WorldWideScience

Sample records for long-term corrosion evaluation

  1. Long-term corrosion studies

    International Nuclear Information System (INIS)

    Gdowski, G.

    1998-01-01

    The scope of this activity is to assess the long-term corrosion properties of metallic materials under consideration for fabricating waste package containers. Three classes of metals are to be assessed: corrosion resistant, intermediate corrosion resistant, and corrosion allowance. Corrosion properties to be evaluated are general, pitting and crevice corrosion, stress-corrosion cracking, and galvanic corrosion. The performance of these materials will be investigated under conditions that are considered relevant to the potential emplacement site. Testing in four aqueous solutions, and vapor phases above them, and at two temperatures are planned for this activity. (The environmental conditions, test metals, and matrix are described in detail in Section 3.0.) The purpose and objective of this activity is to obtain the kinetic and mechanistic information on degradation of metallic alloys currently being considered for waste package containers. This information will be used to provide assistance to (1) waste package design (metal barrier selection) (E-20-90 to E-20-92), (2) waste package performance assessment activities (SIP-PA-2), (3) model development (E-20-75 to E-20-89). and (4) repository license application

  2. Long term corrosion of iron at the water logged site Nydam in Denmark

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hilbert, Lisbeth Rischel; Gregory, David

    2005-01-01

    Long term corrosion of iron at the water logged site Nydam in Denmark; studies of enviroment, archaeological artefacts, and modern analogues, Prediction of long term corrosion behaviour in nuclear waste systems.......Long term corrosion of iron at the water logged site Nydam in Denmark; studies of enviroment, archaeological artefacts, and modern analogues, Prediction of long term corrosion behaviour in nuclear waste systems....

  3. Long-term atmospheric corrosion of mild steel

    International Nuclear Information System (INIS)

    Fuente, D. de la; Diaz, I.; Simancas, J.; Chico, B.; Morcillo, M.

    2011-01-01

    Research highlights: → Atmospheric corrosion rate stabilises after the first 4-6 years of exposure. → Great compaction of the rust layers in rural and urban atmospheres. → Corrosion (in rural and urban) deviates from common behaviour of bilogarithmic law. → Typical structures of lepidocrocite, goethite and akaganeite are identified. → Formation of hematite (industrial atmosphere) and ferrihydrite (marine atmosphere). - Abstract: A great deal of information is available on the atmospheric corrosion of mild steel in the short, mid and even long term, but studies of the structure and morphology of corrosion layers are less abundant and generally deal with those formed in just a few years. The present study assesses the structure and morphology of corrosion product layers formed on mild steel after 13 years of exposure in five Spanish atmospheres of different types: rural, urban, industrial and marine (mild and severe). The corrosion layers have been characterised by X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Long-term corrosion is seen to be more severe in the industrial and marine atmospheres, and less so in the rural and urban atmospheres. In all cases the corrosion rate is seen to decrease with exposure time, stabilising after the first 4-6 years of exposure. The most relevant aspects to be noted are (a) the great compaction of the rust layers formed in the rural and urban atmospheres, (b) the formation of hematite and ferrihydrite phases (not commonly found) in the industrial and marine atmospheres, respectively and (c) identification of the typical morphological structures of lepidocrocite (sandy crystals and flowery plates), goethite (cotton balls structures) and akaganeite (cotton balls structures and cigar-shaped crystals).

  4. Long Term Corrosion/Degradation Test Six Year Results

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  5. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    International Nuclear Information System (INIS)

    Ewing, Rodney C.

    2003-01-01

    This research program is a broadly based effort to understand the long-term behavior of spent nuclear fuel (SNF) and its alteration products in a geologic repository. We have established by experiments and field studies that natural uraninite, UO2+x, and its alteration products are excellent ''natural analogues'' for the study of the corrosion of UO2 in SNF. This on-going research program has addressed the following major issues: (1) What are the long-term corrosion products of natural UO2+x, uraninite, under oxidizing and reducing conditions? (2) What is the paragenesis or the reaction path for the phases that form during alteration? (3) What is the radionuclide content in the corrosion products as compared with the original UO2+x? Do the trace element contents substantiate models developed to predict radionuclide incorporation into the secondary phases? Are the corrosion products accurately predicted from geochemical codes (e.g., EQ3/6 or Geochemist's Workbench) that are used in performance assessments? Can these codes be tested by studies of natural analogue sites (e.g., Oklo, Cigar Lake or Pena Blanca)

  6. Complete long-term corrosion protection with chemical vapor deposited graphene

    DEFF Research Database (Denmark)

    Yu, Feng; Camilli, Luca; Wang, Ting

    2018-01-01

    Despite numerous reports regarding the potential of graphene for corrosion protection, examples of chemical vapor deposited (CVD) graphene-based anticorrosive coatings able to provide long-term protection (i.e. several months) of metals have so far been absent. Here, we present a polymer-graphene......Despite numerous reports regarding the potential of graphene for corrosion protection, examples of chemical vapor deposited (CVD) graphene-based anticorrosive coatings able to provide long-term protection (i.e. several months) of metals have so far been absent. Here, we present a polymer......-graphene hybrid coating, comprising two single layers of CVD graphene sandwiched by three layers of polyvinyl butyral, which provides complete corrosion protection of commercial aluminum alloys even after 120 days of exposure to simulated seawater. The essential role played by graphene in the hybrid coating...

  7. Mineralogical issues in long-term corrosion of iron and iron-nickel alloys

    International Nuclear Information System (INIS)

    VanOrden, A.C.; McNeil, M.B.

    1988-01-01

    Prediction of very long term corrosion behavior of buried objects in general requires taking into account that the corrosion processes themselves after the local conditions. Recent work has analyzed corrosion processes in terms of trajectories on Pourbaix diagrams and appears to offer the prospect for using short-term corrosion tests to project corrosion behavior over very long periods. Two different classes of materials are considered here: essentially pure iron, which is an analogue to the carbon steel design overpacks for the salt and basalt sites (on which work has been suspended at present, and iron-nickel alloys, which are the best analogues available for some of the alloys being considered on the tuff site. There are a number of sources of data on corrosion of iron over archaeological times; the data used in this paper are from the recent National Bureau of Standards work on Roman iron nails for Inchtuthill in Scotland, which can be dated fairly precisely to about 70 A.D. and whose method of production is understood. The only available source of natural-analogue data on Fe-Ni alloys is the corrosion of meteorites

  8. Corrosion behaviour of metallic containers during long term interim storages

    International Nuclear Information System (INIS)

    Desgranges, C.; Feron, D.; Mazaudier, F.; Terlain, A.

