradable polymeric fabric scaffolds. This system uses a novel three-clamp design to apply cyclic strain via a computer controlled linear actuator to a specified zone of a scaffold while isolating the remainder of the scaffold from strain. Image analysis of polyethylene terephthalate (PET woven scaffolds subjected to a 3% mechanical stretch demonstrated that the stretched portion of the scaffold experienced 2.97% ± 0.13% strain (mean ± standard deviation while the unstretched portion experienced 0.02% ± 0.18% strain. NIH-3T3 fibroblast cells were cultured on the PET scaffolds and half of each scaffold was stretched 5% at 0.5 Hz for one hour per day for 14 days in the bioreactor. Cells were checked for viability and proliferation at the end of the 14 day period and levels of glycosaminoglycan (GAG and collagen (hydroxyproline were measured as indicators of extracellular matrix production. Scaffolds in the bioreactor showed a seven-fold increase in cell number over scaffolds cultured statically in tissue culture plastic petri dishes (control. Bioreactor scaffolds showed a lower concentration of GAG deposition per cell as compared to the control scaffolds largely due to the great increase in cell number. A 75% increase in hydroxyproline concentration per cell was seen in the bioreactor stretched scaffolds as compared to the control scaffolds. Surprisingly, little differences were experienced between the stretched and unstretched portions of the scaffolds for this study. This was largely attributed to the conditioned and shared media effect. Results indicate that the bioreactor system is capable of applying spatially-selective, linear, cyclic strain to cells growing on polymeric fabric scaffolds and evaluating the cellular and matrix responses to the applied strains.

  5. The mechanical behaviour of NBR/FEF under compressive cyclic stress strain

    Science.gov (United States)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-06-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  6. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, W E [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Eraki, M H I [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Lawindy, A M Y [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); Hassan, H H [Faculty of Science, Physics Department, Cairo University, Giza (Egypt)

    2006-06-07

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  7. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    International Nuclear Information System (INIS)

    Mahmoud, W E; El-Eraki, M H I; El-Lawindy, A M Y; Hassan, H H

    2006-01-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue

  8. Effect of dynamic strain aging on cyclic stress response and deformation behavior of Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Mahobia, G.S.; Santhi Srinivasa, N.C.; Singh, Vakil; Chakravartty, J.K.; Nudurupatic, Saibaba

    2016-01-01

    The effect of strain rate and temperature was studied on cyclic stress response and deformation behavior of annealed Zircaloy-2. Dynamic strain aging was exhibited under some test conditions. The cyclic stress response was found to be dependent on temperature and strain rate. At 300 °C, with decrease in strain rate, there was decrease in the rate as well as the degree of cyclic hardening. However, at 400°C, there was opposite trend and with decrease in strain rate both the rate as well as the degree of hardening increased. The deformation substructure showed dislocation bands, dislocation vein structure, PSB wall structure at both the temperatures. Irrespective of the temperature, there was dislocation loop structure, known as corduroy structure, at both the test temperatures. Based on the dislocation structure, the initial linear hardening is attributed to development of veins and PSB wall structure and the secondary hardening to the Corduroy structure. (author)

  9. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain.

    Directory of Open Access Journals (Sweden)

    Uta Faust

    Full Text Available Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues.

  10. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  11. Cafestol Inhibits Cyclic-Strain-Induced Interleukin-8, Intercellular Adhesion Molecule-1, and Monocyte Chemoattractant Protein-1 Production in Vascular Endothelial Cells

    Science.gov (United States)

    Hao, Wen-Rui; Sung, Li-Chin; Chen, Chun-Chao; Chen, Jin-Jer

    2018-01-01

    Moderate coffee consumption is inversely associated with cardiovascular disease mortality; however, mechanisms underlying this causal effect remain unclear. Cafestol, a diterpene found in coffee, has various properties, including an anti-inflammatory property. This study investigated the effect of cafestol on cyclic-strain-induced inflammatory molecule secretion in vascular endothelial cells. Cells were cultured under static or cyclic strain conditions, and the secretion of inflammatory molecules was determined using enzyme-linked immunosorbent assay. The effects of cafestol on mitogen-activated protein kinases (MAPK), heme oxygenase-1 (HO-1), and sirtuin 1 (Sirt1) signaling pathways were examined using Western blotting and specific inhibitors. Cafestol attenuated cyclic-strain-stimulated intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 8 secretion. Cafestol inhibited the cyclic-strain-induced phosphorylation of extracellular signal-regulated kinase and p38 MAPK. By contrast, cafestol upregulated cyclic-strain-induced HO-1 and Sirt1 expression. The addition of zinc protoporphyrin IX, sirtinol, or Sirt1 silencing (transfected with Sirt1 siRNA) significantly attenuated cafestol-mediated modulatory effects on cyclic-strain-stimulated ICAM-1, MCP-1, and IL-8 secretion. This is the first study to report that cafestol inhibited cyclic-strain-induced inflammatory molecule secretion, possibly through the activation of HO-1 and Sirt1 in endothelial cells. The results provide valuable insights into molecular pathways that may contribute to the effects of cafestol. PMID:29854096

  12. CYCLIC PLASTIC BEHAVIOUR OF UFG COPPER UNDER CONTROLLED STRESS AND STRAIN LOADING

    Directory of Open Access Journals (Sweden)

    Lucie Navrátilová

    2012-01-01

    Full Text Available The influence of stress- and strain-controlled loading on microstructure and cyclic plastic behaviour of ultrafine-grained copper prepared by equal channel angular pressing was examined. The stability of microstructure is a characteristic feature for stress-controlled test whereas grain coarsening and development of bimodal structure was observed after plastic strain-controlled tests. An attempt to explain the observed behaviour was made.

  13. Cyclic stress-strain behaviour under thermomechanical fatigue conditions - Modeling by means of an enhanced multi-component model

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H J [Institut fuer Werkstofftechnik, Universitaet Siegen, D-57068 Siegen (Germany); Bauer, V, E-mail: hans-juergen.christ@uni-siegen.d [Wieland Werke AG, Graf-Arco Str. 36, D-89072 Ulm (Germany)

    2010-07-01

    The cyclic stress-strain behaviour of metals and alloys in cyclic saturation can reasonably be described by means of simple multi-component models, such as the model based on a parallel arrangement of elastic-perfectly plastic elements, which was originally proposed by Masing already in 1923. This model concept was applied to thermomechanical fatigue loading of two metallic engineering materials which were found to be rather oppositional with respect to cyclic plastic deformation. One material is an austenitic stainless steel of type AISI304L which shows dynamic strain aging (DSA) and serves as an example for a rather ductile alloy. A dislocation arrangement was found after TMF testing deviating characteristically from the corresponding isothermal microstructures. The second material is a third-generation near-gamma TiAl alloy which is characterized by a very pronounced ductile-to-brittle transition (DBT) within the temperature range of TMF cycling. Isothermal fatigue testing at temperatures below the DBT temperature leads to cyclic hardening, while cyclic softening was found to occur above DBT. The combined effect under TMF leads to a continuously developing mean stress. The experimental observations regarding isothermal and non-isothermal stress-strain behaviour and the correlation to the underlying microstructural processes was used to further develop the TMF multi-composite model in order to accurately predict the TMF stress-strain response by taking the alloy-specific features into account.

  14. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG

    International Nuclear Information System (INIS)

    Ning, Xiaoguang; Murayama, Hideaki; Kageyama, Kazuro; Wada, Daichi; Kanai, Makoto; Ohsawa, Isamu; Igawa, Hirotaka

    2014-01-01

    In this study, the dynamic strain distribution measurement of an adhesive-bonded single-lap joint was carried out in a cyclic load test using a fiber Bragg grating (FBG) sensor embedded into the adhesive/adherend interface along the overlap length direction. Unidirectional carbon fiber reinforced plastic (CFRP) substrates were bonded by epoxy resin to form the joint, and the FBG sensor was embedded into the surface of one substrate during its curing. The measurement was carried out with a sampling rate of 5 Hz by the sensing system, based on the optical frequency domain reflectometry (OFDR) throughout the test. A finite element analysis (FEA) was performed for the measurement evaluation using a three-dimensional model, which included the embedded FBG sensor. The crack detection method, based on the longitudinal strain distribution measurement, was introduced and performed to estimate the cracks that occurred at the adhesive/adherend interface in the test. (paper)

  15. Low-cycle fatigue and cyclic deformation behavior of Type 16-8-2 weld metal at elevated temperature

    International Nuclear Information System (INIS)

    Raske, D.T.

    1977-01-01

    The low-cycle fatigue behavior of Type 16-8-2 stainless steel ASA weld metal at 593 0 C was investigated, and the results are compared with existing data for Type 316 stainless steel base metal. Tests were conducted under axial strain control and at a constant axial strain rate of 4 x 10 -3 s -1 for continuous cyclic loadings as well as hold times at peak tensile strain. Uniform-gauge specimens were machined longitudinally from the surface and root areas of 25.4-mm-thick welded plate and tested in the as-welded condition. Results indicate that the low-cycle fatigue resistance of this weld metal is somewhat better than that of the base metal for continuous-cycling conditions and significantly better for tension hold-time tests. This is attributed to the fine duplex delta ferrite-austenite microstructure in the weld metal. The initial monotonic tensile properties and the cyclic stress-strain behavior of this material were also determined. Because the cyclic changes in mechanical properties are strain-history dependent, a unique cyclic stress-strain curve does not exist for this material

  16. Large strain cyclic behavior of metastable austenic stainless steel

    International Nuclear Information System (INIS)

    Geijselaers, H.J.M.; Hilkhuijsen, P.; Bor, T.C.; Boogaard, A.H. van den

    2015-01-01

    Metastable austenitic stainless steel will transform to martensite when subjected to mechanical working. In this research an austenitic stainless steel has been subjected to large amplitude strain paths containing a strain reversal. During the tests, apart from the stress and the strain also magnetic induction was measured. From the in situ magnetic induction measurements an estimate of the stress partitioning among the phases is determined. When the strain path reversal is applied at low strains, a classical Bauschinger effect is observed. When the strain reversal is applied at higher strains, a higher flow stress is measured after the reversal compared to the flow stress before reversal. Also a stagnation of the transformation is observed, meaning that a higher strain as well as a higher stress than before the strain path change is required to restart the transformation after reversal. The observed behavior can be explained by a model in which for the martensitic transformation a stress induced transformation model is used. The constitutive behavior of both the austenite phase and the martensite is described by a Chaboche model to account for the Bauschinger effect. Mean-field homogenization of the material behavior of the individual phases is employed to obtain a constitutive behavior of the two-phase composite. The overall applied stress, the stress in the martensite phase and the observed transformation behavior during cyclic shear are very well reproduced by the model simulations

  17. Large strain cyclic behavior of metastable austenic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Geijselaers, H.J.M., E-mail: h.j.m.geijselaers@utwente.nl; Hilkhuijsen, P.; Bor, T.C.; Boogaard, A.H. van den

    2015-04-17

    Metastable austenitic stainless steel will transform to martensite when subjected to mechanical working. In this research an austenitic stainless steel has been subjected to large amplitude strain paths containing a strain reversal. During the tests, apart from the stress and the strain also magnetic induction was measured. From the in situ magnetic induction measurements an estimate of the stress partitioning among the phases is determined. When the strain path reversal is applied at low strains, a classical Bauschinger effect is observed. When the strain reversal is applied at higher strains, a higher flow stress is measured after the reversal compared to the flow stress before reversal. Also a stagnation of the transformation is observed, meaning that a higher strain as well as a higher stress than before the strain path change is required to restart the transformation after reversal. The observed behavior can be explained by a model in which for the martensitic transformation a stress induced transformation model is used. The constitutive behavior of both the austenite phase and the martensite is described by a Chaboche model to account for the Bauschinger effect. Mean-field homogenization of the material behavior of the individual phases is employed to obtain a constitutive behavior of the two-phase composite. The overall applied stress, the stress in the martensite phase and the observed transformation behavior during cyclic shear are very well reproduced by the model simulations.

  18. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, Jay C. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: jay.hanan@okstate.edu; Mahesh, Sivasambu [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: ersan@caltech.edu; Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swift, Geoffrey A. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Brown, Donald W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al{sub 2}O{sub 3}-fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture.

  19. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    International Nuclear Information System (INIS)

    Hanan, Jay C.; Mahesh, Sivasambu; Uestuendag, Ersan; Beyerlein, Irene J.; Swift, Geoffrey A.; Clausen, Bjorn; Brown, Donald W.; Bourke, Mark A.M.

    2005-01-01

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al 2 O 3 -fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture

  20. Accelerated technique for plotting of cyclic strain diagrams at different temperatures

    International Nuclear Information System (INIS)

    Varyanitsa, V.Yu.; Egorov, V.I.; Sobolev, N.D.

    1982-01-01

    A method for plotting curves of strain by testing one specimen at different temperatures levels is proposed. It is shown that under considered conditions of the test of prehistory of the temperature interaction does not effect the process of cyclic deformation. It confirms a possibility of steel tests at one specimen at different regimes [ru

  1. Accelerated technique for plotting of cyclic strain diagrams at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Varyanitsa, V Yu; Egorov, V I; Sobolev, N D [Moskovskij Inzhenerno-Fizicheskij Inst. (USSR)

    1982-01-01

    A method for plotting curves of strain by testing one specimen at different temperatures levels is proposed. It is shown that under considered conditions of the test of prehistory of the temperature interaction does not effect the process of cyclic deformation. It confirms a possibility of steel tests at one specimen at different regimes.

  2. Cyclic strength of metals at impact strain rates

    International Nuclear Information System (INIS)

    Eleiche, A.M.; El-Kady, M.M.

    1987-01-01

    Rigorous understanding of the effects of impact loading on the mechanical response of materials and structures is essential for the optimum design and safe operation of many sophisticated engineering systems and components, such as industrial high-energy-rate fabrication processes and nuclear reactor containments. Extensive data are available at present on the dynamic behaviour of most metals in uniaxial tension, compression, torsion and pure shear, when they are subjected to diversified loading conditions, ranging from those characterised by monotonic constant rates, to those involving forward or reverse strain-rate jumps of several orders of magnitude. What appears to be missing in the current material data banks, however, is detailed information concerning the mechanical response under cyclic loading at impact strain rates. Such data are needed for engineering design purposes on one hand, and for the formulation of proper constitutive equations and the accurate modeling of deformation processes on the other. In the present paper, typical stress-strain characteristics at ambient temperature for copper, mild steel and titanium are first exhibited. The application of the unified Bodner-Partom constitutive theory to these data is then presented and discussed. (orig./GL)

  3. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration

    International Nuclear Information System (INIS)

    Sweeney, Nicholas von Offenberg; Cummins, Philip M.; Birney, Yvonne A.; Redmond, Eileen M.; Cahill, Paul A.

    2004-01-01

    Matrix metalloproteinases (MMPs) play a vital role in vasculature response to hemodynamic stimuli via the degradation of extracellular matrix substrates. In this study, we investigated the putative role of cyclic strain-induced endothelial MMP-2 (and MMP-9) expression and release in modulating bovine aortic smooth muscle cell (BASMC) migration in vitro. Equibiaxial cyclic strain of bovine aortic endothelial cells (BAECs) leads to elevation in cellular MMP-2 (and MMP-9) expression, activity, and secretion into conditioned media, events which were time- and force-dependent. Subsequent incubation of BASMCs with conditioned media from chronically strained BAECs (5%, 24 h) significantly reduces BASMC migration (38 ± 6%), an inhibitory effect which could be completely reversed by targeted siRNA 'knock-down' of MMP-2 (but not MMP-9) expression and activity in BAECs. Moreover, inhibition of strain-mediated MMP-2 expression in BAECs by protein tyrosine kinase (PTK) blockade with genistein (50 μM) was also found to completely reverse this inhibitory effect on BASMC migration. Finally, direct supplementation of recombinant MMP-2 into the BASMC migration assay was found to have no significant effect on migration. However, the effect on BASMC migration of MMP-2 siRNA transfection in BAECs could be reversed by supplementation of recombinant MMP-2 into BAEC media prior to (and for the duration of) strain. These findings reveal a potentially novel role for strain-induced endothelial MMP-2 in regulating vascular SMC migration

  4. On the cyclic stress-strain behavior and low cycle fatigue of aerospace materials

    Science.gov (United States)

    Burbach, J.

    1972-01-01

    The elastic-plastic deformation behavior under cyclic stress of a number of different engineering materials was experimentally investigated with the aid of high-precision methods of measuring, some of which had been newly developed. Experiments made with a variety of steels, the titanium alloy Ti-A16-V4, a cobalt (tungsten) alloy, the high-temperature material Nimonic 90 and Dural (A1-Cu) are reported. The theory given in an attempt to explain these experiments is aimed at finding general formulas for the cyclic stress-strain behavior materials.

  5. Isochronous relaxation curves for type 304 stainless steel after monotonic and cyclic strain

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1978-01-01

    Relaxation tests to 100 hr were performed on type 304 stainless steel in the temperature range 480 to 650 0 C and were used to develop isochronous relaxation curves. Behavior after monotonic and cyclic strain was compared. Relaxation differed only slightly as a consequence of the type of previous strain, provided that plastic flow preceded the relaxation period. We observed that the short-time relaxation behavior did not manifest strong heat-to-heat variation in creep strength

  6. Buckling induced by cyclic straining: Analysis of simple models

    International Nuclear Information System (INIS)

    Devos, J.; Gontier, C.; Hoffmann, A.

    1983-01-01

    Progressive buckling of a structure may occur under imposed loads below the critical value in cases where progressive distortion due to cyclic straining is possible. This interaction between ratchetting and buckling is usually not taken into account in design rules, such as the ASME rules. This paper presents the complete analysis of two simple cases and gives rules established on this basis. The first model is a modified version of SHANLEY's two bars; it is submitted to a constant axial compressive force F and a variable thermal stress Q. It simulates a compressed clamped-clamped beam subjected to a variable through-thickness thermal gradient. The second model is a refined version of the first taking into account strain-hardening of the deformable sections. One finds that progressive buckling is possible only if the applied force F is greater than SHANLEY's critical load and tangent moduli of the moment-curvature law, respectively. (orig./GL)

  7. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo, E-mail: cpennisi@hst.aau.dk

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  8. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  9. Strain-hardening behavior and microstructure development in polycrystalline as-cast Mg-Zn-Y alloys with LPSO phase subjected to cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Kazuma [Department of Materials Science and Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Mayama, Tsuyoshi, E-mail: mayama@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Yamasaki, Michiaki [School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, Qld 4072 (Australia); Magnesium Research Center/Department of Materials Science and Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Kawamura, Yoshihito [Magnesium Research Center/Department of Materials Science and Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan)

    2016-08-30

    The strain-hardening behavior and microstructural development of polycrystalline as-cast Mg-Zn-Y alloys with various volume fractions of the long-period stacking ordered (LPSO) phase subjected to cyclic loading were experimentally evaluated. For all alloys, cyclic loading tests with a constant strain amplitude of 0.5% for up to 100 cycles showed asymmetric cyclic hardening behavior. That is, the absolute value of the compressive peak stress significantly increased during cyclic loading while the tensile peak stress slightly decreased. With increasing volume fraction of the LPSO phase, the stress amplitude significantly increased. Cyclic loading tests after compressive preloading up to 200 or 250 MPa resulted in a significant increase in the stress amplitude, while a number of kink bands developed during preloading. For the cyclic hardening behavior, the contribution of the increase in kinematic hardening was significant in the alloys with a higher volume fraction of the LPSO phase. Transmission electron microscopy observation of the cyclically deformed Mg{sub 85}Zn{sub 6}Y{sub 9} alloy indicated the formation of a deformation-induced band, where the crystal structure was transformed from 18R-LPSO to hcp-Mg with the exclusion of solute elements.

  10. Differences in the cyclic deformation behaviour of quenched and tempered steel 42 CrMo 4 (AISI 4140) due to stress- and strain-control

    International Nuclear Information System (INIS)

    Schulze, V.; Lang, K.-H.; Voehringer, O.; Macherauch, E.

    1998-01-01

    Cyclic stress-strain-curves and Manson-Coffin-plots of quenched and tempered steel 42 CrMo 4 (AISI 4140) strongly depend on whether they are determined under stress- or total-strain-control. At total-strain-controlled experiments, this is caused on the one hand by comparatively high initial stress-amplitudes which lead to distinctive cyclic work softening. On the other hand, the occuring differences in the evolution of inhomogeneous deformation patterns at both types of loading, which can be recorded by means of photoelasticity and microscopy, lead to differently distributed plastic deformations and to different integral values of plastic strain. (orig.)

  11. Evaluation of combined hardening parameters for type 304LN stainless steel under strain-controlled cyclic loading

    International Nuclear Information System (INIS)

    Kumar, Abhishek; Vishnuvardhan, S.; Raghava, G.

    2016-01-01

    Low cycle fatigue (LCF) is the primary degradation mechanism affecting coolant piping of pressurized water reactor (PWR) caused by combination of pressure and transient mechanical or thermal loads. In the case of LCF, stresses are high enough for plastic deformation to occur and the fatigue life is correlated with the cyclic plastic strain. Modelling cyclic plastic deformation of a material requires hardening parameters, which have to be obtained from LCF test results. It is customary in low cycle fatigue tests that the strain ranges are kept constant and the stresses are allowed to vary which typically leads to a hysteresis loop that consists of linear and nonlinear parts. In this paper, numerical studies on mechanical behaviour of Type 304LN stainless steel under fully reversed strain-controlled cyclic loading have been carried out. A linear combination of the two hardening types, isotropic and kinematic, governed by a scalar parameter, β (0 ≤β ≤ 1) is used. A value of β=1 indicates a pure isotropic hardening while a value of β=0 indicates pure kinematic hardening. The details of the combined isotropic-kinematic hardening model are also presented. Constitutive relations for the classical von Mises theory along with a bilinear hardening theory have been used. The model is implemented in finite element software ABAQUS using a user subroutine written in FORTRAN, UMAT. An iterative method is adopted to arrive at the model's hardening parameters and the value of β. (author)

  12. Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain

    Directory of Open Access Journals (Sweden)

    David W. Holdsworth

    2012-03-01

    Full Text Available Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1–100 Hz mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers, attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  13. Mechanical Stimulation of Adipose-Derived Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain.

    Science.gov (United States)

    Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G

    2018-01-01

    It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.

  14. Characteristic systolic waveform of left ventricular longitudinal strain rate in patients with hypertrophic cardiomyopathy.

    Science.gov (United States)

    Okada, Kazunori; Kaga, Sanae; Mikami, Taisei; Masauzi, Nobuo; Abe, Ayumu; Nakabachi, Masahiro; Yokoyama, Shinobu; Nishino, Hisao; Ichikawa, Ayako; Nishida, Mutsumi; Murai, Daisuke; Hayashi, Taichi; Shimizu, Chikara; Iwano, Hiroyuki; Yamada, Satoshi; Tsutsui, Hiroyuki

    2017-05-01

    We analyzed the waveform of systolic strain and strain-rate curves to find a characteristic left ventricular (LV) myocardial contraction pattern in patients with hypertrophic cardiomyopathy (HCM), and evaluated the utility of these parameters for the differentiation of HCM and LV hypertrophy secondary to hypertension (HT). From global strain and strain-rate curves in the longitudinal and circumferential directions, the time from mitral valve closure to the peak strains (T-LS and T-CS, respectively) and the peak systolic strain rates (T-LSSR and T-CSSR, respectively) were measured in 34 patients with HCM, 30 patients with HT, and 25 control subjects. The systolic strain-rate waveform was classified into 3 patterns ("V", "W", and "√" pattern). In the HCM group, T-LS was prolonged, but T-LSSR was shortened; consequently, T-LSSR/T-LS ratio was distinctly lower than in the HT and control groups. The "√" pattern of longitudinal strain-rate waveform was more frequently seen in the HCM group (74 %) than in the control (4 %) and HT (20 %) groups. Similar but less distinct results were obtained in the circumferential direction. To differentiate HCM from HT, the sensitivity and specificity of the T-LSSR/T-LS ratio patients with HCM, a reduced T-LSSR/T-LS ratio and a characteristic "√"-shaped waveform of LV systolic strain rate was seen, especially in the longitudinal direction. The timing and waveform analyses of systolic strain rate may be useful to distinguish between HCM and HT.

  15. CYCLIC STRAIN LOCALIZATION IN CAST NICKEL BASED SUPERALLOY INCONEL 792-5A AT ROOM TEMPERATURE

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Man, Jiří; Obrtlík, Karel; Polák, Jaroslav

    308/2005, č. 86 (2005), s. 269-274 ISSN 1429-6055. [Metody oceny struktury oraz wlasności materialów i wyrobów. Ustroń-Jaszowiec, 07.12.2005-09.12.2005] Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloy * cyclic strain localization Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    Science.gov (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  17. Cyclic deformation of NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Liu Yong; Van Humbeeck, J.; Xie Zeliang

    1999-01-01

    Recently, there is an increasing interest in applying the high damping capacity of shape memory alloys (SMAs). The purpose is to explore the feasibility of those materials for the protection of buildings and other civil constructions as a result of earthquake damages. So far, few experimental results have been reported concerning the mechanical cyclic behaviour of SMAs in their martensitic state (ferroelastic). In the present work, the experimental results on the mechanical behaviour of martensitic NiTi SMAs under tension-compression cyclic deformation up to strains of ±4% are summarized with major attention to the damping capacity, characteristic stresses and strains as a function of deformation cycles. Effect of strain rate, strain amplitude and annealing condition on the martensite damping is summarized. Explanation of the cyclic hardening and cyclic softening phenomenon is proposed based on TEM observations. (orig.)

  18. Effect of strain-induced martensitic transformation on high cycle fatigue behavior in cyclically-prestrained type 304

    International Nuclear Information System (INIS)

    Uematsu, Yoshihiko; Kakiuchi, Toshifumi; Akita, Masayuki; Nakajima, Masaki; Nakamura, Yuki; Yajima, Takumi

    2013-01-01

    The effects of the cyclic prestrain on the fatigue behavior in type 304 austenitic stainless steel were investigated. Rotating bending fatigue tests have been performed in laboratory air using the specimens subjected to ±5% cyclic prestrain at room temperature (R.T.) and -5°C. Martensitic phase volume fraction of the prestrained specimen at -5°C was 48% and larger than 3.8% at R.T. The prestrained specimens exhibited higher fatigue strengths than the as-received ones, and larger volume fraction of martensitic phase resulted in the higher fatigue limit. EBSD analysis revealed that the martensitic phases were more uniformly distributed in the austenitic matrix in the cyclically-prestrained specimens than in the monotonically-prestrained ones. Fatigue crack initiation from inclusion was observed only in the cyclically-prestrained specimens at -5°C. High volume fraction and uniform distribution of martensitic phase induced the transition of crack initiation mechanism and led to the higher fatigue limit. In type 304 stainless steel with high volume fraction of strain-induced martensitic phase, the prediction of fatigue limit based on Vickers hardness could give unconservative results. (author)

  19. On the evolution and modelling of lattice strains during the cyclic loading of TWIP steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.

    2013-01-01

    The evolution of lattice strains in fully annealed Fe–24Mn–3Al–2Si–1Ni–0.06C twinning-induced plasticity (TWIP) steel is investigated via in situ neutron diffraction during cyclic (tension–compression) loading between strain limits of ±1%. The pronounced Bauschinger effect observed upon load reversal is accounted for by a combination of the intergranular residual stresses and the intragranular sources of back stress, such as dislocation pile-ups at the intersection of stacking faults. The recently modified elasto-plastic self-consistent (EPSC) model which empirically accounts for both intergranular and intragranular back stresses has been successfully used to simulate the macroscopic stress–strain response and the evolution of the lattice strains. The EPSC model captures the experimentally observed tension–compression asymmetry as it accounts for the directionality of twinning as well as Schmid factor considerations. For the strain limits used in this study, the EPSC model also predicts that the lower flow stress on reverse shear loading reported in earlier Bauschinger-type experiments on TWIP steel is a geometrical or loading path effect

  20. A procedure to generate input data of cyclic softening and hardening for FEM analysis from constant strain amplitude fatigue tests in LCF regime

    International Nuclear Information System (INIS)

    Sarajaervi, U.; Cronvall, O.

    2007-03-01

    Fatigue is produced by cyclic application of stresses by mechanical or thermal loading. The metal subjected to fluctuating stress will fail at stresses much lower than those required to cause fracture in a single application of load. The key parameters are the range of stress variation and the number of its occurrences. Low-cycle fatigue, usually induced by mechanical and thermal loads, is distinguished from high-cycle fatigue, mainly associated with vibration or high number of small thermal fluctuations. Numerical models describing fatigue behaviour of austenitic stainless piping steels under cyclic loading and their applicability for modelling of low-cycle-fatigue are discussed in this report. In order to describe the cyclic behaviour of the material for analysis with finite element method (FEM) based analysis code ABAQUS, the test data, i.e. stress-strain curves, have to be processed. A code to process the data all through the test duration was developed within this study. A description of this code is given also in this report. Input data for ABAQUS was obtained to describe both kinematic and isotropic hardening properties. Further, by combining the result data for various strain amplitudes a mathematic expression was be created which allows defining a parameter surface for cyclic (i.e. isotropic) hardening. Input data for any strain amplitude within the range of minimum and maximum strain amplitudes of the test data can be assessed with the help of the developed 3D stress-strain surface presentation. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  1. A procedure to generate input data of cyclic softening and hardening for FEM analysis from constant strain amplitude fatigue tests in LCF regime

    Energy Technology Data Exchange (ETDEWEB)

    Sarajaervi, U.; Cronvall, O. [VTT (Finland)

    2007-03-15

    Fatigue is produced by cyclic application of stresses by mechanical or thermal loading. The metal subjected to fluctuating stress will fail at stresses much lower than those required to cause fracture in a single application of load. The key parameters are the range of stress variation and the number of its occurrences. Low-cycle fatigue, usually induced by mechanical and thermal loads, is distinguished from high-cycle fatigue, mainly associated with vibration or high number of small thermal fluctuations. Numerical models describing fatigue behaviour of austenitic stainless piping steels under cyclic loading and their applicability for modelling of low-cycle-fatigue are discussed in this report. In order to describe the cyclic behaviour of the material for analysis with finite element method (FEM) based analysis code ABAQUS, the test data, i.e. stress-strain curves, have to be processed. A code to process the data all through the test duration was developed within this study. A description of this code is given also in this report. Input data for ABAQUS was obtained to describe both kinematic and isotropic hardening properties. Further, by combining the result data for various strain amplitudes a mathematic expression was be created which allows defining a parameter surface for cyclic (i.e. isotropic) hardening. Input data for any strain amplitude within the range of minimum and maximum strain amplitudes of the test data can be assessed with the help of the developed 3D stress-strain surface presentation. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  2. Evaluation of ventricular dysfunction using semi-automatic longitudinal strain analysis of four-chamber cine MR imaging.

    Science.gov (United States)

    Kawakubo, Masateru; Nagao, Michinobu; Kumazawa, Seiji; Yamasaki, Yuzo; Chishaki, Akiko S; Nakamura, Yasuhiko; Honda, Hiroshi; Morishita, Junji

    2016-02-01

    The aim of this study was to evaluate ventricular dysfunction using the longitudinal strain analysis in 4-chamber (4CH) cine MR imaging, and to investigate the agreement between the semi-automatic and manual measurements in the analysis. Fifty-two consecutive patients with ischemic, or non-ischemic cardiomyopathy and repaired tetralogy of Fallot who underwent cardiac MR examination incorporating cine MR imaging were retrospectively enrolled. The LV and RV longitudinal strain values were obtained by semi-automatically and manually. Receiver operating characteristic (ROC) analysis was performed to determine the optimal cutoff of the minimum longitudinal strain value for the detection of patients with cardiac dysfunction. The correlations between manual and semi-automatic measurements for LV and RV walls were analyzed by Pearson coefficient analysis. ROC analysis demonstrated the optimal cut-off of the minimum longitudinal strain values (εL_min) for diagnoses the LV and RV dysfunction at a high accuracy (LV εL_min = -7.8 %: area under the curve, 0.89; sensitivity, 83 %; specificity, 91 %, RV εL_min = -15.7 %: area under the curve, 0.82; sensitivity, 92 %; specificity, 68 %). Excellent correlations between manual and semi-automatic measurements for LV and RV free wall were observed (LV, r = 0.97, p cine MR imaging can evaluate LV and RV dysfunction with simply and easy measurements. The strain analysis could have extensive application in cardiac imaging for various clinical cases.

  3. Cyclic deformation of zircaloy-4 at room temperature

    International Nuclear Information System (INIS)

    Armas, A. F; Herenu, S; Bolmaro, R; Alvarez-Armas, I

    2003-01-01

    Annealed materials hardens under low cyclic fatigue tests.However, FCC metals tested with medium strain amplitudes show an initial cyclic softening.That behaviour is related with the strong interstitial atom-dislocation interactions.For HCP materials the information is scarce.Commercial purity Zirconium and Zircaloy-4 alloys show also a pronounced cyclic softening, similar to Titanium alloys.Recently the rotation texture induced softening model has been proposed according to which the crystals are placed in a more favourable deformation orientation by prismatic slip due to the cyclic strain.The purpose of the current paper is the presentation of decisive results to discuss the causes for cyclic softening of Zircaloy-4. Low cycle fatigue tests were performed on recrystallized Zircaloy-4 samples.The cyclic behaviour shows an exponential softening at room temperature independently of the deformation range.Only at high temperature a cyclic hardening is shown at low number of cycles.Friction stresses, related with dislocation movement itself, and back stresses, related with dislocation pile-ups can be calculated from the stress-strain loops.The cyclic softening is due to diminishing friction stress while the starting hardening behaviour is due to increasing back stresses.The rotation texture induced softening model is ruled out assuming instead a model based on dislocation unlocking from interstitial oxygen solute atoms

  4. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    KAUST Repository

    Yudhanto, Arief

    2016-03-08

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact-prone automotive structures. However, basic mechanical properties and corresponding damage of IPP and GFIPP at different rates, which are of keen interest in the material development stage and numerical tool validation, have not been reported. Here, we applied monotonic and cyclic tensile loads to IPP and GFIPP at different strain rates (0.001/s, 0.01/s and 0.1/s) to study the mechanical properties, failure modes and the damage parameters. We used monotonic and cyclic tests to obtain mechanical properties and define damage parameters, respectively. We also used scanning electron microscopy (SEM) images to visualize the failure mode. We found that IPP generally exhibits brittle fracture (with relatively low failure strain of 2.69-3.74%) and viscoelastic-viscoplastic behavior. GFIPP [90]8 is generally insensitive to strain rate due to localized damage initiation mostly in the matrix phase leading to catastrophic transverse failure. In contrast, GFIPP [±45]s is sensitive to the strain rate as indicated by the change in shear modulus, shear strength and failure mode.

  5. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    Science.gov (United States)

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Thermal fatigue behavior of a SUS304 pipe under longitudinal cyclic movement of axial temperature distribution

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Ohtani, Tomomi; Takahashi, Yukio

    1996-01-01

    In a structural thermal fatigue test which imposed an oscillating axial temperature distribution on a SUS 304 pipe specimens, different crack initiation lives were observed between the inner and the outer surfaces, although the values of the von-Mises equivalent strain range calculated by FEM inelastic analysis were almost the same for both surfaces. The outer surface condition was an in-phase thermal cycle and an almost uniaxial cyclic stress (low hydrostatic stress). The inner surface condition was an out-of-phase thermal cycle and an almost equibiaxial cyclic stress (high hydrostatic stress). A uniaxial thermal fatigue test was performed under the simulated conditions of the outer and inner surfaces of the pipe specimen. The in-phase uniaxial thermal fatigue test result was in good agreement with the test result of the pipe specimen for the outer surface. The out-of-phase uniaxial thermal fatigue test which simulated the inner surface condition, showed a longer life than the in-phase uniaxial test, and thus contradicted the result of the structural model test. However, the structural model test life for the inner surface agreed well with the uniaxial experimental measurement when the strain range of the inner surface was corrected by a triaxiality factor

  7. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.

    Science.gov (United States)

    Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-03-28

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.

  8. The Prognostic Value of Left Atrial Peak Reservoir Strain in Acute Myocardial Infarction Is Dependent on Left Ventricular Longitudinal Function and Left Atrial Size

    DEFF Research Database (Denmark)

    Ersbøll, Mads; Andersen, Mads J; Valeur, Nana

    2013-01-01

    of PALS and left ventricular longitudinal strain (global longitudinal strain) in large-scale populations in regard to prognosis. METHODS AND RESULTS: We prospectively included 843 patients (mean age 62.1+/-11.8; 74% male) with acute myocardial infarction and measured global longitudinal strain, left......BACKGROUND: Peak atrial longitudinal strain (PALS) during the reservoir phase has been proposed as a measure of left atrium function in a range of cardiac conditions, with the potential for added pathophysiological insight and prognostic value. However, no studies have assessed the interrelation...

  9. Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression.

    Science.gov (United States)

    Ravichandran, Akhilandeshwari; Wen, Feng; Lim, Jing; Chong, Mark Seow Khoon; Chan, Jerry K Y; Teoh, Swee-Hin

    2018-04-01

    Cells respond to physiological mechanical stresses especially during early fetal development. Adopting a biomimetic approach, it is necessary to develop bioreactor systems to explore the effects of physiologically relevant mechanical strains and shear stresses for functional tissue growth and development. This study introduces a multimodal bioreactor system that allows application of cyclic compressive strains on premature bone grafts that are cultured under biaxial rotation (chamber rotation about 2 axes) conditions for bone tissue engineering. The bioreactor is integrated with sensors for dissolved oxygen levels and pH that allow real-time, non-invasive monitoring of the culture parameters. Mesenchymal stem cells-seeded polycaprolactone-β-tricalcium phosphate scaffolds were cultured in this bioreactor over 2 weeks in 4 different modes-static, cyclic compression, biaxial rotation, and multimodal (combination of cyclic compression and biaxial rotation). The multimodal culture resulted in 1.8-fold higher cellular proliferation in comparison with the static controls within the first week. Two weeks of culture in the multimodal bioreactor utilizing the combined effects of optimal fluid flow conditions and cyclic compression led to the upregulation of osteogenic genes alkaline phosphatase (3.2-fold), osteonectin (2.4-fold), osteocalcin (10-fold), and collagen type 1 α1 (2-fold) in comparison with static cultures. We report for the first time, the independent and combined effects of mechanical stimulation and biaxial rotation for bone tissue engineering using a bioreactor platform with non-invasive sensing modalities. The demonstrated results show leaning towards the futuristic vision of using a physiologically relevant bioreactor system for generation of autologous bone grafts for clinical implantation. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Mean strain effects on the random cyclic strain-life relations of 0Cr18Ni10Ti pipe steel

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing

    2005-01-01

    Experimental study is performed on the mean strain effects on the random cyclic strain-life relations of the new nuclear material, 0Cr18Ni10Ti pipe steel. In order to save costs of specimens and tests, an improved maximum likelihood fatigue test method is applied to manage the present strain-controlled fatigue tests. Six straining ratios, respectively, -1, -0.52, 0.22, 0.029, 0.18, and 0.48, are applied to study the effects. Total 104 specimens are fatigued. Since the material exhibits an entirely relaxation effect of mean stress under the six ratios and, in addition, there is no effectively method for the description of the mean straining effects under this case, previous Zhao's random strain-life relations are therefore applied for effective characterization of the scattering test data under the six ratios on a basis of Coffin-Manson equation.Then the effects of the ratios are analyzed respectively on the average fatigue lives, the standard deviations of the logarithms of fatigue lives, and the fatigue lives under different survival probabilities and confidences. The results reveal that the ratios greater than zero exhibit a positive effect of about 1.3 to 1.6 times under the survival probability of 0.999 and the confidence of 95%. A negative effect is exhibited for the case of the ratios less than zero. In addition, the assessment of the effects from the sense of average fatigue lives might result in a wrong conclusion for the practice of higher reliabilities. The effects can be appropriately assessed from a probabilistic sense to take into account the average lives, the scattering regularity of test data, and the size of sampling. (author)

  11. HOST liner cyclic facilities: Facility description

    Science.gov (United States)

    Schultz, D.

    1982-01-01

    A quartz lamp box, a quartz lamp annular rig, and a low pressure liner cyclic can rig planned for liner cyclic tests are described. Special test instrumentation includes an IR-TV camera system for measuring liner cold side temperatures, thin film thermocouples for measuring liner hot side temperatures, and laser and high temperature strain gages for obtaining local strain measurements. A plate temperature of 2,000 F was obtained in an initial test of an apparatus with three quartz lamps. Lamp life, however, appeared to be limited for the standard commercial quartz lamps available. The design of vitiated and nonvitiated preheaters required for the quartz lamp annular rig and the cyclic can test rigs is underway.

  12. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel

    Science.gov (United States)

    Wang, Shing-Hoa; Wu, Chia-Chang; Chen, Chih-Yuan; Yang, Jer-Ren; Chiu, Po-Kay; Fang, Jason

    2007-08-01

    A fatigue behavior analysis was performed on superaustenitic stainless steel UNS S31254 (Avesta Sheffield 254 SMO), which contains about 6wt.% molybdenum, to examine the cyclic hardening/softening trend, hysteresis loops, the degree of hardening, and fatigue life during cyclic straining in the total strain amplitude range from 0.2 to 1.5%. Independent of strain rate, hardening occurs first, followed by softening. The degree of hardening is dependent on the magnitude of strain amplitude. The cyclic stress-strain curve shows material softening. The lower slope of the degree of hardening versus the strain amplitude curve at a high strain rate is attributed to the fast development of dislocation structures and quick saturation. The ɛ martensite formation, either in band or sheath form, depending on the strain rate, leads to secondary hardening at the high strain amplitude of 1.5%.

  13. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts.

    Science.gov (United States)

    Zhang, Yang; Lin, Zhe; Foolen, Jasper; Schoen, Ingmar; Santoro, Alberto; Zenobi-Wong, Marcy; Vogel, Viola

    2014-11-01

    Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis. Copyright © 2014. Published by Elsevier B.V.

  14. Micromechanics of soil responses in cyclic simple shear tests

    Directory of Open Access Journals (Sweden)

    Cui Liang

    2017-01-01

    Full Text Available Offshore wind turbine (OWT foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.

  15. Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations.

    Science.gov (United States)

    Mukherjee, A K

    2007-09-01

    Crude cyclic lipopeptide (CLP) biosurfactants from two Bacillus subtilis strains (DM-03 and DM-04) were studied for their compatibility and stability with some locally available commercial laundry detergents. CLP biosurfactants from both B. subtilis strains were stable over the pH range of 7.0-12.0, and heating them at 80 degrees C for 60 min did not result in any loss of their surface-active property. Crude CLP biosurfactants showed good emulsion formation capability with vegetable oils, and demonstrated excellent compatibility and stability with all the tested laundry detergents. CLP biosurfactants from B. subtilis strains act additively with other components of the detergents to further improve the wash quality of detergents. The thermal resistance and extreme alkaline pH stability of B. subtilis CLP biosurfactants favour their inclusion in laundry detergent formulations. This study has great significance because it is already known that microbial biosurfactants are considered safer alternative to chemical or synthetic surfactants owing to lower toxicity, ease of biodegradability and low ecological impact. The present study provides further evidence that CLP biosurfactants from B. subtilis strains can be employed in laundry detergents.

  16. Random cyclic stress-strain responses of a stainless steel pipe-weld metal. II. A modeling

    International Nuclear Information System (INIS)

    Zhao, Y.X.; Wang, J.N.

    2000-01-01

    For pt.I see ibid., vol.199, p.303-14, 2000. This paper pays special attention to an issue that there is a significant scatter of the stress-strain responses of a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. Efforts are made to reveal the random fatigue damage character by fracture surface observations and to model the random responses by introducing probability-based stress-strain curves of Ramberg-Osgood relation and its modified form. Results reveal that the fatigue damage is subjected to, 3-D interacting and involved microcracks. The three stages, namely microstructural short cracks (MSC), physical short cracks (PSC) and long cracks (LC) subdivided by Miller and de los Rios, can give a good characterization of the damage process. Both micro- and macro-behaviour of the material have the character of three stages. The 3-D effects are strong in the MSC stage, tend to a gradual decrease in the PSC stage, and then show saturation after going to the LC stage. Intrinsic causes of the random behaviour are the difference and evolution of the microstructural conditions ahead of the dominant crack tips. The 'effectively short fatigue crack criterion' introduced by Zhao et al. in observing the material surface short crack behaviour could facilitate an understanding of the mechanism of interaction and evolution. Based on the previous obtained appropriate assumed distribution, normal model, for the cyclic stress amplitude, the probability-based curves are approximated by the mean value and standard deviation cyclic stress-strain curves. Then, fatigue analysis at arbitrarily given reliability can be conveniently made according to the normal distribution function. To estimate these curves, a maximum likelihood method is developed. The analysis reveals that the curves could give a good modeling of the random responses of material. (orig.)

  17. Cyclic nucleotides and radioresistnace

    International Nuclear Information System (INIS)

    Kulinskij, V.I.; Mikheeva, G.A.; Zel'manovich, B.M.

    1982-01-01

    The addition of glucose to meat-peptone broth does not change the radiosensitizing effect (RSE) of cAMP at the logarithmic phase (LP) and the radioprotective effect (RPE) at the stationary phase (SP), but sensitization, characteristic of cGMP, disappears in SP and turns into RPE in LP. Introduction of glucose into the broth for 20 min eliminates all the effects of both cyclic nucleotides in the cya + strain while cya - mutant exhibits RSE. RSE of both cyclic nucleotides is only manifested on minimal media. These data brought confirmation of the dependence of the influence of cyclic media. These data brought confirmation of the dependence of the influence of cyclic nucleotides on radioresistance upon the metabolic status of the cell [ru

  18. Precipitation under cyclic strain in solution-treated Al4wt%Cu I: mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, Adam M [Los Alamos National Laboratory; Laird, Campbell [UNIV OF PENNSYLVANIA

    2008-01-01

    Solution-treated AL-4wt%Cu was strain-cycled at ambient temperature and above, and the precipitation and deformation behaviors investigated by TEM. Anomalously rapid growth of precipitates appears to have been facilitated by a vacancy super-saturation generated by cyclic strain and the presence of a continually refreshed dislocation density to provide heterogeneous nucleation sites. Texture effects as characterized by Orientation Imaging Microscopy appear to be responsible for latent hardening in specimens tested at room temperature, with increasing temperatures leading to a gradual hardening throughout life due to precipitation. Specimens exhibiting rapid precipitation hardening appear to show a greater effect of texture due to the increased stress required to cut precipitates in specimens machined from rolled plate at an angle corresponding to a lower average Schmid factor. The accelerated formation of grain boundary precipitates appears to be partially responsible for rapid inter-granular fatigue failure at elevated temperatures, producing fatigue striations and ductile dimples coexistent on the fracture surface.

  19. INFLUENCE OF INTERMITTENT CYCLIC LOADING ON REINFORCED CONCRETE RESISTANCE MODEL

    Directory of Open Access Journals (Sweden)

    Vasyl Karpiuk

    2017-01-01

    Full Text Available This article describes the study of reinforced concrete span bending structures under conditions of high-level cyclic loading. Previous studies on the development of physical models of bending reinforced concrete element fatigue resistance, cyclic effect of lateral forces, and methods of calculation, are important and appropriate owing to certain features and the essential specificity of the mentioned loading type. These primarily include the nonlinearity of deformation, damage accumulation in the form of fatigue micro- and macro-cracks, and exhausting destruction of construction materials. In this paper, key expressions determining the endurance limits of concrete, longitudinal reinforcement, and anchoring longitudinal reinforcement, which contribute to endurance throughout the entire construction, are considered. Establishing a link between stresses in the elements and deformations in the element under conditions of cyclic loading action is of equal importance because of the presence of cyclic stress-induced creep deformation.

  20. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    Science.gov (United States)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  1. History-independent cyclic response of nanotwinned metals

    Science.gov (United States)

    Pan, Qingsong; Zhou, Haofei; Lu, Qiuhong; Gao, Huajian; Lu, Lei

    2017-11-01

    Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved. Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening) and history-dependent. Existing rules for fatigue life prediction, such as the linear cumulative damage rule, cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies, such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum. Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated ‘necklace’ dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal, coarse-grained, ultrafine-grained and nanograined metals.

  2. Effects of mean strain on the random cyclic stress-strain relations of 0Cr18Ni10Ti pipe steel

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing

    2005-01-01

    Experimental study is performed for the effects of the mean strain on the random cyclic stress-strain relations of the new nuclear material, 0Cr18Ni10Ti pipe steel. From saving the size of specimens, an improved maximum likelihood fatigue test method is proposed to operate the present strain-controlled fatigue tests. Six straining ratios, -1, -0.52, -0.22, 0.029, 0.18, and 0.48, respectively, are applied to study the effects. Fatigue test has been carried out on totally 104 specimens. The test results reveal that the material exhibits a Masing behaviour and the saturation hysteresis loops under the six ratios hold an entirely relaxation effect of mean stress. There is no effectively method for the description of the mean straining effects under this case. Previous Zhao's random stress-strain relations are therefore applied to characterizing effectively the scattering test data under the six ratios on a basis of Ramberg-Osgood equation. Then the effects of the ratios are analyzed respectively on the average stress amplitudes, the standard deviations of the stress amplitudes, and the stress amplitudes under different survival probabilities and confidences. The results reveal that the ratios act a relatively decreasing effect to the stress amplitudes under higher survival probabilities and confidences. The strongest effect appears at the ratio of 0.029, and a weaker effect acts as the distance increase of the ratio from the zero. In addition, it is indicated that the effects from the sense of average fatigue lives might result in a wrong conclusion. The effects can be appropriately assessed from a probabilistic sense to take into account the scattering regularity of test data and the size of sampling. (author)

  3. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  4. Experimental study under uniaxial cyclic behavior at room and high temperature of 316L stainless steel

    International Nuclear Information System (INIS)

    Kang Guozheng; Gao Qing; Yang Xianjie; Sun Yafang

    2001-01-01

    An experimental study was carried out of the cyclic properties of 316L stainless steel subjected to uniaxial strain and stress at room and high temperature. The effects of cyclic strain amplitude, temperature and their histories on the cyclic deformation behavior of 316L stainless steel are investigated. And, the influences of stress amplitude, mean stress, temperature and their histories on ratcheting are also analyzed. It is shown that either uniaxial cyclic property under cyclic strain or ratcheting under asymmetric uniaxial cyclic stress depends not only on the current temperature and loading state, but also on the previous temperature and loading history. Some significant results are obtained

  5. Cyclic stress-strain behavior of polymeric nonwoven structures for the use as artificial leaflet material for transcatheter heart valve prostheses

    Directory of Open Access Journals (Sweden)

    Arbeiter Daniela

    2017-09-01

    Full Text Available Xenogenic leaflet material, bovine and porcine pericardium, is widely used for the fabrication of surgically implanted and transcatheter heart valve prostheses. As a biological material, long term durability of pericardium is limited due to calcification, degeneration and homogeneity. Therefore, polymeric materials represent a promising approach for a next generation of artificial heart valve leaflets with improved durability. Within the current study we analyzed the mechanical performance of polymeric structures based on elastomeric materials. Polymeric cast films were prepared and nonwovens were manufactured in an electrospinning process. Analysis of cyclic stress-strain behavior was performed, using a universal testing machine. The uniaxial cyclic tensile experiments of the elastomeric samples yielded a non-linear elastic response due to viscoelastic behavior with hysteresis. Equilibrium of stress-strain curves was found after a specific number of cycles, for cast films and nonwovens, respectively. In conclusion, preconditioning was found obligatory for the evaluation of the mechanical performance of polymeric materials for the use as artificial leaflet material for heart valve prostheses.

  6. Analysis of the kinetics of decohesion process in the conditions of cyclic temperature variations

    International Nuclear Information System (INIS)

    Zuchowski, R.

    1981-01-01

    Specimens made of four types of heat-resistant steels were used in the investigation. Various variants of loading process were applied, resulting in thermal fatigue, cyclic creep and isothermal fatigue. Stress or strain variation as well as intensity of acoustic emission were recorded during the tests as a function of time. Cyclic variations of strain or stress amplitude were found to occur one full period covering few to several cycles. Comparing the relative number of acoustic emission impulses with the variation of stress or strain leads to the conclusion that cyclic character of strain or stress variation results from cyclic character of damage cumulation process. This statement is confirmed by the results of material damage degree determination based on specific strain work measurements. Results of investigation testify to the equivalence of action (in terms of energy) of cyclically variable force field at constant temperature and of constant force field in the conditions of cyclic temperature variations. Damage mechanism can be different in each case, because it depends (for a given material) on loading process parameters and in particular - on temperature and stress value. (orig./HP)

  7. The Evaluation of the Effect of Strain Limits on the Physical Properties of Magnetorheological Elastomers Subjected to Uniaxial and Biaxial Cyclic Testing.

