WorldWideScience

Sample records for long-term potentiation ltp

  1. Ischemic long-term-potentiation (iLTP: perspectives to set the threshold of neural plasticity toward therapy

    Directory of Open Access Journals (Sweden)

    Maximilian Lenz

    2015-01-01

    Full Text Available The precise role of neural plasticity under pathological conditions remains not well understood. It appears to be well accepted, however, that changes in the ability of neurons to express plasticity accompany neurological diseases. Here, we discuss recent experimental evidence, which suggests that synaptic plasticity induced by a pathological stimulus, i.e., ischemic long-term-potentiation (iLTP of excitatory synapses, could play an important role for post-stroke recovery by influencing the post-lesional reorganization of surviving neuronal networks.

  2. DEVELOPMENTAL LEAD (PB) EXPOSURE REDUCES THE ABILITY OF THE NNDA ANTAGONIST MK801 TO SUPPRESS LONG-TERM POTENTIATION (LTP) IN THE RAT DENTATE GYRUS, IN VIVO

    Science.gov (United States)

    Chronic developmental lead (Pb) exposure increases the threshold and enhances decay of long-term potentiation (LTP) in the dentate gyrus of the hippocampal formation. MK-801 and other antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype impair induction of LT...

  3. Test-Retest Reliability of 10 Hz Conditioning Electrical Stimulation Inducing Long-Term Potentiation (LTP)-Like Pain Amplification in Humans

    Science.gov (United States)

    Xia, Weiwei; Mørch, Carsten Dahl; Andersen, Ole Kæseler

    2016-01-01

    Background 10 Hz conditioning electrical stimulation (CES) has been shown to induce long-term potentiation (LTP)-like pain amplification similar to traditional 100 Hz CES in healthy humans. The aim of this study was to assess the test-retest reliability and to estimate sample sizes required for future crossover and parallel study designs. Methods The 10 Hz paradigm (500 rectangular pulses lasting 50 s) was repeated on two separate days with one week interval in twenty volunteers. Perceptual intensities to single electrical stimulation (SES) at the conditioned skin site and to mechanical stimuli (pinprick and light stroking) in immediate vicinity to the conditioned skin site were recorded. Superficial blood flow (SBF) was assessed as indicator of neurogenic inflammation. All outcome measures were assessed with 10 min interval three times before and six times after the CES. The coefficient of variation and intra-class correlation coefficient were calculated within session and between sessions. Sample sizes were estimated for future crossover (Ncr) and parallel (Np) drug testing studies expected to detect a 30% decrease for the individual outcome measure following 10 Hz CES. Results Perceptual intensity ratings to light stroking (Ncr = 2, Np = 33) and pinprick stimulation (491 mN) (Ncr = 6, Np = 54) increased after CES and showed better reliability in crossover than parallel design. The SBF increased after CES, and then declined until reaching a plateau 20 minutes postCES. SBF showed acceptable reliability both in crossover and parallel designs (Ncr = 3, Np = 13). Pain ratings to SES were reliable, but with large estimated sample sizes (Ncr = 634, Np = 11310) due to the minor pain amplification. Conclusions The reliability of 10 Hz CES was acceptable in inducing LTP-like effects in the assessments of superficial blood flow, heterotopic mechanical hyperalgesia, and dysesthesia in terms of sample sizes for future crossover study designs. PMID:27529175

  4. Effects of the ephedra alkaloid methylephedrine on the basal evoked potential transportation and the long-term potentiation (LTP) in the rat hippocampal dentate granule cells in vivo

    Institute of Scientific and Technical Information of China (English)

    PENG Xiao-dong

    2008-01-01

    Objective The effect of the ephedra/ephedrine alkaloid methylephedrine (dl-methylephedrine hydrochloride for testing in this paper) on cognitive related synaptic plasticity was investigated by recording extracellular field evoked potentials and its LTP in hippocampal dentate granule cells in urethane-anaesthetized rats in vivo. Methods Single pathway recording of evoked field potentials was made from the dentate granule cells of hippocampal hemisphere in response to stimulation of the ipsilateral medial perforant path (MPP). Two parameters, the amplitude of population spike (PS amplitude) and the latency of the PS, were employed to evaluate the effects of drug on the overall changes in cellular responses. Results The present study show that methylephedrine 90 mg·kg-1 intraperitoneally, about 1/3 LD50, could increase the latency of the PS in hippocampal dentate granule cells by constant single stimulation of the MPP as the basal ransportation. However, the 30 mg·kg-1 and 10 mg·kg-1 dosage had no effect on the latency, and there are no influences of PS amplitude for all examinational groups. The methylephedrine 90 mg·kg-1 group significant enhanced the development of amplitude LTP in hippocampal dentate granule cells that induced by 60 Hz, 60 pulses conditional tetanus in medial perforant path area. Also, the 30 mg·kg-1 group can promoted the maintenance of LTP induced by this tetanus, but no promotion on PS amplitude LTP appeared in this dosage and no any changes been found in 10 mg·kg-1 dosage group. Conclusions The ephedra/ephedrine alkaloid methylephedrine can modulate the synaptic plasticity in the lateral perforant path. A possible mechanism of methylephedrine on hippocampal LTP is been discussed.

  5. Active Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII Regulates NMDA Receptor Mediated Postischemic Long-Term Potentiation (i-LTP by Promoting the Interaction between CaMKII and NMDA Receptors in Ischemia

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2014-01-01

    Full Text Available Active calcium/calmodulin-dependent protein kinase II (CaMKII has been reported to take a critical role in the induction of long-term potentiation (LTP. Changes in CaMKII activity were detected in various ischemia models. It is tempting to know whether and how CaMKII takes a role in NMDA receptor (NMDAR-mediated postischemic long-term potentiation (NMDA i-LTP. Here, we monitored changes in NMDAR-mediated field excitatory postsynaptic potentials (NMDA fEPSPs at different time points following ischemia onset in vitro oxygen and glucose deprivation (OGD ischemia model. We found that 10 min OGD treatment induced significant i-LTP in NMDA fEPSPs, whereas shorter (3 min or longer (25 min OGD treatment failed to induce prominent NMDA i-LTP. CaMKII activity or CaMKII autophosphorylation displays a similar bifurcated trend at different time points following onset of ischemia both in vitro OGD or in vivo photothrombotic lesion (PT models, suggesting a correlation of increased CaMKII activity or CaMKII autophosphorylation with NMDA i-LTP. Disturbing the association between CaMKII and GluN2B subunit of NMDARs with short cell-permeable peptides Tat-GluN2B reversed NMDA i-LTP induced by OGD treatment. The results provide support to a notion that increased interaction between NMDAR and CaMKII following ischemia-induced increased CaMKII activity and autophosphorylation is essential for induction of NMDA i-LTP.

  6. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP).

    Science.gov (United States)

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A

    2013-07-26

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.

  7. LTP研究进展(Ⅲ)——LTP和神经趋向因子%Recent advances in the study of long-term potentiation( part Ⅲ) -LTP and Neurotrophin

    Institute of Scientific and Technical Information of China (English)

    李勇; 叶桂兰

    2002-01-01

    长时程增强(LTP)是学习和记忆过程的分子水平现象.参与LTP机制的因素很多,最近研究发现神经趋向因子,特别是其中的脑衍生的神经趋向因子(BDNF)对LTP起着重要的调节作用,而且对短时程及长时程突触可塑性均有影响.已经明确的神经趋向因子的功能包括调节神经分化,神经元轴突和树突的生长和修复,以及突触形成.本文综述了BDNF与LTP相关性的实验性根据.总结了BDNF通过突触前以及突触后机制影响LTP的引发和后期维持.BDNF的直接作用机制是作用于突触前后膜上的受体,导致突触前递质小泡增多从而增加递质释放.在突触后引起突触后膜去极化,从而打开电压依赖性钙通道、钙离子浓度增高,最终导致AMPA受体数目增多,功能强化,产生LTP.%Long-term potentiation (LTP) is believed underlined learning and memory. Recent research has attracted to brain-derived neurotrophic factor (BDNF) that may affect synaptic plasticity in both short- and long-term actions at the synapse. In vitro, neurotrophin regulate neuronal differentiation, axonal and dendritic growth and repair, synaptic formation, and synaptic plasticity. Here we summarized the experimental evidence linking BDNF to LTP. BDNF plays a role in LTP induction and late phase maintenance. The actions of BDNF are mediated by the TrkB receptor tyrosine kinase. BDNF potentiate LTP by modulating the number of docked vesicles and the level of vesicle protein on pre-synapse to increase neurotransmitter release, and by inducing postsynaptic depolarization to open voltage dependent Ca2+ channels. We also introduced the effects of LTP on the secretion of the neurotrophin. The experimental evidence strongly supports a role for BDNF in synaptic plasticity and should prompt further exploration of their functions at the synapse.

  8. LTP的研究进展(Ⅱ)--LTP的转基因研究%Recent advances in the study of long-term potentiation(part II)--transgenic study of LTP

    Institute of Scientific and Technical Information of China (English)

    张嘉伟; 叶桂兰

    2002-01-01

    LTP研究在近十余年来一直是热点课题.尽管LTP是否是学习和记忆的基础仍有争议,肯定性的研究结果日趋增加,所以LTP仍吸引着大量研究工作者.近年来随着分子生物学技术的进步,人们得以借助转基因手段研究疾病相关性基因及其蛋白质,以及不明功能的基因和蛋白.转基因动物模型更是给难以模拟的Alzheimer氏病的研究极大推动.2001年人类基因组序列研究结果报告对医学科学的发展影响深远.应用转基因模型的手段进一步深入各研究领域.近几年来神经工作者借助转基因手段,对LTP的分子机制有了进一步认识.本文概括性介绍了这方面的有趣研究,希望读者能大致了解LTP研究进展,同时领悟转基因技术的推动力.%There is more and more evidence showing long term potentiation (LTP) is underling learning and memory even though it is still controversy and the mechanism behind LTP has not yet been completely understood. It is known that memory processes and long-term potentiation (LTP) are blocked at the time of their initiation by antagonists of glutamate NMDA or metabotropic receptors, and GABA-A receptor agonists. Following initiation, memory and LTP are accompanied by an enhancement of the activity of calcium/calmodulin-dependent protein kinase II and of protein kinase C. At the time of expression, LTP is blocked by antagonists of glutamate AMPA receptors. In recent five years, with advanced molecular biology techniques, scientist could use transgenic and knock out mice to explore what happens to LTP and learning and memory when specific disease related or novel gene was overexpressed or deleted. Therefore cellular and molecular mechanisms of activity-dependent synaptic plasticity are understood in a new level. Here we introduced recent research work on LTP with transgenic approach in hope to inspire interest in genomic and protenomic technology. We will continue to discuss BDNF and LTP and

  9. CAN LONG-TERM POTENTIATION BE INGVCED BY ACUPOINT STIMULATION?

    Institute of Scientific and Technical Information of China (English)

    吴定宗; 张煜; 万平

    2000-01-01

    Long-term potentiation (LTP) is usually induced by direct brain stimulation. An attempt has been made to evoke LTP in dentate granule cells of hippocampus by acupoint stimulation in anesthetized rats. Assuming a gradual increasing course, LTP rose to 146% at the end of one hour. After applying such stimulation to the awake rats for six days (once everyday), their discriminative learning capacity in Y maze test markedly improved as compared with that of the control.

  10. A Protein Synthesis and Nitric Oxide-Dependent Presynaptic Enhancement in Persistent Forms of Long-Term Potentiation

    Science.gov (United States)

    Johnstone, Victoria P. A.; Raymond, Clarke R.

    2011-01-01

    Long-term potentiation (LTP) is an important process underlying learning and memory in the brain. At CA3-CA1 synapses in the hippocampus, three discrete forms of LTP (LTP1, 2, and 3) can be differentiated on the basis of maintenance and induction mechanisms. However, the relative roles of pre- and post-synaptic expression mechanisms in LTP1, 2,…

  11. Nutritional deficit and Long Term Potentiation alterations

    Directory of Open Access Journals (Sweden)

    M. Petrosino

    2009-01-01

    Full Text Available In the present work we examined the ability of prenatally malnourished offspring to produce and maintain long-term potentiation (LTP of the perforant path/dentate granule cell synapse in freely moving rats at 15,30, and 90 days of age. Population spike amplitude (PSA was calculated from dentate field potential recordings prior to and at 15, 30, 60 min. and 3, 5, 18 and 24 h following tetanization of the perforant pathway. All animals of both malnourished and well-nourished diet groups at 15 days of age showed potentiation of PSA measures but the measures obtained from 15-day-old prenatally malnourished animals were significantly less than that of age-matched, well-nourished controls. At 30 days of age, remarkable effect of tetanization was likely observed from PSA measures for this age group followed much the same pattern. At 90 days of age, PSA measures obtained from malnourished animals decreased from pretetanization levels immediately following tetanization. At this age, however, at three hours time recordings, this measure growing up to a level which did not differ significantly from that of the control group. These results indicate that the width of tetanization induced enhancement of dentate granule cell response in preweanling rats (15-day-old animals is signifacantly affected fromgestational protein malnutrition and this trend is kept in animals tested at 30 and 90 days of age. The fact, however, that considerable limitation in LTP generation was gained from prenatally malnourished animals at 90 days of age, implying that dietary rehabilitation starting at birth is an intervention strategy not capable to imbrove the effects of the gestational stress.

  12. NF-κB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus

    Directory of Open Access Journals (Sweden)

    Oikawa Kensuke

    2012-07-01

    Full Text Available Abstract Background Nuclear factor kappa B (NF-κB is a transcription factor typically expressed with two specific subunits (p50, p65. Investigators have reported that NF-κB is activated during the induction of in vitro long term potentiation (LTP, a paradigm of synaptic plasticity and correlate of memory, suggesting that NF-κB may be necessary for some aspects of memory encoding. Furthermore, NF-κB has been implicated as a potential requirement in behavioral tests of memory. Unfortunately, very little work has been done to explore the effects of deleting specific NF-κB subunits on memory. Studies have shown that NF-κB p50 subunit deletion (p50−/− leads to memory deficits, however some recent studies suggest the contrary where p50−/− mice show enhanced memory in the Morris water maze (MWM. To more critically explore the role of the NF-κB p50 subunit in synaptic plasticity and memory, we assessed long term spatial memory in vivo using the MWM, and synaptic plasticity in vitro utilizing high frequency stimuli capable of eliciting LTP in slices from the hippocampus of NF-κB p50−/− versus their controls (p50+/+. Results We found that the lack of the NF-κB p50 subunit led to significant decreases in late LTP and in selective but significant alterations in MWM tests (i.e., some improvements during acquisition, but deficits during retention. Conclusions These results support the hypothesis that the NF-κ p50 subunit is required in long term spatial memory in the hippocampus.

  13. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy.

    NARCIS (Netherlands)

    Ruscheweyh, R.; Wilder-Smith, O.H.G.; Drdla, R.; Liu, X.G.; Sandkuhler, J.

    2011-01-01

    Long-term potentiation (LTP) in nociceptive spinal pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is typically induced by noxious input and has therefore been hypothesized to contr

  14. Long-term potentiation in the in vitro perirhinal cortex displays associative properties.

    Science.gov (United States)

    Bilkey, D K

    1996-09-16

    Brief high frequency tetanization trains reliably induced input-specific long-term potentiation (LTP) in slices of rat perirhinal cortex maintained in vitro. Furthermore, associative interactions between inputs were observed following simultaneous tetanization of separate inputs. This associativity may be mediated via NMDA receptors as LTP was blocked in the presence of APV. These results suggest that LTP may underline participation of perirhinal cortex in memory processes.

  15. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis.

    Science.gov (United States)

    Dong, Zhifang; Han, Huili; Li, Hongjie; Bai, Yanrui; Wang, Wei; Tu, Man; Peng, Yan; Zhou, Limin; He, Wenting; Wu, Xiaobin; Tan, Tao; Liu, Mingjing; Wu, Xiaoyan; Zhou, Weihui; Jin, Wuyang; Zhang, Shu; Sacktor, Todd Charlton; Li, Tingyu; Song, Weihong; Wang, Yu Tian

    2015-01-01

    Long-term potentiation (LTP) of synaptic strength between hippocampal neurons is associated with learning and memory, and LTP dysfunction is thought to underlie memory loss. LTP can be temporally and mechanistically classified into decaying (early-phase) LTP and nondecaying (late-phase) LTP. While the nondecaying nature of LTP is thought to depend on protein synthesis and contribute to memory maintenance, little is known about the mechanisms and roles of decaying LTP. Here, we demonstrated that inhibiting endocytosis of postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) prevents LTP decay, thereby converting it into nondecaying LTP. Conversely, restoration of AMPAR endocytosis by inhibiting protein kinase Mζ (PKMζ) converted nondecaying LTP into decaying LTP. Similarly, inhibition of AMPAR endocytosis prolonged memory retention in normal animals and reduced memory loss in a murine model of Alzheimer's disease. These results strongly suggest that an active process that involves AMPAR endocytosis mediates the decay of LTP and that inhibition of this process can prolong the longevity of LTP as well as memory under both physiological and pathological conditions.

  16. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model.

    Directory of Open Access Journals (Sweden)

    Paul Smolen

    Full Text Available Protein synthesis-dependent, late long-term potentiation (LTP and depression (LTD at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.

  17. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model.

    Science.gov (United States)

    Smolen, Paul; Baxter, Douglas A; Byrne, John H

    2012-01-01

    Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.

  18. Laminin degradation by plasmin regulates long-term potentiation.

    Science.gov (United States)

    Nakagami, Y; Abe, K; Nishiyama, N; Matsuki, N

    2000-03-01

    Plasmin is converted from its zymogen plasminogen by tissue type or urokinase type plasminogen activator (PA) and degrades many components of the extracellular matrix (ECM). To explore the possibility that the PA-plasmin system regulates synaptic plasticity, we investigated the effect of plasmin on degradation of ECM and synaptic plasticity by using organotypic hippocampal cultures. High-frequency stimulation produced long-term potentiation (LTP) in control slices, whereas the potentiation was induced but not maintained in slices pretreated with 100 nM plasmin for 6 hr. The baseline synaptic responses were not affected by pretreatment with plasmin. The impairment of LTP maintenance was not observed in slices pretreated with 100 nM plasmin for 6 hr, washed, and then cultured for 24-48 hr in the absence of plasmin. To identify substrates of plasmin, the expression of three major components of ECM, laminin, fibronectin, and type IV collagen, was investigated by immunofluorescence imaging. The three ECM components were widely distributed in the hippocampus, and only laminin was degraded by plasmin pretreatment. The expression level of laminin returned to normal levels when the slices were cultured for 24-48 hr after washout of plasmin. Furthermore, preincubation with anti-laminin antibodies prevented both the degradation of laminin and the impairment of LTP maintenance by plasmin. These results suggest that the laminin-mediated cell-ECM interaction may be necessary for the maintenance of LTP.

  19. Long-term potentiation of intrinsic excitability in trigeminal motoneurons.

    Science.gov (United States)

    Okamoto, Reiko; Enomoto, Akifumi; Koizumi, Hidehiko; Tanaka, Susumu; Ishihama, Kohji; Kogo, Mikihiko

    2010-02-02

    Trigeminal motoneurons (TMNs) relay the final output signals generated within the oral-motor pattern-generating circuits to the jaw muscles for execution of various patterns of motor activity. Activity-dependent plasticity, referred to as long-term potentiation (LTP), in the central nervous system has been the subject of many studies. The mechanisms of plasticity in the trigeminal system, an important component of the oral-motor system underlying mastication, swallowing, and other behaviors, remain to be fully elucidated. In the present study, we investigated long-term potentiation of intrinsic excitability (LTP-IE) in TMNs. Experiments were performed using extracellular recording and whole-cell patch-clamp recording to assess the intrinsic excitability of TMNs. Intrinsic response properties were examined using an induction pulse with ionotropic transmission blocked. The output of the trigeminal motor branch exhibited long-lasting potentiation of intrinsic neuronal excitability following induction. Applying brainstem transection techniques to the neonatal rat brainstem in vitro, we found that the activity of the motoneuron population recorded from the motor branch of the trigeminal nerve exhibited LTP-IE. We thus demonstrated the usefulness of this type of preparation for the study of rudimentary oral-motor activity and observed changes in TMN excitability. In addition, on testing with the whole-cell patch-clamp method, TMNs exhibited a significant increase in excitability with a leftward shift in F-I curves generated with depolarizing current injections, whereas resting membrane potential and input resistance exhibited no remarkable changes. These findings indicate that TMNs exhibit LTP of intrinsic excitability.

  20. Hippocampal CA1 Kindling but Not Long-Term Potentiation Disrupts Spatial Memory Performance

    Science.gov (United States)

    Leung, L. Stan; Shen, Bixia

    2006-01-01

    Long-term synaptic enhancement in the hippocampus has been suggested to cause deficits in spatial performance. Synaptic enhancement has been reported after hippocampal kindling that induced repeated electrographic seizures or afterdischarges (ADs) and after long-term potentiation (LTP) defined as synaptic enhancement without ADs. We studied…

  1. Circadian rhythm modulates long-term potentiation induced at CA1 in rat hippocampal slices.

    Science.gov (United States)

    Nakatsuka, Hiroki; Natsume, Kiyohisa

    2014-03-01

    Circadian rhythm affects neuronal plasticity. Consistent with this, some forms of synaptic long-term potentiation (LTP) are modulated by the light/dark cycle (LD cycle). For example, this type of modulation is observed in hippocampal slices. In rodents, which are nocturnal, LTP is usually facilitated in the dark phase, but the rat hippocampal CA1 is an exception. The reason why LTP in the dark phase is suppressed in CA1 remains unknown. Previously, LTP was induced with high-frequency stimulation. In this study, we found that in the dark phase, theta-burst stimulation-induced LTP is indeed facilitated in CA1, similar to other regions in the rodent brain. Population excitatory postsynaptic potentials (pEPSP)-LTP and population spikes (PS)-LTP were recorded at CA1. The magnitude of PS-LTP in dark-phase slices was significantly larger than in light-phase slices, while that of pEPSP-LTP was unchanged. Using antidromic-orthodromic stimulation, we found that recurrent inhibition is suppressed in the dark phase. Local gabazine-application to stratum pyramidale in light-phase slices mimicked this disinhibition and facilitated LTP in dark-phase slices. These results suggest that the disinhibition of a GABAA recurrent inhibitory network can be induced in the dark phase, thereby facilitating LTP.

  2. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy

    Directory of Open Access Journals (Sweden)

    Liu Xian-Guo

    2011-03-01

    Full Text Available Abstract Long-term potentiation (LTP in nociceptive spinal pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is typically induced by noxious input and has therefore been hypothesized to contribute to acute postoperative pain and to forms of chronic pain that develop from an initial painful event, peripheral inflammation or neuropathy. Under this assumption, preventing LTP induction may help to prevent the development of exaggerated postoperative pain and reversing established LTP may help to treat patients who have an LTP component to their chronic pain. Spinal LTP is also induced by abrupt opioid withdrawal, making it a possible mechanism of some forms of opioid-induced hyperalgesia. Here, we give an overview of targets for preventing LTP induction and modifying established LTP as identified in animal studies. We discuss which of the various symptoms of human experimental and clinical pain may be manifestations of spinal LTP, review the pharmacology of these possible human LTP manifestations and compare it to the pharmacology of spinal LTP in rodents.

  3. Expression mechanisms underlying long-term potentiation: a postsynaptic view, 10 years on

    OpenAIRE

    2014-01-01

    This review focuses on the research that has occurred over the past decade which has solidified a postsynaptic expression mechanism for long-term potentiation (LTP). However, experiments that have suggested a presynaptic component are also summarized. It is argued that the pairing of glutamate uncaging onto single spines with postsynaptic depolarization provides the final and most elegant demonstration of a postsynaptic expression mechanism for NMDA receptor-dependent LTP. The fact that the m...

  4. Input-specific long-term potentiation in the rat lateral amygdala of horizontal slices.

    Science.gov (United States)

    Drephal, Christian; Schubert, Manja; Albrecht, Doris

    2006-05-01

    Long-term potentiation (LTP) at input synapses to the lateral nucleus of the amygdala (LA) is a candidate mechanism for memory storage during fear learning. Cellular mechanisms of LTP have been nearly exclusively investigated in coronal brain slices. In our experiments, we used a horizontal brain slice preparation of rats that preserved most of the connections to cortical areas and the hippocampus. The stimulation electrodes were located either within the external capsule (EC) or the LA. The aim of the present study was to investigate the mechanisms of LTP induced either by weak theta burst stimulation (TBS) or strong high frequency stimulation (HFS) using the two different stimulation sites. Whereas both TBS and HFS of afferences running through the LA induced stable LTP, TBS failed to induce LTP of EC-inputs to the LA. The present findings also show that LTP in the LA exhibits vulnerability at different time windows after induction. The time window was dependent on the kind of stimulated afferences. Later LTP becomes resistant to disruption by low frequency stimulation. We could show that both used inputs depended on NMDA receptors for LTP-induction. LTP induced by stimulation of fibers within the LA was not altered by nifedipine (10 microM). In contrast, EC-induced LTP was dependent on L-type voltage-gated calcium channels (VGCC). Finally, we found a higher magnitude of LTP in females using TBS, whereas HFS did not cause gender-specific differences. Our study supports the conclusion that the form of LA-LTP depend on which afferences are activated and what pattern of stimulation is used to induce LTP.

  5. Running enhances neurogenesis, learning, and long-term potentiation in mice

    Science.gov (United States)

    van Praag, Henriette; Christie, Brian R.; Sejnowski, Terrence J.; Gage, Fred H.

    1999-01-01

    Running increases neurogenesis in the dentate gyrus of the hippocampus, a brain structure that is important for memory function. Consequently, spatial learning and long-term potentiation (LTP) were tested in groups of mice housed either with a running wheel (runners) or under standard conditions (controls). Mice were injected with bromodeoxyuridine to label dividing cells and trained in the Morris water maze. LTP was studied in the dentate gyrus and area CA1 in hippocampal slices from these mice. Running improved water maze performance, increased bromodeoxyuridine-positive cell numbers, and selectively enhanced dentate gyrus LTP. Our results indicate that physical activity can regulate hippocampal neurogenesis, synaptic plasticity, and learning. PMID:10557337

  6. Postsynaptic protein synthesis is required for presynaptic enhancement in persistent forms of long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Victoria Philippa Anne Johnstone

    2013-02-01

    Full Text Available Long-term potentiation (LTP in the hippocampus is a fundamental process underlying learning and memory in the brain. At CA3-CA1 synapses, three discrete forms of LTP (LTP1, 2 and 3 have been differentiated on the basis of their persistence, maintenance mechanisms, Ca2+ signaling pathways, expression loci, and electrophysiological requirements. We previously showed that LTP2 and LTP3 involve a presynaptic expression component that is established in a translation-dependent manner. Here we investigate the locus of translation required for presynaptic expression. Neurotransmitter release rate was estimated via FM 1-43 destaining from CA3 terminals in hippocampal slices from male Wistar rats (6-8 weeks. Destaining was measured at sites making putative contact with CA1 dendritic processes in stratum radiatum that had been filled with a membrane impermeable translation inhibitor and a fluorescent indicator. Our results suggest that inhibition of postsynaptic translation eliminates the enhanced release ordinarily observed at 160 min post LTP induction, and that this effect is limited to sites closely apposed to the filled postsynaptic cell. We conclude that postsynaptic translation is required for the presynaptic component of LTP2 and LTP3 expression. These data considerably strengthen the mechanistic separation of LTP1, 2 and 3 and provide evidence for an expanded repertoire of communication between synaptic elements.

  7. Long-term potentiation in the neonatal rat barrel cortex in vivo.

    Science.gov (United States)

    An, Shuming; Yang, Jenq-Wei; Sun, Haiyan; Kilb, Werner; Luhmann, Heiko J

    2012-07-11

    Long-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex, LTP has been studied only in vitro. We combined voltage-sensitive dye imaging with extracellular multielectrode recordings to study whisker stimulation-induced LTP in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats, with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the activated barrel-related column, smaller in the surrounding septal region, and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV/lower layer II/III at P3-P5 and in the cortical plate/upper layer V at P0-P1. Our study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo.

  8. Corticosterone Time-Dependently Modulates [beta]-Adrenergic Effects on Long-Term Potentiation in the Hippocampal Dentate Gyrus

    Science.gov (United States)

    Pu, Zhenwei; Krugers, Harm J.; Joels, Marian

    2007-01-01

    Previous experiments in the hippocampal CA1 area have shown that corticosterone can facilitate long-term potentiation (LTP) in a rapid non-genomic fashion, while the same hormone suppresses LTP that is induced several hours after hormone application. Here, we elaborated on this finding by examining whether corticosterone exerts opposite effects on…

  9. Corticosterone time-dependently modulates {beta}-adrenergic effects on long-term potentiation in the hippocampal dentate gyrus.

    NARCIS (Netherlands)

    Pu, Z.; Krugers, H.; Joëls, M.

    2007-01-01

    Previous experiments in the hippocampal CA1 area have shown that corticosterone can facilitate long-term potentiation (LTP) in a rapid non-genomic fashion, while the same hormone suppresses LTP that is induced several hours after hormone application. Here, we elaborated on this finding by examining

  10. LTP promotes a selective long-term stabilization and clustering of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Mathias De Roo

    2008-09-01

    Full Text Available Dendritic spines are the main postsynaptic site of excitatory contacts between neurons in the central nervous system. On cortical neurons, spines undergo a continuous turnover regulated by development and sensory activity. However, the functional implications of this synaptic remodeling for network properties remain currently unknown. Using repetitive confocal imaging on hippocampal organotypic cultures, we find that learning-related patterns of activity that induce long-term potentiation act as a selection mechanism for the stabilization and localization of spines. Through a lasting N-methyl-D-aspartate receptor and protein synthesis-dependent increase in protrusion growth and turnover, induction of plasticity promotes a pruning and replacement of nonactivated spines by new ones together with a selective stabilization of activated synapses. Furthermore, most newly formed spines preferentially grow in close proximity to activated synapses and become functional within 24 h, leading to a clustering of functional synapses. Our results indicate that synaptic remodeling associated with induction of long-term potentiation favors the selection of inputs showing spatiotemporal interactions on a given neuron.

  11. Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.

    Directory of Open Access Journals (Sweden)

    Thomas Behnisch

    Full Text Available BACKGROUND: In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, there is a surprising paucity of data showing the nuclear import of such proteins in cellular models of learning and memory. Only recently it was found that the transcription factor cyclic AMP response element binding protein 2 (CREB2 transits to the nucleus during long-term depression (LTD, but not during long-term potentiation (LTP of synaptic transmission in hippocampal primary neurons. Jacob is another messenger that couples NMDA-receptor-activity to nuclear gene expression. We therefore aimed to study whether Jacob accumulates in the nucleus in physiological relevant models of activity-dependent synaptic plasticity. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed the dynamics of Jacob's nuclear import following induction of NMDA-receptor dependent LTP or LTD at Schaffer collateral-CA1 synapses in rat hippocampal slices. Using time-lapse imaging of neurons expressing a Jacob-Green-Fluorescent-Protein we found that Jacob rapidly translocates from dendrites to the nucleus already during the tetanization period of LTP, but not after induction of LTD. Immunocytochemical stainings confirmed the nuclear accumulation of endogenous Jacob in comparison to apical dendrites after induction of LTP but not LTD. Complementary findings were obtained after induction of NMDA-receptor dependent chemical LTP and LTD in hippocampal primary neurons. However, in accordance with previous studies, high concentrations of NMDA and glycine as well as specific activation of extrasynaptic NMDA-receptors resembling pathological conditions induce an even more profound increase of nuclear Jacob levels. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings suggest that the two major forms of NMDA

  12. Nuclear Translocation of Jacob in Hippocampal Neurons after Stimuli Inducing Long-Term Potentiation but Not Long-Term Depression

    Science.gov (United States)

    Behnisch, Thomas; YuanXiang, PingAn; Bethge, Philipp; Parvez, Suhel; Chen, Ying; Yu, Jin; Karpova, Anna; Frey, Julietta U.; Mikhaylova, Marina; Kreutz, Michael R.

    2011-01-01

    Background In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, there is a surprising paucity of data showing the nuclear import of such proteins in cellular models of learning and memory. Only recently it was found that the transcription factor cyclic AMP response element binding protein 2 (CREB2) transits to the nucleus during long-term depression (LTD), but not during long-term potentiation (LTP) of synaptic transmission in hippocampal primary neurons. Jacob is another messenger that couples NMDA-receptor-activity to nuclear gene expression. We therefore aimed to study whether Jacob accumulates in the nucleus in physiological relevant models of activity-dependent synaptic plasticity. Methodology/Principal Findings We have analyzed the dynamics of Jacob's nuclear import following induction of NMDA-receptor dependent LTP or LTD at Schaffer collateral-CA1 synapses in rat hippocampal slices. Using time-lapse imaging of neurons expressing a Jacob-Green-Fluorescent-Protein we found that Jacob rapidly translocates from dendrites to the nucleus already during the tetanization period of LTP, but not after induction of LTD. Immunocytochemical stainings confirmed the nuclear accumulation of endogenous Jacob in comparison to apical dendrites after induction of LTP but not LTD. Complementary findings were obtained after induction of NMDA-receptor dependent chemical LTP and LTD in hippocampal primary neurons. However, in accordance with previous studies, high concentrations of NMDA and glycine as well as specific activation of extrasynaptic NMDA-receptors resembling pathological conditions induce an even more profound increase of nuclear Jacob levels. Conclusions/Significance Taken together, these findings suggest that the two major forms of NMDA-receptor dependent

  13. Frequency-dependent associative long-term potentiation at the hippocampal mossy fiber-CA3 synapse.

    Science.gov (United States)

    Derrick, B E; Martinez, J L

    1994-10-25

    The mossy fiber-CA3 synapse displays an N-methyl-D-aspartate-receptor-independent mu-opioid-receptor-dependent form of long-term potentiation (LTP) that is thought not to display cooperativity or associativity with coactive afferents. However, because mossy fiber LTP requires repetitive synaptic activity for its induction, we reevaluated cooperativity and associativity at this synapse by using trains of mossy fiber stimulation. Moderate-, but not low-, intensity trains induced mossy fiber LTP, indicating cooperativity. Low-intensity mossy fiber trains that were normally ineffective in inducing LTP could induce mossy fiber LTP when delivered in conjunction with trains delivered to commissural-CA3 afferents. Associative mossy fiber LTP also could be induced with single mossy fiber pulses when delivered with commissural trains in the presence of a mu-opioid-receptor agonist. Our findings suggest a frequency-dependent variation of Hebbian associative LTP induction that is regulated by the release of endogenous opioid peptides.

  14. Synapse Specificity of Long-Term Potentiation Breaks Down with Aging

    Science.gov (United States)

    Ris, Laurence; Godaux, Emile

    2007-01-01

    Memory shows age-related decline. According to the current prevailing theoretical model, encoding of memories relies on modifications in the strength of the synapses connecting the different cells within a neuronal network. The selective increases in synaptic weight are thought to be biologically implemented by long-term potentiation (LTP). Here,…

  15. LONG-TERM POTENTIATION, PROTEIN-KINASE-C, AND GLUTAMATE RECEPTORS

    NARCIS (Netherlands)

    MULLER, D; BUCHS, PA; STOPPINI, L; BODDEKE, H

    1991-01-01

    Among the various molecular events that have been proposed to contribute to the mechanisms of long-term potentiation (LTP), one of the most cited possibilities has been the activation of protein kinase C (PKC). Here we review various aspects of the cellular actions of PKC activationa and inhibition,

  16. BDNF Regains Function in Hippocampal Long-Term Potentiation Deficits Caused by Diencephalic Damage

    Science.gov (United States)

    Vedder, Lindsey C.; Savage, Lisa M.

    2017-01-01

    Thiamine deficiency (TD), commonly associated with chronic alcoholism, leads to diencephalic damage, hippocampal dysfunction, and spatial learning and memory deficits. We show a decrease in the magnitude of long-term potentiation (LTP) and paired-pulse facilitation (PPF) at CA3-CA1 synapses, independent of sex, following diencephalic damage…

  17. Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage

    NARCIS (Netherlands)

    F. Prestori (Francesca); C. Bonardi (Claudia); L. Mapelli (Lisa); P. Lombardo (Paola); R. Goselink (Rianne); M.E. de Stefano (Maria Egle); D. Gandolfi (Daniela); J. Mapelli (Jonathan); D. Bertrand (Daniel); M. Schonewille (Martijn); C.I. de Zeeuw (Chris); E. D'Angelo (Egidio)

    2013-01-01

    textabstractThe brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic

  18. The age-related attenuation in long-term potentiation is associated with microglial activation.

    Science.gov (United States)

    Griffin, Rebecca; Nally, Rachel; Nolan, Yvonne; McCartney, Yvonne; Linden, James; Lynch, Marina A

    2006-11-01

    It is well established that inflammatory changes contribute to brain ageing, and an increased concentration of proinflammatory cytokine, interleukin-1beta (IL-1beta), has been reported in the aged brain associated with a deficit in long-term potentiation (LTP) in rat hippocampus. The precise age at which changes are initiated is unclear. In this study, we investigate parallel changes in markers of inflammation and LTP in 3-, 9- and 15-month-old rats. We report evidence of increased hippocampal concentrations of the proinflammatory cytokines IL-1alpha, IL-18 and interferon-gamma (IFNgamma), which are accompanied by deficits in LTP in the older rats. We also show an increase in expression of markers of microglial activation, CD86, CD40 and intercellular adhesion molecules (ICAM). Associated with these changes, we observed a significant impairment of hippocampal LTP in the same rats. The importance of microglial activation in the attenuation of long-term potentiation (LTP) was demonstrated using an inhibitor of microglial activation, minocycline; partial restoration of LTP in 15-month-old rats was observed following administration of minocycline. We propose that signs of neuroinflammation are observed in middle age and that these changes, which are characterized by microglial activation, may be triggered by IL-18.

  19. Learning, memory and long-term potentiation are altered in Nedd4 heterozygous mice.

    Science.gov (United States)

    Camera, Daria; Coleman, Harold A; Parkington, Helena C; Jenkins, Trisha A; Pow, David V; Boase, Natasha; Kumar, Sharad; Poronnik, Philip

    2016-04-15

    The consolidation of short-term memory into long-term memory involves changing protein level and activity for the synaptic plasticity required for long-term potentiation (LTP). AMPA receptor trafficking is a key determinant of LTP and recently ubiquitination by Nedd4 has been shown to play an important role via direct action on the GluA1 subunit, although the physiological relevance of these findings are yet to be determined. We therefore investigated learning and memory in Nedd4(+/-) mice that have a 50% reduction in levels of Nedd4. These mice showed decreased long-term spatial memory as evidenced by significant increases in the time taken to learn the location of and subsequently find a platform in the Morris water maze. In contrast, there were no significant differences between Nedd4(+/+) and Nedd4(+/-) mice in terms of short-term spatial memory in a Y-maze test. Nedd4(+/-) mice also displayed a significant reduction in post-synaptic LTP measured in hippocampal brain slices. Immunofluorescence of Nedd4 in the hippocampus confirmed its expression in hippocampal neurons of the CA1 region. These findings indicate that reducing Nedd4 protein by 50% significantly impairs LTP and long-term memory thereby demonstrating an important role for Nedd4 in these processes.

  20. Disinhibition mediates a form of hippocampal long-term potentiation in area CA1.

    Directory of Open Access Journals (Sweden)

    Jake Ormond

    Full Text Available The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs followed rapidly by feedforward (disynaptic inhibitory postsynaptic potentials (IPSPs. Long-term potentiation (LTP of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs, required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.

  1. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield.

    Directory of Open Access Journals (Sweden)

    Francisco J Rubio

    2013-05-01

    Full Text Available Antidepressant drugs are usually administered for long time for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor fluoxetine to naϊve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of treatment with 0.7 mg/kg of fluoxetine on long-term potentiation (LTP and long-term depression (LTD in the Schaffer collateral-CA1 synapses and the perforant path-CA1 synapses. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining experiments revealed decreased AMPA-R Ca2+ permeability in the stratum radiatum together with increased GluA2-containing, Ca2+-impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

  2. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield.

    Science.gov (United States)

    Rubio, Francisco J; Ampuero, Estíbaliz; Sandoval, Rodrigo; Toledo, Jorge; Pancetti, Floria; Wyneken, Ursula

    2013-01-01

    Antidepressant drugs are usually administered for several weeks for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long-term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine to naïve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs) in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of 0.7 mg/kg fluoxetine on long-term potentiation (LTP) and long-term depression (LTD) in the CA1 hippocampal subfield. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining and immunohistochemical experiments revealed decreased AMPA-R Ca(2+) permeability in the stratum radiatum (s.r.) together with increased GluA2-containing Ca(2+) impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

  3. The mechanisms underlying long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-Guo

    2008-01-01

    Long-term potentiation (LTP) of C-fiber evoked feld potentials in spinal dorsal horn is first reported in 1995. Since then, the mechanisms underlying the long-lasting enhancement in synaptic transmission between primary afferent C-fibers and neurons in spinal dorsal horn have been investigated by different laboratories. In this article, the related data were summarized and discussed.

  4. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability.

    Science.gov (United States)

    Calabresi, Paolo; Saulle, Emilia; Centonze, Diego; Pisani, Antonio; Marfia, Girolama A; Bernardi, Giorgio

    2002-04-01

    In the present in vitro study of rat brain, we report that transient oxygen and glucose deprivation (in vitro ischaemia) induced a post-ischaemic long-term synaptic potentiation (i-LTP) at corticostriatal synapses. We compared the physiological and pharmacological characteristics of this pathological form of synaptic plasticity with those of LTP induced by tetanic stimulation of corticostriatal fibres (t-LTP), which is thought to represent a cellular substrate of learning and memory. Activation of N-methyl-D-aspartate (NMDA) receptors was required for the induction of both forms of synaptic plasticity. The intraneuronal injection of the calcium chelator BAPTA [bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate] and inhibitors of the mitogen-activated protein kinase pathway blocked both forms of synaptic plasticity. However, while t-LTP showed input specificity, i-LTP occurred also at synaptic pathways inactive during the ischaemic period. In addition, scopolamine, a muscarinic receptor antagonist, prevented the induction of t-LTP but not of i-LTP, indicating that endogenous acetylcholine is required for physiological but not for pathological synaptic potentiation. Finally, we found that striatal cholinergic interneurones, which are resistant to in vivo ischaemia, do not express i-LTP while they express t-LTP. We suggest that i-LTP represents a pathological form of synaptic plasticity that may account for the cell type-specific vulnerability observed in striatal spiny neurones following ischaemia and energy deprivation.

  5. Endocannabinoids Induce Lateral Long-Term Potentiation of Transmitter Release by Stimulation of Gliotransmission.

    Science.gov (United States)

    Gómez-Gonzalo, Marta; Navarrete, Marta; Perea, Gertrudis; Covelo, Ana; Martín-Fernández, Mario; Shigemoto, Ryuichi; Luján, Rafael; Araque, Alfonso

    2015-10-01

    Endocannabinoids (eCBs) play key roles in brain function, acting as modulatory signals in synaptic transmission and plasticity. They are recognized as retrograde messengers that mediate long-term synaptic depression (LTD), but their ability to induce long-term potentiation (LTP) is poorly known. We show that eCBs induce the long-term enhancement of transmitter release at single hippocampal synapses through stimulation of astrocytes when coincident with postsynaptic activity. This LTP requires the coordinated activity of the 3 elements of the tripartite synapse: 1) eCB-evoked astrocyte calcium signal that stimulates glutamate release; 2) postsynaptic nitric oxide production; and 3) activation of protein kinase C and presynaptic group I metabotropic glutamate receptors, whose location at presynaptic sites was confirmed by immunoelectron microscopy. Hence, while eCBs act as retrograde signals to depress homoneuronal synapses, they serve as lateral messengers to induce LTP in distant heteroneuronal synapses through stimulation of astrocytes. Therefore, eCBs can trigger LTP through stimulation of astrocyte-neuron signaling, revealing novel cellular mechanisms of eCB effects on synaptic plasticity.

  6. Neonatal exposure to novelty enhances long-term potentiation in CA1 of the rat hippocampus.

    Science.gov (United States)

    Tang, Akaysha C; Zou, Bende

    2002-01-01

    Exposing rats to an enriched environment over an extended period of time has been shown to enhance hippocampal long-term potentiation (LTP). Whether such prolonged exposure to environmental manipulation is necessary for LTP enhancement and whether the environmentally induced enhancement can persist long after the cessation of the environmental manipulation remain unknown. Using a novelty exposure procedure modified from the method of neonatal handling, we exposed neonatal rats to a non-home environment for 3 min/day during the first 3 weeks of life. We examined the LTP of both population spikes and excitatory postsynaptic potentials (EPSPs), in vitro, in the CA1 of the hippocampus during adulthood (7-8 and 13-14 months of age). We found that both the LTP of population spikes and the LTP of EPSPs were enhanced among animals who experienced neonatal novelty exposure. These results demonstrate that effective environmental enhancement of LTP can be achieved by as brief and as transient a manipulation as a 3-min/day exposure over the first 3 weeks of life. The resulting enhancement can outlast the environmental manipulation by at least 1 year.

  7. Hippocampal long-term potentiation is not accompanied by presynaptic spike broadening, unlike synaptic potentiation by K+ channel blockers.

    Science.gov (United States)

    Laerum, H; Storm, J F

    1994-02-21

    The expression of hippocampal long-term potentiation (LTP) is thought to be at least partly due to increased transmitter release. To test whether this increase is due to a broadening of the presynaptic action potential, we have compared the presynaptic fibre volley before and after LTP induction, or application of K+ channel blockers, in CA1 of rat hippocampal slices. Tetraethylammonium (TEA; 1 mM) induced a parallel increase in the fibre volley duration of the slope of the field EPSP, indicating that a presynaptic spike broadening underlying synaptic potentiation can be detected. In contrast, induction of LTP did not produce any measurable change in the fibre volley, although the average increase in the EPSP slope was larger than with TEA. These results indicate that LTP expression is not primarily due to a presynaptic spike broadening.

  8. Stimulus Intensity-dependent Modulations of Hippocampal Long-term Potentiation by Basolateral Amygdala Priming

    Directory of Open Access Journals (Sweden)

    Zexuan eLi

    2012-05-01

    Full Text Available There is growing realization that the relationship between memory and stress/emotionality is complicated, and may include both memory enhancing and memory impairing aspects. It has been suggested that the underlying mechanisms involve amygdalar modulation of hippocampal synaptic plasticity, such as long-term potentiation (LTP. We recently reported that while in CA1 basolateral amygdala (BLA priming impaired theta stimulation induced LTP, it enhanced LTP in the dentate gyrus (DG. However, emotional and stressfull experiences were found to activate synaptic plasticity within the BLA, rasing the possibility that BLA modulation of other brain regions may be altered as well, as it may depend on the way the BLA is activated or is responding. In previous studies BLA priming stimulation was relatively weak (1V, 50 µs pulse duration. In the present study we assessed the effects of two stronger levels of BLA priming stimulation (1V or 2V, 100 µs pulse duration on LTP induction in hippocampal DG and CA1, in anesthetized rats. Results show that 1V-BLA priming stimulation enhanced but 2V-BLA priming stimulation impaired DG LTP; however, both levels of BLA priming stimulation impaired CA1 LTP, suggesting that modulation of hippocampal synaptic plasticity by amygdala is dependent on the degree of amygdala activation. These findings suggest that plasticity induced within the amygdala, by stressful experiences induces a form of metaplasticity that would alter the way the amygdala may modulate memory-related processes in other brain areas, such as the hippocampus.

  9. Treadmill exercise alters ecstasy- induced long- term potentiation disruption in the hippocampus of male rats.

    Science.gov (United States)

    Sajadi, Azam; Amiri, Iraj; Gharebaghi, Alireza; Komaki, Alireza; Asadbeigi, Masoumeh; Shahidi, Siamak; Mehdizadeh, Mehdi; Soleimani Asl, Sara

    2017-06-13

    3, 4-methylenedioxymethamphetamine (MDMA) or ecstasy is a derivative of amphetamine that leads to long term potentiation (LTP) disruption in the hippocampal dentate gyrus (DG). Exercise has been accepted as a treatment for the improvement of neurodegenerative disease. Herein, the effects of exercise on the MDMA- induced neurotoxicity were assessed. Male Wistar rats received intraperitoneal injection of MDMA (10 mg/kg) and exercised for one month on a treadmill (Simultaneously or asynchronously with MDMA). LTP and expression of BDNF were assessed using electrophysiology and western blotting methods, respectively. MDMA attenuated the field excitatory post-synaptic potential (fEPSP) slope in comparison with the control group, whereas treadmill exercise increased this parameter when compared to MDMA group. Furthermore, BDNF expression significantly decreased in MDMA group and treadmill exercise could increase that. In conclusion, results of this study suggest that synchronous exercise is able to improve MDMA-induced LTP changes through increase of BDNF expression in the hippocampus of rats.

  10. Long-term inhibition of Rho-kinase restores the LTP impaired in chronic forebrain ischemia rats by regulating GABAA and GABAB receptors.

    Science.gov (United States)

    Huang, L; Zhao, L B; Yu, Z Y; He, X J; Ma, L P; Li, N; Guo, L J; Feng, W Y

    2014-09-26

    We previously demonstrated that inactivation of Rho-kinase by hydroxyfasudil could impact N-methyl-d-aspartate (NMDA) excitatory interneurons in the hippocampus and attenuate the spatial learning and memory dysfunction of rats caused by chronic forebrain hypoperfusion ischemia. Complementary interactions between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter GABA form the molecular basis of synaptic plasticity and cognitive performance. However, whether the GABAergic inhibitory interneurons are involved in the mechanisms underlying these processes remains unclear. Here, we further examined the role of GABAergic interneurons in the neuroprotective effect of the Rho-kinase inhibitor. Chronic forebrain ischemia was induced in Wistar rats by bilateral common carotid artery occlusion (BCAO). The general synaptic transmission and long-term potentiation (LTP) of hippocampal CA3 neurons were evaluated at 30 days after sham surgery or BCAO. Real-time PCR and Western blot analyses were conducted to determine the effect of the Rho-kinase inhibitor hydroxyfasudil on GABAergic inhibitory interneuron expression and function after ischemia. Hydroxyfasudil showed no significant effect on general synaptic transmission, but it could abolish the inhibition of LTP induced by chronic forebrain ischemia. Moreover, the mRNA and protein levels of GABAA and GABAB in three brain regions after ischemia were markedly decreased, and hydroxyfasudil could up-regulate all mRNA and protein expression levels in these areas except for GABAA mRNA in the cerebral cortex and striatum. Using phosphorylation antibodies against specific sites on the GABAA and GABAB receptors, we further demonstrated that hydroxyfasudil could inhibit GABAergic interneuron phosphorylation triggered by the theta burst stimulation. In summary, our results indicated that the inactivation of Rho-kinase could enhance GABAA and GABAB expressions by different mechanisms to guarantee the induction of

  11. Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction.

    Science.gov (United States)

    Köhr, Georg; Jensen, Vidar; Koester, Helmut J; Mihaljevic, Andre L A; Utvik, Jo K; Kvello, Ane; Ottersen, Ole P; Seeburg, Peter H; Sprengel, Rolf; Hvalby, Øivind

    2003-11-26

    NMDA receptors (NMDARs) are essential for modulating synaptic strength at central synapses. At hippocampal CA3-to-CA1 synapses of adult mice, different NMDAR subtypes with distinct functionality assemble from NR1 with NR2A and/or NR2B subunits. Here we investigated the role of these NMDA receptor subtypes in long-term potentiation (LTP) induction. Because of the higher NR2B contribution in the young hippocampus, LTP of extracellular field potentials could be enhanced by repeated tetanic stimulation in young but not in adult mice. Similarly, NR2B-specific antagonists reduced LTP in young but only marginally in adult wild-type mice, further demonstrating that in mature CA3-to-CA1 connections LTP induction results primarily from NR2A-type signaling. This finding is also supported by gene-targeted mutant mice expressing C-terminally truncated NR2A subunits, which participate in synaptic NMDAR channel formation and Ca2+ signaling, as indicated by immunopurified synaptic receptors, postembedding immunogold labeling, and spinous Ca2+ transients in the presence of NR2B blockers. These blockers abolished LTP in the mutant at all ages, revealing that, without the intracellular C-terminal domain, NR2A-type receptors are deficient in LTP signaling. Without NR2B blockade, CA3-to-CA1 LTP was more strongly reduced in adult than young mutant mice but could be restored to wild-type levels by repeated tetanic stimulation. Thus, besides NMDA receptor-mediated Ca2+ influx, subtype-specific signaling is critical for LTP induction, with the intracellular C-terminal domain of the NR2 subunits directing signaling pathways with an age-dependent preference.

  12. Hormonal and Monoamine Signaling during Reinforcement of Hippocampal Long-Term Potentiation and Memory Retrieval

    Science.gov (United States)

    Korz, Volker; Frey, Julietta U.

    2007-01-01

    Recently it was shown that holeboard training can reinforce, i.e., transform early-LTP into late-LTP in the dentate gyrus during the initial formation of a long-term spatial reference memory in rats. The consolidation of LTP as well as of the reference memory was dependent on protein synthesis. We have now investigated the transmitter systems…

  13. Failed stabilization for long-term potentiation in the auditory cortex of FMR1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Sungchil Yang

    Full Text Available Fragile X syndrome is a developmental disorder that affects sensory systems. A null mutation of the Fragile X Mental Retardation protein 1 (Fmr1 gene in mice has varied effects on developmental plasticity in different sensory systems, including normal barrel cortical plasticity, altered ocular dominance plasticity and grossly impaired auditory frequency map plasticity. The mutation also has different effects on long-term synaptic plasticity in somatosensory and visual cortical neurons, providing insights on how it may differentially affect the sensory systems. Here we present evidence that long-term potentiation (LTP is impaired in the developing auditory cortex of the Fmr1 knockout (KO mice. This impairment of synaptic plasticity is consistent with impaired frequency map plasticity in the Fmr1 KO mouse. Together, these results suggest a potential role of LTP in sensory map plasticity during early sensory development.

  14. Influence of Physical Activity on Human Sensory Long-Term Potentiation.

    Science.gov (United States)

    Smallwood, Nicola; Spriggs, Meg J; Thompson, Christopher S; Wu, Carolyn C; Hamm, Jeff P; Moreau, David; Kirk, Ian J

    2015-11-01

    A growing body of literature has explored the influence of physical activity on brain structure and function. While the mechanisms of this relationship remain largely speculative, recent research suggests that one of the effects of physical exercise is an increase in synaptic long-term potentiation (LTP). This has not yet been explored directly in humans due to the difficulty of measuring LTP non-invasively. However, we have previously established that LTP-like changes in visual-evoked potentials (VEPs) can be measured in humans. Here, we investigated whether physical fitness status affects the degree of visual sensory LTP. Using a self-report measure of physical activity, participants were split into two groups: a high-activity group, and a low-activity group. LTP was measured and compared between the two groups using the previously established electroencephalography-LTP paradigm, which assesses the degree to which the N1b component of the VEP elicited by a sine grating is potentiated (enhanced) following a rapid "tetanic" presentation of that grating. Both groups demonstrated increased negativity in the amplitude of the N1b component of the VEP immediately after presentation of the visual "tetanus," indicating potentiation. However, after a 30-min rest period, the N1b for the high-activity group remained potentiated while the N1b for the low-activity group returned to baseline. This study presents the first evidence for the impact of self-reported levels of physical activity on LTP in humans, and sheds light on potential neurological mechanisms underlying the relationship between physical fitness and cognition.

  15. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    Science.gov (United States)

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  16. A model of the mechanism of cooperativity and associativity of long-term potentiation in the hippocampus: a fundamental mechanism of associative memory and learning.

    Science.gov (United States)

    Kitajima, T; Hara, K

    1991-01-01

    Long-Term Potentiation (LTP) has three properties: (1) input specificity, (2) cooperativity and (3) associativity. In a previous paper, we proposed an integrated model of the mechanisms of the induction and maintenance of LTP with input specificity. In this paper, a model of the mechanism of cooperative and associative LTP is described. According to computer simulations of the model, its mechanism is based on the spread of synaptic potentials.

  17. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    Science.gov (United States)

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Neurabin contributes to hippocampal long-term potentiation and contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Long-Jun Wu

    Full Text Available Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP was significantly reduced, whereas long-term depression (LTD was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845 but no change at the CaMKII/PKC site (Ser831. Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.

  19. Neurabin contributes to hippocampal long-term potentiation and contextual fear memory.

    Science.gov (United States)

    Wu, Long-Jun; Ren, Ming; Wang, Hansen; Kim, Susan S; Cao, Xiaoyan; Zhuo, Min

    2008-01-09

    Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO) mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP) was significantly reduced, whereas long-term depression (LTD) was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845) but no change at the CaMKII/PKC site (Ser831). Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.

  20. Protein Kinase M[Zeta] Is Essential for the Induction and Maintenance of Dopamine-Induced Long-Term Potentiation in Apical CA1 Dendrites

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Sacktor, Todd Charlton; Frey, Julietta U.

    2010-01-01

    Dopaminergic D1/D5-receptor-mediated processes are important for certain forms of memory as well as for a cellular model of memory, hippocampal long-term potentiation (LTP) in the CA1 region of the hippocampus. D1/D5-receptor function is required for the induction of the protein synthesis-dependent maintenance of CA1-LTP (L-LTP) through activation…

  1. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage.

    Directory of Open Access Journals (Sweden)

    Francesca Prestori

    Full Text Available The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.

  2. Opposing Actions of Chronic[Deta][superscript 9] Tetrahydrocannabinol and Cannabinoid Antagonists on Hippocampal Long-Term Potentiation

    Science.gov (United States)

    Hoffman, Alexander F.; Oz, Murat; Yang, Ruiqin; Lichtman, Aron H.; Lupica, Carl R.

    2007-01-01

    Memory deficits produced by marijuana arise partly via interaction of the psychoactive component, [Deta][superscript 9]-tetrahydrocannabinol ([Deta][superscript 9]-THC), with cannabinoid receptors in the hippocampus. Although cannabinoids acutely reduce glutamate release and block hippocampal long-term potentiation (LTP), a potential substrate for…

  3. Quantification of long term emission potential from landfills

    OpenAIRE

    Heimovaara, T.J.

    2011-01-01

    Novel approaches for the after-care of Municipal Solid Waste (MSW) landfills are based on technological measures to reduce the long term emission potential in a short time period. Biological degradation in landfills is a means to significantly reduce the long term emission potential. Leachate emission to the groundwater is considered to be one of the largest long-term impacts related to landfilling. Currently we are starting up a research program, partly subsidized by the Dutch Technology fou...

  4. Correlating learning and memory improvements to long-term potentiation in patients with brain injury

    Institute of Scientific and Technical Information of China (English)

    Xingfu Peng; Qian Yu

    2008-01-01

    BACKGROUND:Brain injury patients often exhibit learning and memory functional deficits.Long-term potentiation(LTP)is a representative index for studying learning and memory cellular models; the LTP index correlates to neural plasticity. OBJECTIVE:This study was designed to investigate correlations of learning and memory functions to LTP in brain injury patients,and to summarize the research advancements in mechanisms underlying brain functional improvements after rehabilitation intervention. RETRIEVAL STRATEGY:Using the terms "brain injuries,rehabilitation,learning and memory,long-term potentiation",manuscripts that were published from 2000-2007 were retrieved from the PubMed database.At the same time,manuscripts published from 2000-2007 were also retrieved from the Database of Chinese Scientific and Technical Periodicals with the same terms in the Chinese language.A total of 64 manuscripts were obtained and primarily screened.Inclusion criteria:studies on learning and memory,as well as LTP in brain injury patients,and studies focused on the effects of rehabilitation intervention on the two indices; studies that were recently published or in high-impact journals.Exclusion criteria:repetitive studies.LITERATURE EVALUATION:The included manuscripts primarily focused on correlations between learning and memory and LTP,the effects of brain injury on learning and memory,as well as LTP,and the effects of rehabilitation intervention on learning and memory after brain injury.The included 39 manuscripts were clinical,basic experimental,or review studies. DATA SYNTHESIS:Learning and memory closely correlates to LTP.The neurobiological basis of learning and memory is central nervous system plasticity,which involves neural networks,neural circuits,and synaptic connections,in particular,synaptic plasticity.LTP is considered to be an ideal model for studying synaptic plasticity,and it is also a classic model for studying neural plasticity of learning and memory.Brain injury

  5. Long-term potentiation and long-term depression: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Timothy V.P. Bliss

    2011-01-01

    Full Text Available Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke.

  6. The APP-Interacting Protein FE65 is Required for Hippocampus-Dependent Learning and Long-Term Potentiation

    Science.gov (United States)

    Wang, Yan; Zhang, Ming; Moon, Changjong; Hu, Qubai; Wang, Baiping; Martin, George; Sun, Zhongsheng; Wang, Hongbing

    2009-01-01

    FE65 is expressed predominantly in the brain and interacts with the C-terminal domain of [beta]-amyloid precursor protein (APP). We examined hippocampus-dependent memory and in vivo long-term potentiation (LTP) at the CA1 synapses with isoform-specific FE65 knockout (p97FE65[superscript -/-]) mice. When examined using the Morris water maze,…

  7. Rapamycin restores BDNF-LTP and the persistence of long-term memory in a model of Down's syndrome.

    Science.gov (United States)

    Andrade-Talavera, Yuniesky; Benito, Itziar; Casañas, Juan José; Rodríguez-Moreno, Antonio; Montesinos, María Luz

    2015-10-01

    Down's syndrome (DS) is the most prevalent genetic intellectual disability. Memory deficits significantly contribute to the cognitive dysfunction in DS. Previously, we discovered that mTOR-dependent local translation, a pivotal process for some forms of synaptic plasticity, is deregulated in a DS mouse model. Here, we report that these mice exhibit deficits in both synaptic plasticity (i.e., BDNF-long term potentiation) and the persistence of spatial long-term memory. Interestingly, these deficits were fully reversible using rapamycin, a Food and Drug Administration-approved specific mTOR inhibitor; therefore, rapamycin may be a novel pharmacotherapy to improve cognition in DS.

  8. Quantification of long term emission potential from landfills

    NARCIS (Netherlands)

    Heimovaara, T.J.

    2011-01-01

    Novel approaches for the after-care of Municipal Solid Waste (MSW) landfills are based on technological measures to reduce the long term emission potential in a short time period. Biological degradation in landfills is a means to significantly reduce the long term emission potential. Leachate emissi

  9. Long-term potentiation at temporoammonic path-CA1 synapses in freely moving rats

    Directory of Open Access Journals (Sweden)

    Jossina eGonzalez

    2016-02-01

    Full Text Available Hippocampal area CA1 receives direct entorhinal layer III input via the temporoammonic path (TAP and recent studies implicate TAP-CA1 synapses are important for some aspects of hippocampal memory function. Nonetheless, as few studies have examined TAP-CA1 synaptic plasticity in vivo, the induction and longevity of TAP-CA1 long-term potentiation (LTP has not been fully characterized. We analyzed CA1 responses following stimulation of the medial aspect of the angular bundle and investigated LTP at medial temporoammonic path (mTAP-CA1 synapses in freely moving rats. We demonstrate monosynaptic mTAP-CA1 responses can be isolated in vivo as evidenced by observations of independent current sinks in the stratum lacunosum moleculare of both areas CA1 and CA3 following angular bundle stimulation. Contrasting prior indications that TAP input rarely elicits CA1 discharge, we observed mTAP-CA1 responses that appeared to contain putative population spikes in 40% of our behaving animals. Theta burst high frequency stimulation of mTAP afferents resulted in an input specific and NMDA receptor-dependent LTP of mTAP-CA1 responses in behaving animals. LTP of mTAP-CA1 responses decayed as a function of two exponential decay curves with time constants (τ of 2.7 and 148 days to decay 63.2% of maximal LTP. In contrast, mTAP-CA1 population spike potentiation longevity demonstrated a τ of 9.6 days. To our knowledge, these studies provide the first description of mTAP-CA1 LTP longevity in vivo. These data indicate TAP input to area CA1 is a physiologically relevant afferent system that displays robust synaptic plasticity.

  10. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus.

    Science.gov (United States)

    O'Dell, Thomas J; Connor, Steven A; Guglietta, Ryan; Nguyen, Peter V

    2015-09-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express β-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and β-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and β-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of β-adrenergic receptors in regulating synaptic "tagging" and "capture" of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission.

  11. Possible involvement of plasmin in long-term potentiation of rat hippocampal slices.

    Science.gov (United States)

    Mizutani, A; Saito, H; Matsuki, N

    1996-11-11

    Effects of proteases and protease inhibitors on generation of long-term potentiation (LTP) were investigated in the CA1 and dentate regions of rat hippocampus. Plasmin, a serine protease, and its precursor plasminogen significantly enhanced short-term potentiation (STP) induced by a weak tetanic stimulation, without affecting basal responses. The STP-enhancing effect of plasmin disappeared by concomitant perfusion of alpha 2-antiplasmin, an endogenous plasmin inhibitor. Other proteases, such as thrombin, trypsin and cathepsin B, did not affect STP. On the other hand, alpha 2-antiplasmin and leupeptin significantly attenuated LTP induced by a strong tetanus though plasminogen or plasmin itself did not influence LTP. Furthermore, plasminogen and plasmin did not affect NMDA receptor-mediated synaptic responses in the absence of extracellular Mg2+. These results suggest that endogenous plasmin is involved in the mechanism of LTP in CA1 and dentate regions of rat hippocampus and that the STP-enhancing effect of plasmin is independent of NMDA receptors.