    2001-01-01

    Two main corrosion phenomena are encountered in long term interim storage conditions: dry oxidation by the air when the temperature of high level nuclear wastes containers is high enough (roughly higher than 100 C) and corrosion phenomena as those encountered in outdoor atmospheric corrosion when the temperature of the container wall is low enough and so condensation is possible on the container walls. Results obtained with dry oxidation in air lead to predict small damages (less than 1μm on steels over 100 years at 100 C) and no drastic changes with pollutants. For atmospheric corrosion, first developments deal with a pragmatic method that gives assessments of the indoor atmospheric corrosivities. (author)

  9. The composition effect on the long-term corrosion of high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P. [Pacific Northwest National Laboratory, Richland, Washington (United States)

    1997-07-01

    Waste glass can be optimized for long-term corrosion behavior if the key parameters that control the rate of corrosion are identified, measured, and modeled as functions of glass composition. Second-order polynomial models have been used to optimize glass with respect to a set of requirements on glass properties, such as viscosity and outcomes of standard corrosion tests. Extensive databases exist for the 7-day Product Consistency Test and the 28-day Materials Characterization Center tests, which have been used for nuclear waste glasses in the United States. Models based on these tests are reviewed and discussed to demonstrate the compositional effects on the extent of corrosion under specified conditions. However, modeling the rate of corrosion is potentially more useful for predicting long-term behavior than modeling the extent of corrosion measured by standard tests. Based on an experimental study of two glasses, it is shown that the rate of corrosion can be characterized by simple functions with physically meaningful coefficients. (author)

  10. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

    Science.gov (United States)

    Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong

    2017-09-01

    Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.

  11. Long-term corrosion behavior of ODS-Eurofer in flowing Pb-15.7Li at 550°C

    Directory of Open Access Journals (Sweden)

    W. Krauss

    2016-12-01

    In this paper results from long-term corrosion testing of ODS-Eurofer will be reported for exposure times up to 1.5 years at a flow velocity of 0.1m/s. The evaluated data for ODS-Eurofer corrosion will be compared with values of ‘single’ phase ’classical‘ Eurofer. The observed corrosion attack and mechanisms will be discussed in detail considering the testing conditions and the microstructure of the RAFM-steels.

  12. The long-term acceleration of waste glass corrosion: A preliminary review

    International Nuclear Information System (INIS)

    Kielpinski, A.L.

    1995-07-01

    Whereas a prior conception of glass dissolution assumed a relatively rapid initial dissolution which then slowed to a smaller, fairly constant longer-term rate, some recent work suggests that these two stages are followed by a third phase of dissolution, in which the dissolution rate is accelerated with respect to what had previously been thought of as the final long-term rate. The goals of the present study are to compile experimental data which may have a bearing on this phenomena, and to provide an initial assessment of these data. The Savannah River Technology Center (SRTC) is contracted to develop glass formulation models for vitrification of Hanford low-level waste (LLW), in support of the Hanford Tank Waste Remediation System Technology Development Program. The phenomenon of an increase in corrosion rate, following a period characterized by a low corrosion rate, has been observed by a number of researchers on a number of waste glass compositions. Despite inherent ambiguities arising from SA/V (glass surface area to solution volume ratio) and other effects, valid comparisons can be made in which accelerated corrosion was observed in one test, but not in another. Some glass compositions do not appear to attain a plateau region; it may be that the observation of continued, non-negligible corrosion in these glasses represents a passage from the initial rate to the accelerated rate. The long-term corrosion is a function of the interaction between the glass and its environment, including the leaching solution and the surrounding materials. Reaction path modeling and stability field considerations have been used with some success to predict the changes in corrosion rate over time, due to these interactions. The accelerated corrosion phenomenon highlights the need for such integrated corrosion modeling and the scenario-specific nature of a particular glass composition's durability

  13. Long-term prediction of corrosion damage in nuclear waste systems

    International Nuclear Information System (INIS)

    Hidekazu Asano; Feron, Damien; Gens, Robert; Padovani, Cristiano; Naoki Taniguchi

    2014-01-01

    Complete text of publication follows: The Fifth International Workshop on Long-Term Prediction of Corrosion Damage in Nuclear Waste Systems was held at the Taisetsu Crystal Hall in Asahikawa, Hokkaido, Japan from October 6 to 10, 2013, following the four previous successful workshops (Cadarache, France, 2001; Nice, France, 2004; Pennsylvania State University, USA, 2007 and Bruges, Belgium, 2010). It was organised by the Japan Society of Corrosion Engineering (JSCE) and supported by the European Federation of Corrosion (EFC): Nuclear Corrosion Working Party (WP4) as of EFC event No.360. Furthermore, it was supported by the Division of Nuclear Fuel Cycle and Environment (NUCE) of the Atomic Energy Society of Japan (AESJ) and The Japan Society of Mechanical Engineers (JSME). Twenty nine (29) oral presentations were distributed among eleven (11) sessions covering a broad range of subjects. Another twenty eight (28) studies were presented at a poster session. A total of sixty seven (67) participants from twelve (12) countries attended the event. The presentations and the following discussion provided contextual information about the state of some national programmes and covered in detail a range of experimental and modelling studies aimed at evaluating the corrosion behaviour of a range of candidate materials and designs for the storage and disposal of radioactive wastes considered across the globe. These included modelling studies aimed at evaluating the durability of container designs for high level waste (HLW), spent nuclear fuel (SNF) and intermediate level waste (ILW), experimental studies of the corrosion behaviour of copper, carbon steel, and stainless steel in conditions relevant to storage (atmospheric) or disposal (near neutral or alkaline), as well as studies of archaeological artifacts and natural analogues aimed at supporting long-term predictions. Specific sessions were dedicated to microbial induced corrosion (MIC) and to the corrosion properties of

  14. Effect of radiolysis on long-term corrosion system formed on low-alloy steels

    International Nuclear Information System (INIS)

    Badet, H.

    2013-01-01

    In France, for nuclear waste management, it is planned to build a storage device with a barrier system composed of steel container. Corrosion is evaluated for the safety of anoxic storage over the long term. With radiation, water radiolysis generates oxidizing and reducing species that can change the corrosion. Three aspects are developed in this thesis. The first concerns iron coupon samples experimented in carbonate deaerated water and subjected to gamma irradiation. It is shown that irradiation can increase corrosion rates within the parameters of dose. Identified crystalline phases are little changed with irradiation. Solution chemistry shows a decrease in pH with dose related to iron. Organic species are identified. The second axis is archaeological analogues irradiation with an old corrosion products layer. Structural analysis verified the phase stability with radiolysis, only the newly formed products changes. The third axis is a kinetic simulation approach. It checks the pH drop under irradiation. Taken together, these results allow us to provide new data for the anoxic corrosion under irradiation. (author) [fr

  15. Long-term corrosion/oxidation studies under controlled humidity conditions

    International Nuclear Information System (INIS)

    Gdowski, G.