    OpenAIRE

    Gorman, Dave; Murphy, Niall; Ekins, Ray; Jerrams, Stephen

    2017-01-01

    Magnetorheological Elastomers (MREs) are “smart” materials whose physical properties are altered by the application of magnetic fields. In a previous study by the authors [1], variations in the physical properties of MREs have been evaluated when subjected to a range of magnetic field strengths for both uniaxial and biaxial cyclic tests. By applying the same magnetic field to similar samples, this paper investigates the effect of both the upper strain limit and the strain amplitude on the pro...

  8. Longitudinal strain bull's eye plot patterns in patients with cardiomyopathy and concentric left ventricular hypertrophy.

    Science.gov (United States)

    Liu, Dan; Hu, Kai; Nordbeck, Peter; Ertl, Georg; Störk, Stefan; Weidemann, Frank

    2016-05-10

    Despite substantial advances in the imaging techniques and pathophysiological understanding over the last decades, identification of the underlying causes of left ventricular hypertrophy by means of echocardiographic examination remains a challenge in current clinical practice. The longitudinal strain bull's eye plot derived from 2D speckle tracking imaging offers an intuitive visual overview of the global and regional left ventricular myocardial function in a single diagram. The bull's eye mapping is clinically feasible and the plot patterns could provide clues to the etiology of cardiomyopathies. The present review summarizes the longitudinal strain, bull's eye plot features in patients with various cardiomyopathies and concentric left ventricular hypertrophy and the bull's eye plot features might serve as one of the cardiac workup steps on evaluating patients with left ventricular hypertrophy.

  9. Cyclic tensile strain enhances human mesenchymal stem cell Smad 2/3 activation and tenogenic differentiation in anisotropic collagen-glycosaminoglycan scaffolds

    Directory of Open Access Journals (Sweden)

    WK Grier

    2017-03-01

    Full Text Available Orthopaedic injuries, particularly those involving ligaments and tendons, are some of the most commonly treated ailments in the United States and are associated with both high costs and poor outcomes. Regenerative medicine strategies for tendon injuries could be enhanced by three-dimensional biomaterials that can promote cell alignment and pro-tenogenic differentiation of patient-derived MSCs. We have previously described a collagen-glycosaminoglycan (CG scaffold possessing aligned structural features able to promote bone marrow MSC differentiation towards a tenogenic lineage, in the absence of growth factor supplementation. We aimed to employ a bioreactor to enhance MSC tenogenic differentiation within the aligned CG scaffold via cyclic tensile strain (CTS, and further to evaluate the relative effects of strain cycle duration and extended application of repeated cycles of CTS on MSC response. Human MSCs were cultured in CG scaffolds for up to 6 d under static (unloaded or cyclic tensile strain (1 Hz for 10 min every 6 h. Time-dependent activation of ERK 1/2 and p38 mechanotransduction pathways was observed within each 6 h strain cycle. MSCs remained viable throughout the experiment and application of CTS robustly upregulated the expression of tendon-specific extracellular matrix proteins and phenotypic markers. Simultaneously, CTS promoted increased phosphorylation of Smad 2/3, suggesting a link between tensile stimulation and TGF-β family growth factor production. Together, we demonstrated the design, fabrication and validation of a high-throughput tensile stimulation bioreactor to increase MSC tenogenic differentiation in porous CG scaffolds.

  10. Influence of anisotropic hardening on longitudinal welding strains and stresses

    International Nuclear Information System (INIS)

    Gatovskij, K.M.; Revutskij, M.N.

    1981-01-01

    The algorithm and program for estimation of longitudinal welding strains and stresses with account of hardening and Bauschinger effect, which expand the possibilities of more complete description of stress change during thermodeformation welding cycles at bead surfacing on plate made of the 06Kh18N9T steel and AMg61 alloy. It is shown that for metals, deformation curves which are characterized by considerable yield moduli (Esub(T)/E>=0.05) hardening effect is considerable and its account leads to the decrease of stress level in the heataffected zone (down to 20%) [ru

  11. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  12. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    Science.gov (United States)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  13. Social support, social strain and inflammation: Evidence from a national longitudinal study of U.S. adults

    Science.gov (United States)

    Yang, Yang Claire; Schorpp, Kristen; Harris, Kathleen Mullan

    2014-01-01

    Social relationships have long been held to have powerful effects on health and survival, but it remains unclear whether such associations differ by function and domain of relationships over time and what biophysiological mechanisms underlie these links. This study addressed these gaps by examining the longitudinal associations of persistent relationship quality across a ten year span with a major indicator of immune function. Specifically, we examined how perceived social support and social strain from relationships with family, friends, and spouse at a prior point in time are associated with subsequent risks of inflammation, as assessed by overall inflammation burden comprised of five markers (C-reactive protein, interleukin-6, fibrinogen, E-selectin, and intracellular adhesion molecule-1) in a national longitudinal study of 647 adults from the Midlife Development in the United States (1995–2009). Results from multivariate regression analysis show that (1) support from family, friends, and spouse modestly protected against risks of inflammation; (2) family, friend, and total social strain substantially increased risks of inflammation; and (3) the negative associations of social strain were stronger than the positive associations of social support with inflammation. The findings highlight the importance of enriched conceptualizations, measures, and longitudinal analyses of both social and biological stress processes to elucidate the complex pathways linking social relationships to health and illness. PMID:24607674

  14. Random cyclic constitutive models of 0Cr18Ni10Ti pipe steel

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing

    2004-01-01

    Experimental study is performed on the random cyclic constitutive relations of a new pipe stainless steel, 0Cr18Ni10Ti, by an incremental strain-controlled fatigue test. In the test, it is verified that the random cyclic constitutive relations, like the wide recognized random cyclic strain-life relations, is an intrinsic fatigue phenomenon of engineering materials. Extrapolating the previous work by Zhao et al, probability-based constitutive models are constructed, respectively, on the bases of Ramberg-Osgood equation and its modified form. Scattering regularity and amount of the test data are taken into account. The models consist of the survival probability-strain-life curves, the confidence strain-life curves, and the survival probability-confidence-strain-life curves. Availability and feasibility of the models have been indicated by analysis of the present test data

  15. Cyclic creep-rupture behavior of three high-temperature alloys.

    Science.gov (United States)

    Halford, G. R.

    1972-01-01

    Study of some important characteristics of the cyclic creep-rupture curves for the titanium alloy 6Al-2Sn-4Zr-2Mo at 900 and 1100 F (755 and 865 K), the cobalt-base alloy L-605 at 1180 F (910 K), and for two hardness levels of 316 stainless steel at 1300 F (980 K). The cyclic creep-rupture curve relates tensile stress and tensile time-to-rupture for strain-limited cyclic loading and has been found to be independent of the total strain range and the level of compressive stress employed in the cyclic creep-rupture tests. The cyclic creep-rupture curve was always found to be above and to the right of the conventional (constant load) monotonic creep-rupture curve by factors ranging from 2 to 10 in time-to-rupture. This factor tends to be greatest when the creep ductility is large. Cyclic creep acceleration was observed in every cyclic creep-rupture test conducted. The phenomenon was most pronounced at the highest stress levels and when the tensile and compressive stresses were completely reversed. In general, creep rates were found to be lower in compression than in tension for equal true stresses. The differences, however, were strongly material-dependent.

  16. Quantitative damage and detwinning analysis of nanotwinned copper foil under cyclic loading

    International Nuclear Information System (INIS)

    Yoo, Byung-Gil; Boles, Steven T.; Liu, Y.; Zhang, X.; Schwaiger, Ruth; Eberl, Christoph; Kraft, Oliver

    2014-01-01

    High-purity Cu samples containing parallel columns of highly aligned nanotwins with median spacing of ∼25 nm were subjected to tension–compression cyclic loading by a high-throughput cyclic testing method. The methodology utilizes gradients in surface strain amplitude of a vibrating cantilever: one along the beam axis, with decreasing strain from the fixed to the free end of the beam, and the other through the foil thickness with decreasing strain from the surface to the neutral axis. Systematic microstructural investigations indicate that nanotwins are not stable under cyclic loading and that the applied strain amplitude has a strong influence on the resulting twin structure. In the highly stressed regions the detwinning process produces a twin free microstructure, allowing for subsequent extrusion and crack formation, and introduces fatal defects into structural parts

  17. Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories

    Science.gov (United States)

    Valanis, K. C.; Lee, C. F.

    1983-01-01

    Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory.

  18. Health effects of unemployment in Europe (2008-2011): a longitudinal analysis of income and financial strain as mediating factors.

    Science.gov (United States)

    Tøge, Anne Grete

    2016-05-06

    Unemployment has a number of negative consequences, such as decreased income and poor self-rated health. However, the relationships between unemployment, income, and health are not fully understood. Longitudinal studies have investigated the health effect of unemployment and income separately, but the mediating role of income remains to be scrutinized. Using longitudinal data and methods, this paper investigates whether the effect of unemployment on self-rated health (SRH) is mediated by income, financial strain and unemployment benefits. The analyses use data from the longitudinal panel of European Union Statistics on Income and Living Conditions (EU-SILC) over the 4 years of 2008 to 2011. Individual fixed effects models are applied, estimating the longitudinal change in SRH as people move from employment to unemployment, and investigating whether this change is reduced after controlling for possible mediating mechanisms, absolute income change, relative income change, relative income rank, income deprivation, financial strain, and unemployment benefits. Becoming unemployed is associated with decreased SRH (-0.048, SE 0.012). This decrease is 19 % weaker (-0.039, SE 0.010) after controlling for change in financial strain. Absolute and relative changes in household equalized income, as well as changes in relative rank and transitions into income deprivation, are not found to be associated with change in SRH. Financial strain is found to be a potential mediator of the individual health effect of unemployment, while neither absolute income, relative income, relative rank, income deprivation nor unemployment benefits are found to be mediators of this relationship.

  19. The Cyclic Mechanical and Fatigue Properties of Ferroanelastic Beta Prime Gold Cadmium. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Karz, R. S.

    1973-01-01

    The fatigue behavior of beta prime Au1.05Cd0.95 alloy was investigated and found to be exceptional for certain orientations with lives of 10,000 to 1,000,000 cycles at total strain amplitudes above 0.05 not uncommon. Fatigue lives were influenced principally by the stress level which controlled the amount of plastic deformation, and stress fatigue resistance was low compared with most metals. Failure always exhibited brittle characteristics. An algorithm was devised to predict mechanical behavior from the twin system orientations and was found in good agreement with experiment for longitudinal strains above 0.04. The cyclic mechanical properties were examined, and a model for the behavior was proposed utilizing previous theories of the restoring force and the Peierls-Nabarro stress for twinning and new concepts. Gold-cadmium was found to have certain strain fatigue resistant applications, particularly in electronics where the alloy's high electrical conductivity is utilized.

  20. Short analysis of a progressive distorsion problem (tension and cyclic torsion)

    International Nuclear Information System (INIS)

    Roche, Roland.

    1978-06-01

    Tests on ratcheting (or progressive distorsion) are in progress in Saclay. A thin tube is subjected to a constant tensile load and to a cyclic twist. The present paper is a short theoretial analysis of that case. A uniform strain and stress field is considered with a constant tensile stress P (primary stress) and a cyclic shearing strain. The shearing strain is known by the corresponding elastic equivalent stress intensity (TRESCA criterion). The cyclic range of the stress intensity is ΔQ (secondary stress range). Are examined the shake down condition and the incremental elongations with different constitutive equations of the material. Special attention is given to perfect plasticity and bilinear kinematic hardening results are presented, but it is believed that these materials mathematical models are simplistic and special experimental tests are proposed [fr

  1. Synergistic enhancing effect of N+C alloying on cyclic deformation behaviors in austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang, Z.N. [National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2014-07-29

    Cyclic plastic and elastic strain controlled deformation behaviors of Mn18Cr7 austenitic steel with N0.6C0.3 synergistic enhancing alloying have been investigated using tension-compression low cycle fatigue and three-point bending high cycle fatigue testing. Results of cyclic deformation characteristic and fatigue damage mechanism have been compared to that in Mn12C1.2 steel. Mn18Cr7N0.6C0.3 steel always shows cyclic softening caused by enhanced planar sliding due to the interaction between N+C and the substitutional atoms as well as the dislocation, which is totally different from cyclic hardening in Mn12C1.2 steel caused by the interaction between C members of C–Mn couples with the dislocation. Enhanced effective stress is obtained due to the solid solution strengthening effect caused by the short range order at low strain amplitude while this effect does not work at high strain amplitude. Internal stress contributes most to the cyclic softening with the increase of strain amplitudes. Significant planar slip characteristic can be observed resulting from low stacking fault energy and high short range order effects in Mn18Cr7N0.6C0.3 steel and finally the parallel or intersecting thin sheets with dislocation tangles separated by dislocation free sheets are obtained with the prolonged cycles under cyclic elastic or plastic strain controlled fatigue testing. There exist amounts of small cracks on the surface of the Mn18Cr7N0.6C0.3 steel because fatigue crack initiation is promoted by the cyclic plastic strain localization. However, the zigzag configuration of the cracks reveals that the fatigue crack propagation is highly inhibited by the planar slip characteristic, which eventually improves the fatigue life.

  2. Fatigue life of bovine meniscus under longitudinal and transverse tensile loading.

    Science.gov (United States)

    Creechley, Jaremy J; Krentz, Madison E; Lujan, Trevor J

    2017-05-01

    The knee meniscus is composed of a fibrous extracellular matrix that is subjected to large and repeated loads. Consequently, the meniscus is frequently torn, and a potential mechanism for failure is fatigue. The objective of this study was to measure the fatigue life of bovine meniscus when applying cyclic tensile loads either longitudinal or transverse to the principal fiber direction. Fatigue experiments consisted of cyclic loads to 60%, 70%, 80% or 90% of the predicted ultimate tensile strength until failure occurred or 20,000 cycles was reached. The fatigue data in each group was fit with a Weibull distribution to generate plots of stress level vs. cycles to failure (S-N curve). Results showed that loading transverse to the principal fiber direction gave a two-fold increase in failure strain, a three-fold increase in creep, and a nearly four-fold increase in cycles to failure (not significant), compared to loading longitudinal to the principal fiber direction. The S-N curves had strong negative correlations between the stress level and the mean cycles to failure for both loading directions, where the slope of the transverse S-N curve was 11% less than the longitudinal S-N curve (longitudinal: S=108-5.9ln(N); transverse: S=112-5.2ln(N)). Collectively, these results suggest that the non-fibrillar matrix is more resistant to fatigue failure than the collagen fibers. Results from this study are relevant to understanding the etiology of atraumatic radial and horizontal meniscal tears, and can be utilized by research groups that are working to develop meniscus implants with fatigue properties that mimic healthy tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ceramic breeder pebble bed packing stability under cyclic loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunbo, E-mail: chunbozhang@fusion.ucla.edu [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Ying, Alice; Abdou, Mohamed A. [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Park, Yi-Hyun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The feasibility of obtaining packing stability for pebble beds is studied. • The responses of pebble bed to cyclic loads have been presented and analyzed in details. • Pebble bed packing saturation and its applications are discussed. • A suggestion is made regarding the improvement of pebbles filling technique. - Abstract: Considering the optimization of blanket performance, it is desired that the bed morphology and packing state during reactor operation are stable and predictable. Both experimental and numerical work are performed to explore the stability of pebble beds, in particular under pulsed loading conditions. Uniaxial compaction tests have been performed for both KIT’s Li{sub 4}SiO{sub 4} and NFRI’s Li{sub 2}TiO{sub 3} pebble beds at elevated temperatures (up to 750 °C) under cyclic loads (up to 6 MPa). The obtained data shows the stress-strain loop initially moves towards the larger strain and nearly saturates after a certain number of cyclic loading cycles. The characterized FEM CAP material models for a Li{sub 4}SiO{sub 4} pebble bed with an edge-on configuration are used to simulate the thermomechanical behavior of pebble bed under ITER pulsed operations. Simulation results have shown the cyclic variation of temperature/stress/strain/gap and also the same saturation trend with experiments under cyclic loads. Therefore, it is feasible for pebble bed to maintain its packing stability during operation when disregarding pebbles’ breakage and irradiation.

  4. On the relations between cyclic contraction ratio flowstress and deformation mechanisms in bainitic CrMoV steels

    International Nuclear Information System (INIS)

    Rahka, Klaus

    1987-04-01

    The cyclic diametral strain and stress response of macroscopically untextured (nominally isotropic) bainitc Cr-Mo-V steels has been studied. The total axial strain amplitudes were controlled and chosen so that a range of ratios of plastic and elastic elongations were used extending from 0.04 to 5. The trend of the cyclic diametral strain was sometimes found to drastically deviate from the commonly used Poisson's ratio when the ratio of plastic and elastic elongation was around 3 for the uncycled material. The unusual initial increase in cyclic contraction ratio for these conditions was attributed to strain concentration and the decrease to strain decentration. A condition for these unpredictable macroscopic effects seems to be that the effective strengthening structure should be sufficiently unstable during the cyclic strain applied. At room temperature fatigue slip bands of high local density and number are created in these conditions. At elevated temperature applied strains larger than ∼ 0.3% give rise to an increasing mechanically activated dynamic recovery which operates despite a dense carbide dispersion. The amount of recovery and simultaneous dislocation annihilation increase and act to lower the flow strength with rising strain. Their extent depend on the strain rate. An apparent maximum in dynamic recovery was observed as a minimum in cyclic yield strength at the same strain for which the pronounced unpredictable diametral strain was observed. Similar diametral strain effects in monotonic tension tests on different materials reported in the published literature indicate that the effects are most probably related to the particular dominant mode of slip at strain levels for which the ratio of plastic and elastic strain (e p /e E ) is around three. Slip is then dominantly planar. Careful shape control of the specimen gauge section is necessary for reproducible diametral strain because of the unstable nature of the material in the actual conditions of the

  5. Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor.

    Science.gov (United States)

    Wright, M O; Nishida, K; Bavington, C; Godolphin, J L; Dunne, E; Walmsley, S; Jobanputra, P; Nuki, G; Salter, D M

    1997-09-01

    Mechanical stimuli influence chondrocyte metabolism, inducing changes in intracellular cyclic adenosine monophosphate and proteoglycan production. We have previously demonstrated that primary monolayer cultures of human chondrocytes have an electrophysiological response after intermittent pressure-induced strain characterised by a membrane hyperpolarisation of approximately 40%. The mechanisms responsible for these changes are not fully understood but potentially involve signalling molecules such as integrins that link extracellular matrix with cytoplasmic components. The results reported in this paper demonstrate that the transduction pathways involved in the hyperpolarisation response of human articular chondrocytes in vitro after cyclical pressure-induced strain involve alpha 5 beta 1 integrin. We have demonstrated, using pharmacological inhibitors of a variety of intracellular signalling pathways, that the actin cytoskeleton, the phospholipase C calmodulin pathway, and both tyrosine protein kinase and protein kinase C activities are important in the transduction of the electrophysiological response. These results suggest that alpha 5 beta 1 is an important chondrocyte mechanoreceptor and a potential regulator of chondrocyte function.

  6. Differences in the cyclic deformation behaviour of quenched and tempered steel 42 CrMo 4 (AISI 4140) due to stress- and strain-control; Versuchsfuehrungsbedingte Unterschiede im zyklischen Verformungsverhalten von verguetetem 42 CrMo 4 bei Spannungs- und Totaldehnungskontrolle

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, V.; Lang, K.-H.; Voehringer, O.; Macherauch, E. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1

    1998-04-01

    Cyclic stress-strain-curves and Manson-Coffin-plots of quenched and tempered steel 42 CrMo 4 (AISI 4140) strongly depend on whether they are determined under stress- or total-strain-control. At total-strain-controlled experiments, this is caused on the one hand by comparatively high initial stress-amplitudes which lead to distinctive cyclic work softening. On the other hand, the occuring differences in the evolution of inhomogeneous deformation patterns at both types of loading, which can be recorded by means of photoelasticity and microscopy, lead to differently distributed plastic deformations and to different integral values of plastic strain. (orig.) 11 refs.

  7. Cyclic testing of thin Ni films on a pre-tensile compliant substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wei, He [Department of Mechanics, Tianjin University, 135 Yaguan Rd, Jinnan, 300350 Tianjin (China); Département Physique et Mécanique d es Matériaux, Institut Pprime, CNRS–Université de Poitiers, Bd Marie et Pierre Curie, Futuroscope, 86962 (France); Renault, Pierre-Olivier, E-mail: pierre.olivier.renault@univ-poitiers.fr [Département Physique et Mécanique d es Matériaux, Institut Pprime, CNRS–Université de Poitiers, Bd Marie et Pierre Curie, Futuroscope, 86962 (France); Bourhis, Eric Le [Département Physique et Mécanique d es Matériaux, Institut Pprime, CNRS–Université de Poitiers, Bd Marie et Pierre Curie, Futuroscope, 86962 (France); Wang, Shibin [Department of Mechanics, Tianjin University, 135 Yaguan Rd, Jinnan, 300350 Tianjin (China); Goudeau, Philippe [Département Physique et Mécanique d es Matériaux, Institut Pprime, CNRS–Université de Poitiers, Bd Marie et Pierre Curie, Futuroscope, 86962 (France)

    2017-05-17

    A novel experimental approach to study the cyclic plastic deformation of thin metallic films is presented. 300 nm thick Ni films are deposited on both sides of a pre-tensile soft substrate which allows to deform the films alternately in tension and compression (approximately from +2.7 GPa down to −2 GPa) relative to the as-deposited residual stress state. Nanocrystalline thin films' intrinsic elastic strains (or stresses) and true strains have been measured step by step during two loading/unloading cycles thanks to the X-ray diffraction (XRD) and digital image correlation (DIC) techniques respectively. From the first cyclic deformation, a significant Bauschinger effect is evidenced in the films, however, little or no cyclic hardening is observed during the two cyclic tests.

  8. The value of right ventricular longitudinal strain in the evaluation of adult patients with repaired tetralogy of Fallot: a new tool for a contemporary challenge.

    Science.gov (United States)

    Almeida-Morais, Luís; Pereira-da-Silva, Tiago; Branco, Luísa; Timóteo, Ana T; Agapito, Ana; de Sousa, Lídia; Oliveira, José A; Thomas, Boban; Jalles-Tavares, Nuno; Soares, Rui; Galrinho, Ana; Cruz-Ferreira, Rui

    2017-04-01

    The role of right ventricular longitudinal strain for assessing patients with repaired tetralogy of Fallot is not fully understood. In this study, we aimed to evaluate its relation with other structural and functional parameters in these patients. Patients followed-up in a grown-up CHD unit, assessed by transthoracic echocardiography, cardiac MRI, and treadmill exercise testing, were retrospectively evaluated. Right ventricular size and function and pulmonary regurgitation severity were assessed by echocardiography and MRI. Right ventricular longitudinal strain was evaluated in the four-chamber view using the standard semiautomatic method. In total, 42 patients were included (61% male, 32±8 years). The mean right ventricular longitudinal strain was -16.2±3.7%, and the right ventricular ejection fraction, measured by MRI, was 42.9±7.2%. Longitudinal strain showed linear correlation with tricuspid annular systolic excursion (r=-0.40) and right ventricular ejection fraction (r=-0.45) (all ptetralogy of Fallot. It correlated with echocardiographic right ventricular function parameters and was independently associated with right ventricular ejection fraction derived by MRI.

  9. Ratchetting strain prediction

    International Nuclear Information System (INIS)

    Noban, Mohammad; Jahed, Hamid

    2007-01-01

    A time-efficient method for predicting ratchetting strain is proposed. The ratchetting strain at any cycle is determined by finding the ratchetting rate at only a few cycles. This determination is done by first defining the trajectory of the origin of stress in the deviatoric stress space and then incorporating this moving origin into a cyclic plasticity model. It is shown that at the beginning of the loading, the starting point of this trajectory coincides with the initial stress origin and approaches the mean stress, displaying a power-law relationship with the number of loading cycles. The method of obtaining this trajectory from a standard uniaxial asymmetric cyclic loading is presented. Ratchetting rates are calculated with the help of this trajectory and through the use of a constitutive cyclic plasticity model which incorporates deviatoric stresses and back stresses that are measured with respect to this moving frame. The proposed model is used to predict the ratchetting strain of two types of steels under single- and multi-step loadings. Results obtained agree well with the available experimental measurements

  10. On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour

    Science.gov (United States)

    Gorash, Yevgen; MacKenzie, Donald

    2017-06-01

    This study proposes cyclic yield strength as a potential characteristic of safe design for structures operating under fatigue and creep conditions. Cyclic yield strength is defined on a cyclic stress-strain curve, while monotonic yield strength is defined on a monotonic curve. Both values of strengths are identified using a two-step procedure of the experimental stress-strain curves fitting with application of Ramberg-Osgood and Chaboche material models. A typical S-N curve in stress-life approach for fatigue analysis has a distinctive minimum stress lower bound, the fatigue endurance limit. Comparison of cyclic strength and fatigue limit reveals that they are approximately equal. Thus, safe fatigue design is guaranteed in the purely elastic domain defined by the cyclic yielding. A typical long-term strength curve in time-to-failure approach for creep analysis has two inflections corresponding to the cyclic and monotonic strengths. These inflections separate three domains on the long-term strength curve, which are characterised by different creep fracture modes and creep deformation mechanisms. Therefore, safe creep design is guaranteed in the linear creep domain with brittle failure mode defined by the cyclic yielding. These assumptions are confirmed using three structural steels for normal and high-temperature applications. The advantage of using cyclic yield strength for characterisation of fatigue and creep strength is a relatively quick experimental identification. The total duration of cyclic tests for a cyclic stress-strain curve identification is much less than the typical durations of fatigue and creep rupture tests at the stress levels around the cyclic yield strength.

  11. HOST liner cyclic facilities

    Science.gov (United States)

    Schultz, D.

    1983-01-01

    The HOST Liner Cyclic Program is utilizing two types of test apparatus, rectangular box rigs and a full annular rig. To date two quartz lamp cyclic box rigs have been tested and a third is to begin testing in late October 1983. The box rigs are used to evaluate 5x8 inch rectangular linear samples. A 21 inch diameter outer liner simulator is also being built up for testing beginning in April 1984. All rigs are atmospheric rigs. The first box rig, a three 6-kVA lamp installation, was operated under adverse conditions to determine feasibility of using quartz lamps for cyclic testing. This work was done in December 1981 and looked promising. The second box rig, again using three 6-kVA lamps, was operated to obtain instrumentation durability information and initial data input to a Finite Element Model. This limited test program was conducted in August 1983. Five test plates were run. Instrumentation consisted of strain gages, thermocouples and thermal paint. The strain gages were found to fail at 1200 F as expected though plates were heated to 1700 F. The third box rig, containing four 6-kVA lamps, is in build up for testing to begin in late October 1983. In addition to 33 percent greater power input, this rig has provision for 400 F backside line cooling air and a viewing port suitable for IR camera viewing. The casing is also water cooled for extended durability.

  12. Cyclic deformation mechanisms in a cast gamma titanium aluminide alloy

    International Nuclear Information System (INIS)

    Jouiad, Mustapha; Gloanec, Anne-Lise; Grange, Marjolaine; Henaff, Gilbert

    2005-01-01

    The present study tackles the issue of the identification of the deformation mechanisms governing the cyclic stress-strain behaviour of a cast Ti-48Al-2Cr-2Nb (numbers indicate at.%) with a nearly fully lamellar microstructure. At room temperature, this behaviour and the corresponding deformation mechanisms are shown to be strongly dependent on the applied strain range. Indeed, at low strain range, where almost no hardening is noticed, deformation occurs by motion of long and straight ordinary dislocations. The moderate hardening observed at intermediate values of the strain range is associated with the formation of a vein-like structure due to the progressive tangling of ordinary dislocations. Finally, at higher strain-range values, twinning, by delaying the formation of this vein-like structure, induces a more pronounced cyclic strain hardening. At high temperature (750 deg. C), the material exhibits a rapid saturation of the stress amplitude, regardless of the applied strain range. Transmission electron microscopy indicates that twinning is no longer operative at this temperature, but that dislocation climb is activated

  13. Modelling of cyclic plasticity for austenitic stainless steels 304L, 316L, 316L(N)-IG

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, Mauro, E-mail: mauro.dallapalma@igi.cnr.it

    2016-11-01

    Highlights: • Stress-strain amplitudes of cyclic stress strain curves defined by design codes are provided as reference data. • A macroinstruction simulating cyclic plasticity and producing hardening parameters of constitutive models is developed. • Hardening parameters of the nonlinear Chaboche model are provided for stainless steels 316l-N, 316L, 304L at different temperatures. • Ratcheting is simulated by using the produced hardening parameters. - Abstract: The integrity assessment of structures subjected to cyclic loading must be verified with regard to cyclic type damage including time-independent fatigue and progressive deformation or ratcheting. Cyclic damage is verified simulating the material elastic-plastic loop and looking at the accumulated net plastic strain during each cycle at all points of the structure subjected to the complete time history of loadings. This work deals with the development of a numerical model producing the Chaboche hardening parameters starting from stress-strain data produced by testing of materials. Then, the total plastic strain can be simulated using the Chaboche inelastic constitutive model requested for finite element analyses. This is particularly demanding for pressure vessels, pressurised piping, boilers, and mechanical components of nuclear installations made of stainless steels. A design optimisation by iterative analyses is developed to approach the stress-strain test data with the Chaboche model. The parameters treated as design variables are the Chaboche parameters and the objective function to be minimised is a combination of the deviations from test data. The optimiser calls a macroinstruction simulating cyclic loading of a sample for different material temperatures. The numerical model can be used to produce hardening parameters of materials for inelastic finite element verifications of structures with complex joints like elbows subjected to a combination of steady sustained and cyclic loads.

  14. A uniaxial cyclic elastoplastic constitutive law with a discrete memory variable

    International Nuclear Information System (INIS)

    Taheri, S.

    1991-01-01

    At present, the study on cyclic elastoplastic constitutive laws is focused on nonproportional loading, but for uniaxial loading, some problems still exist. For example, the possibility for a law to describe simultaneously the ratcheting in nonsymmetrical load-controlled test, elastic and plastic shakedown in symmetrical and nonsymmetrical ones. Here a law is presented, which in addition to previous phenomena, describes the cyclic hardening in a pushpull test, the cyclic softening after overloading and also the dependence of cyclic strain-stress curves on the history of loading. These are the usual properties of 316 stainless steel at room temperature. This law uses an internal discrete memory variable: the plastic strain at the last unloading. On the other hand, the choice of all macroscopic variables is justified by a microscopic analysis. This law has been also extended to a three-dimensional case. Regarding the microstructure under cyclic loading, plastic shakedown and ratcheting are discussed. The definition of macroscopic variables taking account of microstructure and uniaxial constitutive law are described. (K.I.)

  15. Cyclic saturation behavior of tungsten monofilament-reinforced monocrystalline copper matrix composites

    International Nuclear Information System (INIS)

    Zhang, J.; Laird, C.

    1999-01-01

    Studies on saturation behavior produced by cyclic deformation have been conducted on tungsten monofilament-reinforced monocrystalline copper composites. The effect of the fiber on strain localization has been investigated using interferometry. For a given applied strain amplitude, local strain and volume fraction of the persistent slip bands (PSBs) in the composite appeared no different from those observed in monolithic copper single crystals. However, the distribution of the PSBs was observed to be more uniform, and the total number of PSBs is substantially higher than that in monolithic crystals. The PSBs appeared mostly in the form of micro-PSBs or macro-PSBs with very limited width. Instead of expanding existing PSBs, new PSBs were more likely to nucleate at new locations during cyclic deformation. The volume fraction and width of the PSBs were observed to increase during saturation, which indicates that some of the PSBs become aged and new PSBs form in order to continue to carry the plastic strain. A rule of mixtures model was established to link the cyclic stress-strain response of the monocrystalline composites to the behavior of monolithic single crystals and fibers. The results calculated from the model show very good agreement with the experimental data

  16. Stress-strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings

    Science.gov (United States)

    Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.

    2014-08-01

    This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.

  17. Experimental Investigation on Deformation Failure Characteristics of Crystalline Marble Under Triaxial Cyclic Loading

    Science.gov (United States)

    Yang, Sheng-Qi; Tian, Wen-Ling; Ranjith, P. G.

    2017-11-01

    The deformation failure characteristics of marble subjected to triaxial cyclic loading are significant when evaluating the stability and safety of deep excavation damage zones. To date, however, there have been notably few triaxial experimental studies on marble under triaxial cyclic loading. Therefore, in this research, a series of triaxial cyclic tests was conducted to analyze the mechanical damage characteristics of a marble. The post-peak deformation of the marble changed gradually from strain softening to strain hardening as the confining pressure increased from 0 to 10 MPa. Under uniaxial compression, marble specimens showed brittle failure characteristics with a number axial splitting tensile cracks; in the range of σ 3 = 2.5-7.5 MPa, the marble specimens assumed single shear fracture characteristics with larger fracture angles of about 65°. However, at σ 3 = 10 MPa, the marble specimens showed no obvious shear fracture surfaces. The triaxial cyclic experimental results indicate that in the range of the tested confining pressures, the triaxial strengths of the marble specimens under cyclic loading were approximately equal to those under monotonic loading. With the increase in cycle number, the elastic strains of the marble specimens all increased at first and later decreased, achieving maximum values, but the plastic strains of the marble specimens increased nonlinearly. To evaluate quantitatively the damage extent of the marble under triaxial cyclic loading, a damage variable is defined according to the irreversible deformation for each cycle. The evolutions of the elastic modulus for the marble were characterized by four stages: material strengthening, material degradation, material failure and structure slippage. Based on the experimental results of the marble specimens under complex cyclic loading, the cohesion of the marble decreased linearly, but the internal friction angles did not depend on the damage extent. To describe the peak strength

  18. Microstructure damage evolution associated with cyclic deformation for extruded AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China)

    2016-10-15

    Fatigue damage evolution of extruded AZ31B magnesium (Mg) alloy is investigated under strain-controlled tension-compression loading along the extrusion direction at various strain amplitudes, and the different cyclic deformation behaviors are observed. At the strain amplitude of 2%, the tensile peak stress displays significant cyclic softening, whereas the compressive peak stress shows consistent cyclic hardening. At 1%, moderate cyclic hardening is observed at both the tensile peak and compressive peak stresses. At 0.5%, the tensile peak stress presents stable cyclic hardening, whereas the compressive peak stress almost keeps constant. The microstructure morphologies associated with the cyclic deformation are analyzed by scanning electronic microscope (SEM). The degree of deformation twins is evaluated by analyzing X-ray diffraction (XRD) using a normalized parameter λ. The results show the fatigue crack initiation modes and its propagation modes are dependent on the strain amplitude. At 2%, grain boundary (GB) cracking and triple joint cracking are detected after 1st loading cycle. At 1%, fatigue crack initiates at grain boundary (GB cracking), twin boundary (TB cracking) and triple joint of three neighboring grains. Both grain boundary induced (GB-induced) intergranular and persistent slip band induced (PSB-induced) transgranular propagation modes play an important role in the early-stage crack growth. At 0.5%, crack initiation modes are similar to that at 1%, but GB-induced intergranular propagation mode dominates the early-stage crack growth. The effects of the microstructure (texture, grain size and uniformity) on the fatigue damage behavior are discussed.

  19. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  20. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  1. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  2. Left Ventricular Systolic Function Assessed by Global Longitudinal Strain is Impaired in Atrial Fibrillation Compared to Sinus Rhythm

    DEFF Research Database (Denmark)

    Agner, Bue Fridolin Ross; Katz, Michael G; Williams, Zachary R

    2018-01-01

    Background: Atrial fibrillation (AF) is the most common aberrant cardiac arrhythmia. Many AF patients present with symptoms of dyspnea and fatigue, but have normal left ventricular ejection fraction (LVEF). Purpose: To determine the reproducibility of measurements of global longitudinal strain (GLS...

  3. Dislocation structure evolution in 304L stainless steel and weld joint during cyclic plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Jing, Hongyang; Zhao, Lei; Han, Yongdian; Lv, Xiaoqing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072 (China); Xu, Lianyong, E-mail: xulianyong@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072 (China)

    2017-04-06

    Dislocation structures and their evolution of 304L stainless steel and weld metal made with ER308L stainless steel welding wire subjected to uniaxial symmetric strain-controlled loading and stress-controlled ratcheting loading were observed by transmission electron microscopy (TEM). The correlation between the cyclic response and the dislocation structure has been studied. The experiment results show that the cyclic behaviour of base metal and weld metal are different. The cyclic behaviour of the base metal consists of primary hardening, slight softening and secondary hardening, while the weld metal shows a short hardening within several cycles followed by the cyclic softening behaviour. The microscopic observations indicate that in base metal, the dislocation structures evolve from low density patterns to those with higher dislocation density during both strain cycling and ratcheting deformation. However, the dislocation structures of weld metal change oppositely form initial complicated structures to simple patterns and the dislocation density gradually decrease. The dislocation evolution presented during the strain cycling and ratcheting deformation is summarized, which can qualitatively explain the cyclic behaviour and the uniaxial ratcheting behaviour of two materials. Moreover, the dislocation evolution in the two types of tests is compared, which shows that the mean stress has an effect on the rate of dislocation evolution during the cyclic loading.

  4. Two-dimensional global longitudinal strain is superior to left ventricular ejection fraction in prediction of outcome in patients with left-sided infective endocarditis

    DEFF Research Database (Denmark)

    Lauridsen, Trine Kiilerich; Alhede, Christina; Crowley, Anna Lisa

    2018-01-01

    BACKGROUND: Impaired cardiac function is the main predictor of poor outcome in infective endocarditis (IE). Global longitudinal strain (GLS) derived from two-dimensional strain echocardiography has proven superior in prediction of long-term outcome as compared to left ventricular ejection fraction...

  5. Effect of cyclic block loading on character of deformation and strength of structural materials in plane stressed state

    International Nuclear Information System (INIS)

    Kul'chitskij, N.M.; Troshchenko, A.V.; Koval'chuk, B.I.; Khamaza, L.A.; Nikolaev, I.A.

    1982-01-01

    The paper is concerned with choice of conditions for preliminary cyclic block loading, determination of fatigue failure resistance characteristics for various structural materials under regular and selected block loading, investigation of the preliminary cyclic loading effect on regularities of elastoplastic deformation of materials concerned in the biaxial stressed state. Under selected conditions of cyclic block loading the character of damage accumulation is close to the linear law for the materials of high-srength doped steel, and VT6 alloys of concern. These materials in the initial state and after preliminary cyclic loading are anisotropic. Axial direction is characterized by a higher plastic strain resistance for steel and tangential direction - for VT6 alloy. The generalized strain curves for the materials in question are not invariant as to the stressed state type. It is stated that the effect of preliminary unsteady cyclic loading on resistance and general regularities of material deformation in the complex stressed state is insignificant. It is observed that stress-strain properties of the materials tend to vary in the following way: plastic strain resistance of the steel lowers and that of VT6 rises, anisotropy of the materials somehow decreases. The variation in the material anisotropy may be attributed to a decrease in residual stresses resulting from preliminary cyclic loading

  6. Multiaxial elastoplastic cyclic loading of austenitic 316L steel

    Czech Academy of Sciences Publication Activity Database

    Mazánová, Veronika; Polák, Jaroslav; Škorík, Viktor; Kruml, Tomáš

    2017-01-01

    Roč. 11, č. 40 (2017), s. 162-169 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA13-23652S; GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic stress-strain curve * Multiaxial cyclic loading Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  7. Reaction of cyclic epoxide compounds with triphenylphosphine

    International Nuclear Information System (INIS)

    Kas'yan, L.I.; Stepanova, N.V.; Galafeeva, M.F.; Boldeskul, I.E.; Trachevskii, V.V.; Zefirov, N.S.

    1987-01-01

    Significant differences were found in the reactivity of a series of epoxides of cycloalkenes and methylenecycloalkanes and diepoxides in reaction with triphenylphosphine, depending both on the steric effects of the cyclic fragments and on their strain. The level of the strain can be judged indirectly from the chemical shifts of the 1 H and 13 C nuclei and the spin-spin coupling constants of the C-H bonds in the epoxide ring

  8. Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery.

    Science.gov (United States)

    Farias, Bárbara C S; Hissa, Denise C; do Nascimento, Camila T M; Oliveira, Samuel A; Zampieri, Davila; Eberlin, Marcos N; Migueleti, Deivid L S; Martins, Luiz F; Sousa, Maíra P; Moyses, Danuza N; Melo, Vânia M M

    2018-02-01

    Cyclic lipopeptides (CLPs) are non-ribosomal biosurfactants produced by Bacillus species that exhibit outstanding interfacial activity. The synthesis of CLPs is under genetic and environmental influence, and representatives from different families are generally co-produced, generating isoforms that differ in chemical structure and biological activities. This study to evaluate the effect of low and high NaCl concentrations on the composition and surface activity of CLPs produced by Bacillus strains TIM27, TIM49, TIM68, and ICA13 towards microbial enhanced oil recovery (MEOR). The strains were evaluated in mineral medium containing NaCl 2.7, 66, or 100 g L -1 and growth, surface tension and emulsification activity were monitored. Based on the analysis of 16S rDNA, gyrB and rpoB sequences TIM27 and TIM49 were assigned to Bacillus subtilis, TIM68 to Bacillus vallismortis, and ICA13 to Bacillus amyloliquefaciens. All strains tolerated up to 100-g L -1 NaCl, but only TIM49 and TIM68 were able to reduce surface tension at this concentration. TIM49 also showed emulsification activity at concentrations up to 66-g L -1 NaCl. ESI-MS analysis showed that the strains produced a mixture of CLPs, which presented distinct CLP profiles at low and high NaCl concentrations. High NaCl concentration favored the synthesis of surfactins and/or fengycins that correlated with the surface activities of TIM49 and TIM68, whereas low concentration favored the synthesis of iturins. Taken together, these findings suggest that the determination of CLP signatures under the expected condition of oil reservoirs can be useful in the guidance for choosing well-suited strains to MEOR.

  9. Effect of loading history on cyclic stress-strain response

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Weiss, B.; Melisova, D.

    2001-01-01

    Roč. 314, 1/2 (2001), s. 1-6 ISSN 0921-5093. [TMS Annual Meeting. Nashville, 12.03.2000-16.03.2000] R&D Projects: GA AV ČR IBS2041001 Institutional research plan: CEZ:AV0Z2041904 Keywords : cyclic plasticity * loading history * mean stress Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.978, year: 2001

  10. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wire or steel jackets

    International Nuclear Information System (INIS)

    Park, Joonam; Choi, Eunsoo; Kim, Hong-Taek; Park, Kyoungsoo

    2011-01-01

    Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel

  11. Experimental study on uniaxial cyclic ratcheting behavior of 304 stainless steel at room temperature

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    The cyclic tests for 304 stainless steel with solution heat treatment under uni-axial cyclic straining and stressing were carried out systematically. The effects of the cyclic engineering stress amplitude history with constant mean stress, the mean engineering stress history with constant cyclic stress amplitude and the stress amplitude histories with the specific mean stress increment per cycle on the uni-axial ratcheting deformation behavior were investigated. Some significant results are obtained

  12. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.

    Science.gov (United States)

    Tang, Dalin; Yang, Chun; Kobayashi, Shunichi; Zheng, Jie; Woodard, Pamela K; Teng, Zhongzhao; Billiar, Kristen; Bach, Richard; Ku, David N

    2009-06-01

    Heart attack and stroke are often caused by atherosclerotic plaque rupture, which happens without warning most of the time. Magnetic resonance imaging (MRI)-based atherosclerotic plaque models with fluid-structure interactions (FSIs) have been introduced to perform flow and stress/strain analysis and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. For coronary arteries, cyclic bending associated with heart motion and anisotropy of the vessel walls may have significant influence on flow and stress/strain distributions in the plaque. FSI models with cyclic bending and anisotropic vessel properties for coronary plaques are lacking in the current literature. In this paper, cyclic bending and anisotropic vessel properties were added to 3D FSI coronary plaque models so that the models would be more realistic for more accurate computational flow and stress/strain predictions. Six computational models using one ex vivo MRI human coronary plaque specimen data were constructed to assess the effects of cyclic bending, anisotropic vessel properties, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. Our results indicate that cyclic bending and anisotropic properties may cause 50-800% increase in maximum principal stress (Stress-P1) values at selected locations. The stress increase varies with location and is higher when bending is coupled with axial stretch, nonsmooth plaque structure, and resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (9.8% decrease in maximum velocity, 2.5% decrease in flow rate, 15% increase in maximum flow shear stress). Inclusion of cyclic bending, anisotropic vessel material properties, accurate plaque structure, and axial stretch in computational FSI models should lead to a considerable improvement of accuracy of computational stress/strain predictions for coronary plaque vulnerability

  13. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  14. Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bonda, N.R.

    1985-01-01

    Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclic history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.

  15. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    International Nuclear Information System (INIS)

    Li Songjie; Zhang Zuogui; Akiyama, Eiji; Tsuzaki, Kaneaki; Zhang Boping

    2010-01-01

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  16. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    Energy Technology Data Exchange (ETDEWEB)

    Li Songjie [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China); Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Zuogui [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Akiyama, Eiji [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: AKIYAMA.Eiji@nims.go.jp; Tsuzaki, Kaneaki [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Boping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China)

    2010-05-15

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  17. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  18. Molecular Simulations of Cyclic Loading Behavior of Carbon Nanotubes Using the Atomistic Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2009-01-01

    Full Text Available The potential applications of carbon nanotubes (CNT in many engineered bionanomaterials and electromechanical devices have imposed an urgent need on the understanding of the fatigue behavior and mechanism of CNT under cyclic loading conditions. To date, however, very little work has been done in this field. This paper presents the results of a theoretical study on the behavior of CNT subject to cyclic tensile and compressive loads using quasi-static molecular simulations. The Atomistic Finite Element Method (AFEM has been applied in the study. It is shown that CNT exhibited extreme cyclic loading resistance with yielding strain and strength becoming constant within limited number of loading cycles. Viscoelastic behavior including nonlinear elasticity, hysteresis, preconditioning (stress softening, and large strain have been observed. Chiral symmetry was found to have appreciable effects on the cyclic loading behavior of CNT. Mechanisms of the observed behavior have been revealed by close examination of the intrinsic geometric and mechanical features of tube structure. It was shown that the accumulated residual defect-free morphological deformation was the primary mechanism responsible for the cyclic failure of CNT, while the bond rotating and stretching experienced during loading/unloading played a dominant role on the strength, strain and modulus behavior of CNT.

  19. A benchmark of co-flow and cyclic deposition/etch approaches for the selective epitaxial growth of tensile-strained Si:P

    Science.gov (United States)

    Hartmann, J. M.; Veillerot, M.; Prévitali, B.

    2017-10-01

    We have compared co-flow and cyclic deposition/etch processes for the selective epitaxial growth of Si:P layers. High growth rates, relatively low resistivities and significant amounts of tensile strain (up to 10 nm min-1, 0.55 mOhm cm and a strain equivalent to 1.06% of substitutional C in Si:C layers) were obtained at 700 °C, 760 Torr with a co-flow approach and a SiH2Cl2 + PH3 + HCl chemistry. This approach was successfully used to thicken the sources and drains regions of n-type fin-shaped Field Effect Transistors. Meanwhile, the (Si2H6 + PH3/HCl + GeH4) CDE process evaluated yielded at 600 °C, 80 Torr even lower resistivities (0.4 mOhm cm, typically), at the cost however of the tensile strain which was lost due to (i) the incorporation of Ge atoms (1.5%, typically) into the lattice during the selective etch steps and (ii) a reduction by a factor of two of the P atomic concentration in CDE layers compared to that in layers grown in a single step (5 × 1020 cm-3 compared to 1021 cm-3).

  20. Mechanical properties of Bi,Pb(2223) single filaments and Ic(ε) behaviour in longitudinally strained tapes

    International Nuclear Information System (INIS)

    Passerini, Reynald; Dhalle, Marc; Seeber, Bernd; Fluekiger, Rene

    2002-01-01

    The Young's modulus and fracture stress of isolated Bi,Pb(2223) filaments were deduced from three-point bending tests performed at different stages of the tapes preparation. These results were introduced in the model describing the evolution of critical current of tapes submitted to a longitudinal strain in view to predict their irreversible strain limit ε irr . These calculated irreversible strain limits were compared to measured values, taken from a set of tapes made with different filling factors and composite matrices. This experiment shows that the predicted irreversible strain limits correspond to the measured ones. Presenting the I c behaviour of highly stressed tapes in a magnetic field, we discuss the evolution of the ratio I strong c0 /I c0 versus strain. This value, representative of the fraction of the critical current attributed to strongly connected grains, increases significantly during the crack formation regime at ε > ε irr . This indicates that mechanically weak links correspond to electromagnetically weak ones. This result is further confirmed by comparing the modulus of rupture obtained in single filaments extracted from tapes with different I c values

  1. Cyclic behavior of 316L steel predicted by means of finite element computations

    International Nuclear Information System (INIS)

    Liu, J.; Sauzay, M.; Robertson, C.; Liu, J.

    2011-01-01

    The cyclic behavior of 316L steels is predicted based on crystalline elastoplastic constitutive laws. Calculations are performed with the finite element software CAST3M, using a polycrystalline mesh where the individual grains are modeled as cubes, having random crystallographic orientations. At the grain scale, the constitutive law parameters are adjusted using single crystal cyclic stress strain curves (CSSCs) from literature. Calculations are performed for different loading conditions (uniaxial tension-compression, biaxial tension-compression and alternated torsion) and a large range of three remote plastic strain amplitudes. We obtained 3 close macroscopic CSSCs. Somewhat lower stresses are obtained in torsion, particularly at high plastic strain amplitude. Our results are in agreement with all the published experimental data. The mean plastic strain is computed in each grain, yielding a particular polycrystalline mean grain plastic strain distribution for each loading condition and remote plastic strain. The plastic strain scatter increases for decreasing macroscopic strains. The number of cycles to the first micro-crack initiation corresponding to the aforesaid plastic strain distributions is then calculated using a surface roughness based initiation criterion. The effect of the different loading conditions is finally discussed. (authors)

  2. Cyclic Equibiaxial Tensile Strain Alters Gene Expression of Chondrocytes via Histone Deacetylase 4 Shuttling.

    Directory of Open Access Journals (Sweden)

    Chongwei Chen

    Full Text Available This paper aims to investigate whether equibiaxial tensile strain alters chondrocyte gene expression via controlling subcellular localization of histone deacetylase 4 (HDAC4.Murine chondrocytes transfected with GFP-HDAC4 were subjected to 3 h cyclic equibiaxial tensile strain (CTS, 6% strain at 0.25 Hz by a Flexcell® FX-5000™ Tension System. Fluorescence microscope and western blot were used to observe subcellular location of HDAC4. The gene expression was analyzed by real-time RT-PCR. The concentration of Glycosaminoglycans in culture medium was quantified by bimethylmethylene blue dye; Collagen II protein was evaluated by western blot. Cells phenotype was identified by immunohistochemistry. Cell viability was evaluated by live-dead cell detect kit. Okadaic acid, an inhibitor of HDAC4 nuclear relocation, was used to further validate whether HDAC4 nuclear relocation plays a role in gene expression in response to tension stimulation.87.5% of HDAC4 was located in the cytoplasm in chondrocytes under no loading condition, but it was relocated to the nucleus after CTS. RT-PCR analysis showed that levels of mRNA for aggrecan, collagen II, LK1 and SOX9 were all increased in chondrocytes subjected to CTS as compared to no loading control chondrocytes; in contrast, the levels of type X collagen, MMP-13, IHH and Runx2 gene expression were decreased in the chondrocytes subjected to CTS as compared to control chondrocytes. Meanwhile, CTS contributed to elevation of glycosaminoglycans and collagen II protein, but did not change collagen I production. When Okadaic acid blocked HDAC4 relocation from the cytoplasm to nucleus, the changes of the chondrocytes induced by CTS were abrogated. There was no chondrocyte dead detected in this study in response to CTS.CTS is able to induce HDAC4 relocation from cytoplasm to nucleus. Thus, CTS alters chondrocytes gene expression in association with the relocation of HDAC4 induced by CTS.