  12. Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons.

    Science.gov (United States)

    Izumi, Y; Svrakic, N; O'Dell, K; Zorumski, C F

    2013-03-13

    Neurosteroids are a class of endogenous steroids synthesized in the brain that are believed to be involved in the pathogenesis of neuropsychiatric disorders and memory impairment. Ammonia impairs long-term potentiation (LTP), a synaptic model of learning, in the hippocampus, a brain region involved in memory acquisition. Although mechanisms underlying ammonia-mediated LTP inhibition are not fully understood, we previously found that the activation of N-methyl-d-aspartate receptors (NMDARs) is important. Based on this, we hypothesize that metabolic stressors, including hyperammonemia, promote untimely NMDAR activation and result in neural adaptations that include the synthesis of allopregnanolone (alloP) and other GABA-potentiating neurosteroids that dampen neuronal activity and impair LTP and memory formation. Using an antibody against 5α-reduced neurosteroids, we found that 100 μM ammonia acutely enhanced neurosteroid immunostaining in pyramidal neurons in the CA1 region of rat hippocampal slices. The enhanced staining was blocked by finasteride, a selective inhibitor of 5α-reductase, a key enzyme required for alloP synthesis. Finasteride also overcame LTP inhibition by 100 μM ammonia, as did picrotoxin, an inhibitor of GABA-A receptors. These results indicate that GABA-enhancing neurosteroids, synthesized locally within pyramidal neurons, contribute significantly to ammonia-mediated synaptic dysfunction. These results suggest that the manipulation of neurosteroid synthesis could provide a strategy to improve cognitive function in individuals with hyperammonemia.

  13. Metabotropic glutamate receptors are required for the induction of long-term potentiation

    Science.gov (United States)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.

  14. Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus.

    Science.gov (United States)

    Alhaider, Ibrahim A; Aleisa, Abdulaziz M; Tran, Trinh T; Alkadhi, Karim A

    2010-04-01

    We have previously reported that caffeine prevented sleep deprivation-induced impairment of long-term potentiation (LTP) of area CA1 as well as hippocampus-dependent learning and memory performance in the radial arm water maze. In this report we examined the impact of long-term (4-week) caffeine consumption (0.3 g/L in drinking water) on synaptic plasticity (Alhaider et al., 2010) deficit in the dentate gyrus (DG) area of acutely sleep-deprived rats. The sleep deprivation and caffeine/sleep deprivation groups were sleep-deprived for 24 h by using the columns-in-water technique. We tested the effect of caffeine and/or sleep deprivation on LTP and measured the basal levels as well as stimulated levels of LTP-related molecules in the DG. The results showed that chronic caffeine administration prevented the impairment of early-phase LTP (E-LTP) in the DG of sleep-deprived rats. Additionally, chronic caffeine treatment prevented the sleep deprivation-associated decreases in the basal levels of the phosphorylated calcium/calmodulin-dependent protein kinase II (P-CaMKII) and brain derived neurotrophic factor (BDNF) as well as in the stimulated levels of P-CaMKII in the DG area. The results suggest that chronic use of caffeine prevented anomalous changes in the basal levels of P-CaMKII and BDNF associated with sleep deprivation and as a result contributes to the revival of LTP in the DG region.

  15. Bryostatin-1 promotes long-term potentiation via activation of PKCα and PKCε in the hippocampus.

    Science.gov (United States)

    Kim, H; Han, S H; Quan, H Y; Jung, Y-J; An, J; Kang, P; Park, J-B; Yoon, B-J; Seol, G H; Min, S S

    2012-12-13

    Activation of protein kinase C (PKC) by bryostatin-1 affects various functions of the central nervous system. We explored whether bryostatin-1 influenced synaptic plasticity via a process involving PKC. Our purpose was to examine whether bryostatin-1 affected the induction of hippocampal long-term potentiation (LTP) in Schaffer-collateral fibers (CA1 fibers) of the hippocampus, and/or influenced the intracellular Ca(2+) level of hippocampal neurons. We also determined the PKC isoforms involved in these processes. We found that bryostatin-1 strongly facilitated LTP induction, in a dose-dependent manner, upon single-theta burst stimulation (TBS). Further, intracellular Ca(2+) levels also increased with increasing concentration of bryostatin-1. The facilitative effects of bryostatin-1 in terms of LTP induction and enhancement of intracellular Ca(2+) levels were blocked by specific inhibitors of PKCα and PKCε, but not of PKCδ. Our results suggest that bryostatin-1 is involved in neuronal functioning and facilitates induction of LTP via activation of PKCα and/or PKCε. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Exposure of mouse to high gravitation forces induces long-term potentiation in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Ishii M

    2004-06-01

    Full Text Available The central nervous system is highly plastic and has been shown to undergo both transient and chronic adaptive changes in response to environmental influences. The purpose of this study was to investigate the effect of hypergravic field on long-term potentiation (LTP in the mouse hippocampus. Exposure of mice to 4G fields for 48 h had no effect on input-output coupling during extracellular stimulation of Schaffer collaterals and paired pulse facilitation, suggesting that the hypergravic exposure had no detrimental effect on basal neurotransmission in the hippocampus. However, the exposure to 4G fields for 48 h significantly induced LTP compared with the control mouse hippocampus. In contrast, no significant changes of late-phase LTP (L-LTP were found in the hippocampi of mice exposed to the hypergravic field. Exposure of mice to 4G fields for 48 h enhanced AMPA receptor phosphorylation but not cyclic AMP-responsive element binding protein (CREB phosphorylation. These results suggest that exposure to hyperdynamic fields influences the synaptic plasticity in the hippocampus.

  17. Amyloid-β Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory.

    Science.gov (United States)

    Palmeri, Agostino; Ricciarelli, Roberta; Gulisano, Walter; Rivera, Daniela; Rebosio, Claudia; Calcagno, Elisa; Tropea, Maria Rosaria; Conti, Silvia; Das, Utpal; Roy, Subhojit; Pronzato, Maria Adelaide; Arancio, Ottavio; Fedele, Ernesto; Puzzo, Daniela

    2017-07-19

    High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory. We demonstrate that the increase of cGMP levels by the phosphodiesterase-5 inhibitors sildenafil and vardenafil induces a parallel release of Aβ due to a change in the approximation of amyloid precursor protein (APP) and the β-site APP cleaving enzyme 1. Moreover, electrophysiological and behavioral studies performed on animals of both sexes showed that blocking Aβ function, by using anti-murine Aβ antibodies or APP knock-out mice, prevents the cGMP-dependent enhancement of LTP and memory. Our data suggest that cGMP positively regulates Aβ levels in the healthy brain which, in turn, boosts synaptic plasticity and memory.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) is a key pathogenetic factor in Alzheimer's disease. However, low concentrations of endogenous Aβ, mimicking levels of the peptide in the healthy brain, enhance hippocampal long-term potentiation (LTP) and memory. Because the second messenger cGMP exerts a central role in LTP mechanisms, here we studied whether cGMP affects Aβ levels and function during LTP. We show that cGMP enhances Aβ production by increasing the APP/BACE-1 convergence in endolysosomal compartments. Moreover, the cGMP-induced enhancement of LTP and memory was disrupted by blockade of Aβ, suggesting that the physiological effect of the cyclic nucleotide on LTP and memory is dependent upon Aβ. Copyright © 2017 the authors 0270-6474/17/376926-12$15.00/0.

  18. Impairment of long-term potentiation in the hippocampus of alcohol-treated OLETF rats.

    Science.gov (United States)

    Min, Jung-Ah; Lee, Hye-Ryeon; Kim, Jae-Ick; Ju, Anes; Kim, Dai-Jin; Kaang, Bong-Kiun

    2011-08-01

    Type 2 diabetes and chronic heavy alcohol consumption each have been known to be associated with the impairment of hippocampus-dependent cognitive functions. Although both conditions often coexist clinically and there is accumulated evidence of a relationship between the two, the combined effect on hippocampal long-term potentiation (LTP) has not yet been investigated. We compared the effect of type 2 diabetes itself with that of type 2 diabetes with chronic heavy alcohol consumption on the hippocampal LTP using Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, which resembles the characteristics of human type 2 diabetes. Ten of 16-week-old male OLETF rats were randomized into two treatment groups according to weight: the OLETF-Alcohol (O-A, n=5) and the OLETF-Control (O-C, n=5). The rats in the O-A group were fed Lieber-DeCarli Regular EtOH over a 10-week period and the amount of alcohol consumption was 8.42±2.52g/kg/day. To ensure the effect of poor glycemic control on LTP, intraperitoneal glucose tolerance test was performed after a 10-week treatment. The hippocampal LTP was measured by extracellular field excitatory post-synaptic potentials at Shaffer collateral (SC) synapses in the CA1 region. Although the O-A group showed significantly lower fasting and postprandial glucose (Palcohol consumption could potentiate the impairment of hippocampal LTP in individuals with impaired glucose tolerance or early type 2 diabetes, even though it did not aggravate, but did improve glycemic control. Clinical attention to chronic heavy drinking will be required in preventing cognitive impairment in individuals with type 2 diabetes.

  19. Theta pulse stimulation: a natural stimulus pattern can trigger long-term depression but fails to reverse long-term potentiation in morphine withdrawn hippocampus area CA1.

    Science.gov (United States)

    Hosseinmardi, Narges; Fathollahi, Yaghoub; Naghdi, Nasser; Javan, Mohammad

    2009-11-03

    The effects of chronic morphine exposure on synaptic plasticity in the CA1 region of the hippocampal slice preparation using extracellular recordings of the population spike (PS) evoked in response to Schaffer collateral stimulation were studied. High frequency stimulation (HFS; 1X100 Hz) and theta pulse stimulation (TPS; 5 Hz trains for 3 min) were used as patterned activities. The results showed that in rats chronically treated with morphine (dependent group), TPS induced long-term depression (LTD) of PS in CA1 in the absence of in vitro morphine. This TPS-induced PS LTD was blocked in the presence of either AP5 (NMDAR antagonist) or CPX (A1 adenosine receptor antagonist) alone, but was not blocked when AP5 and CPX were co-applied. This TPS-induced PS LTD was also blocked in the presence of either 8-PT (a selective A1 adenosine receptor antagonist) or MRS1220 (a specific A3 receptor antagonist). Additionally, when TPS was applied prior to HFS, PS long-term potentiation (LTP) was blocked. However, when TPS was applied after HFS, there was no reversal of PS LTP in slices from dependent rats in contrast to controls which displayed reversal of LTP. Both the PS LTD and the absence of PS LTP reversal were blocked by in vitro application of morphine. It is concluded that morphine withdrawal was associated with greater depression of CA1 PS elicited by natural stimulus induced activity pattern. This effect was associated with changes in NMDA and adenosine receptors due to chronic morphine administration. Such an in vitro preparation could provide a novel paradigm to investigate withdrawal effects on synaptic plasticity.

  20. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene

    OpenAIRE

    1997-01-01

    To examine the physiological role of the Fyn tyrosine kinase in neurons, we generated transgenic mice that expressed a fyn cDNA under the control of the calcium/calmodulin-dependent protein kinase IIα promoter. With this promoter, we detected only low expression of Fyn in the neonatal brain. In contrast, there was strong expression of the fyn-transgene in neurons of the adult forebrain. To determine whether the impairment of long-term potentiation (LTP) observed in adult fyn-deficient mice wa...

  1. Effect of modafinil on learning performance and neocortical long-term potentiation in rats.

    Science.gov (United States)

    Burgos, Héctor; Castillo, Amparo; Flores, Osvaldo; Puentes, Gustavo; Morgan, Carlos; Gatica, Arnaldo; Cofré, Christian; Hernández, Alejandro; Laurido, Claudio; Constandil, Luis

    2010-10-30

    Modafinil is a novel wake-promoting agent whose effects on cognitive performance have begun to be addressed at both preclinical and clinical level. The present study was designed to investigate in rats the effects of chronic modafinil administration on cognitive performance by evaluating: (i) working and reference memories in an Olton 4×4 maze, and (ii) learning of a complex operant conditioning task in a Skinner box. In addition, the effect of modafinil on the ability of the rat frontal cortex to develop long-term potentiation (LTP) was also studied. Chronic modafinil did not significantly modify working memory errors but decreased long-term memory errors on the Olton 4×4 maze, meaning that the drug may have a favourable profile on performance of visuo-spatial tasks (typically, a hippocampus-dependent task) when chronically administered. On the other hand, chronic modafinil resulted in a marked decrease of successful responses in a complex operant conditioning learning, which means that repeated administration of the drug influences negatively problem-solving abilities when confronting the rat to a sequencing task (typically, a prefrontal cortex-dependent task). In addition, in vivo electrophysiology showed that modafinil resulted in impaired capacity of the rat prefrontal cortex to develop LTP following tetanization. It is concluded that modafinil can improve the performance of spatial tasks that depend almost exclusively on hippocampal functioning, but not the performance in tasks including a temporal factor where the prefrontal cortex plays an important role. The fact that modafinil together with preventing operant conditioning learning was also able to block LTP induction in the prefrontal cortex, suggests that the drug could interfere some critical component required for LTP can be developed, thereby altering neuroplastic capabilities of the prefrontal cortex.

  2. Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats.

    Science.gov (United States)

    Schuette, Sven R M; Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger; Hobson, Scott

    2016-04-13

    The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal

  3. Hypoxia-induced neonatal seizures diminish silent synapses and long-term potentiation in hippocampal CA1 neurons.

    Science.gov (United States)

    Zhou, Chengwen; Lippman, Jocelyn J Bell; Sun, Hongyu; Jensen, Frances E

    2011-12-14

    Neonatal seizures can lead to epilepsy and long-term cognitive deficits into adulthood. Using a rodent model of the most common form of human neonatal seizures, hypoxia-induced seizures (HS), we aimed to determine whether these seizures modify long-term potentiation (LTP) and silent NMDAR-only synapses in hippocampal CA1. At 48-72 h after HS, electrophysiology and immunofluorescent confocal microscopy revealed a significant decrease in the incidence of silent synapses, and an increase in AMPARs at the synapses. Coincident with this decrease in silent synapses, there was an attenuation of LTP elicited by either tetanic stimulation of Schaffer collaterals or a pairing protocol, and persistent attenuation of LTP in slices removed in later adulthood after P10 HS. Furthermore, postseizure treatment in vivo with the AMPAR antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline (NBQX) protected against the HS-induced depletion of silent synapses and preserved LTP. Thus, this study demonstrates a novel mechanism by which early life seizures could impair synaptic plasticity, suggesting a potential target for therapeutic strategies to prevent long-term cognitive deficits.

  4. Long-term potentiation in hilar circuitry modulates gating by the dentate gyrus.

    Science.gov (United States)

    Wright, Brandon J; Jackson, Meyer B

    2014-07-16

    The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus. Copyright © 2014 the authors 0270-6474/14/349743-11$15.00/0.

  5. Activity-induced long-term potentiation of excitatory synapses in developing zebrafish retina in vivo.

    Science.gov (United States)

    Wei, Hong-ping; Yao, Yuan-yuan; Zhang, Rong-wei; Zhao, Xiao-feng; Du, Jiu-lin

    2012-08-09

    Neural activity-induced long-term potentiation (LTP) of synaptic transmission is believed to be one of the cellular mechanisms underlying experience-dependent developmental refinement of neural circuits. Although it is well established that visual experience and neural activity are critical for the refinement of retinal circuits, whether and how LTP occurs in the retina remain unknown. Using in vivo perforated whole-cell recording and two-photon calcium imaging, we find that both repeated electrical and visual stimulations can induce LTP at excitatory synapses formed by bipolar cells on retinal ganglion cells in larval but not juvenile zebrafish. LTP induction requires the activation of postsynaptic N-methyl-D-aspartate receptors, and its expression involves arachidonic acid-dependent presynaptic changes in calcium dynamics and neurotransmitter release. Physiologically, both electrical and visual stimulation-induced LTP can enhance visual responses of retinal ganglion cells. Thus, LTP exists in developing retinae with a presynaptic locus and may serve for visual experience-dependent refinement of retinal circuits.

  6. Endogenous neurotrophins are required for the induction of GABAergic long-term potentiation in the neonatal rat hippocampus.

    Science.gov (United States)

    Gubellini, Paolo; Ben-Ari, Yehezkel; Gaïarsa, Jean-Luc

    2005-06-15

    In the developing rat hippocampus, GABAergic synapses undergo a Ca2+-dependent long-term potentiation (LTP(GABA-A)); this form of synaptic plasticity is induced in CA3 pyramidal neurons by delivering repetitive depolarizing pulses (DPs) to the recorded neuron, and it is expressed as a long-lasting increase in the frequency and amplitude of spontaneous GABA(A) receptor-mediated postsynaptic currents. In the present study, we examined the role of endogenous tropomyosin-related kinase receptor B (TrkB) receptor ligands and associated protein tyrosine kinases (PTKs) in the induction of LTP(GABA-A). The application of Lavendustin A, a broad spectrum PTK inhibitor, blocked the induction of LTP(GABA-A), whereas Lavendustin B, its inactive form, had no effect. Moreover, k-252a and k-252b, two alkaloids that inhibit the kinase activity of the Trk receptor family, also prevented the induction of LTP(GABA-A). On hippocampal slices incubated with the soluble form of TrkB receptor IgG (TrkB-IgG), which prevents the activation of TrkB receptors by endogenous ligands, DPs failed to induce LTP(GABA-A), whereas the incubation with TrkA-IgG or TrkC-IgG had no such effect. Altogether, these data indicate that endogenous TrkB ligands and associated PTK activity are necessary for the induction of GABAergic LTP in the developing rat hippocampus.

  7. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    Science.gov (United States)

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.

  8. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses.

    Science.gov (United States)

    Ohno, Takeo; Hasegawa, Tsuyoshi; Tsuruoka, Tohru; Terabe, Kazuya; Gimzewski, James K; Aono, Masakazu

    2011-06-26

    Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs 1-4). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag(2)S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag(2)S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag(2)S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.

  9. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses

    Science.gov (United States)

    Ohno, Takeo; Hasegawa, Tsuyoshi; Tsuruoka, Tohru; Terabe, Kazuya; Gimzewski, James K.; Aono, Masakazu

    2011-08-01

    Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs , , , ). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag2S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag2S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag2S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.

  10. Long-term potentiation of evoked presynaptic response at CA3-CA1 synapses by transient oxygen-glucose deprivation in rat brain slices.

    Science.gov (United States)

    Ai, Jinglu; Baker, Andrew

    2006-02-01

    Physiological activity-dependent long-term changes in synaptic transmission, as long-term potentiation (LTP) are thought to be the substrate of learning and memory. However, a form of postsynaptic pathological LTP at the CA3-CA1 synapses has been demonstrated following few minutes of anoxia and aglycemia in vitro. The ischemia LTP shared many molecular mechanisms with the physiological LTP, and was believed to be involved in the delayed neuronal death following ischemia. However, the role of the presynaptic component in this regard is not known. Here we show that a short period of oxygen-glucose deprivation can induce a form of LTP (lasting for hours) of the presynaptic response at the CA3-CA1 synapses. This form of LTP is independent of postsynaptic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors, but Ca(2+) dependent. This presynaptic LTP may represent a presynaptic hyperexcitability of the afferent fibers following ischemia, and responsible for the excitotoxicity to the CA1 neurons (ischemia-induced increases of glutamate release that kills neurons) and the postsynaptic pathological ischemic LTP.

  11. Reinforcement of Rat Hippocampal LTP by Holeboard Training

    Science.gov (United States)

    Frey, Julietta U.; Korz, Volker; Uzakov, Shukhrat

    2005-01-01

    Hippocampal long-term potentiation (LTP) can be dissociated in early-LTP lasting 4-5 h and late-LTP with a duration of more than 8 h, the latter of which requires protein synthesis and heterosynaptic activity during its induction. Previous studies in vivo have shown that early-LTP in the dentate gyrus can protein synthesis-dependently be…

  12. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory

    DEFF Research Database (Denmark)

    Brakebusch, Cord; Seidenbecher, Constanze I; Asztely, Fredrik

    2002-01-01

    to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect....... Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles....

  13. Presynaptic ultrastructural plasticity along CA3→CA1 axons during long-term potentiation in mature hippocampus.

    Science.gov (United States)

    Bourne, Jennifer N; Chirillo, Michael A; Harris, Kristen M

    2013-12-01

    In area CA1 of the mature hippocampus, synaptogenesis occurs within 30 minutes after the induction of long-term potentiation (LTP); however, by 2 hours many small dendritic spines are lost, and those remaining have larger synapses. Little is known, however, about associated changes in presynaptic vesicles and axonal boutons. Axons in CA1 stratum radiatum were evaluated with 3D reconstructions from serial section electron microscopy at 30 minutes and 2 hours after induction of LTP by theta-burst stimulation (TBS). The frequency of axonal boutons with a single postsynaptic partner was decreased by 33% at 2 hours, corresponding perfectly to the 33% loss specifically of small dendritic spines (head diameters complement postsynaptic ultrastructural plasticity during LTP.

  14. Polygalasaponin F induces long-term potentiation in adult rat hippocampus via NMDA receptor activation

    Institute of Scientific and Technical Information of China (English)

    Feng SUN; Jian-dong SUN; Ning HAN; Chuang-jun LI; Yu-he YUAN; Dong-ming ZHANG; Nai-hong CHEN

    2012-01-01

    Aim:To investigate the effect and underlying mechanisms of polygalasaponin F (PGSF),a triterpenoid saponin isolated from Polygala japonica,on long-term potentiation (LTP)in hippocampus dentate gyrus (DG)of anesthetized rats.Methods:Population spike (PS)of hippocampal DG was recorded in anesthetized male Wistar rats.PGSF,the NMDAR inhibitor MK801 and the CaMKll inhibitor KN93 were intracerebroventricularly administered.Western blotting analysis was used to examine the phosphorylation expressions of NMDA receptor subunit 2B (NR2B),Ca2+/calmodulin-dependent kinase Ⅱ (CaMKII),extracellular signalregulated kinase (ERK),and cAMP response element-binding protein (CREB).Results:Intracerebroventricular administration of PGSF (1 and 10 μmol/L)produced long-lasting increase of PS amplitude in hippocampal DG in a dose-dependent manner.Pre-injection of MK801 (100 μmol/L)or KN93 (100 μmol/L)completely blocked PGSFinduced LTP.Furthermore,the phosphorylation of NR2B,CaMKII,ERK,and CREB in hippocampus was significantly increased 5-60min after LTP induction.The up-regulation of p-CaMKII expression could be completely abolished by pre-injection of MK801.The upregulation of p-ERK and p-CREB expressions could be partially blocked by pre-injection of KN93.Conclusion:PGSF could induce LTP in hippocampal DG in anesthetized rats via NMDAR activation mediated by CaMKII,ERK and CREB signaling pathway.

  15. Cholecystokinin-octapeptide restored morphine-induced hippocampal long-term potentiation impairment in rats.

    Science.gov (United States)

    Wen, Di; Zang, Guoqing; Sun, DongLei; Yu, Feng; Mei, Dong; Ma, Chunling; Cong, Bin

    2014-01-24

    Cholecystokinin-octapeptide (CCK-8), which is a typical brain-gut peptide, exerts a wide range of biological activities on the central nervous system. We have previously reported that CCK-8 significantly alleviated morphine-induced amnesia and reversed spine density decreases in the CA1 region of the hippocampus in morphine-treated animals. Here, we investigated the effects of CCK-8 on long-term potentiation (LTP) in the lateral perforant path (LPP)-granule cell synapse of rat dentate gyrus (DG) in acute saline or morphine-treated rats. Population spikes (PS), which were evoked by stimulation of the LPP, were recorded in the DG region. Acute morphine (30mg/kg, s.c.) treatment significantly attenuated hippocampal LTP and CCK-8 (1μg, i.c.v.) restored the amplitude of PS that was attenuated by morphine injection. Furthermore, microinjection of CCK-8 (0.1 and 1μg, i.c.v.) also significantly augmented hippocampal LTP in saline-treated (1ml/kg, s.c.) rats. Pre-treatment of the CCK2 receptor antagonist L-365,260 (10μg, i.c.v) reversed the effects of CCK-8, but the CCK1 receptor antagonist L-364,718 (10μg, i.c.v) did not. The present results demonstrate that CCK-8 attenuates the effect of morphine on hippocampal LTP through CCK2 receptors and suggest an ameliorative function of CCK-8 on morphine-induced memory impairment.

  16. Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons.

    Science.gov (United States)

    Inagaki, Tsuyoshi; Begum, Tahamina; Reza, Faruque; Horibe, Shoko; Inaba, Mie; Yoshimura, Yumiko; Komatsu, Yukio

    2008-06-01

    High-frequency stimulation (HFS) induces long-term potentiation (LTP) at inhibitory synapses of layer 5 pyramidal neurons in developing rat visual cortex. This LTP requires postsynaptic Ca2+ rise for induction, while the maintenance mechanism is present at the presynaptic site, suggesting presynaptic LTP expression and the necessity of retrograde signaling. We investigated whether the supposed signal is mediated by brain-derived neurotrophic factor (BDNF), which is expressed in pyramidal neurons but not inhibitory interneurons. LTP did not occur when HFS was applied in the presence of the Trk receptor tyrosine kinase inhibitor K252a in the perfusion medium. HFS produced LTP when bath application of K252a was started after HFS or when K252a was loaded into postsynaptic cells. LTP did not occur in the presence of TrkB-IgG scavenging BDNF or function-blocking anti-BDNF antibody in the medium. In cells loaded with the Ca2+ chelator BAPTA, the addition of BDNF to the medium enabled HFS to induce LTP without affecting baseline synaptic transmission. These results suggest that BDNF released from postsynaptic cells activates presynaptic TrkB, leading to LTP. Because BDNF, expressed activity dependently, regulates the maturation of cortical inhibition, inhibitory LTP may contribute to this developmental process, and hence experience-dependent functional maturation of visual cortex.

  17. Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant-path long-term potentiation in adult male rats.

    Science.gov (United States)

    Anagnostaras, S G; Maren, S; DeCola, J P; Lane, N I; Gale, G D; Schlinger, B A; Fanselow, M S

    1998-04-01

    We recently reported that Pavlovian fear conditioning and hippocampal perforant-path long-term potentiation (LTP) are sexually dimorphic in rats. Males show greater contextual fear conditioning, which depends on the hippocampus, as well as greater hippocampal LTP. In order to examine the role of circulating gonadal hormones in adult male rats, animals were castrated in two experiments, and Pavlovian fear conditioning and in vivo perforant-path LTP were examined. It was found that sexually-dimorphic LTP and fear conditioning are not regulated by the activational effects of testicular hormones in adult male rats. That is, in every respect, castrated male rats were similar to intact male rats in Pavlovian fear conditioning and hippocampal LTP. It is likely that sexual dimorphism in this system is established earlier in development by the organizational effects of gonadal hormones.

  18. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice.

    Science.gov (United States)

    Cui, Yihui; Jin, Jing; Zhang, Xuliang; Xu, Hao; Yang, Liguo; Du, Dan; Zeng, Qingwen; Tsien, Joe Z; Yu, Huiting; Cao, Xiaohua

    2011-01-01

    Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.

  19. Synapse-specific mGluR1-dependent long-term potentiation in interneurones regulates mouse hippocampal inhibition

    Science.gov (United States)

    Lapointe, Valérie; Morin, France; Ratté, Stéphanie; Croce, Ariane; Conquet, François; Lacaille, Jean-Claude

    2004-01-01

    Hippocampal CA1 inhibitory interneurones control the excitability and synchronization of pyramidal cells, and participate in hippocampal synaptic plasticity. Pairing theta-burst stimulation (TBS) with postsynaptic depolarization, we induced long-term potentiation (LTP) of putative single-fibre excitatory postsynaptic currents (EPSCs) in stratum oriens/alveus (O/A) interneurones of mouse hippocampal slices. LTP induction was absent in metabotropic glutamate receptor 1 (mGluR1) knockout mice, was correlated with the postsynaptic presence of mGluR1a, and required a postsynaptic Ca2+ rise. Changes in paired-pulse facilitation and coefficient of variation indicated that LTP expression involved presynaptic mechanisms. LTP was synapse specific, occurring selectively at synapses modulated by presynaptic group II, but not group III, mGluRs. Furthermore, the TBS protocol applied in O/A induced a long-term increase of polysynaptic inhibitory responses in CA1 pyramidal cells, that was absent in mGluR1 knockout mice. These results uncover the mechanisms of a novel form of interneurone synaptic plasticity that can adaptively regulate inhibition of hippocampal pyramidal cells. PMID:14673190

  20. Nicotine blocks stress-induced impairment of spatial memory and long-term potentiation of the hippocampal CA1 region.

    Science.gov (United States)

    Aleisa, Abdulaziz M; Alzoubi, Karem H; Gerges, Nashaat Z; Alkadhi, Karim A

    2006-08-01

    The effect of chronic nicotine treatment on chronic psychosocial stress-induced impairment of short-term memory and long-term potentiation (LTP) was determined. An "intruder" stress model was used to induce psychosocial stress for 4-6 wk, during which rats were injected with saline or nicotine (1 mg/kg s.c.) twice a day. The radial arm water maze memory task was used to test hippocampus-dependent spatial memory. Chronic psychosocial stress impaired short-term memory without affecting the learning phase or long-term memory. Concurrent chronic nicotine treatment prevented stress-induced short-term memory impairment. In normal rats chronic nicotine treatment had no effect on learning and memory. Extracellular recordings from the CA1 region of anaesthetized rats showed severe reduction of LTP magnitude in stressed rats, which was normalized in nicotine-treated stressed rats. Nicotine had no effect on LTP in control animals. These results showed that chronic nicotine treatment improved hippocampus-dependent spatial memory and LTP only when impaired by stress.

  1. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice.

    Directory of Open Access Journals (Sweden)

    Yihui Cui

    Full Text Available Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP but did not alter long-term depression (LTD. The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.

  2. LTP的研究进展(Ⅰ)%Recent advances in the study of long-term potentiation(Part I)

    Institute of Scientific and Technical Information of China (English)

    崔光成; 叶桂兰

    2002-01-01

    LTP(长时程动作电位增强,或称长时程增强)是目前神经科学热点课题.各方面研究支持LTP与学习及记忆过程相关.基于其发生机制,LTP可分为NMDA受体依赖性和Mossy fiber LTP两类.前一类由突触后NMDA受体激活,导致钙离子内流,钙浓度升高而引发,后一类则是蛋白激酶A活动引起突触前膜内钙离子浓度升高.结果神经递质释放增强,最终引起LTP.本文概述了脑片技术对LTP研究的贡献,LTP发生与维持的相关因素,以及最新LTP研究的有趣发现.下期继续LTP话题,我们将介绍最近与LTP相关的BDNF(脑组织神经生长因子)及基因遗传学研究.%Long-term potentiation of synaptic activity is the most popular and widely researched model of synaptic plastic changes because it is believed underling learning and memory. Calcium influx mediated by NMDA receptor activation is responsible for the induction of NMDA receptor dependent LTP, whereas protein kinase A mediated calcium concentration increase in presynaptic site induced NMDA receptor independent LTP or mossy fiber LTP. Here we also summarized the current concept on brain slice as a preparation of LTP study, recent research of protein and protein kinase activity involved in LTP expression, and some other interesting findings contributed to LTP. In part two on the next issue, we will focus on BDNF and LTP, several activity-dependent genes which related to LTP and learning and memory, and introduce some interesting LTP related work.

  3. Long-term potentiation promotes proliferation/survival and neuronal differentiation of neural stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Taesup Cho

    Full Text Available Neural stem cell (NSC replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP, one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR via systemic application of the receptor antagonist, 3-[(R-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP. Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF and its consequent activation of tropomysosin receptor kinase B (TrkB receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases.

  4. Gender-dependent ATPA-induced changes in long-term potentiation in the rat lateral amygdala.

    Science.gov (United States)

    Schubert, Manja; Drephal, Christian; Albrecht, Doris

    2008-04-01

    There is increasing evidence that kainate receptors contribute to both postsynaptic and presynaptic signaling not only in the hippocampus but also in the amygdala. The present study demonstrates that low concentrations of the specific kainate GLU(K5) receptor agonist, ATPA, depressed baseline activity in the lateral nucleus of the rat amygdala (LA), induced by stimulation of external capsule fibers or by intranuclear stimulation in horizontal brain slices. ATPA reduced high-frequency-induced long-term potentiation (LTP) in males while it enhanced LTP in females during certain phases of the estrus cycle. In untreated slices from females, LA-LTP differed depending on the phase of the estrus cycle. In addition, we show for the first time that the p38 mitogen-activated protein (MAP) kinase inhibitor, SKF 86002, reduced LA-LTP. In males, the effects of ATPA and SKF 86002 were not additive. To the contrary, in females, the exposure to ATPA in control plus SKF 86002 increases LTP relative to control plus SKF 86002 alone. Thus, we demonstrate that the effectiveness of GLU(K5) stimulation on plasticity changes in the amygdala is gender-dependent and that the MAP kinase pathway might be involved in males.

  5. Hippocampal NR2B-containing NMDA receptors enhance long-term potentiation in rats with chronic visceral pain.

    Science.gov (United States)

    Chen, Yu; Chen, Ai-qin; Luo, Xiao-qing; Guo, Li-xia; Tang, Ying; Bao, Cheng-jia; Lin, Ling; Lin, Chun

    2014-06-27

    Pain and learning memory have striking similarities in synaptic plasticity. Activation of the N-methyl-D-aspartic acid receptors 2B subunits (NR2B-NMDAs) is responsible for the hippocampal LTP in memory formation. In our previous studies, we found the significant enhancement of CA1 hippocampal long-term potentiation (LTP) induced by high-frequency stimulation (HFS) in rats with chronic visceral pain. However, it is unclear whether the NR2B-NMDAs are required for the LTP in chronic visceral pain. In this study, a rat model with irritable bowel syndrome (IBS) was established by colorectal distention (CRD). The sensitivity of visceral pain and HFS-induced LTP at SC-CA1 synapses were significantly enhanced in IBS-like rats (pvisceral hypersensitivity. In conclusion, hippocampal NR2B-NMDAs are responsible for the facilitation of CA1 LTP via tyrosine phosphorylation, which leads to visceral hypersensitivity. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Effects of repeated prenatal glucocorticoid exposure on long-term potentiation in the juvenile guinea-pig hippocampus.

    Science.gov (United States)

    Setiawan, Elaine; Jackson, Michael F; MacDonald, John F; Matthews, Stephen G

    2007-06-15

    Synthetic glucocorticoids (sGCs) are routinely used to treat women at risk of preterm labour to promote fetal lung maturation. There is now strong evidence that exposure to excess glucocorticoid during periods of rapid brain development has permanent consequences for endocrine function and behaviour in the offspring. Prenatal exposure to sGC alters the expression of N-methyl-D-aspartate receptor (NMDA-R) subunits in the fetal and neonatal hippocampus. Given the integral role of the NMDA-R in synaptic plasticity, we hypothesized that prenatal sGC exposure will have effects on hippocampal long-term potentiation (LTP) after birth. Further, this may occur in either the presence or absence of elevated cortisol concentrations, in vitro. Pregnant guinea-pigs were injected with betamethasone (Beta, 1 mg kg(-1)) or vehicle on gestational days (gd) 40, 41, 50, 51, 60 and 61 (term approximately 70 days), a regimen comparable to that given to pregnant women. On postnatal day 21, LTP was examined at Schaffer collateral synapses in the CA1 region of hippocampal slices prepared from juvenile animals exposed to betamethasone or vehicle, in utero. Subsequently, the acute glucocorticoid receptor (GR)- and mineralocorticoid receptor (MR)-dependent effects of cortisol (0.1-10 microM; bath applied 30 min before LTP induction) were examined. There was no effect of prenatal sGC treatment on LTP under basal conditions. The application of 10 microM cortisol depressed excitatory synaptic transmission in all treatment groups regardless of sex. Similarly, LTP was depressed by 10 microM cortisol in all groups, with the exception of Beta-exposed females, in which LTP was unaltered. Hippocampal MR and GR protein levels were increased in Beta-exposed females, but not in any other prenatal treatment group. This study reveals sex-specific effects of prenatal exposure to sGC on LTP in the presence of elevated cortisol, a situation that would occur in vivo during stress.

  7. Study on Long-term Potentiation in Developing Rat Visual Cortex during the Critical Period of Plasticity

    Institute of Scientific and Technical Information of China (English)

    Pengfen Gao; Zhengqin Yin; Yingbing Liu; Shijun Wang; Huimin Fan

    2005-01-01

    Purpose: To study the property of LTP in layers Ⅱ~Ⅳof the rats visual cortex at different postnatal days induced by pairing low-frequency stimulation at layer Ⅳ with post synaptic depolarization in order to explore the synaptic and cellular mechanism of experience-dependent plasticity in the visual cortex.Methods: Postsynaptic currents (PSCs) of layers Ⅱ~Ⅳ in visual cortex slices of Wistar rats aged P0-29 d were recorded by patch-clamp whole cell recording method. Long-term potentiation (LTP) was induced by low-frequency stimulation (LFS) at 1Hz for 60~90 s.Each pulse of the LFS paired with depolarization of post-synaptic neurons to -20 mV.100μM APV, a kind of competitive N-methyl-d-aspartate (NMDA) receptor antagonist, was both applied to some slices to test the property of LTP.Results: 1. The LTP incidence was very low before P10d (5/34), and increased rapidly to the top at P15-24 d (17/28), then decreased sharply to 1/5 at P25-29 d, coinciding well with the critical period of plasticity of rat visual cortex. The LTP incidence of P15-29d (after eye opening, 18/33) was significantly higher than that of P0-14 d (before eye opening, 12/43, P < 0.05). 2. Compared with non-APV applied group (30/76), LTP incidence of APV applied group (4/33) was significantly decreased (P < 0.01 ). There were 4 Ⅳ-Ⅳ horizontal synapses. APV application could not block the LTP induction.Conclusions: 1. LTP was a reflection of naturally occurring, experience-dependent plasticity in rat visual cortex. The patterned visual stimuli received after eye opening might be an activation factor of the synaptic plasticity. 2. LTP of visual cortex induced by LFS in layer Ⅳ paired with postsynaptic depolarization was NMDA receptor dependent during the critical period of visual plasticity. However, there were LTP existed in Ⅳ-Ⅳ horizontal synapses which could not be blocked by 100μM APV.

  8. Modeling Maintenance of Long-Term Potentiation in Clustered Synapses: Long-Term Memory without Bistability

    Directory of Open Access Journals (Sweden)

    Paul Smolen

    2015-01-01

    Full Text Available Memories are stored, at least partly, as patterns of strong synapses. Given molecular turnover, how can synapses maintain strong for the years that memories can persist? Some models postulate that biochemical bistability maintains strong synapses. However, bistability should give a bimodal distribution of synaptic strength or weight, whereas current data show unimodal distributions for weights and for a correlated variable, dendritic spine volume. Thus it is important for models to simulate both unimodal distributions and long-term memory persistence. Here a model is developed that connects ongoing, competing processes of synaptic growth and weakening to stochastic processes of receptor insertion and removal in dendritic spines. The model simulates long-term (>1 yr persistence of groups of strong synapses. A unimodal weight distribution results. For stability of this distribution it proved essential to incorporate resource competition between synapses organized into small clusters. With competition, these clusters are stable for years. These simulations concur with recent data to support the “clustered plasticity hypothesis” which suggests clusters, rather than single synaptic contacts, may be a fundamental unit for storage of long-term memory. The model makes empirical predictions and may provide a framework to investigate mechanisms maintaining the balance between synaptic plasticity and stability of memory.

  9. A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment

    DEFF Research Database (Denmark)

    Korshunova, Irina; Gjørlund, Michelle D; Jacobsen, Sylwia Owczarek

    2015-01-01

    neurolide-1 effects on short- and long-term social and spatial memory in social recognition, Morris water-maze, and Y-maze tests. We found that subcutaneous neurolide-1 administration, restored hippocampal LTP compromised by NMDA receptor inhibitor MK-801. It counteracted MK-801-induced memory deficit...... in the water-maze and Y-maze tests after long-term treatment (24 h and 1-2 h before the test), but not after short-term exposure (1-2 h). Long-term exposure to neurolide-1 also facilitated social recognition memory. In addition, neurolide-1-induced phosphorylation of the NMDA receptor NR1 subunit on a site...... receptor phosphorylation after treatment with NL1 or a mimetic peptide, neurolide-1, was quantified by immunoblotting. Subsequently, we investigated effects of neurolide-1 on long-term potentiation (LTP) induction in hippocampal slices compromised by NMDA receptor inhibitor MK-801. Finally, we investigated...

  10. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat

    Directory of Open Access Journals (Sweden)

    Michela eDi Mauro

    2015-10-01

    Full Text Available Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17b-estradiol (E2 and 5a-dihydrotestosterone (DHT neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD and depotentiation (DP by low frequency stimulation (LFS, 15 min-1 Hz and of long-term potentiation (LTP by high (HFS, 1 s-100 Hz, medium (MFS, 1 s-50 Hz, or weak (WFS, 1 s-25 Hz frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T into DHT (5a-reductase and T into E2 (P450-aromatase. We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.

  11. Just in time for late-LTP: A mechanism for the role of PKMzeta in long-term memory.

    Science.gov (United States)

    Vlachos, Andreas; Maggio, Nicola; Jedlicka, Peter

    2008-01-01

    It is a fundamental question in neuroscience how long-term memory formation is regulated at the molecular level. Although widely considered a highly complex process requiring numerous molecular players, it also has been speculated that a single protein could play a pivotal role. This "astonishing hypothesis" has made a significant impact on memory research and has led to a reevaluation of concepts regarding memory formation.1,2.

  12. Acutely applied MDMA enhances long-term potentiation in rat hippocampus involving D1/D5 and 5-HT2 receptors through a polysynaptic mechanism.

    Science.gov (United States)

    Rozas, C; Loyola, S; Ugarte, G; Zeise, M L; Reyes-Parada, M; Pancetti, F; Rojas, P; Morales, B

    2012-08-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a drug of abuse that induces learning and memory deficit. However, there are no experimental data that correlate the behavioral evidence with models of synaptic plasticity such as long-term potentiation (LTP) or long-term depression (LTD). Using field potential recordings in rat hippocampal slices of young rats, we found that acute application of MDMA enhances LTP in CA3-CA1 synapses without affecting LTD. Using specific antagonists and paired-pulse facilitation protocols we observed that the MDMA-dependent increase of LTP involves presynaptic 5-HT₂ serotonin receptors and postsynaptic D1/D5 dopamine receptors. In addition, the inhibition of PKA suppresses the MDMA-dependent increase in LTP, suggesting that dopamine receptor agonism activates cAMP-dependent intracellular pathways. We propose that MDMA exerts its LTP-altering effect involving a polysynaptic interaction between serotonergic and dopaminergic systems in hippocampal synapses. Our results are compatible with the view that the alterations in hippocampal LTP could be responsible for MDMA-dependent cognitive deficits observed in humans and animals.

  13. Inhibition of G9a/GLP Complex Promotes Long-Term Potentiation and Synaptic Tagging/Capture in Hippocampal CA1 Pyramidal Neurons.

    Science.gov (United States)

    Sharma, Mahima; Razali, Nuralyah Bte; Sajikumar, Sreedharan

    2016-06-01

    Epigenetic regulations play an important role in regulating the learning and memory processes. G9a/G9a-like protein (GLP) lysine dimethyltransferase complex controls a prominent histone H3 lysine9 dimethylation (H3K9me2) that results in transcriptional silencing of the chromatin. Here, we report that the inhibition of G9a/GLP complex by either of the substrate competitive inhibitors UNC 0638 or BIX 01294 reinforces protein synthesis-independent long-term potentiation (early-LTP) to protein synthesis-dependent long-term potentiation (late-LTP). The reinforcement effect was observed if the inhibitors were present during the induction of early-LTP and in addition when G9a/GLP complex inhibition was carried out by priming of synapses within an interval of 30 min before or after the induction of early-LTP. Surprisingly, the reinforced LTP by G9a/GLP complex inhibition was able to associate with a weak plasticity event from nearby independent synaptic populations, resulting in synaptic tagging/capture (STC). We have identified brain-derived neurotrophic factor (BDNF) as a critical plasticity protein that maintains G9a/GLP complex inhibition-mediated LTP facilitation and its STC. Our study reveals an epigenetic mechanism for promoting plasticity and associativity by G9a/GLP complex inhibition, and it may engender a promising epigenetic target for enhancing memory in neural networks.

  14. Loganin enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments.

    Science.gov (United States)

    Hwang, Eun-Sang; Kim, Hyun-Bum; Lee, Seok; Kim, Min-Ji; Lee, Sung-Ok; Han, Seung-Moo; Maeng, Sungho; Park, Ji-Ho

    2017-03-15

    Although the incidence rate of dementia is rapidly growing in the aged population, therapeutic and preventive reagents are still suboptimal. Various model systems are used for the development of such reagents in which scopolamine is one of the favorable pharmacological tools widely applied. Loganin is a major iridoid glycoside obtained from Corni fructus (Cornusofficinalis et Zucc) and demonstrated to have anti-inflammatory, anti-tumor and osteoporosis prevention effects. It has also been found to attenuate Aβ-induced inflammatory reactions and ameliorate memory deficits induced by scopolamine. However, there has been limited information available on how loganin affects learning and memory both electrophysiologically and behaviorally. To assess its effect on learning and memory, we investigated the influence of acute loganin administration on long-term potentiation (LTP) using organotypic cultured hippocampal tissues. In addition, we measured the effects of loganin on the behavior performance related to avoidance memory, short-term spatial navigation memory and long-term spatial learning and memory in the passive avoidance, Y-maze, and Morris water maze learning paradigms, respectively. Loganin dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In accordance with these findings, loganin behaviorally attenuated scopolamine-induced shortening of step-through latency in the passive avoidance test, reduced the percent alternation in the Y-maze, and increased memory retention in the Morris water maze test. These results indicate that loganin can effectively block cholinergic muscarinic receptor blockade -induced deterioration of LTP and memory related behavioral performance. Based on these findings, loganin may aid in the prevention and treatment of Alzheimer's disease and learning and memory-deficit disorders in the future.

  15. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice.

    Science.gov (United States)

    Zhu, G; Wang, Y; Li, J; Wang, J

    2015-04-30

    Ginseng serves as a potential candidate for the treatment of aging-related memory decline or memory loss. However, the related mechanism is not fully understood. In this study, we applied an intraperitoneal injection of ginsenoside Rg1, an active compound from ginseng in middle-aged mice and detected memory improvement and the underlying mechanisms. Our results showed that a period of 30-day administration of ginsenoside Rg1 enhanced long-term memory in the middle-aged animals. Consistent with the memory improvement, ginsenoside Rg1 administration facilitated weak theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in acute hippocampal slices from middle-aged animals. Ginsenoside Rg1 administration increased the dendritic apical spine numbers and area in the CA1 region. In addition, ginsenoside Rg1 administration up-regulated the expression of hippocampal p-AKT, brain-derived neurotrophic factor (BDNF), proBDNF and glutamate receptor 1 (GluR1), but not p-ERK. Interestingly, the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor (bpV) mimicked the ginsenoside Rg1 effects, including increasing p-AKT expression, promoting hippocampal basal synaptic transmission, LTP and memory. Taken together, our data suggest that ginsenoside Rg1 treatment improves memory in middle-aged mice possibly through regulating the PI3K/AKT pathway, altering apical spines and facilitating hippocampal LTP. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. D-Serine rescues the deficits of hippocampal long-term potentiation and learning and memory induced by sodium fluoroacetate.

    Science.gov (United States)

    Han, Huili; Peng, Yan; Dong, Zhifang

    2015-06-01

    It is well known that bidirectional glia-neuron interactions play important roles in the neurophysiological and neuropathological processes. It is reported that impairing glial functions with sodium fluoroacetate (FAC) impaired hippocampal long-term depression (LTD) and spatial memory retrieval. However, it remains unknown whether FAC impairs hippocampal long-term potentiation (LTP) and learning and/or memory, and if so, whether pharmacological treatment with exogenous d-serine can recuse the impairment. Here, we reported that systemic administration of FAC (3mg/kg, i.p.) before training resulted in dramatic impairments of spatial learning and memory in water maze and fear memory in contextual fear conditioning. Furthermore, the behavioral deficits were accompanied by impaired LTP induction in the hippocampal CA1 area of brain slices. More importantly, exogenous d-serine treatment succeeded in recusing the deficits of hippocampal LTP and learning and memory induced by FAC. Together, these results suggest that astrocytic d-serine may be essential for hippocampal synaptic plasticity and memory, and that alteration of its levels may be relevant to the induction and potentially treatment of psychiatric and neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation.

    Science.gov (United States)

    Chen, Yong-Jun; Zhang, Meng; Yin, Dong-Min; Wen, Lei; Ting, Annie; Wang, Pu; Lu, Yi-Sheng; Zhu, Xin-Hong; Li, Shu-Ji; Wu, Cui-Ying; Wang, Xue-Ming; Lai, Cary; Xiong, Wen-Cheng; Mei, Lin; Gao, Tian-Ming

    2010-12-14

    Neuregulin 1 (NRG1) is a trophic factor that acts by stimulating ErbB receptor tyrosine kinases and has been implicated in neural development and synaptic plasticity. In this study, we investigated mechanisms of its suppression of long-term potentiation (LTP) in the hippocampus. We found that NRG1 did not alter glutamatergic transmission at SC-CA1 synapses but increased the GABA(A) receptor-mediated synaptic currents in CA1 pyramidal cells via a presynaptic mechanism. Inhibition of GABA(A) receptors blocked the suppressing effect of NRG1 on LTP and prevented ecto-ErbB4 from enhancing LTP, implicating a role of GABAergic transmission. To test this hypothesis further, we generated parvalbumin (PV)-Cre;ErbB4(-/-) mice in which ErbB4, an NRG1 receptor in the brain, is ablated specifically in PV-positive interneurons. NRG1 was no longer able to increase inhibitory postsynaptic currents and to suppress LTP in PV-Cre;ErbB4(-/-) hippocampus. Accordingly, contextual fear conditioning, a hippocampus-dependent test, was impaired in PV-Cre;ErbB4(-/-) mice. In contrast, ablation of ErbB4 in pyramidal neurons had no effect on NRG1 regulation of hippocampal LTP or contextual fear conditioning. These results demonstrate a critical role of ErbB4 in PV-positive interneurons but not in pyramidal neurons in synaptic plasticity and support a working model that NRG1 suppresses LTP by enhancing GABA release. Considering that NRG1 and ErbB4 are susceptibility genes of schizophrenia, these observations contribute to a better understanding of how abnormal NRG1/ErbB4 signaling may be involved in the pathogenesis of schizophrenia.

  18. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Science.gov (United States)

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning.

  19. Cholinergic pairing with visual activation results in long-term enhancement of visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Jun Il Kang

    Full Text Available Acetylcholine (ACh contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1 that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs in V1 of rats during a 4-8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine, nicotinic (mecamylamine, alpha7 (methyllycaconitine, and NMDA (CPP receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56% during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while alpha7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.

  20. Protein kinase Mζ is essential for the induction and maintenance of dopamine-induced long-term potentiation in apical CA1 dendrites

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Sacktor, Todd Charlton; Frey, Julietta U.

    2010-01-01

    Dopaminergic D1/D5-receptor-mediated processes are important for certain forms of memory as well as for a cellular model of memory, hippocampal long-term potentiation (LTP) in the CA1 region of the hippocampus. D1/D5-receptor function is required for the induction of the protein synthesis-dependent maintenance of CA1-LTP (L-LTP) through activation of the cAMP/PKA-pathway. In earlier studies we had reported a synergistic interaction of D1/D5-receptor function and N-methyl-D-aspartate (NMDA)-receptors for L-LTP. Furthermore, we have found the requirement of the atypical protein kinase C isoform, protein kinase Mζ (PKMζ) for conventional electrically induced L-LTP, in which PKMζ has been identified as a LTP-specific plasticity-related protein (PRP) in apical CA1-dendrites. Here, we investigated whether the dopaminergic pathway activates PKMζ. We found that application of dopamine (DA) evokes a protein synthesis-dependent LTP that requires synergistic NMDA-receptor activation and protein synthesis in apical CA1-dendrites. We identified PKMζ as a DA-induced PRP, which exerted its action at activated synaptic inputs by processes of synaptic tagging. PMID:21084457

  1. Hippocampal Focal Knockout of CBP Affects Specific Histone Modifications, Long-Term Potentiation, and Long-Term Memory

    Science.gov (United States)

    Barrett, Ruth M; Malvaez, Melissa; Kramar, Eniko; Matheos, Dina P; Arrizon, Abraham; Cabrera, Sara M; Lynch, Gary; Greene, Robert W; Wood, Marcelo A

    2011-01-01

    To identify the role of the histone acetyltransferase (HAT) CREB-binding protein (CBP) in neurons of the CA1 region of the hippocampus during memory formation, we examine the effects of a focal homozygous knockout of CBP on histone modifications, gene expression, synaptic plasticity, and long-term memory. We show that CBP is critical for the in vivo acetylation of lysines on histones H2B, H3, and H4. CBP's homolog p300 was unable to compensate for the loss of CBP. Neurons lacking CBP maintained phosphorylation of the transcription factor CREB, yet failed to activate CREB:CBP-mediated gene expression. Loss of CBP in dorsal CA1 of the hippocampus resulted in selective impairments to long-term potentiation and long-term memory for contextual fear and object recognition. Together, these results suggest a necessary role for specific chromatin modifications, selectively mediated by CBP in the consolidation of memories. PMID:21508930

  2. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory.

    Science.gov (United States)

    Barrett, Ruth M; Malvaez, Melissa; Kramar, Eniko; Matheos, Dina P; Arrizon, Abraham; Cabrera, Sara M; Lynch, Gary; Greene, Robert W; Wood, Marcelo A

    2011-07-01

    To identify the role of the histone acetyltransferase (HAT) CREB-binding protein (CBP) in neurons of the CA1 region of the hippocampus during memory formation, we examine the effects of a focal homozygous knockout of CBP on histone modifications, gene expression, synaptic plasticity, and long-term memory. We show that CBP is critical for the in vivo acetylation of lysines on histones H2B, H3, and H4. CBP's homolog p300 was unable to compensate for the loss of CBP. Neurons lacking CBP maintained phosphorylation of the transcription factor CREB, yet failed to activate CREB:CBP-mediated gene expression. Loss of CBP in dorsal CA1 of the hippocampus resulted in selective impairments to long-term potentiation and long-term memory for contextual fear and object recognition. Together, these results suggest a necessary role for specific chromatin modifications, selectively mediated by CBP in the consolidation of memories.

  3. Effects of high power microwave pulses on synaptic transmission and long term potentiation in hippocampus.

    Science.gov (United States)

    Pakhomov, Andrei G; Doyle, Joanne; Stuck, Bruce E; Murphy, Michael R

    2003-04-01

    Effects of short, extremely high power microwave pulses (EHPP) on neuronal network function were explored by electrophysiological techniques in the isolated rat hippocampal slice model. Population spikes (PS) in the CA1 area were evoked by repeated stimulation (1 per 30 s) of the Schaffer collateral pathway. A brief tetanus (2 s at 50 Hz) was used to induce long term potentiation (LTP) of synaptic transmission. In three different series of experiments with a total of 160 brain slices, the EHPP irradiation was performed before, during, or after the tetanus. The EHPP carrier frequency was 9.3 GHz, the pulse width and repetition rate were from 0.5 to 2 micros and from 0.5 to 10 Hz, respectively, and the peak specific absorption rate (SAR) in brain slices reached up to 500 MW/kg. Microwave heating of the preparation ranged from 0.5 degrees C (at 0.3 kW/kg time average SAR) to 6 degrees C (at 3.6 kW/kg). The experiments established that the only effect caused by EHPP exposure within the studied range of parameters was a transient and fully reversible decrease in the PS amplitude. Recovery took no more than a few minutes after the cessation of exposure and return to the initial temperature. This effect's features were characteristic of an ordinary thermal response: it was proportional to the temperature rise but not to any specific parameter of EHPP, and it could also be induced by a continuous wave (CW) irradiation or conventional heating. Irradiation did not affect the ability of neurons to develop LTP in response to tetanus or to retain the potentiated state that was induced before irradiation. No lasting or delayed effects of EHPP were observed. The results are consistent with the thermal mechanism of EHPP action and thus far provided no indication of EHPP-specific effects on neuronal function.

  4. LTP Induction Modifies Functional Relationship among Hippocampal Neurons

    Science.gov (United States)

    Yun, Sung H.; Lee, Deok S.; Lee, Hyunjung; Baeg, Eun H.; Kim, Yun B.; Jung, Min W.

    2007-01-01

    To obtain evidence linking long-term potentiation (LTP) and memory, we examined whether LTP induction modifies functional relationship among neurons in the rat hippocampus. In contrast to neurons in low-frequency stimulated or AP5-treated slices, LTP induction altered "functional connectivity," as defined by the degree of synchronous firing, among…

  5. Preventive effect of theanine intake on stress-induced impairments of hippocamapal long-term potentiation and recognition memory.

    Science.gov (United States)

    Tamano, Haruna; Fukura, Kotaro; Suzuki, Miki; Sakamoto, Kazuhiro; Yokogoshi, Hidehiko; Takeda, Atsushi

    2013-06-01

    Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. On the basis of the preventive effect of theanine intake after birth on mild stress-induced attenuation of hippocamapal CA1 long-term potentiation (LTP), the present study evaluated the effect of theanine intake after weaning on stress-induced impairments of LTP and recognition memory. Young rats were fed water containing 0.3% theanine for 3 weeks after weaning and subjected to water immersion stress for 30min, which was more severe than tail suspension stress for 30s used previously. Serum corticosterone levels were lower in theanine-administered rats than in the control rats even after exposure to stress. CA1 LTP induced by a 100-Hz tetanus for 1s was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an N-methyl-d-aspartate (NMDA) receptor antagonist, in hippocampal slices from the control rats and was attenuated by water immersion stress. In contrast, CA1 LTP was not significantly inhibited in the presence of APV in hippocampal slices from theanine-administered rats and was not attenuated by the stress. Furthermore, object recognition memory was impaired in the control rats, but not in theanine-administered rats. The present study indicates the preventive effect of theanine intake after weaning on stress-induced impairments of hippocampal LTP and recognition memory. It is likely that the modification of corticosterone secretion after theanine intake is involved in the preventive effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats.

    Directory of Open Access Journals (Sweden)

    Deheng Wang

    Full Text Available One major theory in learning and memory posits that the NR2B gene is a universal genetic factor that acts as rate-limiting molecule in controlling the optimal NMDA receptor's coincidence-detection property and subsequent learning and memory function across multiple animal species. If so, can memory function be enhanced via transgenic overexpression of NR2B in another species other than the previously reported mouse species? To examine these crucial issues, we generated transgenic rats in which NR2B is overexpressed in the cortex and hippocampus and investigated the role of NR2B gene in NMDA receptor-mediated synaptic plasticity and memory functions by combining electrophysiological technique with behavioral measurements. We found that overexpression of the NR2B subunit had no effect on CA1-LTD, but rather resulted in enhanced CA1-LTP and improved memory performances in novel object recognition test, spatial water maze, and delayed-to-nonmatch working memory test. Our slices recordings using NR2A- and NR2B-selective antagonists further demonstrate that the larger LTP in transgenic hippocampal slices was due to contribution from the increased NR2B-containing NMDARs. Therefore, our genetic experiments suggest that NR2B at CA1 synapses is not designated as a rate-limiting factor for the induction of long-term synaptic depression, but rather plays a crucial role in initiating the synaptic potentiation. Moreover, our studies provide strong evidence that the NR2B subunit represents a universal rate-limiting molecule for gating NMDA receptor's optimal coincidence-detection property and for enhancing memory function in adulthood across multiple mammalian species.

  7. Inhibition of the Motor Protein Eg5/Kinesin-5 in Amyloid β-Mediated Impairment of Hippocampal Long-Term Potentiation and Dendritic Spine Loss.

    Science.gov (United States)

    Freund, Ronald K; Gibson, Emily S; Potter, Huntington; Dell'Acqua, Mark L

    2016-05-01

    Alzheimer's disease (AD) is characterized by neurofibrillary tangles, amyloid plaques, and neurodegeneration. However, this pathology is preceded by increased soluble amyloid beta (Aβ) 1-42 oligomers that interfere with the glutamatergic synaptic plasticity required for learning and memory, includingN-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). In particular, soluble Aβ(1-42) acutely inhibits LTP and chronically causes synapse loss. Many mechanisms have been proposed for Aβ-induced synaptic dysfunction, but we recently found that Aβ(1-42) inhibits the microtubule motor protein Eg5/kinesin-5. Here we compared the impacts of Aβ(1-42) and monastrol, a small-molecule Eg5 inhibitor, on LTP in hippocampal slices and synapse loss in neuronal cultures. Acute (20-minute) treatment with monastrol, like Aβ, completely inhibited LTP at doses >100 nM. In addition, 1 nM Aβ(1-42) or 50 nM monastrol inhibited LTP #x223c;50%, and when applied together caused complete LTP inhibition. At concentrations that impaired LTP, neither Aβ(1-42) nor monastrol inhibited NMDAR synaptic responses until #x223c;60 minutes, when only #x223c;25% inhibition was seen for monastrol, indicating that NMDAR inhibition was not responsible for LTP inhibition by either agent when applied for only 20 minutes. Finally, 48 hours of treatment with either 0.5-1.0μM Aβ(1-42) or 1-5μM monastrol reduced the dendritic spine/synapse density in hippocampal cultures up to a maximum of #x223c;40%, and when applied together at maximal concentrations, no additional spine loss resulted. Thus, monastrol can mimic and in some cases occlude the impact of Aβon LTP and synapse loss, suggesting that Aβinduces acute and chronic synaptic dysfunction in part through inhibiting Eg5.

  8. Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice

    Directory of Open Access Journals (Sweden)

    Zhao Zhi-Qi

    2010-01-01

    Full Text Available Abstract Background Our previous study demonstrated that nitric oxide (NO contributes to long-term potentiation (LTP of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway. Results By means of field potential recordings in the adult male rat in vivo, we showed that RyR antagonist reduced LTP of C-fiber-evoked responses in the spinal dorsal horn by tetanic stimulation of the sciatic nerve. Using spinal cord slice preparations and field potential recordings from superficial dorsal horn, high frequency stimulation of Lissauer's tract (LT stably induced LTP of field excitatory postsynaptic potentials (fEPSPs. Perfusion of RyR antagonists blocked the induction of LT stimulation-evoked spinal LTP, while Ins(1,4,5P3 receptor (IP3R antagonist had no significant effect on LTP induction. Moreover, activation of RyRs by caffeine without high frequency stimulation induced a long-term potentiation in the presence of bicuculline methiodide and strychnine. Further, in patch-clamp recordings from superficial dorsal horn neurons, activation of RyRs resulted in a large increase in the frequency of miniature EPSCs (mEPSCs. Immunohistochemical study showed that RyRs were expressed in the dorsal root ganglion (DRG neurons. Likewise, calcium imaging in small DRG neurons illustrated that activation of RyRs elevated [Ca2+]i in small DRG neurons. Conclusions These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.

  9. D-cycloserine prevents relational memory deficits and suppression of long-term potentiation induced by scopolamine in the hippocampus.

    Science.gov (United States)

    Portero-Tresserra, Marta; Del Olmo, Nuria; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma; Vale-Martínez, Anna

    2014-11-01

    Previous research has demonstrated that systemic D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate receptor (NMDAR), enhances memory processes in different learning paradigms and attenuates mnemonic deficits produced by diverse pharmacological manipulations. In the present study two experiments were conducted in rats to investigate whether DCS administered in the hippocampus may rescue relational memory deficits and improve deficient synaptic plasticity, both induced by an intracerebral injection of the muscarinic receptor antagonist scopolamine (SCOP). In experiment 1, we assessed whether DCS would prevent SCOP-induced amnesia in an olfactory learning paradigm requiring the integrity of the cholinergic system, the social transmission of food preference (STFP). The results showed that DCS (10 μg/site) injected into the ventral hippocampus (vHPC) before STFP acquisition compensated the 24-h retention deficit elicited by post-training intra-vHPC SCOP (40 μg/site), although it did not affect memory expression in non-SCOP treated rats. In experiment 2, we evaluated whether the perfusion of DCS in hippocampal slices may potentiate synaptic plasticity in CA1 synapses and thus recover SCOP-induced deficits in long-term potentiation (LTP). We found that DCS (50 µM and 100 µM) was able to rescue SCOP (100 µM)-induced LTP maintenance impairment, in agreement with the behavioral findings. Additionally, DCS alone (50 µM and 100 µM) enhanced field excitatory postsynaptic potentials prior to high frequency stimulation, although it did not significantly potentiate LTP. Our results suggest that positive modulation of the NMDAR, by activation of the glycine-binding site, may compensate relational memory impairments due to hippocampal muscarinic neurotransmission dysfunction possibly through enhancements in LTP maintenance.