    1997-01-01

    Independent of thermal loading scenarios, the waste packages at the potential repository at Yucca Mountain, Nevada will be exposed to environmental conditions where there is the possibility of significant water film formation occurring on the waste packages. Water films can cause aggressive aqueous film electrochemical corrosion on susceptible metals or alloys. Water film formation will be facilitated when relative humidities are high, when hygroscopic salts are present on the surfaces, when corrosion products are hygroscopic, and when particles form crevices with the surfaces (capillary effect). Also certain gaseous contaminants, such as, NO x and SO 2 , can facilitate water film formation. It should be noted that water film formation can occur at isolated spots (e.g. surface defects and salt particles) and need not cover the entire surface for electrochemical corrosion to occur. This activity will characterize the long term corrosion of metal specimens at two nominal relative humidities (50 and 85%) and at 80 C. Under the low relative humidity (50%) condition, water film formation is expected to be limited and therefore aqueous film electrochemical corrosion is expected also to be limited. Under the high relative humidity (85%) condition, significant water film formation is expected to occur under some test conditions, and subsequently aqueous film electrochemical corrosion will occur on susceptible materials

  16. Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts

    International Nuclear Information System (INIS)

    Park, Sang Soon; Lee, Min Woo

    2014-01-01

    Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were investigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition

  17. Long-term progress prediction for the carbon steel corrosion in diluted artificial seawater with and without zinc / sodium carbonate mixed phosphate

    International Nuclear Information System (INIS)

    Fujii, Kazumi; Ishioka, Shinichi; Iwanami, Masaru; Kaneko, Tetsuji; Tanaka, Norihiko; Kawaharada, Yoshiyuki; Yokoyama, Yutaka; Umehara, Ryuji; Kato, Chiaki; Ueno, Fumiyoshi; Fukaya, Yuichi; Kumaga, Katsuhiko

    2017-01-01

    The Fukushima Daiichi Nuclear Power Plants (1F) were damaged by an unprecedented severe accident in the great east Japan earthquake on 11th, March, 2011, and seawater and fresh water were injected as an emergency countermeasure for the core cooling. The primary containment vessels (PCVs), made of carbon steel, were exposed to seawater and fresh water, and have had the possibility of corrosion. The PCVs of 1F are the most important equipment for the core cooling and removal of the fuel debris, the structural integrity of the PCV must be maintained until decommissioning. Therefore, evaluation of PCV carbon steel corrosion behavior is important, as well as evaluation of corrosion inhibitors as one of the corrosion protection methods. In this study, long-term immersion corrosion tests for up to 10000 hours were performed in diluted artificial seawater simulating 1F with and without zinc / sodium carbonate mixed phosphate. Based on the long-term immersion corrosion test results, diagnosis method of the reduction in plate thickness of the nuclear vessel was examined. The validity of the existing corrosion progress models following parabolic rate law was confirmed. The corrosion progress models were also applicable to the corrosion inhibited condition adding zinc / sodium carbonate mixed phosphate. It was found that the corrosion rate of carbon steel drastically fell down by adding this corrosion inhibitor. (author)

  18. Investigation of the long term stability and corrosion resistance of engineering barriers

    International Nuclear Information System (INIS)

    Aoyama, Eri; Tachikawa, Hirokazu; Shimizu, Akihiko

    2005-03-01

    The Japan Nuclear Cycle Development Institute submitted 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' to the Japanese government. This report contains investigations of the long term behavior of alteration of bentonite, and of the corrosion life time of overpack on the basis of experimental data and past research, assuming the ranging geological environment of Japan. However some subjects, such as the behavior of the bentonite and overpack under high pH conditions and the behavior of the engineering barrier with change of near-field environmental condition with time for promoting reliability have still been left. To take into account these conditions, expert committees composed of clay science and metal corrosion science experts were established in the Nuclear Safety Research Association and past research outcomes and the theory of safety assessment were investigated from the view points of long term stability and corrosion resistance of engineering barrier. (author)

  19. Long-term corrosion behaviors of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments

    International Nuclear Information System (INIS)

    Ouyang, Fan-Yi; Chang, Chi-Hung; Kai, Ji-Jung

    2014-01-01

    Highlights: •Corrosion behaviors of Hastelloy-N and -B3 in molten FLiNaK salt at 700 °C. •The alleviated corrosion rate of alloys was observed after long-hour immersion. •Long-term corrosion rate was limited by diffusion from matrix to alloy surface. •Corrosion pattern transferred from intergranular corrosion into general corrosion. •Presence of minor H 2 O did not greatly influence the long-term corrosion behavior. -- Abstract: This study investigated long-term corrosion behaviors of Ni-based Hastelloy-N and Hastelloy-B3 under moisture-containing molten alkali fluoride salt (LiF–NaF–KF: 46.5–11.5–42%) environment at an ambient temperature of 700 °C. The Hastelloy-N and Hastelloy-B3 experienced similar weight losses for tested duration of 100–1000 h, which was caused by aggregate dissolution of Cr and Mo into FLiNaK salts. The corrosion rate of both alloys was high initially, but then reduced during the course of the test. The alleviated corrosion rate was due to the depletion of Cr and Mo near surface of the alloys and thus the long-term corrosion rate was controlled by diffusion of Cr and Mo outward to the alloy surface. The results of microstructural characterization revealed that the corrosion pattern for both alloys tended to be intergranular corrosion at early stage of corrosion test, and then transferred to general corrosion for longer immersion hours

  20. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications

    International Nuclear Information System (INIS)

    Gu, Yanhong; Bandopadhyay, Sukumar; Chen, Cheng-fu; Ning, Chengyun; Guo, Yuanjun

    2013-01-01

    Highlights: ► The corrosion behavior is significantly affected by the long-term immersion. ► The degradation is inhibited due to the corrosion product layer. ► The corrosion resistance is enhanced by optimized MAO electrolyte concentrations. ► The corrosion inhibition mechanism is presented by a Flash animation. - Abstract: This paper addresses the long-term corrosion behavior of microarc oxidation coated Mg alloys immersed in simulated body fluid for 28 days. The coatings on AZ31 Mg alloys were produced in the electrolyte of sodium phosphate (Na 3 PO 4 ) at the concentration of 20 g/L, 30 g/L and 40 g/L, respectively. Scanning electron microscope (SEM) and optical micrograph were used to observe the microstructure of the samples before and after corrosion. The composition of the MAO coating and corrosion products were determined by X-Ray Diffraction (XRD). Corrosion product identification showed that hydroxyapatite (HA) was formed on the surface of the corroded samples. The ratio of Ca/P in HA determined by the X-ray Fluorescence (XRF) technique showed that HA is an acceptable biocompatible implant material. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were employed to characterize the corrosion rate and the electrochemical impedance. The corrosion resistance of the coated Mg alloys can be enhanced by optimizing the electrolyte concentrations for fabricating samples, and is enhanced after immersing the coated samples in simulated body fluid for more than 14 days. The enhanced corrosion resistance after long-term immersion is attributed to a corrosion product layer formed on the sample surface. The inhibition mechanism of the corrosion process is discussed and presented with an animation