  3. Tests on mechanical behavior of 304 L stainless steel under constant stress associated with cyclic strain

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1979-01-01

    Mechanical analyses of structures, to be efficient, must incorporate materials behavior data. Among the mechanisms liable to cause collapse, progressive distortion (or ratcheting) has been the subject of only a few basic experiments, most of the investigations being theoretical. In order to get meaningful results to characterize materials behavior, an experimental study on ratcheting of austenitic steels has been undertaken at the C.E.A. This paper gives the first results of tests at room temperature on thin tubes of 304L steel submitted to an axial constant stress (primary stress) to which is added a cyclic shearing strain (secondary stress). The tests cover a large combination of the two loading modes. The main results consist of curves of cumulative iso-deformation in the primary and secondary stress field (Bree type diagrams). Results are given for plastic deformations ranging from 0.1 to 2.5% up to N=100 cycles

  4. Local cyclic deformation behavior and microstructure of railway wheel materials

    International Nuclear Information System (INIS)

    Walther, F.; Eifler, D.

    2004-01-01

    The current investigations concentrate on the relation between the loading and environmental conditions, the local microstructure and the fatigue behavior of highly stressed railway wheel and tire steels. Experiments under stress control and total strain control were performed at ambient temperature with servohydraulic testing systems. Superimposed mean loadings allow an evaluation of cyclic creep and mean stress relaxation effects. Strain, temperature and electrical measuring techniques were used to characterize the cyclic deformation behavior of specimens from different depth positions of the cross-sections of UIC-specified wheel components (UIC: International Railway Union). The measured values show a strong interrelation. The microstructural characterization of the different material conditions was done by light and scanning electron microscopy together with digital image processing

  5. Cyclic deformation behavior of steels and light-metal alloys

    International Nuclear Information System (INIS)

    Walther, Frank; Eifler, Dietmar

    2007-01-01

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy

  6. Cyclic deformation behavior of steels and light-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Frank [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)], E-mail: walther@mv.uni-kl.de; Eifler, Dietmar [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)

    2007-11-15

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy.

  7. Longitudinally Jointed Edge-wise Compression Honeycomb Composite Sandwich Coupon Testing and FE Analysis: Three Methods of Strain Measurement, and Comparison

    Science.gov (United States)

    Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn; hide

    2013-01-01

    Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.

  8. Multiaxial Stress-Strain Modeling and Effect of Additional Hardening due to Nonproportional Loading

    International Nuclear Information System (INIS)

    Rashed, G.; Ghajar, R.; Farrahi, G.

    2007-01-01

    Most engineering components are subjected to multiaxial rather than uniaxial cyclic loading, which causes multiaxial fatigue. The pre-requisite to predict the fatigue life of such components is to determine the multiaxial stress strain relationship. In this paper the multiaxial cyclic stress-strain model under proportional loading is derived using the modified power law stress-strain relationship. The equivalent strain amplitude consisted of the normal strain excursion and maximum shear strain amplitude is used in the proportional model to include the additional hardening effect due to nonproportional loading. Therefore a new multiaxial cyclic stress-strain relationship is devised for out of phase nonproportional loading. The model is applied to the nonproportional loading case and the results are compared with the other researchers' experimental data published in the literature, which are in a reasonable agreement with the experimental data. The relationship presented here is convenient for the engineering applications

  9. Investigation on effectiveness of a prefabricated vertical drain during cyclic loading

    International Nuclear Information System (INIS)

    Indraratna, B; Ni, J; Rujikiatkamjorn, C

    2010-01-01

    The effectiveness of prefabricated vertical drains (PVDs) in enhancing the stability of soft soils during cyclic loading was investigated using triaxial cyclic loading tests. Both undrained and with PVD tests were employed to study the associated excess pore pressure and accumulated strain under the repeated loading condition. The loading frequency and cyclic stress ratio have been chosen to be the variables which influence the performance of soft clays. The experimental results illustrate that with PVDs, the excess pore water pressure generation during cyclic loading decreases significantly. It is found that the excess pore water pressure build up depends on both loading frequency and cyclic stress ratio. The excess pore water pressure will increase when each of them is increased. Furthermore, when the loading frequency is 0.1 Hz, the ratio of coefficient of consolidation under cyclic loading to that under static loading is almost one. With the increasing loading frequency, this ratio increases accordingly.

  10. Report on an Assessment of the Application of EPP Results from the Strain Limit Evaluation Procedure to the Prediction of Cyclic Life Based on the SMT Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Jetter, R. I. [R. I. Jetter Consulting, Pebble Beach, CA (United States); Messner, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Y. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The goal of the proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology is to incorporate an SMT data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. This methodology should minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed methodology and to verify the applicability of the code rules, analytical studies and evaluation of thermomechanical test results continued in FY17. This report presents the results of those studies. An EPP strain limits methodology assessment was based on recent two-bar thermal ratcheting test results on 316H stainless steel in the temperature range of 405 to 7050C. Strain range predictions from the EPP evaluation of the two-bar tests were also evaluated and compared with the experimental results. The role of sustained primary loading on cyclic life was assessed using the results of pressurized SMT data from tests on Alloy 617 at 9500C. A viscoplastic material model was used in an analytic simulation of two-bar tests to compare with EPP strain limits assessments using isochronous stress strain curves that are consistent with the viscoplastic material model. A finite element model of a prior 304H stainless steel Oak Ridge National Laboratory (ORNL) nozzle-to-sphere test was developed and used for an EPP strain limits and creep-fatigue code case damage evaluations. A theoretical treatment of a recurring issue with convergence criteria for plastic shakedown illustrated the role of computer machine precision in EPP calculations.

  11. Cyclic saturation dislocation structures of multiple-slip-oriented copper single crystals

    International Nuclear Information System (INIS)

    Li, X.W.; Chinese Academy of Sciences, Shenyang; Umakoshi, Y.; Li, S.X.; Wang, Z.G.

    2001-01-01

    The dislocation structures of [011] and [ anti 111] multiple-slip-oriented Cu single crystals cyclically saturated at constant plastic strain amplitudes were investigated through transmission electron microscopy. The results obtained on [001] multiple-slip-oriented Cu single crystals were also included for summarization. Unlike the case for single-slip-oriented Cu single crystals, the crystallographic orientation has a strong effect on the saturation dislocation structure in these three multiple-slip-oriented crystals. For the [011] crystal, different dislocation patterns such as veins, PSB walls, labyrinths and PSB ladders were observed. The formation of PSB ladders is believed to be a major reason for the existence of a plateau region in the cyclic stress-strain (CSS) curve for the [011] crystal. The cyclic saturation dislocation structure of a [ anti 111] crystal cycled at a low applied strain amplitude γ pl of 2.0 x 10 -4 was found to consist of irregular cells, which would develop into a more regular arrangement (e. g. PSB ladder-like) and the scale of which tends to decrease with increasing γ pl . Finally, three kinds of representative micro-deformation mode were summarized and termed as labyrinth-mode (or [001]-mode), cell-mode (or [ anti 111]-mode) and PSB ladder-mode (or [011]-mode). (orig.)

  12. Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2018-01-01

    Full Text Available In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.

  13. Infrared thermographic analysis of shape memory polymer during cyclic loading

    International Nuclear Information System (INIS)

    Staszczak, Maria; Pieczyska, Elżbieta A; Maj, Michał; Kukla, Dominik; Tobushi, Hisaaki

    2016-01-01

    In this paper we present the effects of thermomechanical couplings occurring in polyurethane shape memory polymer subjected to cyclic tensile loadings conducted at various strain rates. Stress–strain characteristics were elaborated using a quasistatic testing machine, whereas the specimen temperature changes accompanying the deformation process were obtained with an infrared camera. We demonstrate a tight correlation between the mechanical and thermal results within the initial loading stage. The polymer thermomechanical behaviour in four subsequent loading-unloading cycles and the influence of the strain rate on the stress and the related temperature changes were also examined. In the range of elastic deformation the specimen temperature drops below the initial level due to thermoelastic effect whereas at the higher strains the temperature always increased, due to the dissipative deformation mechanisms. The difference in the characteristics of the specimen temperature has been applied to determine a limit of the polymer reversible deformation and analyzed for various strain rates. It was shown that at the higher strain rates higher values of the stress and temperature changes are obtained, which are related to higher values of the polymer yield points. During the cyclic loading a significant difference between the first and the second cycle was observed. The subsequent loading-unloading cycles demonstrated similar sharply shaped stress and temperature profiles and gradually decrease in values. (paper)

  14. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension–unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension–unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain. (paper)

  15. Cyclic plastic response of nickel-based superalloy at room and at elevated temperatures

    International Nuclear Information System (INIS)

    Polak, Jaroslav; Petrenec, Martin; Chlupova, Alice; Tobias, Jiri; Petras, Roman

    2015-01-01

    Nickel-based cast IN 738LC superalloy has been cycled at increasing strain amplitudes at room temperature and at 800 C. Hysteresis loops were analyzed using general statistical theory of the hysteresis loop. Dislocation structures of specimens cycled at these two temperatures were studied. They revealed localization of the cyclic plastic strain in the thin bands which are rich in dislocations. The analysis of the loop shapes yields effective stresses of the matrix and of the precipitates and the probability density function of the critical internal stresses at both temperatures. It allows to find the sources of the high cyclic stress.

  16. Dynamic Strength and Accumulated Plastic Strain Development Laws and Models of the Remolded Red Clay under Long-Term Cyclic Loads: Laboratory Test Results

    Directory of Open Access Journals (Sweden)

    Li Jian

    2015-09-01

    Full Text Available The dynamic strength and accumulated plastic strain are two important parameters for evaluating the dynamic response of soil. As a special clay, the remolded red clay is often used as the high speed railway subgrade filling, but studies on its dynamic characteristics are few. For a thorough analysis of the suitability of the remolded red clay as the subgrade filling, a series of long-term cyclic load triaxial test under different load histories are carried out. Considering the influence of compactness, confining pressure, consolidation ratio, vibration frequency and dynamic load to the remolded red clay dynamic property, the tests obtain the development curves of the dynamic strength and accumulated plastic strain under different test conditions. Then, through curve fitting method, two different hyperbolic models respectively for the dynamic strength and accumulated plastic strain are built, which can match the test datum well. By applying the dynamic strength model, the critical dynamic strength of the remolded red clay are gained. Meanwhile, for providing basic datum and reference for relevant projects, all key parameters for the dynamic strength and accumulated plastic strain of the remolded red clay are given in the paper.

  17. Nonlinear elastic longitudinal strain-wave propagation in a plate with nonequilibrium laser-generated point defects

    International Nuclear Information System (INIS)

    Mirzade, Fikret Kh.

    2005-01-01

    The propagation of longitudinal strain wave in a plate with quadratic nonlinearity of elastic continuum was studied in the context of a model that takes into account the joint dynamics of elastic displacements in the medium and the concentration of the nonequilibrium laser-induced point defects. The input equations of the problem are reformulated in terms of only the total displacements of the medium points. In this case, the presence of structural defects manifests itself in the emergence of a delayed response of the system to the propagation of the strain-related perturbations, which is characteristic of media with relaxation or memory. The model equations describing the nonlinear displacement wave were derived with allowance made for the values of the relaxation parameter. The influence of the generation and relaxation of lattice defects on the propagation of this wave was analyzed. It is shown that, for short relaxation times of defects, the strain can propagate in the form of shock fronts. In the case of longer relaxation times, shock waves do not form and the strain wave propagates only in the form of solitary waves or a train of solitons. The contributions of the finiteness of the defect-recombination rate to linear and nonlinear elastic modulus, and spatial dispersion are determined

  18. Cyclic deformation and fatigue data for Ti–6Al–4V ELI under variable amplitude loading

    Directory of Open Access Journals (Sweden)

    Patricio E. Carrion

    2017-08-01

    Full Text Available This article presents the strain-based experimental data for Ti–6Al–4V ELI under non-constant amplitude cyclic loading. Uniaxial strain-controlled fatigue experiments were conducted under three different loading conditions, including two-level block loading (i.e. high-low and low-high, periodic overload, and variable amplitude loading. Tests were performed under fully-reversed, and mean strain/stress conditions. For each test conducted, two sets of data were collected; the cyclic stress–strain response (i.e. hysteresis loops in log10 increments, and the peak and valley values of stress and strain for each cycle. Residual fatigue lives are reported for tests with two-level block loading, while for periodic overload and variable amplitude experiments, fatigue lives are reported in terms of number of blocks to failure.

  19. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.

    Science.gov (United States)

    De Smet, Els; Jaecques, Siegfried V N; Wevers, Martine; Sloten, Jos Vander; Naert, Ignace E

    2013-06-01

    Strain, frequency, loading time, and strain rate, among others, determine mechanical parameters in osteogenic loading. We showed a significant osteogenic effect on bone mass (BM) by daily peri-implant loading at 1.600µε.s(-1) after 4 weeks. To study the peri-implant osteogenic effect of frequency and strain in the guinea pig tibia by in vivo longitudinal micro-computed tomography (CT) analysis. One week after implant installation in both hind limb tibiae, one implant was loaded daily for 10' during 4 weeks, while the other served as control. Frequencies (3, 10, and 30Hz) and strains varied alike in the three series to keep the strain rate constant at 1.600µε.s(-1) . In vivo micro-CT scans were taken of both tibiae: 1 week after implantation but before loading (v1) and after 2 (v2) and 4 weeks (v3) of loading as well as postmortem (pm). BM (BM (%) bone-occupied area fraction) was calculated as well as the difference between test and control sides (delta BM) RESULTS: All implants (n=78) were clinically stable at 4 weeks. Significant increase in BM was measured between v1 and v2 (pimplant marrow 500 Region of Interest already 2 weeks after loading (p=.01) and was significantly larger (11%) in series 1 compared with series 2 (p=.006) and 3 (p=.016). Within the constraints of constant loading time and strain rate, the effect of early implant loading on the peri-implant bone is strongly dependent on strain and frequency. This cortical bone model has shown to be most sensitive for high force loading at low frequency. © 2011 Wiley Periodicals, Inc.

  20. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Guo, Haibing; Shi, Tao [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: hhw@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong, E-mail: inpcnyb@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China)

    2017-05-15

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  1. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    International Nuclear Information System (INIS)

    Zhang, Hao; Guo, Haibing; Shi, Tao; Ye, Minyou; Huang, Hongwen; Li, Zhenghong

    2017-01-01

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  2. Mechanical properties of Bi,Pb(2223) single filaments and I sub c (epsilon) behaviour in longitudinally strained tapes

    CERN Document Server

    Passerini, R; Seeber, B; Flükiger, R

    2002-01-01

    The Young's modulus and fracture stress of isolated Bi,Pb(2223) filaments were deduced from three-point bending tests performed at different stages of the tapes preparation. These results were introduced in the model describing the evolution of critical current of tapes submitted to a longitudinal strain in view to predict their irreversible strain limit epsilon sub i sub r sub r. These calculated irreversible strain limits were compared to measured values, taken from a set of tapes made with different filling factors and composite matrices. This experiment shows that the predicted irreversible strain limits correspond to the measured ones. Presenting the I sub c behaviour of highly stressed tapes in a magnetic field, we discuss the evolution of the ratio I sup s sup t sup r sup o sup n sup g sub c sub 0 /I sub c sub 0 versus strain. This value, representative of the fraction of the critical current attributed to strongly connected grains, increases significantly during the crack formation regime at epsilon >...

  3. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    Science.gov (United States)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  4. Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel

    Czech Academy of Sciences Publication Activity Database

    Mazánová, Veronika; Škorík, Viktor; Kruml, Tomáš; Polák, Jaroslav

    2017-01-01

    Roč. 100, JUL (2017), s. 466-476 ISSN 0142-1123 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic plasticity * Damage mechanism * Multiaxial straining Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.899, year: 2016

  5. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Yuanqing Wang

    2016-01-01

    Full Text Available Experiments of 17 high strength aluminum alloy (7A04 specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinematic hardening were calibrated from test data according to Chaboche model. The cyclic tests were simulated in finite element software ABAQUS. The test results show that 7A04 aluminum alloy has obvious nonlinearity and ultra-high strength which is over 600 MPa, however, with relatively poor ductility. In the cyclic loading tests, 7A04 aluminum alloy showed cyclic hardening behavior and when the compressive strain was larger than 1%, the stiffness degradation and strength degradation occurred. The simulated curves derived by FE model fitted well with experimental curves which indicates that the parameters of this combined model can be used in accurate calculation of 7A04 high strength aluminum structures under cyclic loading.

  6. BUILDING BRIDGES ON THE LINEAR TECHNOLOGY CYCLIC SLIDING. THE GERMAN EXPERIENCE

    Directory of Open Access Journals (Sweden)

    E. Kanshin

    2010-04-01

    Full Text Available The basic provisions of technology of the cyclic longitudinal pulling down of bridges are presented in the article. The historical review and examples of effective application of technology for building of modern transport structures of complicated configuration in the straitened conditions of performing the work are given.

  7. Biosynthesis and regulation of cyclic lipopeptides in Pseudomonas fluorescens

    NARCIS (Netherlands)

    Bruijn, de I.

    2009-01-01

    Cyclic lipopeptides (CLPs) are surfactant and antibiotic metabolites produced by a variety of bacterial
    genera. For the genus Pseudomonas, many structurally different CLPs have been identified. CLPs play an
    important role in surface motility of Pseudomonas strains, but also in virulence

  8. Cyclic plastic hinges with degradation effects for frame structures

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex...... shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each generalized stress-strain component describing yield level, ultimate stress capacity, elastic...... and stiffness parameters. The cyclic plastic hinges are introduced into a six-component equilibrium-based beam element, using additive element and hinge flexibilities. When converted to stiffness format the plastic hinges are incorporated into the element stiffness matrix. The cyclic plastic hinge model...

  9. Cyclic deformation of dissimilar welded joints between Ti–6Al–4V and Ti17 alloys: Effect of strain ratio

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.Q. [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 127 Youyi Road, Xi' an 710072 (China); Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Liu, J.H., E-mail: jinhliu@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 127 Youyi Road, Xi' an 710072 (China); Lu, Z.X. [Department of Materials Science and Engineering, Xi' an University of Technology, 5 Jinhuanan Road, Xi' an 710048 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-03-01

    Cyclic deformation characteristics of electron beam welded (EBWed) joints between Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys were evaluated via strain-controlled low-cycle fatigue tests at varying strain ratios at a constant strain amplitude. The welding led to a significant microstructural change across the dissimilar joint, with hexagonal close-packed (HCP) martensite α' and orthorhombic martensite α″ in the fusion zone (FZ), α' in the heat-affected zone (HAZ) of Ti–6Al–4V side, and coarse β in the HAZ of Ti17 side. A distinctive asymmetrical hardness profile across the joint was observed with the highest hardness in the FZ and a lower hardness in the HAZ of Ti17 side than in the Ti17 base metal (BM), indicating the presence of soft zone. The strength and ductility of the dissimilar joint lay in-between those of two base metals (BMs). Unlike wrought magnesium alloys, the Ti–6Al–4V BM, Ti17 BM, and joint basically exhibited symmetrical hysteresis loops in tension and compression in the fully reversed strain-controlled tests at a strain ratio of R{sub ε}=−1. At a strain ratio of R{sub ε}=0 and 0.5, a large amount of plastic deformation occurred in the ascending phase of the first cycle of hysteresis loops of Ti–6Al–4V BM, Ti17 BM, and joint due to the high positive mean strain values. Fatigue life of the joint was observed to be the longest at R{sub ε}=−1, and it decreased as the strain ratio deviated from R{sub ε}=−1. A certain degree of mean stress relaxation was observed in the non-fully reversed strain controlled tests (i.e., R{sub ε}≠−1). Fatigue failure of the dissimilar joints occurred in the Ti–6Al–4V BM, with crack initiation from the specimen surface or near-surface defect and crack propagation characterized by fatigue striations.

  10. Longitudinal changes in reproductive hormones and menstrual cyclicity in cynomolgus monkeys during strenuous exercise training: abrupt transition to exercise-induced amenorrhea.

    Science.gov (United States)

    Williams, N I; Caston-Balderrama, A L; Helmreich, D L; Parfitt, D B; Nosbisch, C; Cameron, J L

    2001-06-01

    Cross-sectional studies of exercise-induced reproductive dysfunction have documented a high proportion of menstrual cycle disturbances in women involved in strenuous exercise training. However, longitudinal studies have been needed to examine individual susceptibility to exercise-induced reproductive dysfunction and to elucidate the progression of changes in reproductive function that occur with strenuous exercise training. Using the female cynomolgus monkey (Macaca fascicularis), we documented changes in menstrual cyclicity and patterns of LH, FSH, estradiol, and progesterone secretion as the animals developed exercise-induced amenorrhea. As monkeys gradually increased running to 12.3 +/- 0.9 km/day, body weight did not change significantly although food intake remained constant. The time spent training until amenorrhea developed varied widely among animals (7-24 months; mean = 14.3 +/- 2.2 months) and was not correlated with initial body weight, training distance, or food intake. Consistent changes in function of the reproductive axis occurred abruptly, one to two menstrual cycles before the development of amenorrhea. These included significant declines in plasma reproductive hormone concentrations, an increase in follicular phase length, and a decrease in luteal phase progesterone secretion. These data document a high level of interindividual variability in the development of exercise-induced reproductive dysfunction, delineate the progression of changes in reproductive hormone secretion that occur with exercise training, and illustrate an abrupt transition from normal cyclicity to an amenorrheic state in exercising individuals, that is not necessarily associated with weight loss.

  11. Effects of relative density and accumulated shear strain on post-liquefaction residual deformation

    Directory of Open Access Journals (Sweden)

    J. Kim

    2013-10-01

    Full Text Available The damage caused by liquefaction, which occurs following an earthquake, is usually because of settlement and lateral spreading. Generally, the evaluation of liquefaction has been centered on settlement, that is, residual volumetric strain. However, in actual soil, residual shear and residual volumetric deformations occur simultaneously after an earthquake. Therefore, the simultaneous evaluation of the two phenomena and the clarification of their relationship are likely to evaluate post-liquefaction soil behaviors more accurately. Hence, a quantitative evaluation of post-liquefaction damage will also be possible. In this study, the effects of relative density and accumulated shear strain on post-liquefaction residual deformations were reviewed through a series of lateral constrained-control hollow cylindrical torsion tests under undrained conditions. In order to identify the relationship between residual shear and residual volumetric strains, this study proposed a new test method that integrates monotonic loading after cyclic loading, and K0-drain after cyclic loading – in other words, the combination of cyclic loading, monotonic loading, and the K0 drain. In addition, a control that maintained the lateral constrained condition across all the processes of consolidation, cyclic loading, monotonic loading, and drainage was used to reproduce the anisotropy of in situ ground. This lateral constrain control was performed by controlling the axial strain, based on the assumption that under undrained conditions, axial and lateral strains occur simultaneously, and unless axial strain occurs, lateral strain does not occur. The test results confirmed that the recovery of effective stresses, which occur during monotonic loading and drainage after cyclic loading, respectively, result from mutually different structural restoration characteristics. In addition, in the ranges of 40–60% relative density and 50–100% accumulated shear strain, relative

  12. Effect of loading pattern on longitudinal bowing in flexible roll forming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyun; Woo, Young Yun; Hwang, Tae Woo; Han, Sang Wook; Moon, Young Hoon [School of Mechanical Engineering, Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University,Busan (Korea, Republic of)

    2016-12-15

    The flexible roll forming process can be used to fabricate products with a variable cross-section profile in the longitudinal direction. Transversal nonuniformity of the longitudinal strain is one of the fundamental characteristics of blank deformation in flexible roll forming. Longitudinal bowing is a shape defect caused by transversal nonuniformity of the longitudinal strain. In this study, loading patterns in flexible roll forming are investigated in order to reduce the longitudinal bowing in a roll-formed blank. To analyze the effects of loading patterns on longitudinal bowing, two different forming schedules are implemented. In schedule 1, loading patterns with different bending angle increments are designed under fixed initial and final bending angles. In schedule 2, loading patterns with different initial bending angles under the fixed final bending angle are designed. Our results show that the bowing heights are significantly affected by the loading patterns. The bowing susceptibilities vary with blank shape such as trapezoid, convex, and concave shapes. In addition to the peak longitudinal strain at the respective roll stands, the cumulative longitudinal strain from the initial to final stands is shown to be a reliable index in predicting the tendency of longitudinal bowing.

  13. Mechanical Degradation of Porous NiTi Alloys Under Static and Cyclic Loading

    Science.gov (United States)

    Hosseini, Seyyed Alireza

    2017-12-01

    Pore characteristics and morphology have significant effect on mechanical behavior of porous NiTi specimens. In this research, porous NiTi with different pore sizes, shapes and morphology were produced by powder metallurgy methods using space-holder materials. The effect of the pore characteristics on the mechanical properties was investigated by static and cyclic compression tests at body temperature. The results show that specimens with low porosity and isolated pores exhibit more mechanical strength and recoverable strain. The specimen with 36% porosity produced without space holder could preserve its properties up to 10% strain and its strain recovery was complete after cyclic compression tests. On the other hand, the specimens produced by a urea space holder with more than 60% interconnected porosity show rapid degradation of their scaffolds. The highly porous specimens degraded even below 5% strain due to crack formation and propagation in the thin pore walls. For highly porous specimens produced by a NaCl space holder, the pores are partially interconnected with a cubic shape; nevertheless, their mechanical behavior is close to low-porosity specimens.

  14. Cyclic compressive creep-elastoplastic behaviors of in situ TiB_2/Al-reinforced composite

    International Nuclear Information System (INIS)

    Zhang, Qing; Zhang, Weizheng; Liu, Youyi; Guo, BingBin

    2016-01-01

    This paper presents a study on the cyclic compressive creep-elastoplastic behaviors of a TiB_2-reinforced aluminum matrix composite (ZL109) at 350 °C and 200 °C. According to the experimental results, under cyclic elastoplasticity and cyclic coupled compressive creep-elastoplasticity, the coupled creep will cause changes in isotropic stress and kinematic stress. Isotropic stress decreases with coupled creep, leading to cyclic softening. Positive kinematic stress, however, increases with coupled creep, leading to cyclic hardening. Transmission electron microscopy (TEM) observations of samples under cyclic compressive creep-elastoplasticity with different temperatures and strain amplitudes indicate that more coupled creep contributes to more subgrain boundaries but fewer intracrystalline dislocations. Based on the macro tests and micro observations, the micro mechanism of compressive creep's influence on cyclic elastoplasticity is elucidated. Dislocations recovering with coupled creep leads to isotropic softening, whereas subgrain structures created by coupled creep lead to kinematic hardening during cyclic deformation.

  15. Cyclic loading of simulated fault gouge to large strains

    Science.gov (United States)

    Jones, Lucile M.

    1980-04-01

    As part of a study of the mechanics of simulated fault gouge, deformation of Kayenta Sandstone (24% initial porosity) was observed in triaxial stress tests through several stress cycles. Between 50- and 300-MPa effective pressure the specimens deformed stably without stress drops and with deformation occurring throughout the sample. At 400-MPa effective pressure the specimens underwent strain softening with the deformation occurring along one plane. However, the difference in behavior seems to be due to the density variation at different pressures rather than to the difference in pressure. After peak stress was reached in each cycle, the samples dilated such that the volumetric strain and the linear strain maintained a constant ratio (approximately 0.1) at all pressures. The behavior was independent of the number of stress cycles to linear strains up to 90% and was in general agreement with laws of soil behavior derived from experiments conducted at low pressure (below 5 MPa).

  16. Longitudinal genotyping of Candida dubliniensis isolates reveals strain maintenance, microevolution, and the emergence of itraconazole resistance.

    LENUS (Irish Health Repository)

    Fleischhacker, M

    2010-05-01

    We investigated the population structure of 208 Candida dubliniensis isolates obtained from 29 patients (25 human immunodeficiency virus [HIV] positive and 4 HIV negative) as part of a longitudinal study. The isolates were identified as C. dubliniensis by arbitrarily primed PCR (AP-PCR) and then genotyped using the Cd25 probe specific for C. dubliniensis. The majority of the isolates (55 of 58) were unique to individual patients, and more than one genotype was recovered from 15 of 29 patients. A total of 21 HIV-positive patients were sampled on more than one occasion (2 to 36 times). Sequential isolates recovered from these patients were all closely related, as demonstrated by hybridization with Cd25 and genotyping by PCR. Six patients were colonized by the same genotype of C. dubliniensis on repeated sampling, while strains exhibiting altered genotypes were recovered from 15 of 21 patients. The majority of these isolates demonstrated minor genetic alterations, i.e., microevolution, while one patient acquired an unrelated strain. The C. dubliniensis strains could not be separated into genetically distinct groups based on patient viral load, CD4 cell count, or oropharyngeal candidosis. However, C. dubliniensis isolates obtained from HIV-positive patients were more closely related than those recovered from HIV-negative patients. Approximately 8% (16 of 194) of isolates exhibited itraconazole resistance. Cross-resistance to fluconazole was only observed in one of these patients. Two patients harboring itraconazole-resistant isolates had not received any previous azole therapy. In conclusion, longitudinal genotyping of C. dubliniensis isolates from HIV-infected patients reveals that isolates from the same patient are generally closely related and may undergo microevolution. In addition, isolates may acquire itraconazole resistance, even in the absence of prior azole therapy.

  17. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    Directory of Open Access Journals (Sweden)

    Xijia Gu

    2010-08-01

    Full Text Available We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor.

  18. Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy

    International Nuclear Information System (INIS)

    Koss, D.A.; Wojcik, C.C.

    1976-01-01

    The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here

  19. Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel

    Science.gov (United States)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.

    2018-01-01

    In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.

  20. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    Energy Technology Data Exchange (ETDEWEB)

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  1. 3D DDD modelling of dislocation-precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation

    Science.gov (United States)

    Lin, Bing; Huang, Minsheng; Zhao, Liguo; Roy, Anish; Silberschmidt, Vadim; Barnard, Nick; Whittaker, Mark; McColvin, Gordon

    2018-06-01

    Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0 0 1] and [1 1 1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ‧-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress-strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1 1 1] orientation when compared to [0 0 1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.

  2. Random cyclic stress-strain responses of a stainless steel pipe-weld metal. I. A statistical investigation

    International Nuclear Information System (INIS)

    Zhao, Y.X.; Wang, J.N.

    2000-01-01

    For pt.II see ibid., vol.199, p.315-26, 2000. This paper pays a special attention to the issue that there is a significant scatter of the stress-strain responses of a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. Statistical investigation is made to the cyclic stress amplitudes of this material. Three considerations are given. They consist of the total fit, the consistency with fatigue physics and the safety in practice of the seven commonly used statistical distributions, namely Weibull (two- and three-parameter), normal, lognormal, extreme minimum value, extreme maximum value and exponential. Results reveal that the data follow meanwhile the seven distributions but the local effects of the distributions yield a significant difference. Any of the normal, lognormal, extreme minimum value and extreme maximum value distributions might be an appropriate assumed distribution for characterizing the data. The normal and extreme minimum models are excellent. Other distributions do not fit the data as they violate two or three of the mentioned considerations. (orig.)

  3. Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2016-11-01

    Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.

  4. True Triaxial Experimental Study of Rockbursts Induced By Ramp and Cyclic Dynamic Disturbances

    Science.gov (United States)

    Su, Guoshao; Hu, Lihua; Feng, Xiating; Yan, Liubin; Zhang, Gangliang; Yan, Sizhou; Zhao, Bin; Yan, Zhaofu

    2018-04-01

    A modified rockburst testing system was utilized to reproduce rockbursts induced by ramp and cyclic dynamic disturbances with a low-intermediate strain rate of 2 × 10-3-5 × 10-3 s-1 in the laboratory. The experimental results show that both the ramp and cyclic dynamic disturbances play a significant role in inducing rockbursts. In the tests of rockbursts induced by a ramp dynamic disturbance, as the static stress before the dynamic disturbance increases, both the strength of specimens and the kinetic energy of the ejected fragments first increase and then decrease. In the tests of rockbursts induced by a cyclic dynamic disturbance, there exists a rockburst threshold of the static stress and the dynamic disturbance amplitude, and the kinetic energy of the ejected fragments first increases and then decreases as the cyclic dynamic disturbance frequency increases. The main differences between rockbursts induced by ramp dynamic disturbances and those induced by cyclic dynamic disturbances are as follows: the rockburst development process of the former is characterized by an impact failure feature, while that of the latter is characterized by a fatigue failure feature; the damage evolution curve of the specimen of the former has a leap-developing form with a significant catastrophic feature, while that of the latter has an inverted S-shape with a remarkable fatigue damage characteristic; the energy mechanism of the former involves the ramp dynamic disturbance giving extra elastic strain energy to rocks, while that of the latter involves the cyclic dynamic disturbance decreasing the ultimate energy storage capacity of rocks.

  5. Prolonged job strain and subsequent risk of cancer in women–a longitudinal study, based on the Danish Nurse Cohort

    DEFF Research Database (Denmark)

    Vesterlund, Gitte K.; Høeg, Beverley L.; Johansen, Christoffer

    2017-01-01

    Background: The role of psychological stress in cancer risk is continuously debated. Stress at work is the most common form of stress and previous studies have shown inconsistent results regarding cancer risk. In this longitudinal study, we examined the association between prolonged job strain......-related, digestive and lung cancers according to level of prolonged job strain. The women were followed from 1 January 2000 until cancer diagnosis, emigration, death or 31 December 2013 (mean follow-up 13 years) and models were adjusted for potential confounders. Effect modification was examined according to working...... nightshifts and full time. Results: No significant differences in the risk of overall cancer or any of the cancer subgroups were identified in relation to prolonged busyness, speed, influence, or overall job strain. Effect modification by working full time was observed when examining job influence in relation...

  6. CRP-Cyclic AMP Regulates the Expression of Type 3 Fimbriae via Cyclic di-GMP in Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Ching-Ting Lin

    Full Text Available Klebsiella pneumoniae is the predominant pathogen isolated from liver abscesses of diabetic patients in Asian countries. However, the effects of elevated blood glucose levels on the virulence of this pathogen remain largely unknown. Type 3 fimbriae, encoded by the mrkABCDF genes, are important virulence factors in K. pneumoniae pathogenesis. In this study, the effects of exogenous glucose and the intracellular cyclic AMP (cAMP signaling pathway on type 3 fimbriae expression regulation were investigated. The production of MrkA, the major subunit of type 3 fimbriae, was increased in glucose-rich medium, whereas cAMP supplementation reversed the effect. MrkA production was markedly increased by cyaA or crp deletion, but slightly decreased by cpdA deletion. In addition, the mRNA levels of mrkABCDF genes and the activity of PmrkA were increased in Δcrp strain, as well as the mRNA levels of mrkHIJ genes that encode cyclic di-GMP (c-di-GMP-related regulatory proteins that influence type 3 fimbriae expression. Moreover, the activities of PmrkHI and PmrkJ were decreased in ΔlacZΔcrp strain. These results indicate that CRP-cAMP down-regulates mrkABCDF and mrkHIJ at the transcriptional level. Further deletion of mrkH or mrkI in Δcrp strain diminished the production of MrkA, indicating that MrkH and MrkI are required for the CRP regulation of type 3 fimbriae expression. Furthermore, the high activity of PmrkHI in the ΔlacZΔcrp strain was diminished in ΔlacZΔcrpΔmrkHI, but increased in the ΔlacZΔcrpΔmrkJ strain. Deletion of crp increased the intracellular c-di-GMP concentration and reduced the phosphodiesterase activity. Moreover, we found that the mRNA levels of multiple genes related to c-di-GMP metabolism were altered in Δcrp strain. These indicate that CRP regulates type 3 fimbriae expression indirectly via the c-di-GMP signaling pathway. In conclusion, we found evidence of a coordinated regulation of type 3 fimbriae expression by the CRP

  7. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells

    International Nuclear Information System (INIS)

    Ghazanfari, Samane; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali

    2009-01-01

    Bone marrow mesenchymal stem cells (MSCs) are capable of differentiating into a variety of cell types such as vascular smooth muscle cells (SMCs). In this study, we investigated influence of cyclic stretch on proliferation of hMSCs for different loading conditions, alignment of actin filaments, and consequent differentiation to SMCs. Isolated cells from bone marrow were exposed to cyclic stretch utilizing a customized device. Cell proliferation was examined by MTT assay, alignment of actin fibers by a designed image processing code, and cell differentiation by fluorescence staining. Results indicated promoted proliferation of hMSCs by cyclic strain, enhanced by elevated strain amplitude and number of cycles. Such loading regulated smooth muscle α-actin, and reoriented actin fibers. Cyclic stretch led to differentiation of hMSCs to SMCs without addition of growth factor. It was concluded that applying appropriate loading treatment on hMSCs could enhance proliferation capability, and produce functional SMCs for engineered tissues.

  8. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  9. The influence of microstructure on the cyclic deformation and damage of copper and an oxide dispersion strengthened steel studied via in-situ micro-beam bending

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C., E-mail: cam7745@berkeley.edu [University of California, 2111A Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Fritz, R.; Alfreider, M.; Kiener, D. [Department of Materials Physics, Montanuniversität Leoben, A-8700, Leoben (Austria); Hosemann, P. [University of California, 2111A Etcheverry Hall, Berkeley, CA 94720-1730 (United States)

    2017-02-27

    Service materials are often designed for strength, ductility, or toughness, but neglect the effects of cyclic time-variable loads ultimately leading to macroscopic mechanical failure. Fatigue originates as local plasticity that can first only be observed on the micro scale at defects serving as stress concentrators such as inclusions or grain boundaries. Thus, a recently developed technique to perform in-situ observation of micro scale bending fatigue experiments was applied. Micro-beams fabricated from copper, single grained and ultrafine grained (ufg), and an oxide dispersion strengthened (ODS) steel were subject to cyclic deformation and subsequent damage. The elastic stiffness, yield strength, dissipated energy, and maximum stress were measured as a function of cycle number and plastic strain amplitude. From these properties, cyclic stress-strain curves were developed. Initial pronounced monotonic hardening and an increasing Bauschinger effect were observed in all samples with increasing strain amplitude. Cyclic stability was maintained until plastic strain amplitudes reached a critical value. At this point, dramatic cyclic softening and microcracking occurred. The critical strain amplitude was found to be approximately 5.4×10{sup −3} for the copper with a refined grain structure and 1.2×10{sup −2} for the steel specimen. Grain rotation and noticeable changes in sub-grain structure were evident in the ufg copper after a critical strain amplitude of ε{sub a}=8.3×10{sup −3}. In-situ micro fatigue bending couples the cyclic evolution of bulk mechanical properties measurements with real-time electron microscopy analysis techniques of damage and failure mechanisms, which renders it a powerful method for developing novel fatigue resistant materials.

  10. The comparison of cyclic deformation curve determination for ADI

    Czech Academy of Sciences Publication Activity Database

    Zapletal, J.; Obrtlík, Karel; Věchet, S.

    308 2005, - (2005), s. 305-309 ISSN 1429-6055. [Miedzynarodowe sympozjum /20./. Ustroň-Jaszowiec, 07.12.2005-09.12.2005] R&D Projects: GA ČR(CZ) GA106/03/1265 Institutional research plan: CEZ:AV0Z20410507 Keywords : cyclic stress-strain curve * austempered ductile iron Subject RIV: JG - Metallurgy

  11. Effect of geometry, material and pressure variability on strain and stress fields in dented pipelines under static and cyclic pressure loading using probability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Al-Muslim, Husain Mohammed; Arif, Abul Fazal M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2010-07-01

    Mechanical damage in transportation pipelines is an issue of extreme importance to pipeline operators and many others. Appropriate procedures for severity assessment are necessary. This paper mainly studies the effect of geometry, material and pressure variability on strain and stress fields in dented pipelines subjected to static and cyclic pressure. Finite element analysis (FEA) has often been used to overcome the limitations of a full-scale test, but it is still impossible to run FEA for all possible combinations of parameters. Probabilistic analysis offers an excellent alternative method to determine the sensitivity of the strain and stress fields to each of those input parameters. A hundred cases were randomly generated with Monte Carlo simulations and analyzed, a general formula was proposed to relate the output variables in terms of practically measured variables, and regression analysis was performed to confirm the appropriateness of the general formula.

  12. A deformation (strain) envelope for cyclic disturbed sand

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2018-01-01

    Recent advances in triaxial testing procedures revealed new properties governing disturbed sand stiffness. This paper summarizes the new observations into an original, proof of concept. The novel concept interpolates effective stress within a strain (deformation) envelope. Coulomb stress limits...... are still satisfied, but the stresses are interpolated using a deformation (strain) envelope. The method is not part of a constitutive formulation, but is remarkably functional in triaxial testing practice. The practicality is proven by plotting simulations on top of empirically measured stiffness history...... - the fitting is remarkably good even during tests of extreme complexity. The novelty has substantial interdisciplinary potential: offshore anchors and foundations, earthquakes and industrial processes - wherever dynamic loads and disturbed sand are encountered. It opens the door to a new branch of numerical...

  13. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro

    International Nuclear Information System (INIS)

    Tang Lin; Lin Zhu; Li Yongming

    2006-01-01

    In addition to systemic and local factors, mechanical strain plays a crucial role in bone remodeling during growth, development, and fracture healing, and especially in orthodontic tooth movement. Although many papers have been published on the effects of mechanical stress on osteoblasts or osteoblastic cells, little is known about the effects of different magnitudes of mechanical strain on such cells. In the present study, we investigated how different magnitudes of cyclic tensile strain affected osteoblasts. MC3T3-E1 osteoblastic cells were subjected to 0%, 6%, 12% or 18% elongation for 24 h using a Flexercell Strain Unit, and then the mRNA and protein expressions of osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) were examined. The results showed that cyclic tensile strain induced a magnitude-dependent increase (0%, 6%, 12%, and 18%) in OPG synthesis and a concomitant decrease in RANKL mRNA expression and sRANKL release from the osteoblasts. Furthermore, the induction of OPG mRNA expression by stretching was inhibited by indomethacin or genistein, and the stretch-induced reduction of RANKL mRNA was inhibited by PD098059. These results indicate that different magnitudes of cyclic tensile strain influence the biological behavior of osteoblasts, which profoundly affects bone remodeling

  14. Fatigue Damage Analysis by Use of Cyclic Strain Approach

    DEFF Research Database (Denmark)

    Andersen, Michael Rye

    1996-01-01

    by one in ballast condition. Some of the reported cracks had their origins in holes in the longitudinals (the holes were probably made for mounting purposes) located at the upper deck close to the midship section Fig. 1. The cracks began at the upper edge of the holes and propagated in the direction...

  15. Behavior of prestressed concrete subjected to low temperatures and cyclic loading

    International Nuclear Information System (INIS)

    Berner, D.E.

    1984-01-01

    Concrete has exhibited excellent behavior in cryogenic containment vessels for several decades under essentially static conditions. Tests were conducted to determine the response of prestressed lightweight concrete subjected to high-intensity cyclic loading and simultaneous cryogenic thermal shock, simulating the relatively dynamic conditions encountered offshore or in seismic areas. Lightweight concrete has several attractive properties for cryogenic service including: (1) very low permeability, (2) good strain capacity, (3) relatively low thermal conductivity, and (4) a low modulus of elasticity. Experimental results indicated that the mechanical properties of plain lightweight concrete significantly increase with moisture content at low temperatures, while cyclic loading fatigue effects are reduced at low temperatures. Also, tests on uniaxially and on biaxially prestressed lightweight concrete both indicate that the test specimens performed well under severe cyclic loading and cryogenic thermal shock with only moderate reduction in flexural stiffness. Supplementary tests conducted in this study indicate that conventionally reinforced concrete degrades significantly faster than prestressed concrete when subjected to cyclic loading and thermal shock

  16. Cyclic Deformation and Fatigue Behaviors of Alloy 617 Base Metal and Weldments at 900℃ for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Kim, Byung Tak; Dewa, Rando T.; Hwang, Jeong Jun; Kim, Tae Su [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An analysis of cyclic deformation can contribute to a deeper understanding of the fatigue fracture mechanisms as well as to improvements in the design and application of VHTR system. However, the studies associated with cyclic deformation and low cycle fatigue (LCF) properties of Alloy 617 have focused mainly on the base metal, with little attention given to the weldments. Totemeier studied on high-temperature creep-fatigue of Alloy 617 base metal and weldments. Current research activities at PKNU and KAERI focus on the study of cyclic deformation and LCF behaviors of Alloy 617 base metal (BM) and weldments (WM) specimens were machined from GTAW buttwelded plates at very high-temperature of 900℃. In this work, the cyclic deformation characteristics and fatigue behaviors of Alloy 617 BM and WM are studied and discussed with respect to LCF. In this paper, cyclic deformation and low cycle fatigue behaviors of Alloy 617 base metal and weldments was evaluated using strain-controlled LCF tests at 900℃for 0.6% total strain range. Results of the current experiments can be concluded; The WM specimen has shown a higher cyclic stress response than the BM specimen. The fatigue life of WM specimen was reduced relative to that of BM specimen.

  17. Champacyclin, a New Cyclic Octapeptide from Streptomyces Strain C42 Isolated from the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Alexander Pesic

    2013-12-01

    Full Text Available New isolates of Streptomyces champavatii were isolated from marine sediments of the Gotland Deep (Baltic Sea, from the Urania Basin (Eastern Mediterranean, and from the Kiel Bight (Baltic Sea. The isolates produced several oligopeptidic secondary metabolites, including the new octapeptide champacyclin (1a present in all three strains. Herein, we report on the isolation, structure elucidation and determination of the absolute stereochemistry of this isoleucine/leucine (Ile/Leu = Xle rich cyclic octapeptide champacyclin (1a. As 2D nuclear magnetic resonance (NMR spectroscopy could not fully resolve the structure of (1a, additional information on sequence and configuration of stereocenters were obtained by a combination of multi stage mass spectrometry (MSn studies, amino acid analysis, partial hydrolysis and subsequent enantiomer analytics with gas chromatography positive chmical ionization/electron impact mass spectrometry (GC-PCI/EI-MS supported by comparison to reference dipeptides. Proof of the head-to-tail cyclization of (1a was accomplished by solid phase peptide synthesis (SPPS compared to an alternatively side chain cyclized derivative (2. Champacyclin (1a is likely synthesized by a non-ribosomal peptide synthetase (NRPS, because of its high content of (d-amino acids. The compound (1a showed antimicrobial activity against the phytopathogen Erwinia amylovora causing the fire blight disease of certain plants.

  18. Mechanical Behavior of Red Sandstone under Incremental Uniaxial Cyclical Compressive and Tensile Loading

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2017-01-01

    Full Text Available Uniaxial experiments were carried out on red sandstone specimens to investigate their short-term and creep mechanical behavior under incremental cyclic compressive and tensile loading. First, based on the results of short-term uniaxial incremental cyclic compressive and tensile loading experiments, deformation characteristics and energy dissipation were analyzed. The results show that the stress-strain curve of red sandstone has an obvious memory effect in the compressive and tensile loading stages. The strains at peak stresses and residual strains increase with the cycle number. Energy dissipation, defined as the area of the hysteresis loop in the stress-strain curves, increases nearly in a power function with the cycle number. Creep test of the red sandstone was also conducted. Results show that the creep curve under each compressive or tensile stress level can be divided into decay and steady stages, which cannot be described by the conventional Burgers model. Therefore, an improved Burgers creep model of rock material is constructed through viscoplastic mechanics, which agrees very well with the experimental results and can describe the creep behavior of red sandstone better than the Burgers creep model.

  19. Global Longitudinal Strain to Predict Mortality in Patients With Acute Heart Failure.

    Science.gov (United States)

    Park, Jin Joo; Park, Jun-Bean; Park, Jae-Hyeong; Cho, Goo-Yeong

    2018-05-08

    Heart failure (HF) is currently classified according to left ventricular ejection fraction (LVEF); however, the prognostic value of LVEF is controversial. Myocardial strain is a prognostic factor independently of LVEF. The authors sought to evaluate the prognostic value of global longitudinal strain (GLS) in patients with HF. GLS was measured in 4,172 consecutive patients with acute HF. Patients were categorized as either HF with reduced (LVEF 12.6%), moderately (8.1% < GLS <12.5%), or severely (GLS ≤8.0%) reduced strain. The primary endpoint was 5-year all-cause mortality. Mean GLS was 10.8%, and mean LVEF was 40%. Overall, 1,740 (40.4%) patients had died at 5 years. Patients with reduced ejection fraction had slightly higher mortality than those with midrange or preserved ejection fraction (41%, 38%, and 39%, respectively; log-rank p = 0.031), whereas patients with reduced strain had significantly higher mortality (severely reduced GLS, 49%; moderately reduced GLS, 38%; mildly reduced GLS, 34%; log-rank p < 0.001). In multivariable analysis, each 1% increase in GLS was associated with a 5% decreased risk for mortality (p < 0.001). Patients with moderate (hazard ratio: 1.31; 95% confidence interval: 1.13 to 1.53) and severe GLS reductions (hazard ratio: 1.61; 95% confidence interval: 1.36 to 1.91) had higher mortality, but LVEF was not associated with mortality. In patients with acute HF, GLS has greater prognostic value than LVEF. Therefore, the authors suggest that GLS should be considered as the standard measurement in all patients with HF. This new concept needs validation in further studies. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Strain and strain rate by two-dimensional speckle tracking echocardiography in a maned wolf

    Directory of Open Access Journals (Sweden)

    Matheus M. Mantovani

    2012-12-01

    Full Text Available The measurement of cardiovascular features of wild animals is important, as is the measurement in pets, for the assessment of myocardial function and the early detection of cardiac abnormalities, which could progress to heart failure. Speckle tracking echocardiography (2D STE is a new tool that has been used in veterinary medicine, which demonstrates several advantages, such as angle independence and the possibility to provide the early diagnosis of myocardial alterations. The aim of this study was to evaluate the left myocardial function in a maned wolf by 2D STE. Thus, the longitudinal, circumferential and radial strain and strain rate were obtained, as well as, the radial and longitudinal velocity and displacement values, from the right parasternal long axis four-chamber view, the left parasternal apical four chamber view and the parasternal short axis at the level of the papillary muscles. The results of the longitudinal variables were -13.52±7.88, -1.60±1.05, 4.34±2.52 and 3.86±3.04 for strain (%, strain rate (1/s, displacement (mm and velocity (cm/s, respectively. In addition, the radial and circumferential Strain and Strain rate were 24.39±14.23, 1.86±0.95 and -13.69±6.53, -1.01±0.48, respectively. Thus, the present study provides the first data regarding the use of this tool in maned wolves, allowing a more complete quantification of myocardial function in this species.

  1. A methodology for strain-based fatigue reliability analysis

    International Nuclear Information System (INIS)

    Zhao, Y.X.

    2000-01-01

    A significant scatter of the cyclic stress-strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter. A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg-Osgood relation. The strain-life data are modeled, similarly, by probability-based strain-life curves of Coffin-Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results

  2. Progressive buckling under both constant axial load and cyclic distortion

    International Nuclear Information System (INIS)

    Clement, G.; Acker, D.; Lebey, J.

    1988-09-01

    Thin structures submitted to compressive loads must be carefully designed to avoid any risk of ruin by buckling. The aim of this paper is, first, to evidence that the critical buckling load may be notably lowered when cyclic strains are added to the compressive load and, secondly, to propose a practical rule of prevention against the ruin due to the progressive buckling phenomenon. This rule is validated by the results of numerous tests related to the entire range of modes of buckling (i.e. from fully plastic to fully elastic). Practical cases of interest for its use could mainly be those where cyclic thermal stresses are involved

  3. True stress control asymmetric cyclic plastic behavior in SA333 C-Mn steel

    International Nuclear Information System (INIS)

    Paul, Surajit Kumar; Sivaprasad, S.; Dhar, S.; Tarafder, S.

    2010-01-01

    Asymmetric cyclic loading in the plastic region can leads to progressive accumulation of permanent strain. True stress controlled uniaxial asymmetric cycling on SA333 steel is conducted at various combinations of mean stress and stress amplitude in laboratory environment. It is investigated that fatigue life increases in the presence of mean stress. Plastic strain amplitude and hysteresis loop area are found to decrease with increasing mean stress. A huge difference of life and ratcheting strain accumulation is found in engineering and true stress controlled tests.

  4. Longitudinal strain predicts left ventricular mass regression after aortic valve replacement for severe aortic stenosis and preserved left ventricular function.