  10. Alzheimer amyloid beta-peptide A-beta25-35 blocks adenylate cyclase-mediated forms of hippocampal long-term potentiation.

    Science.gov (United States)

    Bisel, Blaine E; Henkins, Kristen M; Parfitt, Karen D

    2007-02-01

    Progressive memory loss and deposition of amyloid beta (Abeta) peptides throughout cortical regions are hallmarks of Alzheimer's disease (AD). Several studies in mice and rats have shown that overexpression of amyloid precursor protein (APP) or pretreatment with Abeta peptide fragments results in the inhibition of hippocampal long-term potentiation (LTP) as well as impairments in learning and memory of hippocampal-dependent tasks. For these studies we have investigated the effects of the Abeta(25-35) peptide fragment on LTP induced by adenylate cyclase stimulation followed immediately by application of Mg(++)-free aCSF ("chemLTP"). Treatment of young adult slices with the Abeta(25-35) peptide had no significant effect on basal synaptic transmission in area CA1, but treatment with the peptide for 20 min before inducing chemLTP with isoproterenol (ISO; 1 microM) or forskolin (FSK;10 microM) + Mg(++)-free aCSF resulted in complete blockade of LTP. In contrast, normal ISO-chemLTP was observed after treatment with the control peptide Abeta(35-25). The ability of the Abeta(25-35) peptide fragment to block this and other forms of synaptic plasticity may help elucidate the mechanisms underlying hippocampal deficits observed in animal models of AD and/or AD individuals.

  11. Synaptic long-term potentiation and depression in the rat medial vestibular nuclei depend on neural activation of estrogenic and androgenic signals.

    Directory of Open Access Journals (Sweden)

    Mariangela Scarduzio

    Full Text Available Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs and androgens (ARs. We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2 and 5α-dihydrotestosterone (DHT on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN. Long-term depression (LTD and long-term potentiation (LTP caused by different patterns of high frequency stimulation (HFS of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase and E2 (P450-aromatase from testosterone (T. We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids.

  12. The taurine transporter substrate guanidinoethyl sulfonate mimics the action of taurine on long-term synaptic potentiation.

    Science.gov (United States)

    Suárez, Luz M; Muñoz, María-Dolores; González, José C; Bustamante, Julián; Del Río, Rafael Martín; Solís, José M

    2016-11-01

    Taurine is especially abundant in rodent brain where it appears to be involved in osmoregulation and synaptic plasticity mechanisms. The demonstration of a physiological role for taurine has been hampered by the difficulty in modifying taurine levels in most tissues, including the brain. We used an experimental strategy to reduce taurine levels, involving treatment with guanidinoethyl sulfonate (GES), a structural analogue of taurine that, among other properties, acts as a competitive inhibitor of taurine transport. GES delivered in the drinking water of rats for 1 month effectively reduced taurine levels in brain structures (hippocampus, cerebellum and cortex) and outside the brain (heart, muscle, kidney, liver and plasma) by between 50 and 80 %, depending on the tissue. This partial taurine depletion did not affect either basal synaptic transmission or the late phase of long-term potentiation (late-LTP) in hippocampal slices. In vivo microdialysis studies in the hippocampus revealed that GES treatment reduced extracellular taurine levels and the magnitude of taurine released in response to the application of either N-methyl-D-aspartate (NMDA) or a hypoosmotic solution, without affecting release mechanisms. Finally, we demonstrated in hippocampal slices that a brief GES application can mimic taurine action on the conversion of a decremental LTP into a perdurable late-LTP, concluding that GES might replace taurine function in some mechanisms such as those implicated in synaptic plasticity.

  13. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  14. Observation of long term potentiation in papain-based memory devices

    KAUST Repository

    Bag, A.

    2014-06-01

    Biological synaptic behavior in terms of long term potentiation has been observed in papain-based (plant protein) memory devices (memristors) for the first time. Improvement in long term potentiation depends on pulse amplitude and width (duration). Continuous/repetitive dc voltage sweep leads to an increase in memristor conductivity leading to a long term memory in the \\'learning\\' processes.

  15. Inducible molecular switches for the study of long-term potentiation.

    Science.gov (United States)

    Hédou, Gaël; Mansuy, Isabelle M

    2003-04-29

    This article reviews technical and conceptual advances in unravelling the molecular bases of long-term potentiation (LTP), learning and memory using genetic approaches. We focus on studies aimed at testing a model suggesting that protein kinases and protein phosphatases balance each other to control synaptic strength and plasticity. We describe how gene 'knock-out' technology was initially exploited to disrupt the Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) gene and how refined knock-in techniques later allowed an analysis of the role of distinct phosphorylation sites in CaMKII. Further to gene recombination, regulated gene expression using the tetracycline-controlled transactivator and reverse tetracycline-controlled transactivator systems, a powerful new means for modulating the activity of specific molecules, has been applied to CaMKIIalpha and the opposing protein phosphatase calcineurin. Together with electro-physiological and behavioural evaluation of the engineered mutant animals, these genetic methodologies have helped gain insight into the molecular mechanisms of plasticity and memory. Further technical developments are, however, awaited for an even higher level of finesse.

  16. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  17. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  18. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    Science.gov (United States)

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  19. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  20. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  1. Distinct Single but Not Necessarily Repeated Tetanization Is Required to Induce Hippocampal Late-LTP in the Rat CA1

    Science.gov (United States)

    Sajikumar, Sreedharan; Navakkode, Sheeja; Frey, Julietta U.

    2008-01-01

    The protein synthesis-dependent form of hippocampal long-term potentiation (late-LTP) is thought to underlie memory. Its induction requires a distinct stimulation strength, and the common opinion is that only repeated tetani result in late-LTP whereas as single tetanus only reveals a transient early-LTP. Properties of LTP induction were compared…

  2. The roles of STP and LTP in synaptic encoding

    Directory of Open Access Journals (Sweden)

    Arturas Volianskis

    2013-02-01

    Full Text Available Long-term potentiation (LTP, a cellular model of learning and memory, is generally regarded as a unitary phenomenon that alters the strength of synaptic transmission by increasing the postsynaptic response to the release of a quantum of neurotransmitter. LTP, at CA3-CA1 synapses in the hippocampus, contains a stimulation-labile phase of short-term potentiation (STP, or transient LTP, t-LTP that decays into stable LTP. By studying the responses of populations of neurons to brief bursts of high-frequency afferent stimulation before and after the induction of LTP, we found that synaptic responses during bursts are potentiated equally during LTP but not during STP. We show that STP modulates the frequency response of synaptic transmission whereas LTP preserves the fidelity. Thus, STP and LTP have different functional consequences for the transfer of synaptic information.

  3. Effects of exposure to an extremely low frequency electromagnetic field on hippocampal long-term potentiation in rat.

    Science.gov (United States)

    Komaki, Alireza; Khalili, Afshin; Salehi, Iraj; Shahidi, Siamak; Sarihi, Abdolrahman

    2014-05-20

    Modern lifestyle exposes nearly all humans to electromagnetic fields, particularly to extremely low frequency electromagnetic fields (ELF-EMFs). Prolonged exposure to ELF-EMFs induces persistent changes in neuronal activity. However, the modulation of synaptic efficiency by ELF-EMFs in vivo is still unclear. In the present study, we investigated whether ELF-EMFs can change induction of long-term potentiation (LTP) and paired-pulse ratio (PPR) in the rat hippocampal area. Twenty-nine adult male Wistar rats were divided into 3 groups (ELF-EMF exposed, sham and control groups). The ELF-EMF group was exposed to a magnetic field for 90 consecutive days (2h/day). ELF-EMFs were produced by a circular coil (50Hz, 100 micro Tesla). The sham-exposed controls were placed in an identical chamber with no electromagnetic field. After this period, rats were deeply anesthetized with urethane (2.0mg/kg) and then a bipolar stimulating and recording electrode was implanted into the perforant pathway (PP) and dentate gyrus (DG), respectively. LTP in hippocampal area was induced by high-frequency stimulation (HFS). Prolonged exposure to ELF-EMFs increased LTP induction. There was a significant difference in the slope of EPSP and amplitude of PS between the ELF-EMF group and other groups. In conclusion, our data suggest that exposure to ELF-EMFs produces a marked change in the synaptic plasticity generated in synapses of the PP-DG. No significant difference in PPR of ELF-EMF group before and after HFS suggests a postsynaptic expression site of LTP.

  4. Leptin attenuates the detrimental effects of β-amyloid on spatial memory and hippocampal later-phase long term potentiation in rats.

    Science.gov (United States)

    Tong, Jia-Qing; Zhang, Jun; Hao, Ming; Yang, Ju; Han, Yu-Fei; Liu, Xiao-Jie; Shi, Hui; Wu, Mei-Na; Liu, Qing-Song; Qi, Jin-Shun

    2015-07-01

    β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1μg) effectively alleviated Aβ1-42 (20μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1-42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Different contributions of platelet-activating factor and nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Pettorossi, V E; Grassi, S

    2001-01-01

    In rat brainstem slices, we investigated the differential role of nitric oxide (NO) and platelet-activating factor (PAF) in long-term potentiation (LTP) induced in the ventral portion of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferents. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) and the PAF receptor antagonist ginkgolide B (BN-52021) were administered before and after induction of potentiation. The effect of carboxy-PTIO was to completely prevent LTP. By contrast, BN-52021 only reduced the amplitude of HFS potentiation, which could develop fully at the drug washout or decline to zero, becoming a short-term phenomenon, in the case of long-lasting PAF receptor block. Both drugs, when given after HFS, had no effect on the already established potentiation, but whilst BN-52021 showed an influence within 5 min of the LTP induction, carboxy-PTIO did not affect the response once HFS was delivered. Moreover, we showed that the NO donor, sodium nitroprusside, and methylcarbamyl PAF (mc-PAF) induced LTP which was associated with an increase in glutamate release as shown by reduction in the paired-pulse facilitation ratio. The mc-PAF LTP was prevented by the NO scavenger, while NO LTP was only reduced by BN-52021. We suggest that NO and PAF are implicated as retrograde messengers in two different phases of vestibular LTP: NO in the induction phase; and PAF in the full expression phase.

  6. Critical involvement of postsynaptic protein kinase activation in long-term potentiation at hippocampal mossy fiber synapses on CA3 interneurons.

    Science.gov (United States)

    Galván, Emilio J; Cosgrove, Kathleen E; Mauna, Jocelyn C; Card, J Patrick; Thiels, Edda; Meriney, Stephen D; Barrionuevo, Germán

    2010-02-24

    Hippocampal mossy fiber (MF) synapses on area CA3 lacunosum-moleculare (L-M) interneurons are capable of undergoing a Hebbian form of NMDA receptor (NMDAR)-independent long-term potentiation (LTP) induced by the same type of high-frequency stimulation (HFS) that induces LTP at MF synapses on pyramidal cells. LTP of MF input to L-M interneurons occurs only at synapses containing mostly calcium-impermeable (CI)-AMPA receptors (AMPARs). Here, we demonstrate that HFS-induced LTP at these MF-interneuron synapses requires postsynaptic activation of protein kinase A (PKA) and protein kinase C (PKC). Brief extracellular stimulation of PKA with forskolin (FSK) alone or in combination with 1-Methyl-3-isobutylxanthine (IBMX) induced a long-lasting synaptic enhancement at MF synapses predominantly containing CI-AMPARs. However, the FSK/IBMX-induced potentiation in cells loaded with the specific PKA inhibitor peptide PKI(6-22) failed to be maintained. Consistent with these data, delivery of HFS to MFs synapsing onto L-M interneurons loaded with PKI(6-22) induced posttetanic potentiation (PTP) but not LTP. Hippocampal sections stained for the catalytic subunit of PKA revealed abundant immunoreactivity in interneurons located in strata radiatum and L-M of area CA3. We also found that extracellular activation of PKC with phorbol 12,13-diacetate induced a pharmacological potentiation of the isolated CI-AMPAR component of the MF EPSP. However, HFS delivered to MF synapses on cells loaded with the PKC inhibitor chelerythrine exhibited PTP followed by a significant depression. Together, our data indicate that MF LTP in L-M interneurons at synapses containing primarily CI-AMPARs requires some of the same signaling cascades as does LTP of glutamatergic input to CA3 or CA1 pyramidal cells.

  7. Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses.

    Science.gov (United States)

    Chu, Yu-Xia; Zhang, Yan; Zhang, Yu-Qiu; Zhao, Zhi-Qi

    2010-10-01

    Tetanic stimulation of the sciatic nerve (TSS) produces long-term potentiation (LTP) of C-fiber-evoked field potentials in the spinal cord. This potentiation is considered to be a substrate for long-lasting sensitization in the spinal pain pathway. Because microglia have previously been shown to regulate the induction of spinal LTP, we hypothesize that P2X7 receptors (P2X7R), which are predominantly expressed in microglia and participate in the communication between microglia and neurons, may play a role in this induction. This study investigated the potential roles of P2X7Rs in spinal LTP and persistent pain induced by TSS in rats. OxATP or BBG, a P2X7R antagonist, prevented the induction of spinal LTP both in vivo and in spinal cord slices in vitro and alleviated mechanical allodynia. Down-regulation of P2X7Rs with P2X7-siRNA blocked the induction of spinal LTP and inhibited mechanical allodynia. Double immunofluorescence showed colocalization of P2X7Rs with the microglial marker OX-42, but not with the astrocytic marker GFAP or the neuronal marker NeuN. Intrathecal injection of BBG suppressed the up-regulation of microglial P2X7Rs and increased expression of Fos in the spinal superficial dorsal horn. Further, pre-administration of BBG inhibited increased expression of the microglial marker Iba-1, phosphorylated p38 (p-p38), interleukin 1β (IL-1β) and GluR1 following TSS. Pre-administration of the IL-1 receptor antagonist (IL-1ra) blocked both the induction of spinal LTP and the up-regulation of GluR1. These results suggest that microglial P2X7Rs and its downstream signaling pathways play a pivotal role in the induction of spinal LTP and persistent pain induced by TSS.

  8. Caffeine treatment prevents rapid eye movement sleep deprivation-induced impairment of late-phase long-term potentiation in the dentate gyrus.

    Science.gov (United States)

    Alhaider, Ibrahim A; Alkadhi, Karim A

    2015-11-01

    The CA1 and dentate gyrus (DG) are physically and functionally closely related areas of the hippocampus, but they differ in various respects, including their reactions to different insults. The purpose of this study was to determine the protective effects of chronic caffeine treatment on late-phase long-term potentiation (L-LTP) and its signalling cascade in the DG area of the hippocampus of rapid eye movement sleep-deprived rats. Rats were chronically treated with caffeine (300 mg/L drinking water) for 4 weeks, after which they were sleep-deprived for 24 h. L-LTP was induced in in anaesthetized rats, and extracellular field potentials from the DG area were recorded in vivo. The levels of L-LTP-related signalling proteins were assessed by western blot analysis. Sleep deprivation markedly reduced L-LTP magnitude, and basal levels of total cAMP response element-binding protein (CREB), phosphorylated CREB (P-CREB), and calcium/calmodulin kinase IV (CaMKIV). Chronic caffeine treatment prevented the reductions in the basal levels of P-CREB, total CREB and CaMKIV in sleep-deprived rats. Furthermore, caffeine prevented post-L-LTP sleep deprivation-induced downregulation of P-CREB and brain-derived neurotrophic factor in the DG. The current findings show that caffeine treatment prevents acute sleep deprivation-induced deficits in brain function.

  9. A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A.

    Science.gov (United States)

    Jensen, Vidar; Kaiser, Katharina M M; Borchardt, Thilo; Adelmann, Giselind; Rozov, Andrei; Burnashev, Nail; Brix, Christian; Frotscher, Michael; Andersen, Per; Hvalby, Øivind; Sakmann, Bert; Seeburg, Peter H; Sprengel, Rolf

    2003-12-15

    In adult mice, long-term potentiation (LTP) of synaptic transmission at CA3-to-CA1 synapses induced by tetanic stimulation requires L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors containing GluR-A subunits. Here, we report a GluR-A-independent form of LTP, which is comparable in size to LTP in wild-type mice at postnatal day 14 (P14) but diminishes between P14 and P42 in brain slices of GluR-A-deficient mice. The GluR-A-independent form of LTP is sensitive to D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), but lacks short-term potentiation (STP) and can also be observed in the pairing induction protocol. As judged by unaltered paired-pulse facilitation, this LTP form is postsynaptically expressed despite depleted extrasynaptic AMPA receptor pools with reduced levels of GluR-B, which accumulates in somata and synapses of CA1 pyramidal neurons in GluR-A-deficient mice. Our results show that in the developing hippocampus synaptic plasticity can be expressed by AMPA receptors lacking the GluR-A subunit.

  10. Endogenous 17ß-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system

    Directory of Open Access Journals (Sweden)

    Alessandro eTozzi

    2015-05-01

    Full Text Available 17β-estradiol (E2, a neurosteroid synthesized by P450-aromatase (ARO, modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs and dopamine (DA receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP in both medium spiny neurons (MSNs and cholinergic interneurons (ChIs. Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease.

  11. Long-term performance potential of concentrated photovoltaic (CPV) systems

    KAUST Repository

    Burhan, Muhammad

    2017-07-17

    Owing to the diverse photovoltaic (PV) systems’ design and technology, as well as the dynamic nature of insolation data received on the aperture surfaces, the instantaneous output from a PV system fluctuates greatly. For accurate performance estimation of a large PV field, the long term performance as electrical output is a more rational approach over the conventional testing methods, such as at Standard Testing Conditions (STC) and at the Nominal Operating Cell Temperature (NOCT) available hitherto. In this paper, the long-term performances of concentrated PVs (Cassegrain reflectors and Fresnel lens) with 2-axes tracking and a variety of PV systems, namely the stationary flat-plate PV (mono-crystalline, poly-crystalline and thin-films CIS types), is presented over a period of one year for the merit comparison of system design, under the tropical weather conditions of Singapore. From the measured field performances, the total energy output of 240.2 kW h/m/year is recorded for CPV operation in Singapore, which is nearly two folds higher than the stationary PV panels.

  12. Induction of long-term potentiation in single nociceptive dorsal horn neurons is blocked by the CaMKII inhibitor AIP.

    Science.gov (United States)

    Pedersen, Linda Margareth; Lien, Guro Flor; Bollerud, Ingunn; Gjerstad, Johannes

    2005-04-11

    Neuronal events leading to development of long-term potentiation (LTP) in the nociceptive pathways may be a cellular mechanism underlying central hyperalgesia. Here, we examine whether induction of LTP in nociceptive dorsal horn neurons at depths of 80-500 microm from the cord surface can be affected by spinal application of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor AIP. Extracellular recordings from single neurons in intact urethane anesthetized Sprague-Dawley rats were performed, and the neuronal A-fiber and C-fiber responses after sciatic nerve test pulses were defined according to latencies. A clear LTP of the nociceptive transmission following sciatic nerve high-frequency stimulation (HFS) was observed in single neurons in laminae I-IV of the dorsal horn. The increase in the C-fiber response after HFS was blocked in the presence of 2.0 mM AIP (P fiber response was not affected by 2.0 mM AIP alone or by vehicle. Thus, our data show that the neuronal process leading to the induction of LTP in the dorsal horn induced by HFS is clearly inhibited by the specific CaMKII inhibitor AIP. It is concluded that CaMKII may be important for the induction of LTP in single nociceptive dorsal horn neurons.

  13. β-adrenergic modulation of in vivo long-term potentiation in area CA1 and its role in spatial learning in rats

    Institute of Scientific and Technical Information of China (English)

    JI; Jinzhao; (季今朝); ZHANG; Xuehan; (张雪寒); LI; Baoming; (李葆明)

    2003-01-01

    Activation of β-adrenoceptors in area CA1 of the hippocampus facilitates in vitro long-term potentiation (LTP) in this region. However, it is unclear if in vivo LTP in area CA1 and hippocampus-dependent learning are subjected to β-adrenergic regulation. To address this question, we investigated the effects of the β-adrenergic agonist L-isoproterenol or antagonist DL-propranolol on in vivo LTP of area CA1 and the spatial learning in Morris water maze. In the presence of L-isoproterenol (through local infusion into area CA1), the theta-pulse stimulation with the parameter of 10 Hz, 150 pulses/train, 1 train, a frequency weakly modifying synaptic strength, induced a robust LTP, and this effect was blocked when DL-propranolol was co-administered. By contrast, the theta-pulse stimulation with the parameter of 5 Hz, 150 pulses/train, 3 trains, a frequency strongly modifying synaptic strength, induced a significantly smaller LTP when DL-propranolol was administered into area CA1. Accordingly, DL-propranolol impaired the spatial learning in the water maze when infused into area CA1 20 min pretraining. Compared with control rats, the DL-propranolol-treated rats showed significantly slower learning in the water maze and subsequently exhibited poor memory retention at 24-h test. These results suggest that β-adrenoceptors in area CA1 are involved in regulating in vivo synaptic plasticity of this area and are important for spatial learning.

  14. Phase dependency of long-term potentiation induction during the intermittent bursts of carbachol-induced β oscillation in rat hippocampal slices.

    Science.gov (United States)

    Nishimura, Motoshi; Nakatsuka, Hiroki; Natsume, Kiyohisa

    2012-01-01

    The rodent hippocampus possesses theta (θ) and beta (β) rhythms, which occur intermittently as bursts. Both rhythms are related to spatial memory processing in a novel environment. θ rhythm is related to spatial memory encoding process. β rhythm is related to the match/mismatch process. In the match/mismatch process, rodent hippocampus detects a representation matching sensory inputs of the current place among the retrieved internal representations of places. Long-term synaptic potentiation (LTP) is induced in both processes. The cholinergic agent carbachol induces intermittent θ and β oscillations in in vitro slices similar to in vivo bursts. LTP is facilitated during the generation of θ oscillation, suggesting that the facilitation of LTP is dependent upon the phases of intermittent burst (burst phases) of the oscillation. However, whether this is the case for β oscillation has not yet been studied. In the present study, LTP-inducing θ-burst stimulation was administered at the different burst phases of carbachol-induced β oscillations (CIBO), and the synaptic changes were measured at CA3-CA3 pyramidal cell synapses (CA3 synapse) and at CA3-CA1 pyramidal cell synapses (CA1 synapse). At the CA3 synapse, the largest magnitude of LTP was induced at the late burst phases of CIBO. At the CA1 synapse, LTP was induced only at the late burst phases. Modulation of LTP was suppressed when CIBO was blocked by the application of atropine at both synapses. The results suggest that the bursts of hippocampal β rhythm can determine the optimal temporal period for completing with the match/mismatch process.

  15. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long term potentiation in vivo

    Directory of Open Access Journals (Sweden)

    Oscar eHerreras

    2012-10-01

    Full Text Available Long term potentiation (LTP is commonly used to study synaptic plasticity but the associated changes in the spontaneous activity of individual neurons or the computational properties of neural networks in vivo remain largely unclear. The multisynaptic origin of spontaneous spikes makes difficult estimating the impact of a particular potentiated input. Accordingly, we adopted an approach that isolates pathway-specific postsynaptic activity from raw local field potentials (LFPs in the rat hippocampus in order to study the effects of LTP on ongoing spike transfer between cell pairs in the CA3-CA1 pathway. CA1 Schaffer-specific LFPs elicited by spontaneous clustered firing of CA3 pyramidal cells involved a regular succession of elementary micro-field-EPSPs (gamma-frequency that fired spikes in CA1 units. LTP increased the amplitude but not the frequency of these ongoing excitatory quanta. Also, the proportion of Schaffer-driven spikes in both CA1 pyramidal cells and interneurons increased in a cell-specific manner only in previously connected CA3-CA1 cell pairs, i.e., when the CA3 pyramidal cell had shown pre-LTP significant correlation with firing of a CA1 unit and potentiated spike-triggered average of Schaffer LFPs following LTP. Moreover, LTP produced subtle reorganization of presynaptic CA3 cell assemblies. These findings show effective enhancement of pathway specific ongoing activity which leads to increased spike transfer in potentiated segments of a network. These indicate that plastic phenomena induced by external protocols may intensify spontaneous information flow across specific channels as proposed in transsynaptic propagation of plasticity and synfire chain hypotheses that may be the substrate for different types of memory involving multiple brain structures.

  16. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long-term potentiation in vivo.

    Science.gov (United States)

    Fernández-Ruiz, Antonio; Makarov, Valeri A; Herreras, Oscar

    2012-01-01

    Long-term potentiation (LTP) is commonly used to study synaptic plasticity but the associated changes in the spontaneous activity of individual neurons or the computational properties of neural networks in vivo remain largely unclear. The multisynaptic origin of spontaneous spikes makes it difficult to estimate the impact of a particular potentiated input. Accordingly, we adopted an approach that isolates pathway-specific postsynaptic activity from raw local field potentials (LFPs) in the rat hippocampus in order to study the effects of LTP on ongoing spike transfer between cell pairs in the CA3-CA1 pathway. CA1 Schaffer-specific LFPs elicited by spontaneous clustered firing of CA3 pyramidal cells involved a regular succession of elementary micro-field-EPSPs (gamma-frequency) that fired spikes in CA1 units. LTP increased the amplitude but not the frequency of these ongoing excitatory quanta. Also, the proportion of Schaffer-driven spikes in both CA1 pyramidal cells and interneurons increased in a cell-specific manner only in previously connected CA3-CA1 cell pairs, i.e., when the CA3 pyramidal cell had shown pre-LTP significant correlation with firing of a CA1 unit and potentiated spike-triggered average (STA) of Schaffer LFPs following LTP. Moreover, LTP produced subtle reorganization of presynaptic CA3 cell assemblies. These findings show effective enhancement of pathway-specific ongoing activity which leads to increased spike transfer in potentiated segments of a network. They indicate that plastic phenomena induced by external protocols may intensify spontaneous information flow across specific channels as proposed in transsynaptic propagation of plasticity and synfire chain hypotheses that may be the substrate for different types of memory involving multiple brain structures.

  17. LTP after Stress: Up or Down?

    Directory of Open Access Journals (Sweden)

    Marian Joëls

    2007-01-01

    Full Text Available When an organism is exposed to a stressful situation, corticosteroid levels in the brain rise. This rise has consequences for behavioral performance, including memory formation. Over the past decades, it has become clear that a rise in corticosteroid level is also accompanied by a reduction in hippocampal long-term potentiation (LTP. Recent studies, however, indicate that stress does not lead to a universal suppression of LTP. Many factors, including the type of stress, the phase of the stress response, the area of investigation, type of LTP, and the life history of the organism determine in which direction LTP will be changed.

  18. Effect of chloramine-T on long-term potentiation at synapses between perforant path and dentate gyrus in hippocampus of rats in vivo.

    Science.gov (United States)

    Yang, Jun; Hu, Zhuang-Li; Jiang, Bo; Ni, Lan; Jin, You; Chen, Jian-Guo; Wang, Fang

    2011-03-01

    Reactive oxygen species (ROS), including superoxide, are generally considered as neurotoxic molecules whose effects can be alleviated by antioxidant enzymes. However, ROS also are known to be necessary components of the signal transduction cascades underlying normal synaptic plasticity. The oxidant chloramine-T (Ch-T), a specific oxidant to sulphur-containing residues, can oxidize methionine (Met) residues in proteins to alter protein function. To investigate the effect of Ch-T on the induction of hippocampal long-term potentiation (LTP) in dentate gyrus (DG), in vivo electrophysiological recording was employed. It was found that intracerebroventricular (ICV) injection of 0.1 μM Ch-T in 5 μL enhanced hippocampal LTP of rats slightly, whereas, 20 mM Ch-T in 5 μL greatly attenuated LTP. These effects can be reversed by pretreatment with 0.1 mM dithiothretol (DTT), a special thiol reductant. In addition, 0.1 μM Ch-T elevated LTP-induced increase in phosphorylation of Ca²+/calmodulin (CaM)-dependent protein kinase (CaMKII) and neurogranin (Ng), whereas 2 μM and 20 mM Ch-T reduced LTP-induced increase in phosphorylation status of the two key proteins, especially for 20 mM Ch-T. Pretreatment with DTT significantly prevented these effects. Taken together, these findings demonstrated that Ch-T has concentration-dependent effects on the induction of hippocampal LTP in vivo. In brief, low concentration of Ch-T facilitated hippocampal LTP by enhancing LTP-induced increase in p-CaMKII and p-Ng compared to controls, whereas high concentration of Ch-T obviously attenuated LTP accompanied by a decrease in the phosphorylated proteins, and both of these effects can be prevented by DTT. These results indicate that Ch-T modulates hippocampal LTP through regulating phosphorylation status of CaMKII and Ng. Published by Elsevier B.V.

  19. Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents.

    Science.gov (United States)

    Vázquez, Enrique; Barranco, Alejandro; Ramírez, Maria; Gruart, Agnes; Delgado-García, José M; Martínez-Lara, Esther; Blanco, Santos; Martín, María Jesús; Castanys, Esther; Buck, Rachael; Prieto, Pedro; Rueda, Ricardo

    2015-05-01

    Human milk oligosaccharides (HMOs) are unique with regard to their diversity, quantity and complexity, particularly in comparison to bovine milk oligosaccharides. HMOs are associated with functional development during early life, mainly related to immunity and intestinal health. Whether HMOs elicit a positive effect on cognitive capabilities of lactating infants remains an open question. This study evaluated the role of the most abundant HMO, 2'-fucosyllactose (2'-FL), in synaptic plasticity and learning capabilities in rodents. Mice and rats were prepared for the chronic recording of field excitatory postsynaptic potentials evoked at the hippocampal CA3-CA1 synapse. Following chronic oral administration of 2'-FL, both species showed improvements in input/output curves and in long-term potentiation (LTP) evoked experimentally in alert behaving animals. This effect on LTP was related to better performance of animals in various types of learning behavioral tests. Mice were tested for spatial learning, working memory and operant conditioning using the IntelliCage system, while rats were submitted to a fixed-ratio schedule in the Skinner box. In both cases, 2'-FL-treated animals performed significantly better than controls. In addition, chronic administration of 2'-FL increased the expression of different molecules involved in the storage of newly acquired memories, such as the postsynaptic density protein 95, phosphorylated calcium/calmodulin-dependent kinase II and brain-derived neurotrophic factor in cortical and subcortical structures. Taken together, the data show that dietary 2'-FL affects cognitive domains and improves learning and memory in rodents.

  20. Exploration of conditioned pain modulation effect on long-term potentiation-like pain amplification in humans

    DEFF Research Database (Denmark)

    Xia, Weiwei; Mørch, Carsten Dahl; Matre, D.;

    2017-01-01

    BACKGROUND: This study aimed to explore conditioned pain modulation (CPM) effect on long-term potentiation (LTP)-like pain amplification induced by cutaneous 10-Hz conditioning electrical stimulation (CES). METHODS: Conditioned pain modulation was induced by cold pressor conditioning stimulus (CPCS...... session. Moreover, CPCS resulted in lower pain intensity ratings during CES process but without affecting the SF-MPQ scores between two sessions. The SBF and ST increased after CES and then gradually declined but without differences between CPCS and control sessions. CPM did not affect HPT and pain......). SIGNIFICANCE: Conditioned pain modulation (CPM) may play a role in inhibiting the pain amplificatory process at the central nervous system and prompting central desensitization. CPM has a special inhibition effect for the development of perception amplification to non-painful mechanical stimuli....

  1. Social Isolation During Adolescence Strengthens Retention of Fear Memories and Facilitates Induction of Late-Phase Long-Term Potentiation.

    Science.gov (United States)

    Liu, Ji-Hong; You, Qiang-Long; Wei, Mei-Dan; Wang, Qian; Luo, Zheng-Yi; Lin, Song; Huang, Lang; Li, Shu-Ji; Li, Xiao-Wen; Gao, Tian-Ming

    2015-12-01

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation that often manifests as abnormal behavior in adulthood. The enduring consequence of isolation might be caused by a weakened ability to forget unpleasant memories. However, it remains unclear whether isolation affects unpleasant memories. To address this, we used a model of associative learning to induce the fear memories and evaluated the influence of isolation mice during adolescence on the subsequent retention of fear memories and its underlying cellular mechanisms. Following adolescent social isolation, we found that mice decreased their social interaction time and had an increase in anxiety-related behavior. Interestingly, when we assessed memory retention, we found that isolated mice were unable to forget aversive memories when tested 4 weeks after the original event. Consistent with this, we observed that a single train of high-frequency stimulation (HFS) enabled a late-phase long-term potentiation (L-LTP) in the hippocampal CA1 region of isolated mice, whereas only an early-phase LTP was observed with the same stimulation in the control mice. Social isolation during adolescence also increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and application of a tropomyosin-related kinase B (TrkB) receptor inhibitor ameliorated the facilitated L-LTP seen after isolation. Together, our results suggest that adolescent isolation may result in mental disorders during adulthood and that this may stem from an inability to forget the unpleasant memories via BDNF-mediated synaptic plasticity. These findings may give us a new strategy to prevent mental disorders caused by persistent unpleasant memories.

  2. Exposure to Kynurenic Acid during Adolescence Increases Sign-tracking and Impairs Long-term Potentiation in Adulthood

    Directory of Open Access Journals (Sweden)

    Nicole eDeAngeli

    2015-01-01

    Full Text Available Changes in brain reward systems are thought to contribute significantly to the cognitive and behavioral impairments of schizophrenia, as well as the propensity to develop co-occurring substance abuse disorders. Presently there are few treatments for persons with a dual-diagnosis and little is known about the neural substrates that underlie co-occurring schizophrenia and substance abuse. One goal of the present study was to determine if a change in the concentration of kynurenic acid (KYNA, a tryptophan metabolite that is increased in the brains of people with schizophrenia, affects reward-related behavior. KYNA is an endogenous antagonist of NMDA glutamate receptors and α7 nicotinic acetylcholine receptors, both of which are critically involved in neurodevelopment, plasticity, and behavior. In Experiment 1, rats were treated throughout adolescence with l-kynurenine (L-KYN, the precursor of KYNA. As adults, the rats were tested drug-free in an autoshaping procedure in which a lever was paired with food. Rats treated with L-KYN during adolescence exhibited increased sign-tracking behavior (lever pressing when they were tested as adults. Sign-tracking is thought to reflect the lever acquiring incentive salience (motivational value as a result of its pairing with reward. Thus, KYNA exposure may increase the incentive salience of cues associated with reward, perhaps contributing to an increase in sensitivity to drug-related cues in persons with schizophrenia. In Experiment 2, we tested the effects of exposure to KYNA during adolescence on hippocampal long-term potentiation (LTP. Rats treated with L-KYN exhibited no LTP after a burst of high frequency stimulation that was sufficient to produce robust LTP in vehicle-treated rats. This finding represents the first demonstrated consequence of elevated KYNA concentration during development and provides insight into the basis for cognitive and behavioral deficits that result from exposure to KYNA during

  3. Adult onset-hypothyroidism increases response latency and long-term potentiation (LTP) in rat hippocampus

    Science.gov (United States)

    Thyroid hormones (TH) influence central nervous system (CNS) function during both development and in adulthood. The hippocampus is critical for some types of learning and memory and is particularly sensitive to thyroid hormone deficiency. Hypothyroidism in adulthood has been ass...

  4. Long Term Potentials and Costs of RES - Part I: Potentials, Diffusion and Technological learning

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Junginger, H.M.; Panzer, C.; Resch, G.; Held, A.

    2011-01-01

    Europe requires a long term vision for Renewable Energy Sources (RES) in order to pave the way for a successful and in the mid-term stable RES deployment beyond 2020. This encompasses, on the one hand, an assessment of the mid-term potentials and diffusion constraints for the broad basket of RES opt

  5. Prenatal stress enhances excitatory synaptic transmission and impairs long-term potentiation in the frontal cortex of adult offspring rats.

    Directory of Open Access Journals (Sweden)

    Joanna Sowa

    Full Text Available The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential--smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP. These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring.

  6. Spatial performance in a complex maze is associated with persistent long-term potentiation enhancement in mouse hippocampal slices at early training stages.

    Science.gov (United States)

    Lange-Asschenfeldt, C; Lohmann, P; Riepe, M W

    2007-06-29

    Long-term potentiation (LTP) and long-term depression (LTD) are principal reflections of synaptic plasticity that have been implicated in learning and memory. We have previously shown that spatial learning in a newly validated complex maze is accompanied by depression of hippocampal CA1 synaptic activity in hippocampal slices of trained mice ("behavioral LTD"). In the present study, we investigated whether behavioral LTD is accompanied by alterations of subsequent LTP induced by high-frequency stimulation (HFS). Moreover, we were interested in the time course of such alterations in relation to training stage. Animals underwent 1, 2, and 8 days of spatial training in the complex maze, respectively. Hippocampal slices were taken 24 h after the last training session. We found a simultaneous decrease of basal synaptic response and increase of HFS induced LTP magnitude compared with slices of untrained animals. Synaptic plasticity was not influenced by repeated running wheel exercise in an additional control group without spatial learning. The mentioned alterations occurred already after day 2 of maze exploration parallel to the most pronounced improvement of behavioral performance but did not change thereafter until day 8 despite further learning progress. They were also found when animals were trained for 2 days and kept at rest for a subsequent 6 days. In conclusion, spatial learning may be reflected by distinct and persistent measurable alterations of synaptic plasticity in hippocampal CA1 neurons at early training stages.

  7. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory.

    Science.gov (United States)

    Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan

    2017-02-01

    Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Expression of p53 Target Genes in the Early Phase of Long-Term Potentiation in the Rat Hippocampal CA1 Area

    Directory of Open Access Journals (Sweden)

    Vladimir O. Pustylnyak

    2015-01-01

    Full Text Available Gene expression plays an important role in the mechanisms of long-term potentiation (LTP, which is a widely accepted experimental model of synaptic plasticity. We have studied the expression of at least 50 genes that are transcriptionally regulated by p53, as well as other genes that are related to p53-dependent processes, in the early phase of LTP. Within 30 min after Schaffer collaterals (SC tetanization, increases in the mRNA and protein levels of Bax, which are upregulated by p53, and a decrease in the mRNA and protein levels of Bcl2, which are downregulated by p53, were observed. The inhibition of Mdm2 by nutlin-3 increased the basal p53 protein level and rescued its tetanization-induced depletion, which suggested the involvement of Mdm2 in the control over p53 during LTP. Furthermore, nutlin-3 caused an increase in the basal expression of Bax and a decrease in the basal expression of Bcl2, whereas tetanization-induced changes in their expression were occluded. These results support the hypothesis that p53 may be involved in transcriptional regulation during the early phase of LTP. We hope that the presented data may aid in the understanding of the contribution of p53 and related genes in the processes that are associated with synaptic plasticity.

  9. Effects of Chronic Administration of Melatonin on Spatial Learning Ability and Long-term Potentiation in Lead-exposed and Control Rats

    Institute of Scientific and Technical Information of China (English)

    XIU-JING CAO; MING WANG; WEI-HENG CHEN; DA-MIAO ZHU; JIA-QI SHE; DI-YUN RUAN

    2009-01-01

    Objective To explore the changes in spatial learning performance and long-term potentiation (LTP) which is recognized as a component of the cellular basis of learning and memory in normal and lead-exposed rats after administration of melatonin (MT) for two months. Methods Experiment was performed in adult male Wistar rats (12 controls, 12 exposed to melatonin treatment, 10 exposed to lead and 10 exposed to lead and melatonin treatment). The lead-exposed rats received 0.2% lead acetate solution from their birth day while the control rats drank tap water. Melatonin (3 mg/kg) or vehicle was administered to the control and lead-exposed rats from the time of their weaning by gastric garage each day for 60 days, depending on their groups. At the age of 81-90 days, all the animals were subjected to Morris water maze test and then used for extracellular recording of LTP in the dentate gyrus (DG) area of the hippocampus in vivo. Results Low dose of melatonin given from weaning for two months impaired LTP in the DG area of hippocampus and induced learning and memory deficit in the control rats. When melatonin was administered over a prolonged period to the lead-exposed rats, it exacerbated LTP impairment, learning and memory deficit induced by lead. Conclusion Melatonin is not suitable for normal and lead-exposed children.

  10. Improvement in Memory and Brain Long-term Potentiation Deficits Due to Permanent Hypoperfusion/Ischemia by Grape Seed Extract in Rats

    Directory of Open Access Journals (Sweden)

    Alireza Sarkaki

    2013-09-01

    Full Text Available   Objective(s: Cerebral hypoperfusion/ischemia (CHI is a neurological disease where impaired hippocampus electrical activity and cognition caused by a serial pathophysiological events. This study aimed to evaluate the effects of chronic oral administration of grape seed extract (GSE on passive avoidance memory and long-term potentiation (LTP after permanent bilateral common carotid arteries occlusion (2CCAO in male adult rats.   Materials and Methods: Thirty-two adult male Wistar rats were randomly divided into: 1 Sham+Veh, 2 Isch+Veh, 3 Sham+GSE, 4 Isch+GSE. In order to make 2CCAO as an animal model of CHI, carotid arteries were ligatured and then cut bilaterally. To evaluation of passive avoidance memory, step-down latency (STL was measured and LTP was recorded from hippocampal dentate gyrus (DG after high frequency stimulation (HFS in all rats. Results: We found that memory was significantly impaired in rats after CHI (P

  11. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China); Teng, Weiping, E-mail: twpendocrine@yahoo.com.cn [Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China)

    2013-09-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  12. Involvement of microglia and interleukin-18 in the induction of long-term potentiation of spinal nociceptive responses induced by tetanic sciatic stimulation

    Institute of Scientific and Technical Information of China (English)

    Yu-Xia Chu; Yu-Qiu Zhang; Zhi-Qi Zhao

    2012-01-01

    Objective The present study aimed to investigate the potential roles of spinal microglia and downstream molecules in the induction of spinal long-term potentiation (LTP) and mechanical allodynia by tetanic stimulation of the sciatic nerve (TSS).Methods Spinal LTP was induced in adult male Sprague-Dawley rats by tetanic stimulation of the sciatic nerve (0.5 ms,100 Hz,40 V,10 trains of 2-s duration at 10-s intervals).Mechanical allodynia was determined using von Frey hairs.Immunohistochemical staining and Westem blot were used to detect changes in glial expression of interleukin- 18 (IL- 18) and IL- 18 receptor (IL- 18R).Results TSS induced LTP of C-fiber-evoked field potentials in the spinal cord.Intrathecal administration of the microglial inhibitor minocycline (200 μg/20 μL) 1 h before TSS completely blocked the induction of spinal LTP.Furthermore,after intrathecal injection of minocycline (200 μg/20 μL) by lumbar puncture 1 h before TSS,administration of minocycline for 7 consecutive days (once per day) partly inhibited bilateral allodynia.Immunohistochemistry showed that minocycline inhibited the sequential activation of microglia and astrocytes,and IL-1 8 was predominantly colocalized with the microglial marker Iba-1 in the spinal superficial dorsal horn.Western blot revealed that repeated intrathecal injection of minocycline significantly inhibited the increased expression of IL-18 and IL-18Rs in microglia induced by TSS.Conclusion The IL-18 signaling pathway in microglia is involved in TSS-induced spinal LTP and mechanical allodynia.

  13. Colorado Plateau Rapid Ecoregion Assessment Change Agents - Climate Change - Long-Term Potential For Change

    Data.gov (United States)

    Bureau of Land Management, Department of the Interior — This map shows long-term potential for climate change, which was calculated using a logic model to integrate the factors of: vegetation change summer & winter...

  14. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    OpenAIRE

    Alejandro Hernández; Héctor Burgos; Mauricio Mondaca; Rafael Barra; Héctor Núñez; Hernán Pérez; Rubén Soto-Moyano; Walter Sierralta; Victor Fernández; Ricardo Olivares; Luis Valladares

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unabl...

  15. Short-Term Plasticity and Long-Term Potentiation in Magnetic Tunnel Junctions: Towards Volatile Synapses

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2016-02-01

    Synaptic memory is considered to be the main element responsible for learning and cognition in humans. Although traditionally nonvolatile long-term plasticity changes are implemented in nanoelectronic synapses for neuromorphic applications, recent studies in neuroscience reveal that biological synapses undergo metastable volatile strengthening followed by a long-term strengthening provided that the frequency of the input stimulus is sufficiently high. Such "memory strengthening" and "memory decay" functionalities can potentially lead to adaptive neuromorphic architectures. In this paper, we demonstrate the close resemblance of the magnetization dynamics of a magnetic tunnel junction (MTJ) to short-term plasticity and long-term potentiation observed in biological synapses. We illustrate that, in addition to the magnitude and duration of the input stimulus, the frequency of the stimulus plays a critical role in determining long-term potentiation of the MTJ. Such MTJ synaptic memory arrays can be utilized to create compact, ultrafast, and low-power intelligent neural systems.

  16. Wnt-5a prevents Aβ-induced deficits in long-term potentiation and spatial memory in rats.

    Science.gov (United States)

    Zhang, Gui-Li; Zhang, Jun; Li, Shao-Feng; Lei, Liu; Xie, Hong-Yan; Deng, Fang; Feng, Jia-Chun; Qi, Jin-Shun

    2015-10-01

    Although the neurotoxicity of amyloid β (Aβ) protein in Alzheimer's disease (AD) has been reported widely, the exact molecular mechanism underlying the Aβ-induced synaptic dysfunction and memory impairment remains largely unclear. Growing evidence indicates that wingless-type (Wnt) signaling plays an important role in neuronal development, synapse formation and synaptic plasticity. In the present study, we investigated the neuroprotective action of Wnt-5a against the synaptic damage and memory deficit induced by Aβ25-35 by using in vivo electrophysiological recording and Morris water maze (MWM) test. We found that intracerebroventricular (i.c.v.) injection of Aβ25-35 alone did not affect the baseline field excitatory postsynaptic potentials (fEPSPs) and the paired-pulse facilitation (PPF) in the hippocampal CA1 region of rats, but significantly suppressed high frequency stimulation (HFS) induced long-term potentiation (LTP); pretreatment with Wnt-5a prevented the Aβ25-35-induced suppression of hippocampal LTP in a dose-dependent manner; soluble Frizzled-related protein (sFRP), a specific Wnt antagonist, effectively attenuated the protective effects of Wnt-5a. In MWM test, Aβ25-35 alone significantly disrupted spatial learning and memory ability of rats, while pretreatment with Wnt-5a effectively prevented the impairments induced by Aβ25-35. These results in the present study demonstrated for the first time the neuroprotective effects of Wnt-5a against Aβ-induced in vivo synaptic plasticity impairment and memory disorder, suggesting that Wnt signaling pathway is one of the important targets of Aβ neurotoxicity and Wnt-5a might be used as one of the putative candidates for the therapeutic intervention of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Loss of α1,6-Fucosyltransferase Decreases Hippocampal Long Term Potentiation: IMPLICATIONS FOR CORE FUCOSYLATION IN THE REGULATION OF AMPA RECEPTOR HETEROMERIZATION AND CELLULAR SIGNALING.

    Science.gov (United States)

    Gu, Wei; Fukuda, Tomohiko; Isaji, Tomoya; Hang, Qinglei; Lee, Ho-hsun; Sakai, Seiichiro; Morise, Jyoji; Mitoma, Junya; Higashi, Hideyoshi; Taniguchi, Naoyuki; Yawo, Hiromu; Oka, Shogo; Gu, Jianguo

    2015-07-10

    Core fucosylation is catalyzed by α1,6-fucosyltransferase (FUT8), which transfers a fucose residue to the innermost GlcNAc residue via α1,6-linkage on N-glycans in mammals. We previously reported that Fut8-knock-out (Fut8(-/-)) mice showed a schizophrenia-like phenotype and a decrease in working memory. To understand the underlying molecular mechanism, we analyzed early form long term potentiation (E-LTP), which is closely related to learning and memory in the hippocampus. The scale of E-LTP induced by high frequency stimulation was significantly decreased in Fut8(-/-) mice. Tetraethylammonium-induced LTP showed no significant differences, suggesting that the decline in E-LTP was caused by postsynaptic events. Unexpectedly, the phosphorylation levels of calcium/calmodulin-dependent protein kinase II (CaMKII), an important mediator of learning and memory in postsynapses, were greatly increased in Fut8(-/-) mice. The expression levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in the postsynaptic density were enhanced in Fut8(-/-) mice, although there were no significant differences in the total expression levels, implicating that AMPARs without core fucosylation might exist in an active state. The activation of AMPARs was further confirmed by Fura-2 calcium imaging using primary cultured neurons. Taken together, loss of core fucosylation on AMPARs enhanced their heteromerization, which increase sensitivity for postsynaptic depolarization and persistently activate N-methyl-d-aspartate receptors as well as Ca(2+) influx and CaMKII and then impair LTP. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Evidence that limbic neural plasticity in the right hemisphere mediates partial kindling induced lasting increases in anxiety-like behavior: effects of low frequency stimulation (quenching?) on long term potentiation of amygdala efferents and behavior following kindling.

    Science.gov (United States)

    Adamec, R E

    1999-08-21

    Behavioral and physiological effects of partial kindling of the right ventral hippocampus by perforant path (PP) stimulation were investigated in the cat. Partial kindling produced lasting changes in affect (increased defensive response to rats) and predatory attack (decreased pawing and biting attack). Partial kindling also induced long term potentiation (LTP) of amygdala efferent transmission to ventromedial hypothalamus (VMH) and periaqueductal gray (PAG) in left and right hemispheres. LTP of field population spikes evoked in area CA3 by PP stimulation was also observed. LTP was detected using evoked potential methods. These findings parallel previous studies of left PP-CA3 partial kindling. Analysis of covariance removing effects of LTP from behavioral changes suggests that initiation of increased defensiveness at 2 days after completion of partial kindling depended on LTP of left and right amygdalo-VMH and right amygdalo-PAG transmission. From 6 days after kindling onward, increased defensiveness depended on LTP of right amygdalo-PAG transmission. Depotentiation of amygdala efferent LTP by bilateral low frequency amygdala stimulation (LFS) (900 pulses at 1 Hz, once daily for 7 days) selectively reduced LTP in right amygdala efferents. At the same time, defensive, but not predatory attack behavior, was returned to levels seen prior to partial kindling. Both depotentiation and reduction of defensiveness were transient. Defensiveness increased to post-kindling levels by 76 days after LFS. At the same time, LTP was restored in the right amygdalo-PAG pathway. In contrast LTP in the right amygdalo-VMH pathway remained depotentiated. Effects of LFS were not due to damage, as thresholds to evoke amygdala efferent response were unchanged. These findings suggest that lasting change in affect following partial hippocampal kindling depends on LTP of right amygdala efferent transmission to PAG. The findings parallel studies of non-convulsant pharmacological induction of

  19. Daily acclimation handling does not affect hippocampal long-term potentiation or cause chronic sleep deprivation in mice.

    Science.gov (United States)

    Vecsey, Christopher G; Wimmer, Mathieu E J; Havekes, Robbert; Park, Alan J; Perron, Isaac J; Meerlo, Peter; Abel, Ted

    2013-04-01

    Gentle handling is commonly used to perform brief sleep deprivation in rodents. It was recently reported that daily acclimation handling, which is often used before behavioral assays, causes alterations in sleep, stress, and levels of N-methyl-D-aspartate receptor subunits prior to the actual period of sleep deprivation. It was therefore suggested that acclimation handling could mediate some of the observed effects of subsequent sleep deprivation. Here, we examine whether acclimation handling, performed as in our sleep deprivation studies, alters sleep/wake behavior, stress, or forms of hippocampal synaptic plasticity that are impaired by sleep deprivation. Adult C57BL/6J mice were either handled daily for 6 days or were left undisturbed in their home cages. On the day after the 6(th) day of handling, long-term potentiation (LTP) was induced in hippocampal slices with spaced four-train stimulation, which we previously demonstrated to be impaired by brief sleep deprivation. Basal synaptic properties were also assessed. In three other sets of animals, activity monitoring, polysomnography, and stress hormone measurements were performed during the 6 days of handling. Daily gentle handling alone does not alter LTP, rest/activity patterns, or sleep/wake architecture. Handling initially induces a minimal stress response, but by the 6(th) day, stress hormone levels are unaltered by handling. It is possible to handle mice daily to accustom them to the researcher without causing alterations in sleep, stress, or synaptic plasticity in the hippocampus. Therefore, effects of acclimation handling cannot explain the impairments in signaling mechanisms, synaptic plasticity, and memory that result from brief sleep deprivation.

  20. Hippocampal network activity is transiently altered by induction of long-term potentiation in the dentate gyrus of freely behaving rats

    Directory of Open Access Journals (Sweden)

    Arthur Bikbaev

    2007-12-01

    Full Text Available A role for oscillatory activity in hippocampal neuronal networks has been proposed in sensory encoding, cognitive functions and synaptic plasticity. In the hippocampus, theta (5–10 Hz and gamma (30–100 Hz oscillations may provide a mechanism for temporal encoding of information, and the basis for formation and retrieval of memory traces. Long-term potentiation (LTP of synaptic transmission, a candidate cellular model of synaptic information storage, is typically induced by high-frequency tetanisation (HFT of afferent pathways. Taking into account the role of oscillatory activity in the processing of information, dynamic changes may occur in hippocampal network activity in the period during HFT and/or soon after it. These changes in rhythmic activity may determine or, at least, contribute to successful potentiation and, in general, to formation of memory. We have found that short-term potentiation (STP and LTP as well LTPfailure are characterised with different profiles of changes in theta and gamma frequencies. Potentiation of synaptic transmission was associated with a significant increase in the relative theta power and mean amplitude of theta cycles in the period encompassing 300 seconds after HFT. Where LTP or STP, but not failure of potentiation, occurred, this facilitation of theta was accompanied by transient increases in gamma power and in the mean amplitude of gamma oscillations within a single theta cycle. Our data support that specific, correlated changes in these parameters are associated with successful synaptic potentiation. These findings suggest that changes in theta-gamma activity associated with induction of LTP may enable synaptic information storage in the hippocampus.

  1. The effects of prolonged administration of norepinephrine reuptake inhibitors on long-term potentiation in dentate gyrus, and on tests of spatial and object recognition memory in rats.

    Science.gov (United States)

    Walling, Susan G; Milway, J Stephen; Ingram, Matthew; Lau, Catherine; Morrison, Gillian; Martin, Gerard M

    2016-02-01

    Phasic norepinephrine (NE) release events are involved in arousal, novelty detection and in plasticity processes underlying learning and memory in mammalian systems. Although the effects of phasic NE release events on plasticity and memory are prevalently documented, it is less understood what effects chronic NE reuptake inhibition and sustained increases in noradrenergic tone, might have on plasticity and cognitive processes in rodent models of learning and memory. This study investigates the effects of chronic NE reuptake inhibition on hippocampal plasticity and memory in rats. Rats were administered NE reuptake inhibitors (NRIs) desipramine (DMI; 0, 3, or 7.5mg/kg/day) or nortriptyline (NTP; 0, 10 or 20mg/kg/day) in drinking water. Long-term potentiation (LTP; 200 Hz) of the perforant path-dentate gyrus evoked potential was examined in urethane anesthetized rats after 30-32 days of DMI treatment. Short- (4-h) and long-term (24-h) spatial memory was tested in separate rats administered 0 or 7.5mg/kg/day DMI (25-30 days) using a two-trial spatial memory test. Additionally, the effects of chronically administered DMI and NTP were tested in rats using a two-trial, Object Recognition Test (ORT) at 2- and 24-h after 45 and 60 days of drug administration. Rats administered 3 or 7.5mg/kg/day DMI had attenuated LTP of the EPSP slope but not the population spike at the perforant path-dentate gyrus synapse. Short- and long-term memory for objects is differentially disrupted in rats after prolonged administration of DMI and NTP. Rats that were administered 7.5mg/kg/day DMI showed decreased memory for a two-trial spatial task when tested at 4-h. In the novel ORT, rats receiving 0 or 7.5mg/kg/day DMI showed a preference for the arm containing a Novel object when tested at both 2- and 24-h demonstrating both short- and long-term memory retention of the Familiar object. Rats that received either dose of NTP or 3mg/kg/day DMI showed impaired memory at 2-h, however this

  2. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Mizui

    Full Text Available The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1 chemical long-term potentiation (LTP stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2 Ca(2+ influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3 the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK or Rho-associated kinase (ROCK inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  3. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    Science.gov (United States)

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca(2+) influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  4. India’s long-term growth potential and the implications for Australia

    OpenAIRE

    Ben Ralston; Wilson Au-Yeung; Bill Brummitt

    2011-01-01

    After 20 years of economic reform this article discusses India’s long-term growth potential and canvasses some of the challenges that Indian policy makers will need to overcome to realise this potential. Some of the consequences of India’s growth for Australia are also explored.

  5. mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones

    Science.gov (United States)

    Topolnik, Lisa; Azzi, Mounia; Morin, France; Kougioumoutzakis, André; Lacaille, Jean-Claude

    2006-01-01

    Hippocampal inhibitory interneurones demonstrate pathway- and synapse-specific rules of transmission and plasticity, which are key determinants of their role in controlling pyramidal cell excitability. Mechanisms underlying long-term changes at interneurone excitatory synapses, despite their importance, remain largely unknown. We use two-photon calcium imaging and whole-cell recordings to determine the Ca2+ signalling mechanisms linked specifically to group I metabotropic glutamate receptors (mGluR1α and mGluR5) and their role in hebbian long-term potentiation (LTP) in oriens/alveus (O/A) interneurones. We demonstrate that mGluR1α activation elicits dendritic Ca2+ signals resulting from Ca2+ influx via transient receptor potential (TRP) channels and Ca2+ release from intracellular stores. By contrast, mGluR5 activation produces dendritic Ca2+ transients mediated exclusively by intracellular Ca2+ release. Using Western blot analysis and immunocytochemistry, we show mGluR1α-specific extracellular signal-regulated kinase (ERK1/2) activation via Src in CA1 hippocampus and, in particular, in O/A interneurones. Moreover, we find that mGluR1α/TRP Ca2+ signals in interneurone dendrites are dependent on activation of the Src/ERK cascade. Finally, this mGluR1α-specific Ca2+ signalling controls LTP at interneurone synapses since blocking either TRP channels or Src/ERK and intracellular Ca2+ release prevents LTP induction. Thus, our findings uncover a novel molecular mechanism of interneurone-specific Ca2+ signalling, critical in regulating synaptic excitability in hippocampal networks. PMID:16740609

  6. 5-HT4-receptors modulate induction of long-term depression but not potentiation at hippocampal output synapses in acute rat brain slices.

    Directory of Open Access Journals (Sweden)

    Matthias Wawra

    Full Text Available The subiculum is the principal target of CA1 pyramidal cells and mediates hippocampal output to various cortical and subcortical regions of the brain. The majority of subicular pyramidal cells are burst-spiking neurons. Previous studies indicated that high frequency stimulation in subicular burst-spiking cells causes presynaptic NMDA-receptor dependent long-term potentiation (LTP whereas low frequency stimulation induces postsynaptic NMDA-receptor-dependent long-term depression (LTD. In the present study, we investigate the effect of 5-hydroxytryptamine type 4 (5-HT4 receptor activation and blockade on both forms of synaptic plasticity in burst-spiking cells. We demonstrate that neither activation nor block of 5-HT4 receptors modulate the induction or expression of LTP. In contrast, activation of 5-HT4 receptors facilitates expression of LTD, and block of the 5-HT4 receptor prevents induction of short-term depression and LTD. As 5-HT4 receptors are positively coupled to adenylate cyclase 1 (AC1, 5-HT4 receptors might modulate PKA activity through AC1. Since LTD is blocked in the presence of 5-HT4 receptor antagonists, our data are consistent with 5-HT4 receptor activation by ambient serotonin or intrinsically active 5-HT4 receptors. Our findings provide new insight into aminergic modulation of hippocampal output.

  7. Long-term natural gas supply to Europe: Import potential, infrastructure needs and investment promotion

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, M.; Karbuz, S.; Esnault, B.; El Andaloussi, H.

    2007-07-01

    This paper assesses the future long term (2010-2020-2030) gas import requirements and external supply potential for Europe, and identifies future gas corridor infrastructure needs taking into account a reserve/resource analysis, production and demand outlooks, export infrastructure and projects, supply costs as well as institutional, strategy and geopolitical issues, etc. Finally, the paper identifies investment barriers for different types of gas corridor infrastructure projects and proposes issues to be addressed by policymakers in order to put in place a favourable environment regarding investment promotion and to create a sustainable gas market for the long term. (auth)

  8. Genetic knockout of the α7 nicotinic acetylcholine receptor gene alters hippocampal long-term potentiation in a background strain-dependent manner.

    Science.gov (United States)

    Freund, Ronald K; Graw, Sharon; Choo, Kevin S; Stevens, Karen E; Leonard, Sherry; Dell'Acqua, Mark L

    2016-08-01

    Reduced α7 nicotinic acetylcholine receptor (nAChR) function is linked to impaired hippocampal-dependent sensory processing and learning and memory in schizophrenia. While knockout of the Chrna7 gene encoding the α7nAChR on a C57/Bl6 background results in changes in cognitive measures, prior studies found little impact on hippocampal synaptic plasticity in these mice. However, schizophrenia is a multi-genic disorder where complex interactions between specific genetic mutations and overall genetic background may play a prominent role in determining phenotypic penetrance. Thus, we compared the consequences of knocking out the α7nAChR on synaptic plasticity in C57/Bl6 and C3H mice, which differ in their basal α7nAChR expression levels. Homozygous α7 deletion in C3H mice, which normally express higher α7nAChR levels, resulted in impaired long-term potentiation (LTP) at hippocampal CA1 synapses, while C3H α7 heterozygous mice maintained robust LTP. In contrast, homozygous α7 deletion in C57 mice, which normally express lower α7nAChR levels, did not alter LTP, as had been previously reported for this strain. Thus, the threshold of Chrna7 expression required for LTP may be different in the two strains. Measurements of auditory gating, a hippocampal-dependent behavioral paradigm used to identify schizophrenia-associated sensory processing deficits, was abnormal in C3H α7 knockout mice confirming that auditory gating also requires α7nAChR expression. Our studies highlight the importance of genetic background on the regulation of synaptic plasticity and could be relevant for understanding genetic and cognitive heterogeneity in human studies of α7nAChR dysfunction in mental disorders.

  9. In vivo sodium salicylate causes tolerance to acute morphine exposure and alters the ability of high frequency stimulation to induce long-term potentiation in hippocampus area CA1.

    Science.gov (United States)

    Hosseinmardi, Narges; Azimi, Lila; Fathollahi, Yaghoub; Javan, Mohammad; Naghdi, Naser

    2011-11-30

    Effects of morphine on synaptic transmission and plasticity in the hippocampus area CA1 following in vivo sodium salicylate and the potential molecular mechanism were investigated. Population spikes (PS) were recorded from stratum pylamidale of area CA1 following stimulation of Schaffer collaterals in slices taken from control and sodium salicylate injected rats. To induce long term potentiation (LTP), a 100Hz tetanic stimulation was used. Acute in vitro morphine increased baseline PS amplitude in control slices but not in slices taken from sodium salicylate treated rats. In vivo chronic salicylate did slightly decrease and/or destabilize LTP of CA1 synaptic transmission. We also found that mRNA of NR2A subunit of NMDA receptor was reduced in the hippocampus of sodium salicylate treated rats as compared to control ones. Following LTP induction, the mRNA of NR2A and PP1 (protein phosphatase 1) in slices taken from salicylate-treated rats were more than those of control ones. After long-term exposure to in vitro morphine, high frequency stimulation (HFS) decreased NR2A mRNA level significantly in sodium salicylate treated slices. It is concluded that in vivo sodium salicylate causes tolerance to excitatory effect of morphine and changes the ability of HFS to induce PS LTP in the hippocampus area CA1 in vitro. These changes in synaptic response may be due to alterations in NR2A and PP1 expression.

  10. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a

  11. Repeated long-term potentiation induces mossy fibre sprouting and changes the sensibility of hippocampal granule cells to subconvulsive doses of pentylenetetrazol.

    Science.gov (United States)

    Hassan, H; Pohle, W; Rüthrich, H; Brödemann, R; Krug, M

    2000-04-01

    Electrical and chemical kindling induces sprouting of the mossy fibre system and potentiation of evoked field potentials in the dentate gyrus. It has been postulated that such changes may also be induced by repeated induction of long-term potentiation (LTP) with tetanic stimulation of the perforant pathway. LTP was induced in rats chronically implanted with stimulation electrodes in the ipsilateral and contralateral angular bundles and with a recording electrode in the ipsilateral dorsal dentate gyrus. The animals were stimulated 10 times on 10 consecutive days but with different tetanization strengths. Sprouting of the mossy fibres terminating in the CA3 region was significantly induced only in the group of 'strongly' tetanized animals, but not in that of 'weakly' tetanized animals, or in low-frequency stimulated animals. Additionally, a novel form of potentiation which was previously found in pentylenetetrazol (PTZ)-kindled animals was also observed in the group of 'strongly' and 'weakly' tetanized rats. Differences in duration of this potentiation were found between the two groups of animals tetanized with different strengths. The results further demonstrate that morphological and functional changes in the hippocampus, similar to those seen after kindling, can also occur in an activation paradigm leading to long-lasting synaptic plasticity but not accompanied by seizure activity.

  12. Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus.