  1. Evaluation of long-term mechanical stability of near field

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Sugino, Hiroyuki; Okutsu, Kazuo; Miura, Kazuhiko; Tabei, Kazuto; Noda, Masaru; Takahashi, Shinichi; Sugie, Shigehiko

    1999-11-01

    In the near field, as tunnels and pits are excavated, a redistribution of stresses in the surrounding rock will occur. For a long period of time after the emplacement of waste packages various events will take place, such as the swelling of the buffer, sinking of the overpack under its own weight, deformation arising from expansion of overpack corrosion products and the creep deformation of the rock mass. The evaluation of what effects these changes in the stress-state will have on the buffer and rock mass is a major issue from the viewpoint of safety assessment. Therefore, rock creep analysis, overpack corrosion expansion analysis and overpack sinking analysis have been made in order to examine the long-term mechanical stability of the near field and the interaction of various events that may affect the stability of the near field over a long period of time. As the results, rock creep behavior, the variations of the stress-state and the range of the influence zone differ from the rock strength, strength of buffer in the tunnel and side pressure coefficient etc. about the hard rock system and soft rock system established as basic cases. And the magnitude of the stress variations for buffer by the overpack sinking and rock creep deformation is negligible compared with it by the overpack corrosion expansion. Furthermore, though very limited zone of buffer around the overpack is close to the critical state by the overpack corrosion expansion, the engineered barrier system attains a comparatively stable state for a long period of time. (author)

  2. Integrated Corrosion Facility for long-term testing of candidate materials for high-level radioactive waste containment

    International Nuclear Information System (INIS)

    Estill, J.C.; Dalder, E.N.C.; Gdowski, G.E.; McCright, R.D.

    1994-10-01

    A long-term-testing facility, the Integrated Corrosion Facility (I.C.F.), is being developed to investigate the corrosion behavior of candidate construction materials for high-level-radioactive waste packages for the potential repository at Yucca Mountain, Nevada. Corrosion phenomena will be characterized in environments considered possible under various scenarios of water contact with the waste packages. The testing of the materials will be conducted both in the liquid and high humidity vapor phases at 60 and 90 degrees C. Three classes of materials with different degrees of corrosion resistance will be investigated in order to encompass the various design configurations of waste packages. The facility is expected to be in operation for a minimum of five years, and operation could be extended to longer times if warranted. A sufficient number of specimens will be emplaced in the test environments so that some can be removed and characterized periodically. The corrosion phenomena to be characterized are general, localized, galvanic, and stress corrosion cracking. The long-term data obtained from this study will be used in corrosion mechanism modeling, performance assessment, and waste package design. Three classes of materials are under consideration. The corrosion resistant materials are high-nickel alloys and titanium alloys; the corrosion allowance materials are low-alloy and carbon steels; and the intermediate corrosion resistant materials are copper-nickel alloys

  3. Investigation and technical reviews of the long term stability and corrosion resistance of engineering barriers

    International Nuclear Information System (INIS)

    Tachikawa, Hirokazu

    2004-03-01

    The Japan Nuclear Fuel Cycle Development Institute submitted 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' to the Japanese government. This report contains investigations of the long term behavior of alteration of bentonite, and of the corrosion life time of overpack on the basis of experimental data and past research, assuming the ranging geological environment of Japan. However some subjects, such as the behavior of the bentonite and overpack under high pH conditions and the behavior of the engineering barrier with change of near-field environmental condition with time for promoting reliability have still been left. To take into account these conditions, expert committees composed of clay science and metal corrosion science experts were established in the Nuclear Safety Research Association and past research outcomes and the theory of safety assessment were investigated and technically reviewed from the view points of long term stability and corrosion resistance of engineering buffer materials. (author)

  4. Long-term corrosion behaviour of low-/medium-level waste packages

    International Nuclear Information System (INIS)

    Jendras, M.; Bach, F.W.; Behrens, S.; Birr, Ch.; Hassel, Th.

    2009-01-01

    Full text of publication follows: Storage of low- and medium-level radioactive waste requires safe packages. This means that all materials used for the manufacturing of such packages have to show a sufficient resistance especially against corrosive attacks. Since these packages are generally made from carbon steel an additional coating for corrosion protection - mainly solvent-based polymers - is necessary. However, it is not enough to consider the selection and combination of the materials. Regarding the construction and manufacturing of corrosion-resistant drums for low- and medium-level radioactive waste there also has to be paid closer attention to the joining technologies such as welding. For lifetime prediction of low-/medium-level waste packages reliable experimental data concerning the long-term corrosion behaviour of each material as well as of the components is needed. Therefore sheet metals from carbon steel were galvanized or coated with different solvent-based and water-based corrosion protection materials (epoxy as well as silicone resins). After damaging the anti-corrosion coating of some of these sheets with predefined scratches sets of these samples were stored at higher temperatures in climatic chamber, in simulated waste or aged according to standard DIN EN ISO 9227. All corrosion damages were analyzed by means of metallography (light microscopy as well as scanning electron microscopy of micro-sections). The quantitative influence of the corrosive attacks on the mechanical properties of the materials was examined by mechanical testing according to DIN EN 10002. Besides reduction of tensile strength drastic reduction of percentage of elongation after fracture (from 30 % to 10 %) was found. Further experiments were carried out using components or scaled-down drums joined by means of innovative welding techniques such as Cold Arc or Force Arc. The relevant welding parameters (e.g. welding current, proper volume of shielding gas or wire feed) were

  5. Synthesis of published and unpublished corrosion data from long term tests of fasteners embedded in wood : calculation of corrosion rates and the effect of corrosion on lateral joint strength

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2011-01-01

    In the past 5 years, several accelerated test methods have been developed to measure the corrosion of metals in contact with wood. It is desirable to contrast these accelerated results against those of long term exposure tests. While there have been several published long-term exposure tests performed on metals in treated wood, the data from these studies could not be...

  6. Assessment of risk associated with long-term corrosion of alloy 22 and Ti-7 in the potential yucca mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Ahn, T.M.; Pensado, O.; Dunn, D.