    Science.gov (United States)

    Gelsomino, Sandro; Lucà, Fabiana; Parise, Orlando; Lorusso, Roberto; Rao, Carmelo Massimiliano; Vizzardi, Enrico; Gensini, Gian Franco; Maessen, Jos G

    2013-11-01

    We explored the influence of global longitudinal strain (GLS) measured with two-dimensional speckle-tracking echocardiography on left ventricular mass regression (LVMR) in patients with pure aortic stenosis (AS) and normal left ventricular function undergoing aortic valve replacement (AVR). The study population included 83 patients with severe AS (aortic valve area regression (all P regression in patients with pure AS undergoing AVR. Our findings must be confirmed by further larger studies.

  5. Soil Fatigue Due To Cyclically Loaded Foundations

    OpenAIRE

    Pytlik, Robert Stanislaw

    2016-01-01

    Cyclic loading on civil structures can lead to a reduction of strength of the used materials. A literature study showed that, in contrast to steel structures and material engineering, there are no design codes or standards for fatigue of foundations and the surrounding ground masses in terms of shear strength reduction. Scientific efforts to study the fatigue behaviour of geomaterials are mainly focused on strain accumulation, while the reduction of shear strength of geomaterials has not been...

  6. Impact of Cardiac Resynchronization Therapy on Left Ventricular Mechanics: Understanding the Response through a New Quantitative Approach Based on Longitudinal Strain Integrals.

    Science.gov (United States)

    Bernard, Anne; Donal, Erwan; Leclercq, Christophe; Schnell, Frédéric; Fournet, Maxime; Reynaud, Amélie; Thebault, Christophe; Mabo, Philippe; Daubert, J-Claude; Hernandez, Alfredo

    2015-06-01

    The mechanisms of improvement of left ventricular (LV) function with cardiac resynchronization therapy (CRT) are not yet elucidated. The aim of this study was to describe a new tool based on automatic quantification of the integrals of regional longitudinal strain signals and evaluate changes in LV strain distribution after CRT. This was a retrospective observational study of 130 patients with heart failure before CRT device implantation and after 3 to 6 months of follow-up. Integrals of regional longitudinal strain signals (from the beginning of the cardiac cycle to strain peak [IL,peak] and to the instant of aortic valve closure [IL,avc]) were analyzed retrospectively with custom-made algorithms. Response to CRT was defined as a decrease in LV end-systolic volume of ≥15%. Responders (61%) and nonresponders (39%) showed similar baseline values of regional IL,peak and IL,avc. At follow-up, significant improvements of midlateral IL,peak and of midlateral IL,avc were noted only in responders. Midlateral IL,avc showed a relative increase of 151 ± 276% in responders, whereas a decrease of 33 ± 69% was observed in nonresponders. The difference between IL,avc and IL,peak (representing wasted energy of the LV myocardium) of the lateral wall showed a relative change of -59 ± 103% in responders between baseline and CRT, whereas in nonresponders, the relative change was 21 ± 113% (P = .009). Strain integrals revealed changes between baseline and CRT in the lateral wall, demonstrating the beneficial effects of CRT on LV mechanics with favorable myocardial reverse remodeling. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  7. Prediction of elastic-plastic response of structural elements subjected to cyclic loading

    International Nuclear Information System (INIS)

    El Haddad, M.H.; Samaan, S.

    1985-01-01

    A simplified elastic-plastic analysis is developed to predict stress strain and force deformation response of structural metallic elements subjected to irregular cyclic loadings. In this analysis a simple elastic-plastic method for predicting the skeleton force deformation curve is developed. In this method, elastic and fully plastic solutions are first obtained for unknown quantities, such as deflection or local strains. Elastic and fully plastic contributions are then combined to obtain an elastic-plastic solution. The skeleton curve is doubled to establish the shape of the hysteresis loop. The complete force deformation response can therefore be simulated through reversal by reversal in accordance with hysteresis looping and material memory. Several examples of structural elements with various cross sections made from various materials and subjected to irregular cyclic loadings, are analysed. A close agreement is obtained between experimental results found in the literature and present predictions. (orig.)

  8. Changes in job strain and subsequent weight gain: a longitudinal study, based on the Danish Nurse Cohort.

    Science.gov (United States)

    Vesterlund, Gitte Kingo; Keller, Amélie Cléo; Heitmann, Berit Lilienthal

    2018-04-01

    Obesity as well as job strain is increasing, and job strain might contribute to weight gain. The objective of the current study was to examine associations between longitudinal alterations in the components of job strain and subsequent weight gain. The study was designed as a prospective cohort study with three questionnaire surveys enabling measurement of job-strain alterations over 6 years and subsequent measurements of weight gain after further 10 years of follow-up. ANCOVA and trend analyses were conducted. Job demands were measured as job busyness and speed, and control as amount of influence. Employed nurses in Denmark. We included a sub-sample of 6188 female nurses from the Danish Nurse Cohort, which consisted of the nurses who participated in surveys in 1993, 1999 and 2009. A linear trend in weight gain was seen in nurses who were often busy in 1999 between those who were rarely v. sometimes v. often busy in 1993 (P=0·03), with the largest weight gain in individuals with sustained high busyness in both years. Loss of influence between 1993 and 1999 was associated with larger subsequent weight gain than sustained high influence (P=0·003) or sustained low influence (P=0·02). For speed, no associations were found. Busyness, speed and influence differed in their relationship to subsequent weight gain. A decrease in job influence and a sustained burden of busyness were most strongly related to subsequent weight gain. Focus on job strain reduction and healthy diet is essential for public health.

  9. Effect of ratchet strain on fatigue and creep–fatigue strength of Mod.9Cr–1Mo steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Isobe, Nobuhiro; Kikuchi, Koichi; Enuma, Yasuhiro

    2012-01-01

    Highlights: ► Uniaxial fatigue and creep–fatigue tests with superimposed strain were performed. ► Variety of superimposed strain were applied as ratchet strain in the tests. ► Effect of superimposed strain on fatigue and creep–fatigue life is negligible. ► A cyclic softening character reducing the effect of superimposed strain. - Abstract: The effect of ratcheting deformation on fatigue and creep–fatigue life in Mod.9Cr–1Mo steel was investigated. Uniaxial fatigue and creep–fatigue testing with superimposed strain were performed to evaluate the effect of ratcheting deformation on the failure cycle. In a series of tests, a specific amount of superimposed strain was accumulated in each cycle. The accumulated strain as ratcheting deformation, cycles to reach the accumulated strain, and test temperatures were varied in the tests. In the fatigue tests with superimposed strain at 550 °C, slight reductions of failure lives were observed. All of the numbers of cycles to failure in the fatigue tests with superimposed strain were within a factor of 1.5 of that of the fatigue test without superimposed strain at 550 °C. The apparent relationship between failure cycles and testing parameters was not observed. In fatigue tests with superimposed strain at 550 °C, maximum mean stress was insignificant and generated in early cycles because Mod.9Cr–1Mo steel exhibits cyclic softening characteristics. It was assumed that suppression of mean stress generation by cyclic softening reduces the effect of ratcheting strain. Conversely, failure lives were increased by accumulated strain in the test conducted at 450 °C because of stress–strain hysteresis loop shrinkage caused by cyclic softening induced by the accumulated strain. In the creep–fatigue tests with superimposed strain, test results indicated that the accumulated stain was negligible. It was concluded that the effect of ratcheting deformation on fatigue and creep–fatigue life is negligible as long

  10. Re-examination of cellular cyclic beta-1,2-glucans of Rhizobiaceae: distribution of ring sizes and degrees of glycerol-1-phosphate substitution.

    Science.gov (United States)

    Zevenhuizen, L P; van Veldhuizen, A; Fokkens, R H

    1990-04-01

    Gel-filtration and thin layer chromatography of low molecular weight carbohydrates from culture filtrates of Agrobacterium radiobacter, Isolate II, have shown, that next to the neutral beta-1,2-glucan fraction a major acidic fraction was present which was found to be glycerophosphorylated cyclic beta-1,2-glucans. Re-examination of cyclic beta-1,2-glucan preparations which had been obtained by extraction of Rhizobium cells with hot phenol-water also showed these acidic modified beta-1,2-glucans to be present. Cyclic beta-1,2-glucans from R. leguminosarum (9 strains) and of R. phaseoli (1 strain) had ring size distribution with degrees of polymerisation (DPs) of 19 and 20 as major ring sizes of which a minor part was glycerophosphorylated; beta-1,2-glucans of R. trifolii (3 strains) had ring sizes with DPs measuring 19-22 as prominent components which were largely unsubstituted, and R. meliloti (7 strains) had beta-1,2-glucans with ring size distributions extending to still higher DPs of 19-25 of which the major part appeared to be glycerophosphorylated.

  11. Growth of extrusions in localized cyclic plastic straining

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Sauzay, M.

    2009-01-01

    Roč. 500, č. 1-2 (2009), s. 122-129 ISSN 0921-5093 R&D Projects: GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : extrusion * strain localization * persistent slip band * vacancy Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.901, year: 2009

  12. A modelling approach for exploring muscle dynamics during cyclic contractions.

    Directory of Open Access Journals (Sweden)

    Stephanie A Ross

    2018-04-01

    Full Text Available Hill-type muscle models are widely used within the field of biomechanics to predict and understand muscle behaviour, and are often essential where muscle forces cannot be directly measured. However, these models have limited accuracy, particularly during cyclic contractions at the submaximal levels of activation that typically occur during locomotion. To address this issue, recent studies have incorporated effects into Hill-type models that are oftentimes neglected, such as size-dependent, history-dependent, and activation-dependent effects. However, the contribution of these effects on muscle performance has yet to be evaluated under common contractile conditions that reflect the range of activations, strains, and strain rates that occur in vivo. The purpose of this study was to develop a modelling framework to evaluate modifications to Hill-type muscle models when they contract in cyclic loops that are typical of locomotor muscle function. Here we present a modelling framework composed of a damped harmonic oscillator in series with a Hill-type muscle actuator that consists of a contractile element and parallel elastic element. The intrinsic force-length and force-velocity properties are described using Bézier curves where we present a system to relate physiological parameters to the control points for these curves. The muscle-oscillator system can be geometrically scaled while preserving dynamic and kinematic similarity to investigate the muscle size effects while controlling for the dynamics of the harmonic oscillator. The model is driven by time-varying muscle activations that cause the muscle to cyclically contract and drive the dynamics of the harmonic oscillator. Thus, this framework provides a platform to test current and future Hill-type model formulations and explore factors affecting muscle performance in muscles of different sizes under a range of cyclic contractile conditions.

  13. Cyclic deformation behaviour of quenched and tempered AISI 4140 at two-step tensile-compressive-loading

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, V.; Lang, K.-H.; Voehringer, O.; Macherauch, E. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1

    1997-08-30

    The cyclic deformation behaviour in stress-controlled two-step experiments with one or more changes between two blocks of certain lengths and amplitudes was investigated at the technically important steel AISI 4140 (German grade 42 CrMo 4). In all two-step experiments cyclic worksoftening behaviour is found. The degree of work softening is discussed in comparison to single-step experiments. In several cases effects of static strain-ageing can be found. (orig.) 10 refs.

  14. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    International Nuclear Information System (INIS)

    Dirras, G.; Bouvier, S.; Gubicza, J.; Hasni, B.; Szilagyi, T.

    2009-01-01

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about ε VM = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  15. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, G., E-mail: dirras@univ-paris13.fr [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Bouvier, S. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Gubicza, J. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary); Hasni, B. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Szilagyi, T. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary)

    2009-11-25

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about {epsilon}{sub VM} = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  16. Crack initiation life analysis in notched pipe under cyclic bending loads

    International Nuclear Information System (INIS)

    Lee, Joon Seong; Kwak, Sang Log; Kim, Young Jin; Park, Youn Won

    2001-01-01

    In order to improve leak-before-break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but crack initiation cycle was higher than the experimental result

  17. Crack initiation life analysis in notched pipe under cyclic bending loads

    International Nuclear Information System (INIS)

    Goak, S. R.; Kim, Y. J.; Lee, J. S.; Park, Y. W.

    2000-01-01

    In order to improve LBB(Leak-Before-Break) methodology, more precisely the crack growth evaluation, a benchmark problem was proposed by the CEA Saclay. The aim of this benchmark analysis was to evaluate the crack growth in a notched pipe under cyclic bending loads. The proposed benchmark analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result

  18. Specificity of the Cyclic GMP-Binding Activity and of a Cyclic GMP-Dependent Cyclic GMP Phosphodiesterase in Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Walsum, Hans van; Meer, Rob C. van der; Bulgakov, Roman; Konijn, Theo M.

    1982-01-01

    The nucleotide specificity of the cyclic GMP-binding activity in a homogenate of Dictyostelium discoideum was determined by competition of cyclic GMP derivatives with [8-3H] cyclic GMP for the binding sites. The results indicate that cyclic GMP is bound to the binding proteins by hydrogen bonds at

  19. Reinforced concrete membrane elements subjected to reversed cyclic in-plane shear stress

    International Nuclear Information System (INIS)

    Ohmori, N.; Tsubota, H.; Inoue, N.; Watanabe, S.; Kurihara, K.

    1987-01-01

    The response of reinforced concrete elements subjected to reversed cyclic in-plane shear stresses can be predicted by an analytical model, which considers equilibrium, compatibility and stress-strain relationships including hysteresis loop of unloading and reloading stages all expressed in terms of average stresses and average strains. The analytical results show that the dominant hysteretic behaviours in regard to decrease of stiffness during unloading, successive slip phenomena and restoration of compressive stiffness at the reloading stages are well simulated analytically. The results agree quite well with the observed behaviours. As for the envelope curve of the hysteretic response there remain the discrepancies that the stiffness and ultimate strength are a bit larger than the observed results, especially in the case of a panel with a large reinforcement ratio. Such descrepancies are also found in the predicted results of monotonic loading and more precise studies are necessary to evaluate more accurate envelope curves under not only reversed cyclic loading but also monotonic loading. (orig./HP)

  20. Numerical simulation of lead devices for seismic isolation and vibration control on their damping characteristics. Development of lead material model under cyclic large deformation

    International Nuclear Information System (INIS)

    Matsuda, Akihiro; Yabana, Shuichi; Borst, Rene de

    2004-01-01

    In order to predict the mechanical properties of lead devices for seismic isolation and vibration control, especially damping behavior under cyclic loading using numerical simulation, cyclic shear loading tests and uniaxial tensile loading tests were performed, and a new material model was proposed with the use of the both test results. Until now, it has been difficult to evaluate mechanical properties of lead material under cyclic loading by uniaxial tensile loading test because local deformations appeared with the small tensile strain. Our shear cyclic loading tests for lead material enabled practical evaluation of its mechanical properties under cyclic large strain which makes it difficult to apply uniaxial test. The proposed material model was implemented into a finite element program, and it was applied to numerical simulation of mechanical properties of lead dampers and rubber bearings with a lead plug. The numerical simulations and the corresponding laboratory loading tests showed good agreement, which proved the applicability of the proposed model. (author)

  1. Low-cyclic fatigue behavior of modified 9Cr–1Mo steel at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Guguloth, Krishna; Sivaprasad, S. [CSIR-National Metallurgical laboratory, Material Science and Technology Division, Jamshedpur 831007 (India); Chakrabarti, D. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Tarafder, S. [CSIR-National Metallurgical laboratory, Material Science and Technology Division, Jamshedpur 831007 (India)

    2014-05-01

    The low-cycle fatigue behavior of indigenously developed modified 9Cr–1Mo steel has been evaluated using a constant strain rate (1×10{sup −3} s{sup −1}) at ambient temperature (25 °C) and at elevated temperatures (500–600 °C) over the strain amplitudes varying between ±0.7% and ±1.2%. Cyclic stress response showed a gradual softening regime that ended in a stress plateau until complete failure of the specimens. The estimated fatigue life decreased with the increase in test temperature. The effect of temperature on fatigue life was more pronounced at lower strain amplitudes. The cyclic deformation behavior at different temperatures has been analyzed from hysteresis loop and also in view of the changes taking place in dislocation structure and dislocation–precipitation interaction. Evaluation of low-cycle fatigue properties of modified 9Cr–1Mo steel over a range of test temperature can help in designing components for in-core applications in fast breeder reactors and in super heaters for nuclear power plants.

  2. Monotonic and cyclic bond behavior of confined concrete using NiTiNb SMA wires

    International Nuclear Information System (INIS)

    Choi, Eunsoo; Chung, Young-Soo; Kim, Yeon-Wook; Kim, Joo-Woo

    2011-01-01

    This study conducts bond tests of reinforced concrete confined by shape memory alloy (SMA) wires which provide active and passive confinement of concrete. This study uses NiTiNb SMA which usually shows wide temperature hysteresis; this is a good advantage for the application of shape memory effects. The aims of this study are to investigate the behavior of SMA wire under residual stress and the performance of SMA wire jackets in improving bond behavior through monotonic-loading tests. This study also conducts cyclic bond tests and analyzes cyclic bond behavior. The use of SMA wire jackets transfers the bond failure from splitting to pull-out mode and satisfactorily increases bond strength and ductile behavior. The active confinement provided by the SMA plays a major role in providing external pressure on the concrete because the developed passive confinement is much smaller than the active confinement. For cyclic behavior, slip and circumferential strain are recovered more with larger bond stress. This recovery of slip and circumferential strain are mainly due to the external pressure of the SMA wires since cracked concrete cannot provide any elastic recovery

  3. Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression

    Science.gov (United States)

    Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu

    2017-06-01

    Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.

  4. Cyclic deformation and fatigue of rolled AZ80 magnesium alloy along different material orientations

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Jiang, Yanyao, E-mail: yjiang@unr.edu [University of Nevada, Reno, Department of Mechanical Engineering, Reno, NV 89557 (United States)

    2016-11-20

    The effect of material orientation on cyclic deformation and fatigue behavior of rolled AZ80 magnesium (Mg) alloy was experimentally investigated under fully reversed strain-controlled loading in ambient. The testing specimens were taken from a rolled AZ80 Mg plate at four orientations with respect to rolled plane: 0°(ND, normal direction), 30°(ND30), 60°(ND60), and 90°(RD, rolled direction). Fatigue fracture morphologies of specimens along different orientation were analyzed by scanning electron microscopy (SEM). Overall cyclic hardening was observed for the material loaded in different directions. For a given strain amplitude, the ND specimens had the lowest fatigue resistance among the specimens of all material orientations. The fatigue life of an ND30 specimens is similar to that of an ND60 specimen at a given strain amplitude and both are higher than that of an RD specimen when the strain amplitude is higher than 0.4%, whereas an RD specimen exhibits a better fatigue resistance when the strain amplitude is lower than 0.4%. A mixed fracture mode with transgranular and intergranular cracking related to lamellar-like features occurred during stable crack growth, and an intergranular fracture mode related to dimple-like features exhibited in the fast fracture region. A multiaxial fatigue model based on the strain energy density can correlate all the fatigue experiments of the material at different material orientations.

  5. Regulation of Maltodextrin Phosphorylase Synthesis in Escherichia coli by Cyclic Adenosine 3′, 5′-Monophosphate and Glucose1

    Science.gov (United States)

    Chao, Julie; Weathersbee, Carolyn J.

    1974-01-01

    Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043

  6. Bulk nonlinear elastic strain waves in a bar with nanosize inclusions

    DEFF Research Database (Denmark)

    Gula, Igor A.; Samsonov (†), Alexander M.

    2018-01-01

    We propose a mathematical model for propagation of the long nonlinearly elastic longitudinal strain waves in a bar, which contains nanoscale structural inclusions. The model is governed by a nonlinear doubly dispersive equation (DDE) with respect to the one unknown longitudinal strain function. We...

  7. Association between left ventricular global longitudinal strain and natriuretic peptides in outpatients with chronic systolic heart failure

    DEFF Research Database (Denmark)

    Gaborit, F; Bosselmann, H; Tønder, N

    2015-01-01

    BACKGROUND: Both impaired left ventricular (LV) global longitudinal strain (GLS) and increased plasma concentrations of natriuretic peptides(NP) are associated with a poor outcome in heart failure (HF). Increased levels of NP reflect increased wall stress of the LV. However, little is known about.......28-8.30, P = 0.013) and linear regression (NT-proBNP: βGLS: 1.19, 95 %-CI: 0.62-1.76, P renal function) and left atrial volume index....... CONCLUSION: Impaired LV GLS is associated with increased plasma concentrations of NP and our data suggest that left ventricular myocardial mechanics estimated by LV GLS reflects myocardial wall stress in chronic systolic HF....

  8. Thermal and mechanical cyclic loading of thick spherical vessels made of transversely isotropic materials

    International Nuclear Information System (INIS)

    Komijani, M.; Mahbadi, H.; Eslami, M.R.

    2013-01-01

    The aim of this paper is to obtain the dependency of the ratcheting, reversed plasticity, or shakedown behavior of spherical vessels made of some anisotropic materials to the stress category of imposed cyclic loading. The Hill anisotropic yield criterion with the kinematic hardening theories of plasticity based on the Prager and Armstrong–Frederick models are used to predict the yield of the vessel and obtain the plastic strains. An iterative numerical method is used to simulate the cyclic loading behavior of the structure. The effect of mean and amplitude of the mechanical and thermal loads on cyclic behavior and ratcheting rate of the vessel is investigated respectively. The ratcheting rate for the vessels made of transversely isotropic material is evaluated for the various ratios of anisotropy. -- Highlights: ► Cyclic loading analysis of anisotropic spheres is assessed. ► Using the Prager model results in ratcheting. ► Armstrong-Frederick model predicts ratcheting for load controlled cyclic loadings. ► The A-F model predicts ratcheting to a stabilized cycle for thermal loadings

  9. Cyclic degradation of antagonistic shape memory actuated structures

    International Nuclear Information System (INIS)

    Sofla, A Y N; Elzey, D M; Wadley, H N G

    2008-01-01

    Antagonistic shape memory actuated structures exploit opposing pairs of one-way shape memory alloy (SMA) linear actuators to create devices capable of a fully reversible response. Unlike many conventional reversible SMA devices they do not require bias force components (springs) to return them to their pre-actuated configuration. However, the repeated use of SMA antagonistic devices results in the accumulation of plastic strain in the actuators which can diminish their actuation stroke. We have investigated this phenomenon and the effect of shape memory alloy pre-strain upon it for near equi-atomic NiTi actuators. We find that the degradation eventually stabilizes during cycling. A thermomechanical treatment has been found to significantly reduce degradation in cyclic response of the actuators

  10. Inelastic constitutive models for the simulation of a cyclic softening behavior of modified 9Cr-lMo steel at elevated temperatures

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2007-01-01

    In this paper, the inelastic constitutive models for the simulations of the cyclic softening behavior of the modified 9Cr-1Mo steel, which has a significant cyclic softening characteristic especially in elevated temperature regions, are investigated in detail. To do this, the plastic modulus, which primarily governs the calculation scheme of the plasticity, is formulated for the inelastic constitutive models such as the Armstrong-Frederick model, Chaboche model, and Ohno-Wang model. By implementing the extracted plastic modulus and the consistency conditions into the computer program, the inelastic constitutive parameters are identified to present the best fit of the uniaxial cyclic test data by strain-controlled simulations. From the computer simulations by using the obtained constitutive parameters, it is found that the Armstrong-Frederick model is simple to use but it causes significant overestimated strain results when compared with the Chaboche and the Ohno-Wang models. And from the ratcheting simulation results, it is found that the cyclic softening behavior of the modified 9Cr-1Mo steel can invoke a ratcheting instability when the applied cyclic loads exceed a certain level of the ratchet loading condition

  11. Strain and Vibration in Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Brooke McClarren

    2018-01-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent cells capable of differentiating into any mesenchymal tissue, including bone, cartilage, muscle, and fat. MSC differentiation can be influenced by a variety of stimuli, including environmental and mechanical stimulation, scaffold physical properties, or applied loads. Numerous studies have evaluated the effects of vibration or cyclic tensile strain on MSCs towards developing a mechanically based method of differentiation, but there is no consensus between studies and each investigation uses different culture conditions, which also influence MSC fate. Here we present an overview of the response of MSCs to vibration and cyclic tension, focusing on the effect of various culture conditions and strain or vibration parameters. Our review reveals that scaffold type (e.g., natural versus synthetic; 2D versus 3D can influence cell response to vibration and strain to the same degree as loading parameters. Hence, in the efforts to use mechanical loading as a reliable method to differentiate cells, scaffold selection is as important as method of loading.

  12. Effect of cyclic loading on the viscoplastic behaviour of Zircaloy 4 cladding tubes

    International Nuclear Information System (INIS)

    Bouffioux, P.; Gabriel, B.; Soniak, A.; Mardon, J.P.

    1995-06-01

    Most of the electricity being generated by nuclear energy load follow and remote control have become normal operating modes in the French PWR. In addition, EDF is developing a strategy of fuel sub-assembly burnup extension. Those operating conditions will lead to cyclic straining of the Zircaloy cladding tube which could induce damages. Therefore, EDF, CEA, and FRAMATOME has started a joint R and D cooperative program in order to investigate the mechanical behaviour of Zircaloy cladding tubes under cyclic loading. This paper is dealing with the effect of a pre-cyclic loading on the plasticity properties of Zircaloy 4 cladding tubes. Load controlled cyclic tests were carried out at 350 deg. C and 0.5 Hz in both axial and hoop directions. The Woehler curves were determined. Sequential tests combining pre-cyclic loading to 50 and 75 % fraction life with tension were then performed. It has ben noticed that the pre-cycling loading does not change the plastic flow curve of the Zircaloy 4 cladding tubes and therefore does not induce observable macroscopic damage. It has been concluded that a linear cumulative damage rule like ΣΔN(σ)/N r(σ) is very conservative. (author)

  13. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading

    Science.gov (United States)

    Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan

    2017-11-01

    Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.

  14. A cyclic constitutive law for metals with a semi-discrete memory variable for description of ratcheting phenomena

    International Nuclear Information System (INIS)

    Andrieux, S.; Schoenberger, P.; Taheri, S.

    1993-01-01

    The study of cyclic elastoplastic constitutive laws is, at the moment, focused on non proportional loadings, but for uniaxial loadings some problems remain, as for example the ability for a law to describe simultaneously ratcheting in non symmetrical load-controlled test, elastic and plastic shakedown in symmetrical and non symmetrical ones. We have proposed in a law with a discrete memory variable which, in addition to previous phenomena, describes the cyclic hardening in a pushpull test, and the cyclic softening after overloading. A modified law has been proposed to take into account the dependence of cyclic strain stress curve on the history of loading. The extension to 3D situations of this law is proposed. The discrete nature of the memory leads to discontinuity problems for some loading paths, a modification is then proposed which uses a differential evolution law. For large enough uniaxial cycles, the uniaxial law is nevertheless recovered. In this paper, an incremental form of the implicit evolution problem is given, and we describe the implementation of this model in the Code Aster - a thermomechanical structural software using the finite element method (f.e.m) developed at Electricite de France. Comparison between experiment and numerical results is given for uniaxial ratcheting, non proportional strain controlled test

  15. Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, F.A., E-mail: f4mirza@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Wang, K.; Bhole, S.D.; Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Ni, D.R.; Xiao, B.L. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ma, Z.Y., E-mail: zyma@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-04-20

    The present study was aimed to evaluate the strain-controlled cyclic deformation characteristics and low cycle fatigue (LCF) life of a low (~0.3 wt%) Ce-containing ME20-H112 magnesium alloy. The alloy contained equiaxed grains with ellipsoidal particles containing Mg and Ce (Mg{sub 12}Ce), and exhibited a relatively weak basal texture. Unlike the high rare earth (RE)-containing magnesium alloy, the ME20M-H112 alloy exhibited asymmetrical hysteresis loops somewhat similar to the RE-free extruded Mg alloys due to the presence of twinning-detwinning activities during cyclic deformation. While cyclic stabilization was barely achieved even at the lower strain amplitudes, cyclic softening was the predominant characteristics at most strain amplitudes. The ME20M-H112 alloy showed basically an equivalent fatigue life to that of the RE-free extruded Mg alloys, which could be described by the Coffin-Manson law and Basquin's equation. Fatigue crack was observed to initiate from the near-surface imperfections, and in contrast to the typical fatigue striations, the present alloy showed some shallow dimples along with some fractions of quasi-cleavage features in the crack propagation area.

  16. Observation on the transformation domains of super-elastic NiTi shape memory alloy and their evolutions during cyclic loading

    International Nuclear Information System (INIS)

    Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao

    2016-01-01

    The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains. (paper)

  17. Observation on the transformation domains of super-elastic NiTi shape memory alloy and their evolutions during cyclic loading

    Science.gov (United States)

    Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao

    2016-04-01

    The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.

  18. Influence of strain-induced martensitic transformation on fatigue short crack behaviour in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Baffie, N.; Stolarz, J.; Magnin, Th.

    2000-01-01

    The influence of martensitic transformation induced by cyclic straining on the mechanisms of low cycle fatigue damage in a metastable austenitic stainless steel with different grain sizes has been investigated using macroscopic measurements and microscopic observations of short crack evolutions. The amount of martensite formed during cyclic straining increases with increasing plastic strain amplitude and cumulative plastic strain but the dominant parameter is the grain size of austenite. The fine microstructure (D = 10 μm) with maximum martensite fraction of about 20% is characterised by a better fatigue resistance than the coarse one (D 40μm and only 2% of martensite) for the same plastic strain amplitude. Martensitic transformation is found to radically modify the cyclic response of the alloy and consequently the damage mechanisms. Indeed, both short crack nucleation and growth take place exclusively in the transformed regions. A mechanism of short crack propagation based on the γ→ α' transformation assisted by stress concentration at the crack tip is proposed. The indirect influence of grain boundaries in the austenite on crack propagation in the martensite is demonstrated. The better fatigue resistance of metastable alloys with fine granular structure can thus be understood. (authors)

  19. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Science.gov (United States)

    Hunter, Eric J; Siegmund, Thomas; Chan, Roger W

    2014-01-01

    Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so), cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz), and shear strain associated with vocal fold vibration during phonation (100 Hz and higher). Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude), as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation) and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  20. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Directory of Open Access Journals (Sweden)

    Eric J Hunter

    Full Text Available Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so, cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz, and shear strain associated with vocal fold vibration during phonation (100 Hz and higher. Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude, as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  1. Atlas of stress-strain curves

    CERN Document Server

    2002-01-01

    The Atlas of Stress-Strain Curves, Second Edition is substantially bigger in page dimensions, number of pages, and total number of curves than the previous edition. It contains over 1,400 curves, almost three times as many as in the 1987 edition. The curves are normalized in appearance to aid making comparisons among materials. All diagrams include metric (SI) units, and many also include U.S. customary units. All curves are captioned in a consistent format with valuable information including (as available) standard designation, the primary source of the curve, mechanical properties (including hardening exponent and strength coefficient), condition of sample, strain rate, test temperature, and alloy composition. Curve types include monotonic and cyclic stress-strain, isochronous stress-strain, and tangent modulus. Curves are logically arranged and indexed for fast retrieval of information. The book also includes an introduction that provides background information on methods of stress-strain determination, on...

  2. Dynamic strain aging in Haynes 282 superalloy

    Directory of Open Access Journals (Sweden)

    Hörnqvist Magnus

    2014-01-01

    Full Text Available Haynes 282 is a newly introduced Ni-based superallony, developed to provide a combination of high-temperature mechanical properties, thermal stability and processability. The present contribution investigates the effect of dynamic strain aging (DSA on the deformation behaviour of Haynes 282 during monotonic and cyclic loading. It is shown that DSA (presumably related to carbon diffusion based on rough estimates of the activation energy completely dominates the development of the stress during cycling at intermediate temperatures, leading to extensive cyclic hardening and serrated yielding. However, no clear effects on the fatigue life or the resulting dislocation structure could be observed. The tensile properties were not severely affected, in spite of the presence of extensive serrated yielding, although a reduction in ductility was observed in the DSA temperature regime. During monotonic loading at lower strain rates indications of an additional DSA mechanism due to substitutional elements were observed.

  3. Role of loading direction on cyclic behaviour characteristics of AM30 extrusion and its fatigue damage modelling

    Energy Technology Data Exchange (ETDEWEB)

    Roostaei, Ali A., E-mail: aaroostaei@uwaterloo.ca; Jahed, Hamid, E-mail: hjahed@uwaterloo.ca

    2016-07-18

    Anisotropic fatigue and cyclic behaviour of AM30 Mg alloy extrusion is investigated by performing fully-reversed strain-controlled tension-compression cyclic tests at strain amplitudes between 0.3% and 2.3%, along extrusion (ED) and transverse (TD) directions. The shapes of half-life hysteresis loops suggest the predominance of slip and twinning/de-twinning mechanisms below and above the strain amplitude of 0.5%, respectively. The twinning/de-twinning occurrence is found to be more extensive during straining along ED, which results in higher asymmetry of hysteresis loops, and thereby, higher induced mean stress. This adversely affects the fatigue resistance and yields to less number of cycles before failure in ED. Optical microscopy and texture analysis are employed to validate the findings. In addition, fracture surfaces are studied by scanning electron microscopy to identify the sources of fatigue crack initiation. Persistent slip bands (PSBs) and twin lamellae interfaces are evidenced as crack initiation sites at low and high strain amplitudes, respectively. Cracks emanated from debonded inclusion interface are also observed. Lastly, estimated fatigue life by Smith-Watson-Topper (SWT) and Jahed-Varvani (JV) fatigue models are compared with experimental life obtained through this study as well as the ones reported in the literature. The JV energy model is proven to yield better life predictions.

  4. Finite element analysis of the cyclic indentation of bilayer enamel

    International Nuclear Information System (INIS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-01-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel. (paper)

  5. Finite element analysis of the cyclic indentation of bilayer enamel

    Science.gov (United States)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  6. Strain bidimensional na cardiopatia de Takotsubo Two-dimensional strain in Takotsubo cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Carlos Bellini G. Gomes

    2010-08-01

    Full Text Available Este relato apresenta o seguimento tardio de um caso de cardiomiopatia de Takotsubo com boa evolução clínica e melhora da função sistólica global ventricular esquerda. Contudo, observou-se persistência de significativa disfunção sistólica regional longitudinal que foi avaliada por meio de nova técnica ecocardiográfica (speckle tracking, com as medidas do strain (S e strain rate (SR correspondentes. Ressaltamos a importância desse novo método para o acompanhamento dessa cardiopatia, pois permite identificar os pacientes que persistem com disfunção sistólica e que possivelmente serão beneficiados com a manutenção da terapêutica clínica.This report presents the late follow-up of a case of Takotsubo cardiomyopathy with good clinical outcome and improved left ventricular global systolic function. However, there was persistence of significant regional longitudinal systolic dysfunction evaluated using a new echocardiographic technique (speckle tracking, with corresponding measures of strain (S and strain rate (SR. We emphasize the importance of this new method to monitoring this cardiomyopathy, since it identifies patients with persistent systolic dysfunction who will possibly benefit from maintenance of clinical therapy

  7. Feasibility, Reproducibility, and Agreement between Different Speckle Tracking Echocardiographic Techniques for the Assessment of Longitudinal Deformation

    Directory of Open Access Journals (Sweden)

    Sergio Buccheri

    2013-01-01

    Full Text Available Background. Left ventricular (LV longitudinal deformation can be assessed with new echocardiographic techniques like triplane echocardiography (3PE and four-dimensional echocardiography (4DE. We aimed to assess the feasibility, reproducibility, and agreement between these different speckle-tracking techniques for the assessment of longitudinal deformation. Methods. 101 consecutive subjects underwent echocardiographic examination. 2D cine loops from the apical views, a triplane view, and an LV 4D full volume were acquired in all subjects. LV longitudinal strain was obtained for each imaging modality. Results. 2DE analysis of LV strain was feasible in 90/101 subjects, 3PE strain in 89/101, and 4DE strain in 90/101. The mean value of 2DE and 3PE longitudinal strains was significantly higher with respect to 4DE. The relationship between 2DE and 3PE derived strains (r=0.782 was significantly higher (z=3.72, P<0.001 than that between 2DE and 4DE (r=0.429 and that between 3PE and 4DE (r=0.510; z=3.09, P=0.001. The mean bias between 2DE and 4DE strains was -6.61±7.31% while -6.42±6.81% between 3PE and 4DE strains; the bias between 2DE and 3PE strain was of 0.21±4.16%. Intraobserver and interobserver variabilities were acceptable among the techniques. Conclusions. Echocardiographic techniques for the assessment of longitudinal deformation are not interchangeable, and further studies are needed to assess specific reference values.

  8. Analysis of the cyclic behavior and fatigue damage of extruded AA2017 aluminum alloy

    International Nuclear Information System (INIS)

    May, A.; Taleb, L.; Belouchrani, M.A.

    2013-01-01

    The present work is devoted to study the anisotropic behavior of an extruded aluminum alloy under cyclic loading in axial and shear directions. In first, we have studied its elastoplastic behavior through the evolution of stress–strain loops, isotropic and kinematic hardening and we have associated this behavior with the evolution of its elastic adaptation (shakedown). In second, we have studied the behavior of the material in fatigue damage using the evolution of stiffness. Finally, microstructural investigations were performed on fractured surfaces using scanning electron microscope (SEM) in order to understand the evolution of fatigue damage during cyclic loading

  9. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Miura, N.; Fujioka, T.; Kashima, K. [and others

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  10. Mutation of the cyclic di-GMP phosphodiesterase gene in Burkholderia lata SK875 attenuates virulence and enhances biofilm formation.

    Science.gov (United States)

    Jung, Hae-In; Kim, Yun-Jung; Lee, Yun-Jung; Lee, Hee-Soo; Lee, Jung-Kee; Kim, Soo-Ki

    2017-10-01

    Burkholderia sp. is a gram-negative bacterium that commonly exists in the environment, and can cause diseases in plants, animals, and humans. Here, a transposon mutant library of a Burkholderia lata isolate from a pig with swine respiratory disease in Korea was screened for strains showing attenuated virulence in Caenorhabditis elegans. One such mutant was obtained, and the Tn5 insertion junction was mapped to rpfR, a gene encoding a cyclic di-GMP phosphodiesterase that functions as a receptor. Mutation of rpfR caused a reduction in growth on CPG agar and swimming motility as well as a rough colony morphology on Congo red agar. TLC analysis showed reduced AHL secretion, which was in agreement with the results from plate-based and bioluminescence assays. The mutant strain produced significantly more biofilm detected by crystal violet staining than the parent strain. SEM of the mutant strain clearly showed that the overproduced biofilm contained a filamentous structure. These results suggest that the cyclic di-GMP phosphodiesterase RpfR plays an important role in quorum sensing modulation of the bacterial virulence and biofilm formation.

  11. Creep behaviour of the alloys NiCr22Co12Mo and 10CrMo9 10 under static and cyclic load conditions

    International Nuclear Information System (INIS)

    Wolf, H.

    1990-01-01

    The creep behaviour of NiCr20Co12Mo is investigated under static strain and at 800deg C, with stresses applied ranging from 105 MPa to 370 MPa. The ferritic steel 10CrMo 9 10 is tested for its creep behaviour under static strain and at the temperatures of 600deg C and 550deg C, with stresses applied between 154 MPa and 326 MPa (at 600deg C), or between 250 MPa and 458 MPa (at 550deg C). The experiments are made to determine the effects of changes in strain on the materials' deformation behaviour, placing emphasis on transient creep and elastic or anelastic response. The mean internal stress is determined from changes in strain. Cyclic creep is analysed as a behaviour directly responding to the pattern of change in strain. Effects of certain strain changes not clarified so far are analysed. The cyclic strain experiments are analysed according to the velocity factor concept. The usual models of creep deformation (theta projection concept) are compared with the model of effective strain, which is based on the fundamental equation of plastic deformation by dislocation motion (Orowan equation). (MM) [de

  12. Magnetic properties of cyclically deformed austenite

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arpan, E-mail: dasarpan1@yahoo.co.in

    2014-06-01

    In meta-stable austenitic stainless steels, low cycle fatigue deformation is accompanied by a partial stress/strain-induced solid state phase transformation of paramagnetic γ(fcc) austenite phase to ferromagnetic α{sup /}(bcc) martensite. The measured characteristic of magnetic properties, which are the saturation magnetization, susceptibility, coercivity, retentivity, and the area under the magnetic hysteresis loop are sensitive to the total strain amplitude imposed and the corresponding material behaviour. The morphologies and nucleation characteristics of deformation induced martensites (i.e., ϵ(hcp), α{sup /}(bcc)) have been investigated through analytical transmission electron microscope. It has been observed that deformation induced martensites can nucleate at a number of sites (i.e., shear band intersections, isolated shear bands, shear band–grain boundary intersection, grain boundary triple points, etc.) through multiple transformation sequences: γ(fcc)→ϵ(hcp), γ(fcc)→ϵ(hcp)→α{sup /}(bcc), γ(fcc)→ deformation twin →α{sup /}(bcc) and γ(fcc)→α{sup /}(bcc). - Highlights: • LCF tests were done at various strain amplitudes of 304LNSS. • Quantification of martensite was done through ferritecope. • Magnetic properties were characterised through VSM. • Correlation of magnetic properties with the cyclic plastic response was done. • TEM was done to investigate the transformation micro-mechanisms.

  13. Cyclic softening in annealed Zircaloy-2: Role of edge dislocation dipoles and vacancies

    Science.gov (United States)

    Sudhakar Rao, G.; Singh, S. R.; Krsjak, Vladimir; Singh, Vakil

    2018-04-01

    The mechanism of cyclic softening in annealed Zircaloy-2 at low strain amplitudes under strain controlled fatigue at room temperature is rationalized. The unusual softening due to continuous decrease in the phenomenological friction stress is found to be associated with decrease in the resistance against movement of dislocations because of the formation and easy glide of pure edge dislocation dipoles and consequent decrease in friction stress from reduction in the shear modulus. Positron annihilation spectroscopy data strongly support the increase in edge dislocation density containing jogs, from increased positron trapping and increase in annihilation lifetime.

  14. Right ventricular global longitudinal strain in repaired tetralogy of Fallot.

    Science.gov (United States)

    Toro, Kamill Del; Soriano, Brian D; Buddhe, Sujatha

    2016-10-01

    Echocardiogram has limitations in effectively assessing right ventricular (RV) function in children post tetralogy of Fallot (TOF) repair. We evaluated the utility of speckle tracking echocardiography (STE)-based RV global longitudinal strain (GLS) for the assessment of RV systolic function. All patients with repaired TOF who had both echocardiograms and cardiac MRI (CMR) within a 6-month interval were included. RV volumes and ejection fraction (EF) were obtained by CMRs. Traditional echocardiographic function parameters and RV GLS were compared to CMR-derived RV EF. Subjects were divided into two groups based on CMR RV EF (group I: RV EF ≥45%; and group II: RV EF <45%). A total of 57 subjects were included. Mean age was 13.0±3.6 years and 58% were males. Group I had 39 subjects and group II had 18. Only six of the 18 patients (33%) in group II were identified as having at least mild RV dysfunction by echocardiogram. The mean RV GLS was significantly abnormal in group II (-15.3±3.8%) compared to group I (-20.9±3.3%; P<.001). By ROC analysis, an RV GLS cutoff value of -18% had 78% sensitivity and 77% specificity in identifying RV EF <45% (area under curve .87, P<.001). Intra- and inter-observer reproducibility of RV GLS were good. RV GLS is a simple and effective tool for the assessment of RV systolic function in patients post TOF repair. This technique would help further refine patient selection for timing of CMR and management. © 2016, Wiley Periodicals, Inc.

  15. THE STRENGTH OF REINFORCED CONCRETE BEAM ELEMENTS UNDER CYCLIC ALTERNATING LOADING AND LOW CYCLE LOAD OF CONSTANT SIGN

    Directory of Open Access Journals (Sweden)

    Semina Yuliya Anatol'evna

    2015-09-01

    Full Text Available The behavior of reinforced concrete elements under some types of cyclic loads is described in the paper. The main aim of the investigations is research of the stress-strain state and strength of the inclined sections of reinforced concrete beam elements in conditions of systemic impact of constructive factors and the factor of external influence. To spotlight the problem of cyclic loadings three series of tests were conducted by the author. Firstly, the analysis of the tests showed that especially cyclic alternating loading reduces the bearing capacity of reinforced concrete beams and their crack resistance by 20 % due to the fatigue of concrete and reinforcement. Thus the change of load sign creates serious changes of stress-strain state of reinforced concrete beam elements. Low cycle loads of constant sign effect the behavior of the constructions not so adversely. Secondly, based on the experimental data mathematical models of elements’ strength were obtained. These models allow evaluating the impact of each factor on the output parameter not only separately, but also in interaction with each other. Furthermore, the material spotlighted by the author describes stress-strain state of the investigated elements, cracking mechanism, changes of deflection values, the influence of mode cyclic loading during the tests. Since the data on the subject are useful and important to building practice, the ultimate aim of the tests will be working out for improvement of nonlinear calculation models of span reinforced concrete constructions taking into account the impact of these loads, and also there will be the development of engineering calculation techniques of their strength, crack resistance and deformability.

  16. Inversion of the strain-life and strain-stress relationships for use in metal fatigue analysis

    Science.gov (United States)

    Manson, S. S.

    1979-01-01

    The paper presents closed-form solutions (collocation method and spline-function method) for the constants of the cyclic fatigue life equation so that they can be easily incorporated into cumulative damage analysis. The collocation method involves conformity with the experimental curve at specific life values. The spline-function method is such that the basic life relation is expressed as a two-part function, one applicable at strains above the transition strain (strain at intersection of elastic and plastic lines), the other below. An illustrative example is treated by both methods. It is shown that while the collocation representation has the advantage of simplicity of form, the spline-function representation can be made more accurate over a wider life range, and is simpler to use.

  17. Dynamic stress relaxation due to cyclic variation of strain at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, F.

    1975-01-01

    The relaxation of stress which occurs when low amplitude alternating strains are superimposed on constant mean total strains is studied in this paper. Experiments were carried out on a 0.16 per cent carbon steel and an AISI 347 stainless steel at 450 0 C and 650 0 C respectively in which the decrease of axial mean stress was measured as a function of time. When even a low amplitude alternating strain was applied, the rate of stress relaxation was observed to increase. Analytical predictions based on creep and static relaxation data show fairly good agreement with experiments in the period corresponding to transient creep. (author)

  18. On the equivalence of cyclic and quasi-cyclic codes over finite fields

    Directory of Open Access Journals (Sweden)

    Kenza Guenda

    2017-07-01

    Full Text Available This paper studies the equivalence problem for cyclic codes of length $p^r$ and quasi-cyclic codes of length $p^rl$. In particular, we generalize the results of Huffman, Job, and Pless (J. Combin. Theory. A, 62, 183--215, 1993, who considered the special case $p^2$. This is achieved by explicitly giving the permutations by which two cyclic codes of prime power length are equivalent. This allows us to obtain an algorithm which solves the problem of equivalency for cyclic codes of length $p^r$ in polynomial time. Further, we characterize the set by which two quasi-cyclic codes of length $p^rl$ can be equivalent, and prove that the affine group is one of its subsets.

  19. Layer-specific systolic and diastolic strain in  hypertensive patients with and without mild diastolic dysfunction

    Directory of Open Access Journals (Sweden)

    Hisham Sharif PhD

    2018-03-01

    Full Text Available This study sought to examine layer-specific longitudinal and circumferential systolic and diastolic strain, strain rate (SR and diastolic time intervals in hypertensive patients with and without diastolic dysfunction. Fifty-eight treated hypertensive patients were assigned to normal diastolic function (NDF, N = 39 or mild diastolic dysfunction (DD, N = 19 group. Layer-specific systolic and diastolic longitudinal and circumferential strains and SR were assessed. Results showed no between-group difference in left ventricular mass index (DD: 92.1 ± 18.1 vs NDF: 88.4 ± 16.3; P = 0.44. Patients with DD had a proportional reduction in longitudinal strain across the myocardium (endocardial for DD −13 ± 4%; vs NDF −17 ± 3, P < 0.01; epicardial for DD −10 ± 3% vs NDF −13 ± 3%, P < 0.01; global for DD: −12 ± 3% vs NDF: −15 ± 3, P = 0.01, and longitudinal mechanical diastolic impairments as evidenced by reduced longitudinal strain rate of early diastole (DD 0.7 ± 0.2 L/s vs NDF 1.0 ± 0.3 L/s, P < 0.01 and absence of a transmural gradient in the duration of diastolic strain (DD endocardial: 547 ± 105 ms vs epicardial: 542 ± 113 ms, P = 0.24; NDF endocardial: 566 ± 86 ms vs epicardial: 553 ± 77 ms, P = 0.03. Patients with DD also demonstrate a longer duration of early circumferential diastolic strain (231 ± 71 ms vs 189 ± 58 ms, P = 0.02. In conclusion, hypertensive patients with mild DD demonstrate a proportional reduction in longitudinal strain across the myocardium, as well as longitudinal mechanical diastolic impairment, and prolonging duration of circumferential mechanical relaxation.

  20. Quantitative analysis of left ventricular strain using cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buss, Sebastian J., E-mail: sebastian.buss@med.uni-heidelberg.de [Department of Cardiology, University of Heidelberg, 69120 Heidelberg (Germany); Schulz, Felix; Mereles, Derliz [Department of Cardiology, University of Heidelberg, 69120 Heidelberg (Germany); Hosch, Waldemar [Department of Diagnostic and Interventional Radiology, University of Heidelberg, 69120 Heidelberg (Germany); Galuschky, Christian; Schummers, Georg; Stapf, Daniel [TomTec Imaging Systems GmbH, Munich (Germany); Hofmann, Nina; Giannitsis, Evangelos; Hardt, Stefan E. [Department of Cardiology, University of Heidelberg, 69120 Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University of Heidelberg, 69120 Heidelberg (Germany); Katus, Hugo A.; Korosoglou, Grigorios [Department of Cardiology, University of Heidelberg, 69120 Heidelberg (Germany)

    2014-03-15

    Objectives: To investigate whether cardiac computed tomography (CCT) can determine left ventricular (LV) radial, circumferential and longitudinal myocardial deformation in comparison to two-dimensional echocardiography in patients with congestive heart failure. Background: Echocardiography allows for accurate assessment of strain with high temporal resolution. A reduced strain is associated with a poor prognosis in cardiomyopathies. However, strain imaging is limited in patients with poor echogenic windows, so that, in selected cases, tomographic imaging techniques may be preferable for the evaluation of myocardial deformation. Methods: Consecutive patients (n = 27) with congestive heart failure who underwent a clinically indicated ECG-gated contrast-enhanced 64-slice dual-source CCT for the evaluation of the cardiac veins prior to cardiac resynchronization therapy (CRT) were included. All patients underwent additional echocardiography. LV radial, circumferential and longitudinal strain and strain rates were analyzed in identical midventricular short axis, 4-, 2- and 3-chamber views for both modalities using the same prototype software algorithm (feature tracking). Time for analysis was assessed for both modalities. Results: Close correlations were observed for both techniques regarding global strain (r = 0.93, r = 0.87 and r = 0.84 for radial, circumferential and longitudinal strain, respectively, p < 0.001 for all). Similar trends were observed for regional radial, longitudinal and circumferential strain (r = 0.88, r = 0.84 and r = 0.94, respectively, p < 0.001 for all). The number of non-diagnostic myocardial segments was significantly higher with echocardiography than with CCT (9.6% versus 1.9%, p < 0.001). In addition, the required time for complete quantitative strain analysis was significantly shorter for CCT compared to echocardiography (877 ± 119 s per patient versus 1105 ± 258 s per patient, p < 0.001). Conclusion: Quantitative assessment of LV strain

  1. Several aspects of the temperature history in relation to the cyclic behaviour of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Gentet, D.; Feaugas, X.; Risbet, M.; Lejeail, Y.; Pilvin, P.

    2011-01-01

    Highlights: · Dynamic strain ageing consequences on the temperature history memorization effect. · Temperature is mainly focused at a temperature range equal to 293-923 K. · Two peaks are observed on the curve describing saturation stress amplitude. · Cyclic behaviour is a function of the temperature range explored. · Cyclic temperature history is mainly associated with chromium segregation. - Abstract: A consistent mechanical and transmission electron microscopy (TEM) database is proposed to discuss the consequences of dynamic strain ageing (DSA) on the temperature history memory effect observed under the cyclic loading of a 316LN austenitic stainless steel. Two DSA mechanisms have been identified in relation with two temperature regimes: the first of which may be related to the Suzuki effect (in the low temperature regime) and the second is linked to solute segregation at dislocation node (in the high temperature regime). The temperature history memory effect is a function of the temperature range and can be explained in terms of chromium segregation and the potentiality to obtain 'stability' in dipolar dislocation structures. Both aspects are discussed based on the measurement of internal stress changes.