    Science.gov (United States)

    Caillard, O; Ben-Ari, Y; Gaiarsa, J L

    1999-07-01

    1. The plasticity of GABAergic synapses was investigated in neonatal rat hippocampal slices obtained between postnatal days 3 and 6 using intracellular recording techniques. Ionotropic glutamate receptor antagonists were present throughout the experiments to isolate GABAA receptor-mediated postsynaptic potentials (GABAA PSPs) or currents (GABAA PSCs). 2. Repetitive depolarizing pulses (20 pulses, 0.5 s duration, at 0.1 Hz, each pulse generating 4-6 action potentials) induced a long-term potentiation in the slope and amplitude of the evoked GABAA PSPs and GABAA PSCs. 3. Long-term potentiation was prevented by intracellular injection of the calcium chelator BAPTA (50 mM), or when the voltage-dependent calcium channels blockers Ni2+ (50 microM) and nimodipine (10 microM) were bath applied. 4. Repetitive depolarizing pulses induced a persistent (over 1 h) increase in the frequency of spontaneous GABAA PSCs. 5. Repetitive depolarizing pulses induced a long-lasting increase in the frequency of miniature GABAA PSCs, without altering their amplitude or decay-time constant. 6. It is concluded that the postsynaptic activation of voltage-dependent calcium channels leads to a long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. This form of plasticity is expressed as an increase in the probability of GABA release or in the number of functional synapses, rather than as an upregulation of postsynaptic GABAA receptor numbers or conductance at functional synapses.

  13. Effects of calcineurin on LTP of rats in vivo

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Calcineurin (CN) is thought to play a role in the synaptic plastivity and long-term potentiation (LTP) in the hippocampus. Based on two LTP models in vivo, a specific inhibitor cyclosporin A (CsA) of CN was observed, which affected LTP in the hippocampal dentate gyrus of the rats. The results indicated that CsA blocked LTP induced by high frequency stimulation (HFS) partly, but it had no effect on the decrease of the onset and peak latency of population spikes (PS) except that it reduced the increase of the amplitude after HFS. On the other hand, CsA blocked LTP induced by ginsenosides (GSS) completely. It suppressed the GSS-enhanced amplitude of PS reversibly and blocked the decrease of the peak latency of PS induced by the GSS. These results suggest that the postsynaptic CN plays a role in the induction of LTP in the hippocampus of the rats.

  14. Potential Long-Term Complications of Endovascular Stent Grafting for Blunt Thoracic Aortic Injury

    Directory of Open Access Journals (Sweden)

    Larry E. Miller

    2012-01-01

    Full Text Available Blunt thoracic aortic injury (BTAI is a rare, but lethal, consequence of rapid deceleration events. Most victims of BTAI die at the scene of the accident. Of those who arrive to the hospital alive, expedient aortic intervention significantly improves survival. Thoracic endovascular aortic repair (TEVAR has been accepted as the standard of care for BTAI at many centers, primarily due to the convincing evidence of lower mortality and morbidity in comparison to open surgery. However, less attention has been given to potential long-term complications of TEVAR for BTAI. This paper focuses on these complications, which include progressive aortic expansion with aging, inadequate stent graft characteristics, device durability concerns, long-term radiation exposure concerns from follow-up computed tomography scans, and the potential for (Victims of Modern Imaging Technology VOMIT.

  15. Long-term enhancement (LTE) of postsynaptic potentials following neural conditioning, in mammalian sympathetic ganglia.

    Science.gov (United States)

    Libet, B; Mochida, S

    1988-11-15

    Orthodromic, preganglionic conditioning stimulation can consistently induce long-term enhancement (LTE) (greater than 3 h) of the muscarinically mediated slow excitatory postsynaptic potential and the slow inhibitory postsynaptic potential. This was shown for superior cervical ganglia of rabbit and rat. Effective conditioning stimuli are in a physiologically observed range (3/s for 7 min, 5/s for 4 min, 10/s for 2 min, 20/s for 1 min). LTE was producible both homosynaptically and heterosynaptically. LTE can thus be associative, with conditioning synaptic input in one line inducing long-term changes in postsynaptic responses to another (heterosynaptic) input. The dopamine antagonist butaclamol depressed LTE, particularly that following the initial postconditioning period of 30 min. Adrenergic antagonists had no effect. This pharmacological evidence, coupled with the heterosynaptic induction of LTE, supports the view that neurally induced LTE may be at least partly mediated by endogenous dopamine. Another non-cholinergic but non-adrenergic transmitter (possibly a peptide) might contribute to the LTE seen in the initial 30 min postconditioning. The present, orthodromically induced LTE is clearly different from the long-term potentiation widely studied in hippocampus, etc., in the modes of induction and synaptic mediation.

  16. Enhanced Dentate Neurogenesis after Brain Injury Undermines Long-Term Neurogenic Potential and Promotes Seizure Susceptibility

    Directory of Open Access Journals (Sweden)

    Eric J. Neuberger

    2017-09-01

    Full Text Available Hippocampal dentate gyrus is a focus of enhanced neurogenesis and excitability after traumatic brain injury. Increased neurogenesis has been proposed to aid repair of the injured network. Our data show that an early increase in neurogenesis after fluid percussion concussive brain injury is transient and is followed by a persistent decrease compared with age-matched controls. Post-injury changes in neurogenesis paralleled changes in neural precursor cell proliferation and resulted in a long-term decline in neurogenic capacity. Targeted pharmacology to restore post-injury neurogenesis to control levels reversed the long-term decline in neurogenic capacity. Limiting post-injury neurogenesis reduced early increases in dentate excitability and seizure susceptibility. Our results challenge the assumption that increased neurogenesis after brain injury is beneficial and show that early post-traumatic increases in neurogenesis adversely affect long-term outcomes by exhausting neurogenic potential and enhancing epileptogenesis. Treatments aimed at limiting excessive neurogenesis can potentially restore neuroproliferative capacity and limit epilepsy after brain injury.

  17. Enhanced Dentate Neurogenesis after Brain Injury Undermines Long-Term Neurogenic Potential and Promotes Seizure Susceptibility.

    Science.gov (United States)

    Neuberger, Eric J; Swietek, Bogumila; Corrubia, Lucas; Prasanna, Anagha; Santhakumar, Vijayalakshmi

    2017-09-12

    Hippocampal dentate gyrus is a focus of enhanced neurogenesis and excitability after traumatic brain injury. Increased neurogenesis has been proposed to aid repair of the injured network. Our data show that an early increase in neurogenesis after fluid percussion concussive brain injury is transient and is followed by a persistent decrease compared with age-matched controls. Post-injury changes in neurogenesis paralleled changes in neural precursor cell proliferation and resulted in a long-term decline in neurogenic capacity. Targeted pharmacology to restore post-injury neurogenesis to control levels reversed the long-term decline in neurogenic capacity. Limiting post-injury neurogenesis reduced early increases in dentate excitability and seizure susceptibility. Our results challenge the assumption that increased neurogenesis after brain injury is beneficial and show that early post-traumatic increases in neurogenesis adversely affect long-term outcomes by exhausting neurogenic potential and enhancing epileptogenesis. Treatments aimed at limiting excessive neurogenesis can potentially restore neuroproliferative capacity and limit epilepsy after brain injury. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Acute stress causes rapid synaptic insertion of Ca2+ -permeable AMPA receptors to facilitate long-term potentiation in the hippocampus.

    Science.gov (United States)

    Whitehead, Garry; Jo, Jihoon; Hogg, Ellen L; Piers, Thomas; Kim, Dong-Hyun; Seaton, Gillian; Seok, Heon; Bru-Mercier, Gilles; Son, Gi Hoon; Regan, Philip; Hildebrandt, Lars; Waite, Eleanor; Kim, Byeong-Chae; Kerrigan, Talitha L; Kim, Kyungjin; Whitcomb, Daniel J; Collingridge, Graham L; Lightman, Stafford L; Cho, Kwangwook

    2013-12-01

    The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca2+ -permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation.

  19. Potentially inappropriate prescriptions for older patients in long-term care

    Directory of Open Access Journals (Sweden)

    Laurin Danielle

    2004-10-01

    Full Text Available Abstract Background Inappropriate medication use is a major healthcare issue for the elderly population. This study explored the prevalence of potentially inappropriate prescriptions (PIPs in long-term care in metropolitan Quebec. Methods A cross sectional chart review of 2,633 long-term care older patients of the Quebec City area was performed. An explicit criteria list for PIPs was developed based on the literature and validated by a modified Delphi method. Medication orders were reviewed to describe prescribing patterns and to determine the prevalence of PIPs. A multivariate analysis was performed to identify predictors of PIPs. Results Almost all residents (94.0% were receiving one or more prescribed medication; on average patients had 4.8 prescribed medications. A majority (54.7% of treated patients had a potentially inappropriate prescription (PIP. Most common PIPs were drug interactions (33.9% of treated patients, followed by potentially inappropriate duration (23.6%, potentially inappropriate medication (14.7% and potentially inappropriate dosage (9.6%. PIPs were most frequent for medications of the central nervous system (10.8% of prescribed medication. The likelihood of PIP increased significantly as the number of drugs prescribed increased (odds ratio [OR]: 1.38, 95% confidence interval [CI]: 1.33 – 1.43 and with the length of stay (OR: 1.78, CI: 1.43 – 2.20. On the other hand, the risk of receiving a PIP decreased with age. Conclusion Potentially inappropriate prescribing is a serious problem in the highly medicated long-term care population in metropolitan Quebec. Use of explicit criteria lists may help identify the most critical issues and prioritize interventions to improve quality of care and patient safety.

  20. Long term hydrogen production potential of concentrated photovoltaic (CPV) system in tropical weather of Singapore

    KAUST Repository

    Burhan, Muhammad

    2016-08-23

    Concentrated photovoltaic (CPV) system provides highest solar energy conversion efficiency among all the photovoltaic technologies and provides the most suitable option to convert solar energy into hydrogen, as future sustainable energy carrier. So far, only conventional flat plate PV systems are being used for almost all of the commercial applications. However, most of the studies have only shown the maximum efficiency of hydrogen production using CPV. In actual field conditions, the performance of CPV-Hydrogen system is affected by many parameter and it changes continuously during whole day operation. In this paper, the daily average and long term performances are proposed to analyze the real field potential of the CPV-Hydrogen system, which is of main interest for designers and consumers. An experimental setup is developed and a performance model is proposed to investigate the average and long term production potential of CPV-Hydrogen system. The study is carried out in tropical weather of Singapore. The maximum CPV efficiency of 27-28% and solar to hydrogen (STH) efficiency of 18%, were recorded. In addition, the CPV-Hydrogen system showed the long term average efficiency of 15.5%, for period of one year (12-months), with electrolyser rating of 47 kWh/kg and STH production potential of 218 kWh/kg. Based upon the DNI availability, the system showed hydrogen production potential of 0.153-0.553 kg/m/month, with average production of 0.43 kg/m/month. However, CPV-Hydrogen system has shown annual hydrogen production potential of 5.162 kg/m/year in tropical weather of Singapore.

  1. Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation.

    Science.gov (United States)

    Shin, S Y; Han, S H; Woo, R-S; Jang, S H; Min, S S

    2016-03-01

    Exposure to maternal separation (MS) during early life is an identified risk factor for emotional disorders such as anxiety and depression later in life. This study investigated the effects of neonatal MS on the behavior and long-term potentiation (LTP) as well as basic synaptic transmission at hippocampal CA3-CA1 and mossy fiber (MF)-CA3 synapses in adolescent mice for 19days. When mice were adolescents, we measured depression, learning, memory, anxious and aggressive behavior using the forced swimming test (FST), Y-maze, Morris water maze (MWM), elevated plus maze (EPM), three consecutive days of the open field test, the social interaction test, the tube-dominance test and the resident-intruder test. The results showed that there was no difference in FST, Y-maze, and MWM performance. However, MS mice showed more anxiety-like behavior in the EPM test and aggressive-like behavior in the tube-dominance and resident-intruder tests. In addition, the magnitude of LTP and release probability in the MF-CA3 synapses was reduced in the MS group but not in the CA3-CA1 synapse. Our results indicate that early life stress due to MS may induce anxiety- and aggressive-like behavior during adolescence, and these effects are associated with synaptic plasticity at the hippocampal MF-CA3 synapses.

  2. Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase.

    Science.gov (United States)

    Li, Hongjie; Wu, Xiaoyan; Bai, Yanrui; Huang, Yan; He, Wenting; Dong, Zhifang

    2012-05-01

    It is well documented that bilateral hippocampal lesions or unilateral hippocampal lesion at birth causes impairment of contralateral LTP and long-term memory. However, effects of unilateral hippocampal lesion in adults on contralateral in vivo LTP and memory are not clear. We here examined the influence of unilateral electrolytic dorsal hippocampal lesion in adult rats on contralateral LTP in vivo and spatial memory during different postoperative phases. We found that acute unilateral hippocampal lesion had no effect on contralateral LTP. However, contralateral LTP was impaired at 1 week after lesion, and was restored to the control level at postoperative week 4. Similarly, spatial memory was also impaired at postoperative week 1, and was restored at postoperative week 4. In addition, the rats at postoperative week 1 showed stronger spatial exploratory behavior in a novel open-field environment. The sham operation had no effects on contralateral LTP, spatial memory and exploration at either postoperative week 1 or week 4. These results suggest that unilateral dorsal hippocampal lesion in adult rats causes transient contralateral LTP impairment and spatial memory deficit. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Capsaicin-sensitive C- and A-fibre nociceptors control long-term potentiation-like pain amplification in humans.

    Science.gov (United States)

    Henrich, Florian; Magerl, Walter; Klein, Thomas; Greffrath, Wolfgang; Treede, Rolf-Detlef

    2015-09-01

    Long-term potentiation in the spinal dorsal horn requires peptidergic C-fibre activation in animals. Perceptual correlates of long-term potentiation following high-frequency electrical stimulation in humans include increased sensitivity to electrical stimuli at the high frequency stimulation site (homotopic pain-long-term potentiation) and increased sensitivity to pinprick surrounding the high frequency stimulation site (heterotopic pain-long-term potentiation, equivalent to secondary hyperalgaesia). To characterize the peripheral fibre populations involved in induction of pain-long-term potentiation, we performed two selective nerve block experiments in 30 healthy male volunteers. Functional blockade of TRPV1-positive nociceptors by high-concentration capsaicin (verified by loss of heat pain) significantly reduced pain ratings to high frequency stimulation by 47% (P pain-long-term potentiation by 71% (P pain-long-term potentiation by 92% (P pain to pinprick) significantly reduced pain ratings to high frequency stimulation by 37% (P pain-long-term potentiation (-5%). It had a marginal effect on heterotopic pain-long-term potentiation (-35%, P = 0.059), while the area of secondary hyperalgesia remained unchanged (-2%, P = 0.88). In conclusion, all nociceptor subclasses contribute to high frequency stimulation-induced pain (with a relative contribution of C > Aδ fibres, and an equal contribution of TRPV1-positive and TRPV1-negative fibres). TRPV1-positive C-fibres are the main inducers of both homotopic and heterotopic pain-long-term potentiation. TRPV1-positive A-fibres contribute substantially to the induction of heterotopic pain-long-term potentiation. TRPV1-negative C-fibres induce a component of homotopic self-facilitation but not heterotopic pain-long-term potentiation. TRPV1-negative A-fibres are the main afferents mediating pinprick pain and hyperalgesia, however, they do not appear to contribute to the induction of pain-long-term potentiation. These

  4. Differential effects of the histamine H3 receptor agonist methimepip on dentate granule cell excitability, paired-pulse plasticity and long-term potentiation in prenatal alcohol-exposed rats

    Science.gov (United States)

    Varaschin, Rafael K.; Rosenberg, Martina J.; Hamilton, Derek A.; Savage, Daniel D.

    2016-01-01

    We previously reported that prenatal alcohol-induced deficits in dentate gyrus (DG) long-term potentiation (LTP) are ameliorated by the histamine H3 receptor inverse agonist ABT-239. ABT-239 did not enhance LTP in control rats, suggesting a heightened H3 receptor-mediated inhibition of glutamate release in prenatal alcohol-exposed (PAE) offspring. As the modulation of glutamate release is one important facet of LTP, we examined the effect of methimepip, a histamine H3 receptor agonist, on DG granule cell excitability, glutamate release and LTP in control and PAE rats. Long-Evans rat dams voluntarily consumed either a 0% or 5% ethanol solution four hours daily throughout gestation. Male adult offspring were anesthetized with urethane and electrodes implanted into the entorhinal cortex and DG. PAE reduced coupling of excitatory post-synaptic field potentials to population spikes, an effect mimicked in control rats treated with 1 mg/kg methimepip. Methimepip decreased release probability in controls but not in PAE offspring. GABAergic feedback inhibition of granule cell responsiveness was not affected by either PAE or methimepip. PAE reduced LTP in the DG, another effect mimicked in methimepip-treated control rats. Again, methimepip did not exacerbate the PAE-induced LTP deficit. Thus, while methimepip treatment of control rats mimicked some baseline and activity-dependent deficits observed in saline-treated PAE offspring, methimepip treatment of PAE rats did not exacerbate these deficits. Whether the absence of an added methimepip effect in PAE offspring is a consequence of a “floor effect” for the responses measured or is due to differential drug dose responsiveness will require further investigation. Further, more detailed studies of H3 receptor-mediated responses in vitro may provide clearer insights into the role of the H3 receptor regulation of excitatory transmission at the perforant path - DG synapse in PAE rats. PMID:24818819

  5. Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure

    Science.gov (United States)

    Nevalainen, Liisa; Rantala, Marttiina V.; Luoto, Tomi P.; Ojala, Antti E. K.; Rautio, Milla

    2016-07-01

    Despite the biologically damaging impacts of solar ultraviolet radiation (UV) in nature, little is known about its natural variability, forcing mechanisms, and long-term effects on ecosystems and organisms. Arctic zooplankton, for example the aquatic keystone genus Daphnia (Crustacea, Cladocera) responds to biologically damaging UV by utilizing photoprotective strategies, including pigmentation. We examined the preservation and content of UV-screening pigments in fossil Daphnia remains (ephippia) in two arctic lake sediment cores from Cornwallis Island (Lake R1), Canada, and Spitsbergen (Lake Fugledammen), Svalbard. The aims were to document changes in the degree of UV-protective pigmentation throughout the past centuries, elucidate the adaptive responses of zooplankton to long-term variations in UV exposure, and estimate the potential of fossil zooplankton pigments in reconstructing aquatic UV regimes. The spectroscopic absorbance measurements of fossil Daphnia ephippia under UV (280-400 nm) and visible light (400-700 nm) spectral ranges indicated that melanin (absorbance maxima at UV wavebands 280-350 nm) and carotenoids (absorbance maxima at 400-450 nm) pigments were preserved in the ephippia in both sediment cores. Downcore measurements of the most important UV-protective pigment melanin (absorbance measured at 305 and 340 nm) showed marked long-term variations in the degree of melanisation. These variations likely represented long-term trends in aquatic UV exposure and were positively related with solar radiation intensity. The corresponding trends in melanisation and solar activity were disrupted at the turn of the 20th century in R1, but remained as strong in Fugledammen. The reversed trends in the R1 core were simultaneous with a significant aquatic community reorganization taking place in the lake, suggesting that recent environmental changes, likely related to climate warming had a local effect on pigmentation strategies. This time horizon is also

  6. FXR1P Limits Long-Term Memory, Long-Lasting Synaptic Potentiation, and De Novo GluA2 Translation

    Directory of Open Access Journals (Sweden)

    Denise Cook

    2014-11-01

    Full Text Available Translational control of mRNAs allows for rapid and selective changes in synaptic protein expression that are required for long-lasting plasticity and memory formation in the brain. Fragile X Related Protein 1 (FXR1P is an RNA-binding protein that controls mRNA translation in nonneuronal cells and colocalizes with translational machinery in neurons. However, its neuronal mRNA targets and role in the brain are unknown. Here, we demonstrate that removal of FXR1P from the forebrain of postnatal mice selectively enhances long-term storage of spatial memories, hippocampal late-phase long-term potentiation (L-LTP, and de novo GluA2 synthesis. Furthermore, FXR1P binds specifically to the 5′ UTR of GluA2 mRNA to repress translation and limit the amount of GluA2 that is incorporated at potentiated synapses. This study uncovers a mechanism for regulating long-lasting synaptic plasticity and spatial memory formation and reveals an unexpected divergent role of FXR1P among Fragile X proteins in brain plasticity.

  7. State-dependent mechanisms of LTP expression revealed by optical quantal analysis.

    Science.gov (United States)

    Ward, Bonnie; McGuinness, Lindsay; Akerman, Colin J; Fine, Alan; Bliss, Tim V P; Emptage, Nigel J

    2006-11-22

    The expression mechanism of long-term potentiation (LTP) remains controversial. Here we combine electrophysiology and Ca(2+) imaging to examine the role of silent synapses in LTP expression. Induction of LTP fails to change p(r) at these synapses but instead mediates an unmasking process that is sensitive to the inhibition of postsynaptic membrane fusion. Once unmasked, however, further potentiation of formerly silent synapses leads to an increase in p(r). The state of the synapse thus determines how LTP is expressed.

  8. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells.

    Science.gov (United States)

    Gruber-Schoffnegger, Doris; Drdla-Schutting, Ruth; Hönigsperger, Christoph; Wunderbaldinger, Gabriele; Gassner, Matthias; Sandkühler, Jürgen

    2013-04-10

    Long-term potentiation (LTP) of synaptic strength in nociceptive pathways is a cellular model of hyperalgesia. The emerging literature suggests a role for cytokines released by spinal glial cells for both LTP and hyperalgesia. However, the underlying mechanisms are still not fully understood. In rat lumbar spinal cord slices, we now demonstrate that conditioning high-frequency stimulation of primary afferents activated spinal microglia within hyperalgesia induced by spinal application of either IL-1β or TNF-α in naive animals also required activation of spinal glial cells. These results reveal a novel, decisive role of spinal glial cells for the synaptic effects of IL-1β and TNF-α and for some forms of hyperalgesia.

  9. Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses.

    Science.gov (United States)

    Reid, Christopher A; Dixon, Don B; Takahashi, Michiko; Bliss, Tim V P; Fine, Alan

    2004-04-01

    It is generally believed that long-term potentiation (LTP) at hippocampal mossy fiber synapses between dentate granule and CA3 pyramidal cells is expressed through presynaptic mechanisms leading to an increase in quantal content. The source of this increase has remained undefined but could include enhanced probability of transmitter release at existing functional release sites or increases in the number of active release sites. We performed optical quantal analyses of transmission at individual mossy fiber synapses in cultured hippocampal slices, using confocal microscopy and intracellular fluorescent Ca(2+) indicators. Our results indicate that LTP is expressed at functional synapses by both increased probability of transmitter release and recruitment of new release sites, including the activation of previously silent synapses here visualized for the first time.

  10. Potentiation of muscimol-induced long-term depression by benzodiazepines but not zolpidem.

    Science.gov (United States)

    Akhondzadeh, Shahin; Mohammadi, Mohammad Reza; Kashani, Ladan

    2002-10-01

    Zolpidem is a rapid-onset, short-duration, quickly eliminated imidazopyridine hypnotic. It has been suggested that zolpidem may produce less memory and cognitive impairment than benzodiazepines (BZs) due to its low binding affinity for BZ receptor subtypes found in areas of the brain that are involved in learning and memory, in particular the hippocampus. A novel protocol for inducing long-term synaptic depression through activation of gamma-aminobutyric acid (GABA(A)) receptors in the hippocampal slices has been recently reported. The authors used the CA1 region of rat hippocampal slices to compare the effects of classic BZs, which bind equipotently to BZ1 and BZ2 sites, and of nonbenzodiazepine zolpidem, which binds preferentially to the BZ1 sites of GABA(A) receptors, on the GABA(A)-induced long-term depression (LTD), a possible cellular mechanism for their different cognition-impairment profile. Extracellular recordings were made in the CA1 pyramidal cell layer of rat hippocampal slices following orthodromic stimulation of Schaffer collateral fibres in stratum radiatum (0.01 Hz). It was observed that diazepam and cholordiazepoxide at concentrations of 10 and 20 microM, which did not have any effect themselves on the population spike, potentiate the ability of muscimol to induce LTD, whereas zolpidem at concentrations of 10 and 20 microM failed to potentiate muscimol-induced LTD. The results suggest that the potentiation of muscimol-induced LTD by diazepam or chlordiazepoxide and the lack of this effect by zolpidem may explain their different cognition impairment profiles.

  11. "Heading" and neck injuries in soccer: a review of biomechanics and potential long-term effects.

    Science.gov (United States)

    Mehnert, Michael J; Agesen, Thomas; Malanga, Gerard A

    2005-10-01

    Although soccer has a lower injury rate than does American football, injuries to the head and neck do occur. Indeed, soccer is classified as a contact sport. The potential for cervical injuries from the maneuver known as "heading" are of particular concern. This review provides a synopsis of soccer-related head and neck injuries, an overview of the biomechanics of trauma, and a rational approach to evaluating patients. This review was conducted to assess and evaluate existing literature on the biomechanics of the act of heading in soccer and the potential for acute and long-term injury to the head and neck. The resulting work is based on literature searches of the PubMed and Medline databases, textbook reviews, and bibliographies of articles and textbooks obtained during the search. Findings from several studies were summarized and critiqued. Biomechanics, anatomy, pathophysiology, and their relation to the act of heading in soccer were also synthesized into the discussion. Relevant studies of athletes in other sports where activity can affect the neck and head in a manner similar to heading were also considered. The act of heading in soccer involves the athlete's entire body, and studies have used electromyography to define the activity of neck musculature during heading. The majority of head and neck injuries in soccer occur secondary to impacts other than those that occur during heading, however, rare case reports of serious injury exist. Degenerative bony changes in the cervical spine of soccer players have been noted in a few studies, but the connection with heading is not well established. Data from research in other sports, particularly American football and rugby, suggest a predisposition to degenerative disease of the neck secondary to axial loading mechanisms; the exact relevance of these studies to heading and soccer is unclear. The complex biomechanics of heading in soccer are not completely defined, especially with regard to long-term effects on the

  12. Potential of "lure and kill" in long-term pest management and eradication of invasive species.

    Science.gov (United States)

    El-Sayed, A M; Suckling, D M; Byers, J A; Jang, E B; Wearing, C H

    2009-06-01

    "Lure and kill" technology has been used for several decades in pest management and eradication of invasive species. In lure and kill, the insect pest attracted by a semiochemical lure is not "entrapped" at the source of the attractant as in mass trapping, but instead the insect is subjected to a killing agent, which eliminates affected individuals from the population after a short period. In past decades, a growing scientific literature has been published on this concept. This article provides the first review on the potential of lure and kill in long-term pest management and eradication of invasive species. We present a summary of lure and kill, either when used as a stand-alone control method or in combination with other methods. We discuss its efficacy in comparison with other control methods. Several case studies in which lure and kill has been used with the aims of long-term pest management (e.g., pink bollworm, Egyptian cotton leafworm, codling moth, apple maggot, biting flies, and bark beetles) or the eradication of invasive species (e.g., tephritid fruit flies and boll weevils) are provided. Subsequently, we identify essential knowledge required for successful lure and kill programs that include lure competitiveness with natural odor source; lure density; lure formulation and release rate; pest population density and risk of immigration; and biology and ecology of the target species. The risks associated with lure and kill, especially when used in the eradication programs, are highlighted. We comment on the cost-effectiveness of this technology and its strengths and weaknesses, and list key reasons for success and failure. We conclude that lure and kill can be highly effective in controlling small, low-density, isolated populations, and thus it has the potential to add value to long-term pest management. In the eradication of invasive species, lure and kill offers a major advantage in effectiveness by its being inverse density dependent and it provides

  13. Potential multiple steady-states in the long-term carbon cycle

    CERN Document Server

    Tennenbaum, Stephen; Schwartzman, David

    2013-01-01

    Modelers of the long term carbon cycle in Earth history have previously assumed there is only one stable climatic steady state. Here we investigate the possibility of multiple steady states. We find them in Abiotic World, lacking any biotic influence, resulting from possible variations in planetary albedo in different temperature, atmospheric carbon dioxide level regimes, with the same weathering forcing balancing a volcanic source to the atmosphere, ocean pool. In Plant World modeling relevant to the Phanerozoic, we include the additional effects of biotic enhancement of weathering on land, organic carbon burial, oxidation of reduced organic carbon in terrestrial sediments and the variation of biotic productivity with temperature, finding a second stable steady state appearing between twenty and fifty degrees C. The very warm early Triassic climate may be the prime candidate for an upper temperature steady state. Given our results, the anthropogenic driven rise of atmospheric carbon dioxide could potentially...

  14. Increased learning and brain long-term potentiation in aged mice lacking DNA polymerase μ.

    Directory of Open Access Journals (Sweden)

    Daniel Lucas

    Full Text Available A definitive consequence of the aging process is the progressive deterioration of higher cognitive functions. Defects in DNA repair mechanisms mostly result in accelerated aging and reduced brain function. DNA polymerase µ is a novel accessory partner for the non-homologous end-joining DNA repair pathway for double-strand breaks, and its deficiency causes reduced DNA repair. Using associative learning and long-term potentiation experiments, we demonstrate that Polµ(-/- mice, however, maintain the ability to learn at ages when wild-type mice do not. Expression and biochemical analyses suggest that brain aging is delayed in Polµ(-/- mice, being associated with a reduced error-prone DNA oxidative repair activity and a more efficient mitochondrial function. This is the first example in which the genetic ablation of a DNA-repair function results in a substantially better maintenance of learning abilities, together with fewer signs of brain aging, in old mice.

  15. Impaired long-term potentiation-like cortical plasticity in presymptomatic genetic frontotemporal dementia.

    Science.gov (United States)

    Benussi, Alberto; Cosseddu, Maura; Filareto, Ilaria; Dell'Era, Valentina; Archetti, Silvana; Sofia Cotelli, Maria; Micheli, Anna; Padovani, Alessandro; Borroni, Barbara

    2016-09-01

    Neurophysiological biomarkers were assessed using a transcranial magnetic stimulation multiparadigm approach in 13 presymptomatic (n = 13 Granulin) and 14 symptomatic (n = 11 Granulin, n = 3 C9orf72) subjects with a pathogenic mutation for frontotemporal dementia (FTD). Intracortical facilitation and long-term potentiation-like plasticity were impaired in presymptomatic carriers, compared to healthy controls, more than 15 years before expected symptom onset. In symptomatic carriers, a decrease in short-interval intracortical inhibition, compared to presymptomatic carriers, was found. In conclusion, these biomarkers could provide the footprints of specific physiopathological processes in the development of this disease and possibly support the diagnosis of autosomal-dominant FTD. Ann Neurol 2016;80:472-476.

  16. Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation

    DEFF Research Database (Denmark)

    Petrone, Angiola; Battaglia, Fortunato; Wang, Cheng

    2003-01-01

    Despite clear indications of their importance in lower organisms, the contributions of protein tyrosine phosphatases (PTPs) to development or function of the mammalian nervous system have been poorly explored. In vitro studies have indicated that receptor protein tyrosine phosphatase alpha (RPTPa....... However, these synapses are unable to undergo long-term potentiation. Mice lacking RPTPalpha also underperform in the radial-arm water-maze test. These studies identify RPTPalpha as a key mediator of neuronal migration and synaptic plasticity....... neuronal migration. The migratory abnormality likely results from a radial glial dysfunction rather than from a neuron-autonomous defect. In spite of this aberrant development, basic synaptic transmission from the Schaffer collateral pathway to CA1 pyramidal neurons remains intact in Ptpra(-/-) mice...

  17. Methylphenidate amplifies long-term potentiation in rat hippocampus CA1 area involving the insertion of AMPA receptors by activation of β-adrenergic and D1/D5 receptors.

    Science.gov (United States)

    Rozas, C; Carvallo, C; Contreras, D; Carreño, M; Ugarte, G; Delgado, R; Zeise, M L; Morales, B

    2015-12-01

    Methylphenidate (MPH, Ritalin©) is widely used in the treatment of Attention Deficit Hyperactivity Disorder and recently as a drug of abuse. Although the effect of MPH has been studied in brain regions such as striatum and prefrontal cortex (PFC), the hippocampus has received relatively little attention. It is known that MPH increases the TBS-dependent Long Term Potentiation (LTP) in the CA1 area. However, the cellular and molecular mechanisms involved in this process are still unknown. Using field potential recordings and western blot analysis in rat hippocampal slices of young rats, we found that acute application of MPH enhances LTP in CA3-CA1 synapses in a dose-dependent manner with an EC50 of 73.44±6.32 nM. Using specific antagonists and paired-pulse facilitation protocols, we observed that the MPH-dependent increase of LTP involves not only β-adrenergic receptors activation but also post-synaptic D1/D5 dopamine receptors. The inhibition of PKA with PKI, suppressed the facilitation of LTP induced by MPH consistent with an involvement of the adenyl cyclase-cAMP-PKA dependent cascade downstream of the activation of D1/D5 receptors. In addition, samples of CA1 areas taken from slices potentiated with MPH presented an increase in the phosphorylation of the Ser845 residue of the GluA1 subunit of AMPA receptors compared to control slices. This effect was reverted by SCH23390, antagonist of D1/D5 receptors, and PKI. Moreover, we found an increase of surface-associated functional AMPA receptors. We propose that MPH increases TBS-dependent LTP in CA3-CA1 synapses through a polysynaptic mechanism involving activation of β-adrenergic and D1/D5 dopaminergic receptors and promoting the trafficking and insertion of functional AMPA receptors to the plasma membrane.

  18. Colorado Plateau Rapid Ecoregion Assessment Change Agents - Development - Current, Near-Term, and Long-Term Potential High Landscape Development

    Data.gov (United States)

    Bureau of Land Management, Department of the Interior — This map shows areas of high current, near-term, and long-term potential landscape development, based on factors such as urban areas, agriculture, roads, and energy...

  19. Isolation and full characterisation of a potentially allergenic lipid transfer protein (LTP) in almond.

    Science.gov (United States)

    Buhler, Sofie; Tedeschi, Tullia; Faccini, Andrea; Garino, Cristiano; Arlorio, Marco; Dossena, Arnaldo; Sforza, Stefano

    2015-01-01

    Non-specific lipid transfer proteins (nsLTP) were shown to be among the most significant allergens, in particular in several fruits belonging to the Rosaceae family. The molecular features of LTPs, such as the presence of eight cysteine residues forming four disulfide bridges, confer a compact structure, decreasing the probability of degradation due to cooking or digestion, thereby increasing the chance of systemic absorption and severe allergic reactions. Few studies on LTP-induced allergies regarding almond (Prunus dulcis L) are available in the literature. In the present work, we describe for the first time the extraction and purification of an almond LTP, achieving its full characterisation by using liquid chromatography and exact mass spectrometry; the full sequence was identified by means of LC-ESI-Orbitrap-MS applying a bottom-up approach. The characterised protein consists of 92 amino acids and has a calculated exact MW of 9579.0. The presence of four disulfide bridges was confirmed after reduction, as shown by a mass increment of 8 Da. Finally, its potential allergenicity was confirmed via an in silico approach. The results presented here demonstrate the enormous potential of advanced MS techniques for obtaining high-quality structural and functional data of allergenic proteins in a short time.

  20. Long-term variability of the thunderstorm and hail potential in Europe

    Science.gov (United States)

    Mohr, Susanna; Kunz, Michael; Speidel, Johannes; Piper, David

    2016-04-01

    Severe thunderstorms and associated hazardous weather events such as hail frequently cause considerable damage to buildings, crops, and automobiles, resulting in large monetary costs in many parts of Europe and the world. To relate single extreme hail events to the historic context and to estimate their return periods and possible trends related to climate change, long-term statistics of hail events are required. Due to the local-scale nature of hail and a lack of suitable observation systems, however, hailstorms are not captured reliably and comprehensively for a long period of time. In view of this fact, different proxies (indirect climate data) obtained from sounding stations and regional climate models can be used to infer the probability and intensity of thunderstorms or hailstorms. In contrast to direct observational data, such proxies are available homogeneously over a long time period. The aim of the study is to investigate the potential for severe thunderstorms and their changes over past decades. Statistical analyses of sounding data show that the convective potential over the past 20 - 30 years has significantly increased over large parts of Central Europe, making severe thunderstorms more likely. A similar picture results from analyses of weather types that are most likely associated with damaging hailstorms. These weather patterns have increased, even if only slightly but nevertheless statistically significantly, in the time period from 1971 to 2000. To improve the diagnostics of hail events in regional climate models, a logistic hail model has been developed by means of a multivariate analysis method. The model is based on a combination of appropriate hail-relevant meteorological parameters. The output of the model is a new index that estimates the potential of the atmosphere for hailstorm development, referred to as potential hail index (PHI). Applied to a high-resolved reanalysis run for Europe driven by NCEP/NCAR1, long-term changes of the PHI for

  1. [The mathematical modelling of Ca2(+)-dependent postsynaptic processes in the hippocampus (the induction of long-term potentiation and long-term depression)].

    Science.gov (United States)

    Murzina, G B; Sil'kis, I G

    1996-01-01

    The computational model was put forward of calcium-dependent posttetanic processes in the dendritic spine of CA3 hippocampal pyramidal neuron which received excitatory and inhibitory afferents. The system of differential equations enables description and evaluation of changes in protein kinase and protein phosphatase activity induced by changes in postsynaptic Ca2+ ion concentration (Cap2+). It was shown that the synaptic efficacy is determined by the ratio between active protein kinases and active protein phosphatase I. According to the proposed model, increase/decrease in Cap2+ concentration relative to the Cap2+ rise, produced by prior stimulation, results in the increase/decrease in the number of phosphorylated ionotropic receptors and in LTP/LTD synaptic efficacy. It follows form the model calculations that the same mechanisms underlie the LTP, LTD, and depotentiation. Some results of experimental study of the hippocampal and neocortical synaptic plasticity are explained and systematized.

  2. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles.

    Science.gov (United States)

    Silva, A C; Kumar, A; Wild, W; Ferreira, D; Santos, D; Forbes, B

    2012-10-15

    A solid lipid nanoparticles (SLN) formulation to improve the oral delivery of risperidone (RISP), a poorly water-soluble drug, was designed and tested. Initially, lipid-RISP solubility was screened to select the best lipid for SLN preparation. Compritol(®)-based formulations were chosen and their long-term stability was assessed over two years of storage (at 25 °C and 4 °C) by means of particle size, polydispersity index (PI), zeta potential (ZP) and encapsulation efficiency (EE) measurements. SLN shape was observed by transmission electron microscopy (TEM) at the beginning and end of the study. The oxidative potential (OP) of the SLN was measured and their biocompatibility with Caco-2 cells was evaluated using the (4,5-dimethylthiazol-2-yl)2,5-dyphenyl-tetrazolium bromide (MTT) assay. In vitro drug release and transport studies were performed to predict the in vivo release profile and to evaluate the drug delivery potential of the SLN formulations, respectively. The RISP-loaded SLN systems were stable and had high EE and similar shape to the placebo formulations before and after storage. Classical Fickian diffusion was identified as the release mechanism for RISP from the SLN formulation. Biocompatibility and dose-dependent RISP transport across Caco-2 cells were observed for the prepared SLN formulations. The viability of SLN as formulations for oral delivery of poorly water-soluble drugs such as RISP was illustrated.

  3. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice.

    Directory of Open Access Journals (Sweden)

    Mark P DeAndrade

    Full Text Available Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS, a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.

  4. Chronic pre-treatment with memantine prevents amyloid-beta protein-mediated long-term potentiation disruption

    Institute of Scientific and Technical Information of China (English)

    Fushun Li; Xiaowei Chen; Feiming Wang; Shujun Xu; Lan Chang; Roger Anwyl; Qinwen Wang

    2013-01-01

    Previous studies indicate that memantine, a low-affinity N-methyl-D-aspartate receptor antagonist, exerted acute protective effects against amyloid-β protein-induced neurotoxicity. In the present study, the chronic effects and mechanisms of memantine were investigated further using electrophysiological methods. The results showed that 7-day intraperitoneal application of memantine, at doses of 5 mg/kg or 20 mg/kg, did not alter hippocampal long-term potentiation induction in rats, while 40 mg/kg memantine presented potent long-term potentiation inhibition. Then further in vitro studys were carried out in 5 mg/kg and 20 mg/kg memantine treated rats. We found that 20 mg/kg memantine attenuated the potent long-term potentiation inhibition caused by exposure to amyloid-β protein in the dentate gyrus in vitro. These findings are the first to demonstrate the antagonizing effect of long-term systematic treatment of memantine against amyloid-β protein triggered long-term potentiation inhibition to improve synaptic plasticity.

  5. Modulation of Long-Term Potentiation of Cortico-Amygdala Synaptic Responses and Auditory Fear Memory by Dietary Polyunsaturated Fatty Acid

    Science.gov (United States)

    Yamada, Daisuke; Wada, Keiji; Sekiguchi, Masayuki

    2016-01-01

    Converging evidence suggests that an imbalance of ω3 to ω6 polyunsaturated fatty acid (PUFA) in the brain is involved in mental illnesses such as anxiety disorders. However, the underlying mechanism is unknown. We previously reported that the dietary ratio of ω3 to ω6 PUFA alters this ratio in the brain, and influences contextual fear memory. In addition to behavioral change, enhancement of cannabinoid CB1 receptor-mediated short-term synaptic plasticity and facilitation of the agonist sensitivity of CB1 receptors have been observed in excitatory synaptic responses in the basolateral nucleus of the amygdala (BLA). However, it is not known whether long-term synaptic plasticity in the amygdala is influenced by the dietary ratio of ω3 to ω6 PUFA. In the present study, we examined long-term potentiation (LTP) of optogenetically-evoked excitatory synaptic responses in synapses between the terminal of the projection from the auditory cortex (ACx) and the pyramidal cells in the lateral nucleus of the amygdala. We found that LTP in this pathway was attenuated in mice fed with a high ω3 to ω6 PUFA ratio diet (0.97), compared with mice fed with a low ω3 to ω6 PUFA ratio diet (0.14). Furthermore, mice in the former condition showed reduced fear responses in an auditory fear conditioning test, compared with mice in the latter condition. In both electrophysiological and behavioral experiments, the effect of a diet with a high ω3 to ω6 PUFA diet ratio was completely blocked by treatment with a CB1 receptor antagonist. Furthermore, a significant reduction was observed in cholesterol content, but not in the level of an endogenous CB1 receptor agonist, 2-arachidonoylglycerol (2-AG), in brain samples containing the amygdala. These results suggest that the balance of ω3 to ω6 PUFA has an impact on fear memory and cortico-amygdala synaptic plasticity, both in a CB1 receptor–dependent manner. PMID:27601985

  6. Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses.

    Science.gov (United States)

    Emptage, Nigel J; Reid, Christopher A; Fine, Alan; Bliss, Timothy V P

    2003-06-01

    The mechanisms by which long-term potentiation (LTP) is expressed are controversial, with evidence for both presynaptic and postsynaptic involvement. We have used confocal microscopy and Ca(2+)-sensitive dyes to study LTP at individual visualized synapses. Synaptically evoked Ca(2+) transients were imaged in distal dendritic spines of pyramidal cells in cultured hippocampal slices, before and after the induction of LTP. At most synapses, from as early as 10 min to at least 60 min after induction, LTP was associated with an increase in the probability of a single stimulus evoking a postsynaptic Ca(2+) response. These observations provide compelling evidence of a presynaptic component to the expression of early LTP at Schaffer-associational synapses. In most cases, the store-dependent evoked Ca(2+) transient in the spine was also increased after induction, a novel postsynaptic aspect of LTP.

  7. Modulation of Long-Term Potentiation and Epileptiform Activity in the Rat Dentate Gyrus by the Group II Metabotropic Glutamate Receptor Subtype mGluR3

    Science.gov (United States)

    2006-05-31

    200 µM) blocked LTP of extracellular excitatory post-synaptic potentials ( EPSPs ) after high-frequency stimulation (100Hz; 2s) of the medial perforant...affect EPSPs recorded in a paired-pulse paradigm which argues against a presynaptic effect. These data are the first to indicate competitive effects...acetylaspartylglutamate (NAAG; 50 and 200 µM) blocked LTP of extracellular excitatory post-synaptic potentials ( EPSPs ) after high-frequency stimulation

  8. Potential Effect of Conservation Tillage on Sustainable Land Use: A Review of Global Long-Term Studies

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Bin; CAI Dian-Xiong; W. B. HOOGMOED; O. OENEMA; U. D. PERDOK

    2006-01-01

    Although understood differently in different parts of the world, conservation tillage usually includes leaving crop residues on the soil surface to reduce tillage. Through a global review of long-term conservation tillage research, this paper discusses the long-term effect of conservation tillage on sustainable land use, nutrient availability and crop yield response. Research has shown several potential benefits associated with conservation tillage, such as potential carbon sequestration, nutrient availability, and yield response. This research would provide a better perspective of the role of soil conservation tillage and hold promise in promoting application of practical technologies for dryland farming systems in China.

  9. Mechanisms of NMDA Receptor- and Voltage-Gated L-Type Calcium Channel-Dependent Hippocampal LTP Critically Rely on Proteolysis That Is Mediated by Distinct Metalloproteinases.

    Science.gov (United States)

    Wiera, Grzegorz; Nowak, Daria; van Hove, Inge; Dziegiel, Piotr; Moons, Lieve; Mozrzymas, Jerzy W

    2017-02-01

    Long-term potentiation (LTP) is widely perceived as a memory substrate and in the hippocampal CA3-CA1 pathway, distinct forms of LTP depend on NMDA receptors (nmdaLTP) or L-type voltage-gated calcium channels (vdccLTP). LTP is also known to be effectively regulated by extracellular proteolysis that is mediated by various enzymes. Herein, we investigated whether in mice hippocampal slices these distinct forms of LTP are specifically regulated by different metalloproteinases (MMPs). We found that MMP-3 inhibition or knock-out impaired late-phase LTP in the CA3-CA1 pathway. Interestingly, late-phase LTP was also decreased by MMP-9 blockade. When both MMP-3 and MMP-9 were inhibited, both early- and late-phase LTP was impaired. Using immunoblotting, in situ zymography, and immunofluorescence, we found that LTP induction was associated with an increase in MMP-3 expression and activity in CA1 stratum radiatum. MMP-3 inhibition and knock-out prevented the induction of vdccLTP, with no effect on nmdaLTP. L-type channel-dependent LTP is known to be impaired by hyaluronic acid digestion. We found that slice treatment with hyaluronidase occluded the effect of MMP-3 blockade on LTP, further confirming a critical role for MMP-3 in this form of LTP. In contrast to the CA3-CA1 pathway, LTP in the mossy fiber-CA3 projection did not depend on MMP-3, indicating the pathway specificity of the actions of MMPs. Overall, our study indicates that the activation of perisynaptic MMP-3 supports L-type channel-dependent LTP in the CA1 region, whereas nmdaLTP depends solely on MMP-9. Various types of long-term potentiation (LTP) are correlated with distinct phases of memory formation and retrieval, but the underlying molecular signaling pathways remain poorly understood. Extracellular proteases have emerged as key players in neuroplasticity phenomena. The present study found that L-type calcium channel-dependent LTP in the CA3-CA1 hippocampal projection is critically regulated by the activity

  10. Worldwide impact of aerosol's time scale on the predicted long-term concentrating solar power potential.

    Science.gov (United States)

    Ruiz-Arias, Jose A; Gueymard, Christian A; Santos-Alamillos, Francisco J; Pozo-Vázquez, David

    2016-08-10

    Concentrating solar technologies, which are fuelled by the direct normal component of solar irradiance (DNI), are among the most promising solar technologies. Currently, the state-of the-art methods for DNI evaluation use datasets of aerosol optical depth (AOD) with only coarse (typically monthly) temporal resolution. Using daily AOD data from both site-specific observations at ground stations as well as gridded model estimates, a methodology is developed to evaluate how the calculated long-term DNI resource is affected by using AOD data averaged over periods from 1 to 30 days. It is demonstrated here that the use of monthly representations of AOD leads to systematic underestimations of the predicted long-term DNI up to 10% in some areas with high solar resource, which may result in detrimental consequences for the bankability of concentrating solar power projects. Recommendations for the use of either daily or monthly AOD data are provided on a geographical basis.

  11. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    Science.gov (United States)

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  12. A systematic review of potential long-term effects of sport-related concussion.

    Science.gov (United States)

    Manley, Geoff; Gardner, Andrew J; Schneider, Kathryn J; Guskiewicz, Kevin M; Bailes, Julian; Cantu, Robert C; Castellani, Rudolph J; Turner, Michael; Jordan, Barry D; Randolph, Christopher; Dvořák, Jiří; Hayden, K Alix; Tator, Charles H; McCrory, Paul; Iverson, Grant L

    2017-06-01

    Systematic review of possible long-term effects of sports-related concussion in retired athletes. Ten electronic databases. Original research; incidence, risk factors or causation related to long-term mental health or neurological problems; individuals who have suffered a concussion; retired athletes as the subjects and possible long-term sequelae defined as >10 years after the injury. Study population, exposure/outcome measures, clinical data, neurological examination findings, cognitive assessment, neuroimaging findings and neuropathology results. Risk of bias and level of evidence were evaluated by two authors. Following review of 3819 studies, 47 met inclusion criteria. Some former athletes have depression and cognitive deficits later in life, and there is an association between these deficits and multiple prior concussions. Former athletes are not at increased risk for death by suicide (two studies). Former high school American football players do not appear to be at increased risk for later life neurodegenerative diseases (two studies). Some retired professional American football players may be at increased risk for diminishment in cognitive functioning or mild cognitive impairment (several studies), and neurodegenerative diseases (one study). Neuroimaging studies show modest evidence of macrostructural, microstructural, functional and neurochemical changes in some athletes. Multiple concussions appear to be a risk factor for cognitive impairment and mental health problems in some individuals. More research is needed to better understand the prevalence of chronic traumatic encephalopathy and other neurological conditions and diseases, and the extent to which they are related to concussions and/or repetitive neurotrauma sustained in sports. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity.

    Science.gov (United States)

    Pang, Petti T; Teng, Henry K; Zaitsev, Eugene; Woo, Newton T; Sakata, Kazuko; Zhen, Shushuang; Teng, Kenneth K; Yung, Wing-Ho; Hempstead, Barbara L; Lu, Bai

    2004-10-15

    Long-term memory is thought to be mediated by protein synthesis-dependent, late-phase long-term potentiation (L-LTP). Two secretory proteins, tissue plasminogen activator (tPA) and brain-derived neurotrophic factor (BDNF), have been implicated in this process, but their relationship is unclear. Here we report that tPA, by activating the extracellular protease plasmin, converts the precursor proBDNF to the mature BDNF (mBDNF), and that such conversion is critical for L-LTP expression in mouse hippocampus. Moreover, application of mBDNF is sufficient to rescue L-LTP when protein synthesis is inhibited, which suggests that mBDNF is a key protein synthesis product for L-LTP expression.

  14. The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation

    Directory of Open Access Journals (Sweden)

    Murphy Niamh

    2012-04-01

    Full Text Available Abstract Background Several factors contribute to the deterioration in synaptic plasticity which accompanies age and one of these is neuroinflammation. This is characterized by increased microglial activation associated with increased production of proinflammatory cytokines like interleukin-1β (IL-1β. In aged rats these neuroinflammatory changes are associated with a decreased ability of animals to sustain long-term potentiation (LTP in the dentate gyrus. Importantly, treatment of aged rats with agents which possess anti-inflammatory properties to decrease microglial activation, improves LTP. It is known that endocannabinoids, such as anandamide (AEA, have anti-inflammatory properties and therefore have the potential to decrease the age-related microglial activation. However, endocannabinoids are extremely labile and are hydrolyzed quickly after production. Here we investigated the possibility that inhibiting the degradation of endocannabinoids with the fatty acid amide hydrolase (FAAH inhibitor, URB597, could ameliorate age-related increases in microglial activation and the associated decrease in LTP. Methods Young and aged rats received subcutaneous injections of the FAAH inhibitor URB597 every second day and controls which received subcutaneous injections of 30% DMSO-saline every second day for 28 days. Long-term potentiation was recorded on day 28 and the animals were sacrificed. Brain tissue was analyzed for markers of microglial activation by PCR and for levels of endocannabinoids by liquid chromatography coupled to tandem mass spectrometry. Results The data indicate that expression of markers of microglial activation, MHCII, and CD68 mRNA, were increased in the hippocampus of aged, compared with young, rats and that these changes were associated with increased expression of the proinflammatory cytokines interleukin (IL-1β and tumor necrosis factor-α (TNFα which were attenuated by treatment with URB597. Coupled with these changes, we

  15. Environmental Enrichment Modifies the PKA-Dependence of Hippocampal LTP and Improves Hippocampus-Dependent Memory

    OpenAIRE

    Duffy, Steven N.; Craddock, Kenneth J.; Abel, Ted; Nguyen, Peter V.

    2001-01-01

    cAMP-dependent protein kinase (PKA) is critical for the expression of some forms of long-term potentiation (LTP) in area CA1 of the mouse hippocampus and for hippocampus-dependent memory. Exposure to spatially enriched environments can modify LTP and improve behavioral memory in rodents, but the molecular bases for the enhanced memory performance seen in enriched animals are undefined. We tested the hypothesis that exposure to a spatially enriched environment may alter the PKA dependence of h...

  16. Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons

    OpenAIRE

    Galván, Emilio J; Pérez-Rosello, Tamara; Gómez-Lira, Gisela; Lara, Erika; Gutiérrez, Rafael; Barrionuevo, Germán

    2015-01-01

    Inhibitory interneurons with somata in strata radiatum and lacunosun-moleculare (SR/L-M) of hippocampal area CA3 receive excitatory input from pyramidal cells via the recurrent collaterals (RC), and the dentate gyrus granule cells via the mossy fibers (MFs). Here we demonstrate that Hebbian long-term potentiation (LTP) at RC synapses on SR/L-M interneurons requires the concomitant activation of calcium-impermeable AMPARs (CI- AMPARs) and NMDARs. RC LTP was prevented by voltage clamping the po...

  17. Deliberating and communicating the potential of fusion power based on long-term foresight knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Laes, Erik [SCK-CEN - Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)], E-mail: erik.laes@sckcen.be; Bombaerts, Gunter [SCK-CEN - Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); UGent (Ghent University) (Belgium)

    2007-10-15

    The main aim of this contribution is to provide guidance (in terms of quality criteria) for setting up foresight exercises as a platform for discussion and communication of the benefits and drawbacks of fusion with a broad range of stakeholders. At the same time, we explore conditions that might enhance the resonance of such foresight exercises in the policy sphere. In order to address this dual aim, we first introduce a philosophical framework called 'constructivism'. Next, we give a constructivist reading of scientific foresight as a combined scientific-political practice and point out some of the main points of interest regarding the relationship between foresight knowledge and policy. We illustrate these points of interest with practical case-study examples. Finally, we draw upon our theoretical and case-study research to propose some points of particular interest for the fusion community wishing to develop long-term energy scenarios.

  18. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  19. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2013-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  20. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p mineralization differed significantly (p 

  1. Rethinking teaching nursing homes: potential for improving long-term care.

    Science.gov (United States)

    Mezey, Mathy D; Mitty, Ethel L; Burger, Sarah Green

    2008-02-01

    To meet the special needs of and provide quality health care to nursing home residents, the health care workforce must be knowledgeable about the aging process. Health professionals are minimally prepared in their academic programs to care for older adults, and few programs have required rotations in geriatrics. Teaching nursing homes (TNHs) have shown promise as sites for the preparation of a health workforce to care for older adults in nursing homes as well as improvement of quality outcomes. This article reports on the process and recommendations of a TNH summit of experts in geriatric education and practice as to the feasibility of developing a sustainable and replicable TNH model that would prepare a professional workforce knowledgeable about and prepared to work in long-term care. The TNH summit identified characteristics of partnerships between academia, nursing home(s), and other stakeholders that would constitute a successful TNH collaboration. Goals of a TNH partnership between service and academia include interdisciplinary education and practice, research and dissemination of evidence-based practices, and benchmarks of a nursing home professional learning environment.

  2. A mathematical model for astrocytes mediated LTP at single hippocampal synapses.

    Science.gov (United States)

    Tewari, Shivendra; Majumdar, Kaushik

    2012-10-01

    Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea and Araque (Science 317:1083-1086, 2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D-Aspartate (NMDA) Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic induction were not investigated. Here, in this article, we propose a mathematical model for astrocyte modulated LTP which successfully imitates the experimental findings of Perea and Araque (Science 317:1083-1086, 2007). Our study suggests the role of retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically modulated LTP.

  3. Potential role of plasma myeloperoxidase level in predicting long-term outcome of acute myocardial infarction.

    Science.gov (United States)

    Kaya, Mehmet Gungor; Yalcin, Ridvan; Okyay, Kaan; Poyraz, Fatih; Bayraktar, Nilufer; Pasaoglu, Hatice; Boyaci, Bulent; Cengel, Atiye

    2012-01-01

    We investigated the prognostic importance of plasma myeloperoxidase levels in patients with ST-elevation myocardial infarction (STEMI) at long-term follow-up, and we analyzed the correlations between plasma myeloperoxidase levels and other biochemical values. We evaluated 73 consecutive patients (56 men; mean age, 56 ± 11 yr) diagnosed with acute STEMI and 46 age- and sex-matched healthy control participants. Patients were divided into 2 groups according to the median myeloperoxidase level (Group 1: plasma myeloperoxidase ≤ 68 ng/mL; and Group 2: plasma myeloperoxidase > 68 ng/mL). Patients were monitored for the occurrence of major adverse cardiovascular events (MACE), which were defined as cardiac death; reinfarction; new hospital admission for angina; heart failure; and revascularization procedures. The mean follow-up period was 25 ± 16 months. Plasma myeloperoxidase levels were higher in STEMI patients than in control participants (82 ± 34 vs 20 ± 12 ng/mL; P = 0.001). Composite MACE occurred in 12 patients with high myeloperoxidase levels (33%) and in 4 patients with low myeloperoxidase levels (11%) (P = 0.02). The incidences of nonfatal recurrent myocardial infarction and verified cardiac death were higher in the high-myeloperoxidase group. In multivariate analysis, high plasma myeloperoxidase levels were independent predictors of MACE (odds ratio = 3.843; <95% confidence interval, 1.625-6.563; P = 0.003). High plasma myeloperoxidase levels identify patients with a worse prognosis after acute STEMI at 2-year follow-up. Evaluation of plasma myeloperoxidase levels might be useful in determining patients at high risk of death and MACE who can benefit from further aggressive treatment and closer follow-up.

  4. NMDA受体通道参与大鼠脊髓背角C纤维诱发电位LTP的表达%NMDA Receptor Channels Are Involved in The Expression of Long-term Potentiation of C-fiber Evoked Field Potentials in Rat Spinal Dorsal Horn

    Institute of Scientific and Technical Information of China (English)

    张红梅; 周利君; 胡能伟; 张彤; 刘先国

    2006-01-01

    以往研究表明,激动NMDA受体是引起海马长时程增强(LTP)的必备条件,而LTP的表达主要与AMPA受体的磷酸化及其受体组装到突触后膜有关.但是,近年来有研究表明NMDA受体通道也参与了LTP的表达.为探讨NMDA受体通道是否参与了脊髓背角C纤维诱发电位LTP的表达,诱导LTP后,分别静脉或脊髓局部给予NMDA受体拮抗剂MK 801或APV,观察其作用.发现静脉注射非竞争性NMDA受体MK 801(0.1 mg/kg)对脊髓LTP无影响,注射0.5 mg/kg显著抑制LTP,但是当剂量增高到1.0mg/kg时,抑制作用并未进一步增大.脊髓局部给予MK 801也能抑制脊髓背角LTP.为验证上述结果,使用了竞争性NMDA受体拮抗剂APV.结果显示,脊髓局部给予50μmol/L APV对LTP无影响,100 μmol/L对LTP有显著的抑制作用,当浓度升至200 μmol/L时,抑制作用并未见进一步增强.因此认为,NMDA受体通道部分地参与了脊髓背角C纤维诱发电位LTP的表达.%In hippocampus, numerous studies have shown that N-methyl-D-aspartate (NMDA) receptors are essential for the initiation of long-term potentiation (LTP), whereas the expression of LTP is primarily mediated by the phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the increased insertion of postsynaptic AMPA receptors. However, in recent years there is also evidence that NMDA receptor channels contribute to the expression of LTP under physiological conditions. It was examined whether NMDA receptor channels contributed to the expression of LTP of C-fiber evoked field potentials in rat spinal dorsal horn by intravenous or spinal application of NMDA receptor antagonists after the establishment of LTP. It was found that MK 801 (a non-competitive NMDA receptor antagonist) at dose of 0.1 mg/kg (iv) had no effect on the spinal LTP and at the dose of 0.5 mg/kg depressed the LTP significantly. However, the inhibitory effect of MK 801 at higher dose (1.0 mg/kg)was not

  5. Reducing soil phosphorus fertility brings potential long-term environmental gains: A UK analysis

    Science.gov (United States)

    Withers, Paul J. A.; Hodgkinson, Robin A.; Rollett, Alison; Dyer, Chris; Dils, Rachael; Collins, Adrian L.; Bilsborrow, Paul E.; Bailey, Geoff; Sylvester-Bradley, Roger

    2017-05-01

    Soil phosphorus (P) fertility arising from historic P inputs is a major driver of P mobilisation in agricultural runoff and increases the risk of aquatic eutrophication. To determine the environmental benefit of lowering soil P fertility, a meta-analysis of the relationship between soil test P (measured as Olsen-P) and P concentrations in agricultural drainflow and surface runoff in mostly UK soils was undertaken in relation to current eutrophication control targets (30-35 µg P L-1). At agronomic-optimum Olsen P (16-25 mg kg-1), concentrations of soluble reactive P (SRP), total dissolved P (TDP), total P (TP) and sediment-P (SS-P) in runoff were predicted by linear regression analysis to vary between 24 and 183 µg L-1, 38 and 315 µg L-1, 0.2 and 9.6 mg L-1, and 0.31 and 3.2 g kg-1, respectively. Concentrations of SRP and TDP in runoff were much more sensitive to changes in Olsen-P than were TP and SS-P concentrations, which confirms that separate strategies are required for mitigating the mobilisation of dissolved and particulate P forms. As the main driver of eutrophication, SRP concentrations in runoff were reduced on average by 60 µg L-1 (71%) by lowering soil Olsen-P from optimum (25 mg kg-1) to 10 mg kg-1. At Olsen-P concentrations below 12 mg kg-1, dissolved hydrolysable P (largely organic) became the dominant form of soluble P transported. We concluded that maintaining agronomic-optimum Olsen-P could still pose a eutrophication risk, and that a greater research focus on reducing critical soil test P through innovative agro-engineering of soils, crops and fertilisers would give long-term benefits in reducing the endemic eutrophication risk arising from legacy soil P. Soil P testing should become compulsory in priority catchments suffering, or sensitive to, eutrophication to ensure soil P reserves are fully accounted for as part of good fertiliser and manure management.

  6. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor

    OpenAIRE

    Yang, Hongwei; Zhang, Jian; Breyer, Richard M.; Chen, Chu

    2008-01-01

    Our laboratory demonstrated previously that PGE2-induced modulation of hippocampal synaptic transmission is via a presynaptic PGE2 EP2 receptor. However, little is known about whether the EP2 receptor is involved in hippocampal long-term synaptic plasticity and cognitive function. Here we show that long-term potentiation (LTP) at the hippocampal perforant path synapses was impaired in mice deficient in the EP2 (KO), while membrane excitability and passive properties in granule neurons were no...

  7. Electrical high-frequency stimulation of the human thoracolumbar fascia evokes long-term potentiation-like pain amplification.

    Science.gov (United States)

    Schilder, Andreas; Magerl, Walter; Hoheisel, Ulrich; Klein, Thomas; Treede, Rolf-Detlef

    2016-10-01

    Nociceptive long-term potentiation, a use dependent increase in synaptic efficacy in the dorsal horn of the spinal cord is thought to contribute to the development of persistent pain states. So far, no study has analyzed the effects of high-frequency stimulation (HFS) of afferents from deep tissues (muscle and fascia) on pain perception in the back in humans. In 16 healthy volunteers, the multifidus muscle and the overlying thoracolumbar fascia were stimulated with electrical high-frequency pulses (5 × 100 pulses at 100 Hz) through bipolar concentric needle electrodes placed at lumbar level (L3/L4). Electrical pain thresholds were lower (P fascia compared with muscle stimulation (P fascia, from 8 to 12 numerical rating scale for muscle; both P Fascia HFS increased fascia pain ratings 2.17 times compared with the unconditioned control site (P fascia by 20% (P 60 minutes post-HFS, potentiation by fascia HFS was similar to that of skin HFS. These findings show that the spinal input from the fascia can induce long-term changes in pain sensitivity for at least 60 minutes making it a candidate potentially contributing to nonspecific low back pain.

  8. The spatial-temporal interaction in the LTP induction between layer IV to layer II/III and layer II/III to layer II/III connections in rats' visual cortex during the development.