    2004-01-01

    Full text of publication follows: The potential high-level nuclear waste (HLW) repository at Yucca Mountain (YM) may rely on the robustness of the outer container of the waste package (WP) as one of many barriers for waste isolation. The container is proposed to be constructed of Alloy 22, a Ni-Cr-Mo alloy known to be resistant to localized corrosion and stress corrosion cracking. Additionally, drip shields (DS) will be emplaced above the WP to minimize the groundwater contact, in the form of seepage, with the WP. The candidate alloy to construct the drip shields is a titanium based alloy (Ti-7) with some small amounts of Pd and is also known for resistance to localized corrosion. To enhance confidence of long-term WP and DS lifetimes, it is necessary to assess the conditions under which loss of passivity or localized degradation processes could occur. The accelerated degradation processes may include uniform passivity breakdown, localized corrosion, and stress corrosion cracking. This paper evaluates how such processes may occur under the long-term YM repository conditions. In the uniform passivity breakdown, three potential concerns are evaluated. The first is anodic sulphur segregation at the interface between the passive film and the bare metal. This paper models the cyclic behavior of free transient fast dissolution (induced by sulfur segregation) and re-passivation. The second is the potential accumulation of corrosion products on the WP surface, which may act as cathode of large surface area leading to fast corrosion. The effective ratio of the corrosion product area to the bare metal area is evaluated. The third is the ion selectivity in the corrosion products to alter the aqueous chemistry, which may accelerate or inhibit the corrosion. Thermodynamics of ionic sorption in the corrosion products is reviewed. In the localized corrosion, the groundwater chemistry on the WP surface is evaluated at the temperatures of the WP above 100 deg. C during the early

  7. Contribution to the study of corrosion in cementitious media for the phenomenological modelling of the long-term behaviour of reinforced concrete structures

    International Nuclear Information System (INIS)

    L'hostis, V.

    2010-12-01

    Many of the facilities and structures involved in the nuclear industry call for reinforced concrete (RC) in their construction. The corrosion of rebars is the main ageing pathology that those RC structures will meet during their service life (leading to concrete cracking and structural bearing capacity decrease). Concrete carbonation and chloride ingress in concrete are both at the origin of the active corrosion state. Passive corrosion has also to be considered in a context of very long lifetime (waste management). It is of primary importance to dispose of accurate and validated tools in order to predict where and how damages will appear. In 2002, the Commissariat a l Energie atomique decided to develop an intensive research programme dedicated to predicting the long-term behaviour of RC structures affected by steel corrosion (CIMETAL Project). This document aims at synthesize the main outputs coming from the project and exposes the scientific strategy was drawn and applied in order to predict the long-term behaviour of RCs that were mainly exposed to carbonation conditions. That strategy includes experiments for the characterisation of 'short-term' and 'long-term' corrosion layouts and processes, as well as modelling stages, with a view not only to predicting the behaviour of RC, but also to pointing out phenomena that are further verified experimentally. (author)

  8. Long term corrosion of iron in concrete and in atmospheric conditions: a contribution of archaeological analogues to mechanism comprehension

    International Nuclear Information System (INIS)

    Burger, E.; Demoulin, A.; Dillman, Ph.; Neff, D.; Berge, P.; Burger, E.; Perrin, St.; L'hostis, V.; Dillman, Ph.; Millard, A.

    2009-01-01

    Full text of publication follows: The prediction of iron (or low alloy steel) corrosion on very long term period is necessary in two different purposes: (i) the preservation and conservation of cultural heritage and (ii) the French storage and repository concept for the radioactive wastes. In order to determine the evolution of corrosion processes for very long period, mechanistic models have been developed. In these models that are based on a phenomenological approach to evaluate the average corrosion rates, two different environments are considered: concrete (steel reinforcements) and atmospheric. The study of archaeological analogues is a very pertinent tool for the validation of these models. First, physico-chemical analysis on old corrosion layers lead to a precise localisation and identification of the phases present in the corrosion system. Moreover, experimental reinduced corrosions of ancient samples under controlled parameters (temperature, relative humidity) bring new insight on the mechanisms involved. In particular, one crucial question related to the wet-dry cycle is the localisation of oxygen reduction sites in the rust layer. For this purpose, specific experiments have been set up to re-corrode the ancient samples in marked medium (using 18 O 2 ). Samples were exposed to cycling between high and low relative humidity, produced by saline saturated solutions. Then cross-sections of samples obtained were investigated by nuclear reaction analysis (NRA) 18 O(p,α) 15 N on the Pierre Sue Laboratory nuclear microprobe. In this presentation the 18 O distribution profiles are discussed and interpreted in order to bring new insight on corrosion mechanisms. A comparative interpretation is made for each medium (concrete and atmosphere)

  9. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    International Nuclear Information System (INIS)

    Ewing, Rodney C.

    2003-01-01

    The successful disposal of spent nuclear fuel (SNF) is one of the most serious challenges to the successful completion of the nuclear fuel cycle and the future of nuclear power generation. In the United States, 21 percent of the electricity is generated by 107 commercial nuclear power plants (NPP), each of which generates 20 metric tons of spent nuclear fuel annually. In 1996, the total accumulation of spent nuclear fuel was 33,700 metric tons of heavy metal (MTHM) stored at 70 sites around the country. The end-of-life projection for current nuclear power plants (NPP) is approximately 86,000 MTHM. In the proposed nuclear waste repository at Yucca Mountain over 95% of the radioactivity originates from spent nuclear fuel. World-wide in 1998, approximately 130,000 MTHM of SNF have accumulated, most of it located at 236 NPP in 36 countries. Annual production of SNF is approximately 10,000 MTHM, containing about 100 tons of ''reactor grade'' plutonium. Any reasonable increase in the proportion of energy production by NPP, i.e., as a substitute for hydrocarbon-based sources of energy, will significantly increase spent nuclear fuel production. Spent nuclear fuel is essentially UO 2 with approximately 4-5 atomic percent actinides and fission product elements. A number of these elements have long half-lives hence, the long-term behavior of the UO 2 is an essential concern in the evaluation of the safety and risk of a repository for spent nuclear fuel. One of the unique and scientifically most difficult aspects of the successful disposal of spent nuclear fuel is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10 3 to 10 5 years) as required by the performance objectives set in regulations, i.e. 10 CFR 60. The direct verification of these extrapolations or interpolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the public that there is a reasonable basis for

  10. Research Opportunities in Corrosion Science for Long-Term Prediction of Materials Performance: A Report of the DOE Workshop on “Corrosion Issues of Relevance to the Yucca Mountain Waste Repository”.

    Energy Technology Data Exchange (ETDEWEB)

    Payer, Joe H. [Case Western Reserve Univ., Cleveland, OH (United States); Scully, John R. [Univ. of Virginia, Charlottesville, VA (United States)

    2003-07-29

    The report summarizes the findings of a U.S. Department of Energy workshop on “Corrosion Issues of Relevance to the Yucca Mountain Waste Repository”. The workshop was held on July 29-30, 2003 in Bethesda, MD, and was co-sponsored by the Office of Basic Energy Sciences and Office of Civilian Radioactive Waste Management. The workshop focus was corrosion science relevant to long-term prediction of materials performance in hostile environments, with special focus on relevance to the permanent disposal of nuclear waste at the Yucca Mountain Repository. The culmination of the workshop is this report that identifies both generic and Yucca Mountain Project-specific research opportunities in basic and applied topic areas. The research opportunities would be realized well after the U.S. Nuclear Regulatory Commission’s initial construction-authorization licensing process. At the workshop, twenty-three invited scientists deliberated on basic and applied science opportunities in corrosion science relevant to long-term prediction of damage accumulation by corrosive processes that affect materials performance.

  11. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Rodney C.