  2. Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries

    Science.gov (United States)

    Peigney, Michaël

    2018-02-01

    Electrode materials in lithium-ion batteries offer an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such a medium, deformation and diffusion are strongly coupled processes. For designing electrodes with improved lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and diffusion evolve over consecutive charging-recharging cycles. With such questions in mind, this paper provides general results for the large-time behavior of media coupling plasticity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable assumptions, we show that the stress, the plastic strain rate, the chemical potential and the flux of guest atoms converge to a cyclic steady state which is largely independent of the initial state. A special emphasis is laid on the special case of elastic shakedown, which corresponds to the situation where the plastic strain stops evolving after a sufficiently large number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior and - in the case of lithium-ion batteries - for the electro-chemical efficiency. We provide a characterization of the chemo-mechanical loadings for which elastic shakedown occurs. Building on that characterization, we suggest a general method for designing structures in such fashion that they operate in the elastic shakedown regime, whatever the initial state is. An attractive feature of the proposed method is that incremental analysis of the fully coupled plasticity-diffusion problem is avoided. The results obtained are applied to the model problem of a battery electrode cylinder particle under cyclic charging. Closed-form expressions are obtained for the set of charging rates and charging amplitudes for which elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress, lithium concentration and chemical potential. Some results for a spherical particle are also presented.

  3. Phonon dispersion evolution in uniaxially strained aluminum crystal

    Science.gov (United States)

    Parthasarathy, Ranganathan; Misra, Anil; Aryal, Sitaram; Ouyang, Lizhi

    2018-04-01

    The influence of loading upon the phonon dispersion of crystalline materials could be highly nonlinear with certain particular trends that depend upon the loading path. In this paper, we have calculated the influence of [100] uniaxial strain on the phonon dispersion and group velocities in fcc aluminum using second moments of position obtained from molecular dynamics (MD) simulation at 300 K. In contrast to nonlinear monotonic variation of both longitudinal and transverse phonon frequencies along the Δ , Λ and Σ lines of the first Brillouin zone under tension, transverse phonon branches along the Λ line show inflection at specific wavevectors when the compressive strain exceeds 5%. Further, the longitudinal group velocities along the high-symmetry Δ line vary non-monotonically with strain, reaching a minimum at 5% compressive strain. Throughout the strain range studied, the equilibrium positions of atoms displace in an affine manner preserving certain static structural symmetry. We attribute the anomalies in the phonon dispersion to the non-affine evolution of second moments of atomic position, and the associated plateauing of force constants under the applied strain path.

  4. Preventive maintenance and life time assessment with respect to cyclic operation; Foerebyggande underhaall och livslaengdsbedoemning med avseende paa cyklisk drift

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan

    2011-03-15

    Procedures that may be used for the life time assessments and growth laws for failure mechanisms with respect to cyclic operation has been compiled. Experience and analyzes of the effects of cyclical operation of steam drums, steam boxes, steam accumulators and valves has been compiled. For the strain-induced corrosion cracking in steam drums a correlation between the voltage level and the crack growth rate has been developed.

  5. The effects of cyclic and dynamic loading on the fracture resistance of nuclear piping steels. Technical report, October 1992--April 1996

    Energy Technology Data Exchange (ETDEWEB)

    Rudland, D.L.; Brust, F.; Wilkowski, G.M.

    1996-12-01

    This report presents the results of the material property evaluation efforts performed within Task 3 of the IPIRG-2 Program. Several related investigations were conducted. (1) Quasi-static, cyclic-load compact tension specimen experiments were conducted using parameters similar to those used in IPIRG-1 experiments on 6-inch nominal diameter through-wall-cracked pipes. These experiments were conducted on a TP304 base metal, an A106 Grade B base metal, and their respective submerged-arc welds. The results showed that when using a constant cyclic displacement increment, the compact tension experiments could predict the through-wall-cracked pipe crack initiation toughness, but a different control procedure is needed to reproduce the pipe cyclic crack growth in the compact tension tests. (2) Analyses conducted showed that for 6-inch diameter pipe, the quasi-static, monotonic J-R curve can be used in making cyclic pipe moment predictions; however, sensitivity analyses suggest that the maximum moments decrease slightly from cyclic toughness degradation as the pipe diameter increases. (3) Dynamic stress-strain and compact tension tests were conducted to expand on the existing dynamic database. Results from dynamic moment predictions suggest that the dynamic compact tension J-R and the quasi-static stress-strain curves are the appropriate material properties to use in making dynamic pipe moment predictions.

  6. The effects of cyclic and dynamic loading on the fracture resistance of nuclear piping steels. Technical report, October 1992--April 1996

    International Nuclear Information System (INIS)

    Rudland, D.L.; Brust, F.; Wilkowski, G.M.

    1996-12-01

    This report presents the results of the material property evaluation efforts performed within Task 3 of the IPIRG-2 Program. Several related investigations were conducted. (1) Quasi-static, cyclic-load compact tension specimen experiments were conducted using parameters similar to those used in IPIRG-1 experiments on 6-inch nominal diameter through-wall-cracked pipes. These experiments were conducted on a TP304 base metal, an A106 Grade B base metal, and their respective submerged-arc welds. The results showed that when using a constant cyclic displacement increment, the compact tension experiments could predict the through-wall-cracked pipe crack initiation toughness, but a different control procedure is needed to reproduce the pipe cyclic crack growth in the compact tension tests. (2) Analyses conducted showed that for 6-inch diameter pipe, the quasi-static, monotonic J-R curve can be used in making cyclic pipe moment predictions; however, sensitivity analyses suggest that the maximum moments decrease slightly from cyclic toughness degradation as the pipe diameter increases. (3) Dynamic stress-strain and compact tension tests were conducted to expand on the existing dynamic database. Results from dynamic moment predictions suggest that the dynamic compact tension J-R and the quasi-static stress-strain curves are the appropriate material properties to use in making dynamic pipe moment predictions

  7. Fracture mechanics analysis of a longitudinally cracked bend under cyclic loading

    International Nuclear Information System (INIS)

    Kussmaul, K.; Uhlmann, D.; Koski, K.; Hunger, H.

    1993-01-01

    Where information is available about the actual crack configuration, the boundary conditions of the load case, the geometry, and the material characteristics, extensive numerical calculations by means of the finite element method allow crack growth to be calculated for pipe bends carrying longitudinal cracks. If the influence of multiple-crack fields is taken into account in the crack growth calculations, good agreement is obtained with experimental findings. Less sophisticated assessments of individual cracks furnish results which are on the safe side. (author)

  8. A low cycle fatigue model for low carbon manganese steel including the effect of dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle [Université Paris Ouest Nanterre La Défense (France); Wang, Qing Yuan; Khan, Muhammad Kashif [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean–Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320, Chatillon (France)

    2016-01-27

    Carbon–manganese steel A48 (French standards) is used in steam generator pipes of the nuclear power plant where it is subjected to the cyclic thermal load. The Dynamic Strain Aging (DSA) influences the mechanical behavior of the steel in low cycle fatigue (LCF) at favorable temperature and strain rate. The peak stress of A48 steel experiences hardening–softening–hardening (HSH) evolution at 200 °C and 0.4% s{sup −1} strain rate in fatigue loading. In this study, isotropic and kinematic hardening rules with DSA effect have been modified. The HSH evolution of cyclic stress associated with cumulative plastic deformation has also been estimated.

  9. The influence of cyclic structure on the radiolysis of hydrocarbons

    International Nuclear Information System (INIS)

    Foeldiak, G.; Cserep, Gy.; Horvath, Zs.; Wojnarovits, L.

    1975-01-01

    Aliphatic and cyclic C 3 -C 12 alkanes and alkenes have been irradiated in liquid phase by a 60 Co-γ-source with the nominal activity of 80 000 Ci. The dose rate was 1-2 Mrad/hr, the doses were between 0 and 10 Mrad. The following conclusions can be drawn from the experiments: 1., While no significant difference can be observed between radiolytic decomposition of n-hydrocarbon homologues, that of cyclic hydrocarbons is the function of the size of the ring. 2., Reactivity of cyclic hydrocarbons is influenced not only by their surplus enthalpy of formation (strain energy) but also by the individual components of this surplus enthalpy, e.g. bond deformation or repulsion between hydrogen atoms. 3., The overall yield of decomposition of higher than C 4 straightchain and cyclic alkanes activated by radiation and reacting via either C-C or C-H fission is approximately constant, with a G value of 6.5+-0.5. The structure of the molecules affects mainly the ratio of C-C and C-H bond rupture, i.e. these two processes are in competition. 4., Hydrogen yields from alkenes are affected mainly by the order and number of allylic C-H bonds, and by the possibility of the formation of allyl-type radicals. This latter is facilitated by ''free'' rotation in the case of open-chain hydrocarbons whereas it is hindered in the case of small and medium size cycles. (K.A.)

  10. Microarray analysis of expression of cell death-associated genes in rat spinal cord cells exposed to cyclic tensile stresses in vitro

    Directory of Open Access Journals (Sweden)

    Roberts Sally

    2010-07-01

    Full Text Available Abstract Background The application of mechanical insults to the spinal cord results in profound cellular and molecular changes, including the induction of neuronal cell death and altered gene expression profiles. Previous studies have described alterations in gene expression following spinal cord injury, but the specificity of this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile stresses on cultured spinal cord cells from E15 Sprague-Dawley rats, using the FX3000® Flexercell Strain Unit. We examined cell morphology and viability over a 72 hour time course. Microarray analysis of gene expression was performed using the Affymetrix GeneChip System®, where categorization of identified genes was performed using the Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG systems. Changes in expression of 12 genes were validated with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR. Results The application of cyclic tensile stress reduced the viability of cultured spinal cord cells significantly in a dose- and time-dependent manner. Increasing either the strain or the strain rate independently was associated with significant decreases in spinal cord cell survival. There was no clear evidence of additive effects of strain level with strain rate. GO analysis identified 44 candidate genes which were significantly related to "apoptosis" and 17 genes related to "response to stimulus". KEGG analysis identified changes in the expression levels of 12 genes of the mitogen-activated protein kinase (MAPK signaling pathway, which were confirmed to be upregulated by RT-PCR analysis. Conclusions We have demonstrated that spinal cord cells undergo cell death in response to cyclic tensile stresses, which were dose- and time-dependent. In addition, we have identified the up regulation of various genes, in particular of the MAPK pathway, which

  11. Round Robin/collaborative programme [cyclic crack growth in low alloy steel

    International Nuclear Information System (INIS)

    Jones, R.L.; Hurst, P.; Scott, P.M.

    1989-01-01

    During the 10 years of its existence International Cooperative Group on Cyclic Crack Growth the (ICCGR) has undertaken five collaborative efforts related to cyclic crack growth and stress corrosion susceptibility in reactor pressure vessel steels. The initial collaborative effort, a data reduction exercise, identified and reconciled several important procedural differences and led to confidence that, given the same crack length versus cycles data, the Group members could all derive similar plots of da/dN versus δK. Subsequently, a low-R testing round robin highlighted the importance of a number of comparatively subtle aspects of the methods used for cyclic crack growth testing in water environments and led to confidence that the various laboratories could generate similar test data, given the same test material and a sufficiently precise and detailed test specification. The results of a high-R test programme support the conclusion that the state of the art of cyclic crack growth testing has now advanced to a point at which coordinated, multilaboratory test programmes are feasible and indeed, such a programme covering the influence of temperature is currently under way. The slow strain rate round robin has highlighted important test variables, notably the electrochemical potential, which must be carefully controlled in assessing the conditions under which pressure vessel steels may suffer from stress corrosion cracking. (author)

  12. Typology of alcohol users based on longitudinal patterns of drinking.

    Science.gov (United States)

    Harrington, Magdalena; Velicer, Wayne F; Ramsey, Susan

    2014-03-01

    Worldwide, alcohol is the most commonly used psychoactive substance. However, heterogeneity among alcohol users has been widely recognized. This paper presents a typology of alcohol users based on an implementation of idiographic methodology to examine longitudinal daily and cyclic (weekly) patterns of alcohol use at the individual level. A secondary data analysis was performed on the pre-intervention data from a large randomized control trial. A time series analysis was performed at the individual level, and a dynamic cluster analysis was employed to identify homogenous longitudinal patterns of drinking behavior at the group level. The analysis employed 180 daily observations of alcohol use in a sample of 177 alcohol users. The first order autocorrelations ranged from -.76 to .72, and seventh order autocorrelations ranged from -.27 to .79. Eight distinct profiles of alcohol users were identified, each characterized by a unique configuration of first and seventh autoregressive terms and longitudinal trajectories of alcohol use. External validity of the profiles confirmed the theoretical relevance of different patterns of alcohol use. Significant differences among the eight subtypes were found on gender, marital status, frequency of drug use, lifetime alcohol dependence, family history of alcohol use and the Short Index of Problems. Our findings demonstrate that individuals can have very different temporal patterns of drinking behavior. The daily and cyclic patterns of alcohol use may be important for designing tailored interventions for problem drinkers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Cyclic stress effects on transport properties of superconducting composite materials

    International Nuclear Information System (INIS)

    Fisher, E.S.; Kim, S.H.; Turner, A.P.L.

    1976-01-01

    The effects of cyclic stresses at 4.2 0 K on the conductor materials for large superconducting magnets are being investigted in samples of unalloyed copper and of composites containing Nb--Ti or Nb 3 Sn wires in a copper matrix. The samples are constant-strain cycled in pure tension-compression modes. The increase in electrical resistivity of different grades of copper with number and amplitude of cycles is described. The increases can be of the order of the magnetoresistance for 1000 to 2000 cycles at 0.20 percent strain per cycle. The facility for measuring critical current changes with composite cycling is described and the initial results indicate significant I/sub c/ changes as well as unexpected filament fractures. 10 fig

  14. Job strain and unhealthy lifestyle: results from the baseline cohort study, Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    Science.gov (United States)

    Griep, Rosane Härter; Nobre, Aline Araújo; Alves, Márcia Guimarães de Mello; da Fonseca, Maria de Jesus Mendes; Cardoso, Letícia de Oliveira; Giatti, Luana; Melo, Enirtes Caetano Prates; Toivanen, Susanna; Chor, Dóra

    2015-03-31

    Unhealthy lifestyle choices, such as smoking and sedentary behavior, are among the main modifiable risk factors for chronic non-communicable diseases. The workplace is regarded as an important site of potential health risks where preventive strategies can be effective. We investigated independent associations among psychosocial job strain, leisure-time physical inactivity, and smoking in public servants in the largest Brazilian adult cohort. We conducted a cross-sectional analysis of baseline data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)-a multicenter prospective cohort study of civil servants. Our analytical samples comprised 11,779 and 11,963 current workers for, respectively, analyses of job strain and leisure-time physical activity and analyses of job strain and smoking. Job strain was assessed using the Brazilian version of the Swedish Demand-Control-Support Questionnaire; physical activity was evaluated using a short form of the International Physical Activity Questionnaire. We also examined smoking status and number of cigarettes smoked per day. The association reported in this paper was assessed by means of multinomial and logistic regression, stratified by sex. Among men, compared with low-strain activities (low demand and high control), job strain showed an association with physical inactivity (odds ratio [OR] = 1.34; 95% confidence interval [CI] = 1.09-1.64) or with the practice of physical activities of less than recommended duration (OR = 1.44; 95% CI = 1.15-1.82). Among women, greater likelihood of physical inactivity was identified among job-strain and passive-job groups (OR = 1.47; 95% CI = 1.22-1.77 and OR = 1.42; 95% CI = 1.20-1.67, respectively). Greater control at work was a protective factor for physical inactivity among both men and women. Social support at work was a protective factor for physical inactivity among women, as was smoking for both genders. We observed no association

  15. Acoustic Emission Characteristics of Red Sandstone Specimens Under Uniaxial Cyclic Loading and Unloading Compression

    Science.gov (United States)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Chen, Yanlong

    2018-04-01

    To explore the acoustic emission (AE) characteristics of rock materials during the deformation and failure process under periodic loads, a uniaxial cyclic loading and unloading compression experiment was conducted based on an MTS 815 rock mechanics test system and an AE21C acoustic emissions test system. The relationships among stress, strain, AE activity, accumulated AE activity and duration for 180 rock specimens under 36 loading and unloading rates were established. The cyclic AE evolutionary laws with rock stress-strain variation at loading and unloading stages were analyzed. The Kaiser and Felicity effects of rock AE activity were disclosed, and the impact of the significant increase in the scale of AE events on the Felicity effect was discussed. It was observed that the AE characteristics are closely related to the stress-strain properties of rock materials and that they are affected by the developmental state and degree of internal microcracks. AE events occur in either the loading or unloading stages if the strain is greater than zero. Evolutionary laws of AE activity agree with changes in rock strain. Strain deformation is accompanied by AE activity, and the density and intensity of AE events directly reflect the damage degree of the rock mass. The Kaiser effect exists in the linear elastic stage of rock material, and the Felicity effect is effective in the plastic yield and post-peak failure stages, which are divided by the elastic yield strength. This study suggests that the stress level needed to determine a significant increase in AE activity was 70% of the i + 1 peak stress. The Felicity ratio of rock specimens decreases with the growth of loading-unloading cycles. The cycle magnitude and variation of the Felicity effect, in which loading and unloading rates play a weak role, are almost consistent.

  16. Cyclic softening as a parameter for prediction of remnant creep rupture life of a Indian reduced activation ferritic–martensitic (IN-RAFM) steel subjected to fatigue exposures

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Aritra, E-mail: aritra@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Vijayanand, V.D.; Shankar, Vani; Parameswaran, P.; Sandhya, R.; Laha, K.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Rajendrakumar, E. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2014-12-15

    Sequential fatigue-creep tests were conducted on Indian reduced activation ferritic–martensitic steel at 823 K leading to sharp decrease in residual creep life with increase in prior fatigue exposures. Extensive recovery of martensitic-lath structure taking place during fatigue deformation, manifested as cyclic softening in the cyclic stress response, shortens the residual creep life. Based on the experimental results, cyclic softening occurring during fatigue stage can be correlated with residual creep life, evolving in an empirical model which predicts residual creep life as a function of cyclic softening. Predicted creep lives for specimens pre-cycled at various strain amplitudes are explained on the basis of mechanism of cyclic softening.

  17. Two-dimensional tracking and TDI are consistent methods for evaluating myocardial longitudinal peak strain in left and right ventricle basal segments in athletes

    OpenAIRE

    Lstefani, L.Stefani; Ltoncelli, L.Toncelli; Mgianassi, M.Gianassi; Pmanetti, P.Manetti; Vdi, V.Di Tante; Mrvono, M.R.Vono; Amoretti, A.Moretti; Bcappelli, B.Cappelli; Gpedrizzetti, G.Pedrizzetti; Ggalanti, G.Galanti

    2007-01-01

    Abstract Background Myocardial contractility can be investigated using longitudinal peak strain. It can be calculated using the Doppler-derived TDI method and the non-Doppler method based on tissue tracking on B-mode images. Both are validated and show good reproducibility, but no comparative analysis of their results has yet been conducted. This study analyzes the results obtained from the basal segments of the ventricular chambers in a group of athletes. Methods 30 regularly-trained athlete...

  18. Failure mechanisms of closed-cell aluminum foam under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Amsterdam, E.; De Hosson, J.Th.M.; Onck, P.R.

    2006-01-01

    This paper concentrates on the differences in failure mechanisms of Alporas closed-cell aluminum foam under either monotonic or cyclic loading. The emphasis lies on aspects of crack nucleation and crack propagation in relation to the microstructure. The cell wall material consists of Al dendrites and an interdendritic network of Al 4 Ca and Al 22 CaTi 2 precipitates. In situ scanning electron microscopy monotonic tensile tests were performed on small samples to study crack nucleation and propagation. Digital image correlation was employed to map the strain in the cell wall on the characteristic microstructural length scale. Monotonic tensile tests and tension-tension fatigue tests were performed on larger samples to observe the overall fracture behavior and crack path in monotonic and cyclic loading. The crack nucleation and propagation path in both loading conditions are revealed and it can be concluded that during monotonic tension cracks nucleate in and propagate partly through the Al 4 Ca interdendritic network, whereas under cyclic loading cracks nucleate and propagate through the Al dendrites

  19. Curvature reduces bending strains in the quokka femur

    Directory of Open Access Journals (Sweden)

    Kyle McCabe

    2017-03-01

    Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.

  20. Speed and Strain of Polypyrrole Actuators: Dependence on Cation Hydration Number

    DEFF Research Database (Denmark)

    Jafeen, Mohamed J.M.; Careem, Mohamed A.; Skaarup, Steen

    2010-01-01

    Polypyrrole films have been characterized by simultaneous cyclic voltammetry driven force-displacement measurements. The aim was to clarify the role of cations in the electrolyte on the speed of response and on the strain of the film. The strain as a function of actuation frequency was studied in...... frequencies, the strain depends almost exclusively on insertion of strongly solvated cations and therefore depends on the hydration number of the cations: Li+ (hydration number ~5.4) gives more strain than Na+ (~4.4) and much more than Cs+ (~0) as predicted by the model....

  1. Right ventricular longitudinal strain correlates well with right ventricular stroke work index in patients with advanced heart failure referred for heart transplantation.

    Science.gov (United States)

    Cameli, Matteo; Lisi, Matteo; Righini, Francesca Maria; Tsioulpas, Charilaos; Bernazzali, Sonia; Maccherini, Massimo; Sani, Guido; Ballo, Piercarlo; Galderisi, Maurizio; Mondillo, Sergio

    2012-03-01

    Right ventricular (RV) systolic function has a critical role in determining the clinical outcome and success of using left ventricular assist devices (LVADs) in patients with refractory heart failure. Tissue Doppler and M-mode measurements of tricuspid systolic motion (tricuspid S' and tricuspid annular plane systolic excursion [TAPSE]) are the most currently used methods for the quantification of RV longitudinal function; RV deformation analysis by speckle-tracking echocardiography (STE) has recently allowed the analysis of global RV longitudinal function. Using cardiac catheterization as the reference standard, this study aimed at exploring the correlation between RV longitudinal function by STE and RV stroke work index (RVSWI) in patients referred for cardiac transplantation. Right-side heart catheterization and transthoracic echo Doppler were simultaneously performed in 41 patients referred for cardiac transplantation evaluation for advanced systolic heart failure. Thermodilution RV stroke volume and invasive pulmonary pressures were used to obtain RVSWI. RV longitudinal strain (RVLS) by STE was assessed averaging all segments in apical 4-chamber view (global RVLS) and by averaging RV free-wall segments (free-wall RVLS). Tricuspid S' and TAPSE were also calculated. No significant correlations were found for TAPSE or tricuspid S' with RVSWI (r = 0.14; r = 0.06; respectively). Close negative correlations between global RVLS and free-wall RVLS with the RVSWI were found (r = -0.75; r = -0.82; respectively; both P rights reserved.

  2. Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads

    Science.gov (United States)

    Ren, Huai-Hui; Wang, Xi-Shu

    2014-04-01

    This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

  3. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications

    Science.gov (United States)

    Ermeydan, Esra Şengün; ćankaya, Ilyas

    2018-01-01

    Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.

  4. Image-based numerical simulation of the local cyclic deformation behavior around cast pore in steel

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Lihe, E-mail: dlhqian@yahoo.com [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Cui, Xiaona; Liu, Shuai [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Chen, Minan [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); Ma, Penghui [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Xie, Honglan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics (China); Zhang, Fucheng [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Meng, Jiangying [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China)

    2016-12-15

    The local cyclic stress/strain responses around an actual, irregular pore in cast Hadfield steel under fatigue loading are investigated numerically, and compared with those around a spherical and an ellipsoidal pore. The actual pore-containing model takes into account the real shape of the pore imaged via high-resolution synchrotron X-ray computed tomography and combines both isotropic hardening and Bauschinger effects by using the Chaboche's material model, which enables to realistically simulate the cyclic deformation behaviors around actual pore. The results show that the stress and strain energy density concentration factors (K{sub σ} and K{sub E}) around either an actual irregular pore or an idealized pore increase while the strain concentration factor (K{sub ε}) decreases slightly with increasing the number of fatigue cycles. However, all the three parameters, K{sub σ}, K{sub ε} and K{sub E}, around an actual pore are always several times larger than those around an idealized pore, whatever the number of fatigue cycles. It is suggested that the fatigue properties of cast pore-containing materials cannot be realistically evaluated with any idealized pore models. The feasibility of the methodology presented highlights the potential of its application in the micromechanical understanding of fatigue damage phenomena in cast pore-containing materials.

  5. Cyclic deformation behaviour of quenched and tempered 42CrMo4 (AISI 4140) at two-block push-pull-loading; Zum Wechselverformungsverhalten von verguetetem 42CrMo4 bei zweistufiger Zug-Druck-Beanspruchung

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, V. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1; Lang, K.-H.; Voehringer, O.; Macherauch, E.

    1998-11-01

    The behaviour of steels in the course of two- and multi-block cyclic loading has been investigated up to now almost exclusively regarding the fatigue life. According to this, only a few papers exist, dealing with the cyclic deformation behaviour at two- and multi-block-push-pull-loading. Therefore, in stress- and total strain-controlled experiments with a single change of the amplitude (two-block-experiments) and multiple changes between two blocks of different lengths and amplitudes (multi-block-experiments) the cyclic deformation processes have been investigated for the quenched and tempered steel grade 42 CrMo 4 (equivalent to AISI 4140). Using the data of stress- and strain-Woehler-curves determined in usual fatigue tests, damages defined according to Miner`s rule were adjoined to the blocks. The Miner-damages at failure observed in the two-block-experiments with changes from high to low amplitudes were smaller than one and at inverse changes of amplitudes larger than one. In contrast to this, in multi-block-experiments no universally valid correlations were observed between the Miner-damages at failure and the test-parameters applied. At all tests cyclic work-softening was observed as in single-step-experiments. However, work-softening processes at high amplitude loadings yield to much larger plastic strain amplitudes after changing to smaller amplitudes than in single-step tests. Contrarily, in multi-block-tests work-softening at higher amplitude loadings reduces with decreasing block-length and increasing portion of the blocks with the smaller amplitude. This is attributed to effects of static strain-ageing. Total-strain-controlled two-block cyclic deformation experiments yield to similar effects as in stress-controlled tests. 18 refs.

  6. Diagnostic power of longitudinal strain at rest for the detection of obstructive coronary artery disease in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Zuo, Houjuan; Yan, Jiangtao; Zeng, Hesong; Li, Wenyu; Li, Pengcheng; Liu, Zhengxiang; Cui, Guanglin; Lv, Jiagao; Wang, Daowen; Wang, Hong

    2015-01-01

    Global longitudinal strain (GLS) measured by 2-D speckle-tracking echocardiography (2-D STE) at rest has been recognized as a sensitive parameter in the detection of significant coronary artery disease (CAD). However, the diagnostic power of 2-D STE in the detection of significant CAD in patients with diabetes mellitus is unknown. Two-dimensional STE features were studied in total of 143 consecutive patients who underwent echocardiography and coronary angiography. Left ventricular global and segmental peak systolic longitudinal strains (PSLSs) were quantified by speckle-tracking imaging. In the presence of obstructive CAD (defined as stenosis ≥75%), global PSLS was significantly lower in patients with diabetes mellitus than in patients without (16.65 ± 2.29% vs. 17.32 ± 2.27%, p diabetes mellitus (cutoff value: -18.35%, sensitivity: 78.8%, specificity: 77.5%). However, global PSLS could detect obstructive CAD in diabetic patients at a lower cutoff value with inadequate sensitivity and specificity (cutoff value: -17.15%; sensitivity: 61.1%, specificity: 52.9%). In addition, the results for segmental PSLS were similar to those for global PSLS. In conclusion, global and segmental PSLSs at rest were significantly lower in patients with both obstructive CAD and diabetes mellitus than in patients with obstructive CAD only; thus, PSLSs at rest might not be a useful parameter in the detection of obstructive CAD in patients with diabetes mellitus. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Effect of crack closing and cyclic fracture toughness evaluation of structural alloys

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Andrusiv, B.N.

    1983-01-01

    Mechanisms of crack closing (CC), methods of its evalution as well as CC effect on cyclic fracture toughness of structural alloys are considered based on literature and experimental datas several CC mechanisms are suggested. It is noted that evaluation of fatigue crack closing is exercised, mainly, experimentally, though analytical methods of its determination are also suggested. Experimental Methods may be divided in two main groups. The first one comprises techniques based on direct determination of strains and displacements, the second one includes methods based on physical methods of investigations. High importance of CC effect accountancy in investigation of growth kinetics and machanism of corrosion-fatigue cracks in structural materials is noted. Besides, it should be taken into account that cyclic loading changes electrochemical conditions in the apex of corrosion crack

  8. Z₂-double cyclic codes

    OpenAIRE

    Borges, J.

    2014-01-01

    A binary linear code C is a Z2-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module Z2[x]/(x^r − 1) × Z2[x]/(x^s − 1). We determine the structure of Z2-double cyclic codes giving the generator polynomials of these codes. The related polynomial representation of Z2-double cyclic codes and its duals, and the relation...

  9. Cyclic tensile response of Mo-27 at% Re and Mo-0.3 at% Si solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.J.; Kumar, K.S., E-mail: Sharvan_Kumar@brown.edu

    2016-10-31

    Stress-controlled uniaxial cyclic tensile tests were conducted on binary Mo-27 at% Re and Mo-0.3 at% Si solid solutions as a function of temperature and compared against the previously reported cyclic response of pure Mo. The Mo-27 at% Re alloy with a recrystallized grain size of ~30 µm was evaluated in the temperature range 25 °C–800 °C at R=0.1 and stress range that was 80% of the ultimate tensile strength (UTS); a peak in fatigue life was observed between 300 °C and 500 °C. The decrease in fatigue life at the higher temperatures of 700 °C and 800 °C is attributed to dynamic strain aging. Transmission electron microscopy of the cyclically-deformed alloy revealed parallel bands of dislocation at room temperature that transitioned to a uniform cell structure at 500 °C and back to orthogonal planar arrays at 800 °C. The as-extruded Mo-0.3 at% Si alloy was evaluated from 25 °C to 1200 °C and showed superior fatigue life and ratcheting strain resistance as compared to pure Mo and the Mo-27 at% Re alloy (within the temperature range where data were available for comparison). The superior resistance is attributed to the high density of dislocations within the material in this mostly unrecrystallized state rather than Si in solid solution. Above 800 °C, the ratcheting strain increases and fatigue life decreases rapidly with increasing temperature and is associated with dynamic recovery.

  10. The structural behavior of a bolted flanged connection subjected to a cyclic load

    International Nuclear Information System (INIS)

    Cesari, F.

    1981-01-01

    In the vessel of BWR nuclear plants, the bolted flanged connection is subjected to a cyclic load, consisting of four steps: the bolt load, the pressure load with decreasing of bolt load, depressurization with increasing bold load, and at the end, unbolting. In the case of rigid, bolted flange, the elastic behavior is essentially correct, but if the height of the flange is decreased, then the stress gradients are so high that the strains move into the plastic range. In addition, the design of pressure vessels is not complete without an appraisal of failure by progressive distortion or stress ratchteing. There is therefore a need for numerical results for the structures subjected to well-known loading. The aim of this paper is to follow the stress and strain of a bolted flange subjected to the cyclic load, progressively varying the height of the flange, so that the maximum stress intensity becomes 3 Ssub(m). The number of cycles was sufficient to verify the conditions of shakedown or ratcheting. The numerical analysis, using finite element technique and the Adina code, is well established and frequently used. (orig.)

  11. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  12. Chaboche-based cyclic material hardening models for 316 SS–316 SS weld under in-air and pressurized water reactor water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-08-15

    Highlights: • 316 SS–316 SS weld cyclically harden/soften while undergoing fatigue loading. • Cyclic hardening/softening creates cycle dependent stress-strain curves. • This necessitate to estimate the cycle dependence of material properties. • Cyclic evolution of Chaboche parameters are estimated under different conditions. - Abstract: This paper discusses a material hardening models for welds made from 316 stainless steel (SS) to 316 SS. The model parameters were estimated from the strain-versus-stress curves obtained from tensile and fatigue tests conducted under different conditions (air at room temperature, air at 300 °C, and primary loop water conditions for a pressurized water reactor). These data were used to check the fatigue cycle dependency of the material hardening parameters (yield stress, parameters related to Chaboche-based linear and nonlinear kinematic hardening models, etc.). The details of the experimental results, material hardening models, and associated calculated results are published in an Argonne report (ANL/LWRS-15/2). This paper summarizes the reported material parameters for 316 SS–316 SS welds and their dependency on fatigue cycles and other test conditions.

  13. Monotonic and Cyclic Behavior of DIN 34CrNiMo6 Tempered Alloy Steel

    Directory of Open Access Journals (Sweden)

    Ricardo Branco

    2016-04-01

    Full Text Available This paper aims at studying the monotonic and cyclic plastic deformation behavior of DIN 34CrNiMo6 high strength steel. Monotonic and low-cycle fatigue tests are conducted in ambient air, at room temperature, using standard 8-mm diameter specimens. The former tests are carried out under position control with constant displacement rate. The latter are performed under fully-reversed strain-controlled conditions, using the single-step test method, with strain amplitudes lying between ±0.4% and ±2.0%. After the tests, the fracture surfaces are examined by scanning electron microscopy in order to characterize the surface morphologies and identify the main failure mechanisms. Regardless of the strain amplitude, a softening behavior was observed throughout the entire life. Total strain energy density, defined as the sum of both tensile elastic and plastic strain energies, was revealed to be an adequate fatigue damage parameter for short and long lives.

  14. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.

    Science.gov (United States)

    Nakagawa, Youji; Ogihara, Hiroyuki; Mochizuki, Chisato; Yamamura, Hideki; Iimura, Yuzuru; Hayakawa, Masayuki

    2017-03-01

    Previously reported self-cloning procedures for breeding of industrial yeast strains require DNA from other strains, plasmid DNA, or mutagenesis. Therefore, we aimed to construct a self-cloning baker's yeast strain that exhibits freeze tolerance via an improved self-cloning procedure. We first disrupted the URA3 gene of a prototrophic baker's yeast strain without the use of any marker gene, resulting in a Δura3 homozygous disruptant. Then, the URA3 gene of the parental baker's yeast strain was used as a selection marker to introduce the constitutive TDH3 promoter upstream of the PDE2 gene encoding high-affinity cyclic AMP phosphodiesterase. This self-cloning procedure was performed without using DNA from other Saccharomyces cerevisiae strains, plasmid DNA, or mutagenesis and was therefore designated an intra-strain self-cloning procedure. Using this self-cloning procedure, we succeeded in producing self-cloning baker's yeast strains that harbor the TDH3p-PDE2 gene heterozygously and homozygously, designated TDH3p-PDE2 hetero and TDH3p-PDE2 homo strains, respectively. These self-cloning strains expressed much higher levels of PDE2 mRNA than the parental strain and exhibited higher viability after freeze stress, as well as higher fermentation ability in frozen dough, when compared with the parental strain. The TDH3p-PDE2 homo strain was genetically more stable than the TDH3p-PDE2 hetero strain. These results indicate that both heterozygous and homozygous strains of self-cloning PDE2-overexpressing freeze-tolerant strains of industrial baker's yeast can be prepared using the intra-strain self-cloning procedure, and, from a practical viewpoint, the TDH3p-PDE2 homo strain constructed in this study is preferable to the TDH3p-PDE2 hetero strain for frozen dough baking. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Simplified Theory of Plastic Zones for cyclic loading and multilinear hardening

    International Nuclear Information System (INIS)

    Hübel, Hartwig

    2015-01-01

    The Simplified Theory of Plastic Zones (STPZ) is a direct method based on Zarka's method, primarily developed to estimate post-shakedown quantities of structures under cyclic loading, avoiding incremental analyses through a load histogram. In a different paper the STPZ has previously been shown to provide excellent estimates of the elastic–plastic strain ranges in the state of plastic shakedown as required for fatigue analyses. In the present paper, it is described how the STPZ can be used to predict the strains accumulated through a number of loading cycles due to a ratcheting mechanism, until either elastic or plastic shakedown is achieved, so that strain limits can be satisfied. Thus, a consistent means of estimating both, strain ranges and accumulated strains is provided for structural integrity assessment as required by pressure vessel codes. The computational costs involved typically consist of few linear elastic analyses and some local calculations. Multilinear kinematic hardening and temperature dependent yield stresses are accounted for. The quality of the results and the computational burden involved are demonstrated through four examples. - Highlights: • A method is provided to estimate accumulated elastic–plastic strains. • A consistent method is provided to estimate elastic–plastic strain ranges. • Effect of multilinear kinematic hardening is captured. • Temperature dependent material properties are accounted for. • Few linear elastic analyses required

  16. Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi.

    Science.gov (United States)

    Kwak, Min-Kyu; Liu, Rui; Kim, Min-Kyu; Moon, Dohyun; Kim, Andrew Hyoungjin; Song, Sung-Hyun; Kang, Sa-Ouk

    2014-01-01

    Lactobacillus plantarum LBP-K10 was identified to be the most potent antifungal strain from Korean traditional fermented vegetables. The culture filtrate of this strain showed remarkable antifungal activity against Ganoderma boninense. Five fractions from the culture filtrate were observed to have an inhibitory effect against G. boninense. Also, the electron ionization and chemical ionization indicated that these compounds might be cyclic dipeptides. Of the five active fractions, two fractions showed the most significant anti-Ganoderma activity, and one of these fractions inhibited the growth of Candida albicans. These compounds were identified to be cis-cyclo(L-Val-L-Pro) and cis-cyclo(L-Phe-L-Pro), as confirmed by X-ray crystallography.

  17. Proline-Based Cyclic Dipeptides from Korean Fermented Vegetable Kimchi and from Leuconostoc mesenteroides LBP-K06 Have Activities against Multidrug-Resistant Bacteria.

    Science.gov (United States)

    Liu, Rui; Kim, Andrew H; Kwak, Min-Kyu; Kang, Sa-Ouk

    2017-01-01

    Lactobacillus plantarum and Leuconostoc mesenteroides play a prominent role as functional starters and predominant isolates in the production of various types of antimicrobial compound-containing fermented foods, especially including kimchi. In the case of the bioactive cyclic dipeptides, their racemic diastereomers inhibitory to bacteria and fungi have been suggested to come solely from Lactobacillus spp. of these strains. We previously demonstrated the antifungal and antiviral activities of proline-based cyclic dipeptides, which were fractionated from culture filtrates of Lb. plantarum LBP-K10 originated from kimchi. However, cyclic dipeptides have not been identified in the filtrates, either from cultures or fermented subject matter, driven by Ln. mesenteroides , which have been widely used as starter cultures for kimchi fermentation. Most importantly, the experimental verification of cyclic dipeptide-content changes during kimchi fermentation have also not been elucidated. Herein, the antibacterial fractions, including cyclo(Leu-Pro) and cyclo(Phe-Pro), from Ln. mesenteroides LBP-K06 culture filtrates, which exhibited a typical chromatographic retention behavior (t R ), were identified by using semi-preparative high-performance liquid chromatography and gas chromatography-mass spectrometry. Based on this finding, the proline-based cyclic dipeptides, including cyclo(Ser-Pro), cyclo(Tyr-Pro), and cyclo(Leu-Pro), were additionally identified in the filtrates only when fermenting Chinese cabbage produced with Ln. mesenteroides LBP-K06 starter cultures. The detection and isolation of cyclic dipeptides solely in controlled fermented cabbage were conducted under the control of fermentation-process parameters concomitantly with strong CDP selectivity by using a two-consecutive-purification strategy. Interestingly, cyclic dipeptides in the filtrates, when using this strain as a starter, increased with fermentation time. However, no cyclic dipeptides were observed in the

  18. Cyclic Voltammograms from First Principles

    DEFF Research Database (Denmark)

    Karlberg, Gustav; Jaramillo, Thomas; Skulason, Egill

    2007-01-01

    Cyclic voltammetry is a fundamental experimental tool for characterizing electrochemical surfaces. Whereas cyclic voltammetry is widely used within the field of electrochemistry, a way to quantitatively and directly relate the cyclic voltammogram to ab initio calculations has been lacking, even f...

  19. Finite element analysis of the biaxial cyclic tensile loading of the elastoplastic plate with the central hole: asymptotic regimes

    Science.gov (United States)

    Turkova, Vera; Stepanova, Larisa

    2018-03-01

    For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.

  20. Cardiac biplane strain imaging: initial in vivo experience

    Science.gov (United States)

    Lopata, R. G. P.; Nillesen, M. M.; Verrijp, C. N.; Singh, S. K.; Lammens, M. M. Y.; van der Laak, J. A. W. M.; van Wetten, H. B.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2010-02-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Δp: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Δp = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  1. Right ventricular longitudinal strain and right ventricular stroke work index in patients with severe heart failure: left ventricular assist device suitability for transplant candidates.

    Science.gov (United States)

    Cameli, M; Bernazzali, S; Lisi, M; Tsioulpas, C; Croccia, M G; Lisi, G; Maccherini, M; Mondillo, S

    2012-09-01

    Right ventricular (RV) systolic function has a critical role in determining the clinical outcome and the success of using left ventricular assist devices in patients with refractory heart failure. RV deformation analysis by speckle tracking echocardiography (STE) has recently allowed the analysis of RV longitudinal function. Using cardiac catheterization as the reference standard, this study aimed to explore the correlation between RV longitudinal function by STE and RV stroke work index (RVSWI) among patients referred for cardiac transplantation. Right heart catheterization and transthoracic echo-Doppler were simultaneously performed in 47 patients referred for cardiac transplant assessment due to refractory heart failure (ejection fraction 25.1 ± 4.5%). Thermodilution RV stroke volume and invasive pulmonary pressures were used to obtain RVSWI. RV longitudinal strain (RVLS) by STE was assessed averaging RV free-wall segments (free-wall RVLS). We also calculated. Tricuspid S' and tricuspid annular plane systolic excursion (TAPSE). No significant correlation was observed for TAPSE on tricuspid S' with RV stroke volume (r = 0.14 and r = 0.06, respectively). A close negative correlation between free-wall RVLS and RVSWI was found (r = -0.82; P rights reserved.

  2. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  3. Recent advances in echocardiography: strain and strain rate imaging [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Oana Mirea

    2016-04-01

    Full Text Available Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications.

  4. Magnetic resonance imaging detects significant sex differences in human myocardial strain

    Directory of Open Access Journals (Sweden)

    Reynolds Lina M

    2011-08-01

    Full Text Available Abstract Background The pathophysiology responsible for the significant outcome disparities between men and women with cardiac disease is largely unknown. Further investigation into basic cardiac physiological differences between the sexes is needed. This study utilized magnetic resonance imaging (MRI-based multiparametric strain analysis to search for sex-based differences in regional myocardial contractile function. Methods End-systolic strain (circumferential, longitudinal, and radial was interpolated from MRI-based radiofrequency tissue tagging grid point displacements in each of 60 normal adult volunteers (32 females. Results The average global left ventricular (LV strain among normal female volunteers (n = 32 was significantly larger in absolute value (functionally better than in normal male volunteers (n = 28 in both the circumferential direction (Male/Female = -0.19 ± 0.02 vs. -0.21 ± 0.02; p = 0.025 and longitudinal direction (Male/Female = -0.14 ± 0.03 vs. -0.16 ± 0.02; p = 0.007. Conclusions The finding of significantly larger circumferential and longitudinal LV strain among normal female volunteers suggests that baseline contractile differences between the sexes may contribute to the well-recognized divergence in cardiovascular disease outcomes. Further work is needed in order to determine the pathologic changes that occur in LV strain between women and men with the onset of cardiovascular disease.

  5. [New antibiotics produced by Bacillus subtilis strains].

    Science.gov (United States)

    Malanicheva, I A; Kozlov, D G; Efimenko, T A; Zenkova, V A; Kastrukha, G S; Reznikova, M I; Korolev, A M; Borshchevskaia, L N; Tarasova, O D; Sineokiĭ, S P; Efremenkova, O V

    2014-01-01

    Two Bacillus subtilis strains isolated from the fruiting body of a basidiomycete fungus Pholiota squarrosa exhibited a broad range of antibacterial activity, including those against methicillin-resistant Staphylococcus aureus INA 00761 (MRSA) and Leuconostoc mes6nteroides VKPM B-4177 resistant to glycopep-> tide antibiotics, as well as antifungal activity. The strains were identified as belonging to the "B. subtilis" com- plex based on their morphological and physiological characteristics, as well as by sequencing of the 16S rRNA gene fragments. Both strains (INA 01085 and INA 01086) produced insignificant amounts of polyene antibiotics (hexaen and pentaen, respectively). Strain INA 01086 produced also a cyclic polypeptide antibiotic containing Asp, Gly, Leu, Pro, Tyr, Thr, Trp, and Phe, while the antibiotic of strain INA 01085 contained, apart from these, two unidentified nonproteinaceous amino acids. Both polypeptide antibiotics were new compounds efficient against gram-positive bacteria and able to override the natural bacterial antibiotic resistance.

  6. Damage propagation in a masonry arch subjected to slow cyclic and dynamic loadings

    Directory of Open Access Journals (Sweden)

    J. Toti

    2014-07-01

    Full Text Available In the present work, the damage propagation of a masonry arch induced by slow cyclic and dynamic loadings is studied. A two-dimensional model of the arch is proposed. A nonlocal damage-plastic constitutive law is adopted to reproduce the hysteretic characteristics of the masonry material, subjected to cyclic static loadings or to harmonic dynamic excitations. In particular, the adopted cohesive model is able to take into account different softening laws in tension and in compression, plastic strains, stiffness recovery and loss due to crack closure and reopening. The latter effect is an unavoidable feature for realistically reproducing hysteretic cycles. In the studied case, an inverse procedure is used to calibrate the model parameters. Then, nonlinear static and dynamic responses of the masonry arch are described together with damage propagation paths.

  7. Three-dimensional stress and strain around real shape Si particles in cast aluminum alloy under cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Teranishi, Masaki [Department of Nuclear Power & Energy Safety Engineering, University of Fukui (Japan); Kuwazuru, Osamu, E-mail: kuwa@u-fukui.ac.jp [Department of Nuclear Power & Energy Safety Engineering, University of Fukui (Japan); Gennai, Shota [Department of Nuclear Power & Energy Safety Engineering, University of Fukui (Japan); Kobayashi, Masakazu [Department of Mechanical Engineering, Toyohashi University of Technology (Japan); Toda, Hiroyuki [Department of Mechanical Engineering, Kyushu University (Japan)

    2016-12-15

    The crack initiation mechanism of cast Al-Si-Mg alloy under low-cycle fatigue was addressed by using the synchrotron X-ray computed tomography (CT) and the image-based finite element analysis. The fatigue test and its in situ CT observation were conducted to visualize the crack initiation behavior. In the low-cycle fatigue, the cracking generally started with the voiding by the fracture of silicon particles, and the coalescence of these voids formed the crack. To elucidate the mechanism of silicon particle fracture, the finite element elastic-plastic analyses were performed with regard to twelve silicon particles including the fractured and intact particles detected by the chronological CT observation. By using the image-based modeling technique, the interested particle was embedded in the finite element model along with the surrounding particles as they were in the specimen. The material properties of silicon phase and aluminum matrix were identified by the nanoindentation tests. Ten cycles of loading by the uniform stress which was equivalent to the load in the fatigue test was applied to the finite element model, and the stress, strain and their cyclic response around the silicon particles were simulated. The morphology analysis was also carried out for the interested particles, and the geometrical parameters affecting the particle fracture were examined. By comparing the results of fractured and intact particles, we found that there were some geometrical conditions for the fracture of silicon particles, and a certain magnitude of hydrostatic stress was required to break the particles.

  8. Visual search of cyclic spatio-temporal events

    Science.gov (United States)

    Gautier, Jacques; Davoine, Paule-Annick; Cunty, Claire

    2018-05-01

    The analysis of spatio-temporal events, and especially of relationships between their different dimensions (space-time-thematic attributes), can be done with geovisualization interfaces. But few geovisualization tools integrate the cyclic dimension of spatio-temporal event series (natural events or social events). Time Coil and Time Wave diagrams represent both the linear time and the cyclic time. By introducing a cyclic temporal scale, these diagrams may highlight the cyclic characteristics of spatio-temporal events. However, the settable cyclic temporal scales are limited to usual durations like days or months. Because of that, these diagrams cannot be used to visualize cyclic events, which reappear with an unusual period, and don't allow to make a visual search of cyclic events. Also, they don't give the possibility to identify the relationships between the cyclic behavior of the events and their spatial features, and more especially to identify localised cyclic events. The lack of possibilities to represent the cyclic time, outside of the temporal diagram of multi-view geovisualization interfaces, limits the analysis of relationships between the cyclic reappearance of events and their other dimensions. In this paper, we propose a method and a geovisualization tool, based on the extension of Time Coil and Time Wave, to provide a visual search of cyclic events, by allowing to set any possible duration to the diagram's cyclic temporal scale. We also propose a symbology approach to push the representation of the cyclic time into the map, in order to improve the analysis of relationships between space and the cyclic behavior of events.

  9. Longitudinal ventricular systolic dysfunction in patients with very severe obstructive sleep apnea: A case control study using speckle tracking imaging

    Directory of Open Access Journals (Sweden)

    Mithun Jacob Varghese

    2017-05-01

    Conclusion: Very severe OSA is associated with significant diastolic dysfunction as well as early systolic abnormalities as evidenced by abnormal global longitudinal strain. Sleep apnea severity as measured by AHI was the only significant predictor of abnormal longitudinal strain in these patients.

  10. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    Science.gov (United States)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  11. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  12. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere

    DEFF Research Database (Denmark)

    Nielsen, T H; Sørensen, D; Tobiasen, C

    2002-01-01

    Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600...... in the peptide moiety. Production of specific CLPs could be affiliated with Pseudomonas fluorescens strain groups belonging to biotype I, V, or VI. In vitro analysis using both purified CLPs and whole-cell P. fluorescens preparations demonstrated that all CLPs exhibited strong biosurfactant properties...

  13. Standard practice for strain controlled thermomechanical fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers the determination of thermomechanical fatigue (TMF) properties of materials under uniaxially loaded strain-controlled conditions. A “thermomechanical” fatigue cycle is here defined as a condition where uniform temperature and strain fields over the specimen gage section are simultaneously varied and independently controlled. This practice is intended to address TMF testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this practice is specific to strain-controlled testing, many sections will provide useful information for force-controlled or stress-controlled TMF testing. 1.2 This practice allows for any maximum and minimum values of temperature and mechanical strain, and temperature-mechanical strain phasing, with the restriction being that such parameters remain cyclically constant throughout the duration of the test. No restrictions are placed on en...

  14. Cyclic Bis-1,3-dialkylpyridiniums from the Sponge Haliclona sp.

    Directory of Open Access Journals (Sweden)

    Jongheon Shin

    2012-09-01

    Full Text Available Eight novel cyclic bis-1,3-dialkylpyridiniums, as well as two known compounds from the cyclostellettamine class, were isolated from the sponge Haliclona sp. from Korea. Structures of these novel compounds were determined using combined NMR and FAB-MS/MS analyses. Several of these compounds exhibited moderate cytotoxic and antibacterial activities against A549 cell-line and Gram-positive strains, respectively. The structure-activity relationships of cyclostellettamines are discussed based on their bioactivities.

  15. Manual for Cyclic Triaxial Test

    DEFF Research Database (Denmark)

    Shajarati, Amir; Sørensen, Kris Wessel; Nielsen, Søren Kjær

    This manual describes the different steps that is included in the procedure for conducting a cyclic triaxial test at the geotechnical Laboratory at Aalborg University. Furthermore it contains a chapter concerning some of the background theory for the static triaxial tests. The cyclic/dynamic tria......This manual describes the different steps that is included in the procedure for conducting a cyclic triaxial test at the geotechnical Laboratory at Aalborg University. Furthermore it contains a chapter concerning some of the background theory for the static triaxial tests. The cyclic...