    Science.gov (United States)

    Li, Da-Ke; Zhang, Chao; Gu, Yu; Zhang, She-Hong; Shi, Jian; Chen, Xian-Hua

    2017-03-20

    During the early developmental period, long-term potentiation (LTP) can be induced in both vertical and horizontal connections in the rat visual cortex. However, the temporal difference in LTP change between the two pathways during animal development remains unclear. In this study, LTP in vertical (from layer IV to layer II/III) and horizontal (from layer II/III to layer II/III) synaptic connections were recorded in brain slices from the same rats, and the developmental changes of LTP in both directions were compared within the animals' eye-opening period. The results showed that the LTP amplitudes declined to unobservable levels on P16 in the horizontal connections and on P20 in the vertical synaptic connections. Meanwhile, V-LTP (LTP induced in the vertical direction) was always stronger than H-LTP (LTP induced in the horizontal direction) under the same conditions of pairing stimulus (PS). Next, H-LTP and V-LTP were induced from the same neuron in layer II/III to determine the spatiotemporal interactions between layer II/III horizontal inputs and ascending synaptic inputs during the maturation of rat visual cortex. The data show that the weak PS, which failed to induce H-LTP alone, was able to induce H-LTP effectively while V-LTP was performed on P10. Our results suggest that V-LTP can strengthen H-LTP induction in the visual cortex during the early developmental period. In contrast, the regulatory effect of H-LTP on V-LTP was much weaker.

  9. Potential for assessing long-term dynamics in soil nitrogen availability from variations in delta15N of tree rings.

    Science.gov (United States)

    Hart, S C; Classen, A T

    2003-03-01

    Numerous researchers have used the isotopic signatures of C, H, and O in tree rings to provide a long-term record of changes in the physiological status, climate, or water-source use of trees. The frequently limiting element N is also found in tree rings, and variation in its isotopic signature may provide insight into long-term changes in soil N availability of a site. However, research has suggested that N is readily translocated among tree ring of different years; such infidelity between the isotopic compositions of the N taken up from the soil and the N contained in the ring of that growth year would obscure the long-term N isotopic record. We used a 15-year 15N-tracer study to assess the degree of N translocation among tree rings in ponderosa pine (Pinus ponderosa) trees growing in a young, mixed-conifer plantation. We also measured delta13C and delta15N values in unlabeled trees to assess the degree of their covariance in wood tissue, and to explore the potential for a biological linkage between them. We found that the maximum delta15N values in rings from the labeled trees occurred in the ring formed one-year after the 15N was applied to the roots. The delta15N value of rings from labeled trees declined exponentially and bidirectionally from this maximum peak, toward younger and older rings. The unlabeled trees showed considerable interannual variation in the delta15N values of their rings (up to 3 and 5 per thousand), but these values correlated poorly between trees over time and differed by as much as 6 per thousand. Removal of extractives from the wood reduced their delta15N value, but the change was fairly small and consistent among unlabeled trees. The delta13C and delta15N values of tree rings were correlated over time in only one of the unlabeled trees. Across all trees, both delta13C values of tree rings and annual stem wood production were well correlated with annual precipitation, suggesting that soil water balance is an important environmental

  10. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    Science.gov (United States)

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2014-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.

  11. Mixtures of Uncaria and Tabebuia extracts are potentially chemopreventive in CBA/Ca mice: a long-term experiment.

    Science.gov (United States)

    Budán, Ferenc; Szabó, István; Varjas, Tímea; Nowrasteh, Ghodratollah; Dávid, Tamás; Gergely, Péter; Varga, Zsuzsa; Molnár, Kornélia; Kádár, Balázs; Orsós, Zsuzsa; Kiss, István; Ember, István

    2011-04-01

    A long-term experimental animal model was developed by our research group for the evaluation of potential chemopreventive effects. The inhibitory effects of agents on carcinogen (7,12-dimethylbenz[a]anthracene (DMBA) induced molecular epidemiological biomarkers, in this case the expression of key onco/suppressor genes were investigated. The expression pattern of c-myc, Ha-ras, Bcl-2, K-ras protooncogene and p53 tumour suppressor gene were studied to elucidate early carcinogenic and potential chemopreventive effects. The consumption of so-called Claw of Dragon tea (CoD™ tea) containing the bark of Uncaria guianensis, Cat's Claw (Uncaria sp. U. tomentosa) and Palmer trumpet-tree (Tabebuia sp. T. avellanedae) was able to decrease the DMBA-induced onco/suppressor gene overexpression in a short-term animal experiment. In a following study CBA/Ca mice were treated with 20 mg/kg bw DMBA intraperitoneally (i.p.) and the expression patterns of onco/suppressor genes were examined at several time intervals. According to the examined gene expression patterns in this long-term experiment the chemopreventive effect of CoD™ tea consumption could be confirmed.

  12. Upregulation of CD11A on Hematopoietic Stem Cells Denotes the Loss of Long-Term Reconstitution Potential

    Directory of Open Access Journals (Sweden)

    John W. Fathman

    2014-11-01

    Full Text Available Small numbers of hematopoietic stem cells (HSCs generate large numbers of mature effector cells through the successive amplification of transiently proliferating progenitor cells. HSCs and their downstream progenitors have been extensively characterized based on their cell-surface phenotype and functional activities during transplantation assays. These cells dynamically lose and acquire specific sets of surface markers during differentiation, leading to the identification of markers that allow for more refined separation of HSCs from early hematopoietic progenitors. Here, we describe a marker, CD11A, which allows for the enhanced purification of mouse HSCs. We show through in vivo transplantations that upregulation of CD11A on HSCs denotes the loss of their long-term reconstitution potential. Surprisingly, nearly half of phenotypic HSCs (defined as Lin−KIT+SCA-1+CD150+CD34− are CD11A+ and lack long-term self-renewal potential. We propose that CD11A+Lin−KIT+SCA-1+CD150+CD34− cells are multipotent progenitors and CD11A−Lin−KIT+SCA-1+CD150+CD34− cells are true HSCs.

  13. 小胶质细胞活化对海马长时程增强影响的研究进展%Recent advance in effect of microglial activation on long-term potentiation of hippocampus

    Institute of Scientific and Technical Information of China (English)

    张占刚; 付岩; 杨拼; 董献文; 徐颖

    2016-01-01

    在对神经退行性疾病如阿尔茨海默病、帕金森病等的研究中,人们提出了神经炎症假说,认为是小胶质细胞活化导致炎症介质持续释放,并损伤神经元结构和功能,出现学习记忆障碍等临床表现.其中神经元突触结构的破坏导致突触可塑性下降,出现长时程增强(LTP)改变,表现为高频刺激后兴奋性突触后电位幅值减小、持续时间缩短等现象.活化的小胶质细胞本身及其释放的炎症因子如白介素-1β、肿瘤坏死因子-α、一氧化氮等都参与了疾病中LTP损伤的病理过程.本文对近几年神经退行性疾病中小胶质细胞活化与LTP损伤关系的研究进展作一综述,希望能为神经退行性疾病的临床诊治和科学研究提供一定的指导.%In the study of neurodegenerative diseases,a hypothesis of inflammation in central nervous system is raised:the activated microglia leads to sustained release of preinflammatory cytokines and injury of normal neural structures and function,resulting in learning and memory deficits,such as Alzheimer's disease (AD) and Parkinson's disease (PD).Synapses structural disorders are responsible for deficit of synaptic plasticity;after high frequency stimulation,changes of long-term potentiation (LTP) are most obvious in synaptic plasticity,characterized by decrease of amplitude and excitatory postsynaptic potential duration.Activated microglia and inflammatory cytokines released by activated microglia,such as interleukin-1β,tumor necrosis factor-α and nitric oxide are involved in the pathological process of LTP changes in these kinds of disease.The aim of this paper is to give a review about progress in the relations between microglia activation and LTP in neurodegenerative diseases researches in recent years and hope to have something to guide the research of neurodegenerative disease.

  14. Possible Long Term Effects of Chemical Warfare Using Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Abbas Riazi

    2014-09-01

    Full Text Available Some studies have already addressed the effects of occupational organic solvent exposure on the visually evoked potentials (VEPs. Visual system is an important target for Sulphur Mustard (SM toxicity. A number of Iranian victims of Sulphur Mustard (SM agent were apprehensive about the delay effect of SM on their vision and a possible delay effect of SM on their visual cortex. This investigation was performed on 34 individuals with a history of chemical exposure and a control group of 15 normal people. The Toennies electro-diagnosis device was used and its signals were saved as the latencies. The mean of N75, N140 and P100 of victims of chemical warfare (VCWs and control group indicated no significant results (P>0.05. The VCWs did not show any visual symptoms and there was no clear deficit in their VEPs.

  15. Analyzing long-term correlated stochastic processes by means of recurrence networks: Potentials and pitfalls

    CERN Document Server

    Zou, Yong; Kurths, Jürgen

    2014-01-01

    Long-range correlated processes are ubiquitous, ranging from climate variables to financial time series. One paradigmatic example for such processes is fractional Brownian motion (fBm). In this work, we highlight the potentials and conceptual as well as practical limitations when applying the recently proposed recurrence network (RN) approach to fBm and related stochastic processes. In particular, we demonstrate that the results of a previous application of RN analysis to fBm (Liu \\textit{et al.,} Phys. Rev. E \\textbf{89}, 032814 (2014)) are mainly due to an inappropriate treatment disregarding the intrinsic non-stationarity of such processes. Complementarily, we analyze some RN properties of the closely related stationary fractional Gaussian noise (fGn) processes and find that the resulting network properties are well-defined and behave as one would expect from basic conceptual considerations. Our results demonstrate that RN analysis can indeed provide meaningful results for stationary stochastic processes, ...

  16. Effects of Patterned Sound Deprivation on Short- and Long-Term Plasticity in the Rat Thalamocortical Auditory System In Vivo

    Directory of Open Access Journals (Sweden)

    Chloe N. Soutar

    2016-01-01

    Full Text Available Postnatal sensory experience plays a significant role in the maturation and synaptic stabilization of sensory cortices, such as the primary auditory cortex (A1. Here, we examined the effects of patterned sound deprivation (by rearing in continuous white noise, WN during early postnatal life on short- and long-term plasticity of adult male rats using an in vivo preparation (urethane anesthesia. Relative to age-matched control animals reared under unaltered sound conditions, rats raised in WN (from postnatal day 5 to 50–60 showed greater levels of long-term potentiation (LTP of field potentials in A1 induced by theta-burst stimulation (TBS of the medial geniculate nucleus (MGN. In contrast, analyses of short-term plasticity using paired-pulse stimulation (interstimulus intervals of 25–1000 ms did not reveal any significant effects of WN rearing. However, LTP induction resulted in a significant enhancement of paired-pulse depression (PPD for both rearing conditions. We conclude that patterned sound deprivation during early postnatal life results in the maintenance of heightened, juvenile-like long-term plasticity (LTP into adulthood. Further, the enhanced PPD following LTP induction provides novel evidence that presynaptic mechanisms contribute to thalamocortical LTP in A1 under in vivo conditions.

  17. Effects of tetrahydrohyperforin in mouse hippocampal slices: neuroprotection, long-term potentiation and TRPC channels.

    Science.gov (United States)

    Montecinos-Oliva, C; Schuller, A; Parodi, J; Melo, F; Inestrosa, N C

    2014-01-01

    Tetrahydrohyperforin (IDN5706) is a semi-synthetic compound derived from hyperforin (IDN5522) and is the main active principle of St. John's Wort. IDN5706 has shown numerous beneficial effects when administered to wild-type and double transgenic (APPswe/PSEN1ΔE9) mice that model Alzheimer's disease. However, its mechanism of action is currently unknown. Toward this end, we analysed field excitatory postsynaptic potentials (fEPSPs) in mouse hippocampal slices incubated with IDN5706 and in the presence of the TRPC3/6/7 activator 1-oleoyl-2-acetyl-sn-glycerol (OAG), the TRPC channel blocker SKF96365, and neurotoxic amyloid β-protein (Aβ) oligomers. To study spatial memory, Morris water maze (MWM) behavioural tests were conducted on wild-type mice treated with IDN5706 and SKF96365. In silico studies were conducted to predict a potential pharmacophore. IDN5706 and OAG had a similar stimulating effect on fEPSPs, which was inhibited by SKF96365. IDN5706 protected from reduced fEPSPs induced by Aβ oligomers. IDN5706 improved spatial memory in wild-type mice, an effect that was counteracted by co-administration of SKF96365. Our in silico studies suggest strong pharmacophore similarity of IDN5706 and other reported TRPC6 activators (IDN5522, OAG and Hyp9). We propose that the effect of IDN5706 is mediated through activation of the TRPC3/6/7 channel subfamily. The unveiling of the drug's mechanism of action is a necessary step toward the clinical use of IDN5706 in Alzheimer's disease.

  18. Parishin C's prevention of Aβ 1-42-induced inhibition of long-term potentiation is related to NMDA receptors.

    Science.gov (United States)

    Liu, Zhihui; Wang, Weiping; Feng, Nan; Wang, Ling; Shi, Jiangong; Wang, Xiaoliang

    2016-05-01

    The rhizome of Gastrodia elata (GE), a herb medicine, has been used for treatment of neuronal disorders in Eastern Asia for hundreds of years. Parishin C is a major ingredient of GE. In this study, the i.c.v. injection of soluble Aβ 1-42 oligomers model of LTP injury was used. We investigated the effects of parishin C on the improvement of LTP in soluble Aβ 1-42 oligomer-injected rats and the underlying electrophysiological mechanisms. Parishin C (i.p. or i.c.v.) significantly ameliorated LTP impairment induced by i.c.v. injection of soluble Aβ 1-42 oligomers. In cultured hippocampal neurons, soluble Aβ 1-42 oligomers significantly inhibited NMDAR currents while not affecting AMPAR currents and voltage-dependent currents. Pretreatment with parishin C protected NMDA receptor currents from the damage induced by Aβ. In summary, parishin C improved LTP deficits induced by soluble Aβ 1-42 oligomers. The protection by parishin C against Aβ-induced LTP damage might be related to NMDA receptors.

  19. mTORC2 controls actin polymerization required for consolidation of long-term memory

    Science.gov (United States)

    Huang, Wei; Zhu, Ping Jun; Zhang, Shixing; Zhou, Hongyi; Stoica, Loredana; Galiano, Mauricio; Krnjević, Krešimir; Roman, Gregg; Costa-Mattioli, Mauro

    2013-01-01

    A major goal of biomedical research has been the identification of molecular mechanisms that can enhance memory. Here we report a novel signaling pathway that regulates the conversion from short- to long-term memory. The mTOR complex 2 (mTORC2), which contains the key regulatory protein Rictor (Rapamycin-Insensitive Companion of mTOR), was discovered only recently, and little is known about its physiological role. We show that conditional deletion of rictor in the postnatal murine forebrain greatly reduces mTORC2 activity and selectively impairs both long-term memory (LTM) and the late (but not the early) phase of hippocampal long-term potentiation (LTP). Actin polymerization is reduced in the hippocampus of mTORC2-deficient mice and its restoration rescues both L-LTP and LTM. More importantly, a compound that selectively promotes mTORC2 activity converts early-LTP into late-LTP and enhances LTM. These findings indicate that mTORC2 could be a novel therapeutic target for the treatment of cognitive dysfunction. PMID:23455608

  20. mTORC2 controls actin polymerization required for consolidation of long-term memory.

    Science.gov (United States)

    Huang, Wei; Zhu, Ping Jun; Zhang, Shixing; Zhou, Hongyi; Stoica, Loredana; Galiano, Mauricio; Krnjević, Krešimir; Roman, Gregg; Costa-Mattioli, Mauro

    2013-04-01

    A major goal of biomedical research is the identification of molecular and cellular mechanisms that underlie memory storage. Here we report a previously unknown signaling pathway that is necessary for the conversion from short- to long-term memory. The mammalian target of rapamycin (mTOR) complex 2 (mTORC2), which contains the regulatory protein Rictor (rapamycin-insensitive companion of mTOR), was discovered only recently and little is known about its function. We found that conditional deletion of Rictor in the postnatal murine forebrain greatly reduced mTORC2 activity and selectively impaired both long-term memory (LTM) and the late phase of hippocampal long-term potentiation (L-LTP). We also found a comparable impairment of LTM in dTORC2-deficient flies, highlighting the evolutionary conservation of this pathway. Actin polymerization was reduced in the hippocampus of mTORC2-deficient mice and its restoration rescued both L-LTP and LTM. Moreover, a compound that promoted mTORC2 activity converted early LTP into late LTP and enhanced LTM. Thus, mTORC2 could be a therapeutic target for the treatment of cognitive dysfunction.

  1. Evidence that heterosynaptic depolarization underlies associativity of long-term potentiation in rat hippocampus.

    Science.gov (United States)

    Clark, K A; Collingridge, G L

    1996-01-15

    1. Whole-cell patch-clamp recording has been used to study the effect of heterosynaptic depolarization on pure N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission in the CA1 region of rat hippocampal slices. 2. In neurones voltage clamped at -60 mV, paired-pulse stimulation of one set of Schaffer collateral-commissural fibres resulted in homosynaptic paired-pulse facilitation of the NMDA receptor-mediated excitatory postsynaptic current (EPSCN). In contrast, stimulation of one set of fibres prior to stimulation of a second set of fibres (i.e. heterosynaptic paired-pulse stimulation) did not result in any heterosynaptic interactions. 3. However, under current-clamp conditions, heterosynaptic paired-pulse stimulation resulted in heterosynaptic 'paired-pulse facilitation' of the NMDA receptor-mediated excitatory postsynaptic potential (EPSPN). 4. In neurones held at -50 or -40 mV, perfusion of nominally Mg(2+)-free medium converted the response to heterosynaptic paired-pulse stimulation from 'heterosynaptic facilitation' to 'heterosynaptic depression' of EPSPN. 5. When neurones were held at potentials of between -30 and +40 mV then heterosynaptic paired-pulse stimulation, in normal Mg(2+)-containing medium, resulted in 'paired-pulse depression' of EPSPN. Under voltage-clamp conditions (tested at +40 mV) no heterosynaptic interactions were seen. 6. The time course of 'heterosynaptic facilitation' at -60 mV and of 'heterosynaptic depression' at +40 mV of EPSPN was similar to the time course of EPSCN. 7. We conclude, firstly, that the voltage clamp is able to prevent any voltage breakthrough associated with the synaptic activation of NMDA receptors from influencing neighbouring synapses. Secondly, when the neurone is not voltage clamped these same synapses are strongly influenced by the spreading depolarization generated by the synaptic activation of their neighbours. The time course and direction of this influence are compatible with the hypothesis that

  2. Potential long-term consequences of fad diets on health, cancer, and longevity: lessons learned from model organism studies.

    Science.gov (United States)

    Ruden, Douglas M; Rasouli, Parsa; Lu, Xiangyi

    2007-06-01

    While much of the third world starves, many in the first world are undergoing an obesity epidemic, and the related epidemics of type II diabetes, heart disease, and other diseases associated with obesity. The amount of economic wealth being directly related to a decline in health by obesity is ironic because rich countries contribute billions of dollars to improve the health of their citizens. Nevertheless, nutritional experiments in model organisms such as yeast, C. elegans, Drosophila, and mice confirm that "caloric restriction" (CR), which is defined generally as a 30-40% decrease in caloric intake, a famine-like condition for humans seen only in the poorest of countries, promotes good health and increases longevity in model organisms. Because caloric restriction, and dieting in general, requires a great deal of will power to deal with the feelings of deprivation, many fad diets, such as the Atkins, South Beach, and Protein Power, have been developed which allow people to lose weight purportedly without the severe feelings of deprivation. However, the long-term effects of such fad diets are not known and few experiments have been performed in the laboratory to investigate possible side affects and adverse consequences. In this paper, we review studies with fad-like dietary conditions in humans and model organisms, and we propose a "Dietary Ames Test" to rapidly screen fad diets, dietary supplements, and drugs for potential long-term health consequences in model organisms.

  3. Arrested geomorphic trajectories and the long-term hidden potential for change.

    Science.gov (United States)

    James, L Allan

    2017-11-01

    Geomorphic systems often experience morphological changes that define a trajectory over decadal time periods. These trends can be halted by natural inhibitors such as vegetation, knickpoints, bed armor, or bank cohesion, or by anthropogenic inhibitors such as revetment, levees, or dams. Details about where and how channels and floodplains are stabilized are often poorly understood, which poses a risk that modern projects could unwittingly remove critical stabilizing elements (inhibitors) and unleash an episode of rapid change. The potential for destabilization is particularly keen for rivers that were severely altered by human activities but were stabilized by an inhibitor before readjustment was complete. This study uses aerial photographs to examine two cases of arrested geomorphic trajectories in the lower Yuba and Feather Rivers of northern California after 150 years of severe human disturbance. Channel adjustments were inhibited in distinctly different ways. First, channelization of the Feather River across a high-amplitude meander bend ∼4 km below the Yuba-Feather River confluence resulted in a knickpoint at Shanghai Shoals that retreated upstream at an average rate of 3.67 m/yr from 1963 to 2013 with two episodes of rapid retreat. Shanghai Shoals was breached in 2013. Second, numerous wing dams on the Yuba River constructed in the early nineteenth century limit floodplain widening and prevent return to an anastomosing channel planform. Their stabilizing role is important to preventing mobilization of mining sediment with high concentrations of mercury. These rivers exemplify how arrested geomorphic trajectories may impact sustainable river management, and how recognition of fluvial evolution is essential to sustainable river management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Stimulus uncertainty enhances long-term potentiation-like plasticity in human motor cortex.

    Science.gov (United States)

    Sale, Martin V; Nydam, Abbey S; Mattingley, Jason B

    2017-03-01

    Plasticity can be induced in human cortex using paired associative stimulation (PAS), which repeatedly and predictably pairs a peripheral electrical stimulus with transcranial magnetic stimulation (TMS) to the contralateral motor region. Many studies have reported small or inconsistent effects of PAS. Given that uncertain stimuli can promote learning, the predictable nature of the stimulation in conventional PAS paradigms might serve to attenuate plasticity induction. Here, we introduced stimulus uncertainty into the PAS paradigm to investigate if it can boost plasticity induction. Across two experimental sessions, participants (n = 28) received a modified PAS paradigm consisting of a random combination of 90 paired stimuli and 90 unpaired (TMS-only) stimuli. Prior to each of these stimuli, participants also received an auditory cue which either reliably predicted whether the upcoming stimulus was paired or unpaired (no uncertainty condition) or did not predict the upcoming stimulus (maximum uncertainty condition). Motor evoked potentials (MEPs) evoked from abductor pollicis brevis (APB) muscle quantified cortical excitability before and after PAS. MEP amplitude increased significantly 15 min following PAS in the maximum uncertainty condition. There was no reliable change in MEP amplitude in the no uncertainty condition, nor between post-PAS MEP amplitudes across the two conditions. These results suggest that stimulus uncertainty may provide a novel means to enhance plasticity induction with the PAS paradigm in human motor cortex. To provide further support to the notion that stimulus uncertainty and prediction error promote plasticity, future studies should further explore the time course of these changes, and investigate what aspects of stimulus uncertainty are critical in boosting plasticity.

  5. Calcium-stimulated adenylyl cyclase subtype 1 (AC1 contributes to LTP in the insular cortex of adult mice

    Directory of Open Access Journals (Sweden)

    Manabu Yamanaka

    2017-07-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission in the central nervous system is a key form of cortical plasticity. The insular cortex (IC is known to play important roles in pain perception, aversive memory and mood disorders. LTP has been recently reported in the IC, however, the signaling pathway for IC LTP remains unknown. Here, we investigated the synaptic mechanism of IC LTP. We found that IC LTP induced by the pairing protocol was N-methyl-D-aspartate receptors (NMDARs dependent, and expressed postsynaptically, since paired-pulse ratio (PPR was not affected. Postsynaptic calcium is important for the induction of post-LTP, since the postsynaptic application of BAPTA completely blocked the induction of LTP. Calcium-activated adenylyl cyclase subtype 1 (AC1 is required for potentiation. By contrast, AC8 is not required. Inhibition of Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs or protein kinase M zeta (PKMζ reduced the expression of LTP. Our results suggest that calcium-stimulated AC1, but not AC8, can be a trigger of the induction and maintenance of LTP in the IC.

  6. Sol-gels with fiber-optic chemical sensor potential: Effects of preparation, aging, and long-term storage

    Science.gov (United States)

    Badini, G. E.; Grattan, K. T. V.; Tseung, A. C. C.

    1995-08-01

    The features of sol-gels, incorporating pH-sensitive dyes, designed as potential substrates for fiber-optic chemical sensors, have been investigated in terms of a variety of characteristics resulting from the preparation methods used and following the storage of samples for a period of several years. These materials, organically doped sol-gels, have been used as the heart of a number of prototype chemical sensing instruments, and a key issue in their effective use in instrumentation is their long-term durability and stability. In this work, it has been shown that such aged gel substrates can withstand immersion in water, drying, and reimmersion without fragmenting. Such impregnated gels were shown to still exhibit strong fluorescence, although some changes to the gel structure, determined from microhardness measurements, were observed and reported, reflecting their potential for use in chemically sensitive fiber optic-based instruments.

  7. Effects of electroacupuncture versus nimodipine on long-term potentiation and synaptophysin expression in a rat model of vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Dengming Wei; Xuemin Jia; Xiangxu Yin; Wenwen Jiang

    2011-01-01

    The present study stimulated Baihui (DU 20) and Dazhui (DU 14) acupoints in a rat model of vascular dementia with electroacupuncture to investigate changes in long-term potentiation and synaptophysin expression in the hippocampus. The results revealed that synaptophysin expression in brain tissues was increased after electroacupuncture. After high-frequency stimulation, the population spike latencywas shortened and the excitatory postsynaptic potential slope and population spike amplitude were increased. In addition, cognitive function was enhanced, similar to the effects of intragastric perfusion of nimodipine. The results indicated that electroacupuncture at Baihui and Dazhui acupoints can improve learning and memory functions of a rat model of vascular dementia by promoting synaptophysinexpression, enhancing hippocampal synaptic plasticity and accelerating synaptic transmission.

  8. Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation.

    Science.gov (United States)

    Iop, Laura; Bonetti, Antonella; Naso, Filippo; Rizzo, Stefania; Cagnin, Stefano; Bianco, Roberto; Dal Lin, Carlo; Martini, Paolo; Poser, Helen; Franci, Paolo; Lanfranchi, Gerolamo; Busetto, Roberto; Spina, Michel; Basso, Cristina; Marchini, Maurizio; Gandaglia, Alessandro; Ortolani, Fulvia; Gerosa, Gino

    2014-01-01

    Tissue-engineered heart valves are proposed as novel viable replacements granting longer durability and growth potential. However, they require extensive in vitro cell-conditioning in bioreactor before implantation. Here, the propensity of non-preconditioned decellularized heart valves to spontaneous in body self-regeneration was investigated in a large animal model. Decellularized porcine aortic valves were evaluated for right ventricular outflow tract (RVOT) reconstruction in Vietnamese Pigs (n = 11) with 6 (n = 5) and 15 (n = 6) follow-up months. Repositioned native valves (n = 2 for each time) were considered as control. Tissue and cell components from explanted valves were investigated by histology, immunohistochemistry, electron microscopy, and gene expression. Most substitutes constantly demonstrated in vivo adequate hemodynamic performances and ex vivo progressive repopulation during the 15 implantation months without signs of calcifications, fibrosis and/or thrombosis, as revealed by histological, immunohistochemical, ultrastructural, metabolic and transcriptomic profiles. Colonizing cells displayed native-like phenotypes and actively synthesized novel extracellular matrix elements, as collagen and elastin fibers. New mature blood vessels, i.e. capillaries and vasa vasorum, were identified in repopulated valves especially in the medial and adventitial tunicae of regenerated arterial walls. Such findings correlated to the up-regulated vascular gene transcription. Neoinnervation hallmarks were appreciated at histological and ultrastructural levels. Macrophage populations with reparative M2 phenotype were highly represented in repopulated valves. Indeed, no aspects of adverse/immune reaction were revealed in immunohistochemical and transcriptomic patterns. Among differentiated elements, several cells were identified expressing typical stem cell markers of embryonic, hematopoietic, neural and mesenchymal lineages in significantly higher number

  9. Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation.

    Directory of Open Access Journals (Sweden)

    Laura Iop

    Full Text Available Tissue-engineered heart valves are proposed as novel viable replacements granting longer durability and growth potential. However, they require extensive in vitro cell-conditioning in bioreactor before implantation. Here, the propensity of non-preconditioned decellularized heart valves to spontaneous in body self-regeneration was investigated in a large animal model. Decellularized porcine aortic valves were evaluated for right ventricular outflow tract (RVOT reconstruction in Vietnamese Pigs (n = 11 with 6 (n = 5 and 15 (n = 6 follow-up months. Repositioned native valves (n = 2 for each time were considered as control. Tissue and cell components from explanted valves were investigated by histology, immunohistochemistry, electron microscopy, and gene expression. Most substitutes constantly demonstrated in vivo adequate hemodynamic performances and ex vivo progressive repopulation during the 15 implantation months without signs of calcifications, fibrosis and/or thrombosis, as revealed by histological, immunohistochemical, ultrastructural, metabolic and transcriptomic profiles. Colonizing cells displayed native-like phenotypes and actively synthesized novel extracellular matrix elements, as collagen and elastin fibers. New mature blood vessels, i.e. capillaries and vasa vasorum, were identified in repopulated valves especially in the medial and adventitial tunicae of regenerated arterial walls. Such findings correlated to the up-regulated vascular gene transcription. Neoinnervation hallmarks were appreciated at histological and ultrastructural levels. Macrophage populations with reparative M2 phenotype were highly represented in repopulated valves. Indeed, no aspects of adverse/immune reaction were revealed in immunohistochemical and transcriptomic patterns. Among differentiated elements, several cells were identified expressing typical stem cell markers of embryonic, hematopoietic, neural and mesenchymal lineages in significantly

  10. Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils.

    Science.gov (United States)

    Pold, Grace; Billings, Andrew F; Blanchard, Jeff L; Burkhardt, Daniel B; Frey, Serita D; Melillo, Jerry M; Schnabel, Julia; van Diepen, Linda T A; DeAngelis, Kristen M

    2016-11-15

    As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of

  11. Long-term potentiation in bone – a role for glutamate in strain-induced cellular memory?

    Directory of Open Access Journals (Sweden)

    Genever Paul G

    2003-07-01

    Full Text Available Abstract Background The adaptive response of bone cells to mechanical strain is a primary determinant of skeletal architecture and bone mass. In vivo mechanical loading induces new bone formation and increases bone mineral density whereas disuse, immobilisation and weightlessness induce bone loss. The potency of mechanical strain is such that a single brief period of loading at physiological strain magnitude is able to induce a long-lasting osteogenic response that lasts for days. Although the process of mechanotransduction in bone is incompletely understood, observations that responses to mechanical strain outlast the duration of stimulation necessitate the existence of a form of cellular memory through which transient strain episodes are recorded, interpreted and remembered by bone cells. Recent evidence supports the existence of a complex multicellular glutamate-signalling network in bone that shares functional similarities to glutamatergic neurotransmission in the central nervous system. In neurones, these signalling molecules coordinate synaptic communication required to support learning and memory formation, through a complex process of long-term potentiation. Presentation of the hypothesis We hypothesise that osteoblasts use a cellular mechanism similar or identical to neuronal long-term potentiation in the central nervous system to mediate long-lasting changes in osteogenesis following brief periods of mechanical strain. Testing the hypothesis N-methyl-D-aspartate (NMDA receptor antagonism should inhibit the saturating response of mechanical strain and reduce the enhanced osteogenicity of segregated loading to that of an equivalent period of uninterrupted loading. Changes in α-amino-3-hydroxy-5-methyl-isoxazole propionate (AMPA receptor expression, localisation and electrophysiological responses should be induced by mechanical strain and inhibited by modulators of neuronal long-term potentiation. Implications of the hypothesis If true

  12. 锌缺乏对小鼠海马长时程增强的影响%Effect of Zinc deficiency on the formation of hippocampal long term potentiation

    Institute of Scientific and Technical Information of China (English)

    王佐周; 高慧玲; 徐赫; 王涛; 王占友

    2011-01-01

    Objective To investigate the effect of zinc deficiency on hippocampal zinc content and long term potentiation (LTP) in the mouse. Methods CD-1 mice at 3 weeks of age were fed with zinc-deficient diet (O.85mg/kg) for 5 weeks. Autometallography (AMG) was carried out to analyze the zinc content in the hippocampus. A concentric bipolar stimulating electrode was placed in the orientation of the mossy fiber lamellae of the fight dentate gyrus (DG) and a glass capillary recording electrode was placed ipsilaterally in the stratum pyramidal of the CA3 region of the hippecampus. LTP was evoked by a train of high frequency stimulations (HFS), and the changes of population spike (PS) and field excitatory postsynapfic potential (f-EPSP) were recorded, in order to analyze the effect of LTP under zinc deficiency. Results AMG staining showed that treatment with zinc-deficient diet reduced the level of zinc in hippocampal CA1, CA3 and dentate gyrus (p<0.05-0.O1). Electrophysiological in vivo recordings showed that zinc deficiency resulted in impairments of mossy fiber LTP (p<O.01). Conclusion Zinc deficiency results in a decreased level of free zinc ions in the hippocampus, which is associated with the inhibition of the formation of LTP.%目的 探讨锌缺乏对小鼠海马区域锌离子含量以及长时程增强(LTP)的影响.方法 3周龄CD-1小鼠饲以低锌饲料(0.85mg/kg)和去离子水5周进行实验.应用金属自显影技术(AMG)检测低锌饲料喂养对小鼠海马游离锌离子含量的影响;在小鼠海马齿状回的苔藓纤维层插入刺激电极,在CA3区锥体细胞层插入记录电极,记录高频刺激后海马苔藓纤维CA3区引起的峰电位(PS)和兴奋性突触后电位(f-EPSP)的变化,分析锌缺乏对小鼠海马LTP形成的影响.结果 AMG结果显示锌缺乏小鼠海马CA1,CA3和齿状回区域的锌离子含量明显降低(P<0.05-0.01);电生理检测结果表明锌缺乏小鼠在高频刺激后海马苔藓纤

  13. Early postnatal nicotine exposure causes hippocampus-dependent memory impairments in adolescent mice: Association with altered nicotinic cholinergic modulation of LTP, but not impaired LTP.

    Science.gov (United States)

    Nakauchi, Sakura; Malvaez, Melissa; Su, Hailing; Kleeman, Elise; Dang, Richard; Wood, Marcelo A; Sumikawa, Katumi

    2015-02-01

    Fetal nicotine exposure from smoking during pregnancy causes long-lasting cognitive impairments in offspring, yet little is known about the mechanisms that underlie this effect. Here we demonstrate that early postnatal exposure of mouse pups to nicotine via maternal milk impairs long-term, but not short-term, hippocampus-dependent memory during adolescence. At the Schaffer collateral (SC) pathway, the most widely studied synapses for a cellular correlate of hippocampus-dependent memory, the induction of N-methyl-D-aspartate receptor-dependent transient long-term potentiation (LTP) and protein synthesis-dependent long-lasting LTP are not diminished by nicotine exposure, but rather unexpectedly the threshold for LTP induction becomes lower after nicotine treatment. Using voltage sensitive dye to visualize hippocampal activity, we found that early postnatal nicotine exposure also results in enhanced CA1 depolarization and hyperpolarization after SC stimulation. Furthermore, we show that postnatal nicotine exposure induces pervasive changes to the nicotinic modulation of CA1 activity: activation of nicotinic receptors no longer increases CA1 network depolarization, acute nicotine inhibits rather than facilitates the induction of LTP at the SC pathway by recruiting an additional nicotinic receptor subtype, and acute nicotine no longer blocks LTP induction at the temporoammonic pathway. These findings reflect the pervasive impact of nicotine exposure during hippocampal development, and demonstrate an association of hippocampal memory impairments with altered nicotinic cholinergic modulation of LTP, but not impaired LTP. The implication of our results is that nicotinic cholinergic-dependent plasticity is required for long-term memory formation and that postnatal nicotine exposure disrupts this form of plasticity.

  14. Long-term neurocognitive outcome and auditory event-related potentials after complex febrile seizures in children.

    Science.gov (United States)

    Tsai, Min-Lan; Hung, Kun-Long; Tsan, Ying-Ying; Tung, William Tao-Hsin

    2015-06-01

    Whether prolonged or complex febrile seizures (FS) produce long-term injury to the hippocampus is a critical question concerning the neurocognitive outcome of these seizures. Long-term event-related evoked potential (ERP) recording from the scalp is a noninvasive technique reflecting the sensory and cognitive processes associated with attention tasks. This study aimed to investigate the long-term outcome of neurocognitive and attention functions and evaluated auditory event-related potentials in children who have experienced complex FS in comparison with other types of FS. One hundred and forty-seven children aged more than 6 years who had experienced complex FS, simple single FS, simple recurrent FS, or afebrile seizures (AFS) after FS and age-matched healthy controls were enrolled. Patients were evaluated with Wechsler Intelligence Scale for Children (WISC; Chinese WISC-IV) scores, behavior test scores (Chinese version of Conners' continuous performance test, CPT II V.5), and behavior rating scales. Auditory ERPs were recorded in each patient. Patients who had experienced complex FS exhibited significantly lower full-scale intelligence quotient (FSIQ), perceptual reasoning index, and working memory index scores than did the control group but did not show significant differences in CPT scores, behavior rating scales, or ERP latencies and amplitude compared with the other groups with FS. We found a significant decrease in the FSIQ and four indices of the WISC-IV, higher behavior rating scales, a trend of increased CPT II scores, and significantly delayed P300 latency and reduced P300 amplitude in the patients with AFS after FS. We conclude that there is an effect on cognitive function in children who have experienced complex FS and patients who developed AFS after FS. The results indicated that the WISC-IV is more sensitive in detecting cognitive abnormality than ERP. Cognition impairment, including perceptual reasoning and working memory defects, was identified in

  15. Potential long-term effects of previous schistosome infection may reduce the atherogenic index of plasma in Chinese men.

    Science.gov (United States)

    Shen, Shi-Wei; Lu, Yun; Li, Feng; Shen, Zhen-Hai; Xu, Ming; Yao, Wei-Feng; Feng, Yin-Bo; Yun, Jing-Ting; Wang, Ya-Ping; Ling, Wang; Qi, Hua-Jin; Tong, Da-Xin

    2015-04-01

    The major purpose of this study was to assess the association between the potential long-term effects of previous schistosome infection and atherogenic dyslipidemia. Among 1597 men aged ⩾45 years who received health examinations and lived in previous schistosomiasis-endemic regions of China, 465 patients with previous schistosome infection were selected as study subjects, and 1132 subjects formed the control group. The risk factors for cardiovascular disease were measured and compared between the previous schistosome infection and control groups. The Atherogenic Index of Plasma, triglycerides, waist circumference and body mass index were significantly lower in the previous schistosome infection group than in the control group (all P values immune response against schistosome infections. The development of a schistosomiasis vaccine may effectively prevent the development and progression of atherosclerosis.

  16. Effects of electrical acupuncture on long-term potentiation of excitatory postsynaptic potential in rat hippocampus%电针对大鼠海马兴奋性突触后电位长时程增强的作用

    Institute of Scientific and Technical Information of China (English)

    马骋; 闫丽萍; 沈梅红

    2004-01-01

    BACKGROUND: The combination of the researches between long-term potentiation(LTP) of hippocampus and behavioral method of animals has been widely introduced into the researches of improving the functions of study and memory, and the treatments of Alzheimer' s disease including Traditional Chinese Medicine treatments.OBJECTIVE: To observe the impacts of electrical acupuncture(EA) on LTP of excitatory postsynaptic potential(EPSP) in rat hippocampus in normal and scopolamine-induced hypomnesia models under anesthesia conditions.DESIGN: A randomized controlled study.SETTING and MATERIALS; Forty SD rats with a body weight of 270 -310 g were randomly grouped into control group, EA group, model group,and model + EP group with 10 rats each.INTERVENTIONS: EPSPs of granular cell layer at rat hippocampus dentate gyms were induced and recorded. LTP reaction of hippocampal synapse was aroused by high frequency stimulating(HFS) anterior perforated substance of cerebral cortex. Hypomnesia model was established by intraperitoneal injection of scopolamine. Dazhui(DU14) and both Shenshu(BL23) acupoints were acupunctured with EA with 3 - 5 mA of sparse and dense alternation wave for 30 minutes. The impacts of EA on normal and model hippocampal LTP were observed.MAIN OUTCOME MEASURES: Population spike (PS) , latency of EPSP,latency of PS peak, EPSP slope, PS peak value and PS peak area(PSa) of LTP before and at 0, 60 and 120 minutes after HFS.HFS was stronger than that of control group. Compared with control group,EPSP latency significantly shortened[compared with the change rate before HFS, the latencies were( -7.8 ±2.6)% and( - 14.4 ±7.7)% respectively(t=2.568 1, P < 0.05), EPSP slope increased(t=2.436 4, P <0.05); PSa incrensed(t=2.750 8-2.990 9, P < 0.05), with longer synapse LTP induced by HFS, which expressed in the prolongation of latencies of EPSP, PS peak value with significances compared with control group(t =4.564 8 -5.996 5, P <0.01) and, EPSP slope decreased, PS

  17. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn.

    Science.gov (United States)

    Jin, Virginia L; Schmer, Marty R; Stewart, Catherine E; Sindelar, Aaron J; Varvel, Gary E; Wienhold, Brian J

    2017-07-01

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N2 O) and methane (CH4 ) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha(-1)  yr(-1) , respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N2 O and CH4 fluxes were measured for five crop-years (2011-2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N2 O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH4 neutral and CT a CH4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long-term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface SOC

  18. Spatial, contextual and working memory are not affected by the absence of mossy fiber long-term potentiation and depression

    NARCIS (Netherlands)

    Hensbroek, R.A.; Kamal, A.; Baars, A.M.; Verhage, M.; Spruijt, B.M.

    2003-01-01

    The mossy fibers of the hippocampus display NMDA-receptor independent long-term plasticity. A number of studies addressed the role of mossy fiber long-term plasticity in memory, but have provided contrasting results. Here, we have exploited a genetic model, the rab3A null-mutant, which is

  19. Spatial, contextual and working memory are not affected by the absence of mossy fiber long-term potentiation and depression

    NARCIS (Netherlands)

    Hensbroek, R.A.; Kamal, A.; Baars, A.M.; Verhage, M.; Spruijt, B.M.

    2003-01-01

    The mossy fibers of the hippocampus display NMDA-receptor independent long-term plasticity. A number of studies addressed the role of mossy fiber long-term plasticity in memory, but have provided contrasting results. Here, we have exploited a genetic model, the rab3A null-mutant, which is characteri

  20. Potential effect of conservation tillage on sustainable land use : a review of global long-term studies

    NARCIS (Netherlands)

    Wang Xiaobin,; Cai, D.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D.

    2006-01-01

    Although understood differently in different parts of the world, conservation tillage usually includes leaving crop residues on the soil surface to reduce tillage. Through a global review of long-term conservation tillage research, this paper discusses the long-term effect of conservation tillage on

  1. The expression mechanism of the residual LTP in the CA1 region of BDNF k.o. mice is insensitive to NO synthase inhibition.

    Science.gov (United States)

    Lessmann, Volkmar; Stroh-Kaffei, Sigrid; Steinbrecher, Violetta; Edelmann, Elke; Brigadski, Tanja; Kilb, Werner; Luhmann, Heiko J

    2011-05-19

    BDNF and nitric oxide signaling both contribute to long-term potentiation (LTP) at glutamatergic synapses, but to date, few studies analyzed the interaction of both signaling cascades in the same synaptic pathway. Here we addressed the question whether the residual LTP in the CA1 region of hippocampal slices from heterozygous BDNF knockout mice (BDNF⁺/⁻) is dependent on nitric oxide (NO) signaling. Extracellular recording of synaptic field potentials elicited by presynaptic Schaffer collateral stimulation was performed in the CA1 region of hippocampal slices of 4- to 6-week-old mice, and LTP was induced by a theta burst stimulation protocol. Application of the nitric oxide inhibitor L-NAME (200 μM) strongly inhibited LTP by 70% in wildtype animals. This inhibition of LTP was not a consequence of altered basal synaptic properties. In CA1 of BDNF⁺/⁻ mice, stimulated with the same theta burst protocol, LTP was reduced by 50% as compared to wildtype animals. This impairment in the expression of LTP in BDNF⁺/⁻ mice did not result from an increased synaptic fatigue. The residual LTP in BDNF⁺/⁻ was not further reduced by preincubation of slices with L-NAME. These results suggest that BDNF and NO share overlapping intracellular signaling cascades to mediate LTP in CA1, and part of their signaling cascades are most likely arranged consecutively in the signaling pathway mediating LTP.

  2. Metabolic Profile as a Potential Modifier of Long-Term Radiation Effects on Peripheral Lymphocyte Subsets in Atomic Bomb Survivors.

    Science.gov (United States)

    Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro

    2016-09-01

    Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic

  3. Acid rock drainage passive remediation: Potential use of alkaline clay, optimal mixing ratio and long-term impacts.

    Science.gov (United States)

    Plaza, Fernando; Wen, Yipei; Perone, Hanna; Xu, Yi; Liang, Xu

    2017-01-15

    Acid rock drainage (ARD) is one of the most adverse environmental problems of the mining industry. Surface and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and metals/metalloids. In this study, alkaline clay (AC), an industrial waste with a high alkalinity, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation in waste coal piles. Through a series of laboratory experiments (static and kinetic), complemented with field measurements and geochemical modeling, three important issues associated with this passive and sustainable ARD remediation method were investigated: 1) the potential use of alkaline clay as an ARD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values close to neutral conditions, and, 3) the implications for long-term performance, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a local waste coal site. Through the analysis of the field measurements and the outcome of the laboratory experiments, AC proved to be an effective remediation material for ARD. Compared to those found in mine tailings, the concentrations of contaminants such as iron, manganese or sulfate were significantly reduced with this remediation approach. Moreover, results suggest a reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating. These processes also made the amended layer less porous, thus increased water retention and hindered oxygen diffusion.

  4. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010

    Science.gov (United States)

    Tian, Bo; Wu, Wenting; Yang, Zhaoqing; Zhou, Yunxuan

    2016-03-01

    The reclamation of coastal land for agricultural, industrial, and urban land use-a common worldwide practice-has occurred extensively in the coastal region of China. In recent decades, all coastal provinces and metropolises in China have experienced severe coastal reclamation related to land scarcity caused by rapid economic growth and urbanization. However, the value of coastal wetlands and ecosystems has not been well understood and appreciated until recent development of advantageous methods of restoring reclaimed land to coastal wetlands in many developed countries. The overall objective of this study is to provide detailed spatial and temporal distributions of coastal reclamation; analyze drivers such as coastal economy, population growth, and urbanization; and understand the relationships among the drivers and land reclamation. We used long-term Landsat image time series from 1985 to 2010 in 5-year intervals, in combination with remotely sensed image interpretation and spatial analysis, to map the reclamation status and changes across the coastal region of China. The Landsat images time-series analysis was also conducted to evaluate the effects of the economy, population, and urbanization drivers on coastal reclamation. The analysis results indicated that 754,697 ha of coastal wetlands have been reclaimed across all coastal provinces and metropolises from 1985 to 2010, and the trend increased sharply after 2005. High-intensity coastal reclamation was mainly driven by the booming economy, especially after 2000, associated with urbanization and industrial development in China's coastal region; this was closely correlated with the gross domestic product (GDP) per capita. The continuous large-scale coastal reclamation of its coastal region now means China is facing a great challenge, including the enormous loss of vegetated coastal wetlands, negative environmental effects, and potential disaster risks related to coastal flooding under future change climate

  5. Potential of thorium-based fuel cycle for PWR core to reduce plutonium and long-term toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    The cross section libraries and calculation methods of the participants were inter-compared through the first stage benchmark calculation. The multiplication factor of unit cell benchmark are in good agreement, but there is significant discrepancies of 2.3 to 3.5 %k at BOC and at EOC between the calculated infinite multiplication factors of each participants for the assembly benchmark. Our results with HELIOS show a reasonable agreement with the others except the MTC value at EOC. To verify the potential of the thorium-based fuel to consume the plutonium and to reduce the radioactivity from the spent fuel, the conceptual core with ThO{sub 2}-PuO{sub 2} or MOX fuel were constructed. The composition and quantity of plutonium isotopes and the radioactivity level of spent fuel for conceptual cores were analyzed, and the neutronic characteristics of conceptual cores were also calculated. The nuclear characteristics for ThO{sub 2}-PuO{sub 2} thorium fueled core was similar to MOX fueled core, mainly due to the same seed fuel material, plutonium. For the capability of plutonium consumption, ThO{sub 2}-PuO{sub 2} thorium fuel can consume plutonium 2.1-2.4 times MOX fuel. The fraction of fissile plutonium in the spent ThO{sub 2}-PuO{sub 2} thorium fuel is more favorable in view of plutonium consumption and non-proliferation than MOX fuel. The radioactivity of spent ThO{sub 2}-PuO{sub 2} thorium and MOX fuel batches were calculated. Since plutonium isotopes are dominant for the long-term radioactivity, ThO{sub 2}-PuO{sub 2} thorium has almost the same level of radioactivity as in MOX fuel for a long-term perspective. (author). 22 figs., 11 tabs.

  6. The proliferative potential of human cardiac stem cells was unaffected after a long-term cryopreservation of tissue blocks

    Science.gov (United States)

    Iguchi, Nobuo; Cho, Yasunori; Inoue, Masaki; Murakami, Tsutomu; Tabata, Minoru; Takanashi, Shuichiro; Tomoike, Hitonobu

    2017-01-01

    Background Human c-kit-positive cardiac stem cells (CSCs) have been used to treat patients suffering from ischemic cardiomyopathy. This study aimed to investigate whether a long-term storage of cardiac tissues would influence the growth potential of the subsequently isolated CSCs. Methods A total of 34 fresh samples were obtained from various cardiac regions [right atrium (RA), left atrium (LA), and/or left ventricle (LV)] of 21 patients. From 12 of these patients, 18 samples kept frozen for ~2 years were employed to prepare and characterize the CSCs. After confirming the specificity of the cell sorting by c-kit immunolabeling, the growth rate (number of doublings per day), BrdU positivity, and colony forming unit (CFU) were measured in each CSC population; the values were compared among distinct cardiac regions as well as between fresh and frozen tissues from which CSCs were derived. Results Among independent measurements indicating growth potential, the growth rate and BrdU positivity remarkably correlated in freshly prepared CSCs. The cells obtained from every examined region displayed a high proliferative capacity with the growth rate of 0.48±0.19 and the BrdU positivity of 15.0%±7.6%. The right atrial CSCs tended to show a greater growth than those in the other two areas. Similarly, the CSCs were isolated from tissue blocks, cryopreserved for ~2 years, and compared with CSCs derived from the fresh specimens of the same patients. Importantly, we were able to obtain and culture CSCs from every frozen material, and their proliferative potential, represented by the growth rate of 0.47±0.22 and the BrdU positivity of 13.7%±7.9%, was not inferior to that of the freshly prepared cells. Conclusions The long-term cryopreservation of cardiac tissues did not affect the growth potential of the derivative CSCs. Our findings should expand the therapeutic applications of these cells over a longer time span. PMID:28251120

  7. Long-Term Expansion, Enhanced Chondrogenic Potential, and Suppression of Endochondral Ossification of Adult Human MSCs via WNT Signaling Modulation

    Directory of Open Access Journals (Sweden)

    Roberto Narcisi

    2015-03-01

    Full Text Available Mesenchymal stem cells (MSCs are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair.

  8. 血管性痴呆大鼠海马区的长时程增强变化%Changes of long-term potentiation of hippocampus in vascular dementia rats

    Institute of Scientific and Technical Information of China (English)

    姚国恩; 王景周; 陈曼娥; 蒋晓江

    2004-01-01

    BACKGROUND: Long term potentiation(LTP) of CA1 region in the hippocampus of rats has been widely accepted as the cell model of learning and memory. However, there are few reports on its mechanism and pathological changes.OBJECTIVE: To observe the changes of LTP in CA1 region of rat' s hippocampus when blocking four blood vessels and explore the possible mechanism.DESIGN: Randomized case controlled study.SETTING, PARTICIPANTS and INTERVENTIONS: This experimentwas completed in the Experimental Animal Center of Field Operation Surgery Research Institute, Third Military Medical University of Chinese PLA. 60 Wistar rats were divided into control group and model group by random digits table method. Each group was divided into three subgroups by time phase which was 2 weeks, 4 weeks and 2 months, with each of 10 rats. Vascular dementia was produced in rats using a modification of Pulsinelli' s four-vessel occlusion model. Shuttle box system controlled by computer was used to test the learning and memory of rats. LTP of CA1 region induced by extracorporeal hippocampus slices was used to test the electricity changes of leaning and memory of rats. Ultrastructure of CA1 region of rat' s hippocampus was observed by transmission electron microscope.MAIN OUTCOME MEASURES: Active avoidance reaction(AAR); LTPdetection; ultramicro observation of CA1 region of hippocampus.RESULTS: Compared with control group, the AAR in model group declined more prominent than that of control group in the 2nd week( P < 0.05) . It reduced much greater in the 4th week and 2nd months( P < 0.01 ) . In the control group, the slices of hippocampus could obviously induce the LTP waveform while there was no LTP induced in all time phases in model groups. There were differences on the percentage changes of fEPSP slope before and after conditioned stimulus and between model groups and control groups( P < 0.05) . However, there was no difference among different time phases. There were some chronically

  9. The late maintenance of hippocampal LTP: requirements, phases, 'synaptic tagging', 'late-associativity' and implications.

    Science.gov (United States)

    Reymann, Klaus G; Frey, Julietta U

    2007-01-01

    Our review focuses on the mechanisms which enable the late maintenance of hippocampal long-term potentiation (LTP; >3h), a phenomenon which is thought to underlie prolonged memory. About 20 years ago we showed for the first time that the maintenance of LTP - like memory storage--depends on intact protein synthesis and thus, consists of at least two temporal phases. Here we concentrate on mechanisms required for the induction of the transient early-LTP and of the protein synthesis-dependent late-LTP. Our group has shown that the induction of late-LTP requires the associative activation of heterosynaptic inputs, i.e. the synergistic activation of glutamatergic and modulatory, reinforcing inputs within specific, effective time windows. The induction of late-LTP is characterized by novel, late-associative properties such as 'synaptic tagging' and 'late-associative reinforcement'. Both phenomena require the associative setting of synaptic tags as well as the availability of plasticity-related proteins (PRPs) and they are restricted to functional dendritic compartments, in general. 'Synaptic tagging' guarantees input specificity and thus the specific processing of afferent signals for the establishment of late-LTP. 'Late-associative reinforcement' describes a process where early-LTP by the co-activation of modulatory inputs can be transformed into late-LTP in activated synapses where a tag is set. Recent evidence from behavioral experiments, which studied processes of emotional and cognitive reinforcement of LTP, point to the physiological relevance of the above mechanisms during cellular and system's memory formation.

  10. X11beta rescues memory and long-term potentiation deficits in Alzheimer's disease APPswe Tg2576 mice.

    LENUS (Irish Health Repository)

    Mitchell, Jacqueline C

    2009-12-01

    Increased production and deposition of amyloid beta-protein (Abeta) are believed to be key pathogenic events in Alzheimer\\'s disease. As such, routes for lowering cerebral Abeta levels represent potential therapeutic targets for Alzheimer\\'s disease. X11beta is a neuronal adaptor protein that binds to the intracellular domain of the amyloid precursor protein (APP). Overexpression of X11beta inhibits Abeta production in a number of experimental systems. However, whether these changes to APP processing and Abeta production induced by X11beta overexpression also induce beneficial effects to memory and synaptic plasticity are not known. We report here that X11beta-mediated reduction in cerebral Abeta is associated with normalization of both cognition and in vivo long-term potentiation in aged APPswe Tg2576 transgenic mice that model the amyloid pathology of Alzheimer\\'s disease. Overexpression of X11beta itself has no detectable adverse effects upon mouse behaviour. These findings support the notion that modulation of X11beta function represents a therapeutic target for Abeta-mediated neuronal dysfunction in Alzheimer\\'s disease.

  11. The effect of acute swim stress and training in the water maze on hippocampal synaptic activity as well as plasticity in the dentate gyrus of freely moving rats: revisiting swim-induced LTP reinforcement.

    Science.gov (United States)

    Tabassum, Heena; Frey, Julietta U

    2013-12-01

    Hippocampal long-term potentiation (LTP) is a cellular model of learning and memory. An early form of LTP (E-LTP) can be reinforced into its late form (L-LTP) by various behavioral interactions within a specific time window ("behavioral LTP-reinforcement"). Depending on the type and procedure used, various studies have shown that stress differentially affects synaptic plasticity. Under low stress, such as novelty detection or mild foot shocks, E-LTP can be transformed into L-LTP in the rat dentate gyrus (DG). A reinforcing effect of a 2-min swim, however, has only been shown in (Korz and Frey (2003) J Neurosci 23:7281-7287; Korz and Frey (2005) J Neurosci 25:7393-7400; Ahmed et al. (2006) J Neurosci 26:3951-3958; Sajikumar et al., (2007) J Physiol 584.2:389-400) so far. We have reinvestigated these studies using the same as well as an improved recording technique which allowed the recording of field excitatory postsynaptic potentials (fEPSP) and the population spike amplitude (PSA) at their places of generation in freely moving rats. We show that acute swim stress led to a long-term depression (LTD) in baseline values of PSA and partially fEPSP. In contrast to earlier studies a LTP-reinforcement by swimming could never be reproduced. Our results indicate that 2-min swim stress influenced synaptic potentials as well as E-LTP negatively.

  12. Enhanced deficits in long-term potentiation in the adult dentate gyrus with 2nd trimester ethanol consumption.

    Directory of Open Access Journals (Sweden)

    Jennifer L Helfer

    Full Text Available Ethanol exposure during pregnancy can cause structural and functional changes in the brain that can impair cognitive capacity. The hippocampal formation, an area of the brain strongly linked with learning and memory, is particularly vulnerable to the teratogenic effects of ethanol. In the present experiments we sought to determine if the functional effects of developmental ethanol exposure could be linked to ethanol exposure during any single trimester-equivalent. Ethanol exposure during the 1(st or 3(rd trimester-equivalent produced only minor changes in synaptic plasticity in adult offspring. In contrast, ethanol exposure during the 2(nd trimester equivalent resulted in a pronounced decrease in long-term potentiation, indicating that the timing of exposure influences the severity of the deficit. Together, the results from these experiments demonstrate long-lasting alterations in synaptic plasticity as the result of developmental ethanol exposure and dependent on the timing of exposure. Furthermore, these results allude to neural circuit malfunction within the hippocampal formation, perhaps relating to the learning and memory deficits observed in individuals with fetal alcohol spectrum disorders.

  13. Long-term monitoring of airborne nickel (Ni) pollution in association with some potential source processes in the urban environment.

    Science.gov (United States)

    Kim, Ki-Hyun; Shon, Zang-Ho; Mauulida, Puteri T; Song, Sang-Keun

    2014-09-01

    The environmental behavior and pollution status of nickel (Ni) were investigated in seven major cities in Korea over a 13-year time span (1998-2010). The mean concentrations of Ni measured during the whole study period fell within the range of 3.71 (Gwangju: GJ) to 12.6ngm(-3) (Incheon: IC). Although Ni values showed a good comparability in a relatively large spatial scale, its values in most cities (6 out of 7) were subject to moderate reductions over the study period. To assess the effect of major sources on the long-term distribution of Ni, the relationship between their concentrations and the potent source processes like non-road transportation sources (e.g., ship and aircraft emissions) were examined from some cities with port and airport facilities. The potential impact of long-range transport of Asian dust particles in controlling Ni levels was also evaluated. The overall results suggest that the Ni levels were subject to gradual reductions over the study period irrespective of changes in such localized non-road source activities. The pollution of Ni at all the study sites was maintained well below the international threshold (Directive 2004/107/EC) value of 20ngm(-3).

  14. In-situ strain analysis of potential habitat composites exposed to a simulated long-term lunar radiation exposure

    Science.gov (United States)

    Rojdev, Kristina; O'Rourke, Mary Jane E.; Hill, Charles; Nutt, Steven; Atwell, William

    2013-03-01

    NASA is studying the effects of long-term space radiation on potential multifunctional composite materials for habitats to better determine their characteristics in harsh space environments. Two epoxy-matrix composite materials were selected for the study and were mounted in a test stand that simulated the biaxial stresses of a pressure vessel wall. The samples in the test stand were exposed to radiation at fast (0.1478 krad/s) and slow (0.0139 krad/s) dose rates, and the strain and temperature were recorded during the exposure. During a fast dose rate exposure, negative strain was recorded, decreasing with time, an indication of matrix shrinkage. Given previous radiation studies of polymers, this is expected to be a result of radiation-induced crosslinking in the epoxy matrix. However, with a slow dose rate, the materials exhibited a positive strain that increased with time, corresponding to stretching of the materials. This result is consistent with scission or degradation of the matrix occurring, possibly due to oxidative degradation.

  15. Humans with Type-2 Diabetes Show Abnormal Long-Term Potentiation-Like Cortical Plasticity Associated with Verbal Learning Deficits

    Science.gov (United States)

    Fried, Peter J.; Schilberg, Lukas; Brem, Anna-Katharine; Saxena, Sadhvi; Wong, Bonnie; Cypess, Aaron M.; Horton, Edward S.; Pascual-Leone, Alvaro

    2016-01-01

    Background Type-2 diabetes mellitus (T2DM) accelerates cognitive aging and increases risk of Alzheimer’s disease. Rodent models of T2DM show altered synaptic plasticity associated with reduced learning and memory. Humans with T2DM also show cognitive deficits, including reduced learning and memory, but the relationship of these impairments to the efficacy of neuroplastic mechanisms has never been assessed. Objective Our primary objective was to compare mechanisms of cortical plasticity in humans with and without T2DM. Our secondary objective was to relate plasticity measures to standard measures of cognition. Methods A prospective cross-sectional cohort study was conducted on 21 adults with T2DM and 15 demographically-similar non-diabetic controls. Long-term potentiation-like plasticity was assessed in primary motor cortex by comparing the amplitude of motor evoked potentials (MEPs) from single-pulse transcranial magnetic stimulation before and after intermittent theta-burst stimulation (iTBS). Plasticity measures were compared between groups and related to neuropsychological scores. Results In T2DM, iTBS-induced modulation of MEPs was significantly less than controls, even after controlling for potential confounds. Furthermore, in T2DM, modulation of MEPs 10-min post-iTBS was significantly correlated with Rey Auditory Verbal Learning Task (RAVLT) performance. Conclusion Humans with T2DM show abnormal cortico-motor plasticity that is correlated with reduced verbal learning. Since iTBS after-effects and the RAVLT are both NMDA receptor-dependent measures, their relationship in T2DM may reflect brain-wide alterations in the efficacy of NMDA receptors. These findings offer novel mechanistic insights into the brain consequences of T2DM and provide a reliable means to monitor brain health and evaluate the efficacy of clinical interventions. PMID:27636847

  16. D1/D5 Receptors and Histone Deacetylation Mediate the Gateway Effect of LTP in Hippocampal Dentate Gyrus

    Science.gov (United States)

    Huang, Yan-You; Lavine, Amir; Kandel, Denise B.; Yin, Deqi; Colnaghi, Luca; Drisaldi, Bettina; Kandel, Eric R.

    2014-01-01

    The dentate gyrus (DG) of the hippocampus is critical for spatial memory and is also thought to be involved in the formation of drug-related associative memory. Here, we attempt to test an aspect of the Gateway Hypothesis, by studying the effect of consecutive exposure to nicotine and cocaine on long-term synaptic potentiation (LTP) in the DG. We…

  17. Coordinate High-Frequency Pattern of Stimulation and Calcium Levels Control the Induction of LTP in Striatal Cholinergic Interneurons

    Science.gov (United States)

    Bonsi, Paola; De Persis, Cristiano; Calabresi, Paolo; Bernardi, Giorgio; Pisani, Antonio

    2004-01-01

    Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium…

  18. D1/D5 Receptors and Histone Deacetylation Mediate the Gateway Effect of LTP in Hippocampal Dentate Gyrus

    Science.gov (United States)

    Huang, Yan-You; Lavine, Amir; Kandel, Denise B.; Yin, Deqi; Colnaghi, Luca; Drisaldi, Bettina; Kandel, Eric R.

    2014-01-01

    The dentate gyrus (DG) of the hippocampus is critical for spatial memory and is also thought to be involved in the formation of drug-related associative memory. Here, we attempt to test an aspect of the Gateway Hypothesis, by studying the effect of consecutive exposure to nicotine and cocaine on long-term synaptic potentiation (LTP) in the DG. We…

  19. Harmful potential toxic elements in greenhouse soils under long-term cultivation in Almería (Spain)

    Science.gov (United States)

    Joaquin Ramos-Miras, Jose; Rodríguez Martín, Jose Antonio; Boluda, Rafael; Bech, Jaume; Gil, Carlos

    2014-05-01

    Heavy metals (HM) are considered highly significant environmental contaminants and are the object of many scientific research works into the soil environment. Activities like agriculture or industry can increase the concentration of these contaminants in soils and waters, which can affect the food chain. Intensification of certain agricultural practices, constant and excessive use of fertilizers and phytosanitary products, and using machinery, increase the HM content in agricultural soils. Many studies have dealt with HM accumulation over time. Despite these works, the influence of long periods of time on these contents, the dynamics and evolution of these elements in agricultural soils, especially soils used for intensive farming purposes under greenhouse conditions, remain unknown to a certain extent. The western Almería region (Spain) is a very important area from both the socio-economic and agricultural viewpoints. A common practice in greenhouse agriculture is the addition of agrochemicals to soils and crops to improve nutrient supply or crop protection and disease control. Such intense agricultural activity has a strong impact, which may have negative repercussions on both these greenhouse soils and the environment. A research has been carried out to determine the total and available levels of six harmful potentially toxic elements (Cd, Cu, Pb, Ni, Zn and Co), and to assess long-term variations in the greenhouse soils of western Almeria. The results indicate that managing soils in the greenhouse preparation stage determines major changes in total and available HM contents. Furthermore, Cd, Cu and Pb enrichment in soil was observed depending on the element and years of growth.