    2003-09-14

    The successful disposal of spent nuclear fuel (SNF) is one of the most serious challenges to the successful completion of the nuclear fuel cycle and the future of nuclear power generation. In the United States, 21 percent of the electricity is generated by 107 commercial nuclear power plants (NPP), each of which generates 20 metric tons of spent nuclear fuel annually. In 1996, the total accumulation of spent nuclear fuel was 33,700 metric tons of heavy metal (MTHM) stored at 70 sites around the country. The end-of-life projection for current nuclear power plants (NPP) is approximately 86,000 MTHM. In the proposed nuclear waste repository at Yucca Mountain over 95% of the radioactivity originates from spent nuclear fuel. World-wide in 1998, approximately 130,000 MTHM of SNF have accumulated, most of it located at 236 NPP in 36 countries. Annual production of SNF is approximately 10,000 MTHM, containing about 100 tons of ''reactor grade'' plutonium. Any reasonable increase in the proportion of energy production by NPP, i.e., as a substitute for hydrocarbon-based sources of energy, will significantly increase spent nuclear fuel production. Spent nuclear fuel is essentially UO{sub 2} with approximately 4-5 atomic percent actinides and fission product elements. A number of these elements have long half-lives hence, the long-term behavior of the UO{sub 2} is an essential concern in the evaluation of the safety and risk of a repository for spent nuclear fuel. One of the unique and scientifically most difficult aspects of the successful disposal of spent nuclear fuel is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10{sup 3} to 10{sup 5} years) as required by the performance objectives set in regulations, i.e. 10 CFR 60. The direct verification of these extrapolations or interpolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the

  12. Long term corrosion behavior of the WAK-HLW glass in salt solutions

    International Nuclear Information System (INIS)

    Luckscheiter, B.; Nesovic, M.

    1998-01-01

    The corrosion behavior of the HLW glass GP WAK1 containing simulated HLW oxides from the WAK reprocessing plant in Karlsruhe is investigated in long-term corrosion experiments at high S/V ratios in two reference brines at 110 and 190 C. In case of the MgCl 2 -rich solution the leachate becomes increasingly acid with reaction time up to a final pH of about 3.5 at 190 C. In the NaCl-rich solution the pH rises to about 8.5 after one year of reaction. The release of soluble elements in MgCl 2 solution, under Si-saturated conditions, is proportional to the surface area of the sample and the release increases at 190 C according to a t 1/2 rate law. This time dependence may be an indication of diffusion controlled matrix dissolution. However, at 110 C the release of the mobile elements cannot be described by a t 1/2 rate law as the time exponents are much lower than 0.5. This difference in corrosion behavior may be explained by the higher pH of about 5 at 110 C. In case of NaCl solution under alkaline conditions, the release of soluble elements is not proportional to the surface area of the sample and it increases with time exponents much lower than 0.5. After one year of reaction at 190 C a sharp increase of the release values of some elements was observed. This increase might be explained by the high pH of the solution attained after one year. The corrosion mechanism in NaCl solution, as well as in MgCl 2 solution at 110 C, has not yet been explained. By corrosion experiments in water at constant pH values between 2 and 10, it could be shown that the time exponents of the release of Li and B decrease with increasing pH of the solution. This result can explain qualitatively the differences found in the corrosion behavior of the glass under the various conditions

  13. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals

    International Nuclear Information System (INIS)

    Koo, Youngmi; Jang, Yongseok; Yun, Yeoheung

    2017-01-01

    Highlights: • Long-term stress corrosion cracking (SCC) test of Mg alloys was performed. • AZ31B-H24 shows transgranular stress corrosion cracking (TGSCC) and ZE41A-T5 intergranular stress corrosion cracking (IGSCC). • Long-term static loading accelerated crack propagation, leading to the loss of mechanical strength. - Abstract: Predicting degradation behavior of biodegradable metals in vivo is crucial for the clinical success of medical devices. This paper reports on the effect of long-term static stress on degradation of magnesium alloys and further changes in mechanical integrity. AZ31B (H24) and ZE41A (T5) alloys were tested to evaluate stress corrosion cracking (SCC) in a physiological solution for 30 days and 90 days (ASTM G39 testing standard). Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and micro-computed tomography (micro-CT) were used to characterize surface morphology and micro-structure of degraded alloys. The results show the different mechanisms of stress corrosion cracking for AZ31B (transgranular stress corrosion cracking, TGSCC) and ZE41A (intergranular stress corrosion cracking, IGSCC). AZ31B was more susceptible to stress corrosion cracking under a long term static load than ZE41A. In conclusion, we observed that long-term static loading accelerated crack propagation, leading to the loss of mechanical integrity.

  14. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Youngmi; Jang, Yongseok; Yun, Yeoheung, E-mail: yyun@ncat.edu

    2017-05-15

    Highlights: • Long-term stress corrosion cracking (SCC) test of Mg alloys was performed. • AZ31B-H24 shows transgranular stress corrosion cracking (TGSCC) and ZE41A-T5 intergranular stress corrosion cracking (IGSCC). • Long-term static loading accelerated crack propagation, leading to the loss of mechanical strength. - Abstract: Predicting degradation behavior of biodegradable metals in vivo is crucial for the clinical success of medical devices. This paper reports on the effect of long-term static stress on degradation of magnesium alloys and further changes in mechanical integrity. AZ31B (H24) and ZE41A (T5) alloys were tested to evaluate stress corrosion cracking (SCC) in a physiological solution for 30 days and 90 days (ASTM G39 testing standard). Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and micro-computed tomography (micro-CT) were used to characterize surface morphology and micro-structure of degraded alloys. The results show the different mechanisms of stress corrosion cracking for AZ31B (transgranular stress corrosion cracking, TGSCC) and ZE41A (intergranular stress corrosion cracking, IGSCC). AZ31B was more susceptible to stress corrosion cracking under a long term static load than ZE41A. In conclusion, we observed that long-term static loading accelerated crack propagation, leading to the loss of mechanical integrity.

  15. Corrosion behavior, mechanical properties, and long-term aging of nickel-plated uranium

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Schoenfelder, C.W.