  16. Strain and strain rate by two-dimensional speckle tracking echocardiography in a maned wolf Strain e strain rate por meio de ecocardiogratia speckle traking bidimensional em um lobo-guará

    Directory of Open Access Journals (Sweden)

    Matheus M. Mantovani

    2012-12-01

    Full Text Available The measurement of cardiovascular features of wild animals is important, as is the measurement in pets, for the assessment of myocardial function and the early detection of cardiac abnormalities, which could progress to heart failure. Speckle tracking echocardiography (2D STE is a new tool that has been used in veterinary medicine, which demonstrates several advantages, such as angle independence and the possibility to provide the early diagnosis of myocardial alterations. The aim of this study was to evaluate the left myocardial function in a maned wolf by 2D STE. Thus, the longitudinal, circumferential and radial strain and strain rate were obtained, as well as, the radial and longitudinal velocity and displacement values, from the right parasternal long axis four-chamber view, the left parasternal apical four chamber view and the parasternal short axis at the level of the papillary muscles. The results of the longitudinal variables were -13.52±7.88, -1.60±1.05, 4.34±2.52 and 3.86±3.04 for strain (%, strain rate (1/s, displacement (mm and velocity (cm/s, respectively. In addition, the radial and circumferential Strain and Strain rate were 24.39±14.23, 1.86±0.95 and -13.69±6.53, -1.01±0.48, respectively. Thus, the present study provides the first data regarding the use of this tool in maned wolves, allowing a more complete quantification of myocardial function in this species.A obtenção de parâmetros cardiovasculares em animais selvagens são importantes de serem avaliados, assim como em animais de companhia, para a obtenção da função miocárdica e determinação precoce de alterações cardíacas que poderiam evoluir para insuficiência cardíaca . A ecocardiografia speckle tracking (2D STE é uma ferramenta nova que tem sido utilizada em medicina veterinária, a qual tem demonstrado várias vantagens quanto ao seu uso, como a independência do ângulo de insonação e a possibilidade de se obter o diagnóstico precoce de altera

  17. On behaviour of fuel elements subject to combined cyclic thermomechanical loads

    International Nuclear Information System (INIS)

    Hsu, T.R.

    1980-01-01

    This paper presents detailed finite element formulations on the kinematic hardening rule of plasticity included in an existing thermoelastoplastic stress analysis code primarily designed to predict the thermomechanical behaviour of nuclear reactor fuel elements. The kinematic hardening rule is considered to be important for structures subject to repeated (or cyclic) loads. The start-up/operation/shut-down and various power excursions in a reactor all can be classified as cyclic loadings. In addition to the shifting of material yield surfaces as usually handled by the kinematic hardening rule, the thermal effect and temperature-dependent material properties have also been included in the present work for the first time. A case study related to an in-reactor experiment on a single fuel element indicated that significantly higher cumulative sheath residual strains after two load cycles was obtained by the present scheme than those calculated by the usual isotropic hardening rule. This observation may alert fuel modellers to select proper hardening rules in their analyses. (orig.)

  18. The elastic plastic behaviour of a 1/2% Cr Mo V steam turbine steel during high strain thermal fatigue

    International Nuclear Information System (INIS)

    Murphy, M.C.; Batte, A.D.; Stringer, M.B.

    1979-01-01

    High strain fatigue problem in steam turbine. Cyclic stress strain hysteresis loops and stress relaxation behaviour in 16 h dwell period tests. Variation of stress and strain during tests under nominally strain controlled conditions. Definition of test conditions and of criteria for crack initiation and failure. Comparison of reverse bend and push pull failure data. (orig.) 891 RW/orig. 892 RKD [de

  19. Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory

    Science.gov (United States)

    Zhen, Yaxin; Zhou, Lin

    2017-03-01

    Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.

  20. Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Ngoc-Trung Nguyen

    2014-02-01

    Full Text Available Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally.

  1. Substructural evolution during cyclic torsion of drawn low carbon steel bars

    International Nuclear Information System (INIS)

    Correa, E.C.S.; Aguilar, M.T.P.; Monteiro, W.A.; Cetlin, P.R.

    2006-01-01

    Strain softening effects have been previously observed in drawn low carbon steel bars as a result of cyclic torsion experiments. In this paper, the substructural aspects related to the phenomenon have been investigated. Single pass drawn bars were subjected to a quarter, to a half, to a full torsion cycle and to 10 such cycles. Transmission electron microscopy revealed the development of extended microbands crossing the former dislocation arrangement of the drawn metal, which evolves to a rectangular shaped subgrains structure as torsion deformation is conducted

  2. Wall-motion tracking in fetal echocardiography-Influence of frame rate on longitudinal strain analysis assessed by two-dimensional speckle tracking.

    Science.gov (United States)

    Enzensberger, Christian; Achterberg, Friederike; Graupner, Oliver; Wolter, Aline; Herrmann, Johannes; Axt-Fliedner, Roland

    2017-06-01

    Frame rates (FR) used for strain analysis assessed by speckle tracking in fetal echocardiography show a considerable variation. The aim of this study was to investigate the influence of the FR on strain analysis in 2D speckle tracking. Fetal echocardiography was performed prospectively on a Toshiba Aplio 500 system and a Toshiba Artida system, respectively. Based on an apical or basal four-chamber view of the fetal heart, cine loops were stored with a FR of 30 fps (Aplio 500) and 60 fps (Artida/Aplio 500). For both groups (30fps and 60fps), global and segmental longitudinal peak systolic strain (LPSS) values of both, left (LV) and right ventricle (RV), were assessed by 2D wall-motion tracking. A total of 101 fetuses, distributed to three study groups, were included. The mean gestational age was 25.2±5.0 weeks. Mean global LPSS values for RV in the 30 fps group and in the 60 fps group were -16.07% and -16.47%, respectively. Mean global LPSS values for LV in the 30 fps group and in the 60 fps group were -17.54% and -17.06%, respectively. Comparing global and segmental LPSS values of both, the RV and LV, did not show any statistically significant differences within the two groups. Performance of myocardial 2D strain analysis by wall-motion tracking was feasible with 30 and 60 fps. Obtained global and segmental LPSS values of both ventricles were relatively independent from acquisition rate. © 2017, Wiley Periodicals, Inc.

  3. Generalized Phenomenological Cyclic Stress-Strain-Strength Characterization of Granular Media.

    Science.gov (United States)

    1984-09-02

    could be fitted to a comprehensive data set. i ’../., Unfortunately, such equipment is not available at present, and most researchers still rely on the...notably, Lade and Duncan (1975), using a comprehensive series of test data obtained from a true triaxial device (Lade, 1973), have suggested that failure...0 VV 2. Shear Strain, low indeterminate (prior to failure) (at failure) 3. Deformation small large 4. Void Ratio (e) any e ecritical 5. Grain

  4. 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites

    Science.gov (United States)

    Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2017-04-01

    As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.

  5. Cyclic deformation of Nb single crystals

    International Nuclear Information System (INIS)

    Guiu, F.; Anglada, M.

    1982-01-01

    The temperature and strain-rate dependence of the cyclic flow stress of Nb single crystals with two different axial orientations has been studied at temperatures between 175 and 350 K. This dependence is found to be independent of the crystal orientation when the internal stresses are taken into account, and the results are discussed in terms of the theory of thermally activated dislocation glide. A transition temperature can be identified at about 250 K which separates two regions with different thermally activated deformation behaviour. Above this transition temperature the strain rate can be described by a stress power law, and the activation energy can be represented by a logarithmic function of the stress, as in Escaig's model of screw dislocation mobility. In the temperature range 170 to 250 K the results are also in agreement with the more recent model proposed by Seeger. The large experimental errors inherent in the values of activation enthalpy at low stresses are emphasized and taken into account in the discussion of the results. It is suggested that either impurity-kink interactions or the flexibility of the screw dislocations are responsible for the trend towards the high values of activation enthalpy measured at the low stresses. (author)

  6. Cyclic Tensile Strain Can Play a Role in Directing both Intramembranous and Endochondral Ossification of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Simon F. Carroll

    2017-11-01

    Full Text Available Successfully regenerating damaged or diseased bone and other joint tissues will require a detailed understanding of how joint specific environmental cues regulate the fate of progenitor cells that are recruited or delivered to the site of injury. The goal of this study was to explore the role of cyclic tensile strain (CTS in regulating the initiation of mesenchymal stem cell/multipotent stromal cell (MSC differentiation, and specifically their progression along the endochondral pathway. To this end, we first explored the influence of CTS on the differentiation of MSCs in the absence of any specific growth factor, and secondly, we examined the influence of the long-term application of this mechanical stimulus on markers of endochondral ossification in MSCs maintained in chondrogenic culture conditions. A custom bioreactor was developed to apply uniaxial tensile deformation to bone marrow-derived MSCs encapsulated within physiological relevant 3D fibrin hydrogels. Mechanical loading, applied in the absence of soluble differentiation factors, was found to enhance the expression of both tenogenic (COL1A1 and osteogenic markers (BMP2, RUNX2, and ALPL, while suppressing markers of adipogenesis. No evidence of chondrogenesis was observed, suggesting that CTS can play a role in initiating direct intramembranous ossification. During long-term culture in the presence of a chondrogenic growth factor, CTS was shown to induce MSC re-organization and alignment, increase proteoglycan and collagen production, and to enhance the expression of markers associated with endochondral ossification (BMP2, RUNX2, ALPL, OPN, and COL10A1 in a strain magnitude-dependent manner. Taken together, these findings indicate that tensile loading may play a key role in promoting both intramembranous and endochondral ossification of MSCs in a context-dependent manner. In both cases, this loading-induced promotion of osteogenesis was correlated with an increase in the expression of

  7. Elasto-plastic stress/strain at notches, comparison of test and approximative computations

    International Nuclear Information System (INIS)

    Beste, A.; Seeger, T.

    1979-01-01

    The lifetime of cyclically loaded components is decisively determined by the value of the local load in the notch root. The determination of the elasto-plastic notch-stress and-strain is therefore an important element of recent methods of lifetime determination. These local loads are normally calculated with the help of approximation formulas. Yet there are no details about their accuracy. The basic construction of the approximation formulas is presented, along with some particulars. The use of approximations within the fully plastic range and for material laws which show a non-linear stress-strain (sigma-epsilon-)-behaviour from the beginning is explained. The use of approximation for cyclic loads is particularly discussed. Finally, the approximations are evaluated in terms of their exactness. The test results are compared with the results of the approximation calculations. (orig.) 891 RW/orig. 892 RKD [de

  8. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia

    OpenAIRE

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    INTRODUCTION Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. PRESENTATION OF CASE This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for las...

  9. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    KAUST Repository

    Mora Cordova, Angel

    2014-11-01

    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show that the new model is suitable for cyclic loading. After calibration with experimental data, we are able to capture the stress-strain behavior and changes in electrical resistance of ITO thin films. We are also able to predict the crack density using calibrations from our previous model. Finally, we demonstrate the capabilities of our model based on simulations using material properties reported in the literature. Our model is implemented in the commercially available finite element software ABAQUS using a user subroutine UMAT.[Figure not available: see fulltext.].

  10. Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading

    International Nuclear Information System (INIS)

    Kim, Hyun-Jong; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Seok, Hyun-Kwang; Han, Seung-Hee; Ryu, Jae-Woo; Shin, Kyong-Min; Oh, Kyu Hwan

    2008-01-01

    The mechanical stability of diamond-like carbon (DLC) films coated on nitinol vascular stents was investigated under cyclic loading condition by employing a stent crimping system. DLC films were coated on the vascular stent of a three dimensional structure by using a hybrid ion beam system with rotating jig. The cracking or delamination of the DLC coating occurred dominantly near the hinge connecting the V-shaped segments of the stent where the maximum strain was induced by a cyclic loading of contraction and extension. However the failures were significantly suppressed as the amorphous Si (a-Si) buffer layer thickness increased. Interfacial adhesion strength was estimated from the spalled crack size in the DLC coating for various values of the a-Si buffer layer thickness

  11. Analysis of elevated temperature cyclic deformation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Rohde, R.W.; Swearengen, J.C.

    1977-01-01

    The stress relaxation behavior of 304 and 316 stainless steels during cyclic deformation at 538 and 650 0 C with various hold times and strain amplitudes has been analyzed in terms of a power-law equation of state which includes internal stress and drag stress as structure variables. At 650 0 C the internal sress in 304 appears to be zero and microstructural recovery plays an important role in the kinetics of stress relaxation. For deformation at 538 0 C, the internal stress in 304 is nonzero and microstructural recovery appears minimal. In 316 tested at 650 0 C the internal stress is zero and again recovery is important. However, the kinetics of recovery differ from those measured in 304. These observations are explained physically in terms of strain and temperature-induced recovery of the structural variables, and provide insights into the procedures for calculating accumulated ''creep'' damage in reactor components

  12. Fatigue damage assessment under multi-axial non-proportional cyclic loading

    International Nuclear Information System (INIS)

    Mohta, Keshav; Gupta, Suneel K.; Jadhav, P.A.; Bhasin, V.; Vijayan, P.K.

    2016-01-01

    Detailed fatigue analysis is carried out for class I Nuclear Power Plant (NPP) components to rule out the fatigue failure during their design lifetime. ASME Boiler and Pressure Vessel code Section III NB, has provided two schemes for fatigue assessment, one for fixed principal directions (proportional) loading and the other for varying principal directions (non-proportional) loading conditions. Recent literature on multi-axial fatigue tests has revealed lower fatigue lives under nonproportional loading conditions. In an attempt to understand the loading parameter lowering the fatigue life, a finite element based study has been carried out. Here, fatigue damage in a tube has been correlated with the applied axial to shear strain ratio and phase difference between them. The FE analysis has used Chaboche nonlinear kinematic hardening rule to model material's realistic cyclic plastic deformation behavior. The ASME alternating stress intensity (based on linear elastic FEA) and the plastic strain energy dissipation (based on elastic-plastic FEA) have been considered to assess the per cycle fatigue damage. The study has revealed that ASME criteria predicts lower alternating stress intensity (fatigue damage parameter S alt ) for some cases of non-proportional loading than that predicted for corresponding proportional loading case. However, the actual fatigue damage is higher in non-proportional loading than that in corresponding proportional loading case. Further the fatigue damage of an NPP component under realistic multi-axial cyclic loading conditions has been assessed using some popular critical plane based models vis-à-vis ASME Sec. III criteria. (author)

  13. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  14. The Dispersion of the Axisymmetric Longitudinal Waves in the Pre-Strained Bi-Material Hollow Cylinder with the Imperfect Interface Conditions

    Science.gov (United States)

    Akbarov, S. D.; Ipek, C.

    This work studies the influence of the imperfectness of the interface conditions on the dispersion of the axisymmetric longitudinal waves in the pre-strained bi-material hollow cylinder. The investigations are made within the 3D linearized theory of elastic waves in elastic bodies with initial stresses. It is assumed that the materials of the layers of the hollow cylinder are made from hyper elastic compressible materials and the elasticity relations of those are given through the harmonic potential. The shear spring type imperfectness of the interface conditions is considered and the degree of this imperfectness is estimated by the shear-spring parameter. Numerical results on the influence of this parameter on the behavior of the dispersion curves are presented and discussed.

  15. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  16. Cyclic AMP in rat pancreatic islets

    International Nuclear Information System (INIS)

    Grill, V.; Borglund, E.; Cerasi, E.; Uppsala Univ.

    1977-01-01

    The incorporation of [ 3 H]adenine into cyclic AMP was studied in rat pancreatic islets under varying conditions of labeling. Prolonging the exposure to [ 3 H]adenine progressively augmented the islet cyclic [ 3 H]AMP level. Islets labeled for different periods of time and subsequently incubated (without adenine) in the presence of D-glucose or cholera toxin showed stimulations of intra-islet cyclic [ 3 H]AMP that were proportionate to the levels of radioactive nucleotide present under non-stimulatory conditions. Labeling the islets in a high glucose concentration (27.7 mM) did not modify the nucleotide responses to glucose or cholera toxin. The specific activity of cyclic [ 3 H]AMP, determined by simultaneous assay of cyclic [ 3 H]AMP and total cyclic AMP, was not influenced by glucose or cholera toxin. Glucose had no effect on the specific activity of labeled ATP

  17. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification.

    Science.gov (United States)

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-07-07

    Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans.

  18. Cardiac biplane strain imaging: initial in vivo experience

    Energy Technology Data Exchange (ETDEWEB)

    Lopata, R G P; Nillesen, M M; Thijssen, J M; De Korte, C L [Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Verrijp, C N; Lammens, M M Y; Van der Laak, J A W M [Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Singh, S K; Van Wetten, H B [Department of Cardiothoracic Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Kapusta, L [Pediatric Cardiology, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)], E-mail: R.Lopata@cukz.umcn.nl

    2010-02-21

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve ({delta}p: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy ({delta}p = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  19. Cardiac biplane strain imaging: initial in vivo experience

    International Nuclear Information System (INIS)

    Lopata, R G P; Nillesen, M M; Thijssen, J M; De Korte, C L; Verrijp, C N; Lammens, M M Y; Van der Laak, J A W M; Singh, S K; Van Wetten, H B; Kapusta, L

    2010-01-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Δp: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Δp = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  20. Floquet stability analysis of the longitudinal dynamics of two hovering model insects

    Science.gov (United States)

    Wu, Jiang Hao; Sun, Mao

    2012-01-01

    Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980

  1. Spin dynamics on cyclic iron wheels in high magnetic fields

    International Nuclear Information System (INIS)

    Schnelzer, Lars

    2008-01-01

    In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe 6 (tea) 6 and Cs rate at Fe 8 (tea) 8 as probes of NMR both the protons and the centrally lying alkali atoms 7 Li, 23 Na, and 133 Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T∼30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the 23 Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe 6 (tea) 6 of eq=4.78(11).10 20 V/m 2 was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to θ(c,B)=62.8 . The very low splitting of the 7 Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10 20 V/m 2 . From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10 21 V/m 2 . The study of the field-dependent line position of the 23 Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A tHf /2π=140 kHz. For the first time on a cyclic iron cluster a level crossing could be studied by means of the central ion. The temperature dependence of the longitudinal

  2. Microstructural modeling of fatigue fracture of shape memory alloys at thermomechanical cyclic loading

    Science.gov (United States)

    Belyaev, Fedor S.; Evard, Margarita E.; Volkov, Aleksandr E.

    2018-05-01

    A microstructural model of shape memory alloys (SMA) describing their deformation and fatigue fracture is presented. A new criterion of fracture has been developed which takes into account the effect of hydrostatic pressure, deformation defects and material damage. It is shown that the model can describe the fatigue fracture of SMA under various thermomechanical cycling regimes. Results of calculating the number of cycles to failure at thermocycling under a constant stress, at symmetric two-sided cyclic deformation, at straining-unloading cycles, at cycling in the regime of the thermodynamic cycles of a SMA working body in the hard (strain controlled) and soft (stress controlled) working cycles, is studied. Results of calculating the number of cycles to failure are presented for different parameters of these cycles.

  3. Cyclic peptide therapeutics: past, present and future.

    Science.gov (United States)

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  5. Efficient Homodifunctional Bimolecular Ring-Closure Method for Cyclic Polymers by Combining RAFT and Self-Accelerating Click Reaction.

    Science.gov (United States)

    Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping

    2017-08-01

    An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    Science.gov (United States)

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fatigue life and cyclic deformation behaviour of quenched and tempered steel AISI 4140 at two-step stress- and total-strain-controlled push-pull loading

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, V.; Lang, K.H.; Macherauch, E. [Inst. fuer Werkstoffkunde I, Univ. Karlsruhe (Germany)

    2003-05-01

    The behaviour of steels at multi-step cyclic loading was explored up to now almost exclusively in fatigue-life-oriented investigations. Thus, only few works exist dealing with the cyclic deformation behaviour at two- and multi-step loading. Therefore, the cyclic deformation behaviour at two-step experiments with a single amplitude change (2-block experiments) and with multiple changes between two blocks of certain length and different amplitudes (multi-block experiments) was investigated in this work at the technically important steel AISI 4140 (German grade 42CrMo4). (orig.)

  8. Residual Strain Characteristics of Nickel-coated FBG Sensors

    International Nuclear Information System (INIS)

    Cho, Won-Jae; Hwang, A-Reum; Kim, Sang-Woo

    2017-01-01

    A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately 43 μm of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

  9. Residual Strain Characteristics of Nickel-coated FBG Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won-Jae; Hwang, A-Reum; Kim, Sang-Woo [Hankyong National Univ., Ansung (Korea, Republic of)

    2017-07-15

    A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately 43 μm of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

  10. Correlation between Left Ventricular Global and Regional Longitudinal Systolic Strain and Impaired Microcirculation in Patients with Acute Myocardial Infarction

    DEFF Research Database (Denmark)

    Løgstrup, Brian B; Høfsten, Dan Eik; Christophersen, Thomas Brøcher

    2012-01-01

    investigated if LRS and GLS imaging is superior to conventional measures of left ventricle (LV) function. Methods: In a consecutive population of first time AMI patients, who underwent successful revascularization, we performed comprehensive TTE. GLS and LRS were obtained from the three standard apical views...... elevation myocardial infarction. The GLS was -15.2 [-19.3;-10.1]% in the total population of 183 patients. Total wall motion score index (WMSI) in the population was 1.19 [1;1.5]. Eighty-five patients suffered from culprit lesion in left anterior descending artery (LAD). The CFR in these patients was 1......Objectives: We investigated the correlation between left ventricular global and regional longitudinal systolic strain (GLS and LRS) and coronary flow reserve (CFR) assessed by transthoracic echocardiography (TTE) in patients with a recent acute myocardial infarction (AMI). Furthermore, we...

  11. Myocardial Strain Analysis by 2-Dimensional Speckle Tracking Echocardiography Improves Diagnostics of Coronary Artery Stenosis in Stable Angina Pectoris

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Hoffmann, Soren; Mogelvang, Rasmus

    2014-01-01

    BACKGROUND: Two-dimensional strain echocardiography detects early signs of left ventricular dysfunction; however, it is unknown whether myocardial strain analysis at rest in patients with suspected stable angina pectoris predicts the presence of coronary artery disease (CAD). METHODS AND RESULTS...... echocardiography was performed in the 3 apical projections. Peak regional longitudinal systolic strain was measured in 18 myocardial sites and averaged to provide global longitudinal peak systolic strain. Duke score, including ST-segment depression, chest pain, and exercise capacity, was used as the outcome...

  12. Left Ventricular Function in Patients with Pulmonary Arterial Hypertension: The Role of Two-Dimensional Speckle Tracking Strain.

    Science.gov (United States)

    de Amorim Corrêa, Ricardo; de Oliveira, Fernanda Brito; Barbosa, Marcia M; Barbosa, Jose Augusto A; Carvalho, Taís Soares; Barreto, Michele Campos; Campos, Frederico Thadeu A F; Nunes, Maria Carmo Pereira

    2016-09-01

    Pulmonary arterial hypertension (PAH) is characterized by elevated mean pulmonary arterial pressure with abnormal right ventricular (RV) pressure overload that may alter left ventricular (LV) function. The aim of this study was to assess the impact of RV pressure overload on LV function in PAH patients using two-dimensional (2D) speckle tracking strain. The study enrolled 37 group 1 PAH patients and 38 age- and gender-matched healthy controls. LV longitudinal and radial 2D strains were measured with and without including the ventricular septum. Six-minute walk test (6MWT) and brain natriuretic peptide (BNP) levels were also obtained in patients with PAH. The mean age of patients was 46.4 ± 14.8 years, 76% women, and 16 patients (43%) had schistosomiasis. Sixteen patients (43%) were in WHO class III or IV under specific treatment for PAH. The overall 6MWT distance was 441 meters, and the BNP levels were 80 pg/mL. Patients with PAH more commonly presented with LV diastolic dysfunction and impairment of RV function when compared to controls. LV global longitudinal and radial strains were lower in patients than in controls (-17.9 ± 2.8 vs. -20.5 ± 1.9; P < 0.001 and 30.8 ± 10.5 vs. 49.8 ± 15.4; P < 0.001, respectively). After excluding septal values, LV longitudinal and radial strains remained lower in patients than in controls. The independent factors associated with global LV longitudinal strain were LV ejection fraction, RV fractional area change, and tricuspid annular systolic motion. This study showed impaired LV contractility in patients with PAH assessed by speckle tracking strain, irrespective of ventricular septal involvement. Global LV longitudinal strain was associated independently with RV fractional area change and tricuspid annular systolic motion, after adjustment for LV ejection fraction. © 2016, Wiley Periodicals, Inc.

  13. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth; Meier, Stuart Kurt; Gehring, Christoph A

    2016-01-01

    Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms

  14. Reliability evaluation of fiber optic sensors exposed to cyclic thermal load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Kim, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of); Kim, Dae Hyun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    Fiber Bragg grating (FBG) sensors are currently the most prevalent sensors because of their unique advantages such as ease of multiplexing and capability of performing absolute measurements. They are applied to various structures for structural health monitoring (SHM). The signal characteristics of FBG sensors under thermal loading should be investigated to enhance the reliability of these sensors, because they are exposed to certain cyclic thermal loads due to temperature changes resulting from change of seasons, when they are applied to structures for SHM. In this study, tests on specimens are conducted in a thermal chamber with temperature changes from - to for 300 cycles. For the specimens, two types of base materials and adhesives that are normally used in the manufacture of packaged FBG sensors are selected. From the test results, it is confirmed that the FBG sensors undergo some degree of compressive strain under cyclic thermal load; this can lead to measurement errors. Hence, a pre-calibration is necessary before applying these sensors to structures for long-term SHM.

  15. Development of a Numerical Approach to Simulate Compressed Air Energy Storage Subjected to Cyclic Internal Pressure

    Directory of Open Access Journals (Sweden)

    Song-Hun Chong

    2017-10-01

    Full Text Available This paper analyzes the long-term response of unlined energy storage located at shallow depth to improve the distance between a wind farm and storage. The numerical approach follows the hybrid scheme that combined a mechanical constitutive model to extract stress and strains at the first cycle and polynomial-type strain accumulation functions to track the progressive plastic deformation. In particular, the strain function includes the fundamental features that requires simulating the long-term response of geomaterials: volumetric strain (terminal void ratio and shear strain (shakedown and ratcheting, the strain accumulation rate, and stress obliquity. The model is tested with a triaxial strain boundary condition under different stress obliquities. The unlined storage subjected to cyclic internal stress is simulated with different storage geometries and stress amplitudes that play a crucial role in estimating the long-term mechanical stability of underground storage. The simulations present the evolution of ground surface, yet their incremental rate approaches towards a terminal void ratio. With regular and smooth displacement fields for the large number of cycles, the inflection point is estimated with the previous surface settlement model.

  16. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    Science.gov (United States)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  17. 40 CFR 721.2120 - Cyclic amide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for the...

  18. Assessment of right ventricular longitudinal strain by 2D speckle tracking imaging compared with RV function and hemodynamics in pulmonary hypertension.

    Science.gov (United States)

    Li, Yidan; Wang, Yidan; Meng, Xiangli; Zhu, Weiwei; Lu, Xiuzhang

    2017-11-01

    The right ventricular longitudinal strain (RVLS) of pulmonary hypertension (PH) patients and its relationship with RV function parameters measured by echocardiography and hemodynamic parameters measured by right heart catheterization was investigated. According to the WHO functional class (FC), 66 PH patients were divided into FC I/II (group 1) and III/IV (group 2). RV function parameters were measured by echocardiographic examinations. Hemodynamic parameters were obtained by right heart catheterization. Patients in group 2 had higher systolic pulmonary artery pressure (sPAP; P good sensitivity and specificity. Evidence has shown that RVLS measurement can provide the much-needed and reliable information on RV function and hemodynamics. Therefore, this qualifies as a patient-friendly approach for the clinical management of PH patients.

  19. Detection of Cyclic Dinucleotides by STING.

    Science.gov (United States)

    Du, Xiao-Xia; Su, Xiao-Dong

    2017-01-01

    STING (stimulator of interferon genes) is an essential signaling adaptor protein mediating cytosolic DNA-induced innate immunity for both microbial invasion and self-DNA leakage. STING is also a direct receptor for cytosolic cyclic dinucleotides (CDNs), including the microbial secondary messengers c-di-GMP (3',3'-cyclic di-GMP), 3',3'cGAMP (3',3'-cyclic GMP-AMP), and mammalian endogenous 2',3'cGAMP (2',3'-cyclic GMP-AMP) synthesized by cGAS (cyclic GMP-AMP synthase). Upon CDN binding, STING undergoes a conformational change to enable signal transduction by phosphorylation and finally to active IRF3 (Interferon regulatory factor 3) for type I interferon production. Here, we describe some experimental procedures such as Isothermal Titration Calorimetry and luciferase reporter assays to study the CDNs binding and activity by STING proteins.

  20. Cyclic completion of the anamorphic universe

    Science.gov (United States)

    Ijjas, Anna

    2018-04-01

    Cyclic models of the universe have the advantage of avoiding initial conditions problems related to postulating any sort of beginning in time. To date, the best known viable examples of cyclic models have been ekpyrotic. In this paper, we show that the recently proposed anamorphic scenario can also be made cyclic. The key to the cyclic completion is a classically stable, non-singular bounce. Remarkably, even though the bounce construction was originally developed to connect a period of contraction with a period of expansion both described by Einstein gravity, we show here that it can naturally be modified to connect an ordinary contracting phase described by Einstein gravity with a phase of anamorphic smoothing. The paper will present the basic principles and steps in constructing cyclic anamorphic models.

  1. Adenosine 3':5'-cyclic monophosphate in higher plants: Isolation and characterization of adenosine 3':5'-cyclic monophosphate from Kalanchoe and Agave.

    Science.gov (United States)

    Ashton, A R; Polya, G M

    1977-01-01

    1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed. PMID:196595

  2. Dietary Habits of Young Athletes Going in for Cyclic Sports

    Directory of Open Access Journals (Sweden)

    S. G. Makarova

    2015-01-01

    Full Text Available In modern sports, outlining an adequate diet is one of the key issues in training young athletes. The following literature review presents new approaches to nutrition of young athletes going in for cyclic sports. These sports take a lot of energy, entail great strain and significant intensity of training. Correspondingly, the ratio of nutrients in athletes training for endurance tends to shift toward carbohydrates, the amount of which in the body should cover the increased need for workload as may be defined by the training process and the amount of workload. High-fat diets have proved irrelevant in terms of providing energy function; therefore, this nutritive approach was dismissed, since an athlete should have an about 25% share of fats of his/her menu’s total caloric value. According to modern standards, the amount of proteins in athletes’ menu should not exceed 1.2–1.6g per 1kg of body weight. To avoid the risk of dehydration and physical weakness, cyclic athletes should take sport drinks (in small portions prior to and following a training session (competition. They contain carbohydrates and electrolytes and therefore are more preferable than pure water. 

  3. Cyclic plasticity of an austenitic-ferritic stainless steel under biaxial non proportional loading

    International Nuclear Information System (INIS)

    Aubin, V.

    2001-11-01

    Austenitic-ferritic stainless steels are supplied since about 30 years only, so they are yet not well-known. Their behaviour in cyclic plasticity was studied under uniaxial loading but not under multiaxial loading, whereas only a thorough knowledge of the phenomena influencing the mechanical behaviour of a material enables to simulate and predict accurately its behaviour in a structure. This work aims to study and model the behaviour of a duplex stainless steel under cyclic biaxial loading. A three step method was adopted. A set of tension-torsion tests on tubular specimen was first defined. We studied the equivalence between loading directions, and then the influence of loading path and loading history on the stress response of the material. Results showed that duplex stainless steel shows an extra-hardening under non proportional loading and that its behaviour depends on previous loading. Then, in order to analyse the results obtained during this first experimental stage, the yield surface was measured at different times during cyclic loading of the same kind. A very small plastic strain offset (2*10 -5 ) was used in order not to disturb the yield surface measured. The alteration of isotropic and kinematic hardening variables were deduced from these measures. Finally, three phenomenological constitutive laws were identified with the experimental set. We focused our interest on the simulation of stabilized stress levels and on the simulation of the cyclic hardening/softening behaviour. The comparison between experimental and numerical results enabled the testing of the relevance of these models. (authors)

  4. Effect of extensional cyclic strain on the mechanical and physico-mechanical properties of PVC-NBR/graphite composites

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available The variation of electrical resistivity as will as the mechanical properties of PVC (polyvinylchloride-NBR (acrylonitrile butadiene rubber based conductive composites filled with different concentrations of graphite were studied. These samples were studied as function of the constant deformation fatigue test. When the specimen was subjected to a large number of rapidly repeating strain cycles, and different strain amplitudes, the conductivity, σ(T, shows an initial rapid fall followed by dynamic equilibrium. Increasing the number of cycles and strain amplitudes, the conductivity remains almost constant over the temperature range 30–140°C. The equilibrium state between destruction and reconstruction of graphite particles has been detected for all strains of certain values of strain cycles (1000, 2000, 3000, and 4000 cycles for 30% strain amplitude. A preliminary study was done to optimize the possibility to use Conductive Polymer Composites (CPC as a strain sensor and to evaluate its performance by an intrinsic physico-mechanical modification measurement. The electromechanical characterization was performed to demonstrate the adaptability and the correct functioning of the sensor as a strain gauge on the fabric. The coefficient of strain sensitivity (K was measured for 50 phr graphite/PVCNBR vulcanized at 3000 number of strain cycles and 30% strain amplitude. There was a broad maximum of K, with a peak value of 82, which was much higher, compared to conventional wire resistors. A slight hysteresis was observed at unloading due to plasticity of the matrix. A good correlation exists between mechanical and electrical response to the strain sensitivity. Mechanical reinforcement was in accordance with the Quemada equation [1] and Guth model [2] attested to good particle-matrix adhesion. It was found that the viscous component of deformation gradually disappeared and the hardening occurred with increasing strain cycles. The modulus, fracture

  5. Cyclical subnormal separation in A-groups

    International Nuclear Information System (INIS)

    Makarfi, M.U.

    1995-12-01

    Three main results, concerning A-groups in respect of cyclical subnormal separation as defined in, are presented. It is shown in theorem A that any A-group that is generated by elements of prime order and satisfying the cyclical subnormal separation conditions is metabelian. The two other main results give necessary and sufficient conditions for A-groups, that are split extensions of certain abelian p-groups by a metabelian p'-group, to satisfy the cyclical subnormal separation condition. There is also a result which shows that A-groups with elementary abelian Sylow subgroups are cyclically separated as defined. (author). 7 refs

  6. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance

    International Nuclear Information System (INIS)

    Hales, R.

    1983-01-01

    A method of combining long term creep data with relatively short term mechanical behaviour to provide an estimate of creep-fatigue endurance is presented. It is proposed that the creep-fatigue effect in high temperature cyclic deformation is governed by a difference in strain rate around the cycle and the associated variation in ductility with strain rate. (author)

  7. Global Longitudinal Strain Using Speckle-Tracking Echocardiography as a Mortality Predictor in Sepsis: A Systematic Review.

    Science.gov (United States)

    Vallabhajosyula, Saraschandra; Rayes, Hamza A; Sakhuja, Ankit; Murad, Mohammad Hassan; Geske, Jeffrey B; Jentzer, Jacob C

    2018-01-01

    The data on speckle-tracking echocardiography (STE) in patients with sepsis are limited. This systematic review from 1975 to 2016 included studies in adults and children evaluating cardiovascular dysfunction in sepsis, severe sepsis, and septic shock utilizing STE for systolic global longitudinal strain (GLS). The primary outcome was short- or long-term mortality. Given the significant methodological and statistical differences between published studies, combining the data using meta-analysis methods was not appropriate. A total of 120 studies were identified, with 5 studies (561 patients) included in the final analysis. All studies were prospective observational studies using the 2001 criteria for defining sepsis. Three studies demonstrated worse systolic GLS to be associated with higher mortality, whereas 2 did not show a statistically significant association. Various cutoffs between -10% and -17% were used to define abnormal GLS across studies. This systematic review revealed that STE may predict mortality in patients with sepsis; however, the strength of evidence is low due to heterogeneity in study populations, GLS technologies, cutoffs, and timing of STE. Further dedicated studies are needed to understand the optimal application of STE in patients with sepsis.

  8. Secondary Hardening Behavior in Super Duplex Stainless Steels during LCF in Dynamic Strain Ageing Regime

    OpenAIRE

    Chai, Guocai; Andersson, Marcus

    2013-01-01

    Cyclic deformation behaviors in five modified duplex stainless steel S32705 grades have been studied at 20 °C, 200 °C, 250° and 350 °C. The influence of temperature and nitrogen concentration on the occurrence of the second hardening phenomenon, in the stress response curve was focused. An increase in nitrogen concentration can have a positive effect on dynamic strain ageing by increasing the first hardening and also the second hardening behavior during cyclic deformation. Furthermore, an inc...

  9. Environmental degradation of Opalinus Clay with cyclic variations in relative humidity

    Science.gov (United States)

    Wild, Katrin; Walter, Patric; Madonna, Claudio; Amann, Florian

    2016-04-01

    Clay shales are considered as favorable host rocks for nuclear waste repositories due to their low permeability, high sorption capacity and the potential for self-sealing. However, the favorable characteristics of the rock mass may change during tunnel excavation. Excavation is accompanied by stress redistribution and the development of an excavation damage zone. Furthermore, unloading and exposure to atmospheric conditions with a lower relative humidity (RH) causes desaturation of the rock mass close to the tunnel. This leads to shrinkage and the formation of desiccation cracks. During the open drift stage, seasonal atmospheric changes, especially RH variations, may alter the rock mass and influence the long-term crack evolution. This contribution discusses the influence of RH variation on the mechanical behavior of OPA. A series of specimens were exposed to short-term and long-term, stepwise cyclic RH variations between about 60 and 95% at constant temperature. Strains were measured using strain gauges to monitor the volumetric response during RH cycles. After each applied RH cycle, Brazilian tensile strength (BTS) tests were performed to identify whether there is a change in tensile strength due to environmental damage caused by the change in RH. Swelling and shrinkage of the specimens accompanied by irreversible volumetric expansion was observed as a consequence of the exposure to RH cycles. However, the irreversible strain was limited to the direction normal to bedding suggesting that internal damage is restricted along the bedding planes. No significant effect of cyclic RH variations on the BTS of the specimens was observed. The strength parallel to bedding remained constant over several cycles while the strength normal to bedding shows a slightly decreasing trend after 2 cycles. Furthermore, the water retention characteristics of the specimens were not altered significantly during stepwise RH cycling as the evolution of the water content was reversible

  10. Subclinical Cardiac Dysfunction Detected by Strain Imaging During Breast Irradiation With Persistent Changes 6 Weeks After Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Queenie [University of New South Wales, Sydney, NSW (Australia); Liverpool Hospital, Sydney, NSW (Australia); Hee, Leia; Batumalai, Vikneswary [University of New South Wales, Sydney, NSW (Australia); Liverpool Hospital, Sydney, NSW (Australia); Ingham Institute of Applied Medical Research, Liverpool, NSW (Australia); Allman, Christine [Liverpool Hospital, Sydney, NSW (Australia); MacDonald, Peter [University of New South Wales, Sydney, NSW (Australia); St. Vincent' s Hospital, Sydney, NSW (Australia); Delaney, Geoff P. [University of New South Wales, Sydney, NSW (Australia); Liverpool Hospital, Sydney, NSW (Australia); Ingham Institute of Applied Medical Research, Liverpool, NSW (Australia); Lonergan, Denise [Liverpool Hospital, Sydney, NSW (Australia); Ingham Institute of Applied Medical Research, Liverpool, NSW (Australia); Thomas, Liza, E-mail: l.thomas@unsw.edu.au [University of New South Wales, Sydney, NSW (Australia); Liverpool Hospital, Sydney, NSW (Australia)

    2015-06-01

    Purpose: To evaluate 2-dimensional strain imaging (SI) for the detection of subclinical myocardial dysfunction during and after radiation therapy (RT). Methods and Materials: Forty women with left-sided breast cancer, undergoing only adjuvant RT to the left chest, were prospectively recruited. Standard echocardiography and SI were performed at baseline, during RT, and 6 weeks after RT. Strain (S) and strain rate (Sr) parameters were measured in the longitudinal, circumferential, and radial planes. Correlation of change in global longitudinal strain (GLS % and Δ change) and the volume of heart receiving 30 Gy (V30) and mean heart dose (MHD) were examined. Results: Left ventricular ejection fraction was unchanged; however, longitudinal systolic S and Sr and radial S were significantly reduced during RT and remained reduced at 6 weeks after treatment [longitudinal S (%) −20.44 ± 2.66 baseline vs −18.60 ± 2.70* during RT vs −18.34 ± 2.86* at 6 weeks after RT; longitudinal Sr (s{sup −1}) −1.19 ± 0.21 vs −1.06 ± 0.18* vs −1.06 ± 0.16*; radial S (%) 56.66 ± 18.57 vs 46.93 ± 14.56* vs 49.22 ± 15.81*; *P<.05 vs baseline]. Diastolic Sr were only reduced 6 weeks after RT [longitudinal E Sr (s{sup −1}) 1.47 ± 0.32 vs 1.29 ± 0.27*; longitudinal A Sr (s{sup −1}) 1.19 ± 0.31 vs 1.03 ± 0.24*; *P<.05 vs baseline], whereas circumferential strain was preserved throughout. A modest correlation between S and Sr and V30 and MHD was observed (GLS Δ change and V30 ρ = 0.314, P=.05; GLS % change and V30 ρ = 0.288, P=.076; GLS Δ change and MHD ρ = 0.348, P=.03; GLS % change and MHD ρ = 0.346, P=.031). Conclusions: Subclinical myocardial dysfunction was detected by 2-dimensional SI during RT, with changes persisting 6 weeks after treatment, though long-term effects remain unknown. Additionally, a modest correlation between strain reduction and radiation dose was observed.

  11. Influence of Industrial Washing and Cyclic Fatigue on Slippage of Linen Fabric Threads along the Seam

    Directory of Open Access Journals (Sweden)

    Irina KORUNČAK

    2014-04-01

    Full Text Available All seams of garments shall withstand the established force effect in the longitudinal and transverse directions. Resistance to thread slippage along the seam is a major property of fabrics that is regulated by strict guidelines. In many research works, lining fabrics are chosen as the object of research as thread slippage is the most typical of them. What concerns the reports exploring slippage of linen fabric threads along the seam, just very few papers are available. Studies dealing with the influence made by industrial washing and cyclic load on the defect under investigation, thereby taking into account operational properties of garments are not readily available at all. The objective of the paper is to define the influence of industrial washing and cyclic tensile on slippage of linen fabric threads along the seam. For the research, five 100 % linen fabrics of plain weave have been selected. Control test specimens, unwashed and processed with different washing methods, have been analysed. Cyclic tensile of the test specimens has been carried out by a tensile machine “Tinius Olsen” at tensile force P = 20 N, tensile speed of 12.55 mm/s, number of cycles of 100. The carried-out testing has demonstrated that industrial washing decreased resistance of linen fabrics to thread slippage along the seam in the most cases. Analysis of the results obtained has shown that cyclic tensile led to particularly significant increase in the seam gap. DOI: http://dx.doi.org/10.5755/j01.ms.20.1.2486

  12. Identification and Structural Characterization of Naturally-Occurring Broad-Spectrum Cyclic Antibiotics Isolated from Paenibacillus

    Science.gov (United States)

    Knolhoff, Ann M.; Zheng, Jie; McFarland, Melinda A.; Luo, Yan; Callahan, John H.; Brown, Eric W.; Croley, Timothy R.

    2015-08-01

    The rise of antimicrobial resistance necessitates the discovery and/or production of novel antibiotics. Isolated strains of Paenibacillus alvei were previously shown to exhibit antimicrobial activity against a number of pathogens, such as E. coli, Salmonella, and methicillin-resistant Staphylococcus aureus (MRSA). The responsible antimicrobial compounds were isolated from these Paenibacillus strains and a combination of low and high resolution mass spectrometry with multiple-stage tandem mass spectrometry was used for identification. A group of closely related cyclic lipopeptides was identified, differing primarily by fatty acid chain length and one of two possible amino acid substitutions. Variation in the fatty acid length resulted in mass differences of 14 Da and yielded groups of related MSn spectra. Despite the inherent complexity of MS/MS spectra of cyclic compounds, straightforward analysis of these spectra was accomplished by determining differences in complementary product ion series between compounds that differ in molecular weight by 14 Da. The primary peptide sequence assignment was confirmed through genome mining; the combination of these analytical tools represents a workflow that can be used for the identification of complex antibiotics. The compounds also share amino acid sequence similarity to a previously identified broad-spectrum antibiotic isolated from Paenibacillus. The presence of such a wide distribution of related compounds produced by the same organism represents a novel class of broad-spectrum antibiotic compounds.

  13. The Longitudinal Force Measurement of CWR Tracks with Hetero-Cladding FBG Sensors: A Proof of Concept

    Directory of Open Access Journals (Sweden)

    Li-Yang Shao

    2016-12-01

    Full Text Available A new method has been proposed to accurately determine longitudinal additional force in continuous welded rail (CWR on bridges via hetero-cladding fiber Bragg grating (HC-FBG sensors. The HC-FBG sensor consists of two FBGs written in the same type of fiber but with different cladding diameters. The HC-FBGs have the same temperature sensitivity but different strain sensitivity because of the different areas of the cross section. The differential strain coefficient is defined as the relative wavelength differences of two FBGs with the change of applied longitudinal force. In the verification experiment in the lab, the HC-FBGs were attached on a section of rail model of which the material property is the same as that of rail on line. The temperature and differential strain sensitivity were calibrated using a universal testing machine. As shown by the test results, the linearity between the relative wavelength difference and the longitudinal additional force is greater than 0.9999. The differential strain sensitivity is 4.85 × 10−6/N. Moreover, the relative wavelength difference is not affected by the temperature change. Compared to the theoretical results, the accumulated error is controlled within 5.0%.

  14. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere

    DEFF Research Database (Denmark)

    Nielsen, T.H.; Sørensen, D.; Tobiasen, C.

    2002-01-01

    Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600...... fluorescent Pseudomonas spp. from two different agricultural soils by using three different growth media. CLP production was observed in a large proportion of the strains (approximately 60%) inhabiting the sandy soil, compared to a low proportion (approximately 6%) in the loamy soil. Chemical structure...... in the peptide moiety. Production of specific CLPs could be affiliated with Pseudomonas fluorescens strain groups belonging to biotype I, V, or VI. In vitro analysis using both purified CLPs and whole-cell P. fluorescens preparations demonstrated that all CLPs exhibited strong biosurfactant properties...

  15. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds.

    Science.gov (United States)

    Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S

    2009-01-01

    Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.

  16. Cyclic characteristics of earthquake time histories

    International Nuclear Information System (INIS)

    Hall, J.R. Jr; Shukla, D.K.; Kissenpfennig, J.F.

    1977-01-01

    From an engineering standpoint, an earthquake record may be characterized by a number of parameters, one of which is its 'cyclic characteristics'. The cyclic characteristics are most significant in fatigue analysis of structures and liquefaction analysis of soils where, in addition to the peak motion, cyclic buildup is significant. Whereas duration peak amplitude and response spectra for earthquakes have been studied extensively, the cyclic characteristics of earthquake records have not received an equivalent attention. Present procedures to define the cyclic characteristics are generally based upon counting the number of peaks at various amplitude ranges on a record. This paper presents a computer approach which describes a time history by an amplitude envelope and a phase curve. Using Fast Fourier Transform Techniques, an earthquake time history is represented as a projection along the x-axis of a rotating vector-the length the vector is given by the amplitude spectra-and the angle between the vector and x-axis is given by the phase curve. Thus one cycle is completed when the vector makes a full rotation. Based upon Miner's cumulative damage concept, the computer code automatically combines the cycles of various amplitudes to obtain the equivalent number of cycles of a given amplitude. To illustrate the overall results, the cyclic characteristics of several real and synthetic earthquake time histories have been studied and are presented in the paper, with the conclusion that this procedure provides a physical interpretation of the cyclic characteristics of earthquakes. (Auth.)

  17. Account of internal friction when estimating recoverable creep strain

    International Nuclear Information System (INIS)

    Demidov, A.S.

    1986-01-01

    It is supposed that a difference of empirical and calculated data on the creep strain recovery for Kh18N10T steel under conditions of cyclic variations in stress is specified by the effect of internal friction. In the accepted model of creep β-flow is considered to be reversible and γ-flow- irreversible. Absorptivity is determined as a ratio of the difference between the expended work and work of strain recovery forces to the work expended in cycle. A notion of the equivalent stress acting in the period of the creep strain recovery is introduced. Results of the calculation according to the empirical formula where absorptivity was introduced into are compared with empirical data obtained for Kh18N10T steel at 750 deg C

  18. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    Directory of Open Access Journals (Sweden)

    Gawedzki Waclaw

    2015-10-01

    Full Text Available Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  19. A knitted glove sensing system with compression strain for finger movements

    Science.gov (United States)

    Ryu, Hochung; Park, Sangki; Park, Jong-Jin; Bae, Jihyun

    2018-05-01

    Development of a fabric structure strain sensor has received considerable attention due to its broad application in healthcare monitoring and human–machine interfaces. In the knitted textile structure, it is critical to understand the surface structural deformation from a different body motion, inducing the electrical signal characteristics. Here, we report the electromechanical properties of the knitted glove sensing system focusing on the compressive strain behavior. Compared with the electrical response of the tensile strain, the compressive strain shows much higher sensitivity, stability, and linearity via different finger motions. Additionally, the sensor exhibits constant electrical properties after repeated cyclic tests and washing processes. The proposed knitted glove sensing system can be readily extended to a scalable and cost-effective production due to the use of a commercialized manufacturing system.

  20. Monopod bucket foundations under cyclic lateral loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo

    on bucket foundations under lateral cyclic loading. The test setup is described in detail and a comprehensive experimental campaign is presented. The foundation is subjected to cyclic overturning moment, cyclic horizontal loading and constant vertical loading, acting on the same plane for thousands...

  1. Generalized Wideband Cyclic MUSIC

    Directory of Open Access Journals (Sweden)

    Zhang-Meng Liu

    2009-01-01

    Full Text Available The method of Spectral Correlation-Signal Subspace Fitting (SC-SSF fails to separate wideband cyclostationary signals with coherent second-order cyclic statistics (SOCS. Averaged Cyclic MUSIC (ACM method made up for the drawback to some degree via temporally averaging the cyclic cross-correlation of the array output. This paper interprets ACM from another perspective and proposes a new DOA estimation method by generalizing ACM for wideband cyclostationary signals. The proposed method successfully makes up for the aforementioned drawback of SC-SSF and obtains a more satisfying performance than ACM. It is also demonstrated that ACM is a simplified form of the proposed method when only a single spectral frequency is exploited, and the integration of the frequencies within the signal bandwidth helps the new method to outperform ACM.

  2. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  3. Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission.

    Science.gov (United States)

    Chatterjee, Subhadeep; Killiny, Nabil; Almeida, Rodrigo P P; Lindow, Steven E

    2010-10-01

    Xylella fastidiosa must coordinately regulate a variety of traits contributing to biofilm formation, host plant and vector colonization, and transmission between plants. Traits such as production of extracellular polysaccharides (EPS), adhesins, extracellular enzymes, and pili are expressed in a cell-density-dependent fashion mediated by a cell-to-cell signaling system involving a fatty acid diffusible signaling factor (DSF). The expression of gene PD0279 (which has a GGDEF domain) is downregulated in the presence of DSF and may be involved in intracellular signaling by modulating the levels of cyclic di-GMP. PD0279, designated cyclic di-GMP synthase A (cgsA), is required for biofilm formation, plant virulence, and vector transmission. cgsA mutants exhibited a hyperadhesive phenotype in vitro and overexpressed gumJ, hxfA, hxfB, xadA, and fimA, which promote attachment of cells to surfaces and, hence, biofilm formation. The mutants were greatly reduced in virulence to grape albeit still transmissible by insect vectors, although at a reduced level compared with transmission rates of the wild-type strain, despite the fact that similar numbers of cells of the cgsA mutant were acquired by the insects from infected plants. High levels of EPS were measured in cgsA mutants compared with wild-type strains, and scanning electron microscopy analysis also revealed a thicker amorphous layer surrounding the mutants. Overexpression of cgsA in a cgsA-complemented mutant conferred the opposite phenotypes in vitro. These results suggest that decreases of cyclic di-GMP result from the accumulation of DSF as cell density increases, leading to a phenotypic transition from a planktonic state capable of colonizing host plants to an adhesive state that is insect transmissible.

  4. Echocardiographic right ventricle longitudinal contraction indices cannot predict ejection fraction in post-operative Fallot children.