  20. Long-term potentiation of inhibitory synaptic transmission onto cerebellar Purkinje neurons contributes to adaptation of vestibulo-ocular reflex.

    Science.gov (United States)

    Tanaka, Shinsuke; Kawaguchi, Shin-Ya; Shioi, Go; Hirano, Tomoo

    2013-10-23

    Synaptic plasticity in the cerebellum is thought to contribute to motor learning. In particular, long-term depression (LTD) at parallel fiber (PF) to Purkinje neuron (PN) excitatory synapses has attracted much attention of neuroscientists as a primary cellular mechanism for motor learning. In contrast, roles of plasticity at cerebellar inhibitory synapses in vivo remain unknown. Here, we have investigated the roles of long-lasting enhancement of transmission at GABAergic synapses on a PN that is known as rebound potentiation (RP). Previous studies demonstrated that binding of GABAA receptor with GABAA receptor-associated protein (GABARAP) is required for RP, and that a peptide that blocks this binding suppresses RP induction. To address the functional roles of RP, we generated transgenic mice that express this peptide fused to a fluorescent protein selectively in PNs using the PN-specific L7 promoter. These mice failed to show RP, although they showed no changes in the basal amplitude or frequency of miniature IPSCs. The transgenic mice also showed no abnormality in gross cerebellar morphology, LTD, or other excitatory synaptic properties, or intrinsic excitability of PNs. Next, we attempted to evaluate their motor control and learning ability by examining reflex eye movements. The basal dynamic properties of the vestibulo-ocular reflex and optokinetic response, and adaptation of the latter, were normal in the transgenic mice. In contrast, the transgenic mice showed defects in the adaptation of vestibulo-ocular reflex, a model paradigm of cerebellum-dependent motor learning. These results together suggest that RP contributes to a certain type of motor learning.

  1. Health-related quality of life in long-term esophageal cancer survivors after potentially curative treatment

    NARCIS (Netherlands)

    Courrech Staal, E.F.W.; van Sandick, J.W.; van Tinteren, H.; Cats, A.; Aaronson, N.K.

    2010-01-01

    Objective Clinical outcomes have been investigated extensively in studies of esophageal cancer treatment. Less is known about long-term health-related quality of life outcomes. The aim of this study was to assess a range of health-related quality of life outcomes in patients with esophageal cancer t

  2. Congenital Heart Disease With and Without Cyanotic Potential and the Long-term Risk of Diabetes Mellitus

    DEFF Research Database (Denmark)

    Madsen, Nicolas L; Marino, Bradley S; Woo, Jessica G

    2016-01-01

    BACKGROUND: Long-term survival for persons born with congenital heart disease (CHD) is improved, but limited knowledge exists of this growing population's acquired cardiovascular risk profile. This study's purpose was to assess CHD survivors' risk for type 2 diabetes mellitus (T2DM) with attention...

  3. Long-Term Effects of Child Corporal Punishment on Depressive Symptoms in Young Adults: Potential Moderators and Mediators

    Science.gov (United States)

    Turner, Heather A.; Muller, Paul A.

    2004-01-01

    Based on a sample of 649 students from 3 New England colleges, this study examined the long-term effects of childhood corporal punishment on symptoms of depression and considered factors that may moderate or mediate the association. Similar to national studies, approximately 40% of the sample reported experiencing some level of corporal punishment…

  4. Strain-dependent Differences in LTP and Hippocampus-dependent Memory in Inbred Mice

    OpenAIRE

    Nguyen, Peter V.; Abel, Ted; Eric R Kandel; Bourtchouladze, Roussoudan

    2000-01-01

    Many studies have used “reverse” genetics to produce “knock-out” and transgenic mice to explore the roles of various molecules in long-term potentiation (LTP) and spatial memory. The existence of a variety of inbred strains of mice provides an additional way of exploring the genetic bases of learning and memory. We examined behavioral memory and LTP expression in area CA1 of hippocampal slices prepared from four different inbred strains of mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms-+Ter?/J....

  5. An associativity requirement for locus coeruleus-induced long-term potentiation in the dentate gyrus of the urethane-anesthetized rat.

    Science.gov (United States)

    Reid, Andrew T; Harley, Carolyn W

    2010-01-01

    Norepinephrine has been hypothesized to provide a learning and memory signal. Norepinephrine long-term potentiation of perforant path input to the dentate gyrus of the hippocampus provides a model for norepinephrine initiated memory processes. However, in vitro, the pairing of perforant path stimulation and norepinephrine is not required for the occurrence of norepinephrine-dependent long-term potentiation. Since bath application of norepinephrine induces long-term changes in 2nd messenger signalling and differs in a number of ways from physiological norepinephrine release, the present study is an in vivo test of the associative requirement for the pairing of perforant path input with norepinephrine to induce long-term potentiation. Phasic activation of the locus coeruleus is provided by glutamate infusion into the locus coeruleus to initiate transient norepinephrine release in the hippocampus of urethane-anesthetized Sprague-Dawley rats. Perforant path stimulation (0.067 Hz) was given throughout the experiment in the paired condition. In the unpaired condition perforant path stimulation was interrupted 10 min prior to locus coeruleus activation and resumed 10 min after locus coeruleus activation. Locus coeruleus-induced long-term potentiation of both EPSP slope and population spike only occurred in the pairing condition. This result argues that, in vivo, temporal proximity of locus coeruleus-associated norepinephrine release and perforant path stimulation are required to induce long-term plasticity. The associativity requirement for locus coeruleus activation and perforant path stimulation in vivo is consistent with the hypothesis that norepinephrine can initiate circuit changes supporting learning and memory.

  6. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory.

    Science.gov (United States)

    Duffy, S N; Craddock, K J; Abel, T; Nguyen, P V

    2001-01-01

    cAMP-dependent protein kinase (PKA) is critical for the expression of some forms of long-term potentiation (LTP) in area CA1 of the mouse hippocampus and for hippocampus-dependent memory. Exposure to spatially enriched environments can modify LTP and improve behavioral memory in rodents, but the molecular bases for the enhanced memory performance seen in enriched animals are undefined. We tested the hypothesis that exposure to a spatially enriched environment may alter the PKA dependence of hippocampal LTP. Hippocampal slices from enriched mice showed enhanced LTP following a single burst of 100-Hz stimulation in the Schaffer collateral pathway of area CA1. In slices from nonenriched mice, this single-burst form of LTP was less robust and was unaffected by Rp-cAMPS, an inhibitor of PKA. In contrast, the enhanced LTP in enriched mice was attenuated by Rp-cAMPS. Enriched slices expressed greater forskolin-induced, cAMP-dependent synaptic facilitation than did slices from nonenriched mice. Enriched mice showed improved memory for contextual fear conditioning, whereas memory for cued fear conditioning was unaffected following enrichment. Our data indicate that exposure of mice to spatial enrichment alters the PKA dependence of LTP and enhances one type of hippocampus-dependent memory. Environmental enrichment can transform the pharmacological profile of hippocampal LTP, possibly by altering the threshold for activity-dependent recruitment of the cAMP-PKA signaling pathway following electrical and chemical stimulation. We suggest that experience-dependent plasticity of the PKA dependence of hippocampal LTP may be important for regulating the efficacy of hippocampus-based memory.

  7. LTP requires a reserve pool of glutamate receptors independent of subunit type.

    Science.gov (United States)

    Granger, Adam J; Shi, Yun; Lu, Wei; Cerpas, Manuel; Nicoll, Roger A

    2013-01-24

    Long-term potentiation (LTP) of synaptic transmission is thought to be an important cellular mechanism underlying memory formation. A widely accepted model posits that LTP requires the cytoplasmic carboxyl tail (C-tail) of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GluA1. To find the minimum necessary requirement of the GluA1 C-tail for LTP in mouse CA1 hippocampal pyramidal neurons, we used a single-cell molecular replacement strategy to replace all endogenous AMPA receptors with transfected subunits. In contrast to the prevailing model, we found no requirement of the GluA1 C-tail for LTP. In fact, replacement with the GluA2 subunit showed normal LTP, as did an artificially expressed kainate receptor not normally found at these synapses. The only conditions under which LTP was impaired were those with markedly decreased AMPA receptor surface expression, indicating a requirement for a reserve pool of receptors. These results demonstrate the synapse's remarkable flexibility to potentiate with a variety of glutamate receptor subtypes, requiring a fundamental change in our thinking with regard to the core molecular events underlying synaptic plasticity.

  8. Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor.

    Science.gov (United States)

    Nissen, Wiebke; Szabo, Andras; Somogyi, Jozsef; Somogyi, Peter; Lamsa, Karri P

    2010-01-27

    Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic interneuron types might underlie this heterogeneity. We show that long-term potentiation (LTP) and depression (LTD), two common forms of synaptic plasticity, are expressed in a highly cell type-specific manner at glutamatergic synapses onto hippocampal GABAergic neurons. Both LTP and LTD are generated in interneurons expressing parvalbumin (PV+), whereas interneurons with similar axon distributions but expressing cannabinoid receptor-1 show no lasting plasticity in response to the same protocol. In addition, LTP or LTD occurs in PV+ interneurons with different efferent target domains. Perisomatic-targeting PV+ basket and axo-axonic interneurons express LTP, whereas glutamatergic synapses onto PV+ bistratified cells display LTD. Both LTP and LTD are pathway specific, independent of NMDA receptors, and occur at synapses with calcium-permeable (CP) AMPA receptors. Plasticity in interneurons with CP-AMPA receptors strongly modulates disynaptic GABAergic transmission onto CA1 pyramidal cells. We propose that long-term plasticity adjusts the synaptic strength between pyramidal cells and interneurons in a cell type-specific manner and, in the defined CA1 interneurons, shifts the spatial pattern of inhibitory weight from pyramidal cell dendrites to the perisomatic region.

  9. Long-term potentiation and memory processes in the psychological works of Sigmund Freud and in the formation of neuropsychiatric symptoms.

    Science.gov (United States)

    Centonze, D; Siracusano, A; Calabresi, P; Bernardi, G

    2005-01-01

    Far from disproving the model of mind functioning proposed by psychoanalysis, the recent advances in neuropsychiatrical research confirmed the crucial ideas of Sigmund Freud. The hypothesis that the origin of mental illnesses lies in the impossibility for a subject to erase the long-term effects of a remote adverse event is in tune with the view that several psychiatric disturbances reflect the activation of aberrant unconscious memory processes. Freud's insights did not stop here, but went on to describe in an extremely precise manner the neural mechanisms of memory formation almost a century before the description of long-term synaptic potentiation.

  10. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Pollard, David; Klemann, Volker

    2016-04-01

    for asthenosphere viscosities of 3x10^20 Pa s or higher. References Gomez, N., Pollard, D., Mitrovica, J. X., Huybers, P., & Clark, P. U. (2012). Evolution of a coupled marine ice sheet-sea level model. J. Geophys. Res. 117(F1). Konrad, H., Sasgen, I., Pollard, D. & Klemann, V. (2015). Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth Planet. Sci. Lett. 432, 2015.

  11. mGluR5 positive allosteric modulators facilitate both hippocampal LTP and LTD and enhance spatial learning.

    Science.gov (United States)

    Ayala, Jennifer E; Chen, Yelin; Banko, Jessica L; Sheffler, Douglas J; Williams, Richard; Telk, Alexandra N; Watson, Noreen L; Xiang, Zixiu; Zhang, Yongqin; Jones, Paulianda J; Lindsley, Craig W; Olive, M Foster; Conn, P Jeffrey

    2009-08-01

    Highly selective positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGluR5) have emerged as a potential approach to treat positive symptoms associated with schizophrenia. mGluR5 plays an important role in both long-term potentiation (LTP) and long-term depression (LTD), suggesting that mGluR5 PAMs may also have utility in improving impaired cognitive function. However, if mGluR5 PAMs shift the balance of LTP and LTD or induce a state in which afferent activity induces lasting changes in synaptic function that are not appropriate for a given pattern of activity, this could disrupt rather than enhance cognitive function. We determined the effect of selective mGluR5 PAMs on the induction of LTP and LTD at the Schaffer collateral-CA1 synapse in the hippocampus. mGluR5-selective PAMs significantly enhanced threshold theta-burst stimulation (TBS)-induced LTP. In addition, mGluR5 PAMs enhanced both DHPG-induced LTD and LTD induced by the delivery of paired-pulse low-frequency stimulation. Selective potentiation of mGluR5 had no effect on LTP induced by suprathreshold TBS or saturated LTP. The finding that potentiation of mGluR5-mediated responses to stimulation of glutamatergic afferents enhances both LTP and LTD and supports the hypothesis that the activation of mGluR5 by endogenous glutamate contributes to both forms of plasticity. Furthermore, two systemically active mGluR5 PAMs enhanced performance in the Morris water maze, a measure of hippocampus-dependent spatial learning. Discovery of small molecules that enhance both LTP and LTD in an activity-appropriate manner shows a unique action on synaptic plasticity that may provide a novel approach for the treatment of impaired cognitive function.

  12. Evaluating long-term annual sediment yield estimating potential of GIS interfaced MUSLE model on two micro-watersheds.

    Science.gov (United States)

    Arekhi, Saleh

    2008-01-15

    Use of an event scale MUSLE model for obtaining accurate long-term annual sediment yield estimates from micro-watersheds was evaluated. Such estimates are extremely important for designing appropriate soil/water conserving measures. For easy extraction and inputting of model input parameters, the proposed model was interfaced to an Arc-View/Spatial Analyst geographic information system. Application of this GIS interfaced MUSLE model on two gauged (pine and oak forest) hilly micro-watersheds viz., Salla Rautella (0.47 km2) and Naula (0.42 km2), in Almora district of Uttaranchal, India showed that it could estimate annual sediment yields with absolute mean relative errors ranging between 12-14%. Even long-term average sediment yields for Salla Rautella (observed: 9.58 tons and estimated: 10.92 tons) and Naula: (Observed: 23.89 tons and estimated: 26.61 tons) micro-watersheds could be quite realistically simulated by the proposed model.

  13. Worldwide impact of aerosol’s time scale on the predicted long-term concentrating solar power potential

    Science.gov (United States)

    Ruiz-Arias, Jose A.; Gueymard, Christian A.; Santos-Alamillos, Francisco J.; Pozo-Vázquez, David

    2016-01-01

    Concentrating solar technologies, which are fuelled by the direct normal component of solar irradiance (DNI), are among the most promising solar technologies. Currently, the state-of the-art methods for DNI evaluation use datasets of aerosol optical depth (AOD) with only coarse (typically monthly) temporal resolution. Using daily AOD data from both site-specific observations at ground stations as well as gridded model estimates, a methodology is developed to evaluate how the calculated long-term DNI resource is affected by using AOD data averaged over periods from 1 to 30 days. It is demonstrated here that the use of monthly representations of AOD leads to systematic underestimations of the predicted long-term DNI up to 10% in some areas with high solar resource, which may result in detrimental consequences for the bankability of concentrating solar power projects. Recommendations for the use of either daily or monthly AOD data are provided on a geographical basis. PMID:27507711

  14. Strain-dependent differences in LTP and hippocampus-dependent memory in inbred mice.

    Science.gov (United States)

    Nguyen, P V; Abel, T; Kandel, E R; Bourtchouladze, R

    2000-01-01

    Many studies have used "reverse" genetics to produce "knock-out" and transgenic mice to explore the roles of various molecules in long-term potentiation (LTP) and spatial memory. The existence of a variety of inbred strains of mice provides an additional way of exploring the genetic bases of learning and memory. We examined behavioral memory and LTP expression in area CA1 of hippocampal slices prepared from four different inbred strains of mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms-+(Ter?)/J. We found that LTP induced by four 100-Hz trains of stimulation was robust and long-lasting in C57BL/6J and DBA/2J mice but decayed in CBA/J and 129/SvEms-+(Ter?)/J mice. LTP induced by one 100-Hz train was significantly smaller after 1 hr in the 129/SvEms-+(Ter?)/J mice than in the other three strains. Theta-burst LTP was shorter lasting in CBA/J, DBA/2J, and 129/SvEms-+(Ter?)/J mice than in C57BL/6J mice. We also observed specific memory deficits, among particular mouse strains, in spatial and nonspatial tests of hippocampus-dependent memory. CBA/J mice showed defective learning in the Morris water maze, and both DBA/2J and CBA/J strains displayed deficient long-term memory in contextual and cued fear conditioning tests. Our findings provide strong support for a genetic basis for some forms of synaptic plasticity that are linked to behavioral long-term memory and suggest that genetic background can influence the electrophysiological and behavioral phenotypes observed in genetically modified mice generated for elucidating the molecular bases of learning, memory, and LTP.

  15. An associativity requirement for locus coeruleus-induced long-term potentiation in the dentate gyrus of the urethane-anesthetized rat.

    NARCIS (Netherlands)

    Reid, A.T.; Harley, C.W.

    2010-01-01

    Norepinephrine has been hypothesized to provide a learning and memory signal. Norepinephrine long-term potentiation of perforant path input to the dentate gyrus of the hippocampus provides a model for norepinephrine initiated memory processes. However, in vitro, the pairing of perforant path stimula

  16. Assessing Potential Implications of Climate Change for Long-Term Water Resources Planning in the Colorado River Basin, Texas

    Science.gov (United States)

    Munevar, A.; Butler, S.; Anderson, R.; Rippole, J.

    2008-12-01

    exploring climate change projections and methods to assess potential impacts over the project's expected life. Following an initial qualitative risk assessment, quantitative climate scenarios were developed based on multiple coupled atmosphere-ocean general circulation model (AOGCM) simulations under a range of global emission scenarios. Projected temperature and precipitation changes were evaluated from 112 downscaled AOGCM projections. A Four scenarios were selected for detailed hydrologic evaluations using the Variable Infiltration Capacity (VIC) macroscale model. A quantile mapping procedure was applied to map future climatological period change statistics onto the long-term natural climate variability in the observed record. Simulated changes in runoff, river flow, evaporation, and evapotranspiration are used to generate adjustments to historical hydrology for assessment of potential changes to surface water availability, river water quality, riverine habitat, and Bay health. Projected temperature, precipitation, and atmospheric CO2 concentrations are used to estimate changes in agricultural demand. Sea level rise scenarios that include trends in Gulf Coast shelf subsidence are combined with changes in inflows to evaluate increased coastal erosion, upland migration of the estuary, and changes to the salinity regime. Results of the scenario-based analyses are being considered in the development of adaptive management strategies for future operations of the system and the proposed project.

  17. Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis.

    Science.gov (United States)

    Enoki, Ryosuke; Hu, Yi-Ling; Hamilton, David; Fine, Alan

    2009-04-30

    Key aspects of the expression of long-term potentiation (LTP) and long-term depression (LTD) remain unresolved despite decades of investigation. Alterations in postsynaptic glutamate receptors are believed to contribute to the expression of various forms of LTP and LTD, but the relative importance of presynaptic mechanisms is controversial. In addition, while aggregate synaptic input to a cell can undergo sequential and graded (incremental) LTP and LTD, it has been suggested that individual synapses may only support binary changes between initial and modified levels of strength. We have addressed these issues by combining electrophysiological methods with two-photon optical quantal analysis of plasticity at individual active (non-silent) Schaffer collateral synapses on CA1 pyramidal neurons in acute slices of hippocampus from adolescent rats. We find that these synapses sustain graded, bidirectional long-term plasticity. Remarkably, changes in potency are small and insignificant; long-term plasticity at these synapses is expressed overwhelmingly via presynaptic changes in reliability of transmitter release.

  18. Effects of antiepileptic drugs on associative LTP-like plasticity in human motor cortex.

    Science.gov (United States)

    Heidegger, Tonio; Krakow, Karsten; Ziemann, Ulf

    2010-10-01

    Antiepileptic drugs (AEDs) are used extensively in clinical practice but relatively little is known on their specific effects at the systems level of human cortex. Here we tested, using a double-blind randomized placebo-controlled crossover design in healthy subjects, the effects of a single therapeutic oral dose of seven AEDs with different modes of action (tiagabine, diazepam, gabapentin, lamotrigine, topiramate, levetiracetam and piracetam) on long-term potentiation (LTP)-like motor cortical plasticity induced by paired associative transcranial magnetic stimulation (PAS). PAS-induced LTP-like plasticity was assessed from the increase in motor evoked potential amplitude in a hand muscle contralateral to the stimulated motor cortex. Levetiracetam significantly reduced LTP-like plasticity when compared to the placebo condition. Tiagabine, diazepam, lamotrigine and piracetam resulted in nonsignificant trends towards reduction of LTP-like plasticity while gabapentin and topiramate had no effect. The particularly depressant effect of levetiracetam is probably explained by its unique mode of action through binding at the vesicle membrane protein SV2A. Enhancement of gamma-amino butyric acid-dependent cortical inhibition by tiagabine, diazepam and possibly levetiracetam, and blockage of voltage-gated sodium channels by lamotrigine, may also depress PAS-induced LTP-like plasticity but these mechanisms appear to be less relevant. Findings may inform about AED-related adverse effects on important LTP-dependent central nervous systems processes such as learning or memory formation. The particular depressant effect of levetiracetam on LTP-like plasticity may also relate to the unique properties of this drug to inhibit epileptogenesis, a potentially LTP-associated process.

  19. Visual experience regulates the development of long-term synaptic modifications induced by low-frequency stimulation in mouse visual cortex.

    Science.gov (United States)

    Sugimura, Taketoshi; Yamamoto, Mariko; Yamada, Kazumasa; Komatsu, Yukio; Yoshimura, Yumiko

    2017-03-08

    Manipulation of visual experience can considerably modify visual responses of visual cortical neurons even in adulthood in the mouse, although the modification is less profound than that observed during the critical period. Our previous studies demonstrated that low-frequency (2Hz) stimulation for 15min applied to layer 4 induces T-type Ca(2+) channel-dependent long-term potentiation (LTP) at excitatory synapses in layer 2/3 neurons of visual cortex during the critical period. In this study, we investigated whether low-frequency stimulation could induce synaptic plasticity in adult mice. We found that 2Hz stimulation induced LTP of extracellular field potentials evoked by stimulation of layer 4 in layer 2/3 in adulthood as during the critical period. LTP in adulthood was blocked by L-type, but not T-type, Ca(2+) channel antagonists, whereas LTP during the critical period was blocked by T-type, but not L-type, Ca(2+) channel antagonists. This developmental change in LTP was prevented by dark rearing. Under pharmacological blockade of GABAA receptors, T-type Ca(2+) channel-dependent LTP occurred, whereas L-type Ca(2+) channel-dependent LTP did not occur. These results suggest that different forms of synaptic plasticity can contribute separately to experience-dependent modification of visual responses during the critical period and in adulthood.

  20. Identifying flood deposits in lake sediments: Changing frequencies and potential links to long-term climate change

    Energy Technology Data Exchange (ETDEWEB)

    Stoeren, Eivind Wilhelm Nagel

    2011-05-15

    ,000 years, including floods that have also been recorded by instrumental and historical data. The minimum number of individual floods recorded for this period is c. 100. On centennial timescales significant change in flood frequency is observed that arguably can be attributed to large-scale climatic changes such as the varying amount of winter precipitation and number of summer rainstorms. The flood frequency was low during the early Holocene (9770-7700 cal. years BP), and was even lower for the period that followed, lasting until 5500 cal. years BP. For the next 2500 years, a modest increase in flood activity followed. This trend was truncated at 2500 cal. years BP by a sudden shift towards increased flooding frequency. With the exception of a short interval around 1000 cal. years BP, when the number of floods was again low, this tendency of increased flood activity prevailed until the present day; including Stor-Ofsen, a large flood that occurred in AD 1789, and also three other historically documented river floods. In Parer III we compared the record from Jotunheimen to a second continuous, high resolution palaeo flood record from Butjoenna (62' N 10' E) and found that both the frequency and distribution of flood events over southern Norway has changed significantly during the Holocene. The present regional-discharge regime is dominated by spring-summer snow melt, and results indicate that the changing flood frequency cannot be explained by local conditions associated with the respective catchment of the two lakes, but rather by long-term variations of solid winter precipitation and related snow melt. Applying available instrumental winter precipitation data and associated sea-level pressure re-analysis data as a modern analogue, we document that atmospheric-circulation anomalies, significantly different from the North Atlantic Oscillation (NAO), have some potential in explaining the variability of the two different palaeo flood records. Centennial

  1. REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus.

    Science.gov (United States)

    Kim, Eun Young; Mahmoud, Ghada S; Grover, Lawrence M

    2005-11-18

    Rapid eye movement (REM) sleep deprivation has previously been shown to interfere with normal learning and memory and to inhibit long-term potentiation (LTP) in vitro. Previous studies on REM sleep deprivation and LTP have relied on in vitro analysis in isolated brain slices taken from animals following several days of sleep deprivation. LTP in the hippocampus in situ may differ from LTP in vitro due to modulatory inputs from other brain regions, which are altered after REM sleep deprivation. Here, we examined LTP in unanesthetized, behaving animals on the first and second recovery days following REM sleep deprivation to determine if similar effects are seen in vivo as previously reported in vitro. We found that LTP was significantly impaired in REM sleep-deprived animals on the second recovery day but not the first recovery day. Our results extend previous findings by showing that REM sleep deprivation continues to affect hippocampal function for more than 24h following the end of deprivation. Our results also suggest the presence of a modulatory process not present in vitro. Our findings are not explained by stress during REM sleep deprivation because equivalent circulating corticosterone levels (an index of stress) were found during both REM sleep deprivation and control treatment.

  2. The Role of Monosialoganglioside GM1 in LTP-Induction in Rat Hippocampal Slices

    Institute of Scientific and Technical Information of China (English)

    李永新; 梅镇彤

    1994-01-01

    The effect of monosialoganglioside GM1 of different doses on the long-term potentiation (LTP) of synaptic transmission has been studied in the CA1 region of rat hippocampal slices, and the possible role that calcium ion and NMDA receptor play has also been investigated. The results reveal that larger magnitude of LTP is induced in hippocampal slices pre-incubated with GM1. The dose-response curve appears in diphase, and the largest magnitude of LTP has been obtained at the GM1 concentration of 50 mg/L in incubation ACSF. Moreover, the magnitude of LTP induced from the slices pre-incubated with GM1 at lower calcium ion concentration is similar to that obtained from the control slices at normal calcium ion concentration. Under higher calcium ion concentration, the enhancing effect of GM1 on LTP seems relatively feeble. After NMDA receptors were blocked, no enhancing effect of GM1 was observed. The mechanism of GM1 action on LTP is discussed.

  3. Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD.

    Science.gov (United States)

    Sajikumar, Sreedharan; Frey, Julietta U

    2004-07-01

    Protein synthesis-dependent, synapse input-specific late phases of long-term potentiation (LTP) and depression (LTD) may underlie memory formation at the cellular level. Recently, it was described that the induction of LTP can mark a specifically activated synapse by a synaptic tag to capture synapse non-specific plasticity-related proteins (PRPs) and thus maintaining input-specific LTP for prolonged periods. Here we show in rat hippocampal slices in vitro, that the induction of protein synthesis-dependent late-LTD is also characterized by synaptic tagging and that heterosynaptic induction of either LTD or LTP on two sets of independent synaptic inputs S1 and S2 can lead to late-associative interactions: early-LTD in S2 was transformed into a late-LTD, if late-LTP was induced in S1. The synthesis of process-independent PRPs by late-LTP in S1 was sufficient to transform early- into late-LTD in S2 when process-specific synaptic tags were set. We name this new associative property of cellular information processing 'cross-tagging.'

  4. Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo.

    Directory of Open Access Journals (Sweden)

    Jeremy T T Kennard

    Full Text Available The persistence and input specificity of long-term potentiation (LTP make it attractive as a mechanism of information storage. In its initial phase, both in vivo and in vitro studies have shown that LTP is associated with increased membrane localization of AMPA receptor subunits, but the molecular basis of LTP maintenance over the long-term is still unclear. We have previously shown that expression of AMPA and NMDA receptor subunits is elevated in whole homogenates prepared from dentate gyrus 48 h after LTP induction in vivo. In the present study, we utilized laser microdissection (LMD techniques to determine whether AMPA and NMDA receptor upregulation occurs specifically in the stimulated regions of the dentate gyrus dendritic arbor. Receptor proteins GluN1, GluA1 and GluA2, as well as postsynaptic density protein of 95 kDa and tubulin were detected by Western blot analysis in microdissected samples. Gradients of expression were observed for GluN1 and GluA2, decreasing from the inner to the outer zones of the molecular layer, and were independent of LTP. When induced at medial perforant path synapses, LTP was associated with an apparent specific redistribution of GluA1 and GluN1 to the middle molecular layer that contains these synapses. These data indicate that glutamate receptor proteins are delivered specifically to dendritic regions possessing LTP-expressing synapses, and that these changes are preserved for at least 48 h.

  5. Differential effects of strain, circadian cycle, and stimulation pattern on LTP and concurrent LTD in the dentate gyrus of freely moving rats.

    Science.gov (United States)

    Bowden, Jared B; Abraham, Wickliffe C; Harris, Kristen M

    2012-06-01

    Because long-term potentiation (LTP) and long-term depression (LTD) are thought to be involved in learning and memory, it is important to delineate factors that modulate their induction and persistence, especially as studied in freely moving animals. Here, we investigated the effects of rat strain, circadian cycle, and high-frequency stimulation (HFS) pattern on LTP and concurrently induced LTD in the dentate gyrus (DG). Comparison of two commonly used rat strains revealed that medial perforant path field EPSP-population spike (E-S) coupling and LTP were greater in Long-Evans than Sprague-Dawley rats. Circadian cycle experiments conducted in Long-Evans rats revealed greater E-S coupling and enhanced LTP during the dark phase. Interestingly, concurrent LTD in the lateral perforant path did not significantly differ across strains or circadian cycle. Testing HFS protocols during the dark phase revealed that theta burst stimulation (100 Hz bursts at 5 Hz intervals) was ineffective in eliciting either LTP or concurrent LTD in DG, whereas 400 Hz bursts delivered at theta (5 Hz) or delta (1 Hz) frequencies produced substantial LTP and concurrent LTD. Thus, these natural and experimental factors regulate granule cell excitability, and differentially affect LTP and concurrent LTD in the DG of freely moving rats. © 2011 Wiley Periodicals, Inc.

  6. Electric stimulation at sciatic nerve evokes long-term potentiation of cornu dorsale medullae spinalis field potential in rats at various developmental phases

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Long-term potentiation of cornu dorsale medullae spinalis field potential in adult rats has already been reported; however, there is lack of correlated researches on naenonate, infant and adult rats which have different responses to pain conduction information.OBJECTIVE: To observe the various effects of electric stimulation at sciatic nerve on long-term potentiation of evoked field potential at superficial layer of cornu dorsale medullae spinalis of rats at various developmental phases and analyze manifestations of pain conduction information at superficial layers ( Ⅰ - Ⅱ)of cornu dorsale medullae spinalis in immature rats.DESIGN: Grouping controlled study.SETTING: Department of Physiology, Medical College of Wuhan University.MATERIALS: The experiment was carried out in the Laboratory of Physiology (provincial laboratory),Medical College of Wuhan University from March 2006 to May 2007. A total of 27 healthy male Sprague-Dawley (SD) rats, 17- 90 days old, SPF grade, weighing 41 -200 g, were provided by Experimental Animal Center, Medical College of Wuhan University.METHODS: Based on their birthdays, rats were divided into naenonate group (17 - 20 days old, weighing 41-52 g, n =10), infant group (35 - 50 days old, weighing 87 - 125 g, n =10) and adult group (60 - 90 days old, weighing 180 -200 g, n =7). Left sciatic nerve was separated and stimulated with single square wave (15 V, 0.5 ms). Meanwhile, evoked field potential was recorded at superficial layers of lateral T13 - L1 cornu dorsale medullae spinalis and then stimulated with high-frequent and high-intensive tetanizing current (30 -40 V, 0.5 ms, 100 Hz, 1 s per bundle, 10 s in bundle interval) four times. After the operation, onset of long-term potentiation was observed; meanwhile, amplitude changes and latency of field potential were analyzed.MAIN OUTCOME MEASURES: Amplitude and latency changes of field potential at superficial layers of cornu dorsale medullae spinalis of rats in the three

  7. Potentials, Limitations and Applications of long-term and mobile ad-hoc Wireless Sensor Networks for Environmental Monitoring

    Science.gov (United States)

    Bumberger, Jan; Mollenhauer, Hannes; Lapteva, Yulia; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter

    2014-05-01

    To characterize environmental systems it is necessary to identify and describe processes with suitable methods. Environmental systems are often characterized by their high heterogeneity, so individual measurements for their complete representation are often not sufficient. The application of wireless sensor networks in terrestrial and aquatic ecosystems offer significant benefits as a better consideration of the local test conditions becomes possible. This can be essential for the monitoring of heterogeneous environmental systems. Significant advantages in the application of mobile ad-hoc wireless sensor networks are their self-organizing behavior, resulting in a major reduction in installation and operation costs and time. In addition, a point measurement with a sensor is significantly improved by measuring at several points. It is also possible to perform analog and digital signal processing and computation on the basis of the measured data close to the sensor. Hence, a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of sensor nodes. Furthermore, their localization via satellite, the miniaturization of the nodes and long-term energy self-sufficiency are current topics under investigation. The possibilities and limitations of the applicability of wireless sensor networks for long-term and mobile environmental monitoring are presented. A concepts and realization example are given in the field of micrometeorology and soil parameters for the interaction of biotic and abiotic processes .This long term monitoring is part of the Global Change Experimental Facility (GCEF), a large field-based experimental platform to assess the effects of climate change on ecosystem functions and processes under different land-use scenarios. Furthermore a mobile ad-hoc sensor network is presented for the monitoring of water induced mass wasting processes.

  8. Predictive Potential of Preoperative Nutritional Status in Long-Term Outcome Projections for Patients with Gastric Cancer.

    Science.gov (United States)

    Sakurai, Katsunobu; Ohira, Masaichi; Tamura, Tatsuro; Toyokawa, Takahiro; Amano, Ryosuke; Kubo, Naoshi; Tanaka, Hiroaki; Muguruma, Kazuya; Yashiro, Masakazu; Maeda, Kiyoshi; Hirakawa, Kosei

    2016-02-01

    Preoperative nutritional status not only correlates with the incidence of postoperative complications but also may be indicative of long-term outcomes for patients with cancer. The impact of preoperative nutritional status on outcomes for patients undergoing gastrectomy for gastric cancer (GC) was investigated. The study reviewed 594 patients treated for GC by gastrectomy at the authors' hospital between January, 2004 and December, 2010. Onodera's prognostic nutritional index (PNI) was invoked, using an optimal cut point to group patients as having high (PNI > 45; n = 449) or low (PNI ≤ 45; n = 145) nutritional status. Clinicopathologic features, perioperative results, and long-term outcomes, including cause of death, were compared. Multivariate analysis of 5-year overall survival (OS) and disease-specific survival (DSS) indicated that low PNI was independently associated with unfavorable outcomes for patients with GC. In subgroup analysis, the 5-year OS and DSS rates for patients with GC at stages 1 and 2 were significantly worse in the low PNI group than in the high PNI group. Although wound and extrasurgical field infections also tended to be more frequent in the low PNI group, postoperative intraabdominal infections did not differ significantly by group. Preoperative PNI may have merit as a gauge of prognosis for patients with GC at stages 1 and 2, but PNI and postoperative morbidity showed no correlation in this setting.

  9. 尼氟酸抑制慢性内脏痛大鼠海马CA1区突触长时程增强%Inhibition of niflumic acid on synaptic long-term potentiation in hippocampus CA1 region in rats with chronic visceral pain

    Institute of Scientific and Technical Information of China (English)

    祝福存; 陈瑜; 林春; 蔡琴燕; 陈爱琴

    2012-01-01

    Objective: To investigate the effect of niflumic acid ( NFA, the specific HCN2 bloker) on synaptic long term potentiation (LTP) in the hippocampus CA1 region in rats with chronic visceral pain. Methods; Model rats with chronic visceral pain received 60 mmHg colon stimulation (CI) once daily during post neonatal days 8 - 14. The amplitude of external oblique muscle of abdomen ( EOMA) discharge were tested to assess the visceral sensitivity of rats when they were adult. The field potential LTP was observed in control and model rats by the recording of field potential in hippocampal CA1 region in vitro. And the effect of NFA (25 -75 mg/L) in different doses on the LTP in hippocampus CA1 region slices were observed in model rats. Results: Compared with control rats, no significant difference was found between the amplitude or slope of the basal synaptic responses in hippocampus slices of the model rats and those of the control rats. However, the amplitude and slope of the field potential LTP that high-frequency stimulation (HFS) induced in model rats were significantly higher than those of the control rats ( P < 0.05 ). NFA had no effects on the amplitude and slope of the field potential LTP in hippocampus of the control rats. However, in model rat, the amplitude and slope of the field potential LTP in hippocampus were all dose-dependently decreased by NFA (25-75 mg/L). Conclusion.- HCN2 channel might be involved in the facilitation of LTP in hippocampus of chronic visceral pain.%目的:探讨尼氟酸(HCN2特异性阻断剂)对慢性内脏痛大鼠海马CA1(cornu ammonis 1)区突触长时程增强(LTP)的影响.方法:选用新生SD大鼠(雌雄不分)出生后8~14 d内,每天固定时间给予1次60 mmHg压力的结直肠扩张刺激建立慢性内脏痛模型,大鼠成年后通过测量腹外斜肌对结直肠扩张引起的放电反应来评估肠道痛觉的敏感性.采用离体脑片场电位的记录方法,观察慢性内脏痛大鼠海马CA1区场电位LTP

  10. Aniracetam attenuates H2O2-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro%阿尼西坦减轻双氧水对小鼠神经元活力、线粒体电位及海马长时程增强的损伤

    Institute of Scientific and Technical Information of China (English)

    王永富; 李朝翠; 蔡景霞

    2006-01-01

    目的 在脑老化和阿尔茨海默尔氏病人脑中,氧自由基的升高是其神经元发生退行性病变,从而导致突触可塑性和认知障碍的机制之一.本文研究了阿尼西坦(aniracetam,一种治疗老年痴呆的药物)对抗双氧水损伤神经元活力,线粒体电位及海马突触传递长时程增强(Long-term potentiation,LTP)的作用.方法 用四甲基偶氮唑盐(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide,MTT)法测定神经元的活力,用线粒体荧光探针MitoTracker Red(CMX Ros)研究线粒体电位的变化,用膜片钳方法记录了海马CA1区的突触传递效能.结果 200μmol/L的双氧水明显损伤小鼠大脑皮层原代培养神经元的细胞活力,降低其线粒体电位,而10μmol/L或100μmol/L阿尼西坦预处理能明显对抗双氧水对细胞活力和线粒体电位的降低作用.双氧水在不影响基础突触传递的剂量下(20 μmol/L),却能显著抑制海马LTP的诱导.阿尼西坦在100 μmol/L剂量下,对基础突触传递没有明显影响,对正常小鼠脑片CA1区的LTP也没有易化作用,然而,100μmol/L的阿尼西坦却能显著地恢复由双氧水损伤的海马LTP.结论 本研究结果表明,阿尼西坦对双氧水导致的毒性具有较强的神经保护作用,这为临床上用其治疗神经退行性疾病提供了参考依据.%Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer's disease (AD) and aging. The present study examines the protective effects of aniracetam against H2O2-induced toxicity to neuron viability, mitochondria potential and hippocampal long-term potentiation (LTP). Methods Tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was used to detect neuronal viability.MitoTracker Red (CMX Ros), a fluorescent stain for mitochondria, was used to measure mitochondria potential. Electrophysiological technique was carried out to record

  11. Maternal separation impairs long term-potentiation in CA1-CA3 synapses and hippocampal-dependent memory in old rats.

    Science.gov (United States)

    Sousa, Vasco C; Vital, Joana; Costenla, Ana Rita; Batalha, Vânia L; Sebastião, Ana M; Ribeiro, Joaquim A; Lopes, Luísa V

    2014-07-01

    Exposure to chronic stress during the neonatal period is known to induce permanent long-term changes in the central nervous system and hipothalamic-pituitary-adrenal axis reactivity that are associated with increased levels of depression, anxiety, and cognitive impairments. In rodents, a validated model of early life stress is the maternal separation (MS) paradigm, which has been shown to have long-term consequences for the pups that span to adulthood. We hypothesized that the early life stress-associated effects could be exacerbated with aging, because it is often accompanied by cognitive decline. Using a MS model in which rat pups were separated from their mothers for 3 hours daily, during postnatal days 2-14, we evaluated the long-term functional consequences to aged animals (70-week-old), by measuring synaptic plasticity and cognitive performance. The baseline behavioral deficits of aged control rats were further exacerbated in MS animals, indicating that early-life stress induces sustained changes in anxiety-like behavior and hippocampal-dependent memory that are maintained much later in life. We then investigated whether these differences are linked to impaired function of hippocampal neurons by recording hippocampal long-term potentiation from Schaffer collaterals/CA1 synapses. The magnitude of the hippocampal long-term potentiation induced by high-frequency stimulation was significantly lower in aged MS animals than in age-matched controls. These results substantiate the hypothesis that the neuronal and endocrine alterations induced by early-life stress are long lasting, and are able to exacerbate the mild age-associated deficits. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The effect of extensive reading and paired-associate learning on long-term vocabulary retention: an event-related potential study.

    Science.gov (United States)

    Chun, Eunjin; Choi, Sungmook; Kim, Junsoo

    2012-07-19

    We investigated the relative efficacy of extensive reading (ER) and paired-associate learning (PAL) in the ability of second language (L2) learners to retain new vocabulary words. To that end, we combined behavioral measures (i.e., vocabulary tests) and an event-related potential (ERP) investigation with a focus on the N400 ERP component to track short- and long-term vocabulary retention as a consequence of the two different approaches. Behavioral results indicated that both ER and PAL led to substantial short-term retention of the target words. In contrast, on a long-term basis, ER was more effective than PAL to a considerable degree as indicated by a large-size effect (d=1.35). Evidence from the N400 effects (d=1.70) observed in the parietal electrode group (P3, Pz, P4) provided further support for the superior effects of ER over PAL on long-term vocabulary retention. The converging evidence challenges the assumptions of some L2 researchers and makes a significant contribution to the literature of vocabulary acquisition, because it provides the first ERP evidence that ER is more conducive to long-term vocabulary retention than PAL.

  13. Evaluation of fracture risk and potential drug holidays for postmenopausal women on long-term bisphosphonate therapy

    Directory of Open Access Journals (Sweden)

    Kostoff MD

    2014-04-01

    Full Text Available Matthew D Kostoff, Joseph J Saseen, Laura M BorgeltDepartments of Clinical Pharmacy and Family Medicine, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences and School of Medicine, Aurora, CO, USAStudy objective: To describe characteristics of postmenopausal women on long-term bisphosphonate therapy who fall into one of four fracture risk categories (low, mild, moderate, high, and to determine the prevalence of women eligible for a drug holiday.Design: Retrospective electronic health record review.Setting: Eight primary care clinics within a university-based health care system.Patients: A total of 201 postmenopausal women of ages 55–89 years, with osteopenia or osteoporosis, prescribed bisphosphonate therapy for >4 years, between October 10, 2002 and September 9, 2012.Main results: The patients' mean age was 71.4 (±8.2 years; their mean body mass index was 25.3 (±5.6 kg/m2; and 73.1% were white. Seventy-four out of 201 patients (36.8% were low-risk; 10/201 (5.0% were mild-risk; 72/201 (35.8% were moderate-risk; and 45/201 (22.4% were high-risk. Eighty-one women (40.3% were eligible for a drug holiday or discontinuation. The estimated drug cost avoided per eligible patient was $574.80. Calcium and/or vitamin D supplementation was documented in 52.7% of women.Conclusion: More than one-third of postmenopausal women taking long-term bisphosphonate therapy had low fracture risk, and over 40% of our patients were eligble for a drug holiday or discontinuation. These data emphasize the need to accurately assess risk and benefit in patients treated with bisphosphonate therapy.Keywords: postmenopausal osteoporosis, bisphosphonates, drug holiday, fracture

  14. Afferent Input Selects NMDA Receptor Subtype to Determine the Persistency of Hippocampal LTP in Freely Behaving Mice

    Science.gov (United States)

    Ballesteros, Jesús J.; Buschler, Arne; Köhr, Georg; Manahan-Vaughan, Denise

    2016-01-01

    The glutamatergic N-methyl-D-aspartate receptor (NMDAR) is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2) mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP) in vivo. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistence in freely behaving mice. We applied differing high-frequency stimulation (HFS) patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT) mice, that endured for 24 h (late (L)-LTP). In GluN2A-knockout (KO) mice, E-LTP (HFS, 50 pulses) was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 × 50 pulses) and L-LTP (HFS, 4 × 50 pulses) were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E-LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits

  15. Afferent input selects NMDA receptor subtype to determine the persistency of hippocampal LTP in freely behaving mice

    Directory of Open Access Journals (Sweden)

    Jesús Javier Ballesteros

    2016-10-01

    Full Text Available The glutamatergic N-methyl-D-aspartate receptor (NMDAR is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2 mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern, and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistencies in freely behaving mice. We applied differing high-frequency stimulation (HFS patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT mice, that endured for 24h (late (L-LTP. In GluN2A-KO mice, E-LTP (HFS, 50 pulses was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 x 50 pulses and L-LTP (HFS, 4 x 50 pulses were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E- LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits GluN2B

  16. Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus

    Science.gov (United States)

    Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Paulsen, Ole; Rodríguez-Moreno, Antonio

    2016-01-01

    Spike timing-dependent plasticity (STDP) is a Hebbian learning rule important for synaptic refinement during development and for learning and memory in the adult. Given the importance of the hippocampus in memory, surprisingly little is known about the mechanisms and functions of hippocampal STDP. In the present work, we investigated the requirements for induction of hippocampal spike timing-dependent long-term potentiation (t-LTP) and spike timing-dependent long-term depression (t-LTD) and the mechanisms of these 2 forms of plasticity at CA3-CA1 synapses in young (P12–P18) mouse hippocampus. We found that both t-LTP and t-LTD can be induced at hippocampal CA3-CA1 synapses by pairing presynaptic activity with single postsynaptic action potentials at low stimulation frequency (0.2 Hz). Both t-LTP and t-LTD require NMDA-type glutamate receptors for their induction, but the location and properties of these receptors are different: While t-LTP requires postsynaptic ionotropic NMDA receptor function, t-LTD does not, and whereas t-LTP is blocked by antagonists at GluN2A and GluN2B subunit-containing NMDA receptors, t-LTD is blocked by GluN2C or GluN2D subunit-preferring NMDA receptor antagonists. Both t-LTP and t-LTD require postsynaptic Ca2+ for their induction. Induction of t-LTD also requires metabotropic glutamate receptor activation, phospholipase C activation, postsynaptic IP3 receptor-mediated Ca2+ release from internal stores, postsynaptic endocannabinoid (eCB) synthesis, activation of CB1 receptors and astrocytic signaling, possibly via release of the gliotransmitter d-serine. We furthermore found that presynaptic calcineurin is required for t-LTD induction. t-LTD is expressed presynaptically as indicated by fluctuation analysis, paired-pulse ratio, and rate of use-dependent depression of postsynaptic NMDA receptor currents by MK801. The results show that CA3-CA1 synapses display both NMDA receptor-dependent t-LTP and t-LTD during development and identify a

  17. Long-term collections

    CERN Multimedia

    Collectes à long terme

    2007-01-01

    The Committee of the Long Term Collections (CLT) asks for your attention for the following message from a young Peruvian scientist, following the earthquake which devastated part of her country a month ago.

  18. Systemic injection of kainic acid differently affects LTP magnitude depending on its epileptogenic efficiency.

    Directory of Open Access Journals (Sweden)

    Luz M Suárez

    Full Text Available Seizures have profound impact on synaptic function and plasticity. While kainic acid is a popular method to induce seizures and to potentially affect synaptic plasticity, it can also produce physiological-like oscillations and trigger some forms of long-term potentiation (LTP. Here, we examine whether induction of LTP is altered in hippocampal slices prepared from rats with different sensitivity to develop status epilepticus (SE by systemic injection of kainic acid. Rats were treated with multiple low doses of kainic acid (5 mg/kg; i.p. to develop SE in a majority of animals (72-85% rats. A group of rats were resistant to develop SE (15-28% after several accumulated doses. Animals were subsequently tested using chronic recordings and object recognition tasks before brain slices were prepared for histological studies and to examine basic features of hippocampal synaptic function and plasticity, including input/output curves, paired-pulse facilitation and theta-burst induced LTP. Consistent with previous reports in kindling and pilocapine models, LTP was reduced in rats that developed SE after kainic acid injection. These animals exhibited signs of hippocampal sclerosis and developed spontaneous seizures. In contrast, resistant rats did not become epileptic and had no signs of cell loss and mossy fiber sprouting. In slices from resistant rats, theta-burst stimulation induced LTP of higher magnitude when compared with control and epileptic rats. Variations on LTP magnitude correlate with animals' performance in a hippocampal-dependent spatial memory task. Our results suggest dissociable long-term effects of treatment with kainic acid on synaptic function and plasticity depending on its epileptogenic efficiency.

  19. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Kim D Allen

    Full Text Available Long-term memory (LTM formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose polymerase-1 (PARP-1, are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosylation (PAR dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP ribose molecules (pADPr after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA and extracellular signal-regulated kinase (ERK--two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I, responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components--hence, new ribosomes and nucleoli integrity--are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation.

  20. LTP与PTSD发病机制的相关性及研究进展%The relationship and research progress of the LTP with the pathogenesis of PTSD

    Institute of Scientific and Technical Information of China (English)

    杨姝; 石玉秀

    2011-01-01

    创伤后应激障碍(Post-traumatic stress disorder,PTSD)是由于异常威胁性或灾难性心理创伤导致延迟出现和长期持续的精神障碍.长时程增强(Long term potentiation,LTP)是目前公认的代表学习记忆功能的电生理指标.LTP受体主要分为NMDA型和非NMDA型,LTP相关酶类及营养物质在LTP的形成及维持过程中起重要作用.在恐惧条件反射的形成过程中,其神经网络内(如杏仁核等)发生LTP,表明LTP是反应PTSD发生机制的重要指标.因此,通过研究影响LTP发生及维持的因素,可能进而推测出治疗PTSD的方法.%Post-traumatic stress disorder(PTSD) is an anxiety disorder that can develop after exposure to one or more traumatic events threatened or caused grave physical harm. Long term potentiation (LTP) is widely recognized as the electrophysiological parameter which represents learning and memory function. The receptors of LTP are divided into NMDA receptor type and non-NMDA-type, LTP-related enzymes and nutrients may play an important role in the formation and maintenance of LTP in the process. In fear conditioning, the formation of LTP in the neural network (such as the amygdala,etc.) indicates that LTP is an important indicator for the occurrence of PTSD. Therefore, study of the impact of the occurrence and maintenance factors of LTP may thus speculate ways to treat PTSD.

  1. Burn injury during long-term oxygen therapy in Denmark and Sweden: the potential role of smoking

    Directory of Open Access Journals (Sweden)

    Tanash HA

    2017-01-01

    Full Text Available Hanan A Tanash,1 Thomas Ringbaek,2 Fredrik Huss,3,4 Magnus Ekström1 1Department of Respiratory Medicine, Skåne University Hospital, Lund University, Lund, Sweden; 2Respiratory Department, Hvidovre Hospital, Copenhagen, Denmark; 3Department of Surgical Sciences, Plastic Surgery, 4Department of Plastic and Maxillofacial Surgery, Burn Center, Uppsala University Hospital, Uppsala, Sweden Background: Long-term oxygen therapy (LTOT increases life expectancy in patients with COPD and severe hypoxemia. Smoking is the main cause of burn injury during LTOT. Policy regarding smoking while on LTOT varies between countries. In this study, we compare the incidence of burn injury that required contact with a health care specialist, between Sweden (a country with a strict policy regarding smoking while on LTOT and Denmark (a country with less strict smoking policy. Methods: This was a population-based, cohort study of patients initiating LTOT due to any cause in Sweden and Denmark. Data on diagnoses, external causes, and procedures were obtained from the Swedish and Danish National Patient Registers for inpatient and outpatient care. Patients were followed from January 1, 2000, until the first of the following: LTOT withdrawal, death, or study end (December 31, 2009. The primary end point was burn injury during LTOT. Results: A total of 23,741 patients received LTOT in Denmark and 7,754 patients in Sweden. Most patients started LTOT due to COPD, both in Sweden (74% and in Denmark (62%. The rate of burn injury while on LTOT was higher in Denmark than in Sweden; 170 (95% confidence interval [CI], 126–225 vs 85 (95% CI, 44–148 per 100,000 person-years; rate ratio 2.0 (95% CI, 1.0–4.1. The risk remained higher after adjustment for gender, age, and diagnosis in multivariate Cox regression, hazard ratio 1.8 (95% CI, 1.0-3.5. Thirty-day mortality after burn injury was 8% in both countries. Conclusion: Compared to Sweden, the rate of burn injury was twice

  2. Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling.

    Science.gov (United States)

    Bollen, Eva; Puzzo, Daniela; Rutten, Kris; Privitera, Lucia; De Vry, Jochen; Vanmierlo, Tim; Kenis, Gunter; Palmeri, Agostino; D'Hooge, Rudi; Balschun, Detlef; Steinbusch, Harry M W; Blokland, Arjan; Prickaerts, Jos

    2014-10-01

    Memory consolidation is defined by the stabilization of a memory trace after acquisition, and consists of numerous molecular cascades that mediate synaptic plasticity. Commonly, a distinction is made between an early and a late consolidation phase, in which early refers to the first hours in which labile synaptic changes occur, whereas late consolidation relates to stable and long-lasting synaptic changes induced by de novo protein synthesis. How these phases are linked at a molecular level is not yet clear. Here we studied the interaction of the cyclic nucleotide-mediated pathways during the different phases of memory consolidation in rodents. In addition, the same pathways were studied in a model of neuronal plasticity, long-term potentiation (LTP). We demonstrated that cGMP/protein kinase G (PKG) signaling mediates early memory consolidation as well as early-phase LTP, whereas cAMP/protein kinase A (PKA) signaling mediates late consolidation and late-phase-like LTP. In addition, we show for the first time that early-phase cGMP/PKG signaling requires late-phase cAMP/PKA-signaling in both LTP and long-term memory formation.

  3. The efficacy of long-term psychotherapy: Methodological research issues

    NARCIS (Netherlands)

    Maat, S.M.; Dekker, J.J.M.; Schoevers, R.A.; Jonghe, de F.

    2007-01-01

    In evidence-based medicine (EBM) hierarchy, randomized controlled trials (RCTs) are ranked higher than cohort studies. However, cohort intervention studies are frequently, and RCTs rarely, used to investigate long-term psychotherapy (LTP). The authors compare the two methods and provide critical

  4. Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory.

    Science.gov (United States)

    Cui, Zhenzhong; Feng, Ruiben; Jacobs, Stephanie; Duan, Yanhong; Wang, Huimin; Cao, Xiaohua; Tsien, Joe Z

    2013-01-01

    The NR2A:NR2B subunit ratio of the NMDA receptors is widely known to increase in the brain from postnatal development to sexual maturity and to aging, yet its impact on memory function remains speculative. We have generated forebrain-specific NR2A overexpression transgenic mice and show that these mice had normal basic behaviors and short-term memory, but exhibited broad long-term memory deficits as revealed by several behavioral paradigms. Surprisingly, increased NR2A expression did not affect 1-Hz-induced long-term depression (LTD) or 100 Hz-induced long-term potentiation (LTP) in the CA1 region of the hippocampus, but selectively abolished LTD responses in the 3-5 Hz frequency range. Our results demonstrate that the increased NR2A:NR2B ratio is a critical genetic factor in constraining long-term memory in the adult brain. We postulate that LTD-like process underlies post-learning information sculpting, a novel and essential consolidation step in transforming new information into long-term memory.

  5. Acute intracerebral treatment with amyloid-beta (1–42) alters the profile of neuronal oscillations that accompany LTP induction and results in impaired LTP in freely behaving rats

    Science.gov (United States)

    Kalweit, Alexander Nikolai; Yang, Honghong; Colitti-Klausnitzer, Jens; Fülöp, Livia; Bozsó, Zsolt; Penke, Botond; Manahan-Vaughan, Denise

    2015-01-01

    Accumulation of amyloid plaques comprises one of the major hallmarks of Alzheimer’s disease (AD). In rodents, acute treatment with amyloid-beta (Aβ; 1–42) elicits immediate debilitating effects on hippocampal long-term potentiation (LTP). Whereas LTP contributes to synaptic information storage, information is transferred across neurons by means of neuronal oscillations. Furthermore, changes in theta-gamma oscillations, that appear during high-frequency stimulation (HFS) to induce LTP, predict whether successful LTP will occur. Here, we explored if intra-cerebral treatment with Aβ(1–42), that prevents LTP, also results in alterations of hippocampal oscillations that occur during HFS of the perforant path-dentate gyrus synapse in 6-month-old behaving rats. HFS resulted in LTP that lasted for over 24 h. In Aβ-treated animals, LTP was significantly prevented. During HFS, spectral power for oscillations below 100 Hz (δ, θ, α, β and γ) was significantly higher in Aβ-treated animals compared to controls. In addition, the trough-to-peak amplitudes of theta and gamma cycles were higher during HFS in Aβ-treated animals. We also observed a lower amount of envelope-to-signal correlations during HFS in Aβ-treated animals. Overall, the characteristic profile of theta-gamma oscillations that accompany successful LTP induction was disrupted. These data indicate that alterations in network oscillations accompany Aβ-effects on hippocampal LTP. This may comprise an underlying mechanism through which disturbances in synaptic information storage and hippocampus-dependent memory occurs in AD. PMID:25999827

  6. Differing presynaptic contributions to LTP and associative learning in behaving mice

    Directory of Open Access Journals (Sweden)

    Noelia Madroñal

    2009-05-01

    Full Text Available The hippocampal CA3-CA1 synapse is an excellent experimental model for studying the interactions between short- and long-term plastic changes taking place following high-frequency stimulation (HFS of Schaffer collaterals and during the acquisition and extinction of a classical eyeblink conditioning in behaving mice. Input/output curves and a full-range paired-pulse study enabled determining the optimal intensities and inter-stimulus intervals for evoking paired-pulse facilitation (PPF or depression (PPD at the CA3-CA1 synapse. Long-term potentiation (LTP induced by HFS lasted ≈ 10 days. HFS-induced LTP evoked an initial depression of basal PPF. Recovery of PPF baseline values was a steady and progressive process lasting ≈ 20 days, i.e., longer than the total duration of the LTP. In a subsequent series of experiments, we checked whether PPF was affected similarly during activity-dependent synaptic changes. Animals were conditioned using a trace paradigm, with a tone as a conditioned stimulus (CS and an electrical shock to the trigeminal nerve as an unconditioned stimulus (US. A pair of pulses (40 ms interval was presented to the Schaffer collateral-commissural pathway to evoke field EPSPs (fEPSPs during the CS-US interval. Basal PPF decreased steadily across conditioning sessions (i.e., in the opposite direction to that during LTP, reaching a minimum value during the 10th conditioning session. Thus, LTP and classical eyeblink conditioning share some presynaptic mechanisms, but with an opposite evolution. Furthermore, PPF and PPD might play a homeostatic role during long-term plastic changes at the CA3-CA1 synapse.

  7. Diverse impact of neuronal activity at θ frequency on hippocampal long-term plasticity.

    Science.gov (United States)

    Wójtowicz, Tomasz; Mozrzymas, Jerzy W

    2015-09-01

    Brain oscillatory activity is considered an essential aspect of brain function, and its frequency can vary from 200 Hz, depending on the brain states and projection. Episodes of rhythmic activity accompany hippocampus-dependent learning and memory in vivo. Therefore, long-term synaptic potentiation (LTP) and long-term depression, which are considered viable substrates of learning and memory, are often experimentally studied in paradigms of patterned high-frequency (>50 Hz) and low-frequency (neuronal plasticity remains less well understood. In particular, hippocampal neurons are specifically tuned for activity at θ frequency (4-8 Hz); this band contributes significantly to electroencephalographic signals, and it is likely to be involved in shaping synaptic strength in hippocampal circuits. Here, we review in vitro and in vivo studies showing that variation of θ-activity duration may affect long-term modification of synaptic strength and neuronal excitability in the hippocampus. Such θ-pulse-induced neuronal plasticity 1) is long-lasting, 2) may be built on previously stabilized potentiation in the synapse, 3) may produce opposite changes in synaptic strength, and 4) requires complex molecular machinery. Apparently innocuous episodes of low-frequency synaptic activity may have a profound impact on network signaling, thereby contributing to information processing in the hippocampus and beyond. In addition, θ-pulse-induced LTP might be an advantageous protocol in studies of specific molecular mechanisms of synaptic plasticity. © 2015 Wiley Periodicals, Inc.

  8. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Bo; Wu, Wenting; Yang, Zhaoqing; Zhou, Yunxuan

    2016-03-01

    Driven by rapid economic development, population growth, and urbanization, China has experienced severe coastal land reclamation over the last decades, which resulted in significant loss of coastal wetland and wildlife habitat, and degradation of marine ecosystems. This study used advanced remote-sensing techniques to analyze the spatial and temporal distributions of coastal reclamation in China and investigated the relationships between coastal land reclamation and coastal economy, population growth, and urbanization. Analysis of long-term Landsat images time series from 1985 to 2010 in 5-year intervals, in combination with remotely sensed image techniques, indicated a sharp increasing trend of land reclamation after 2005, which accounted for over 35% of China’s total reclamation during the 25-year period since 1985. High-intensity coastal reclamation in China was mainly driven by the booming economy associated with urbanization and industrial development in the coastal region. Analysis indicated that coastal land reclamation is closely correlated with the GDP per capita in China. Study results of Landsat images showed that 754,697 ha of coastal wetlands have been reclaimed across all coastal provinces and metropolises from 1985 to 2010, at an annual rate of 5.9%. Coastal areas within the three major economic zones (Bohai Bay, Yangtze River Delta, and Pearl River Delta) were found to generally have higher reclamation rates. For example, the built-up area in Shanghai, which is located in the Yangtze River Delta, increased more than five times from 1985 to 2010. Approximately 35% of the reclamation occurred in Bohai Bay, in which the CRI between 2005 and 2010 was three times higher than the average CRI over the 25-year period.

  9. Burn injury during long-term oxygen therapy in Denmark and Sweden: the potential role of smoking

    Science.gov (United States)

    Tanash, Hanan A; Ringbaek, Thomas; Huss, Fredrik; Ekström, Magnus

    2017-01-01

    Background Long-term oxygen therapy (LTOT) increases life expectancy in patients with COPD and severe hypoxemia. Smoking is the main cause of burn injury during LTOT. Policy regarding smoking while on LTOT varies between countries. In this study, we compare the incidence of burn injury that required contact with a health care specialist, between Sweden (a country with a strict policy regarding smoking while on LTOT) and Denmark (a country with less strict smoking policy). Methods This was a population-based, cohort study of patients initiating LTOT due to any cause in Sweden and Denmark. Data on diagnoses, external causes, and procedures were obtained from the Swedish and Danish National Patient Registers for inpatient and outpatient care. Patients were followed from January 1, 2000, until the first of the following: LTOT withdrawal, death, or study end (December 31, 2009). The primary end point was burn injury during LTOT. Results A total of 23,741 patients received LTOT in Denmark and 7,754 patients in Sweden. Most patients started LTOT due to COPD, both in Sweden (74%) and in Denmark (62%). The rate of burn injury while on LTOT was higher in Denmark than in Sweden; 170 (95% confidence interval [CI], 126–225) vs 85 (95% CI, 44–148) per 100,000 person-years; rate ratio 2.0 (95% CI, 1.0–4.1). The risk remained higher after adjustment for gender, age, and diagnosis in multivariate Cox regression, hazard ratio 1.8 (95% CI, 1.0−3.5). Thirty-day mortality after burn injury was 8% in both countries. Conclusion Compared to Sweden, the rate of burn injury was twice as high in Denmark where smoking is not a contraindication for prescribing LTOT. PMID:28123292

  10. Long-Term Spatiotemporal Reconfiguration of Neuronal Activity Revealed by Voltage-Sensitive Dye Imaging in the Cerebellar Granular Layer

    Directory of Open Access Journals (Sweden)

    Daniela Gandolfi

    2015-01-01

    Full Text Available Understanding the spatiotemporal organization of long-term synaptic plasticity in neuronal networks demands techniques capable of monitoring changes in synaptic responsiveness over extended multineuronal structures. Among these techniques, voltage-sensitive dye imaging (VSD imaging is of particular interest due to its good spatial resolution. However, improvements of the technique are needed in order to overcome limits imposed by its low signal-to-noise ratio. Here, we show that VSD imaging can detect long-term potentiation (LTP and long-term depression (LTD in acute cerebellar slices. Combined VSD imaging and patch-clamp recordings revealed that the most excited regions were predominantly associated with granule cells (GrCs generating EPSP-spike complexes, while poorly responding regions were associated with GrCs generating EPSPs only. The correspondence with cellular changes occurring during LTP and LTD was highlighted by a vector representation obtained by combining amplitude with time-to-peak of VSD signals. This showed that LTP occurred in the most excited regions lying in the core of activated areas and increased the number of EPSP-spike complexes, while LTD occurred in the less excited regions lying in the surround. VSD imaging appears to be an efficient tool for investigating how synaptic plasticity contributes to the reorganization of multineuronal activity in neuronal circuits.