    1976-01-01

    The behavior of nickel-plated uranium upon exposure to moist nitrogen was evaluated. Plating thicknesses of 0.051 mm (2 mil) were adequate to prevent corrosion. Specimens with thinner coats showed some corrosion and some reduction in mechanical properties during subsequent testing. Plated samples exposed to dry air at ambient pressure for 10 y showed no corrosion and no degradation of mechanical properties. Surface and bulk hydrogen content, as well as free hydrogen generated during the test, were measured to determine the extent of corrosion. Results support an earlier proposed mechanism for uranium corrosion at low humidities

  16. Evaluation of Accelerated Graphitic Corrosion Test of Gray Cast Iron

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Hong, Jong Dae; Chang Heui; Na, Kyung Hwan; Lee, Jae Gon

    2011-01-01

    In operating nuclear power plants, gray cast iron is commonly used as materials for various non-safety system components including pipes in fire water system, valve bodies, bonnets, and pump castings. In such locations, operating condition does not require alloy steels with excellent mechanical properties. But, a few corrosion related degradation, or graphitic corrosion is frequently occurred to gray cast iron during the long-term operation in nuclear power plant. Graphitic corrosion is selective leaching of iron from gray cast iron, where iron gets removed and graphite grains remain intact. In U.S.A., one-time visual inspection and hardness measurement are required from regulatory body to detect the graphitic corrosion for the life extension evaluation of the operating nuclear power plant. In this study, experiments were conducted to make accelerated graphitic corrosion of gray cast iron using electrochemical method, and hardness was measured for the specimens to establish the correlation between degree of graphitic corrosion and surface hardness of gray cast iron

  17. Progress in the understanding of the long-term corrosion behaviour of copper canisters

    Science.gov (United States)

    King, Fraser; Lilja, Christina; Vähänen, Marjut

    2013-07-01

    Copper has been proposed as a canister material for the disposal of spent nuclear fuel in a deep geologic repository in a number of countries worldwide. Since it was first proposed for this purpose in 1978, a significant number of studies have been performed to assess the corrosion performance of copper under repository conditions. These studies are critically reviewed and the suitability of copper as a canister material for nuclear waste is re-assessed. Over the past 30-35 years there has been considerable progress in our understanding of the expected corrosion behaviour of copper canisters. Crucial to this progress has been the improvement in the understanding of the nature of the repository environment and how it will evolve over time. With this improved understanding, it has been possible to predict the evolution of the corrosion behaviour from the initial period of warm, aerobic conditions in the repository to the long-term phase of cool, anoxic conditions dominated by the presence of sulphide. An historical review of the treatment of the corrosion behaviour of copper canisters is presented, from the initial corrosion assessment in 1978, through a major review of the corrosion behaviour in 2001, through to the current level of understanding based on the results of on-going studies. Compared with the initial corrosion assessment, there has been considerable progress in the treatment of localised corrosion, stress corrosion cracking, and microbiologically influenced corrosion of the canisters. Progress in the mechanistic modelling of the evolution of the corrosion behaviour of the canister is also reviewed, as is the continuing debate about the thermodynamic stability of copper in pure water. The overall conclusion of this critical review is that copper is a suitable material for the disposal of spent nuclear fuel and offers the prospect of containment of the waste for an extended period of time. The corrosion behaviour is influenced by the presence of the

  18. Prediction of long-term behaviour for nuclear waste disposal

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Ikeda, B.M.; King, F.; Sunder, S.

    1996-09-01

    The modelling procedures developed for the long-term prediction of the corrosion of used fuel and of titanium and copper nuclear waste containers are described. The corrosion behaviour of these materials changes with time as the conditions within the conceptual disposal vault evolve from an early warm, oxidizing phase to an indefinite period of cool, anoxic conditions. For the two candidate container materials, this evolution of conditions means that the containers will be initially susceptible to localized corrosion but that in the long-term, corrosion should be more general in nature. The propagation of the pitting of Cu and of the crevice corrosion of Ti alloys is modelled using statistical models. General corrosion processes are modelled deterministically. For the fuel, deterministic electrochemical models have been developed to predict the long-term dissolution rate of U0 2 . The corrosion behaviour of materials in the disposal vault can be influenced by reengineering the vault environment. For instance, increasing the areal loading of containers will produce higher vault temperatures resulting in more extensive drying of the porous backfill materials. The initiation of crevice corrosion on Ti may then be delayed, leading to longer container lifetimes. For copper containers, minimizing the amount Of O 2 initially trapped in the pores of the backfill, or adding reducing agents to consume this O 2 faster, will limit the extent of corrosion, permitting a reduction of the container wall thickness necessary for containment. (author). 55 refs., 19 figs

  19. Research Opportunities in Corrosion Science for Long-Term Prediction of Materials Performance: A Report of the DOE Workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''

    International Nuclear Information System (INIS)

    Payer, Joe H.; Scully, John R.

    2003-01-01

    The report summarizes the findings of a U.S. Department of Energy workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''. The workshop was held on July 29-30, 2003 in Bethesda, MD, and was co-sponsored by the Office of Basic Energy Sciences and Office of Civilian Radioactive Waste Management. The workshop focus was corrosion science relevant to long-term prediction of materials performance in hostile environments, with special focus on relevance to the permanent disposal of nuclear waste at the Yucca Mountain Repository. The culmination of the workshop is this report that identifies both generic and Yucca Mountain Project-specific research opportunities in basic and applied topic areas. The research opportunities would be realized well after the U.S. Nuclear Regulatory Commission's initial construction-authorization licensing process. At the workshop, twenty-three invited scientists deliberated on basic and applied science opportunities in corrosion science relevant to long-term prediction of damage accumulation by corrosive processes that affect materials performance.

  20. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process

    International Nuclear Information System (INIS)

    Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.

    2014-01-01

    A super-hydrophobic nickel film with micro-nano structure was successfully fabricated by electrodeposition process. By controlling electrodeposition parameters and considering different storage times for the coatings in air, various nickel films with different wettability were fabricated. Surface morphology of nickel films was examined by means of scanning electron microscopy (SEM). The results showed that the micro-nano nickel film was well-crystallized and exhibited pine cone-like microstructure with nano-cone arrays randomly dispersed on each micro-protrusion. The wettability of the micro-nano nickel film varied from super-hydrophilicity (water contact angle 5.3°) to super-hydrophobicity (water contact angle 155.7°) by exposing the surface in air at room temperature. The corrosion resistance of the super-hydrophobic film was estimated by electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The potentiodynamic curves revealed that the corrosion rate of superhydrophobic surface was only 0.16% of the bare copper substrate. Moreover, EIS measurements and appropriate equivalent circuit models revealed that the corrosion resistance of nickel films considerably improved with an increase in the hydrophobicity. The superhydrophobic surface also exhibited an excellent long-term durability in neutral 3.5 wt.% NaCl solution.

  1. Evaluation of long-term creep behaviour on K-cladding tubes

    International Nuclear Information System (INIS)

    Bang, J. G.; Jeong, Y. H.; Jeong, Y. H.