    Science.gov (United States)

    Bonnemains, Laurent; Stos, Bertrand; Vaugrenard, Thibaud; Marie, Pierre-Yves; Odille, Freddy; Boudjemline, Younes

    2012-03-01

    To examine in a population of post-operative tetralogy of Fallot patients, the correlation between right ventricle (RV) ejection fractions (EF) computed from magnetic resonance imaging (MRI) and three echocardiographic indices of RV function: TAPSE, longitudinal strain and strain rate. Indeed, these patients present a pulmonary regurgitation which is responsible for progressive dilatation of the RV. An echocardiographic assessment of the RV function would be very useful in determining the timing of pulmonary revalvulation for Fallot patients. However, these indices are generally based on the ventricle contraction in the long axis direction which is impaired in this population and does not seem to correlate with the EF. Thirty-five post-operative tetralogy of Fallot patients and 20 patients with normal RVs were included. In both groups, RVEF, assessed by MRI, was compared with the three echocardiographic indices. Longitudinal strain and strain rates were computed both on the free wall and on the whole RV. No correlation was found between the echocardiographic indices and the MRI EF in our Fallot population. The accuracy of those indices as a diagnostic test of an altered RV was low with Younden's indices varying from -0.18 to 0.5 and areas under the Receiver Operating Characterictic (ROC) curves equal to 0.54 for tricuspid annulus plane systolic excursion, 0.59-0.62 for strain and 0.57-0.63 for strain rate. Three conventional echocardiographic indices based on RV longitudinal contraction failed to assess the EF in our population of post-operative tetralogy of Fallot patients.

  5. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    Science.gov (United States)

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  6. Effects of multiaxial cyclic loading conditions on the evolution of porous defects

    Directory of Open Access Journals (Sweden)

    Mbiakop Armel

    2014-06-01

    Full Text Available Multiaxial loading conditions are one of the important parameters in estimating the lifetime of structure both in high and low cycle fatigue ([1 3]. In order to understand the coupling between the macroscopic multiaxial loading and the microscopic defects, we propose to investigate the evolution of an elasto-plastic porous material up to failure under low cycle fatigue conditions. The analysis is performed numerically, using finite elements, on a periodic 3D unit-cell under the assumption of finite strains and subjected to various stress triaxialities, translated as ratios between deviatoric, hydrostatic stress and Lode angles. The present discussion introduces several novel factors in the analysis: (i 3D geometry in cyclic loading (ii finite strains (iii free evolving void shape (iiii different hardening laws. That one of the important factors is the void shape and that its evolution during cyclic loading depends on its multiaxiality. Moreover, these factors will equally influence the apparent macroscopic hardening or softening of the material and the initiation of localized shear zones at the microscopic level. The Lode angle has a significant impact on the evolution of the aspect ratios and the ellipsoidicity of the pores, but has only a weak influence on the evolution of macroscopic variables such as the stress or the porosity. As a consequence, the results show that multiaxiality of the loading have an important on the evolution and growth of defects, pores in the present case problem, but are less important in the definition of the yield surface.

  7. Cyclic Diarylheptanoids from Corylus avellana Green Leafy Covers: Determination of Their Absolute Configurations and Evaluation of Their Antioxidant and Antimicrobial Activities.

    Science.gov (United States)

    Cerulli, Antonietta; Lauro, Gianluigi; Masullo, Milena; Cantone, Vincenza; Olas, Beata; Kontek, Bogdan; Nazzaro, Filomena; Bifulco, Giuseppe; Piacente, Sonia

    2017-06-23

    The methanol extract of the leafy covers of Corylus avellana, source of the Italian PGI (protected geographical indication) product "Nocciola di Giffoni", afforded two new cyclic diarylheptanoids, giffonins T and U (2 and 3), along with two known cyclic diarylheptanoids, a quinic acid, flavonoid-, and citric acid derivatives. The structures of giffonins T and U were determined as highly hydroxylated cyclic diarylheptanoids by 1D and 2D NMR experiments. Their relative configurations were assigned by a combined quantum mechanical/NMR approach, comparing the experimental 13 C/ 1 H NMR chemical shift data and the related predicted values. The absolute configurations of carpinontriol B (1) and giffonins T and U (2 and 3) were assigned by comparison of their experimental electronic circular dichroism curves with the TDDFT-predicted curves. The ability of the compounds to inhibit the lipid peroxidation induced by H 2 O 2 and H 2 O 2 /Fe 2+ was determined by measuring the concentration of thiobarbituric acid reactive substances. Furthermore, the antimicrobial activity of the methanol extract of leafy covers of C. avellana and of the isolated compounds against the Gram-positive strains Bacillus cereus and Staphylococcus aureus and the Gram-negative strains Escherichia coli and Pseudomonas aeruginosa was evaluated. Carpinontriol B (1) and giffonin U (3) at 40 μg/disk caused the formation of zones of inhibition.

  8. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory

    OpenAIRE

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-01-01

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and...

  9. The Investigation of Knitted Materials Bonded Seams Behaviour upon Cyclical Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Gita BUSILIENĖ

    2017-08-01

    Full Text Available In this research uniaxial tension behaviour of PES knitted materials with bonded seams is analysed. The objects of the investigation were two types of knitted materials, having the same fibre composition (93 % PES, 7 % EL, but different in knitting pattern, i. e. plain single jersey and rib 1 × 1. Bonded overlap seams were formed by changing the orientation of knitted materials strips, i. e. parallel/parallel, parallel/bias, parallel/perpendicular, bias/bias and bias/perpendicular. The strips of each knitted material were joined by two types of thermoplastic polyurethane (PU films different in thickness (75 mm and 150 mm. Mechanical characteristics of bonded seams were defined in longitudinal direction. During uniaxial tension such parameters as maximal force Fmax (N and maximal elongation ɛmax (% were recorded from typical tension diagrams. The changes of tested specimens strength and deformation were compared before and after cyclical fatigue tension the conditions of which were 50 cycles up to tension force F equal 24.5 N. The results have shown that changes before and after cyclical fatigue tension are mostly determined by the structure of knitted materials, the orientation of knitted materials strips in bonded seam, but not effected by thermoplastic polyurethane film. These results are opposite compared to the results of biaxial tension of the same type of specimens, which have shown that changes before and after cyclical fatigue punching are mostly determined by the type of thermoplastic film, but not effected by the orientation of knitted materials strips in bonded seams. DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16065

  10. 21 CFR 862.1230 - Cyclic AMP test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230....1230 Cyclic AMP test system. (a) Identification. A cyclic AMP test system is a device intended to measure the level of adenosine 3′, 5′-monophosphate (cyclic AMP) in plasma, urine, and other body fluids...

  11. Stress-Softening and Residual Strain Effects in Suture Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available This work focuses on the experimental characterization of suture material samples of MonoPlus, Monosyn, polyglycolic acid, polydioxanone 2–0, polydioxanone 4–0, poly(glycolide-co-epsilon-caprolactone, nylon, and polypropylene when subjected to cyclic loading and unloading conditions. It is found that all tested suture materials exhibit stress-softening and residual strain effects related to the microstructural material damage upon deformation from the natural, undistorted state of the virgin suture material. To predict experimental observations, a new constitutive material model that takes into account stress-softening and residual strain effects is developed. The basis of this model is the inclusion of a phenomenological nonmonotonous softening function that depends on the strain intensity between loading and unloading cycles. The theory is illustrated by modifying the non-Gaussian average-stretch, full-network model to capture stress-softening and residual strains by using pseudoelasticity concepts. It is shown that results obtained from theoretical simulations compare well with suture material experimental data.

  12. Job strain and tobacco smoking: an individual-participant data meta-analysis of 166,130 adults in 15 European studies.

    Directory of Open Access Journals (Sweden)

    Katriina Heikkilä

    Full Text Available Tobacco smoking is a major contributor to the public health burden and healthcare costs worldwide, but the determinants of smoking behaviours are poorly understood. We conducted a large individual-participant meta-analysis to examine the extent to which work-related stress, operationalised as job strain, is associated with tobacco smoking in working adults.We analysed cross-sectional data from 15 European studies comprising 166,130 participants. Longitudinal data from six studies were used. Job strain and smoking were self-reported. Smoking was harmonised into three categories never, ex- and current. We modelled the cross-sectional associations using logistic regression and the results pooled in random effects meta-analyses. Mixed effects logistic regression was used to examine longitudinal associations. Of the 166,130 participants, 17% reported job strain, 42% were never smokers, 33% ex-smokers and 25% current smokers. In the analyses of the cross-sectional data, current smokers had higher odds of job strain than never-smokers (age, sex and socioeconomic position-adjusted odds ratio: 1.11, 95% confidence interval: 1.03, 1.18. Current smokers with job strain smoked, on average, three cigarettes per week more than current smokers without job strain. In the analyses of longitudinal data (1 to 9 years of follow-up, there was no clear evidence for longitudinal associations between job strain and taking up or quitting smoking.Our findings show that smokers are slightly more likely than non-smokers to report work-related stress. In addition, smokers who reported work stress smoked, on average, slightly more cigarettes than stress-free smokers.

  13. A friction stress method for the cyclic inelastic behavior of metals

    International Nuclear Information System (INIS)

    Jhansale, H.R.

    1975-01-01

    Inelastic deformation and fatigue analyses require that computational models of inelastic material behavior be capable of simulating the various plastic stress-strain phenomena such as the memory of prior history and cycle dependent transient hardening, softening, relaxation and creep associated with cyclic loads. This paper presents such a formulation in which the transient phenomena are uniquely described in terms of a friction stress parameter and the memory phenomenon is simulated by the characteristics of a mechanical model comprising of 'Hookean Spring-Friction Slider' elements connected in series, the spring and slider within each element being connected in parallel. The formulation is ideally suited for programming on a digital computer. (Auth.)

  14. Behaviour of Cohesionless Soils During Cyclic Loading

    DEFF Research Database (Denmark)

    Shajarati, Amir; Sørensen, Kris Wessel; Nielsen, Søren Kjær

    Offshore wind turbine foundations are typically subjected to cyclic loading from both wind and waves, which can lead to unacceptable deformations in the soil. However, no generally accepted standardised method is currently available, when accounting for cyclic loading during the design of offshore...... wind turbine foundations. Therefore a literature study is performed in order to investigate existing research treating the behaviour of cohesionless soils, when subjected to cyclic loading. The behaviour of a soil subjected to cyclic loading is found to be dependent on; the relative density, mean...

  15. Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction

    International Nuclear Information System (INIS)

    Pojprapai, Soodkhet; Luo, Zhenhua; Clausen, Bjorn; Vogel, Sven C.; Brown, Donald W.; Russel, Jennifer; Hoffman, Mark

    2010-01-01

    The performance of ferroelectric ceramics is governed by the ability of domains to switch. A decrease in the switching ability can lead to degradation of the materials and failure of ferroelectric devices. In this work the dynamic properties of domain reorientation are studied. In situ time-of-flight neutron diffraction is used to probe the evolution of ferroelastic domain texture under mechanical cyclic loading in bulk lead zirconate titanate ceramics. The high sensitivity of neutron diffraction to lattice strain is exploited to precisely analyze the change of domain texture and strain through a full-pattern Rietveld method. These results are then used to construct a viscoelastic model, which explains the correlation between macroscopic phenomena (i.e. creep and recovered deformation) and microscopic dynamic behavior (i.e. ferroelastic switching, lattice strain).

  16. Value of tissue Doppler-derived Tei index and two-dimensional speckle tracking imaging derived longitudinal strain on predicting outcome of patients with light-chain cardiac amyloidosis.

    Science.gov (United States)

    Liu, Dan; Hu, Kai; Herrmann, Sebastian; Cikes, Maja; Ertl, Georg; Weidemann, Frank; Störk, Stefan; Nordbeck, Peter

    2017-06-01

    Prognosis of patients with light-chain cardiac amyloidosis (AL-CA) is poor. Speckle tracking imaging (STI) derived longitudinal deformation parameters and Doppler-derived left ventricular (LV) Tei index are valuable predictors of outcome in patients with AL-CA. We estimated the prognostic utility of Tei index and deformation parameters in 58 comprehensively phenotyped patients with AL-CA after a median follow-up of 365 days (quartiles 121, 365 days). The primary end point was all-cause mortality. 19 (33%) patients died during follow-up. Tei index (0.89 ± 0.29 vs. 0.61 ± 0.16, p < 0.001) and E to global early diastolic strain rate ratio (E/GLSR dias ) were higher while global longitudinal systolic strain (GLS sys ) was lower in non-survivors than in survivors (all p < 0.05). Tei index, NYHA functional class, GLS sys and E/GLSR dias were independent predictors of all-cause mortality risk, and Tei index ≥0.9 (HR 7.01, 95% CI 2.43-20.21, p < 0.001) was the best predictor of poor outcome. Combining Tei index and GLS sys yielded the best results on predicting death within 1 year (100% with Tei index ≥0.9 and GLS sys ≤13%) or survival (95% with Tei index ≤0.9 and GLS sys ≥13%). We conclude that 1-year mortality risk in AL-CA patients can be reliably predicted using Tei index or deformation parameters, with combined analysis offering best performance.

  17. Myocardial strain assessment by cine cardiac magnetic resonance imaging using non-rigid registration.

    Science.gov (United States)

    Tsadok, Yossi; Friedman, Zvi; Haluska, Brian A; Hoffmann, Rainer; Adam, Dan

    2016-05-01

    To evaluate a novel post-processing method for assessment of longitudinal mid-myocardial strain in standard cine cardiac magnetic resonance (CMR) imaging sequences. Cine CMR imaging and tagged cardiac magnetic resonance imaging (TMRI) were performed in 15 patients with acute myocardial infarction (AMI) and 15 healthy volunteers served as control group. A second group of 37 post-AMI patients underwent both cine CMR and late gadolinium enhancement (LGE) CMR exams. Speckle tracking echocardiography (STE) was performed in 36 of these patients. Cine CMR, TMRI and STE were analyzed to obtain longitudinal strain. LGE-CMR datasets were analyzed to evaluate scar extent. Comparison of peak systolic strain (PSS) measured from CMR and TMRI yielded a strong correlation (r=0.86, pcine CMR data. The method was found to be highly correlated with strain measurements obtained by TMRI and STE. This tool allows accurate discrimination between different transmurality states of myocardial infarction. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Antagonistic Properties of Some Halophilic Thermoactinomycetes Isolated from Superficial Sediment of a Solar Saltern and Production of Cyclic Antimicrobial Peptides by the Novel Isolate Paludifilum halophilum

    Science.gov (United States)

    Frikha Dammak, Donyez; Zarai, Ziad; Najah, Soumaya; Abdennabi, Rayed; Belbahri, Lassaad; Rateb, Mostafa E.; Mejdoub, Hafedh

    2017-01-01

    This study has focused on the isolation of twenty-three halophilic actinomycetes from two ponds of different salinity and the evaluation of their ability to exert an antimicrobial activity against both their competitors and several other pathogens. From the 23 isolates, 18 strains showed antagonistic activity, while 19 showed activities against one or more of the seven pathogen strains tested. Six strains exhibited consistent antibacterial activity against Gram-negative and Gram-positive pathogens characterized at the physiological and molecular levels. These strains shared only 94-95% 16S rRNA sequence identity with the closely related species of the Thermoactinomycetaceae family. Among them, the potent strain SMBg3 was further characterized and assigned to a new genus in the family for which the name Paludifilum halophilum (DSM 102817T) is proposed. Sequential extraction of the antimicrobial compounds with ethyl acetate revealed that the crude extract from SMBg3 strain had inhibitory effect on the growth of the plant pathogen Agrobacterium tumefaciens and the human pathogens Staphylococcus aureus, Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa. Based on the HRESI-MS spectral data, the cyclic lipopeptide Gramicidin S and four cyclic dipeptides (CDPs) named cyclo(L-4-OH-Pro-L-Leu), cyclo(L-Tyr-L-Pro), cyclo(L-Phe-L-Pro), and cyclo(L-Leu-L-Pro) were detected in the fermentation broth of Paludifilum halophilum. To our knowledge, this is the first report on the isolation of these compounds from members of the Thermoactinomycetaceae family. PMID:28819625

  19. Fatigue and strain effects in NbTi, Nb3Sn, and V2(Hf, Zr) multifilamentary superconductors

    International Nuclear Information System (INIS)

    Kuroda, T.; Wada, H.; Tachikawa, K.

    1988-01-01

    The effects of cyclic strain on critical current were studied in NbTi, bronze processed Nb 3 Sn, and composite diffusion processed V 2 (Hf,Zr) multifilamentary wires. No appreciable changes in critical current were found in NbTi wires until just prior to fatigue-induced fracture. Critical current degradation was also not observed in Nb 3 Sn or V 2 (Hf,Zr) as long as the wires were strained below the reversible limit strain. For strains beyond this limit strain the critical current was first degraded by an increasing number of cycles and then remained constant after a certain cycle number was passed

  20. Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: new cyclic substituents at indole-2-carboxamide.

    Science.gov (United States)

    La Regina, Giuseppe; Coluccia, Antonio; Brancale, Andrea; Piscitelli, Francesco; Gatti, Valerio; Maga, Giovanni; Samuele, Alberta; Pannecouque, Christophe; Schols, Dominique; Balzarini, Jan; Novellino, Ettore; Silvestri, Romano

    2011-03-24

    New indolylarylsulfone derivatives bearing cyclic substituents at indole-2-carboxamide linked through a methylene/ethylene spacer were potent inhibitors of the WT HIV-1 replication in CEM and PBMC cells with inhibitory concentrations in the low nanomolar range. Against the mutant L100I and K103N RT HIV-1 strains in MT-4 cells, compounds 20, 24-26, 36, and 40 showed antiviral potency superior to that of NVP and EFV. Against these mutant strains, derivatives 20, 24-26, and 40 were equipotent to ETV. Molecular docking experiments on this novel series of IAS analogues have also suggested that the H-bond interaction between the nitrogen atom in the carboxamide chain of IAS and Glu138:B is important in the binding of these compounds. These results are in accordance with the experimental data obtained on the WT and on the mutant HIV-1 strains tested.

  1. Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals

    International Nuclear Information System (INIS)

    Kubin, L.P.; Sauzay, M.

    2011-01-01

    This work reviews and critically discusses the current understanding of two scaling laws, which are ubiquitous in the modeling of monotonic plastic deformation in face-centered cubic metals. A compilation of the available data allows extending the domain of application of these scaling laws to cyclic deformation. The strengthening relation tells that the flow stress is proportional to the square root of the average dislocation density, whereas the similitude relation assumes that the flow stress is inversely proportional to the characteristic wavelength of dislocation patterns. The strengthening relation arises from short-range reactions of non-coplanar segments and applies all through the first three stages of the monotonic stress vs. strain curves. The value of the proportionality coefficient is calculated and simulated in good agreement with the bulk of experimental measurements published since the beginning of the 1960's. The physical origin of what is called similitude is not understood and the related coefficient is not predictable. Its value is determined from a review of the experimental literature. The generalization of these scaling laws to cyclic deformation is carried out on the base of a large collection of experimental results on single and polycrystals of various materials and on different microstructures. Surprisingly, for persistent slip bands (PSBs), both the strengthening and similitude coefficients appear to be more than two times smaller than the corresponding monotonic values, whereas their ratio is the same as in monotonic deformation. The similitude relation is also checked in cell structures and in labyrinth structures. Under low cyclic stresses, the strengthening coefficient is found even lower than in PSBs. A tentative explanation is proposed for the differences observed between cyclic and monotonic deformation. Finally, the influence of cross-slip on the temperature dependence of the saturation stress of PSBs is discussed in some detail

  2. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    OpenAIRE

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant micr...

  3. Application of Chaboche viscoplastic theory for predicting the cyclic behaviour of modified 9Cr-1Mo (T91)

    International Nuclear Information System (INIS)

    Chellapandi, P.; Ramesh, R.; Chetal, S.C.; Bhoje, S.B.

    1997-01-01

    Modified 9Cr 1Mo (grade 91) is the structural material for the SG of 500 MWe Prototype Fast Breeder Reactor. This material is codified in RCC-MR (1993). SG top tubesheet and its connecting shell see the hot sodium temperature of about 800 K. The steam temperature is about 770 K at 17 MPa. It is envisaged that this component can meet the creep fatigue damage rules of RCC-MR with 'elastic route' itself. One of the important material data needed to use the simplified rules given in RCC-MR (1993) is 'symmetrization coefficient' (Ks) which is not yet included in RCC-MR. Ks values are established from numerous stress strain cyclic data generated theoretically by using Chaboche viscoplastic model and recommended for the inclusion in the RCC-MR. The Chaboche model for grade 91 material has 20 material parameters which are identified based on the uniaxial monotonic and cyclic data available in RCC-MR (1993) as well as the published data and many uniaxial monotonic, cyclic, creep data are compared well with the predictions. (author). 4 refs, 21 figs, 2 tabs

  4. Cardiac strain findings in children with latent rheumatic heart disease detected by echocardiographic screening.

    Science.gov (United States)

    Beaton, Andrea; Richards, Hedda; Ploutz, Michelle; Gaur, Lasya; Aliku, Twalib; Lwabi, Peter; Ensing, Greg; Sable, Craig

    2017-08-01

    Identification of patients with latent rheumatic heart disease by echocardiography presents a unique opportunity to prevent disease progression. Myocardial strain is a more sensitive indicator of cardiac performance than traditional measures of systolic function. The objective of this study was to test the hypothesis that abnormalities in myocardial strain may be present in children with latent rheumatic heart disease. Standard echocardiography images with electrocardiogram gating were obtained from Ugandan children found to have latent rheumatic heart disease as well as control subjects. Traditional echocardiography measures of systolic function were obtained, and offline global longitudinal strain analysis was performed. Comparison between groups was performed using strain as a continuous (Mann-Whitney U-test) and categorical (cut-off 5th percentile for age) variable. Our study included 14 subjects with definite rheumatic heart disease, 13 with borderline rheumatic heart disease, and 112 control subjects. None of the subjects had abnormal left ventricular size or ejection fraction. Global longitudinal strain was lower than the 5th percentile in 44% of the subjects with any rheumatic heart disease (p=0.002 versus controls) and 57% of the subjects with definite rheumatic heart disease (p=0.03). The mean absolute strain values were significantly lower when comparing subjects with any rheumatic heart disease with controls (20.4±3.95 versus 22.4±4.35, p=0.025) and subjects with definite rheumatic heart disease with controls (19.9±4.25 versus 22.4±4.35, p=0.033). Global longitudinal strain is decreased in subjects with rheumatic heart disease in the absence of abnormal systolic function. Larger studies with longer-term follow-up are required to determine whether there is a role for strain to help better understand the pathophysiology of latent rheumatic heart disease.

  5. On Improvements of Cyclic MUSIC

    Directory of Open Access Journals (Sweden)

    H. Howard Fan

    2005-01-01

    Full Text Available Many man-made signals encountered in communications exhibit cyclostationarity. By exploiting cyclostationarity, cyclic MUSIC has been shown to be able to separate signals with different cycle frequencies, thus, to be able to perform signal selective direction of-arrival (DOA estimation. However, as will be shown in this paper, the DOA estimation of cyclic MUSIC is actually biased. We show in this paper that by properly choosing the frequency for evaluating the steering vector, the bias of DOA estimation can be substantially reduced and the performance can be improved. Furthermore, we propose another algorithm exploiting cyclic conjugate correlation to further improve the performance of DOA estimation. Simulation results show the effectiveness of both of our methods.

  6. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites

    Directory of Open Access Journals (Sweden)

    Hongbo Dai

    2015-07-01

    Full Text Available This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM. This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity.

  7. Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

    Science.gov (United States)

    Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.

    2017-10-01

    We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.

  8. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia.

    Science.gov (United States)

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for last one month and after imaging studies posterior longitudinal tibial stress fracture was detected on his left tibia. After six months the patient was admitted to our clinic with the same type of complaints in his right leg. All imaging modalities and blood counts were performed and as a result longitudinal posterior tibial stress fractures were detected on his right tibia. Treatment of tibial stress fracture includes rest and modified activity, followed by a graded return to activity commensurate with bony healing. We have applied the same treatment protocol and our results were acceptable but our follow up time short for this reason our study is restricted for separate stress fractures of the posterior tibia. Although the main localization of tibial stress fractures were unilateral, anterior and transverse pattern, rarely, like in our case, the unusual bilateral posterior localization and longitudinal pattern can be seen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Application of the strain energy for fatigue life prediction (LCF) of metals by the energy-based criterion

    International Nuclear Information System (INIS)

    Shahram Shahrooi; Ibrahim Henk Metselaar; Zainul Huda; Ghezavati, H.R.

    2009-01-01

    Full text: In this study, the plastic strain energy under multiaxial fatigue condition has been calculated in the cyclic plasticity models by the stress-strain hysteresis loops. Then, using the results of these models, the fatigue lives in energy-based fatigue model is predicted and compared to experimental data. Moreover, a weighting factor on shear plastic work is presented to decrease the life factors in the model fatigue. (author)

  10. STRESS-STRAIN STATE IN EMBEDMENT OF REINFORCEMENT IN CASE OF REPEATED LOADINGS

    Directory of Open Access Journals (Sweden)

    Mirsayapov Ilshat Talgatovich

    2016-05-01

    Full Text Available The author offer transforming the diagram of ideal elastic-plastic deformations for the description of the stress-strain state of embedment of reinforcement behind a critical inclined crack at repeatedly repeating loadings. The endurance limit of the adhesion between concrete and reinforcement and its corresponding displacements in case of repeated loadings are accepted as the main indicators. This adhesion law is the most appropriate for the description of physical and mechanical phenomena in the contact zone in case of cyclic loading, because it simply and reliably describes the adhesion mechanism and the nature of the deformation, and greatly simplifies the endurance calculations compared to the standard adhesion law. On the basis of this diagram the author obtained the equations for the description of the distribution of pressures and displacements after cyclic loading with account for the development of deformations of cyclic creep of the concrete under the studs of reinforcement.

  11. [Cyclic Cushing's Syndrome - rare or rarely recognized].

    Science.gov (United States)

    Kiałka, Marta; Doroszewska, Katarzyna; Mrozińska, Sandra; Milewicz, Tomasz; Stochmal, Ewa

    2015-01-01

    Cyclic Cushing's syndrome is a type of Cushing's disease which is characterized by alternating periods of increasing and decreasing levels of cortisol in the blood. The diagnostic criteria for cyclic Cushing's syndrome are at least three periods of hypercortisolism alternating with at least two episodes of normal levels of serum cortisol concentration. The epidemiology, signs, symptoms, pathogenesis and treatment of cyclic Cushing's syndrome have been discussed.

  12. Bragg-edge neutron transmission strain tomography for in situ loadings

    Energy Technology Data Exchange (ETDEWEB)

    Wensrich, C.M., E-mail: christopher.wensrich@newcastle.edu.au [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Hendriks, J.N.; Gregg, A. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Meylan, M.H. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Luzin, V. [Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232 (Australia); Tremsin, A.S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2016-09-15

    An approach for tomographic reconstruction of three-dimensional strain distributions from Bragg-edge neutron transmission strain images is outlined and investigated. This algorithm is based on the link between Bragg-edge strain measurements and the Longitudinal Ray Transform, which has been shown to be sensitive only to boundary displacement. By exploiting this observation we provide a method for reconstructing boundary displacement from sets of Bragg-edge strain images. In the case where these displacements are strictly the result of externally applied tractions, corresponding internal strain fields can then be found through traditional linear-static finite element methods. This approach is tested on synthetic data in two-dimensions, where the rate of convergence in the presence of measurement noise and beam attenuation is examined.

  13. Cyclic transformation of orbital angular momentum modes

    International Nuclear Information System (INIS)

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-01-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states. (paper)

  14. A model for rate-dependent but time-independent material behavior in cyclic plasticity

    International Nuclear Information System (INIS)

    Dafalias, Y.F.; Ramey, M.R.; Sheikh, I.

    1977-01-01

    It is the purpose of this paper to present a model for rate-dependent but time independent material behavior under cyclic loading in the plastic range. What is referred to as time independent behavior here, is the absence of creep and relaxation phenomena from the behavior of the model. The notion of plastic internal variables (piv) is introduced, as properly invariant scalars or second order tensors, whose constitutive relations are rate-type equations not necessarily homogeneous of oder one in the rates, as it would be required for independent plasticity. The concept of a yield surface in the strain space and a loading function in terms of the total strain rate is introduced, where the sign of the loading function defines zero or non-zero value of the rate of piv. Thus rate dependence is achieved without time dependent behavior (no creep or relaxation). In addition, discrete memory parameters associated with the most recent event of unloading-reloading in different directions enter the constitutive relations for the piv. A particular form of the constitutive relations is assumed, where the rate of piv is a linear combination of the strain rate components, with coefficients depending on the second invariant of the strain rate tensor, which can be viewed as a scalar measure of the rate of deformation in the multiaxial case and a direct generalization of the uniaxial strain rate. This leads to a particularly simple form of the constitutive relations resembling the ones for rate independent plasticity. The uniaxial counterpart would be a relation between the plastic strain rate (as one of the piv) and the total strain rate through a plastic modulus which depends on the strain rate, the piv, and the discrete memory parameters

  15. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling.

    Science.gov (United States)

    de Souza, Alessandra A; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M; Lindow, Steven E

    2013-06-01

    Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.

  16. Differences in myocardial strain between pectus excavatum patients and healthy subjects assessed by cardiac MRI. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Lollert, Andre; Staatz, Gundula [Medical Center of the Johannes Gutenberg University Mainz, Department of Diagnostic and Interventional Radiology, Section of Paediatric Radiology, Mainz (Germany); Emrich, Tilman; Eichstaedt, Jakob; Dueber, Christoph; Kreitner, Karl-Friedrich [Medical Center of the Johannes Gutenberg University Mainz, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Kampmann, Christoph; Abu-Tair, Tariq [Medical Center of the Johannes Gutenberg University Mainz, Center for Diseases in Childhood and Adolescence, Division of Paediatric Cardiology and Congenital Heart Diseases, Mainz (Germany); Turial, Salmai [HELIOS Dr. Horst Schmidt Kliniken, Department of Paediatric Surgery and Congenital Malformations, Wiesbaden (Germany)

    2018-03-15

    To evaluate differences in myocardial strain between pectus excavatum (PE) patients and healthy subjects (HS) assessed by cardiac MRI using the feature-tracking algorithm. Cardiac MRI was performed in 14 PE patients and 14 HS (9:5 male to female in each group; age 11-30 years) using a 3T scanner. Post-examination analysis included manual biventricular contouring with volumetry and ejection fraction measurement by two independent radiologists. Dedicated software was used for automated strain assessment. In five of the PE patients, the right ventricular ejection fraction was slightly impaired (40-44 %). PE patients had a significantly higher left ventricular longitudinal strain (P=0.004), mid (P=0.035) and apical (P=0.001) circumferential strain as well as apical circumferential strain rate (P=0.001), mid right ventricular circumferential strain (P=0.008) and strain rate (P=0.035), and apical right ventricular circumferential strain (P=0.012) and strain rate (P=0.044) than HS. The right ventricular longitudinal strain and strain rate did not differ significantly between PE patients and HS. Myocardial strain differs significantly between PE patients and HS. Higher myocardial strain in the mid and apical ventricles of PE patients indicates a compensation mechanism to enhance ventricular output against basal sternal compression. (orig.)

  17. Strain-Based Design Methodology of Large Diameter Grade X80 Linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D. [ORNL

    2014-04-01

    Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel. Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because their use allows pipeline operators to reduce the overall cost of pipeline construction and increase pipeline throughput by increasing the operating pressure. The design trend for new pipelines in areas prone to ground movement has evolved over the last 10 years from a stress-based design approach to a strain-based design (SBD) approach to further realize the cost benefits from using higher strength linepipe steels. This report presents an overview of SBD for pipelines subjected to large longitudinal strain and high internal pressure with emphasis on the tensile strain capacity of high-strength microalloyed linepipe steel. The technical basis for this report involved engineering analysis and examination of the mechanical behavior of Grade X80 linepipe steel in both the longitudinal and circumferential directions. Testing was conducted to assess effects on material processing including as-rolled, expanded, and heat treatment processing intended to simulate coating application. Elastic-plastic and low-cycle fatigue analyses were also performed with varying internal pressures. Proposed SBD models discussed in this report are based on classical plasticity theory and account for material anisotropy, triaxial strain, and microstructural damage effects

  18. LONGITUDINAL RESIDUAL AND TANGENTIAL STRAIN (LRS and LRT IN SIX Eucalyptus spp. CLONES

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Trugilho

    2006-09-01

    Full Text Available The species of Eucalyptus genus present high levels of growth stress. These stresses are mechanical efforts generated during the tree growth to help maintaining the balance of the cup, in response to environmental (light, wind and inclination of the land and silvicultural agents (pruning, thinning and planting density. The growth stresses are responsible for the cracks of tops, in logs and boards, and for the warp after the breaking down. This research evaluated the level of growth stress, measured by the longitudinal residual and tangential strain (DRL and DRT, around the circumference of the trunks of alive trees of six clones of Eucalyptus spp., at the age of 10.5 years, and verified the effect of the planting parcel. The clones belong to VMM-AGRO, and they are coming from a clonal test area implanted in the Bom Sucesso farm, located in Vazante-MG. For evaluating the experiment, the model adopted was the completely randomized one disposed in factorial outline with two factors (clone and portion in three repetitions. The results indicated that the average LRS was 0.093 mm and that the average LRT was 0.025 mm. It was verified that, for LRS, the clone effects and planting parcel were significant, while the interaction effect was not significant. For LRT the parcel and interaction effect were significant, while clone effect was not significant. Clones 44, 58 and 47 presented the smallest levels and better distributions of LRS, while, the clones 27, 44 and 58 presented the highest LRS levels. The clones 44 and 58 presented the best distribution and the smallest level of growth stress and may be considered potentially apt for producing sawn wood or solid wood.

  19. STRESS AND STRAIN STATE OF REPAIRING SECTION OF PIPELINE

    Directory of Open Access Journals (Sweden)

    V. V. Nikolaev

    2015-01-01

    Full Text Available Reliability of continuous operation of pipelines is an actual problem. For this reason should be developed an effective warning system of the main pipelines‘  failures and accidents not only in design and operation but also in selected repair. Changing of linear, unloaded by bending position leads to the change of stress and strain state of pipelines. And besides this, the stress and strain state should be determined and controlled in the process of carrying out the repair works. The article presents mathematical model of pipeline’s section straining in viscoelastic setting taking into account soils creep and high-speed stress state of pipeline with the purpose of stresses evaluation and load-supporting capacity of repairing section of pipeline, depending on time.  Stress and strain state analysis of pipeline includes longitudinal and circular stresses calculation  with  account of axis-asymmetrical straining and  was  fulfilled  on  the base of momentless theory of shells. To prove the consistency of data there were compared the calcu- lation results and the solution results by analytical methods for different cases (long pipeline’s section strain only under influence of cross-axis action; long pipeline’s section strain under in- fluence of longitudinal stress; long pipeline’s section strain; which is on the elastic foundation, under influence of cross-axis action. Comparison results shows that the calculation error is not more than 3 %.Analysis of stress-strain state change of pipeline’s section was carried out with development  of  this  model,  which  indicates  the  enlargement  of  span  deflection  in  comparison with problem’s solution in elastic approach. It is also proved, that for consistent assessment of pipeline maintenance conditions, it is necessary to consider the areolas of rheological processes of soils. On the base of complex analysis of pipelines there were determined stresses and time

  20. Correlation between the tissue Doppler, strain rate, strain imaging during the dobutamine infusion and coronary fractional flow reserve during catheterization: a comparative study.

    Science.gov (United States)

    Dagdelen, Sinan; Yuce, Murat; Emiroglu, Yunus; Ergelen, Mehmet; Pala, Selcuk; Tanalp, Ali Cevat; Izgi, Akin; Kirma, Cevat

    2005-06-22

    Coronary fractional flow reserve (FFR) as an invasive, and dobutamine stress echocardiography (DSE) as a noninvasive technique were used to detect critical coronary stenosis. This study was undertaken to assess correlation between these two techniques by using tissue Doppler, strain rate (SR), and strain imaging (S). In 17 patients (aged 54.9+/-12.6, 4 F), a total of 22 vessels were studied. On dobutamine stress echocardiography, baseline and peak systolic (Sm), early (Em) and late (Am) diastolic myocardial velocities, SR and S were recorded from parasternal view (mid-posterior segment) for radial and apical view (mid-septum) for longitudinal deformation. Then coronary FFR was performed by using intracoronary adenosine infusion, and the value of system were analyzed for longitudinal SR and S values, it had a mild correlation with SR (r = 0.47, p = 0.044) and a good correlation with S (r = 0.66, p = 0.002). The quantification of regional myocardial deformation by using DSE rather than the motion would be more appropriate in detecting the ischemic dysfunctional segment supplied by the critical coronary stenosis. Strain measurement during the dobutamine infusion may provide an information on the FFR results of the culprit vessel.

  1. Method for determining appropriate statistical models of the random cyclic stress amplitudes of a stainless pipe weld metal

    International Nuclear Information System (INIS)

    Wang Jinnuo; Zhao Yongxiang; Wang Shaohua

    2001-01-01

    It is revealed by a strain-controlled fatigue test that there is a significant scatter of the cyclic stress-strain responses for a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. This implies that the existent deterministic analysis might be non-conservative. Taking into account the scatter, a method for determining the appropriate statistical models of material cyclic stress amplitudes is presented by considering the total fit, consistency with fatigue physics, and safety of design of seven commonly used distribution fitting into the test data. The seven distribution are Weibull (two-and three-parameter), normal, lognormal, extreme minimum value, extreme maximum value, and exponential. In the method, statistical parameters of the distributions are evaluated by a linear regression technique. Statistical tests are made by a transformation from t-distribution function to Pearson statistical parameter. Statistical tests are made by a transformation from t-distribution function to Pearson statistical parameter, i.e. the linear relationship coefficient. The total fit is assessed by a parameter so-called fitted relationship coefficient of the empirical and theoretical failure probabilities. The consistency with fatigue physics is analyzed by the hazard rate curves of distributions. The safety of design is measured by examining the change of predicted errors in the tail regions of distributions

  2. Effects of strain history on structural reliability analysis of pipes subjected to reeling

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Hugo A.; Bravo, Richard E. [TENARIS Group, Campana (Argentina). Center for Industrial Research; Daguerre, Federico [TENARIS Group (Mexico). TAMSA

    2005-07-01

    In this work a method to perform a Structural Reliability Analysis (SRA) for a tube subject to reeling is considered in detail. A fracture mechanics based methodology is reviewed and the points that need to be resolved before extending the methods to include reeling are clearly identified. The effect of the strain history on the applied and material fracture mechanics parameters were studied. A theoretical model was developed to describe the crack driving force evolution through strain cycles. A criterion was proposed and corroborated to represent material fracture resistance behavior. An experimental program was carried out. The material analyzed was a X65 grade. Monotonic and cyclic fracture mechanic tests were performed on single edge notch in tension specimens. The material fracture resistance curve was determined based on the monotonic tests. The cyclic tests were used to determine experimentally the applied fracture mechanic parameters evolution. A very good agreement between predicted and measured CTOD values was obtained for the cases analyzed. A methodology to perform a SRA for tube subjected to reeling is proposed. (author)

  3. Synthesis of Cyclic Py-Im Polyamide Libraries

    OpenAIRE

    Li, Benjamin C.; Montgomery, David C.; Puckett, James W.; Dervan, Peter B.

    2013-01-01

    Cyclic Py-Im polyamides containing two GABA turn units exhibit enhanced DNA binding affinity, but extensive studies of their biological properties have been hindered due to synthetic inaccessibility. A facile modular approach toward cyclic polyamides has been developed via microwave-assisted solid-phase synthesis of hairpin amino acid oligomer intermediates followed by macrocyclization. A focused library of cyclic polyamides 1–7 targeted to the androgen response element (ARE) and the estrogen...

  4. Cyclic grain boundary migration during high temperature fatigue--I: microstructural observations

    International Nuclear Information System (INIS)

    Langdon, T.G.; Gifkins, R.S.

    1983-01-01

    Experiments were conducted on high purity lead at room temperature using reverse bending and torsion fatigue at low cyclic frequencies (less than or equal to1.50 Hz). Metallographic observations after testing show that there is a one-to-one correspondence between the markings from grain boundary migration and the number and pattern of cyclic loading, and this correspondence is maintained up to >100 cycles. Grain boundary sliding occurs in each cycle in addition to the migration, and this leads to the development of broad triple point folds. If the strain amplitude is maintained constant, it is shown that the average distance migrated in each cycle increases as the imposed frequency is decreased. The distance migrated is often exceptionally large in the first cycle of testing, and there is often a similar large initial displacement if the test is interrupted for periods of time from 1 to 24 h and then continued. For large grain sizes (greater than or equal to 2000μm), the migration markings may lead to a zig-zag pattern where the individual segments lie fairly close to 45 0 to the stress axis. A model is described which accounts for the one-to-one correspondence and which is consistent with a fine structure observed within the migration markings

  5. Supplementary Material for: The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara; Meier, Stuart; Gehring, Christoph A

    2016-01-01

    Abstract Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  6. Functionalized linear and cyclic polyolefins

    Energy Technology Data Exchange (ETDEWEB)

    Tuba, Robert; Grubbs, Robert H.

    2018-02-13

    This invention relates to methods and compositions for preparing linear and cyclic polyolefins. More particularly, the invention relates to methods and compositions for preparing functionalized linear and cyclic polyolefins via olefin metathesis reactions. Polymer products produced via the olefin metathesis reactions of the invention may be utilized for a wide range of materials applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.

  7. Strain effects on anisotropic magnetoresistance in a nanowire spin valve

    Science.gov (United States)

    Hossain, Md I.; Maksud, M.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-11-01

    The longitudinal magnetoresistance of a copper nanowire contacted by two cobalt contacts shows broad spin-valve peaks at room temperature. However, when the contacts are slightly heated, the peaks change into troughs which are signature of anisotropic magnetoresistance (AMR). Under heating, the differential thermal expansion of the contacts and the substrate generates a small strain in the cobalt contacts which enhances the AMR effect sufficiently to change the peak into a trough. This shows the extreme sensitivity of AMR to strain. The change in the AMR resistivity coefficient due to strain is estimated to be a few m Ω -m/microstrain.

  8. A model for rate-dependent but time-independent material behavior in cyclic plasticity

    International Nuclear Information System (INIS)

    Dafalias, Y.F.; Ramey, M.R.; Sheikh, I.

    1977-01-01

    This paper presents a model for rate-dependent but time independent material behavior under cyclic loading in the plastic range. What is referred to as time independent behavior here, is the absence of creep and relaxation phenomena from the behavior of the model. The notion of plastic internal variables (piv) is introduced, as properly invariant scalars or second order tensors, whose constitutive relations are rate-type equations not necessarily homogeneous of order one in the rates, as it would be required for independent plasticity. The concept of a yield surface in the strain space and a loading function in terms of the total strain rate is introduced, where the sign of the loading function defines zero or non-zero value of the rate of piv. Thus rate dependence is achieved without time dependent behaviour (no creep or relaxation). In addition, discrete memory parameters associated with the most recent event of unloading-reloading in different directions enter the constitutive relations for the piv. (Auth.)

  9. Finite strain transient creep of D16T alloy: identification and validation employing heterogeneous tests

    Science.gov (United States)

    Shutov, A. V.; Larichkin, A. Yu

    2017-10-01

    A cyclic creep damage model, previously proposed by the authors, is modified for a better description of the transient creep of D16T alloy observed in the finite strain range under rapidly changing stresses. The new model encompasses the concept of kinematic hardening, which allows us to account for the creep-induced anisotropy. The model kinematics is based on the nested multiplicative split of the deformation gradient, proposed by Lion. The damage evolution is accounted for by the classical Kachanov-Rabotnov approach. The material parameters are identified using experimental data on cyclic torsion of thick-walled samples with different holding times between load reversals. For the validation of the proposed material model, an additional experiment is analyzed. Although this additional test is not involved in the identification procedure, the proposed cyclic creep damage model describes it accurately.

  10. Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold.

    Science.gov (United States)

    Brunelli, M; Perrault, C M; Lacroix, D

    2017-07-01

    Among the cues affecting cells behaviour, mechanical stimuli are known to have a key role in tissue formation and mineralization of bone cells. While soft scaffolds are better at mimicking the extracellular environment, they cannot withstand the high loads required to be efficient substitutes for bone in vivo. We propose a 3D hybrid scaffold combining the load-bearing capabilities of polycaprolactone (PCL) and the ECM-like chemistry of collagen gel to support the dynamic mechanical differentiation of human embryonic mesodermal progenitor cells (hES-MPs). In this study, hES-MPs were cultured in vitro and a BOSE Bioreactor was employed to induce cells differentiation by mechanical stimulation. From day 6, samples were compressed by applying a 5% strain ramp followed by peak-to-peak 1% strain sinewaves at 1Hz for 15min. Three different conditions were tested: unloaded (U), loaded from day 6 to day 10 (L1) and loaded as L1 and from day 16 to day 20 (L2). Cell viability, DNA content and osteocalcin expression were tested. Samples were further stained with 1% osmium tetroxide in order to investigate tissue growth and mineral deposition by micro-computed tomography (µCT). Tissue growth involved volumes either inside or outside samples at day 21 for L1, suggesting cyclic stimulation is a trigger for delayed proliferative response of cells. Cyclic load also had a role in the mineralization process preventing mineral deposition when applied at the early stage of culture. Conversely, cyclic load during the late stage of culture on pre-compressed samples induced mineral formation. This study shows that short bursts of compression applied at different stages of culture have contrasting effects on the ability of hES-MPs to induce tissue formation and mineral deposition. The results pave the way for a new approach using mechanical stimulation in the development of engineered in vitro tissue as replacement for large bone fractures. Copyright © 2017 Elsevier Ltd. All rights

  11. In-Plane Anisotropy in Mechanical Behavior and Microstructural Evolution of Commercially Pure Titanium in Tensile and Cyclic Loading

    Science.gov (United States)

    Sinha, Subhasis; Gurao, N. P.

    2017-12-01

    Tensile and cyclic deformation behavior of three samples oriented at 0, 45, and 90 deg to the rolling direction in the rolling direction-transverse direction (RD-TD) plane of cold-rolled and annealed plate of commercially pure titanium is studied in the present investigation. The sample along the RD (R0) shows the highest strength but lowest ductility in monotonic tension. Although ultimate tensile strength (UTS) and elongation of samples along 45 and 90 deg to the RD (R45 and R90, respectively) are similar, the former has significantly higher yield strength than the latter, indicating different strain-hardening behavior. It is found that the R90 sample exhibits the highest monotonic ductility as well as fatigue life. This is attributed to a higher propensity for twinning in this sample with the presence of multiple variants and twin intersections. Cyclic life is also influenced by the high tendency for detwinning of contraction twins in this orientation. Elastoplastic self-consistent (EPSC) simulations of one-cycle tension-compression load reversal indicate that the activity of pyramidal 〈 c + a〉 slip and extension twinning oscillates during cyclic loading that builds up damage in a cumulative manner, leading to failure in fatigue.

  12. Assessment of mechanical strain in the intact plantar fascia.

    Science.gov (United States)

    Clark, Ross A; Franklyn-Miller, Andrew; Falvey, Eanna; Bryant, Adam L; Bartold, Simon; McCrory, Paul

    2009-09-01

    A method of measuring tri-axial plantar fascia strain that is minimally affected by external compressive force has not previously been reported. The purpose of this study was to assess the use of micro-strain gauges to examine strain in the different axes of the plantar fascia. Two intact limbs from a thawed, fresh-frozen cadaver were dissected, and a combination of five linear and one three-way rosette gauges were attached to the fascia of the foot and ankle. Strain was assessed during two trials, both consisting of an identical controlled, loaded dorsiflexion. An ICC analysis of the results revealed that the majority of gauge placement sites produced reliable measures (ICC>0.75). Strain mapping of the plantar fascia indicates that the majority of the strain is centrally longitudinal, which provides supportive evidence for finite element model analysis. Although micro-strain gauges do possess the limitation of calibration difficulty, they provide a repeatable measure of fascial strain and may provide benefits in situations that require tri-axial assessment or external compression.

  13. Multiaxial fatigue strength of type 316 stainless steel under push–pull, reversed torsion, cyclic inner and outer pressure loading

    International Nuclear Information System (INIS)

    Morishita, Takahiro; Itoh, Takamoto; Bao, Zhenlong

    2016-01-01

    Multiaxial fatigue tests under non-proportional loading in which principal directions of stress and strain are changed in a cycle were carried out using a developed multiaxial fatigue testing machine which can load a push–pull and reversed torsion loading with cyclic inner and outer pressure. This paper presents the developed testing machine and experimental results under several multiaxial loading conditions including non-proportional loading. In strain control tests, the failure life is reduced in accordance with increasing inner pressure at each strain path. The failure life can be correlated by von Mises' equivalent stress amplitude relatively well independent of not only inner pressure but also loading path. In load control tests, the failure life is reduced largely by non-proportional loading but the influence of inner and outer pressure on the failure life is relative small.

  14. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory.

    Science.gov (United States)

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-12-02

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and shear strains) were measured to reveal directional growth information every 3 months during the first year of life. Directional normal strain maps revealed that, during the first 6 months, the growth pattern of gray matter is anisotropic and spatially inhomogeneous with higher left-right stretch around the temporal lobe and interhemispheric fissure, anterior-posterior stretch in the frontal and occipital lobes, and superior-inferior stretch in right inferior occipital and right inferior temporal gyri. In contrast, anterior lateral ventricles and insula showed an isotropic stretch pattern. Volumetric and directional growth rates were linearly decreased with age for most of the cortical regions. Our results revealed anisotropic and inhomogeneous brain growth patterns of the human brain during the first year of life using longitudinal MRI and a biomechanical framework.

  15. Campaigned GPS on Present-Day Crustal Deformation in Northernmost Longitudinal Valley Preliminary Results, Hualien Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chen

    2014-01-01

    Full Text Available The Longitudinal Valley in Eastern Taiwan sits at the collision suture between the Eurasian and Philippine Sea plates. Based on repeated GPS campaigned measurements from 25 stations six times in 2007 - 2009, we characterize the surface deformation in the northernmost Longitudinal Valley where the Coastal Range of the Philippine Sea plate turns northward diving under the Eurasian plate producing two major active faults: the Milun fault and the Longitudinal Valley fault. We reconstructed a GPS velocity field and conducted strain analyses and elastic block modeling. Our results suggest a rapid clockwise rotation of 33° Myr-1 and an eastward tectonic escape in the small Hualien City block (HUAL area of ~10 × 10 km, which is apparently detached from the regional rotating RYUK block defined by previous studies. We interpret it as being initiated locally by the northwest indentation of the Coastal Range, which pushed the HUAL block to move upward and eastward. According to our strain analyses, the HUAL block shows a significant internal elastic strain inside the Milun Tableland, the hanging wall of the Milun fault. No significant deformation was observed across the surface trace of the fault, indicating that the Milun fault is now probably locked in the near surface. The deformation in the footwall of the fault was accommodated by pure-shear strain with a major NNW-compression and a minor ENE-extension. The deformation in the hanging wall is characterized by simple-shear strain with ENE-extension in its northern part and little deformation in the southern part, separated by a little known NW-trending active fault zone (Dongmingyi fault, which needs further investigation.

  16. Cyclic Processing for Context Fusion

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2007-01-01

    Many machine-learning techniques use feedback information. However, current context fusion systems do not support this because they constrain processing to be structured as acyclic processing. This paper proposes a generalization which enables the use of cyclic processing in context fusion systems....... A solution is proposed to the inherent problem of how to avoid uncontrollable looping during cyclic processing. The solution is based on finding cycles using graph-coloring and breaking cycles using time constraints....

  17. Health-Related Strains and Subsequent Delinquency and Marijuana Use

    Science.gov (United States)

    Kort-Butler, Lisa A.

    2017-01-01

    General strain theory provides one framework for explaining the relationship between physical health and delinquency, pointing to mechanisms such as negative emotions, social bonds, and stress proliferation. Data from the National Longitudinal Study of Adolescent Health were used to examine these hypothetical mediators. Controlling for demographic…

  18. Cyclic deformation behavior and microstructural changes of 12Cr-WMoV martensitic stainless steel at elevated temperature

    International Nuclear Information System (INIS)

    Song, X.L.; Yang, G.X.; Zhou, S.L.; Fan, H.; Yang, S.S.; Zhu, J.W.; Liu, Y.N.