  11. Vasopressin inhibits LTP in the CA2 mouse hippocampal area.

    Directory of Open Access Journals (Sweden)

    Magda Chafai

    Full Text Available Growing evidence points to vasopressin (AVP as a social behavior regulator modulating various memory processes and involved in pathologies such as mood disorders, anxiety and depression. Accordingly, AVP antagonists are actually envisaged as putative treatments. However, the underlying mechanisms are poorly characterized, in particular the influence of AVP on cellular or synaptic activities in limbic brain areas involved in social behavior. In the present study, we investigated AVP action on the synapse between the entorhinal cortex and CA2 hippocampal pyramidal neurons, by using both field potential and whole-cell recordings in mice brain acute slices. Short application (1 min of AVP transiently reduced the synaptic response, only following induction of long-term potentiation (LTP by high frequency stimulation (HFS of afferent fibers. The basal synaptic response, measured in the absence of HFS, was not affected. The Schaffer collateral-CA1 synapse was not affected by AVP, even after LTP, while the Schaffer collateral-CA2 synapse was inhibited. Although investigated only recently, this CA2 hippocampal area appears to have a distinctive circuitry and a peculiar role in controlling episodic memory. Accordingly, AVP action on LTP-increased synaptic responses in this limbic structure may contribute to the role of this neuropeptide in controlling memory and social behavior.

  12. Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons.

    Science.gov (United States)

    Galván, E J; Pérez-Rosello, T; Gómez-Lira, G; Lara, E; Gutiérrez, R; Barrionuevo, G

    2015-04-02

    Inhibitory interneurons with somata in strata radiatum and lacunosum-molecular (SR/L-M) of hippocampal area CA3 receive excitatory input from pyramidal cells via the recurrent collaterals (RCs), and the dentate gyrus granule cells via the mossy fibers (MFs). Here we demonstrate that Hebbian long-term potentiation (LTP) at RC synapses on SR/L-M interneurons requires the concomitant activation of calcium-impermeable AMPARs (CI-AMPARs) and N-methyl-d-aspartate receptors (NMDARs). RC LTP was prevented by voltage clamping the postsynaptic cell during high-frequency stimulation (HFS; 3 trains of 100 pulses delivered at 100 Hz every 10s), with intracellular injections of the Ca(2+) chelator BAPTA (20mM), and with the NMDAR antagonist D-AP5. In separate experiments, RC and MF inputs converging onto the same interneuron were sequentially activated. We found that RC LTP induction was blocked by inhibitors of the calcium/calmodulin-dependent protein kinase II (CaMKII; KN-62, 10 μM or KN-93, 10 μM) but MF LTP was CaMKII independent. Conversely, the application of the protein kinase A (PKA) activators forskolin/IBMX (50 μM/25 μM) potentiated MF EPSPs but not RC EPSPs. Together these data indicate that the aspiny dendrites of SR/L-M interneurons compartmentalize synapse-specific Ca(2+) signaling required for LTP induction at RC and MF synapses. We also show that the two signal transduction cascades converge to activate a common effector, protein kinase C (PKC). Specifically, LTP at RC and MF synapses on the same SR/LM interneuron was blocked by postsynaptic injections of chelerythrine (10 μM). These data indicate that both forms of LTP share a common mechanism involving PKC-dependent signaling modulation.

  13. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin

    Science.gov (United States)

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; de Oliveira Alvares, Lucas

    2016-01-01

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca2+ channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca2+ influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time. PMID:26947131

  14. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin.

    Science.gov (United States)

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; Alvares, Lucas de Oliveira

    2016-03-07

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca(2+) channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca(2+) influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time.

  15. Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma

    Science.gov (United States)

    Skinner, S. J. M.; Geaney, M. S.; Lin, H.; Muzina, M.; Anal, A. K.; Elliott, R. B.; Tan, P. L. J.

    2009-12-01

    . Previously reported evidence demonstrated that CP cells support the survival and differentiation of neuronal cells in vitro and effectively treat acute brain injury and disease in rodents and non-human primates in vivo. The accumulated preclinical data together with the long-term survival of implanted encapsulated cells in vivo provide a sound base for the investigation of these treatments for chronic inherited and established neurodegenerative conditions.

  16. The Cdk5 Inhibitor Roscovitine Increases LTP Induction in Corticostriatal Synapses

    Directory of Open Access Journals (Sweden)

    Jorge Miranda-Barrientos

    2014-02-01

    Full Text Available In corticostriatal synapses, LTD (long-term depression and LTP (long-term potentiation are modulated by the activation of DA (dopamine receptors, with LTD being the most common type of long-term plasticity induced using the standard stimulation protocols. In particular, activation of the D1 signaling pathway increases cAMP/PKA (protein kinase A phosphorylation activity and promotes an increase in the amplitude of glutamatergic corticostriatal synapses. However, if the Cdk5 (cyclin-dependent kinase 5 phosphorylates the DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa at Thr75, DARPP-32 becomes a strong inhibitor of PKA activity. Roscovitine is a potent Cdk5 inhibitor; it has been previously shown that acute application of Roscovitine increases striatal transmission via Cdk5/DARPP-32. Since DARPP-32 controls long-term plasticity in the striatum, we wondered whether switching off CdK5 activity with Roscovitine contributes to the induction of LTP in corticostriatal synapses. For this purpose, excitatory population spikes and whole cell EPSC (excitatory postsynaptic currents were recorded in striatal slices from C57/BL6 mice. Experiments were carried out in the presence of Roscovitine (20 μM in the recording bath. Roscovitine increased the amplitude of excitatory population spikes and the percentage of population spikes that exhibited LTP after HFS (high-frequency stimulation; 100Hz. Results obtained showed that the mechanisms responsible for LTP induction after Cdk5 inhibition involved the PKA pathway, DA and NMDA (N-methyl-D-aspartate receptor activation, L-type calcium channels activation and the presynaptic modulation of neurotransmitter release.

  17. The Cdk5 inhibitor Roscovitine increases LTP induction in corticostriatal synapses.

    Science.gov (United States)

    Miranda-Barrientos, Jorge; Nieto-Mendoza, Elizabeth; Hernández-Echeagaray, Elizabeth

    2014-03-19

    In corticostriatal synapses, LTD (long-term depression) and LTP (long-term potentiation) are modulated by the activation of DA (dopamine) receptors, with LTD being the most common type of long-term plasticity induced using the standard stimulation protocols. In particular, activation of the D1 signaling pathway increases cAMP/PKA (protein kinase A) phosphorylation activity and promotes an increase in the amplitude of glutamatergic corticostriatal synapses. However, if the Cdk5 (cyclin-dependent kinase 5) phosphorylates the DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa) at Thr75, DARPP-32 becomes a strong inhibitor of PKA activity. Roscovitine is a potent Cdk5 inhibitor; it has been previously shown that acute application of Roscovitine increases striatal transmission via Cdk5/DARPP-32. Since DARPP-32 controls long-term plasticity in the striatum, we wondered whether switching off CdK5 activity with Roscovitine contributes to the induction of LTP in corticostriatal synapses. For this purpose, excitatory population spikes and whole cell EPSC (excitatory postsynaptic currents) were recorded in striatal slices from C57/BL6 mice. Experiments were carried out in the presence of Roscovitine (20 μM) in the recording bath. Roscovitine increased the amplitude of excitatory population spikes and the percentage of population spikes that exhibited LTP after HFS (high-frequency stimulation; 100Hz). Results obtained showed that the mechanisms responsible for LTP induction after Cdk5 inhibition involved the PKA pathway, DA and NMDA (N-methyl-D-aspartate) receptor activation, L-type calcium channels activation and the presynaptic modulation of neurotransmitter release.

  18. The Cdk5 inhibitor Roscovitine increases LTP induction in corticostriatal synapses

    Directory of Open Access Journals (Sweden)

    Jorge Miranda‑Barrientos

    2014-03-01

    Full Text Available In corticostriatal synapses, LTD (long-term depression and LTP (long-term potentiation are modulated by the activation of DA (dopamine receptors, with LTD being the most common type of long-term plasticity induced using the standard stimulation protocols. In particular, activation of the D1 signaling pathway increases cAMP/PKA (protein kinase A phosphorylation activity and promotes an increase in the amplitude of glutamatergic corticostriatal synapses. However, if the Cdk5 (cyclin-dependent kinase 5 phosphorylates the DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa at Thr75, DARPP-32 becomes a strong inhibitor of PKA activity. Roscovitine is a potent Cdk5 inhibitor; it has been previously shown that acute application of Roscovitine increases striatal transmission via Cdk5/DARPP-32. Since DARPP-32 controls long-term plasticity in the striatum, we wondered whether switching off CdK5 activity with Roscovitine contributes to the induction of LTP in corticostriatal synapses. For this purpose, excitatory population spikes and whole cell EPSC (excitatory postsynaptic currents were recorded in striatal slices from C57/BL6 mice. Experiments were carried out in the presence of Roscovitine (20 μM in the recording bath. Roscovitine increased the amplitude of excitatory population spikes and the percentage of population spikes that exhibited LTP after HFS (high-frequency stimulation; 100Hz. Results obtained showed that the mechanisms responsible for LTP induction after Cdk5 inhibition involved the PKA pathway, DA and NMDA (N-methyl-D-aspartate receptor activation, L-type calcium channels activation and the presynaptic modulation of neurotransmitter release.

  19. MGluR5 mediates the interaction between late-LTP, network activity, and learning.

    Directory of Open Access Journals (Sweden)

    Arthur Bikbaev

    Full Text Available Hippocampal synaptic plasticity and learning are strongly regulated by metabotropic glutamate receptors (mGluRs and particularly by mGluR5. Here, we investigated the mechanisms underlying mGluR5-modulation of these phenomena. Prolonged pharmacological blockade of mGluR5 with MPEP produced a profound impairment of spatial memory. Effects were associated with 1 a reduction of mGluR1a-expression in the dentate gyrus; 2 impaired dentate gyrus LTP; 3 enhanced CA1-LTP and 4 suppressed theta (5-10 Hz and gamma (30-100 Hz oscillations in the dentate gyrus. Allosteric potentiation of mGluR1 after mGluR5 blockade significantly ameliorated dentate gyrus LTP, as well as suppression of gamma oscillatory activity. CA3-lesioning prevented MPEP effects on CA1-LTP, suggesting that plasticity levels in CA1 are driven by mGluR5-dependent synaptic and network activity in the dentate gyrus. These data support the hypothesis that prolonged mGluR5-inactivation causes altered hippocampal LTP levels and network activity, which is mediated in part by impaired mGluR1-expression in the dentate gyrus. The consequence is impairment of long-term learning.

  20. Long-Term Collections

    CERN Multimedia

    Comité des collectes à long terme

    2011-01-01

    It is the time of the year when our fireman colleagues go around the laboratory for their traditional calendars sale. A part of the money of the sales will be donated in favour of the long-term collections. We hope that you will welcome them warmly.

  1. Acute and chronic interference with BDNF/TrkB-signaling impair LTP selectively at mossy fiber synapses in the CA3 region of mouse hippocampus.

    Science.gov (United States)

    Schildt, Sandra; Endres, Thomas; Lessmann, Volkmar; Edelmann, Elke

    2013-08-01

    Brain-derived neurotrophic factor (BDNF) signaling via TrkB crucially regulates synaptic plasticity in the brain. Although BDNF is abundant at hippocampal mossy fiber (MF) synapses, which critically contribute to hippocampus dependent memory, its role in MF synaptic plasticity (long-term potentiation, LTP) remained largely unclear. Using field potential recordings in CA3 of adult heterozygous BDNF knockout (ko, BDNF+/-) mice we observed impaired (∼50%) NMDAR-independent MF-LTP. In contrast to MF synapses, LTP at neighboring associative/commissural (A/C) fiber synapses remained unaffected. To exclude that impaired MF-LTP in BDNF+/- mice was due to developmental changes in response to chronically reduced BDNF levels, and to prove the importance of acute availability of BDNF in MF-LTP, we also tested effects of acute interference with BDNF/TrkB signaling. Inhibition of TrkB tyrosine kinase signaling with k252a, or with the selective BDNF scavenger TrkB-Fc, both inhibited MF-LTP to the same extent as observed in BDNF+/- mice. Basal synaptic transmission, short-term plasticity, and synaptic fatigue during LTP induction were not significantly altered by treatment with k252a or TrkB-Fc, or by chronic BDNF reduction in BDNF+/- mice. Since the acute interference with BDNF-signaling did not completely block MF-LTP, our results provide evidence that an additional mechanism besides BDNF induced TrkB signaling contributes to this type of LTP. Our results prove for the first time a mechanistic action of acute BDNF/TrkB signaling in presynaptic expression of MF-LTP in adult hippocampus.

  2. Low-fat, high-carbohydrate parenteral nutrition (PN) may potentially reverse liver disease in long-term PN-dependent infants

    DEFF Research Database (Denmark)

    Jakobsen, Marianne Skytte; Jørgensen, Marianne Hørby; Husby, Steffen

    2015-01-01

    , which prevents and reverses PNAC in adults, could do the same in infants. This regimen could potentially avoid the problem of diminished energy input after removing nutritional lipids. METHODS: Infants developing PNAC over a 2-year period were started on a low-fat PN regimen with calories primarily from......INTRODUCTION: Parenteral nutrition-associated cholestasis (PNAC) is a complication of long-term parenteral nutrition (PN). Removal of lipids may reverse PNAC but compromises the energy to ensure infant growth. The purpose of this study was to test whether a low-fat, high-carbohydrate PN regimen...

  3. Long-Term Acid-Generating and Metal Leaching Potential of a Sub-Arctic Oil Shale

    Directory of Open Access Journals (Sweden)

    Kathryn A. Mumford

    2014-04-01

    Full Text Available Shales are increasingly being exploited for oil and unconventional gas. Exploitation of sub-arctic oil shales requires the creation of gravel pads to elevate workings above the heaving effects of ground ice. These gravel pads can potentially generate acidic leachate, which can enhance the mobility of metals from the shale. To examine this potential, pyrite-bearing shale originating from sub-Arctic gravel pad sites were subjected to leaching tests for 600 days at initial pH values ranging from 2 to 5, to simulate potential real world conditions. At set times over the 600 day experiment, pH, oxidation reduction potential (ORP, dissolved oxygen and temperature were recorded and small liquid samples withdrawn and analysed for elemental concentrations using total reflection X-ray fluorescence spectrometry (TRXRF. Six of eight shale samples were found to be acid generating, with pH declining and ORP becoming increasingly positive after 100 days. Two of the eight shale samples produced increasingly alkaline leachate conditions with relatively low ORP after 100 days, indicating an inbuilt buffering capacity. By 600 days the buffering capacity of all samples had been consumed and all leachate samples were acidic. TRXRF analyses demonstrated significant potential for the leaching of S, Fe, Ni, Cu, Zn and Mn with greatest concentrations found in reaction vessels with most acidic pH and highest ORP.

  4. Virtual Models of Long-Term Care

    Science.gov (United States)

    Phenice, Lillian A.; Griffore, Robert J.

    2012-01-01

    Nursing homes, assisted living facilities and home-care organizations, use web sites to describe their services to potential consumers. This virtual ethnographic study developed models representing how potential consumers may understand this information using data from web sites of 69 long-term-care providers. The content of long-term-care web…

  5. Long-term effects of cropping system on N2O emission potential

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Ambus, Per; Elsgaard, Lars;

    2013-01-01

    systems, it showed higher N2O evolution at all three matric potentials. Estimates of relative gas diffusivity (DP/D0) in soil from the four cropping systems indicated that C input affected soil aeration. Soil from the two cropping systems with highest C input showed N2O evolution at DP/D0 in excess of 0...

  6. Long-term Trend of Cold Air Mass Amount below a Designated Potential Temperature in Northern and Southern Hemisphere Winters with 7 Different Reanalysis Datasets

    Science.gov (United States)

    Kanno, Y.; Abdillah, M. R.; Iwasaki, T.

    2015-12-01

    This study addresses that the hemispheric total cold air mass amount defined below a threshold potential temperature of 280 K is a good indicator of the long-term trend of climate change in the polar region. We demonstrate quantitative analyses of warming trend in the Northern Hemisphere (NH) and Southern Hemisphere (SH) winters, using 7 different reanalysis datasets (JRA-55, JRA-55C, JRA-55AMIP, ERA-interim, CFSR, JRA-25, NCEP-NCAR). Hemispheric total cold air mass amount in the NH winter exhibit a statistically significant decreasing trend in all reanalysis datasets at a rate about -1.37 to -0.77% per decade over the period 1959-2012 and at a rate about -1.57 to -0.82% per decade over 1980-2012. There is no statistically significant trend in the equatorward cold air mass flux across latitude of 45N, which is an indicator for hemispheric-scale cold air outbreak, over the period 1980-2012 except for NCEP-NCAR reanalysis dataset which shows substantial decreasing trend of about -3.28% per decade. The spatial distribution of the long-term trend of cold air mass amount in the NH winter is almost consistent among reanalysis datasets except for JRA-55AMIP over the period 1980-2012. Cold air mass amount increases over Central Siberia, Kamchatka peninsula, and Bering Sea, while it decreases over Norwegian Sea, Barents Sea, Kara Sea, Greenland, Canada, Northern part of United States, and East Asia. In the SH winter, on the other hand, there is a large discrepancy in hemispheric total cold air mass amount and equatorward cold air mass flux across latitude of 50S over the period 1980-2010 among reanalysis datasets. This result indicate that there is a large uncertainty in the long-term trend of cold air mass amount in the SH winter.

  7. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells

    Directory of Open Access Journals (Sweden)

    María Guillermina Zubiría

    2016-04-01

    Full Text Available We have previously addressed that fructose rich diet (FRD intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT. We have now evaluated the effect of prolonged FRD intake (eight weeks on metabolic parameters, number of adipocyte precursor cells (APCs and in vitro adipogenic potential from control (CTR and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs.

  8. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments.

    Science.gov (United States)

    Meier, Elizabeth A; Thorburn, Peter J

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer

  9. Premature loss of primary anterior teeth due to trauma--potential short- and long-term sequelae.

    Science.gov (United States)

    Holan, Gideon; Needleman, Howard L

    2014-04-01

    Traumatic dental injuries (TDIs) can result in the premature loss of primary anterior teeth due to an immediate avulsion, extraction later after the injury because of poor prognosis or late complications, or early exfoliation. There are a number of potential considerations or sequelae as a result of this premature loss that have been cited in the dental literature, which include esthetics, quality of life, eating, speech development, arch integrity (space loss), development and eruption of the permanent successors, and development of oral habits. This article provides a comprehensive review of the dental literature on the possible consequences of premature loss of maxillary primary incisors following TDI.

  10. Japan's long-term energy outlook to 2050: Estimation for the potential of massive CO2 mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Ryoichi

    2010-09-15

    This paper analyzes Japan's energy outlook and CO2 emissions to 2050. Scenario analysis reveals that Japan's CO2 emissions in 2050 could be potentially reduced by 58% from the emissions in 2005. For achieving this massive mitigation, it is required to reduce primary energy supply per GDP by 60% in 2050 from the 2005 level and to expand the share of non-fossil fuel in total supply to 50% by 2050. Concerning power generation mix, nuclear will account for 60%, renewable for 30% in 2050. For massive CO2 abatement, Japan should tackle technological and economic challenges for large-scale deployment of advanced technologies.

  11. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-02-26

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used.

  12. Long-term use of biosolids as organic fertilizers in agricultural soils: potentially toxic elements occurrence and mobility.

    Science.gov (United States)

    Marguí, E; Iglesias, M; Camps, F; Sala, L; Hidalgo, M

    2016-03-01

    The presence of potentially toxic elements (PTEs) may hinder a more widespread application of biosolids in agriculture. At present, the European Directive 86/278/CEE limit the total concentrations of seven metals (Cu, Cr, Ni, Pb, Zn, Cd and Hg) in agricultural soils and in sewage sludges used as fertilizers but it has not taken into consideration the potential impacts of other emerging micropollutants that may be present in the biosolids as well as their mobility. The aim of this study was to evaluate the accumulation and mobility of 13 elements (including regulated metals and other inorganic species) in agricultural soils repeatedly amended with biosolids for 15 years. Firstly, three digestions programs using different acid mixtures were tested to evaluate the most accurate and efficient method for analysis of soil and sludge. Results demonstrated that sewage sludge application increased concentrations of Pb and Hg in soil, but values did not exceed the quality standard established by legislation. In addition, other elements (As, Co, Sb, Ag, Se and Mn) that at present are not regulated by the Spanish and European directives were identified in the sewage sludge, and significant differences were found between Ag content in soils amended with biosolids in comparison with control soils. This fact can be related to the increasing use of silver nanoparticles in consumer products due to their antibacterial properties. Results from the leaching tests show up that, in general, the mobility degree for both regulated and non-regulated elements in soils amended with biosolids was quite low (<10 %).

  13. A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs.

    Science.gov (United States)

    Normand, Signe; Randin, Christophe; Ohlemüller, Ralf; Bay, Christian; Høye, Toke T; Kjær, Erik D; Körner, Christian; Lischke, Heike; Maiorano, Luigi; Paulsen, Jens; Pearman, Peter B; Psomas, Achilleas; Treier, Urs A; Zimmermann, Niklaus E; Svenning, Jens-Christian

    2013-08-19

    Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.

  14. [Biographical work in inpatient long-term care for people with dementia: potential of the DEMIAN nursing concept].

    Science.gov (United States)

    Berendonk, C; Stanek, S; Schönit, M; Kaspar, R; Bär, M; Kruse, A

    2011-02-01

    In nursing care for people with dementia, biographical work is a popular concept. In the literature and practice, many different viewpoints of the way biographical work can/should be promoted exist. In the DEMIAN concept, a nursing concept to promote emotional well-being for people with dementia, it is also of major significance. This article gives an overview of the importance of biographical work in caring for people with dementia. In particular, the role and arrangement of biographical work in the DEMIAN concept are described. Within the anamnesis of the DEMIAN concept, meaningful themes are identified in conversations with different participants (person with dementia, reference persons, and care workers) and through observations. From these findings, specific interventions, aimed at supporting emotional well-being of people with dementia, are derived and integrated into everyday nursing care to promote emotional well-being. The potential of the DEMIAN nursing concept are discussed and further possibilities are highlighted.

  15. Preliminary Assessment of Potential Habitat Composites' Durability when Exposed to a Long-Term Radiation Environment and Micrometeoroid Impacts

    Science.gov (United States)

    Rojdev, Kristina; Graves, Russell; Golden, John; Atwell, William; O'Rouke, Mary Jane; Hill, Charles; Alred, John

    2011-01-01

    NASA's exploration goals include extending human presence beyond low earth orbit (LEO). As a result, habitation for crew is a critical requirement for meeting this goal. However, habitats are very large structures that contain a multitude of subsystems to sustain human life over long-durations in space, and one of the key challenges has been keeping weight to a minimum in order to reduce costs. Thus, light-weight and multifunctional structural materials are of great interest for habitation. NASA has started studying polymeric composite materials as potential lightweight and multifunctional structural materials for use in long-duration spaceflight. However, little is known about the survivability of these materials when exposed to the space environment outside of LEO for long durations. Thus, a study has been undertaken to investigate the durability of composite materials when exposed to long-duration radiation. Furthermore, as an addition to the primary study, a secondary preliminary investigation has been started on the micrometeoroid and orbital debris (MMOD) susceptibility of these materials after radiation exposure. The combined effects of radiation and MMOD impacts are the focus of this paper.

  16. Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark; Heath, Garvin; Keyser, David; Lantz, Eric; Macknick, Jordan; Mai, Trieu; Millstein, Dev

    2016-10-01

    We model scenarios of the U.S. electric sector in which wind generation reaches 10% of end-use electricity demand in 2020, 20% in 2030, and 35% in 2050. As shown in a companion paper, achieving these penetration levels would have significant implications for the wind industry and the broader electric sector. Compared to a baseline that assumes no new wind deployment, under the primary scenario modeled, achieving these penetrations imposes an incremental cost to electricity consumers of less than 1% through 2030. These cost implications, however, should be balanced against the variety of environmental and social implications of such a scenario. Relative to a baseline that assumes no new wind deployment, our analysis shows that the high-penetration wind scenario yields potential greenhouse-gas benefits of $85-$1,230 billion in present-value terms, with a central estimate of $400 billion. Air-pollution-related health benefits are estimated at $52-$272 billion, while annual electric-sector water withdrawals and consumption are lower by 15% and 23% in 2050, respectively. We also find that a high-wind-energy future would have implications for the diversity and risk of energy supply, local economic development, and land use and related local impacts on communities and ecosystems; however, these additional impacts may not greatly affect aggregate social welfare owing to their nature, in part, as resource transfers.

  17. Paired-Associative Stimulation-Induced Long-term Potentiation-Like Motor Cortex Plasticity in Healthy Adolescents

    Directory of Open Access Journals (Sweden)

    Jonathan C. Lee

    2017-05-01

    Full Text Available ObjectiveThe objective of this study was to evaluate the feasibility of using paired-associative stimulation (PAS to study excitatory and inhibitory plasticity in adolescents while examining variables that may moderate plasticity (such as sex and environment.MethodsWe recruited 34 healthy adolescents (aged 13–19, 13 males, 21 females. To evaluate excitatory plasticity, we compared mean motor-evoked potentials (MEPs elicited by single-pulse transcranial magnetic stimulation (TMS before and after PAS at 0, 15, and 30 min. To evaluate inhibitory plasticity, we evaluated the cortical silent period (CSP elicited by single-pulse TMS in the contracted hand before and after PAS at 0, 15, and 30 min.ResultsAll participants completed PAS procedures. No adverse events occurred. PAS was well tolerated. PAS-induced significant increases in the ratio of post-PAS MEP to pre-PAS MEP amplitudes (p < 0.01 at all post-PAS intervals. Neither socioeconomic status nor sex was associated with post-PAS MEP changes. PAS induced significant CSP lengthening in males but not females.ConclusionPAS is a feasible, safe, and well-tolerated index of adolescent motor cortical plasticity. Gender may influence PAS-induced changes in cortical inhibition. PAS is safe and well tolerated by healthy adolescents and may be a novel tool with which to study adolescent neuroplasticity.

  18. Long-term persistence of sedimentary copper contamination in Lake Orta: potential environmental risks 20 years after liming

    Directory of Open Access Journals (Sweden)

    Davide A.L. Vignati

    2016-04-01

    Full Text Available Lake Orta, northern Italy, has suffered from severe copper pollution and human-induced acidification between the 1920s and the 1990s because of discharges from a rayon factory and electroplating industries located in its water basin. Following liming operations in the late 1990s, the chemical quality of the water column has been restored and signs of, still ongoing, biological recovery observed. Examination of two sediment cores collected close to the main historical Cu discharge and in the central part of the Lake shows that Cu concentrations in the uppermost layers of bottom sediments remain 10 to 40-fold higher than background levels. Past studies demonstrated the toxic potential of Lake Orta sediments to a variety of organisms at Cu concentrations comparable to present ones. Comparison with published results suggests that current level of Cu contamination may still pose a risk to sediment-ingesting organisms and slow down further ecological recovery of Lake Orta. Particular attention should be given to understand the effects of dietary ingestion of Cu from sediments which, unlike in previous ecotoxicological studies, may now represent the main route of Cu exposure for sediment-ingesting benthic organisms.

  19. Long-Term Task- and Dopamine-Dependent Dynamics of Subthalamic Local Field Potentials in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sara J. Hanrahan

    2016-11-01

    Full Text Available Subthalamic nucleus (STN local field potentials (LFP are neural signals that have been shown to reveal motor and language behavior, as well as pathological parkinsonian states. We use a research-grade implantable neurostimulator (INS with data collection capabilities to record STN-LFP outside the operating room to determine the reliability of the signals over time and assess their dynamics with respect to behavior and dopaminergic medication. Seven subjects were implanted with the recording augmented deep brain stimulation (DBS system, and bilateral STN-LFP recordings were collected in the clinic over twelve months. Subjects were cued to perform voluntary motor and language behaviors in on and off medication states. The STN-LFP recorded with the INS demonstrated behavior-modulated desynchronization of beta frequency (13–30 Hz and synchronization of low gamma frequency (35–70 Hz oscillations. Dopaminergic medication did not diminish the relative beta frequency oscillatory desynchronization with movement. However, movement-related gamma frequency oscillatory synchronization was only observed in the medication on state. We observed significant inter-subject variability, but observed consistent STN-LFP activity across recording systems and over a one-year period for each subject. These findings demonstrate that an INS system can provide robust STN-LFP recordings in ambulatory patients, allowing for these signals to be recorded in settings that better represent natural environments in which patients are in a variety of medication states.

  20. Long-term operation of biological activated carbon pre-treatment for microfiltration of secondary effluent: Correlation between the organic foulants and fouling potential.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2016-03-01

    The impact of long-term (>2 years) biological activated carbon (BAC) treatment for mitigating organic fouling in the microfiltration of biologically treated secondary effluent was investigated. Correlation between the organic constituents and hydraulic filtration resistance was investigated to identify the major components responsible for fouling. Over two years operation, the removal efficiency for dissolved organic carbon (DOC) by the BAC treatment was fairly consistent (30 ± 3%), although the reduction in UVA254 gradually decreased from 56 to 34%. BAC treatment effectively decreased the organic foulants in the effluent and so contributed to the mitigation of membrane fouling as shown by reduction in the unified membrane fouling index (UMFI). BAC consistently removed biopolymers whereas the removal of humic substances decreased from 52 to 25% after two years of BAC operation, and thus led to a gradual decrease in UMFI reduction efficiency from 78 to 43%. This was due to gradual reduction in adsorption capacity of the activated carbon as confirmed by analysis of its pore size distribution. Hence humics also played an important role in membrane fouling. However, there was a good correlation between protein and carbohydrate contents with hydraulically reversible and irreversible filtration resistance, compared with UVA254, turbidity and DOC. Although the mitigation of membrane fouling decreased over time, this study demonstrated that the long-term use of BAC pre-treatment of biologically treated secondary effluent prior to microfiltration has potential to reduce the need for frequent chemical cleaning and so increase membrane life span.

  1. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells.

    Science.gov (United States)

    Baek, Hyunjung; Noh, Yoo Hun; Lee, Joo Hee; Yeon, Soo-In; Jeong, Jaemin; Kwon, Heechung

    2014-09-01

    Salivary gland stem/progenitor cells belong to the endodermal lineage and may serve as good candidates to replace their dysfunctional counterparts. The objective of this study was to isolate large numbers of salivary gland tissue-derived stem cells (SGSCs) from adult rats in order to develop a clinically applicable method that does not involve sorting or stem cell induction by duct ligation. We analysed SGSCs isolated from normal rat salivary glands to determine whether they retained the major characteristics of stem cells, self-renewal and multipotency, especially with respect to the various endodermal cell types. SGSCs expressed high levels of integrin α6β1 and c-kit, which are surface markers of SGSCs. In particular, the integrin α6β1(+) /c-kit(+) salivary gland cells maintained the morphology, proliferation activity and multipotency of stem cells for up to 92 passages in 12 months. Furthermore, we analysed the capacity of SGSCs to differentiate into endoderm lineage cell types, such as acinar-like and insulin-secreting cells. When cultured on growth factor reduced matrigel, the morphology of progenitor cells changed to acinar-like structures and these cells expressed the acinar cell-specific marker, α-amylase, and tight junction markers. Moreover, reverse transcription-polymerase chain reaction (RT-PCR) data showed increased expression of pancreatic cell markers, including insulin, Pdx1, pan polypeptide and neurogenin-3, when these cells formed pancreatic clusters in the presence of activin A, exendin-4 and retinoic acid. These data demonstrate that adult salivary stem/progenitor cells may serve as a potential source for cell therapy in salivary gland hypofunction and diabetes.

  2. Potential for long-term transfer of dissolved organic carbon from riparian zones to streams in boreal catchments.

    Science.gov (United States)

    Ledesma, José L J; Grabs, Thomas; Bishop, Kevin H; Schiff, Sherry L; Köhler, Stephan J

    2015-08-01

    Boreal regions store most of the global terrestrial carbon, which can be transferred as dissolved organic carbon (DOC) to inland waters with implications for both aquatic ecology and carbon budgets. Headwater riparian zones (RZ) are important sources of DOC, and often just a narrow 'dominant source layer' (DSL) within the riparian profile is responsible for most of the DOC export. Two important questions arise: how long boreal RZ could sustain lateral DOC fluxes as the sole source of exported carbon and how its hydromorphological variability influences this role. We estimate theoretical turnover times by comparing carbon pools and lateral exports in the DSL of 13 riparian profiles distributed over a 69 km(2) catchment in northern Sweden. The thickness of the DSL was 36 ± 18 (average ± SD) cm. Thus, only about one-third of the 1-m-deep riparian profile contributed 90% of the lateral DOC flux. The 13 RZ exported 8.7 ± 6.5 g C m(-2) year(-1) , covering the whole range of boreal stream DOC exports. The variation could be explained by local hydromorphological characteristics including RZ width (R(2) = 0.90). The estimated theoretical turnover times were hundreds to a few thousands of years, that is there is a potential long-lasting supply of DOC. Estimates of net ecosystem production in the RZ suggest that lateral fluxes, including both organic and inorganic C, could be maintained without drawing down the riparian pools. This was supported by measurements of stream DO(14) C that indicated modern carbon as the predominant fraction exported, including streams disturbed by ditching. The transfer of DOC into boreal inland waters from new and old carbon sources has a major influence on surface water quality and global carbon balances. This study highlights the importance of local variations in RZ hydromorphology and DSL extent for future DOC fluxes under a changing climate. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  3. Long-term changes in spinal cord evoked potentials after compression spinal cord injury in the rat.

    Science.gov (United States)

    Vanický, Ivo; Ondrejcák, Tomás; Ondrejcáková, Miriam; Sulla, Igor; Gálik, Ján

    2006-01-01

    1. After traumatic spinal cord injury (SCI), histological and neurological consequences are developing for several days and even weeks. However, little is known about the dynamics of changes in spinal axonal conductivity. The aim of this study was to record and compare repeated spinal cord evoked potentials (SCEP) after SCI in the rat during a 4 weeks' interval. These recordings were used: (i) for studying the dynamics of functional changes in spinal axons after SCI, and (ii) to define the value of SCEP as an independent outcome parameter in SCI studies. 2. We have used two pairs of chronically implanted epidural electrodes for stimulation/recording. The electrodes were placed below and above the site of injury, respectively. Animals with implanted electrodes underwent spinal cord compression injury induced by epidural balloon inflation at Th8-Th9 level. There were five experimental groups of animals, including one control group (sham-operated, no injury), and four injury groups (different degrees of SCI). 3. After SCI, SCEP waveform was either significantly reduced or completely lost. Partial recovery of SCEPs was observed in all groups. The onset and extent of recovery clearly correlated with the severity of injury. There was good correlation between quantitated SCEP variables and the volumes of the compressing balloon. However, sensitivity of electropohysiological parameters was inferior compared to neurological and morphometric outcomes. 4. Our study shows for the first time, that the dynamics of axonal recovery depends on the degree of injury. After mild injury, recovery of signal is rapid. However, after severe injury, axonal conductivity can re-appear after as long as 2 weeks postinjury. In conclusion, SCEPs can be used as an independent parameter of outcome after SCI, but in general, the sensitivity of electrophysiological data were worse than standard morphological and neurological evaluations.

  4. High-Frequency Stimulation-Induced Synaptic Potentiation in Dorsal and Ventral CA1 Hippocampal Synapses: The Involvement of NMDA Receptors, mGluR5, and (L-Type) Voltage-Gated Calcium Channels

    Science.gov (United States)

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-01-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…

  5. An exploration of the effectiveness of artificial mini-magnetospheres as a potential Solar Storm shelter for long term human space missions

    CERN Document Server

    Bamford, Ruth; Bradford, John; Todd, Tom N; Stafford-Allen, Robin; Alves, E Paulo; Silva, Luis; Collingwood, Cheryl; Crawford, Ian A; Bingham, Robert

    2014-01-01

    In this paper we explore the effectiveness of an artificial mini-magnetosphere as a potential radiation shelter for long term human space missions. Our study includes the differences that the plasma environment makes to the efficiency of the shielding from the high energy charged particle component of solar and cosmic rays, which radically alters the power requirements. The incoming electrostatic charges are shielded by fields supported by the self captured environmental plasma of the solar wind, potentially augmented with additional density. The artificial magnetic field generated on board acts as the means of confinement and control. Evidence for similar behaviour of electromagnetic fields and ionised particles in interplanetary space can be gained by the example of the enhanced shielding effectiveness of naturally occurring "mini-magnetospheres" on the moon. The shielding effect of surface magnetic fields of the order of ~100s nanoTesla is sufficient to provide effective shielding from solar proton bombard...

  6. Impact of potentially lethal ventricular arrhythmias on long-term outcome in patients with chronic heart failure

    Institute of Scientific and Technical Information of China (English)

    LIU Ye-hong; SHEN Wei-feng; SU Jing-ying; WANG Lin-jie; LI Jin-ping; ZHOU Qing-fen; GAN Qian; CHAI Xi-chen; DAI Li-ying; ZHANG Feng-ru

    2012-01-01

    Background Potentially lethal ventricular arrhythmias (PLVAs) occur frequently in survivors after acute myocardial infarction and are increasingly recognized in other forms of structural heart diseases.This study investigated the prevalence and prognostic significance of PLVAs in patients with chronic heart failure (CHF).Methods Data concerning demographics,etiology of heart failure,NYHA functional class,biochemical variables,electrocardiographic and echocardiographic findings,and medical treatments were collected by reviewing hospital medical records from 1080 patients with NYHA Ⅱ-Ⅳ and a left ventricular (LV) ejection fraction ≤45%.PLVAs were defined as multi-focal ventricular ectopy (>30 beats/h on Holter monitoring),bursts of ventricular premature beats,and nonsustained ventricular tachycardia.All-cause mortality,sudden death,and rehospitalization due to worsening heart failure,or cardiac transplantation during 5-year follow-up after discharge were recorded.Results The occurrence rate of PLVAs in CHF was 30.2%,and increased with age; 23.4% in patients <45 years old,27.8% in those between 45-65 years old,and 33.5% in patients >65 years old (P=0.033).Patients with PLVAs had larger LV size and lower ejection fraction (both P <0.01) and higher all-cause mortality (P=0.014) during 5-year follow-up than those without PLVAs.Age (OR 1.041,95% Cl 1.004-1.079,P=0.03) and LV end-diastolic dimension (OR 1.068,95% Cl 1.013-1.126,P=0.015) independently predicted the occurrence of PLVAs.And PLVA was an independent factor for all-cause mortality (RR 1.702,95% Cl 1.017-2.848,P=0.031) and sudden death (RR 1.937,95% CI 1.068-3.516,P=0.030) in patients with CHF.Conclusion PLVAs are common and exert a negative impact on Iona-term clinical outcome in patients with CHF.

  7. Long-Term Collections

    CERN Multimedia

    Staff Association

    2016-01-01

    45 years helping in developing countries! CERN personnel have been helping the least fortunate people on the planet since 1971. How? With the Long-Term Collections! Dear Colleagues, The Staff Association’s Long-Term Collections (LTC) Committee is delighted to share this important milestone in the life of our Laboratory with you. Indeed, whilst the name of CERN is known worldwide for scientific discoveries, it also shines in the many humanitarian projects which have been supported by the LTC since 1971. Several schools and clinics, far and wide, carry its logo... Over the past 45 years, 74 projects have been supported (9 of which are still ongoing). This all came from a group of colleagues who wanted to share a little of what life offered them here at CERN, in this haven of mutual understanding, peace and security, with those who were less fortunate elsewhere. Thus, the LTC were born... Since then, we have worked as a team to maintain the dream of these visionaries, with the help of regular donat...

  8. Long-Term Collection

    CERN Document Server

    Staff Association

    2016-01-01

    Dear Colleagues, As previously announced in Echo (No. 254), your delegates took action to draw attention to the projects of the Long-Term Collections (LTC), the humanitarian body of the CERN Staff Association. On Tuesday, 11 October, at noon, small Z-Cards were widely distributed at the entrances of CERN restaurants and we thank you all for your interest. We hope to have achieved an important part of our goal, which was to inform you, convince you and find new supporters among you. We will find out in the next few days! An exhibition of the LTC was also set up in the Main Building for the entire week. The Staff Association wants to celebrate the occasion of the Long-Term Collection’s 45th anniversary at CERN because, ever since 1971, CERN personnel have showed great support in helping the least fortunate people on the planet in a variety of ways according to their needs. On a regular basis, joint fundraising appeals are made with the Directorate to help the victims of natural disasters around th...

  9. Collectes à long terme

    CERN Document Server

    Collectes à long terme

    2014-01-01

    En cette fin d’année 2014 qui approche à grands pas, le Comité des Collectes à Long Terme remercie chaleureusement ses fidèles donatrices et donateurs réguliers pour leurs contributions à nos actions en faveur des plus démunis de notre planète. C’est très important, pour notre Comité, de pouvoir compter sur l’appui assidu que vous nous apportez. Depuis plus de 40 ans maintenant, le modèle des CLT est basé principalement sur des actions à long terme (soit une aide pendant 4-5 ans par projet, mais plus parfois selon les circonstances), et sa planification demande une grande régularité de ses soutiens financiers. Grand MERCI à vous ! D’autres dons nous parviennent au cours de l’année, et ils sont aussi les bienvenus. En particulier, nous tenons à remercier...

  10. Occlusion of LTP-like plasticity in human primary motor cortex by action observation.

    Directory of Open Access Journals (Sweden)

    Jean-François Lepage

    Full Text Available Passive observation of motor actions induces cortical activity in the primary motor cortex (M1 of the onlooker, which could potentially contribute to motor learning. While recent studies report modulation of motor performance following action observation, the neurophysiological mechanism supporting these behavioral changes remains to be specifically defined. Here, we assessed whether the observation of a repetitive thumb movement--similarly to active motor practice--would inhibit subsequent long-term potentiation-like (LTP plasticity induced by paired-associative stimulation (PAS. Before undergoing PAS, participants were asked to either 1 perform abductions of the right thumb as fast as possible; 2 passively observe someone else perform thumb abductions; or 3 passively observe a moving dot mimicking thumb movements. Motor evoked potentials (MEP were used to assess cortical excitability before and after motor practice (or observation and at two time points following PAS. Results show that, similarly to participants in the motor practice group, individuals observing repeated motor actions showed marked inhibition of PAS-induced LTP, while the "moving dot" group displayed the expected increase in MEP amplitude, despite differences in baseline excitability. Interestingly, LTP occlusion in the action-observation group was present even if no increase in cortical excitability or movement speed was observed following observation. These results suggest that mere observation of repeated hand actions is sufficient to induce LTP, despite the absence of motor learning.

  11. Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice.

    Science.gov (United States)

    Schreurs, B G; Oh, M M; Alkon, D L

    1996-03-01

    1. Using a rabbit cerebellar slice preparation, we stimulated a classical conditioning procedure by stimulating parallel fiber inputs to Purkinje cells with the use of a brief, high-frequency train of eight constant-current pulses 80 ms before climbing fiber inputs to the same Purkinje cell were stimulated with the use of a brief, lower frequency train of three constant-current pulses. In all experiments, we assessed the effects of stimulation by measuring the peak amplitude of Purkinje cell excitatory postsynaptic potentials (EPSPs) to single parallel fiber test pulses. 2. Intradendritically recorded Purkinje cell EPSPs underwent a long-term (> 20 min) reduction in peak amplitude (30%) after paired stimulation of the parallel and climbing fibers but not after unpaired or parallel fiber alone stimulation. We call this phenomenon pairing-specific long-term depression (PSD). 3. Facilitation of the peak amplitude of a second EPSP elicited by a parallel fiber train occurred both before and after paired stimulation suggesting that the locus of depression was not presynaptic. Depression of the peak amplitude of a depolarizing response to focal application of glutamate following pairings of parallel and climbing fiber stimulation added support to a suggested postsynaptic locus of the PSD effect. 4. The application of aniracetam potentiated EPSP peak amplitude by 40%, but these values returned to baseline as a result of pairings. With the removal of aniracetam from the bath 20 min after pairings, normal levels of pairing-specific EPSP depression were observed, indicating that the effect did not result from direct desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors. 5. Incubation of slices in the protein kinase inhibitor H-7 potentiated EPSP peak amplitudes slightly (9%), but peak amplitudes returned to baseline levels after pairings. The net reduction in EPSP peak amplitude of classical conditioning.

  12. New experimental data reveal possible relation of chaotic behavior of the long-term geoelectric potential difference to seismic activity in Western Greece

    Energy Technology Data Exchange (ETDEWEB)

    Ifantis, Apostolos [Control Systems and Signals Laboratory, Department of Electrical Engineering, Technological Educational Institute of Patras, Patras 26334 (Greece) and Seismological Laboratory, Department of Geology, University of Patras, Patras 26500 (Greece)]. E-mail: ifantisa@teipat.gr; Giannakopoulos, Konstantine [Electronics Laboratory, Department of Physics, University of Patras, Patras 26500 (Greece)]. E-mail: kgian1@physics.upatras.gr

    2007-11-15

    In this paper, observations of the long-term geoelectric potential difference are presented based on data collected during a six-year (1998-2003) investigating period. Moreover, this paper constitutes a continuation of a previously published work with five-year (1993-1997) experimental data. For data logging purposes, an automatic system for collection of geoelectric measurements operates at the Seismological Laboratory of the University of Patras. The analysis of these data using Lyapunov exponents and Takens estimator confirm their quite chaotic behavior. The Lyapunov exponents have also been calculated for short periods of fifteen days, ten days before and five days after the earthquakes occurred during this six-year period. By thorough examination of the resulting Lyapunov spectrums, it seems that these are subject to possible changes prior to an earthquake.

  13. Isolated NMDA receptor-mediated synaptic responses express both LTP and LTD.

    Science.gov (United States)

    Xie, X; Berger, T W; Barrionuevo, G

    1992-04-01

    1. The possibility of use-dependent, long-lasting modifications of pharmacologically isolated N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission was examined by intracellular recordings from granule cells of the hippocampal dentate gyrus in vitro. In the presence of the non-NMDA receptor antagonist 6-cyano-7-nitroquinaxaline-2,3-dione (CNQX, 10 microM) robust, long-term potentiation (LTP) of NMDA receptor-mediated synaptic potentials was induced by brief, high (50 Hz) and lower (10 Hz) frequency tetanic stimuli of glutamatergic afferents (60 +/- 6%, n = 8, P less than 0.001 and 43 +/- 12%, n = 3, P less than 0.05, respectively). 2. Hyperpolarization of granule cell membrane potential to -100 mV during 50-Hz tetanic stimuli reversibly blocked the induction of LTP (-6 +/- 2%, n = 6, P greater than 0.05) indicating that simultaneous activation of pre- and postsynaptic elements is a prerequisite for potentiation of NMDA receptor-mediated synaptic transmission. In contrast, hyperpolarization of the granule cell membrane potential to -100 mV during 10-Hz tetanic stimuli resulted in long-term depression (LTD) of NMDA receptor-mediated synaptic potentials (-34 +/- 8%, n = 8, P less than 0.01). 3. We also studied the role of [Ca2+]i in the induction of LTP and LTD of NMDA receptor-mediated synaptic responses. Before tetanization, [Ca2+]i was buffered by iontophoretic injections of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). BAPTA completely blocked the induction of LTP (3 +/- 5%, n = 13) and partially blocked LTD (-14.8 +/- 6%, n = 10).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Deleting Both PHLPP1 and CANP1 Rescues Impairments in Long-Term Potentiation and Learning in Both Single Knockout Mice

    Science.gov (United States)

    Liu, Yan; Sun, Jiandong; Wang, Yubin; Lopez, Dulce; Tran, Jennifer; Bi, Xiaoning; Baudry, Michel

    2016-01-01

    Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation (TBS)-induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression…

  15. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP.

    Science.gov (United States)

    Ravassard, Pascal; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Fraize, Nicolas; Libourel, Paul-Antoine; Lebarillier, Léa; Arthaud, Sébastien; Meissirel, Claire; Touret, Monique; Malleret, Gaël; Salin, Paul-Antoine

    2016-04-01

    Prolonged rapid-eye-movement (REM) sleep deprivation has long been used to study the role of REM sleep in learning and memory processes. However, this method potentially induces stress and fatigue that may directly affect cognitive functions. Here, by using a short-term and nonstressful REM sleep deprivation (RSD) method we assessed in rats the bidirectional influence of reduced and increased REM sleep amount on hippocampal-dependent emotional memory and plasticity. Our results indicate that 4 h RSD impaired consolidation of contextual fear conditioning (CFC) and induction of long-term potentiation (LTP), while decreasing density of Egr1/Zif268-expressing neurons in the CA1 region of the dorsal hippocampus. LTP and Egr1 expression were not affected in ventral CA1. Conversely, an increase in REM sleep restores and further facilitates CFC consolidation and LTP induction, and also increases Egr1 expression in dorsal CA1. Moreover, CFC consolidation, Egr1 neuron density, and LTP amplitude in dorsal CA1 show a positive correlation with REM sleep amount. Altogether, these results indicate that mild changes in REM sleep amount bidirectionally affect memory and synaptic plasticity mechanisms occurring in the CA1 area of the dorsal hippocampus.

  16. Dynamic Arc SUMOylation and Selective Interaction with F-Actin-Binding Protein Drebrin A in LTP Consolidation In Vivo

    Science.gov (United States)

    Nair, Rajeevkumar R.; Patil, Sudarshan; Tiron, Adrian; Kanhema, Tambudzai; Panja, Debabrata; Schiro, Lars; Parobczak, Kamil; Wilczynski, Grzegorz; Bramham, Clive R.

    2017-01-01

    Activity-regulatedcytoskeleton-associated protein (Arc) protein is implicated as a master regulator of long-term forms of synaptic plasticity and memory formation, but the mechanisms controlling Arc protein function are little known. Post-translation modification by small ubiquitin-like modifier (SUMO) proteins has emerged as a major mechanism for regulating protein-protein interactions and function. We first show in cell lines that ectopically expressed Arc undergoes mono-SUMOylation. The covalent addition of a single SUMO1 protein was confirmed by in vitro SUMOylation of immunoprecipitated Arc. To explore regulation of endogenous Arc during synaptic plasticity, we induced long-term potentiation (LTP) in the dentate gyrus of live anesthetized rats. Using coimmunoprecipitation of native proteins, we show that Arc synthesized during the maintenance phase of LTP undergoes dynamic mono-SUMO1-ylation. Levels of unmodified Arc increase in multiple subcellular fractions (cytosol, membrane, nuclear and cytoskeletal), whereas enhanced Arc SUMOylation was specific to the synaptoneurosomal and the cytoskeletal fractions. Dentate gyrus LTP consolidation requires a period of sustained Arc synthesis driven by brain-derived neurotrophic factor (BDNF) signaling. Local infusion of the BDNF scavenger, TrkB-Fc, during LTP maintenance resulted in rapid reversion of LTP, inhibition of Arc synthesis and loss of enhanced Arc SUMO1ylation. Furthermore, coimmunoprecipitation analysis showed that SUMO1-ylated Arc forms a complex with the F-actin-binding protein drebrin A, a major regulator of cytoskeletal dynamics in dendritic spines. Although Arc also interacted with dynamin 2, calcium/calmodulindependentprotein kinase II-beta (CaMKIIβ), and postsynaptic density protein-95 (PSD-95), these complexes lacked SUMOylated Arc. The results support a model in which newly synthesized Arc is SUMOylated and targeted for actin cytoskeletal regulation during in vivo LTP. PMID:28553222

  17. The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Christie, B R; Magee, J C; Johnston, D

    1996-01-01

    Long-term depression (LTD) of synaptic efficacy at CA1 synapses is believed to be a Ca(2+)-dependent process. We used high-speed fluorescence imaging and patch-clamp techniques to quantify the spatial distribution of changes in intracellular Ca2+ accompanying the induction of LTD at Schaffer collateral synapses in CA1 pyramidal neurons. Low-frequency stimulation (3 Hz), which was subthreshold for action potentials, produced small changes in [Ca2+]i and failed to elicit LTD. Increasing the stimulus strength so that action potentials were generated produced both robust LTD and increases in [Ca2+]i. Back-propagating action potentials at 3 Hz in the absence of synaptic stimulation also produced increases in [Ca2+]i, but failed to induce LTD. When subthreshold synaptic stimulation was paired with back-propagating action potentials, however, large increases in [Ca2+]i were observed and robust LTD was induced. The LTD was blocked by the N-methyl-D-aspartate receptor (NMDAr) antagonist APV, and stimulus-induced increases in [Ca2+]i were reduced throughout the neuron under these conditions. The LTD was also dependent on Ca2+ influx via voltage-gated Ca2+ channels (VGCCs), because LTD was severely attenuated or blocked by both nimodipine and Ni2+. These findings suggest that back-propagating action potentials can exert a powerful control over the induction of LTD and that both VGCCs and NMDArs are involved in the induction of this form of plasticity.

  18. Extracellular and intracellular cleavages of proBDNF required at two distinct stages of late-phase LTP

    Science.gov (United States)

    Pang, Petti T.; Nagappan, Guhan; Guo, Wei; Lu, Bai

    2016-05-01

    Although late-phase long-term potentiation (L-LTP) is implicated in long-term memory, its molecular mechanisms are largely unknown. Here we provide evidence that L-LTP can be divided into two stages: an induction stage (I) and a maintenance stage (II). Both stages require mature brain-derived neurotrophic factor (mBDNF), but involve distinct underlying mechanisms. Stage I requires secretion of existing proBDNF followed by extracellular cleavage by tPA/plasmin. Stage II depends on newly synthesized BDNF. Surprisingly, mBDNF at stage II is derived from intracellular cleavage of proBDNF by furin/PC1. Moreover, stage I involves BDNF-TrkB signaling mainly through MAP kinase, whereas all three signaling pathways (phospholipase C-γ, PI3 kinase, and MAP kinase) are required for the maintenance of L-LTP at stage II. These results reveal the molecular basis for two temporally distinct stages in L-LTP, and provide insights on how BDNF modulates this long-lasting synaptic alternation at two critical time windows.

  19. Switching off LTP: mGlu and NMDA receptor-dependent novelty exploration-induced depotentiation in the rat hippocampus.

    Science.gov (United States)

    Qi, Yingjie; Hu, Neng-Wei; Rowan, Michael J

    2013-04-01

    Both electrically induced synaptic long-term potentiation (LTP) and long-term depression have been extensively studied as models of the cellular basis of learning and memory mechanisms. Recently, considerable interest has been generated by the possibility that the activity-dependent persistent reversal of previously established synaptic LTP (depotentiation) may play a role in the time- and state-dependent erasure of memory. Here, we examined the requirement for glutamate receptor activation in experience-induced reversal of previously established LTP in the CA1 area of the hippocampus of freely behaving rats. Continuous exploration of non-aversive novelty for ~30 min, which was associated with hippocampal activation as measured by increased theta power in the electroencephalogram, triggered a rapid and persistent reversal of high frequency stimulation-induced LTP both at apical and basal synapses. Blockade of metabotropic glutamate (mGlu) receptors with mGlu5 subtype-selective antagonists, or N-methyl-D-aspartate (NMDA) receptors with GluN2B subunit-selective antagonists, prevented novelty-induced depotentiation. These findings strongly indicate that activation of both mGlu5 receptors and GluN2B-containing NMDA receptors is required for experience-triggered induction of depotentiation at CA3-CA1 synapses. The mechanistic concordance of the present and previous studies of experience-induced and electrically induced synaptic depotentiation helps to integrate our understanding of the neurophysiological underpinnings of learning and memory.

  20. Effects of Joint Attention on Long-Term Memory in 9-Month-Old Infants: An Event-Related Potentials Study

    Science.gov (United States)

    Kopp, Franziska; Lindenberger, Ulman

    2011-01-01

    Joint attention develops during the first year of life but little is known about its effects on long-term memory. We investigated whether joint attention modulates long-term memory in 9-month-old infants. Infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high…

  1. Effect of chronic stress on short and long-term plasticity in dentate gyrus; study of recovery and adaptation.

    Science.gov (United States)

    Radahmadi, M; Hosseini, N; Nasimi, A

    2014-11-07

    Stress dramatically affects synaptic plasticity of the hippocampus, disrupts paired-pulse facilitation and impairs long-term potentiation (LTP). This study was performed to find the effects of chronic restraint stress and recovery period on excitability, paired-pulse response, LTP and to find probable adaptation to very long stress in the dentate gyrus. Thirty-eight male Wistar rats were randomly divided into four groups of Control, Rest-Stress (21 days stress), Stress-Rest (recovery) and Stress-Stress (42 days stress: adaptation). Chronic restraint stress was applied 6-h/day. Input-output functions, paired-pulse responses and LTP were recorded from the dentate gyrus while stimulating the perforant pathway. We found that chronic stress attenuated the responsiveness, paired-pulse response and LTP in the dentate gyrus. A 21-day recovery period, after the stress, improved all the three responses toward normal, indicating reversibility of these stress-related hippocampal changes. There was no significant adaptation to very long stress, probably due to severity of stress. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. The Screening of Genes Sensitive to Long-Term, Low-Level Microwave Exposure and Bioinformatic Analysis of Potential Correlations to Learning and Memory

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ya Li; LI Ying Xian; MA Hong Bo; LI Dong; LI Hai Liang; JIANG Rui; KAN Guang Han; YANG Zhen Zhong; HUANG Zeng Xin

    2015-01-01

    Objective To gain a better understanding of gene expression changes in the brain following microwave exposure in mice. This study hopes to reveal mechanisms contributing to microwave-induced learning and memory dysfunction. Methods Mice were exposed to whole body 2100 MHz microwaves with specific absorption rates (SARs) of 0.45 W/kg, 1.8 W/kg, and 3.6 W/kg for 1 hour daily for 8 weeks. Differentially expressing genes in the brains were screened using high-density oligonucleotide arrays, with genes showing more significant differences further confirmed by RT-PCR. Results The gene chip results demonstrated that 41 genes (0.45 W/kg group), 29 genes (1.8 W/kg group), and 219 genes (3.6 W/kg group) were differentially expressed. GO analysis revealed that these differentially expressed genes were primarily involved in metabolic processes, cellular metabolic processes, regulation of biological processes, macromolecular metabolic processes, biosynthetic processes, cellular protein metabolic processes, transport, developmental processes, cellular component organization, etc. KEGG pathway analysis showed that these genes are mainly involved in pathways related to ribosome, Alzheimer's disease, Parkinson's disease, long-term potentiation, Huntington's disease, and Neurotrophin signaling. Construction of a protein interaction network identified several important regulatory genes including synbindin (sbdn), Crystallin (CryaB), PPP1CA, Ywhaq, Psap, Psmb1, Pcbp2, etc., which play important roles in the processes of learning and memory. Conclusion Long-term, low-level microwave exposure may inhibit learning and memory by affecting protein and energy metabolic processes and signaling pathways relating to neurological functions or diseases.

  3. Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

    2010-05-01

    As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

  4. Alcohol Impairs Long-Term Depression at the Cerebellar Parallel Fiber–Purkinje Cell Synapse

    Science.gov (United States)

    Belmeguenai, Amor; Botta, Paolo; Weber, John T.; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris I.; Valenzuela, C. Fernando; Hansel, Christian

    2008-01-01

    Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects long-term depression (LTD) and long-term potentiation (LTP) at excitatory parallel fiber (PF) to Purkinje cell synapses, which are assumed to mediate forms of cerebellar motor learning. To examine ethanol effects on PF synaptic transmission and plasticity, we performed whole cell patch-clamp recordings from Purkinje cells in rat cerebellar slices. We found that ethanol (50 mM) selectively blocked PF–LTD induction, whereas it did not change the amplitude of excitatory postsynaptic currents at PF synapses. In contrast, ethanol application reduced voltage-gated calcium currents and type 1 metabotropic glutamate receptor (mGluR1)–dependent responses in Purkinje cells, both of which are involved in PF–LTD induction. The selectivity of these effects is emphasized by the observation that ethanol did not impair PF–LTP and that PF–LTP could readily be induced in the presence of the group I mGluR antagonist AIDA or the mGluR1a antagonist LY367385. Taken together, these findings identify calcium currents and mGluR1-dependent signaling pathways as potential ethanol targets and suggest that an ethanol-induced blockade of PF–LTD could contribute to the motor coordination deficits resulting from alcohol consumption. PMID:18922952

  5. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Jarod Swant

    Full Text Available Methamphetamine (METH is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain--which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 microM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.

  6. LTP and memory impairment caused by extracellular Aβ and Tau oligomers is APP-dependent

    Science.gov (United States)

    Puzzo, Daniela; Piacentini, Roberto; Fá, Mauro; Gulisano, Walter; Li Puma, Domenica D; Staniszewski, Agnes; Zhang, Hong; Tropea, Maria Rosaria; Cocco, Sara; Palmeri, Agostino; Fraser, Paul; D'Adamio, Luciano; Grassi, Claudio; Arancio, Ottavio

    2017-01-01

    The concurrent application of subtoxic doses of soluble oligomeric forms of human amyloid-beta (oAβ) and Tau (oTau) proteins impairs memory and its electrophysiological surrogate long-term potentiation (LTP), effects that may be mediated by intra-neuronal oligomers uptake. Intrigued by these findings, we investigated whether oAβ and oTau share a common mechanism when they impair memory and LTP in mice. We found that as already shown for oAβ, also oTau can bind to amyloid precursor protein (APP). Moreover, efficient intra-neuronal uptake of oAβ and oTau requires expression of APP. Finally, the toxic effect of both extracellular oAβ and oTau on memory and LTP is dependent upon APP since APP-KO mice were resistant to oAβ- and oTau-induced defects in spatial/associative memory and LTP. Thus, APP might serve as a common therapeutic target against Alzheimer's Disease (AD) and a host of other neurodegenerative diseases characterized by abnormal levels of Aβ and/or Tau. DOI: http://dx.doi.org/10.7554/eLife.26991.001 PMID:28696204

  7. LONG TERM COLLECTIONS

    CERN Multimedia

    STAFF ASSOCIATION

    2010-01-01

    ACKNOWLEDGMENTS The Long-Term Collections (CLT) committee would like to warmly thank its faithful donors who, year after year, support our actions all over the world. Without you, all this would not be possible. We would like to thank, in particular, the CERN Firemen’s Association who donated 5000 CHF in the spring thanks to the sale of their traditional calendar, and the generosity of the CERN community. A huge thank you to the firemen for their devotion to our cause. And thank you to all those who have opened their door, their heart, and their purses! Similarly, we warmly thank the CERN Yoga Club once again for its wonderful donation of 2000 CHF we recently received. We would also like to tell you that all our projects are running well. Just to remind you, we are currently supporting the activities of the «Réflexe-Partage» Association in Mali; the training centre of «Education et Développement» in Abomey, Benin; and the orphanage and ...

  8. The Project for a Scientific Psychology (1895): a Freudian anticipation of LTP-memory connection theory.

    Science.gov (United States)

    Centonze, Diego; Siracusano, Alberto; Calabresi, Paolo; Bernardi, Giorgio

    2004-11-01

    Long-term potentiation (LTP) of synaptic transmission is considered a reliable cellular model of several forms of learning and memory. Described for the first time in 1973, this synaptic phenomenon consists in the enduring facilitation of the communication between two neurons in response to the sustained activation of the synapses by which they are interconnected. In a book of 1895 entitled Project for a Scientific Psychology, Sigmund Freud theorized about the possibility of representing memory at the synaptic level as "a permanent alteration following an event", and anticipated several crucial physiological properties of LTP. In the present article we aim at presenting Freudian theory on the functional organization of the nervous system developed in the Project, with particular respect to his ideas of the cellular bases of memory.