    2008-01-01

    Strain-controlled uniaxial push-pull low-cycle fatigue tests were performed on 12Cr-WMoV martensitic stainless steel at room temperature and 600 deg. C. Specimens were tested at total strain amplitudes of 1.5% and 0.8% with a constant strain rate of 0.004 s -1 . The microstructures of the specimens subjected to different cycles were studied using transmission electron microscopy (TEM). Cyclic softening was observed at room temperature and 600 deg. C. TEM investigations revealed that cellular structures of dislocations were formed in the fatigued specimens at both room and elevated temperatures. Dynamic recovery has a very significant effect on the dislocation structure of specimens tested at elevated temperature. The thickness and density of the dislocation cell walls formed in specimens cycled at 600 deg. C are less than that at room temperature. Cellular dislocation structures formed during cycling are annihilated in the specimens subjected to 1 h annealing at 600 deg. C

  19. Neuromuscular Strain Increases Symptom Intensity in Chronic Fatigue Syndrome.

    Directory of Open Access Journals (Sweden)

    Peter C Rowe

    Full Text Available Chronic fatigue syndrome (CFS is a complex, multisystem disorder that can be disabling. CFS symptoms can be provoked by increased physical or cognitive activity, and by orthostatic stress. In preliminary work, we noted that CFS symptoms also could be provoked by application of longitudinal neural and soft tissue strain to the limbs and spine of affected individuals. In this study we measured the responses to a straight leg raise neuromuscular strain maneuver in individuals with CFS and healthy controls. We randomly assigned 60 individuals with CFS and 20 healthy controls to either a 15 minute period of passive supine straight leg raise (true neuromuscular strain or a sham straight leg raise. The primary outcome measure was the symptom intensity difference between the scores during and 24 hours after the study maneuver compared to baseline. Fatigue, body pain, lightheadedness, concentration difficulties, and headache scores were measured individually on a 0-10 scale, and summed to create a composite symptom score. Compared to individuals with CFS in the sham strain group, those with CFS in the true strain group reported significantly increased body pain (P = 0.04 and concentration difficulties (P = 0.02 as well as increased composite symptom scores (all P = 0.03 during the maneuver. After 24 hours, the symptom intensity differences were significantly greater for the CFS true strain group for the individual symptom of lightheadedness (P = 0.001 and for the composite symptom score (P = 0.005. During and 24 hours after the exposure to the true strain maneuver, those with CFS had significantly higher individual and composite symptom intensity changes compared to the healthy controls. We conclude that a longitudinal strain applied to the nerves and soft tissues of the lower limb is capable of increasing symptom intensity in individuals with CFS for up to 24 hours. These findings support our preliminary observations that increased mechanical

  20. Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading

    International Nuclear Information System (INIS)

    Plekhov, O.A.; Saintier, N.; Palin-Luc, T.; Uvarov, S.V.; Naimark, O.B.

    2007-01-01

    The infrared and structural investigations of energy dissipation processes in metals subjected to cyclic loading have given impetus to the development of a new thermodynamic model with the capability of describing the energy balance under plastic deformation. The model is based on the statistical description of the mesodefect ensemble evolution and its influence on the dissipation ability of the material. Constitutive equations have been formulated for plastic and structural strains, which allow us to describe the stored and dissipated parts of energy under plastic flow. Numerical results indicate that theoretical predictions are in good agreement with the experimentally observed temperature data

  1. On the ability of some cyclic plasticity models to predict the evolution of stored energy in a type 304L stainless steel submitted to high cycle fatigue

    International Nuclear Information System (INIS)

    Vincent, L.

    2008-01-01

    Fatigue analyses of materials are generally based on a so-called stabilized cycle, on which plastic strain amplitude, plastic energy, maximum shear stress and so on are determined. The part of plastic energy which is dissipated in heat cannot be used to accumulate damage and it should be worthwhile extracting only the part of plastic energy which is stored in material microstructure in order to build a consistent damage model. In this paper, some cyclic plasticity models including a polycrystalline model are reformulated in the thermodynamic framework in order to test their capacity to predict both the stress-strain behaviour and the partition of plastic energy for a high cycle fatigue test on a type 304L stainless steel. For an equivalent description of stress-strain loops, the number of kinematic hardening variables chosen in a model may qualitatively alter the prediction of plastic energy partition due to the modification of the isotropic hardening variable. Measurements of the specimen temperature increase due to plastic dissipation is therefore proposed as a convenient complementary experimental data to identify the constitutive equation of the isotropic hardening variable of a cyclic plasticity model. (author)

  2. Mechanical dispersion and global longitudinal strain by speckle tracking echocardiography: Predictors of appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Candan, Ozkan; Gecmen, Cetin; Bayam, Emrah; Guner, Ahmet; Celik, Mehmet; Doğan, Cem

    2017-06-01

    In this study, we investigated whether mechanical dispersion which reflects electrical abnormality and other echocardiographic and clinic parameters predict appropriate ICD shock in patients undergone ICD implantation for hypertrophic cardiomyopathy. Sixty-three patients who received ICD implantation for primary or secondary prevention were included in the study. Patients' clinical, electrocardiographic, 2D classic, and speckle tracking echocardiographic data were collected. Mechanical dispersion was defined as the standard deviation of time to peak negative strain in 18 left ventricular segments. Appropriate ICD therapy was defined as cardioversion or defibrillation due to ventricular tachycardia or fibrillation. Patients were divided into two groups as occurrence or the absence of appropriate ICD therapy. A total of 17 (26.9%) patients were observed to have an appropriate ICD therapy during follow-up periods. In patients who performed appropriate ICD therapy, a larger left atrial volume index, higher sudden cardiac death (SCD)-Risk Score, longer mechanical dispersion, and decreased global longitudinal peak strain (GLPS) were observed. In multivariate logistic regression analysis, including (GLPS, mechanical dispersion, LAVi, and SCD-Risk Score) was used to determine independent predictors of occurrence of appropriate ICD therapy during the follow-up. Mechanical dispersion, GLPS, and SCD-Risk Score were found to be independent predictors of occurrence of appropriate ICD therapy. Mechanical dispersion, GLPS, and SCD-Risk Score were found to be predictive for appropriate ICD therapy in patients receiving ICD implantation. Readily measurable mechanical dispersion and GLPS could be helpful to distinguish patients at high risk who could optimally benefit from ICD therapy. © 2017, Wiley Periodicals, Inc.

  3. Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel

    Science.gov (United States)

    Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar

    2017-12-01

    In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.

  4. Magnetotransport properties of 8-Pmmn borophene: effects of Hall field and strain.

    Science.gov (United States)

    Islam, S K Firoz

    2018-07-11

    The polymorph of 8-Pmmn borophene is an anisotropic Dirac material with tilted Dirac cones at two valleys. The tilting of the Dirac cones at two valleys are in opposite directions, which manifests itself via the valley dependent Landau levels in presence of an in-plane electric field (Hall field). The valley dependent Landau levels cause valley polarized magnetotransport properties in presence of the Hall field, which is in contrast to the monolayer graphene with isotropic non-tilted Dirac cones. The longitudinal conductivity and Hall conductivity are evaluated by using linear response theory in low temperature regime. An analytical approximate form of the longitudinal conductivity is also obtained. It is observed that the tilting of the Dirac cones amplifies the frequency of the longitudinal conductivity oscillation (Shubnikov-de Haas). On the other hand, the Hall conductivity exhibits graphene-like plateaus except the appearance of valley dependent steps which are purely attributed to the Hall field induced lifting of the valley degeneracy in the Landau levels. Finally we look into the different cases when the Hall field is applied to the strained borophene and find that valley dependency is fully dominated by strain rather than Hall field. Another noticeable point is that if the real magnetic field is replaced by the strain induced pseudo magnetic field then the electric field looses its ability to cause valley polarized transport.

  5. Comparison Of INAA Methods (Long Conventional, Cyclic And Pseudo-Cyclic) For The Determination Of Se In Biological Samples

    International Nuclear Information System (INIS)

    Sarheel, A.

    2004-01-01

    Selenium content in serum blood, sample were received from international comparison programme (SABC) has been determined by Cyclic irradiation, pseudo-cyclic irradiation and long irradiation conventional Instrumental neutron activation analysis through the 162 keV gamma ray of the 77m Se nuclide for both cyclic and pseudo-cyclic and 264 keV gamma ray of 75 Se nuclide for conventional (long irradiation). The CINAA involve irradiation of samples for 20 s, decay for 15 s and counting for 20 s, samples recycling four times to improve the precision. The PCINAA involve irradiation of samples for 20 s, decay for 20 s and counting for 30s, samples recycling four times day by day. The Conventional (long irradiation) involve irradiation of samples for 20 hr (1 week), decay for 4 weeks and counting for 20 hr. The accuracy has been evaluated by analyzing the certified reference materials. (Author)

  6. Cyclic Soft Groups and Their Applications on Groups

    Directory of Open Access Journals (Sweden)

    Hacı Aktaş

    2014-01-01

    Full Text Available In crisp environment the notions of order of group and cyclic group are well known due to many applications. In this paper, we introduce order of the soft groups, power of the soft sets, power of the soft groups, and cyclic soft group on a group. We also investigate the relationship between cyclic soft groups and classical groups.

  7. Job strain and health-related lifestyle: findings from an individual-participant meta-analysis of 118,000 working adults.

    Science.gov (United States)

    Heikkilä, Katriina; Fransson, Eleonor I; Nyberg, Solja T; Zins, Marie; Westerlund, Hugo; Westerholm, Peter; Virtanen, Marianna; Vahtera, Jussi; Suominen, Sakari; Steptoe, Andrew; Salo, Paula; Pentti, Jaana; Oksanen, Tuula; Nordin, Maria; Marmot, Michael G; Lunau, Thorsten; Ladwig, Karl-Heinz; Koskenvuo, Markku; Knutsson, Anders; Kittel, France; Jöckel, Karl-Heinz; Goldberg, Marcel; Erbel, Raimund; Dragano, Nico; DeBacquer, Dirk; Clays, Els; Casini, Annalisa; Alfredsson, Lars; Ferrie, Jane E; Singh-Manoux, Archana; Batty, G David; Kivimäki, Mika

    2013-11-01

    We examined the associations of job strain, an indicator of work-related stress, with overall unhealthy and healthy lifestyles. We conducted a meta-analysis of individual-level data from 11 European studies (cross-sectional data: n = 118,701; longitudinal data: n = 43,971). We analyzed job strain as a set of binary (job strain vs no job strain) and categorical (high job strain, active job, passive job, and low job strain) variables. Factors used to define healthy and unhealthy lifestyles were body mass index, smoking, alcohol intake, and leisure-time physical activity. Individuals with job strain were more likely than those with no job strain to have 4 unhealthy lifestyle factors (odds ratio [OR] = 1.25; 95% confidence interval [CI] = 1.12, 1.39) and less likely to have 4 healthy lifestyle factors (OR = 0.89; 95% CI = 0.80, 0.99). The odds of adopting a healthy lifestyle during study follow-up were lower among individuals with high job strain than among those with low job strain (OR = 0.88; 95% CI = 0.81, 0.96). Work-related stress is associated with unhealthy lifestyles and the absence of stress is associated with healthy lifestyles, but longitudinal analyses suggest no straightforward cause-effect relationship between work-related stress and lifestyle.

  8. Regional Longitudinal Myocardial Deformation Provides Incremental Prognostic Information in Patients with ST-Segment Elevation Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Tor Biering-Sørensen

    Full Text Available Global longitudinal systolic strain (GLS has recently been demonstrated to be a superior prognosticator to conventional echocardiographic measures in patients after myocardial infarction (MI. The aim of this study was to evaluate the prognostic value of regional longitudinal myocardial deformation in comparison to GLS, conventional echocardiography and clinical information.In total 391 patients were admitted with ST-Segment elevation myocardial infarction (STEMI, treated with primary percutaneous coronary intervention and subsequently examined by echocardiography. All patients were examined by tissue Doppler imaging (TDI and two-dimensional strain echocardiography (2DSE.During a median-follow-up of 5.3 (IQR 2.5-6.1 years the primary endpoint (death, heart failure or a new MI was reached by 145 (38.9% patients. After adjustment for significant confounders (including conventional echocardiographic parameters and culprit lesion, reduced longitudinal performance in the anterior septal and inferior myocardial regions (but not GLS remained independent predictors of the combined outcome. Furthermore, inferior myocardial longitudinal deformation provided incremental prognostic information to clinical and conventional echocardiographic information (Harrell's c-statistics: 0.63 vs. 0.67, p = 0.032. In addition, impaired longitudinal deformation outside the culprit lesion perfusion region was significantly associated with an adverse outcome (p<0.05 for all deformation parameters.Regional longitudinal myocardial deformation measures, regardless if determined by TDI or 2DSE, are superior prognosticators to GLS. In addition, impaired longitudinal deformation in the inferior myocardial segment provides prognostic information over and above clinical and conventional echocardiographic risk factors. Furthermore, impaired longitudinal deformation outside the culprit lesion perfusion region seems to be a paramount marker of adverse outcome.

  9. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    D. G. Aggelis

    2013-01-01

    Full Text Available Barium osumilite (BMAS ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism.

  10. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  11. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum.

    Science.gov (United States)

    Verbeke, Tobin J; Giannone, Richard J; Klingeman, Dawn M; Engle, Nancy L; Rydzak, Thomas; Guss, Adam M; Tschaplinski, Timothy J; Brown, Steven D; Hettich, Robert L; Elkins, James G

    2017-02-23

    Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.

  12. Controllable spin-charge transport in strained graphene nanoribbon devices

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Guassi, Marcos R. [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Qu, Fanyao [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-09-21

    We theoretically investigate the spin-charge transport in two-terminal device of graphene nanoribbons in the presence of a uniform uniaxial strain, spin-orbit coupling, exchange field, and smooth staggered potential. We show that the direction of applied strain can efficiently tune strain-strength induced oscillation of band-gap of armchair graphene nanoribbon (AGNR). It is also found that electronic conductance in both AGNR and zigzag graphene nanoribbon (ZGNR) oscillates with Rashba spin-orbit coupling akin to the Datta-Das field effect transistor. Two distinct strain response regimes of electronic conductance as function of spin-orbit couplings magnitude are found. In the regime of small strain, conductance of ZGNR presents stronger strain dependence along the longitudinal direction of strain. Whereas for high values of strain shows larger effect for the transversal direction. Furthermore, the local density of states shows that depending on the smoothness of the staggered potential, the edge states of AGNR can either emerge or be suppressed. These emerging states can be determined experimentally by either spatially scanning tunneling microscope or by scanning tunneling spectroscopy. Our findings open up new paradigms of manipulation and control of strained graphene based nanostructure for application on novel topological quantum devices.

  13. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-06-15

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  14. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    International Nuclear Information System (INIS)

    Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.

    2017-01-01

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  15. One- and multistage total strain and stress-controlled fatigue tests with a steel of type 42 CrMo 4 subject to varied residual and mean stress loading. Final report

    International Nuclear Information System (INIS)

    Macherauch, E.; Schulze, V.

    1995-01-01

    Work under this research project covered tests with the quenched and tempered steel 42 CrMo 4 to which one- and two-stage tension-compression fatigue stresses were applied with varying mean loads, under conditions of nominal stress and total strain control. Shot peening was used to induce various microstructural conditions in the material at the surface and near below. Softening in the material was observed to be a continuous process, and the steel showed no stabilised, cyclic deformation behaviour. The cyclic stress-strain curve measured with equal stress amplitudes and total strain control applied shows higher plastic strain amplitudes than that measured with nominal stresses. The fatigue behaviour under two-stage loading depends on the chosen sequence of loads applied, the testing periods, and the overall testing procedure, so that there is no way of deriving data for two-stage testing procedures from single-stage test results. (orig.) [de

  16. Multi-scale analysis of behavior and fatigue life of 304L stainless under cyclic loading with pre-hardening

    International Nuclear Information System (INIS)

    Belattar, A.

    2013-01-01

    This study investigates the effects of loading history on the cyclic stress-strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension-compression tests were performed on the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after pre-loading and their evolution during the fatigue cycles were characterized by TEM. The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction. (author)

  17. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture.

    Science.gov (United States)

    Maeda, Eijiro; Nakagaki, Masashi; Ichikawa, Katsuhisa; Nagayama, Kazuaki; Matsumoto, Takeo

    2017-06-01

    Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3-4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen fibers parallel to

  18. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture

    Directory of Open Access Journals (Sweden)

    Eijiro Maeda

    2017-06-01

    Full Text Available Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3–4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen

  19. Changes in job strain and subsequent weight gain

    DEFF Research Database (Denmark)

    Vesterlund, Gitte Kingo; Keller, Amélie Cléo; Heitmann, Berit Lilienthal

    2018-01-01

    in 1999 between those who were rarely v. sometimes v. often busy in 1993 (P=0·03), with the largest weight gain in individuals with sustained high busyness in both years. Loss of influence between 1993 and 1999 was associated with larger subsequent weight gain than sustained high influence (P=0......Objective: Obesity as well as job strain is increasing, and job strain might contribute to weight gain. The objective of the current study was to examine associations between longitudinal alterations in the components of job strain and subsequent weight gain. Design: The study was designed...... as a prospective cohort study with three questionnaire surveys enabling measurement of job-strain alterations over 6 years and subsequent measurements of weight gain after further 10 years of follow-up. ANCOVA and trend analyses were conducted. Job demands were measured as job busyness and speed, and control...

  20. Microstructure evolution during cyclic tests on EUROFER 97 at room temperature. TEM observation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, M.F., E-mail: giordana@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 Bis, 2000 Rosario (Argentina); Giroux, P.-F. [Commissariat a l' Energie Atomique, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette Cedex (France); Alvarez-Armas, I. [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 Bis, 2000 Rosario (Argentina); Sauzay, M. [Commissariat a l' Energie Atomique, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette Cedex (France); Armas, A. [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 Bis, 2000 Rosario (Argentina); Kruml, T. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno, 616 62 (Czech Republic)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer Low cycle fatigue test are carried out on EUROFER 97 at room temperature. Black-Right-Pointing-Pointer EUROFER 97 shows a pronounced cyclic softening accompanied by microstructural changes. Black-Right-Pointing-Pointer Cycling induces a decrement in dislocation density and subgrain growth. Black-Right-Pointing-Pointer A simple mean-field model based on crystalline plasticity is proposed. Black-Right-Pointing-Pointer The mean subgrain size evolution is predicted by modelling. - Abstract: The 9% Cr quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of fusion reactors. Isothermal, plastic strain-controlled, low-cycle fatigue tests are performed. Tested at room temperature, this steel suffers a cyclic softening effect linked to microstructural changes observed by transmission electron microscopy, such as the decrease of dislocation density inside subgrains or the growth of subgrain size. From the assumed mechanisms of softening a simple mean-field model based on crystalline plasticity is proposed to predict these microstructure evolutions during cycling and monotonic deformation.

  1. 3' : 5'-Cyclic AMP-dependent 3'

    NARCIS (Netherlands)

    Mato, José M.; Krens, Frans A.; Haastert, Peter J.M. van; Konijn, Theo M.

    1977-01-01

    Suspensions of 3':5'-cyclic AMP (cAMP)-sensitive cells of Dictyostelium discoideum responded to a cAMP pulse with increased 3':5'-cyclic GMP (cGMP) levels. Under the assay conditions used (2 × 10^8 cells per ml in 10 mM phosphate buffer, pH 6.0) cAMP (5 × 10-8 M final concentration) increased cGMP

  2. The effect of strain rate on the viscoplastic behavior of isotactic polypropylene at finite strains

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville

    2002-01-01

    prior to testing. A constitutive model is developed for the viscoplastic behavior of isotactic polypropylene at finite strains. A semicrystalline polymer is treated as equivalent heterogeneous network of chains bridged by permanent junctions (physical cross-links and entanglements). The network...... is thought of as an ensemble of meso-regions connected with each other by links (lamellar blocks). In the sub-yield region of deformations, junctions between chains in meso-domains slide with respect to their reference positions (which reflects sliding of nodes in the amorphous phase and fine slip...... responses of non-annealed and annealed specimens: (i) necking of samples not subjected to thermal treatment precedes coarse slip and fragmentation of lamellar blocks, whereas cold-drawing of annealed specimens up to a longitudinal strain of 80% does not induce spatial heterogeneity of their deformation; (ii...

  3. A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate

    Directory of Open Access Journals (Sweden)

    Hui Qian

    2013-01-01

    Full Text Available Shape memory alloys (SMAs are a relatively new class of functional materials, exhibiting special thermomechanical behaviors, such as shape memory effect and superelasticity, which enable their applications in seismic engineering as energy dissipation devices. This paper investigates the properties of superelastic NiTi shape memory alloys, emphasizing the influence of strain rate on superelastic behavior under various strain amplitudes by cyclic tensile tests. A novel constitutive equation based on Graesser and Cozzarelli’s model is proposed to describe the strain-rate-dependent hysteretic behavior of superelastic SMAs at different strain levels. A stress variable including the influence of strain rate is introduced into Graesser and Cozzarelli’s model. To verify the effectiveness of the proposed constitutive equation, experiments on superelastic NiTi wires with different strain rates and strain levels are conducted. Numerical simulation results based on the proposed constitutive equation and experimental results are in good agreement. The findings in this paper will assist the future design of superelastic SMA-based energy dissipation devices for seismic protection of structures.

  4. Parameters of straining-induced corrosion cracking in low-alloy steels in high temperature water

    International Nuclear Information System (INIS)

    Lenz, E.; Liebert, A.; Stellwag, B.; Wieling, N.

    Tensile tests with slow deformation speed determine parameters of corrosion cracking at low strain rates of low-alloy steels in high-temperature water. Besides the strain rate the temperature and oxygen content of the water prove to be important for the deformation behaviour of the investigated steels 17MnMoV64, 20 MnMoNi55 and 15NiCuMoNb 5. Temperatures about 240 0 C, increased oxygen contents in the water and low strain rates cause a decrease of the material ductility as against the behaviour in air. Tests on the number of stress cycles until incipient cracking show that the parameters important for corrosion cracking at low strain velocities apply also to low-frequency cyclic loads with high strain amplitude. In knowledge of these influencing parameters the strain-induced corrosion cracking is counteracted by concerted measures taken in design, construction and operation of nuclear power stations. Essential aims in this matter are to avoid as far as possible inelastic strains and to fix and control suitable media conditions. (orig.) [de

  5. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  6. Ratchetting behavior of primary heat transport (PHT) piping material SA-333 carbon steel subjected to cyclic loads at room temperature

    International Nuclear Information System (INIS)

    Kulkarni, S.; Desai, Y.M.; Kant, T.; Reddy, G.R.; Gupta, C.; Chakravarthy, J.K.

    2004-01-01

    Ratchetting behavior of SA-333 Gr. 6 carbon steel used as primary heat transport (PHT) piping material has been investigated with three constitutive models proposed by Armstrong-Frederick, Chaboche and Ohno-Wang involving different hardening rules. Performance of the above mentioned models have been evaluated for a broad set of uniaxial and biaxial loading histories. The uniaxial ratchetting simulations have been performed for a range of stress ratios (R) by imposing different stress amplitudes and mean stress conditions. Numerical simulations indicated significant ratchetting and opening of hysteresis loop for negative stress ratio with constant mean stress. Application of cyclic stress without mean stress (R = -1.0) has been observed to produce negligible ratchet-strain accumulation in the material. Simulation under the biaxial stress condition was based on modeling of an internally pressurized thin walled pipe subjected to cyclic bending load. Numerical results have been validated with the experiments as per simulation conditions. All three models have been found to predict the observed accumulation of circumferential strain with increasing number of cycles. However, the Armstrong Frederick (A-F) model was found to be inadequate in simulating the ratchetting response for both uniaxial as well as biaxial loading cases. The A-F model actually over-predicted the ratchetting strain in comparison with the experimental strain values. On the other hand, results obtained with the Chaboche and the Ohno-Wang models for both the uniaxial as well as biaxial loading histories have been observed to closely simulate the experimental results. The Ohno-Wang model resulted in better simulation for the presents sets of experimental results in comparison with the Chaboche model. It can be concluded that the Ohno-Wang model suited well compared to the Chaboche model for above sets of uniaxial and biaxial loading histories. (authors)

  7. The role of the experimental data base used to identify material parameters in predicting the cyclic plastic response of an austenitic steel

    International Nuclear Information System (INIS)

    Djimli, Lynda; Taleb, Lakhdar; Meziani, Salim

    2010-01-01

    The first objective of this paper investigates the influence of the previous strain history on ratcheting. New tests were performed where different strain-controlled histories have been applied prior to ratcheting tests. It is demonstrated that under the same conditions, one can observe ratcheting, plastic shakedown or elasticity according to the prior strain-controlled history. The second objective points out the correlation between the experimental data base devoted to the identification of the material parameters and the quality of the predictions in cyclic plasticity. The results suggest that the choice of the tests should be closely linked to the capabilities of the model. In particular, the presence of non proportional strain-controlled tests in the data base may be not a good choice if the model itself is not able to represent explicitly such a character. All tests considered here were performed on 304L SS at room temperature.

  8. Diabetes as an independent predictor of left ventricular longitudinal strain reduction at rest and during dobutamine stress test in patients with significant coronary artery disease.

    Science.gov (United States)

    Wierzbowska-Drabik, Karina; Trzos, Ewa; Kurpesa, Malgorzata; Rechcinski, Tomasz; Miskowiec, Dawid; Cieslik-Guerra, Urszula; Uznanska-Loch, Barbara; Sobczak, Maria; Kasprzak, Jaroslaw Damian

    2017-12-09

    Diabetes (DM) is a strong cardiovascular risk factor modifying also the left ventricular (LV) function that may be objectively assessed with echocardiographic strain analysis. Although the impact of isolated DM on myocardial deformation has been already studied, few data concern diabetics with coronary artery disease (CAD), especially in all stages of dobutamine stress echocardiography (DSE). We compared LV systolic function during DSE in CAD with and without DM using state-of-the art speckle-tracking quantification and assessed the impact of DM on LV systolic strain. DSE was performed in 250 patients with angina who afterwards had coronarography with ≥50% stenosis in the left main artery and ≥70% in other arteries considered as significant. In this analysis, we included 127 patients with confirmed CAD: 42 with DM [DM(+); mean age 64 ± 9 years] and 85 patients without DM [DM(-); mean age 63 ± 9 years]. The severity of CAD and LV ejection fraction (EF) were similar in both groups. Global and regional LV peak systolic longitudinal strain (PSLS) revealed in all DSE phases lower values in DM(+) group: 14.5 ± 3.6% vs. 17.4 ± 4.0% at rest; P = 0.0001, 13.8 ± 3.9% vs. 16.7 ± 4.0% at peak stress; P = 0.0002, and 14.2 ± 3.1% vs. 15.5 ± 3.5% at recovery; P = 0.0432 for global parameters, although dobutamine challenge did not enhance further resting differences. LV EF, body surface area, and diabetes were independent predictors for strain in 16-variable model (R2 = 0, 51, P coexisting CAD and DM on myocardial strain. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  9. Cyclic life of superalloy IN738LC under in-phase and out-of-phase thermo-mechanical fatigue loading

    International Nuclear Information System (INIS)

    Chen Hongjun; Wahi, R.P.; Wever, H.

    1995-01-01

    The cyclic life of IN738LC, a widely used nickel base superalloy for blades in stationary gas turbines, was investigated under thermo-mechanical fatigue loading using a temperature variation range of 1023 to 1223 K, with temperature variation rate in the range of 6 to 15 K/min. Simple thermo-mechanical cycles with linear sequences corresponding to in-phase (IP) and out-of-phase (OP) tests were performed. Both the IP and OP tests were carried out at different constant mechanical strain ranges varied between 0.8 to 2.0% and at a constant mechanical strain rate of 10 -5 s -1 . Thermo-mechanical fatigue lives under both test conditions were compared with each other and with those of isothermal LCF tests at a temperature of 1223 K. The results show that the life under thermo-mechanical fatigue is strongly dependent on the nature of the test, i.e. stress controlled or strain controlled. (orig.)

  10. Computational simulation of static/cyclic cell stimulations to investigate mechanical modulation of an individual mesenchymal stem cell using confocal microscopy

    International Nuclear Information System (INIS)

    Alihemmati, Zakieh; Vahidi, Bahman; Haghighipour, Nooshin; Salehi, Mohammad

    2017-01-01

    It has been found that cells react to mechanical stimuli, while the type and magnitude of these cells are different in various physiological and pathological conditions. These stimuli may affect cell behaviors via mechanotransduction mechanisms. The aim of this study is to evaluate mechanical responses of a mesenchymal stem cell (MSC) to a pressure loading using finite elements method (FEM) to clarify procedures of MSC mechanotransduction. The model is constructed based on an experimental set up in which statics and cyclic compressive loads are implemented on a model constructed from a confocal microscopy 3D image of a stem cell. Both of the applied compressive loads are considered in the physiological loading regimes. Moreover, a viscohyperelastic material model was assumed for the cell through which the finite elements simulation anticipates cell behavior based on strain and stress distributions in its components. As a result, high strain and stress values were captured from the viscohyperelastic model because of fluidic behavior of cytosol when compared with the obtained results through the hyperelastic models. It can be concluded that the generated strain produced by cyclic pressure is almost 8% higher than that caused by the static load and the von Mises stress distribution is significantly increased to about 150 kPa through the cyclic loading. In total, the results does not only trace the efficacy of an individual 3D model of MSC using biomechanical experiments of cell modulation, but these results provide knowledge in interpretations from cell geometry. The current study was performed to determine a realistic aspect of cell behavior. - Graphical abstract: Based on confocal microscopy images and through finite elements analysis, we simulate mechanical behavior of the stem cell components (the cell membrane, cytoplasm and nucleus) under a compressive load. A major novelty of this investigation is the usage of viscohyperelastic behavior for the realistic stem

  11. Nearly Cyclic Pursuit and its Hierarchical variant for Multi-agent Systems

    DEFF Research Database (Denmark)

    Iqbal, Muhammad; Leth, John-Josef; Ngo, Trung Dung

    2015-01-01

    The rendezvous problem for multiple agents under nearly cyclic pursuit and hierarchical nearly cyclic pursuit is discussed in this paper. The control law designed under nearly cyclic pursuit strategy enables the agents to converge at a point dictated by a beacon. A hierarchical version of the nea......The rendezvous problem for multiple agents under nearly cyclic pursuit and hierarchical nearly cyclic pursuit is discussed in this paper. The control law designed under nearly cyclic pursuit strategy enables the agents to converge at a point dictated by a beacon. A hierarchical version...

  12. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140

    Energy Technology Data Exchange (ETDEWEB)

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde 1, Univ. Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and very small carbides. It will be shown that by well directed annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effects of static strain aging, without causing extended thermal residual stress relaxation. The amount of yield stress increases caused by static strain aging is quantified using tensile tests. Static strain aging is also found to be responsible for an increase of the quasi static and cyclic surface yield strength present after shot peening. (orig.)

  13. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Directory of Open Access Journals (Sweden)

    Jandro L. Abot

    2018-02-01

    Full Text Available Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more.

  14. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Science.gov (United States)

    Góngora-Rubio, Mário R.; Kiyono, César Y.; Mello, Luis A. M.; Cardoso, Valtemar F.; Rosa, Reinaldo L. S.; Kuebler, Derek A.; Brodeur, Grace E.; Alotaibi, Amani H.; Coene, Marisa P.; Coene, Lauren M.; Jean, Elizabeth; Santiago, Rafael C.; Oliveira, Francisco H. A.; Rangel, Ricardo; Thomas, Gilles P.; Belay, Kalayu; da Silva, Luciana W.; Moura, Rafael T.; Seabra, Antonio C.; Silva, Emílio C. N.

    2018-01-01

    Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more. PMID:29401745

  15. Myocardial deformation assessed by longitudinal strain. Chamber specific normative data for CMR-feature tracking from the German competence network for congenital heart defects

    International Nuclear Information System (INIS)

    Shang, Quanliang; Patel, Shivani; Danford, David A.; Kutty, Shelby; Steinmetz, Michael; Schuster, Andreas; Beerbaum, Philipp; Sarikouch, Samir

    2018-01-01

    Left ventricular two-dimensional global longitudinal strain (LS) is superior to ejection fraction (EF) as predictor of outcome. We provide reference data for atrial and ventricular global LS during childhood and adolescence by CMR feature tracking (FT). We prospectively enrolled 115 healthy subjects (56 male, mean age 12.4 ± 4.1 years) at a single institution. CMR consisted of standard two-dimensional steady-state free-precession acquisitions. CMR-FT was performed on ventricular horizontal long-axis images for derivation of right and left atrial (RA, LA) and right and left ventricular (RV, LV) peak global LS. End-diastolic volumes (EDVs) and EF were measured. Correlations were explored for LS with age, EDV and EF of each chamber. Mean±SD of LS (%) for RA, RV, LA and LV were 26.56±10.2, -17.96±5.4, 26.45±10.6 and -17.47±5, respectively. There was a positive correlation of LS in LA, LV, RA and RV with corresponding EF (all P<0.05); correlations with age were weak. Gender-wise differences were not significant for atrial and ventricular LS, strain rate and displacement. Inter- and intra-observer comparisons showed moderate agreements. Chamber-specific nomograms for paediatric atrial and ventricular LS are provided to serve as clinical reference, and to facilitate CMR-based deformation research. (orig.)

  16. Myocardial deformation assessed by longitudinal strain. Chamber specific normative data for CMR-feature tracking from the German competence network for congenital heart defects

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Quanliang [University of Nebraska College of Medicine, Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Central South University, Department of Radiology, Second Xiangya Hospital, Changsha, Hunan Province (China); Patel, Shivani; Danford, David A.; Kutty, Shelby [University of Nebraska College of Medicine, Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Steinmetz, Michael [Georg-August-University and German Centre for Cardiovascular Research (DZHK, Partner Site), Department of Paediatric Cardiology, Goettingen (Germany); Schuster, Andreas [Georg-August-University and German Centre for Cardiovascular Research (DZHK, Partner Site), Department of Cardiology and Pulmonology, Goettingen (Germany); Beerbaum, Philipp; Sarikouch, Samir [Hanover Medical School, Hanover (Germany)

    2018-03-15

    Left ventricular two-dimensional global longitudinal strain (LS) is superior to ejection fraction (EF) as predictor of outcome. We provide reference data for atrial and ventricular global LS during childhood and adolescence by CMR feature tracking (FT). We prospectively enrolled 115 healthy subjects (56 male, mean age 12.4 ± 4.1 years) at a single institution. CMR consisted of standard two-dimensional steady-state free-precession acquisitions. CMR-FT was performed on ventricular horizontal long-axis images for derivation of right and left atrial (RA, LA) and right and left ventricular (RV, LV) peak global LS. End-diastolic volumes (EDVs) and EF were measured. Correlations were explored for LS with age, EDV and EF of each chamber. Mean±SD of LS (%) for RA, RV, LA and LV were 26.56±10.2, -17.96±5.4, 26.45±10.6 and -17.47±5, respectively. There was a positive correlation of LS in LA, LV, RA and RV with corresponding EF (all P<0.05); correlations with age were weak. Gender-wise differences were not significant for atrial and ventricular LS, strain rate and displacement. Inter- and intra-observer comparisons showed moderate agreements. Chamber-specific nomograms for paediatric atrial and ventricular LS are provided to serve as clinical reference, and to facilitate CMR-based deformation research. (orig.)

  17. Job strain variations in relation to plasma testosterone fluctuations in working men--a longitudinal study.

    Science.gov (United States)

    Theorell, T; Karasek, R A; Eneroth, P

    1990-01-01

    Job strain, a high level of psychological demands combined with a low level of decision latitude, has been hypothesized to induce mobilization of energy and inhibition of anabolism. In the present project this hypothesis was tested using four repeated observations every third month in a group of 44 men working in six widely different occupations. On each occasion scores of self-reported demands and decision latitude were calculated for every participant. An earlier report has shown that systolic blood pressure during work hours--an indicator of mobilization of energy--increased with increasing job strain (ratio between demands and decision latitude). Blood samples were drawn in the morning at the work site. For each man the plasma testosterone levels--representing the general level of anabolic activity--on the two occasions with the worst strain (ratio between demands and decision latitude) were compared with the plasma testosterone levels on the two occasions with the least strain. The results indicated that total plasma testosterone (but not free testosterone) levels increased when strain diminished in sedentary but not in physically demanding work. Subjects with a family history of hypertension showed a greater decrease in testosterone levels than others when job strain increased.

  18. Cyclic multiverses

    Science.gov (United States)

    Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  19. Migration and strains induced by different designs of force-closed stems for THA.

    Science.gov (United States)

    Griza, Sandro; Gomes, Luiz Sérgio Marcelino; Cervieri, André; Strohaecker, Telmo Roberto

    2015-01-01

    Subtle differences in stem design can result in different mechanical responses of the total hip arthroplasty. Tests measuring migration of the stem relative to the femur, as well as the strains in the cement mantle and on the femur can detect different mechanical behavior between stems. In this article, conical, double and triple tapered stems were implanted in composite femurs and subjected to static and cyclic loads. Stems differed mainly on taper angle, calcar radius and proximal stiffness. Stem migration and strains on the femur and in the cement mantle were achieved. Significant differences (p mechanical tests were able to detect significant differences in the behavior of these resembling stems. Stem proximal stiffness and the calcar radius of the stem influence its rotational stability and the strain transmission to the femur.

  20. Novel distributed strain sensing in polymeric materials

    International Nuclear Information System (INIS)

    Abot, Jandro L; Song, Yi; Medikonda, Sandeep; Rooy, Nathan; Schulz, Mark J

    2010-01-01

    Monitoring the state of strain throughout an entire structure is essential to determine its state of stress, detect potential residual stresses after fabrication, and also to help to establish its integrity. Several sensing technologies are presently available to determine the strain in the surface or inside a structure. Large sensor dimensions, complex signal conditioning equipment, and difficulty in achieving a widely distributed system have however hindered their development into robust structural health monitoring techniques. Recently, carbon nanotube forests were spun into a microscale thread that is electrically conductive, tough, and easily tailorable. The thread was integrated into polymeric materials and used for the first time as a piezoresistive sensor to monitor strain and also to detect damage in the material. It is revealed that the created self-sensing polymeric materials are sensitive to normal strains above 0.07% and that the sensor thread exhibits a perfectly linear delta resistance–strain response above 0.3%. The longitudinal gauge factors were determined to be in the 2–5 range. This low cost and simple built-in sensor thread may provide a new integrated and distributed sensor technology that enables robust real-time health monitoring of structures

  1. Dynamic strain ageing in Inconel® Alloy 783 under tension and low cycle fatigue

    International Nuclear Information System (INIS)

    Nagesha, A.; Goyal, Sunil; Nandagopal, M.; Parameswaran, P.; Sandhya, R.; Mathew, M.D.; Mannan, Sarwan K.

    2012-01-01

    Highlights: ► Low cycle fatigue (LCF) and tensile tests were performed on Inconel ® Alloy 783. ► A stable cyclic stress response followed by continuous softening was noted under LCF. ► Material exhibited DSA in the temperature range, 573–723 K. ► Occurrence of DSA reduced the extent of cycling softening in LCF. ► Both interstitial and substitutional atoms were found to be responsible for DSA. - Abstract: Low cycle fatigue (LCF) tests were performed on Inconel ® Alloy 783 at a strain rate of 3 × 10 −3 s −1 and a strain amplitude of ±0.6%, employing various temperatures in the range 300–923 K. A continuous reduction in the LCF life was observed with increase in the test temperature. The material generally showed a stable stress response followed by a region of continuous softening up to failure. However, in the temperature range of 573–723 K, the alloy was seen to exhibit dynamic strain ageing (DSA) which was observed to reduce the extent of cyclic softening. With a view to identifying the operative mechanisms responsible for DSA, tensile tests were conducted at temperatures in the range, 473–798 K with strain rates varying from 3 × 10 −5 s −1 to 3 × 10 −3 s −1 . Interaction of dislocations with interstitial (C) and substitutional (Cr) atoms respectively, in the lower and higher temperature regimes was found to be responsible for DSA. Further, the friction stress, as determined using the stabilised stress–strain hysteresis loops, was seen to show a more prominent peak in the DSA range, compared to the maximum tensile stress.

  2. Effects of cyclic tensile loading on stress corrosion cracking susceptibility for sensitized Type 304 stainless steel in 290 C high purity water

    International Nuclear Information System (INIS)

    Takaku, H.; Tokiwai, M.; Hirano, H.

    1979-01-01

    The effects of load waveform on intergranular stress corrosion cracking (IGSCC) susceptibility have been examined for sensitized Type 304 stainless steels in a 290 C high purity water loop. Concerning the strain rate in the trapezoidal stress waveform, it was found that IGSCC susceptibility was higher for smaller values of the strain rate. It was also shown that IGSCC susceptibility became higher when the holding time at the upper stress was prolonged, and when the upper stress was high. The occurrence of IGSCC for sensitized Type 304 stainless steel became easy due to the application of cyclic tensile stress in 290 C high purity water

  3. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.

    Science.gov (United States)

    Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao

    2017-12-07

    In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  4. Simulation of ratcheting in straight pipes using ANSYS with an improved cyclic plasticity model

    International Nuclear Information System (INIS)

    Hassan, T.; Zhu, Y.; Matzen, V.C.

    1996-01-01

    Ratcheting has been shown to be a contributing cause of failure in several seismic experiments on piping components and systems. Most commercial finite element codes have been unable to simulate the ratcheting in those tests accurately. The reason for this can be traced to inadequate plasticity constitutive models in the analysis codes. The authors have incorporated an improved cyclic plasticity model, based on an Armstrong-Frederick kinematic hardening rule in conjunction with the Drucker-Palgen plastic modulus equation, into an ANSYS user subroutine. This modified analysis code has been able to simulate quite accurately the ratcheting behavior of a tube subjected to a constant internal pressure and axially strain controlled cycling. This paper describes simulations obtained form this modified ANSYS code for two additional tests: (1) a tube subjected to constant axial stress and prescribed torsional cycling, and (2) a straight pipe subjected to constant internal pressure and quasi-static cyclic bending. The analysis results from the modified ANSYS code are compared to the experimental data, as well as results from ABAQUS and the original ANSYS code. The resulting correlation shows a significant improvement over the original ANSYS and the ABAQUS codes

  5. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic... FLUORINATED CYCLIC MOIETIES 12 December 2015 Andrew J. Guenthner,1 Scott T. Iacono,2 Cynthia A. Corley,2 Christopher M. Sahagun,3 Kevin R. Lamison,4...Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion ∆ DISTRIBUTION A

  6. Caffeine, cyclic AMP and postreplication repair of mammalian DNA

    International Nuclear Information System (INIS)

    Ehmann, U.K.

    1976-01-01

    The methylxanthines, caffeine and theophylline, inhibit postreplication repair of DNA in mammalian cells. Because they also inhibit cyclic AMP phosphodiesterase, it was thought that there might be some connection between concentrations of cyclic AMP and postreplication repair. This possibility was tested by performing DNA sedimentation experiments with a cyclic AMP-resistant mouse lymphoma cell mutant and its wild-type counterpart. The results show that there is no connection between cellular cyclic AMP concentrations and the rate of postreplication repair. Therefore, it is more likely that caffeine and theophylline inhibit postreplication repair by some other means, such as by binding to DNA

  7. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  8. Molecular Structure and Dynamics of Water on Pristine and Strained Phosphorene: Wetting and Diffusion at Nanoscale.

    Science.gov (United States)

    Zhang, Wei; Ye, Chao; Hong, Linbi; Yang, Zaixing; Zhou, Ruhong

    2016-12-06

    Phosphorene, a newly fabricated two-dimensional (2D) nanomaterial, has emerged as a promising material for biomedical applications with great potential. Nonetheless, understanding the wetting and diffusive properties of bio-fluids on phosphorene which are of fundamental importance to these applications remains elusive. In this work, using molecular dynamics (MD) simulations, we investigated the structural and dynamic properties of water on both pristine and strained phosphorene. Our simulations indicate that the diffusion of water molecules on the phosphorene surface is anisotropic, with strain-enhanced diffusion clearly present, which arises from strain-induced smoothing of the energy landscape. The contact angle of water droplet on phosphorene exhibits a non-monotonic variation with the transverse strain. The structure of water on transverse stretched phosphorene is demonstrated to be different from that on longitudinal stretched phosphorene. Moreover, the contact angle of water on strained phosphorene is proportional to the quotient of the longitudinal and transverse diffusion coefficients of the interfacial water. These findings thereby offer helpful insights into the mechanism of the wetting and transport of water at nanoscale, and provide a better foundation for future biomedical applications of phosphorene.

  9. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  10. Experimental study on uniaxial ratcheting deformation and failure behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    In the paper, the tests of cyclic strain ratcheting and low cycle fatigue for 304 stainless steel under uniaxial cyclic straining were carried out to systematically explore the deformation and failure behavior of the material. The experimental study shows that the cyclic strain ratcheting deformation behavior of the material is different from either the uniaxial monotonic tensile one or the cyclic deformation one under the symmetrical cyclic straining with the same strain amplitude, and the strain ratcheting deformation and failure behaviors depend on both the plastic strain amplitude and the strain increment at the cyclic maximum strain. Some significant results were observed

  11. Effects of Cyclic Thermal Load on the Signal Characteristics of FBG Sensors Packaged with Epoxy Adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heonyoung; Kang, Donghoon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2017-04-15

    Fiber optics sensors that have been mainly applied to aerospace areas are now finding applicability in other areas, such as transportation, including railways. Among the sensors, the fiber Bragg grating (FBG) sensors have led to a steep increase due to their properties of absolute measurement and multiplexing capability. Generally, the FBG sensors adhere to structures and sensing modules using adhesives such as an epoxy. However, the measurement errors that occurred when the FBG sensors were used in a long-term application, where they were exposed to environmental thermal load, required calibration. For this reason, the thermal curing of adhesives needs to be investigated to enhance the reliability of the FBG sensor system. This can be done at room temperature through cyclic thermal load tests using four types of specimens. From the test results, it is confirmed that residual compressive strain occurs to the FBG sensors due to an initial cyclic thermal load. In conclusion, signals of the FBG sensors need to be stabilized for applying them to a long-term SHM.

  12. Job Strain and Health-Related Lifestyle : Findings From an Individual-Participant Meta-Analysis of 118 000 Working Adults.

    OpenAIRE

    Heikkilä, Katriina; Fransson, Eleonor I; Nyberg, Solja T; Zins, Marie; Westerlund, Hugo; Westerholm, Peter; Virtanen, Marianna; Vahtera, Jussi; Suominen, Sakari; Steptoe, Andrew; Salo, Paula; Pentti, Jaana; Oksanen, Tuula; Nordin, Maria; Marmot, Michael G

    2013-01-01

    Objectives. We examined the associations of job strain, an indicator of work-related stress, with overall unhealthy and healthy lifestyles. Methods. We conducted a meta-analysis of individual-level data from 11 European studies (cross-sectional data: n = 118 701; longitudinal data: n = 43 971). We analyzed job strain as a set of binary (job strain vs no job strain) and categorical (high job strain, active job, passive job, and low job strain) variables. Factors used to define healthy and unhe...

  13. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  14. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    Science.gov (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user

  15. Intervendor consistency and reproducibility of left ventricular 2D global and regional strain with two different high-end ultrasound systems.

    Science.gov (United States)

    Shiino, Kenji; Yamada, Akira; Ischenko, Matthew; Khandheria, Bijoy K; Hudaverdi, Mahala; Speranza, Vicki; Harten, Mary; Benjamin, Anthony; Hamilton-Craig, Christian R; Platts, David G; Burstow, Darryl J; Scalia, Gregory M; Chan, Jonathan

    2017-06-01

    We aimed to assess intervendor agreement of global (GLS) and regional longitudinal strain by vendor-specific software after EACVI/ASE Industry Task Force Standardization Initiatives for Deformation Imaging. Fifty-five patients underwent prospective dataset acquisitions on the same day by the same operator using two commercially available cardiac ultrasound systems (GE Vivid E9 and Philips iE33). GLS and regional peak longitudinal strain were analyzed offline using corresponding vendor-specific software (EchoPAC BT13 and QLAB version 10.3). Absolute mean GLS measurements were similar between the two vendors (GE -17.5 ± 5.2% vs. Philips -18.9 ± 5.1%, P = 0.15). There was excellent intervendor correlation of GLS by the same observer [r = 0.94, P limits of agreement (LOA) -4.8 to 2.2%). Intervendor comparison for regional longitudinal strain by coronary artery territories distribution were: LAD: r = 0.85, P < 0.0001; bias 0.5%, LOA -5.3 to 6.4%; RCA: r = 0.88, P < 0.0001; bias -2.4%, LOA -8.6 to 3.7%; LCX: r = 0.76, P < 0.0001; bias -5.3%, LOA -10.6 to 2.0%. Intervendor comparison for regional longitudinal strain by LV levels were: basal: r = 0.86, P < 0.0001; bias -3.6%, LOA -9.9 to 2.0%; mid: r = 0.90, P < 0.0001; bias -2.6%, LOA -7.8 to 2.6%; apical: r = 0.74; P < 0.0001; bias -1.3%, LOA -9.4 to 6.8%. Intervendor agreement in GLS and regional strain measurements have significantly improved after the EACVI/ASE Task Force Strain Standardization Initiatives. However, significant wide LOA still exist, especially for regional strain measurements, which remains relevant when considering vendor-specific software for serial measurements. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  16. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  17. The Cyclicality of New Product Introductions

    OpenAIRE

    Kostas Axarloglou

    2003-01-01

    This study analyzes empirically the cyclical nature of the timing of new product introductions in U.S. manufacturing. New product introductions vary more in nonseasonal frequencies than in seasonal frequencies. However, the seasons alone account for only a small part of their total variability with demand factors being much more important. Demand fluctuations account for 35%80% and 17%43%, respectively, of the seasonal and cyclical variability of new product introductions in various industrie...

  18. Job Strain and Health-Related Lifestyle: Findings From an Individual-Participant Meta-Analysis of 118 000 Working Adults

    Science.gov (United States)

    Heikkilä, Katriina; Fransson, Eleonor I.; Nyberg, Solja T.; Zins, Marie; Westerlund, Hugo; Westerholm, Peter; Virtanen, Marianna; Vahtera, Jussi; Suominen, Sakari; Steptoe, Andrew; Salo, Paula; Pentti, Jaana; Oksanen, Tuula; Nordin, Maria; Marmot, Michael G.; Lunau, Thorsten; Ladwig, Karl-Heinz; Koskenvuo, Markku; Knutsson, Anders; Kittel, France; Jöckel, Karl-Heinz; Goldberg, Marcel; Erbel, Raimund; Dragano, Nico; DeBacquer, Dirk; Clays, Els; Casini, Annalisa; Alfredsson, Lars; Ferrie, Jane E.; Singh-Manoux, Archana; Batty, G. David; Kivimäki, Mika

    2013-01-01

    Objectives. We examined the associations of job strain, an indicator of work-related stress, with overall unhealthy and healthy lifestyles. Methods. We conducted a meta-analysis of individual-level data from 11 European studies (cross-sectional data: n = 118 701; longitudinal data: n = 43 971). We analyzed job strain as a set of binary (job strain vs no job strain) and categorical (high job strain, active job, passive job, and low job strain) variables. Factors used to define healthy and unhealthy lifestyles were body mass index, smoking, alcohol intake, and leisure-time physical activity. Results. Individuals with job strain were more likely than those with no job strain to have 4 unhealthy lifestyle factors (odds ratio [OR] = 1.25; 95% confidence interval [CI] = 1.12, 1.39) and less likely to have 4 healthy lifestyle factors (OR = 0.89; 95% CI = 0.80, 0.99). The odds of adopting a healthy lifestyle during study follow-up were lower among individuals with high job strain than among those with low job strain (OR = 0.88; 95% CI = 0.81, 0.96). Conclusions. Work-related stress is associated with unhealthy lifestyles and the absence of stress is associated with healthy lifestyles, but longitudinal analyses suggest no straightforward cause–effect relationship between work-related stress and lifestyle. PMID:23678931

  19. Nature of a solar cyclicity

    International Nuclear Information System (INIS)

    Romanchuk, P.R.

    1981-01-01

    The paper contains a critical review of works on studying a cyclic character of solar activity. An introduction of cyclic curves with a frequency spectrum is established to be insolvent. The Wolf, Newcomb and Waldmeier approach seems to be useful. Some evidence is given in favour of the author's conception of solar activity ciclicity of a tide nature. It is accounted for a continuous double and single effect of planets, a resonant character of this effect due to which a 10-year period of Jupiter and Saturn is transformed into an 11-year cycle of activity [ru

  20. Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems

    Science.gov (United States)

    Ciufudean, Calin; Filote, Constantin

    In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.