  9. Dopamine Inhibits High-Frequency Stimulation-Induced Long-Term Potentiation of Intrinsic Excitability in CA1 Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Chun-ling Wei

    2012-09-01

    Full Text Available The efficiency of neural circuits is modified by changes not only in synaptic strength, but also in intrinsic excitability of neurons. In CA1 hippocampal pyramidal neurons, bidirectional changes in the intrinsic excitability are often presented after induction of synaptic long-term potentiation or depression. This plasticity of intrinsic excitability has been identified as a cellular correlate of learning. Besides, behavioral learning often involves action of reinforcement or rewarding mediated by dopamine (DA. Here, we examined how DA influences the intrinsic plasticity of CA1 hippocampal pyramidal neurons when high-frequency stimulation (HFS was applied to Schaffer collaterals. The results showed that DA inhibits the decrease in rheobase and increase in mean firing rate of pyramidal neurons induced by HFS, and that this inhibition was abolished by the D1-like receptor antagonist SCH23390 but not by the D2-like receptor antagonist sulpiride. The results suggest that DA inhibits the potentiation of excitability induced by presynaptic HFS, and that this inhibition depends on the activation of D1-like receptors.

  10. The role of BRAF V600E mutation as a potential marker for prognostic stratification of papillary thyroid carcinoma: a long-term follow-up study.

    Science.gov (United States)

    Daliri, Mahdi; Abbaszadegan, Mohammad Reza; Bahar, Mostafa Mehrabi; Arabi, Azadeh; Yadollahi, Mona; Ghafari, Azar; Taghehchian, Negin; Zakavi, Seyed Rasoul

    2014-01-01

    Abstract Papillary carcinoma is the most prevalent malignancy of thyroid gland, and its incidence has been recently increased. The BRAF(V600E) mutation is the most frequent genetic alteration in papillary thyroid carcinoma (PTC). The role of BRAF(V600E) mutation as a potential prognostic factor has been controversially reported in different studies, with short-term follow-up. In this study, we evaluated the role of BRAF(V600E) mutation as a potential marker for prognostic stratification of patients with PTC in long-term follow-up. We studied 69 PTC patients with a mean follow-up period of 63.9 months (median: 60 m). The BRAF(V600E) mutation was analyzed by PCR-single-strand conformational polymorphism and sequencing. The correlation between the presence or absence of the BRAF(V600E) mutation, clinicopathological features and prognosis of PTC patients were studied. The BRAF(V600E) mutation was found in 28 of 69 (40.6%) PTC patients, and it was significantly more frequent in older patients (p papillary thyroid cancer in northeast of Iran. The BRAF(V600E) mutation was associated with older age and advanced tumor stage but was not correlated with incomplete response during follow-up.

  11. Wild-Type, but Not Mutant N296H, Human Tau Restores Aβ-Mediated Inhibition of LTP in Tau−/− mice

    Directory of Open Access Journals (Sweden)

    Mariana Vargas-Caballero

    2017-04-01

    Full Text Available Microtubule associated protein tau (MAPT is involved in the pathogenesis of Alzheimer's disease and many forms of frontotemporal dementia (FTD. We recently reported that Aβ-mediated inhibition of hippocampal long-term potentiation (LTP in mice requires tau. Here, we asked whether expression of human MAPT can restore Aβ-mediated inhibition on a mouse Tau−/− background and whether human tau with an FTD-causing mutation (N296H can interfere with Aβ-mediated inhibition of LTP. We used transgenic mouse lines each expressing the full human MAPT locus using bacterial artificial chromosome technology. These lines expressed all six human tau protein isoforms on a Tau−/− background. We found that the human wild-type MAPT H1 locus was able to restore Aβ42-mediated impairment of LTP. In contrast, Aβ42 did not reduce LTP in slices in two independently generated transgenic lines expressing tau protein with the mutation N296H associated with frontotemporal dementia (FTD. Basal phosphorylation of tau measured as the ratio of AT8/Tau5 immunoreactivity was significantly reduced in N296H mutant hippocampal slices. Our data show that human MAPT is able to restore Aβ42-mediated inhibition of LTP in Tau−/− mice. These results provide further evidence that tau protein is central to Aβ-induced LTP impairment and provide a valuable tool for further analysis of the links between Aβ, human tau and impairment of synaptic function.

  12. Activation of p42/44 mitogen-activated protein kinase pathway in long-term potentiation induced by nicotine in hippocampal CA1 region in rats%在烟碱诱导的大鼠海马CA1区长时程增强形成中p42/44促细胞分裂剂活化的蛋白激酶通路被激活

    Institute of Scientific and Technical Information of China (English)

    王捷; 陈远宾; 朱小南; 陈汝筑

    2001-01-01

    目的:研究p42/44 MAPK通路在烟碱诱导大鼠海马CA1区长时程增强(LTP)形成中的作用.方法:细 胞外场电位记录离体海马脑片CA1区锥体细胞层群体峰电位;蛋白质印迹检测p42/44 MAPK磷酸化程度及其总蛋白表达.结果:PD98059 25 μmol/L和50 μmol/L呈剂量依赖性抑制烟碱(10 μmol/L)诱导大鼠海马CA1区LTP的形成;在烟碱诱导LTP形成的海马CA1区组织内p42和p44 MAPK磷酸化均明显增强并有p42和p44 MAPK总蛋白表达量的增加.结论:p42/44 MAPK通路参与烟碱诱导大鼠海马CA1区LTP形成的信号转导过程.%AIM: To investigate the relationship between activation of p42/44 mitogen-activated protein kinase .(MAPK)pathway and hippocampal long term potentiation (LTP)induced by nicotine in area CA1. METHODS: Extracellular recording of population spike (PS) was performed within the pyramidal cell layer of hippocampal area CAl in vitro; Western blot analysis was employed to detect the active phosphorylated state and the total protein expression of p42/44 MAPK. RESULTS: PD98059concentration-dependently (25 μmol/L, 50 μmol/L) attenuated the induction of LTP induced by nicotine 10 μmol/L; both p42 and p44 MAPK were activated with their total protein expression increasing in CA1 subregion in response to LTP induced by nicotine. CONCLUSION: Activation of p42/44 MAPK pathway is required for hippocampal LTP induced by nicotine.

  13. Learning, memory and hippocampal LTP in genetically obese rodents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We have found that leptin, at physiological concentrations of 10-12 mol/L, facilitates learning and memory and LTP maintenance in Wistar rats. To explore the role of leptin recepors in learning, memory and synaptic plasticity, experiments were carried out using Zucker rats (Z), db/db mice (db), and ob/ob mice(ob). The former two have defects in leptin receptors and the latter cannot produce normal leptin. Unlike the effects observed in normal rats, high or low frequency stimulation of Schaffer collateral-CA1 synapses in hippocampal slices prepared from Z, db and ob animals failed to induce the learning and memory relevant long-term potentiation or depression in CA1 neurons. However, LTP in ob CA1 synapses was facilitated by leptin at 10-12 mol/L concentration. Moreover, the paired-pulse facilitation of CA1 synaptic potentials and intracellularly recorded postsynaptic responses to the neurotransmitters AMPA, NMDA and GABA, applied electrophoretically to the apical dendrites of CA1 neurons, were approximately the same compared to the control lean animals. In addition, unlike the second messenger responses observed in Wistar rats, calmodulin kinase Ⅱ activity in the CA1 area of Z and db animals was not activated after tetanic stimulation of the Schaffer collaterals. It has been shown that all three strains, Z, db and ob display impaired spatial learning and memory when tested in the Morris water maze. The results of these experiments indicate a close relationship between spatial learning and memory, facilitation of LTP, and calmodulin kinase Ⅱ activity.

  14. Dose-dependent effect of donepezil administration on long-term enhancement of visually evoked potentials and cholinergic receptor overexpression in rat visual cortex.

    Science.gov (United States)

    Chamoun, Mira; Groleau, Marianne; Bhat, Menakshi; Vaucher, Elvire

    2016-09-01

    Stimulation of the cholinergic system tightly coupled with periods of visual stimulation boosts the processing of specific visual stimuli via muscarinic and nicotinic receptors in terms of intensity, priority and long-term effect. However, it is not known whether more diffuse pharmacological stimulation with donepezil, a cholinesterase inhibitor, is an efficient tool for enhancing visual processing and perception. The goal of the present study was to potentiate cholinergic transmission with donepezil treatment (0.5 and 1mg/kg) during a 2-week visual training to examine the effect on visually evoked potentials and to profile the expression of cholinergic receptor subtypes. The visual training was performed daily, 10min a day, for 2weeks. One week after the last training session, visual evoked potentials were recorded, or the mRNA expression level of muscarinic (M1-5) and nicotinic (α/β) receptors subunits was determined by quantitative RT-PCR. The visual stimulation coupled with any of the two doses of donepezil produced significant amplitude enhancement of cortical evoked potentials compared to pre-training values. The enhancement induced by the 1mg/kg dose of donepezil was spread to neighboring spatial frequencies, suggesting a better sensitivity near the visual detection threshold. The M3, M4, M5 and α7 receptors mRNA were upregulated in the visual cortex for the higher dose of donepezil but not the lower one, and the receptors expression was stable in the somatosensory (non-visual control) cortex. Therefore, higher levels of acetylcholine within the cortex sustain the increased intensity of the cortical response and trigger the upregulation of cholinergic receptors.

  15. Methodological Aspects of the Potential Use of Dendrochronological Techniques When Analyzing the Long-Term Impact of Tourism on Protected Areas

    Science.gov (United States)

    Ciapała, Szymon; Adamski, Paweł

    2015-01-01

    Intensification of pedestrian tourism causes damage to trees near tourist tracks, and likewise changes the soil structure. As a result, one may expect that annual amount of trees growing near tracks is significantly lower than deeper in the forest. However, during the study of the long-term impact of tourism on the environment (determined from tree increment dynamics), some methodological problems may occur. It is particularly important in protected areas where law and administrative regulations related to nature conservation force research to be conducted using small samples. In this paper we have analyzed the data collected in the Polish part of the Tatra National Park in the two study plots divided into two zones each: the area directly under the influence of the tourist's trampling and the control group. The aim of such analyses was to present the potential effects of the factors which may affect the results of dendrochronological analysis: (i) small size of samples that affects their representativeness, (ii) spatial differences in the rates of the process, as a result of spatial variability of environmental factors and (iii) temporal differences in the rates of the process. This study confirms that the factors mentioned above could significantly influence the results and should be taken into consideration during the analysis. PMID:26325062

  16. Long-term effects of application of sewage sludge to soil on composition of herbage with respect to potentially toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1986-03-01

    Repeated applications of metal-contaminated sewage sludge can have a drastic effect on soil levels of trace elements and lead to serious toxicity effects in plants. In some cases, land can be rendered sterile. It has been demonstrated that contamination of soils with respect to cadmium, copper, lead, mercury, nickel and zinc is largely irreversible, although there does appear to be a long-term tendency for these metals to become progressively less available to plants over a long period of time. Most national guidelines designed to regulate the disposal of sewage sludge on agricultural land are based on the assumption that relatively rapid fixation of contaminant metals does take place in the soil after sludge application. There is a dearth of information relating to the rates at which potentially toxic-elements commonly present in sewage sludge become immobilized in soils, although it is clear that contaminant boron can be leached down the profile in the short term. Evidence is presented that contamination of top soil can persist for a period of six years after a single application of sludge (150 tons dry matter/ha). Over this period, there was little change in a available levels of boron, cadmium, copper, lead and zinc in the top soil and the degree of enhancement of these elements in perennial ryegrass grown in the sludge-treated area remained more or less unchanged. 15 references, 4 tables.

  17. Global aerosol retrieval by synergistic use of ESA ENVISAT instruments and potential for long-term aerosol records from Sentinel-3

    Science.gov (United States)

    North, P. R.; Bevan, S. L.; Brockmann, C.; Fischer, J.; Gomez-Chova, L.; Grey, W.; Heckel, A.; Moreno, J. F.; Munoz Mari, J.; Preusker, R.; Regner, P.

    2009-12-01

    We present research on for improved global aerosol retrieval by synergistic use of optical sensors on the European Space Agency ENVISAT satellite, MERIS and AATSR. Previously aerosol retrievals have been developed in isolation for these instruments, using spectral and mult-angular approaches respectively. These sensors will be succeeded with improved specification on the Sentinel-3 mission (2012-2030) with the aim to offer data suitable for long-term climate records. The research aims to use combined multi-angular and spectral approaches to constrain the inverse problem. The MERIS and AATSR instruments onboard ENVISAT provide similar resolution and swath but complementary information, encompassing different spectral domains and viewing geometries. Substantial success has been obtained previously by a number of researchers in using the instruments independently; for example MERIS aerosol retrieval using spectral methods over known targets, and AATSR approaches using the dual-view capability. The research explores the gain by using information from both instruments simultaneously to constrain atmospheric profile, characterise cloud, and provide improved atmospheric correction to surface reflectance. Results suggest improved estimation of aerosol properties compared to single-instrument retrievals, when compared with AERONET. A sensitivity study is performed to evaluate potential of Sentinel-3 for aerosol retreval, to be launched in 2012, which will give continuity with enhanced instrument specifications for the successor instruments OLCI and SLSTR.

  18. Methodological Aspects of the Potential Use of Dendrochronological Techniques When Analyzing the Long-Term Impact of Tourism on Protected Areas.

    Science.gov (United States)

    Ciapała, Szymon; Adamski, Paweł

    2015-01-01

    Intensification of pedestrian tourism causes damage to trees near tourist tracks, and likewise changes the soil structure. As a result, one may expect that annual amount of trees growing near tracks is significantly lower than deeper in the forest. However, during the study of the long-term impact of tourism on the environment (determined from tree increment dynamics), some methodological problems may occur. It is particularly important in protected areas where law and administrative regulations related to nature conservation force research to be conducted using small samples. In this paper we have analyzed the data collected in the Polish part of the Tatra National Park in the two study plots divided into two zones each: the area directly under the influence of the tourist's trampling and the control group. The aim of such analyses was to present the potential effects of the factors which may affect the results of dendrochronological analysis: (i) small size of samples that affects their representativeness, (ii) spatial differences in the rates of the process, as a result of spatial variability of environmental factors and (iii) temporal differences in the rates of the process. This study confirms that the factors mentioned above could significantly influence the results and should be taken into consideration during the analysis.

  19. Temporal Variation in Honey Production by the Stingless Bee Melipona subnitida (Hymenoptera: Apidae): Long-Term Management Reveals its Potential as a Commercial Species in Northeastern Brazil.

    Science.gov (United States)

    Koffler, Sheina; Menezes, Cristiano; Menezes, Paulo Roberto; Kleinert, Astrid de Matos Peixoto; Imperatriz-Fonseca, Vera Lucia; Pope, Nathaniel; Jaffé, Rodolfo

    2015-06-01

    Even though stingless beekeeping has a great potential as a sustainable development tool, the activity remains essentially informal, technical knowledge is scarce, and management practices lack the sophistication and standardization found in apiculture. Here, we contributed to the further development of stingless beekeeping by investigating the long-term impact of management and climate on honey production and colony survival in the stingless bee Melipona subnitida Ducke (1910). We analyzed a 10-yr record of 155 M. subnitida colonies kept by a commercial honey producer of northeastern Brazil. This constitutes the longest and most accurate record available for a stingless bee. We modeled honey production in relation to time (years), age, management practices (colony division and food supplementation), and climatic factors (temperature and precipitation), and used a model selection approach to identify which factors best explained honey production. We also modeled colony mortality in relation to climatic factors. Although the amount of honey produced by each colony decreased over time, we found that the probability of producing honey increased over the years. Colony divisions decreased honey production, but did not affect honey presence, while supplementary feeding positively affected honey production. In warmer years, the probability of producing honey decreased and the amount of honey produced was lower. In years with lower precipitation, fewer colonies produced honey. In contrast, colony mortality was not affected by climatic factors, and some colonies lived up to nine years, enduring extreme climatic conditions. Our findings provide useful guidelines to improve management and honey production in stingless bees.

  20. The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiation in the lateral amygdala.

    Science.gov (United States)

    Rodrigues, Sarina M; Bauer, Elizabeth P; Farb, Claudia R; Schafe, Glenn E; LeDoux, Joseph E

    2002-06-15

    The group I metabotropic glutamate receptor subtype mGluR5 has been shown to play a key role in the modulation of synaptic plasticity. The present experiments examined the function of mGluR5 in the circuitry underlying Pavlovian fear conditioning using neuroanatomical, electrophysiological, and behavioral techniques. First, we show using immunocytochemical and tract-tracing methods that mGluR5 is localized to dendritic shafts and spines in the lateral nucleus of the amygdala (LA) and is postsynaptic to auditory thalamic inputs. In electrophysiological experiments, we show that long-term potentiation at thalamic input synapses to the LA is impaired by bath application of a specific mGluR5 antagonist, 2-methyl-6-(phenyle-thynyl)-pyridine (MPEP), in vitro. Finally, we show that intra-amygdala administration of MPEP dose-dependently impairs the acquisition, but not expression or consolidation, of auditory and contextual fear conditioning. Collectively, the results of this study indicate that mGluR5 in the LA plays a crucial role in fear conditioning and in plasticity at synapses involved in fear conditioning.

  1. Ischemic-LTP in striatal spiny neurons of both direct and indirect pathway requires the activation of D1-like receptors and NO/soluble guanylate cyclase/cGMP transmission.

    Science.gov (United States)

    Arcangeli, Sara; Tozzi, Alessandro; Tantucci, Michela; Spaccatini, Cristiano; de Iure, Antonio; Costa, Cinzia; Di Filippo, Massimiliano; Picconi, Barbara; Giampà, Carmen; Fusco, Francesca Romana; Amoroso, Salvatore; Calabresi, Paolo

    2013-02-01

    Striatal medium-sized spiny neurons (MSNs) are highly vulnerable to ischemia. A brief ischemic insult, produced by oxygen and glucose deprivation (OGD), can induce ischemic long-term potentiation (i-LTP) of corticostriatal excitatory postsynaptic response. Since nitric oxide (NO) is involved in the pathophysiology of brain ischemia and the dopamine D1/D5-receptors (D1-like-R) are expressed in striatal NOS-positive interneurons, we hypothesized a relation between NOS-positive interneurons and striatal i-LTP, involving D1R activation and NO production. We investigated the mechanisms involved in i-LTP induced by OGD in corticostriatal slices and found that the D1-like-R antagonist SCH-23390 prevented i-LTP in all recorded MSNs. Immunofluorescence analysis confirmed the induction of i-LTP in both substance P-positive, (putative D1R-expressing) and adenosine A2A-receptor-positive (putative D2R-expressing) MSNs. Furthermore, i-LTP was dependent on a NOS/cGMP pathway since pharmacological blockade of NOS, guanylate-cyclase, or PKG prevented i-LTP. However, these compounds failed to prevent i-LTP in the presence of a NO donor or cGMP analog, respectively. Interestingly, the D1-like-R antagonism failed to prevent i-LTP when intracellular cGMP was pharmacologically increased. We propose that NO, produced by striatal NOS-positive interneurons via the stimulation of D1-like-R located on these cells, is critical for i-LTP induction in the entire population of MSNs involving a cGMP-dependent pathway.

  2. The effects of zinc on long-term potentiation in hippocampus and behavior of restraint-stressed rat%束缚应激时锌对大鼠行为及海马突触传递功能的影响

    Institute of Scientific and Technical Information of China (English)

    洪燕; 程义勇; 马强; 王冬兰; 李树田; 钱令嘉

    2001-01-01

    Objective To investigate the effects of zinc on long-term potentiation(LTP) in hippocampus and behavior of restraint rats.Methods A rat stress model was built by restrainting for 6h/d, 21d.The behavior changes were observed in open field test, the LTP was induced in rat hippocampal dentate gyrus(DG) by high-frequency test stimulation. Results Compared with control group, the content of glucocorticoids in plasma of the rats suffered from restraint stress was significiantly increased; the number of crossing in open-field test was significiantly increased; the changes of amplitude of population spike(PS) were significiantly larger, the induction rate of LTP lower. After zinc supplementation in stressed rats, the indices mentioned above were significiantly improved. Conclusion Opportune supplementation of zinc can alleviate stress-induced impairment of the brain function under stress.%目的在应激情况下,观察微量元素锌对大鼠行为及海马突触传递功能变化的影响。方法建立大鼠束缚应激模型,观察大鼠的旷场行为效应,用在体电生理法观察大鼠海马齿状回长时程增强效应。结果与对照组比较,接受应激的大鼠血浆糖皮质激素水平明显升高;在旷场实验中的穿行格数明显增加;LTP诱发率降低,幅度减小,而应激同时补充锌的大鼠未出现上述异常变化。结论在应激情况下摄入适量的锌可减轻应激损伤,改善脑功能,提示锌具有应激保护作用。

  3. Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1.

    Directory of Open Access Journals (Sweden)

    Carsten Zschenderlein

    Full Text Available The transient receptor potential vanilloid type 1 (TRPV1 channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA. Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1, AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms.

  4. IN VIVO EVALUATION OF SKIN IRRITATION POTENTIAL, MELASMA AND SEBUM CONTENT FOLLOWING LONG TERM APPLICATION OF SKIN CARE CREAM IN HEALTHY ADULTS, USING NON-INVASIVE BIOMETROLOGICAL TECHNIQUES.

    Science.gov (United States)

    Arshad, Atif I; Khan, Shoaib H M; Akhtar, Naveed; Mahmood, Asif; Sarfraz, Rai Muhammad

    2016-01-01

    The present investigation was conducted to evaluate non-invasively, various functional skin parameters i.e., irritation potential, melasma and sebum contents following long term application of topical cream (w/o) loaded with 2% methanolic extract of Ananas comosus L. versus placebo control (base) in healthy adults. Healthy human volunteers (n = 11, aged 20-30 years) were recruited for investigation and written informed consent was taken from each volunteer. In this single blinded study every volunteer applied formulation on one side of face and placebo on the other side of face twice daily for a period of 12 weeks (three months). Different skin parameters i.e., skin irritancy, melasma, and sebum contents were measured on both sides of face at baseline and after two weeks interval, using photometric device Mexameter and Sebumeter in a draught free room with modulated conditions of temperature (22-25°C) and humidity (55-60%). It was evident from the results that no primary skin irritancy was observed with patch test. Besides, statistical interpretation indicates that treatment with formulation is superior to placebo because it significantly (p ≤ 0.05) reduced the skin irritancy, melasma and sebum secretions throughout the study and reaching maximum -20.76 ± 0.89, -54.2 ± 0.37 and -40.71 ± 0.75%, respectively, at the end of study period. Antioxidant activity of extract was 92% compared to standard antioxidant. Conclusively, active cream loaded with fruit extract was well tolerated by all the volunteers and suitable to treat contact dermatitis, greasy skin, acne and seborrheic dermatitis and augmenting beauty and attraction by depigmentation of human skin. So, in the future, there is need to clinically evaluate these formulations in patients with compromised skin functions i.e., contact dermatitis, melasma, and acne vulgaris in order to explore the actual potential of this fruit.

  5. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site.

    Science.gov (United States)

    Pawlik, Małgorzata; Cania, Barbara; Thijs, Sofie; Vangronsveld, Jaco; Piotrowska-Seget, Zofia

    2017-07-06

    Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils.

  6. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats.

    Science.gov (United States)

    Zhang, Lifeng; Jin, Cuihong; Lu, Xiaobo; Yang, Jinghua; Wu, Shengwen; Liu, Qiufang; Chen, Rong; Bai, Chunyu; Zhang, Di; Zheng, Linlin; Du, Yanqiu; Cai, Yuan

    2014-09-02

    Epidemiological investigations have indicated that aluminium (Al) is an important environmental neurotoxicant that may be involved in the aetiology of the cognitive dysfunction associated with neurodegenerative diseases. Additionally, exposure to Al is known to cause neurobehavioural abnormalities in animals. Previous studies demonstrated that Al impaired early-phase long-term potentiation (E-LTP) in vivo and in vitro. Our previous research revealed that Al could impair long-term memory via the impairment of late-phase long-term potentiation (L-LTP) in vivo. However, the exact mechanism by which Al impairs long-term memory has been poorly studied thus far. This study was designed not only to observe the effects of subchronic Al treatment on long-term memory and hippocampal ultrastructure but also to explore a possible underlying mechanism (involving the cAMP-PKA-CREB signalling pathway) in the hippocampus of rats.. Pregnant Wistar rats were assigned to four groups. Neonatal rats were exposed to Al by parental lactation for 3 weeks and then fed with distilled water containing 0, 0.2%, 0.4% or 0.6% Al chloride (AlCl3) for 3 postnatal months. The levels of Al in the blood and hippocampus were quantified by atomic absorption spectrophotometry. The shuttle-box test was performed to detect long-term memory. The hippocampus was collected for ultrastructure observation, and the level of cAMP-PKA-CREB signalling was examined. The results showed that the Al concentrations in the blood and hippocampus of Al-treated rats were higher than those of the control rats. Al may impair the long-term memory of rats. Hippocampal cAMP, cPKA, pCREB, BDNF and c-jun expression decreased significantly, and the neuronal and synaptic ultrastructure exhibited pathological changes after Al treatment. These results indicated that Al may induce long-term memory damage in rats by inhibiting cAMP-PKA-CREB signalling and altering the synaptic and neuronal ultrastructure in the hippocampus. Copyright

  7. Investigating the potential for long-term permeable reactive barrier (PRB) monitoring from the electrical signatures associated with the reduction in reactive iron performance

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Lee D.; Korte, N.; Baker, J.

    2005-12-14

    The objective of this work was to conduct laboratory and field experiments to determine the sensitivity of low frequency electrical measurements (resistivity and induced polarization) to the processes of corrosion and precipitation that are believed to limit permeable reactive barrier (PRB) performance. The research was divided into four sets of experiments that were each written up and submitted to a peer-reviewed journal: [1] A laboratory experiment to define the controls of aqueous chemistry (electrolyte activity; pH; valence) and total zero valent iron (Fe0) available surface area on the electrical properties of Fe0 columns. [2] A laboratory experiment to determine the impact of corrosion and precipitation on the electrical response of synthetic Fe0 columns as a result of geochemical reactions with NaSO4 and NaCO3 electrolytes. [3] Laboratory experiments on a sequence of cores retrieved from the Kansas City PRB to determine the magnitude of electrical and geochemical changes within a field active PRB after eight years of operation [4] Field-scale cross borehole resistivity and induced polarization monitoring of the Kansas City PRB to evaluate the potential of electrical imaging as a technology for non-invasive, long-term monitoring of indicators of reduced PRB performance This report first summarizes the findings of the four major experiments conducted under this research. The reader is referred to the four papers in Appendices 1-4 for a full description of each experiment, including motivation and significance, technical details, findings and implications. The deliverables of the project, including the publications, conference papers and new collaborative arrangements that have resulted are then described. Appendices 5-6 contain two technical reports written by co-PI Korte describing (1) supporting geochemical measurements, and (2) the coring procedure, conducted at the Kansas City PRB as part of this project.

  8. Persistent increased PKMζ in long-term and remote spatial memory.

    Science.gov (United States)

    Hsieh, Changchi; Tsokas, Panayiotis; Serrano, Peter; Hernández, A Iván; Tian, Dezhi; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2017-02-01

    PKMζ is an autonomously active PKC isoform that is thought to maintain both LTP and long-term memory. Whereas persistent increases in PKMζ protein sustain the kinase's action in LTP, the molecular mechanism for the persistent action of PKMζ during long-term memory has not been characterized. PKMζ inhibitors disrupt spatial memory when introduced into the dorsal hippocampus from 1day to 1month after training. Therefore, if the mechanisms of PKMζ's persistent action in LTP maintenance and long-term memory were similar, persistent increases in PKMζ would last for the duration of the memory, far longer than most other learning-induced gene products. Here we find that spatial conditioning by aversive active place avoidance or appetitive radial arm maze induces PKMζ increases in dorsal hippocampus that persist from 1day to 1month, coinciding with the strength and duration of memory retention. Suppressing the increase by intrahippocampal injections of PKMζ-antisense oligodeoxynucleotides prevents the formation of long-term memory. Thus, similar to LTP maintenance, the persistent increase in the amount of autonomously active PKMζ sustains the kinase's action during long-term and remote spatial memory maintenance. Copyright © 2016. Published by Elsevier Inc.

  9. Long-term urethral catheterisation.

    Science.gov (United States)

    Turner, Bruce; Dickens, Nicola

    This article discusses long-term urethral catheterisation, focusing on the relevant anatomy and physiology, indications for the procedure, catheter selection and catheter care. It is important that nurses have a good working knowledge of long-term catheterisation as the need for this intervention will increase with the rise in chronic health conditions and the ageing population.

  10. Effects of long-term in vitro culturing of transgenic bovine donor fibroblasts on cell viability and in vitro developmental potential after nuclear transfer.

    Science.gov (United States)

    Bressan, F F; Miranda, M S; Bajgelman, M C; Perecin, F; Mesquita, L G; Fantinato-Neto, P; Merighe, G F K; Strauss, B E; Meirelles, F V

    2013-04-01

    with early or late-passage cells when fusion (63.1% and 49%), cleavage (67.7% and 69.9%), eight-cell embryo (36.4% and 44.4%) and blastocyst (21.6% and 20.8%) rates were compared. In conclusion, culture behavior was different between control and eGFP cells. However, when different in vitro culturing periods were compared, long-term cultured transgenic fetal fibroblasts remained competent for blastocyst production when used as nuclei donors in the nuclear transfer technique, a feature needed for the genetic manipulation of cell culture experiments aiming for transgenic animal production.

  11. Corneal kindled C57BL/6 mice exhibit saturated dentate gyrus long-term potentiation and associated memory deficits in the absence of overt neuron loss.

    Science.gov (United States)

    Remigio, Gregory J; Loewen, Jaycie L; Heuston, Sage; Helgeson, Colin; White, H Steve; Wilcox, Karen S; West, Peter J

    2017-09-01

    Memory deficits have a significant impact on the quality of life of patients with epilepsy and currently no effective treatments exist to mitigate this comorbidity. While these cognitive comorbidities can be associated with varying degrees of hippocampal cell death and hippocampal sclerosis, more subtle changes in hippocampal physiology independent of cell loss may underlie memory dysfunction in many epilepsy patients. Accordingly, animal models of epilepsy or epileptic processes exhibiting memory deficits in the absence of cell loss could facilitate novel therapy discovery. Mouse corneal kindling is a cost-effective and non-invasive model of focal to bilateral tonic-clonic seizures that may exhibit memory deficits in the absence of cell loss. Therefore, we tested the hypothesis that corneal kindled C57BL/6 mice exhibit spatial pattern processing and memory deficits in a task reliant on DG function and that these impairments would be concurrent with physiological remodeling of the DG as opposed to overt neuron loss. Following corneal kindling, C57BL/6 mice exhibited deficits in a DG-associated spatial memory test - the metric task. Compatible with this finding, we also discovered saturated, and subsequently impaired, LTP of excitatory synaptic transmission at the perforant path to DGC synapse. This saturation of LTP was consistent with evidence suggesting that perforant path to DGC synapses in kindled mice had previously experienced LTP-like changes to their synaptic weights: increased postsynaptic depolarizations in response to equivalent presynaptic input and significantly larger amplitude AMPA receptor mediated spontaneous EPSCs. Additionally, there was evidence for kindling-induced changes in the intrinsic excitability of DGCs: reduced threshold to population spikes under extracellular recording conditions and significantly increased membrane resistances observed in DGCs. Importantly, quantitative immunohistochemical analysis revealed hippocampal astrogliosis

  12. SPIN90 Modulates Long-Term Depression and Behavioral Flexibility in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Dae Hwan Kim

    2017-09-01

    Full Text Available The importance of actin-binding proteins (ABPs in the regulation of synapse morphology and plasticity has been well established. SH3 protein interacting with Nck, 90 kDa (SPIN90, an Nck-interacting protein highly expressed in synapses, is essential for actin remodeling and dendritic spine morphology. Synaptic targeting of SPIN90 to spine heads or dendritic shafts depends on its phosphorylation state, leading to blockage of cofilin-mediated actin depolymerization and spine shrinkage. However, the physiological role of SPIN90 in long-term plasticity, learning and memory are largely unknown. In this study, we demonstrate that Spin90-knockout (KO mice exhibit substantial deficits in synaptic plasticity and behavioral flexibility. We found that loss of SPIN90 disrupted dendritic spine density in CA1 neurons of the hippocampus and significantly impaired long-term depression (LTD, leaving basal synaptic transmission and long-term potentiation (LTP intact. These impairments were due in part to deficits in AMPA receptor endocytosis and its pre-requisites, GluA1 dephosphorylation and postsynaptic density (PSD 95 phosphorylation, but also by an intrinsic activation of Akt-GSK3β signaling as a result of Spin90-KO. In accordance with these defects, mice lacking SPIN90 were found to carry significant deficits in object-recognition and behavioral flexibility, while learning ability was largely unaffected. Collectively, these findings demonstrate a novel modulatory role for SPIN90 in hippocampal LTD and behavioral flexibility.

  13. Apolipoprotein E4 impairs in vivo hippocampal long-term synaptic plasticity by reducing the phosphorylation of CaMKIIα and CREB.

    Science.gov (United States)

    Qiao, Feng; Gao, Xiu-Ping; Yuan, Li; Cai, Hong-Yan; Qi, Jin-Shun

    2014-01-01

    Inheritance of the apolipoprotein E genotype ε4 (APOE4) is a powerful risk factor for most cases of late-onset Alzheimer's disease (AD). However, the effects of ApoE4 on the long-term synaptic plasticity and its underlying mechanism have not clearly investigated. In the present study, we examined the effects of ApoE4 on the hippocampal late-phase long-term potentiation (L-LTP) and investigated its probable molecular mechanisms by using in vivo field potential recording, immunohistochemistry, and western blotting. The results showed that: (1) intra-hippocampal injection of 0.2 μg ApoE4, but not ApoE2, before high frequency stimulations (HFSs) attenuated the induction of hippocampal L-LTP in the CA1 region, while injection of the same concentration of ApoE4 after HFSs, even at a higher concentration (2 μg), did not affect the long term synaptic plasticity; (2) ApoE4 injection did not affect the paired pulse facilitation in the hippocampal CA1 region; (3) ApoE4 injection before, not after, HFSs significantly decreased the levels of phosphorylated Ca2+/calmodulin-dependent protein kinase IIα (p-CaMKIIα) and phosphorylated cAMP response element-binding protein (p-CREB) in the hippocampus. These results demonstrated for the first time that ApoE4 could impair hippocampal L-LTP by reducing p-CaMKIIα and p-CREB, suggesting that the ApoE4-induced suppression of hippocampal long-term synaptic plasticity may contribute to the cognitive impairments in genetic AD; and both CaMKIIα and CREB are important intracellular targets of the neurotoxic ApoE4.

  14. The facilitating effect of systemic administration of Kv7/M channel blocker XE991 on LTP induction in the hippocampal CA1 area independent of muscarinic activation.

    Science.gov (United States)

    Song, Ming-Ke; Cui, Yong-Yao; Zhang, Wei-Wei; Zhu, Liang; Lu, Yang; Chen, Hong-Zhuan

    2009-09-11

    A large amount of in vitro studies demonstrate suppression of M-current in hippocampal neurons by Kv7/M channel blocker results in depolarization of membrane potential and release of neurotransmitters, such as acetylcholine and glutamate, suggesting that Kv7/M channel may play important roles in regulating synaptic plasticity. In the present study, we examined the in vivo effect of Kv7/M channel inhibition on the long-term potentiation (LTP) induction at basal dendrites in hippocampal CA1 area of urethane-anaesthetized rats. The Kv7/M channel was inhibited by intraperitoneal injection of XE991 (10mg/kg) and the LTP of field excitatory postsynaptic potential (fEPSP) was induced by supra-threshold high frequency stimulation (S1 HFS). A weak protocol which was just below the threshold for evoking LTP was used as sub-threshold high frequency stimulation (S2 HFS). XE991 did not significantly alter the slope of fEPSP and the magnitude of LTP induced by S1 HFS, suggesting that Kv7/M channel inhibition had little or no effect on glutamatergic transmission under basal conditions. However, XE991 could make S2 HFS evoke LTP even after the application of the muscarinic cholinergic (mACh) receptor antagonist scopolamine, suggesting that Kv7/M channel inhibition lowered the threshold for LTP induction and the effect was independent of muscarinic activation. Based on the above findings, we concluded that the facilitating effect of XE991 on LTP induction is not mediated by its ability to enhance the release of acetylcholine; therefore, Kv7/M channel blockers may provide a therapeutic benefit to cholinergic deficiency-related cognitive impairment, e.g., Alzheimer's disease.

  15. Effects of exogenous hydrogen sulfide on hippocampal long-term potentiation in rats with heroin dependence%外源性硫化氢对海洛因依赖大鼠海马长时程增强的影响

    Institute of Scientific and Technical Information of China (English)

    罗孝美; 陈远寿; 彭昌; 潘贵书; 田虹

    2013-01-01

    Objective:To observe the effects of exogenous hydrogen sulfide on learning and memory,hippocampal longterm potentiation in rats with heroin dependence.Methods:Sprague Dawley rats were randomly divided into three groups:control group,heroin group and heroin + NaHS group.Learning and memory ability was examined by step-down test.The change of the amplitude of population spike (PS) and long-term potentiation (LTP) induction were recorded in hippocampal CA1 area before and after high frequency stimulation (HFS).The damage of hippocampal neuron was observed by Nissl staining.Results:Compared with control group,learning and memory ability reduced (P < 0.05),the change of the amplitude of PS in hippocampal CA1 area was decreased (P < 0.01),the damage of hippocampal neuron was observed in heroin group and heroin + NaHS group.Compared with heroin group,learning and memory ability raised (P <0.05),the change of the amplitude of PS in hippocampal CA1 area was increased (P <0.01),the damage of hippocampal neurons was alleviated in heroin + NaHS group.Conclusions:(1) Heroin dependence resulted in the damage of hippocampal neurons,inhibited LTP induction in hippocampal CA1 area,and consequently reduced the ability of learning and memory in rats ; (2) Exogenous H2S reduced the damage of hippocampal neurons,facilitated LTP induction in hippocampus CA1 area,and improved learning and memory ability in heroin dependence rats.%目的:观察外源性H2S供体NaHS对海洛因依赖大鼠学习记忆能力及海马LTP的影响.方法:SD大鼠随机分成3组:正常对照组、heroin组、heroin+ NaHS组.先通过跳台实验检测大鼠学习记忆能力,然后记录高频刺激(HFS)前后在体海马CA1区群体峰电位(PS)变化,诱导长时程增强(LTP)的产生,最后通过Nissl染色观察海马神经元的损伤情况.结果:与对照组比较,heroin组和heroin+ NaHS组学习记忆成绩均降低(P<0.05),PS幅值变化率减小(P<0.01),且形态学观察可见海马

  16. Brazilian network for the surveillance of maternal potentially life threatening morbidity and maternal near-miss and a multidimensional evaluation of their long term consequences

    Directory of Open Access Journals (Sweden)

    Surita Fernanda G

    2009-09-01

    Full Text Available Abstract Background It has been suggested that the study of women who survive life-threatening complications related to pregnancy (maternal near-miss cases may represent a practical alternative to surveillance of maternal morbidity/mortality since the number of cases is higher and the woman herself is able to provide information on the difficulties she faced and the long-term repercussions of the event. These repercussions, which may include sexual dysfunction, postpartum depression and posttraumatic stress disorder, may persist for prolonged periods of time, affecting women's quality of life and resulting in adverse effects to them and their babies. Objective The aims of the present study are to create a nationwide network of scientific cooperation to carry out surveillance and estimate the frequency of maternal near-miss cases, to perform a multicenter investigation into the quality of care for women with severe complications of pregnancy, and to carry out a multidimensional evaluation of these women up to six months. Methods/Design This project has two components: a multicenter, cross-sectional study to be implemented in 27 referral obstetric units in different geographical regions of Brazil, and a concurrent cohort study of multidimensional analysis. Over 12 months, investigators will perform prospective surveillance to identify all maternal complications. The population of the cross-sectional component will consist of all women surviving potentially life-threatening conditions (severe maternal complications or life-threatening conditions (the maternal near miss criteria and maternal deaths according to the new WHO definition and criteria. Data analysis will be performed in case subgroups according to the moment of occurrence and determining cause. Frequencies of near-miss and other severe maternal morbidity and the association between organ dysfunction and maternal death will be estimated. A proportion of cases identified in the cross

  17. Brazilian network for the surveillance of maternal potentially life threatening morbidity and maternal near-miss and a multidimensional evaluation of their long term consequences.

    Science.gov (United States)

    Cecatti, Jose G; Souza, João P; Parpinelli, Mary A; Haddad, Samira M; Camargo, Rodrigo S; Pacagnella, Rodolfo C; Silveira, Carla; Zanardi, Dulce T; Costa, Maria L; Pinto e Silva, João L; Passini, Renato; Surita, Fernanda G; Sousa, Maria H; Calderon, Iracema M P; Say, Lale; Pattinson, Robert C

    2009-09-24

    It has been suggested that the study of women who survive life-threatening complications related to pregnancy (maternal near-miss cases) may represent a practical alternative to surveillance of maternal morbidity/mortality since the number of cases is higher and the woman herself is able to provide information on the difficulties she faced and the long-term repercussions of the event. These repercussions, which may include sexual dysfunction, postpartum depression and posttraumatic stress disorder, may persist for prolonged periods of time, affecting women's quality of life and resulting in adverse effects to them and their babies. The aims of the present study are to create a nationwide network of scientific cooperation to carry out surveillance and estimate the frequency of maternal near-miss cases, to perform a multicenter investigation into the quality of care for women with severe complications of pregnancy, and to carry out a multidimensional evaluation of these women up to six months. This project has two components: a multicenter, cross-sectional study to be implemented in 27 referral obstetric units in different geographical regions of Brazil, and a concurrent cohort study of multidimensional analysis. Over 12 months, investigators will perform prospective surveillance to identify all maternal complications. The population of the cross-sectional component will consist of all women surviving potentially life-threatening conditions (severe maternal complications) or life-threatening conditions (the maternal near miss criteria) and maternal deaths according to the new WHO definition and criteria. Data analysis will be performed in case subgroups according to the moment of occurrence and determining cause. Frequencies of near-miss and other severe maternal morbidity and the association between organ dysfunction and maternal death will be estimated. A proportion of cases identified in the cross-sectional study will comprise the cohort of women for the

  18. Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout ( Salmo trutta ) populations

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Ruzzante, D.E.; Eg Nielsen, Einar;

    2002-01-01

    (3 km) river showed Ne greater than or equal to 300. Assuming a stepping-stone model of gene flow we considered the relative roles of gene flow, random genetic drift and selection to assess the possibilities for local adaptation. The requirements for local adaptation were fulfilled, but only......We examined the long-term temporal (1910s to 1990s) genetic variation at eight microsatellite DNA loci in brown trout (Salmo trutta L) collected from five anadromous populations in Denmark to assess the long-term stability of genetic composition and to estimate effective population sizes (N......-e). Contemporary and historical samples consisted of tissue and archived scales, respectively. Pairwise Theta(ST) estimates, a hierarchical analysis of molecular variance (AMOVA) and multidimensional scaling analysis of pairwise genetic distances between samples revealed much closer genetic relationships among...

  19. The E3 Ligase APC/C-Cdh1 Is Required for Associative Fear Memory and Long-Term Potentiation in the Amygdala of Adult Mice

    Science.gov (United States)

    Pick, Joseph E.; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating…

  20. Autonomous CaMKII Mediates Both LTP and LTD Using a Mechanism for Differential Substrate Site Selection

    Directory of Open Access Journals (Sweden)

    Steven J. Coultrap

    2014-02-01

    Full Text Available Traditionally, hippocampal long-term potentiation (LTP of synaptic strength requires Ca2+/calmodulin (CaM-dependent protein kinase II (CaMKII and other kinases, whereas long-term depression (LTD requires phosphatases. Here, we found that LTD also requires CaMKII and its phospho-T286-induced “autonomous” (Ca2+-independent activity. However, whereas LTP is known to induce phosphorylation of the AMPA-type glutamate receptor (AMPAR subunit GluA1 at S831, LTD instead induced CaMKII-mediated phosphorylation at S567, a site known to reduce synaptic GluA1 localization. GluA1 S831 phosphorylation by “autonomous” CaMKII was further stimulated by Ca2+/CaM, as expected for traditional substrates. By contrast, GluA1 S567 represents a distinct substrate class that is unaffected by such stimulation. This differential regulation caused GluA1 S831 to be favored by LTP-type stimuli (strong but brief, whereas GluA1 S567 was favored by LTD-type stimuli (weak but prolonged. Thus, requirement of autonomous CaMKII in opposing forms of plasticity involves distinct substrate classes that are differentially regulated to enable stimulus-dependent substrate-site preference.

  1. Regulation of GABA(A and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Rangel

    Full Text Available BACKGROUND: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrP(sc of the natural cellular prion protein (PrP(c encoded by the Prnp gene. Although several roles have been attributed to PrP(c, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrP(c studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Here we explore the role of PrP(c expression in neurotransmission and neural excitability using wild-type, Prnp -/- and PrP(c-overexpressing mice (Tg20 strain. By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp -/- mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp -/- and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABA(A and AMPA-kainate receptors are co-regulated in both Prnp -/- and Tg20 mice. CONCLUSIONS/SIGNIFICANCE: Present results demonstrate that PrP(c is necessary for the

  2. [Fetal pain: immediate and long term consequences].

    Science.gov (United States)

    Houfflin Debarge, Véronique; Dutriez, Isabelle; Pusniak, Benoit; Delarue, Eléonore; Storme, Laurent

    2010-06-01

    Several situations are potentially painful for fetuses, such as malformations and invasive procedures. Nociceptive pathways are known to be functional at 26 weeks. Even if it is not possible to evaluate the fetal experience of pain, it is essential to examine its immediate and long-term consequences. As early as the beginning of the second trimester, hemodynamic and hormonal responses are observed following fetal nociceptive stimulation, In experimental studies, long-term changes have been noted in the corticotrop axis, subsequent responses to pain, and behavior after perinatal nociceptive stimulation.

  3. Projecting marine fish production and catch potential in Bangladesh in the 21st century under long-term environmental change and management scenarios

    OpenAIRE

    Jose A Fernandes; Kay, Susan; Hossain, Mostafa A.R.; Ahmed, Munir; William W L Cheung; Lazar, Attila; Barange, Manuel

    2016-01-01

    The fisheries sector is crucial to the Bangladeshi economy and wellbeing, accounting for 4.4% of national gross domestic product and 22.8% of agriculture sector production, and supplying ca. 60% of the national animal protein intake. Fish is vital to the 16 million Bangladeshis living near the coast, a number that has doubled since the 1980s. Here, we develop and apply tools to project the long-term productive capacity of Bangladesh marine fisheries under climate and fisheries management scen...

  4. Right-sided infective endocarditis as a potentially fatal complication in patients with long-term refractory severe bradyarrhythmia after cervical spinal cord injury: A case report

    Directory of Open Access Journals (Sweden)

    Naoki Miura

    2015-08-01

    Full Text Available Bradyarrhythmia is usually a spontaneously subsiding complication of cervical spinal cord injury. However, in severe cases, it can lead to cardiac arrest. We report a case of cervical spinal cord injury, complicated by right-sided infective endocarditis after the placement of a temporary pacing catheter in the right ventricle for severe bradyarrhythmia that led to cardiac arrest. Although the patient׳s condition was successfully treated by pacing catheter removal and pharmacological therapy, right-sided infective endocarditis would be a fatal complication in cases of cervical spinal cord injury where cardiac pacing is required for long-term refractory severe bradyarrhythmia.

  5. 脊髓运动神经元突触传递长时程增强的受体动力学分析%Receptor kinetics analyses of long-term potentiation of synaptic transmission in spinal cord motoneurons in vitro

    Institute of Scientific and Technical Information of China (English)

    罗浩; 秦雯; 张艳; 王邦安; 汪萌芽

    2014-01-01

    本文旨在观察下行通路激活在脊髓运动神经元(motoneuron,MN)诱发兴奋性突触后电位(excitatory postsynaptic potential,EPSP)的长时程增强现象(long-term potentiation,LTP)之受体动力学性质.应用8~14日龄新生大鼠离体脊髓MN细胞内记录技术,观察同侧腹外侧索(ipsilateral ventrolateral funiculus,iVLF)电刺激诱发的iVLF-EPSP的变化,进行EPSP受体动力学分析.结果显示,EPSP的幅度、曲线下面积和最大上升斜率与刺激强度呈正相关(P< 0.05或P< 0.01);而EPSP表观受体动力学分析的参数中表观解离速率常数K2和表观平衡解离常数KT与刺激强度呈负相关(P< 0.01或P<0.05).给予iVLF强直刺激(100 Hz,50脉冲/串,波宽0.4~1.0 ms,共6串,串间隔10s,10~100 V),在11个记录的MNs中有5个MNs的EPSP幅度增大到基础值的120%以上,且至少维持30 min,可以被判为iVLF-LTP,同时EPSP的曲线下面积和最大上升斜率也增大到基础值的120%以上.选择iVLF-LTP过程中的EPSP进行表观受体动力学分析,结果显示有3个MNs的K2和KT在强直刺激后10 min内减小到基础值的80%以下,后逐渐有所恢复.以上受体动力学分析结果提示,部分MNs的iVLF-LTP早期可能涉及突触后受体亲和力增强的机制.

  6. Potential for Local Fertilization: A Benthocosm Test of Long-Term and Short-Term Effects of Mussel Excretion on the Plankton.

    Science.gov (United States)

    Cherif, Mehdi; Granados, Monica; Duffy, Sean; Robert, Pauline; Péquin, Bérangère; Mohit, Vani; McKindsey, Christopher W; Archambault, Philippe; Myrand, Bruno; Lovejoy, Connie; Tremblay, Réjean; Plourde, Stéphane; Fussmann, Gregor F

    2016-01-01

    Mussel aquaculture has expanded worldwide and it is important to assess its impact on the water column and the planktonic food web to determine the sustainability of farming practices. Mussel farming may affect the planktonic food web indirectly by excreting bioavailable nutrients in the water column (a short-term effect) or by increasing nutrient effluxes from biodeposit-enriched sediments (a long-term effect). We tested both of these indirect effects in a lagoon by using plankton-enclosing benthocosms that were placed on the bottom of a shallow lagoon either inside of a mussel farm or at reference sites with no history of aquaculture. At each site, half of the benthocosms were enriched with seawater that had held mussels (excretion treatment), the other half received non-enriched seawater as a control treatment. We monitored nutrients ([PO43-] and [NH4+]), dissolved oxygen and plankton components (bacteria, the phytoplankton and the zooplankton) over 5 days. We found a significant relationship between long-term accumulation of mussel biodeposits in sediments, water-column nutrient concentrations and plankton growth. Effects of mussel excretion were not detected, too weak to be significant given the spatial and temporal variability observed in the lagoon. Effects of mussels on the water column are thus likely to be coupled to benthic processes in such semi-enclosed water bodies.

  7. Potential for Local Fertilization: A Benthocosm Test of Long-Term and Short-Term Effects of Mussel Excretion on the Plankton.

    Directory of Open Access Journals (Sweden)

    Mehdi Cherif

    Full Text Available Mussel aquaculture has expanded worldwide and it is important to assess its impact on the water column and the planktonic food web to determine the sustainability of farming practices. Mussel farming may affect the planktonic food web indirectly by excreting bioavailable nutrients in the water column (a short-term effect or by increasing nutrient effluxes from biodeposit-enriched sediments (a long-term effect. We tested both of these indirect effects in a lagoon by using plankton-enclosing benthocosms that were placed on the bottom of a shallow lagoon either inside of a mussel farm or at reference sites with no history of aquaculture. At each site, half of the benthocosms were enriched with seawater that had held mussels (excretion treatment, the other half received non-enriched seawater as a control treatment. We monitored nutrients ([PO43-] and [NH4+], dissolved oxygen and plankton components (bacteria, the phytoplankton and the zooplankton over 5 days. We found a significant relationship between long-term accumulation of mussel biodeposits in sediments, water-column nutrient concentrations and plankton growth. Effects of mussel excretion were not detected, too weak to be significant given the spatial and temporal variability observed in the lagoon. Effects of mussels on the water column are thus likely to be coupled to benthic processes in such semi-enclosed water bodies.

  8. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    Directory of Open Access Journals (Sweden)

    Peter Serrano

    2008-12-01

    Full Text Available How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta, an autonomously active atypical protein kinase C (PKC isoform critical for the maintenance of long-term potentiation (LTP. PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH and basolateral amygdala (BLA on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise

  9. Realizing the cognitive potential of children 5-7 with a mathematics focus: post-test and long-term effects of a 2-year intervention.

    Science.gov (United States)

    Shayer, Michael; Adhami, Mundher

    2010-09-01

    In the context of the British Government's policy directed on improving standards in schools, this paper presents research on the effects of a programme intended to promote the cognitive development of children in the first 2 years of primary school (Y1 & 2, aged 5-7 years). The programme is based on earlier work dealing with classroom-based interventions with older children at both primary and secondary levels of schooling. The hypothesis tested is that it is possible to increase the cognitive ability of children by assisting teachers towards that aim in the context of mathematics. A corollary hypothesis is that such an increase would result in an increase in long-term school achievement. The participants were 8 teachers in one local education authority (LEA) and 10 teachers in another. Data were analysed on 275 children present at Year 1 pre-test in 2002 and at long-term Key Stage 2 post-test in 2008. Two intervention methods were employed: a Y1 set of interactive activities designed around Piagetian concrete operational schemata, and mathematics lessons in both Y1 and Y2 designed from a theory-base derived from both Piaget and Vygotsky. At post-test in 2004, the mean effect sizes for cognitive development of the children - assessed by the Piagetian test Spatial Relations - were 0.71 SD in one LEA and 0.60 SD in the other. Five classes achieved a median increase of 1.3 SD. The mean gains over pre-test in 2002 for all children in Key Stage 1 English in 2004 were 0.51 SD, and at Key Stage 2 English in 2008 - the long-term effect - were 0.36 SD, an improvement of 14 percentile points. The main hypothesis was supported by the data on cognitive development. The corollary hypothesis is supported by the gains in English. The implications of this study are that relative intelligence can be increased and is not fixed, and that children can be led into collaborating with each other to the benefit of their own thinking, and that there does exist a theory-based methodology

  10. Potential long-term effects of a mind-body intervention for women with major depressive disorder: sustained mental health improvements with a pilot yoga intervention.

    Science.gov (United States)

    Kinser, Patricia Anne; Elswick, R K; Kornstein, Susan

    2014-12-01

    Despite pharmacologic and psychotherapeutic advances over the past decades, many individuals with major depressive disorder (MDD) experience recurrent depressive episodes and persistent depressive symptoms despite treatment with the usual care. Yoga is a mind-body therapeutic modality that has received attention in both the lay and research literature as a possible adjunctive therapy for depression. Although promising, recent findings about the positive mental health effects of yoga are limited because few studies have used standardized outcome measures and none of them have involved long-term follow-up beyond a few months after the intervention period. The goal of our research study was to evaluate the feasibility, acceptability, and effects of a yoga intervention for women with MDD using standardized outcome measures and a long follow-up period (1year after the intervention). The key finding is that previous yoga practice has long-term positive effects, as revealed in both qualitative reports of participants' experiences and in the quantitative data about depression and rumination scores over time. Although generalizability of the study findings is limited because of a very small sample size at the 1-year follow-up assessment, the trends in the data suggest that exposure to yoga may convey a sustained positive effect on depression, ruminations, stress, anxiety, and health-related quality of life. Whether an individual continues with yoga practice, simple exposure to a yoga intervention appears to provide sustained benefits to the individual. This is important because it is rare that any intervention, pharmacologic or non-pharmacologic, for depression conveys such sustained effects for individuals with MDD, particularly after the treatment is discontinued.

  11. Afferent-specific properties of interneuron synapses underlie selective long-term regulation of feedback inhibitory circuits in CA1 hippocampus.

    Science.gov (United States)

    Croce, Ariane; Pelletier, Joe Guillaume; Tartas, Maylis; Lacaille, Jean-Claude

    2010-06-15

    Hebbian long-term potentiation (LTP) develops at specific synapses onto hippocampal CA1 oriens/alveus interneurons (OA-INs), suggesting selective regulation of distinct input pathways. Afferent-specific properties at interneuron synapses have been characterized extensively in CA3 stratum lucidum cells, but given interneuron diversity these rules of transmission and plasticity may not hold in other interneuron types. Here, we used paired recordings and demonstrate that CA2/3 pyramidal cell (PC) feedforward and CA1 PC feedback synapses onto OA-INs show distinct AMPA receptor rectification and Ca(2+) permeability, short-term plasticity and mGluR2/3-mediated inhibition. Only feedback synapses undergo Hebbian LTP. OA-IN firing during repeated synaptic stimulation displays onset-transient or late-persistent responses consistent with activation of feedforward and feedback inputs, respectively. Input-output functions are preserved after theta-burst stimulation, but late-persistent responses selectively show mGluR1-dependent long-term increases. Thus, cell type- and afferent-specific rules of transmission and plasticity underlie distinct OA-IN input-output functions, providing selective long-term regulation in feedback inhibitory networks.

  12. Spike-timing-dependent potentiation of sensory surround in the somatosensory cortex is facilitated by deprivation-mediated disinhibition.

    Science.gov (United States)

    Gambino, Frédéric; Holtmaat, Anthony

    2012-08-09

    Functional maps in the cerebral cortex reorganize in response to changes in experience, but the synaptic underpinnings remain uncertain. Here, we demonstrate that layer (L) 2/3 pyramidal cell synapses in mouse barrel cortex can be potentiated upon pairing of whisker-evoked postsynaptic potentials (PSPs) with action potentials (APs). This spike-timing-dependent long-term potentiation (STD-LTP) was only effective for PSPs evoked by deflections of a whisker in the neuron's receptive field center, and not its surround. Trimming of all except two whiskers rapidly opened the possibility to drive STD-LTP by the spared surround whisker. This facilitated STD-LTP was associated with a strong decrease in the surrounding whisker-evoked inhibitory conductance and partially occluded picrotoxin-mediated LTP facilitation. Taken together, our data demonstrate that sensory deprivation-mediated disinhibition facilitates STD-LTP from the sensory surround, which may promote correlation- and experience-dependent expansion of receptive fields.

  13. Entorhinal theta-frequency input to the dentate gyrus trisynaptically evokes hippocampal CA1 LTP

    Directory of Open Access Journals (Sweden)

    Jens eStepan

    2012-09-01

    Full Text Available There exists substantial evidence that some forms of explicit learning in mammals require long-term potentiation (LTP at hippocampal CA3-CA1 synapses. While CA1 LTP has been well characterized at the monosynaptic level, it still remains unclear how the afferent systems to the hippocampus can initiate formation of this neuroplastic phenomenon. Using voltage-sensitive dye imaging in a mouse brain slice preparation, we show that evoked entorhinal cortical (EC theta-frequency input to the dentate gyrus highly effectively generates waves of neuronal activity which propagate through the entire trisynaptic circuit of the hippocampus (‘HTC-Waves’. This flow of activity, which we also demonstrate in vivo, critically depends on frequency facilitation of mossy fiber to CA3 synaptic transmission. The HTC-Waves are rapidly boosted by the cognitive enhancer caffeine (5 µM and the stress hormone corticosterone (100 nM. They precisely follow the rhythm of the EC input, involve high-frequency firing (>100 Hz of CA3 pyramidal neurons, and induce NMDA receptor-dependent CA1 LTP within a few seconds. Our study provides the first experimental evidence that synchronous theta-rhythmical spiking of EC stellate cells, as occurring during EC theta oscillations, has the capacity to drive induction of CA1 LTP via the hippocampal trisynaptic pathway. Moreover, we present data pointing to a basic filter mechanism of the hippocampus regarding EC inputs and describe a methodology to reveal alterations in the ‘input-output relationship’ of the hippocampal trisynaptic circuit.

  14. A long-term investigation of the anti-hepatocarcinogenic potential of an indigenous medicine comprised of Nigella sativa, Hemidesmus indicus and Smilax glabra

    Directory of Open Access Journals (Sweden)

    Iddamaldeniya SS

    2006-05-01

    Full Text Available Abstract Background A decoction comprised of Nigella sativa seeds, Hemidesmus indicus root bark and Smilax glabra rhizome is being recommended for cancer patients by a family of traditional medical practitioners of Sri Lanka. Previous investigations have demonstrated that a short term (10 weeks treatment with the decoction can significantly inhibit diethylnitrosamine (DEN mediated expression of Glutathione S-transferase P form (GST-P in rat liver. The objective of the present investigation was to determine whether long term (16 months treatment with the decoction would be successful in inhibiting in rat livers, not only DEN- mediated expression of GST-P, but also the carcinogen mediated development of overt tumours (OT or histopathological changes leading to tumour development (HT. Methods Thirty-six male Wistar rats were divided into 3 groups of 12 each. Groups 1 and 2 were injected intraperitoneally (i.p with DEN (200 mg/kg while group 3 was injected normal saline (NS. Twenty-four hours later, decoction (DC; 6 g/kg body weight/day was orally administered to group 1 rats, while groups 2 and 3 (DEN-control and normal control were given distilled water (DW. Treatment with DC or DW continued for 16 months. At the end of the 9th month and 16th months (study 1 and study 2 respectively, six rats from each group were sacrificed, and livers observed for OT or HT, both visually and by subjecting liver sections to staining with Haemotoxylin and Eosin (H & E, Sweet's Silver stain (for reticulin fibers, Periodic Acid Schiff (PAS staining (for glycogen, and immunohistochemical staining (for GST-P. Results At the end of 9 months (study 1 a hepatocellular adenoma (HA developed in one of the rats in the DEN + DW treated group (group 2. At the end of 16 months (study 2, livers of all rats of group 2 developed OT and HT. Large areas of GST-P positive foci were also observed. No OT, HT or GST-P positive foci were detected in any of the other groups. Conclusion

  15. Ischemic-LTP in striatal spiny neurons of both direct and indirect pathway requires the activation of D1-like receptors and NO/soluble guanylate cyclase/cGMP transmission

    OpenAIRE

    Arcangeli, Sara; Amoroso, Salvatore; Calabresi, Paolo; Costa, Cinzia; Fusco, Francesca Romana; Di Filippo, Massimiliano; Spaccatini, Cristiano; de Iure, Antonio; Picconi, Barbara; Giampa, Carmen; Tantucci, Michela; Tozzi, Alessandro

    2013-01-01

    Striatal medium-sized spiny neurons (MSNs) are highly vulnerable to ischemia. A brief ischemic insult, produced by oxygen and glucose deprivation (OGD), can induce ischemic long-term potentiation (i-LTP) of corticostriatal excitatory postsynaptic response. Since nitric oxide (NO) is involved in the pathophysiology of brain ischemia and the dopamine D1/D5-receptors (D1-like-R) are expressed in striatal NOS-positive interneurons, we hypothesized a relation between NOS-positive interneurons and ...

  16. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

    Directory of Open Access Journals (Sweden)

    Orjon Rroji

    Full Text Available Previous research suggests that anodal transcranial direct current stimulation (tDCS over the primary motor cortex (M1 modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements. Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP-like processes. Using a double-blind within-subject cross-over design, subjects (n=14 participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001 and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001. This effect was large (Cohen's d=1.01 and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

  17. Chronic nicotine treatment reverses hypothyroidism-induced impairment of L-LTP induction phase: critical role of CREB.

    Science.gov (United States)

    Alzoubi, K H; Alkadhi, K A

    2014-06-01

    We have previously shown that adult onset hypothyroidism impairs late-phase long-term potentiation (L-LTP) and reduces basal protein levels of cyclic-AMP response element binding protein (CREB), mutagen-activated protein kinase (MAPKp42/44), and calcium calmodulin kinase IV (CaMKIV) in area Cornu Ammonis 1 (CA1) of the hippocampus. These changes were reversed by chronic nicotine treatment. In the present study, levels of signaling molecules important for L-LTP were determined in CA1 area of the hippocampus during the induction phase. Standard multiple high-frequency stimulation (MHFS) was used to evoke L-LTP in the CA1 area of the hippocampus of hypothyroid, nicotine-treated hypothyroid, nicotine, and sham control anaesthetized adult rats. Chronic nicotine treatment reversed hypothyroidism-induced impairment of L-LTP at the induction phase. Five minutes after MHFS, Western blotting showed an increase in the levels of P-CREB, and P-MAPKp42/44 in sham-operated control, nicotine, and nicotine-treated hypothyroid animals, but not in hypothyroid animals. The protein levels of total CREB, total MAPK p42/44, BDNF, and CaMKIV were not altered in all groups 5 min after MHFS. Therefore, normalized phosphorylation of essential kinases such as P-CREB and P-MAPK p42/44 in the CA1 area of nicotine-treated hypothyroid animals plays a crucial role in nicotine-induced rescue of L-LTP induction during hypothyroidism.

  18. Analysing long term discursive processes

    DEFF Research Database (Denmark)

    Horsbøl, Anders

    What do timescales - the notion that processes take place or can be viewed within a shorter or longer temporal range (Lemke 2005) - mean for the analysis of discourse? What are the methodological consequences of analyzing discourse at different timescales? It may be argued that discourse analysis...... in general has favored either the analysis of short term processes such as interviews, discussions, and lessons, or the analysis of non-processual entities such as (multimodal) texts, arguments, discursive repertoires, and discourses (in a Foucaultian sense). In contrast, analysis of long term processes...... which extend beyond the single interaction, for instance negotiations or planning processes, seems to have played a less important role, with studies such as Iedema 2001 and Wodak 2000 as exceptions. These long term processes, however, are central to the constitution and workings of organizations...