    2003-01-01

    KAERI has developed new zirconium alloys for high burnup fuel cladding. To evaluate the performance of these alloys, various out-pile tests are conducting. At high burnup, the creep resistance as well as corrosion resistance is one of the major factors determining nuclear fuel performance. Long-term creep test was performed at 350 .deg. C and 400 .deg. C and 100, 120, 135, and 150 MPa of applied hoop stress to evaluate the creep properties. The creep resistance was strongly affected by the final heat treatment conditions, while there was no effect of intermediate heat treatment. The creep strain of the recrystallized alloys is higher than that of the stress-relieved alloys by a factor of 3. The alloying elements also influenced the creep behaviour. Increase of Sn content enhanced the creep resistance, while Nb decreased the creep resistance. As a result of texture analysis, basal pole was directed to normal direction, while prism pole was to rolling direction. The development of the deformation texture and the ammealing texture showed almost similar process to Zircaloy cladding

  2. Degradation of aged plants by corrosion: 'Long cell action' in unresolved corrosion issues

    International Nuclear Information System (INIS)

    Saji, Genn

    2009-01-01

    In a series of previously published papers the author has identified that 'long cell action' corrosion plays a pivotal role in practically all unresolved corrosion issues for all types of nuclear power plants (e.g. PWR/VVER, BWR/RBMK and CANDU). Some of these unresolved issues are IGSCC, PWSCC, AOA and FAC (erosion-corrosion). In conventional corrosion science it is well established that 'long cell action' can seriously accelerate or suppress the local cell corrosion activities. Although long cell action is another fundamental mechanism of corrosion, especially in a 'soil corrosion' arena, potential involvement of this corrosion process has never been studied in nuclear and fossil power plants as far as the author has been able to establish. The author believes that the omission of this basic corrosion mechanism is the root cause of practically all un-resolved corrosion issues. In this paper, the author further elaborated on his assessment to other key corrosion issues, e.g. steam generator and turbine corrosion issues, while briefly summarizing previous discussions for completeness purposes, as well as introducing additional experimental and theoretical evidence of this basic corrosion mechanism. Due to the importance of this potential mechanism the author is calling for institutional review activities and further verification experiments in the form of a joint international project.

  3. Corrosion resistance of duplex stainless steel subjected to long-term annealing in the spinodal decomposition temperature range

    International Nuclear Information System (INIS)

    Lo, K.H.; Kwok, C.T.; Chan, W.K.; Zeng, D.

    2012-01-01

    Highlights: ► Long-term DLEPR data on duplex stainless steel. ► Spinodal decomposition remains unabated even after 15,000 h of annealing. ► Effect of long-term annealing on healing has been investigated. - Abstract: The effect of thermal annealing up to 15,000 h between 300 °C and 500 °C on the corrosion resistance of the duplex stainless steel (DSS) 7MoPLUS has been investigated by using the DLEPR test. Spinodal decomposition in 7MoPLUS is unabated even after annealing for 15,000 h and no healing has been observed. The possible healing mechanisms in this temperature range (back diffusion of Cr atoms from the Cr-rich ferrite (α Cr ) and diffusion of Cr atoms from the austenite) and its absence in the present steel have been discussed.

  4. Accelerated Test Method for Corrosion Protective Coatings Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  5. Annual and long-term prediction of the atmospheric corrosion of metals

    International Nuclear Information System (INIS)

    Morcillo, M.

    1998-01-01

    The atmospheric corrosion of metals is known to be a discontinuous electrochemical process which takes place only when the metallic surface is wet or moistened by different meteorological phenomena (rain, humidity condensation, fog, etc.) The magnitude of atmospheric corrosion would be relatively low if it were not for the presence of certain pollutants in the atmosphere, mainly sulphur dioxide (anthropogenic pollutant) and marine chlorides (natural pollutant). The literature contains different models for predicting the atmospheric metals over short periods (generally one year) and long periods (15, 20 or more years) of atmospheric exposure. In addition to the different meteorological factors (volume of precipitation, days of rain, relative humidity (RH), T, etc.), atmospheric SO 2 deposition rate and atmospheric salinity (Cl - ) appear as independent variables in all of these models. (Author)

  6. Pyrophoricity of uranium in long-term storage environments

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Krsul, J.R.; Olsen, D.N.

    1994-01-01

    A corrosion cycle for uranium is postulated which can be used to assess whether a given storage situation might produce fire hazards and/or continual uranium corrosion. A significant reaction rate of uranium and moisture occurs at room temperature which produces uranium oxide and hydrogen. If the hydrogen cannot escape, it will react slowly with uranium to form uranium hydride. The hydride is pyrophoric at room temperature when exposed to air. Either the hydrogen or the hydride can produce a dangerous situation as demonstrated by two different incidents described here. Long-term corrosion will occur even if the normal precautions are taken as is demonstrated by the long-term storage of stainless steel clad uranium fuel plates. The major initiator of these problems is attributed to any moisture condensed on the metal or any brought in by the cover gas. The postulated corrosion cycle is used to suggest ways to circumvent these problems

  7. Optimization of the Closure-Weld Region of cylindrical Containers for Long-Term Corrosion Resistance

    International Nuclear Information System (INIS)

    Zekai Ceylan; Mohamed B. Trabia

    2001-01-01

    Welded cylindrical containers are susceptible to stress corrosion cracking (SCC) in the closure-weld area. An induction coil heating technique may be used to relieve the residual stresses in the closure-weld. This technique involves localized heating of the material by the surrounding coils. The material is then cooled to room temperature by quenching. A two-dimensional axisymmetric finite element model is developed to study the effects of induction coil heating and subsequent quenching. The finite element results are validated through an experimental test. The parameters of the design are tuned to maximize the compressive stress from the outer surface to a depth that is equal to the long-term general corrosion rate of Alloy 22 (Appendix A) multiplied by the desired container lifetime. The problem is subject to geometrical and stress constraints. Two different solution methods are implemented for this purpose. First, off-the-shelf optimization software is used to obtain an optimum solution. These results are not satisfactory because of the highly nonlinear nature of the problem. The paper proposes a novel alternative: the Successive Heuristic Quadratic Approximation (SHQA) technique. This algorithm combines successive quadratic approximation with an adaptive random search. Examples and discussion are included

  8. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  9. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  10. Long-term storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kempe, T.F.; Martin, A.; Thorne, M.C.

    1980-06-01

    This report presents the results of a study on the storage of spent nuclear fuel, with particular reference to the options which would be available for long-term storage. Two reference programmes of nuclear power generation in the UK are defined and these are used as a basis for the projection of arisings of spent fuel and the storage capacity which might be needed. The characteristics of spent fuel which are relevant to long-term storage include the dimensions, materials and physical construction of the elements, their radioactive inventory and the associated decay heating as a function of time after removal from the reactor. Information on the behaviour of spent fuel in storage ponds is reviewed with particular reference to the corrosion of the cladding. The review indicates that, for long-term storage, both Magnox and AGR fuel would need to be packaged because of the high rate of cladding corrosion and the resulting radiological problems. The position on PWR fuel is less certain. Experience of dry storage is less extensive but it appears that the rate of corrosion of cladding is much lower than in water. Unit costs are discussed. Consideration is given to the radiological impact of fuel storage. (author)

  11. Corrosion resistance of duplex stainless steel subjected to long-term annealing in the spinodal decomposition temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.H., E-mail: KHLO@umac.mo [Department of Electromechanical Engineering, University of Macau, Macau (China); Kwok, C.T.; Chan, W.K.; Zeng, D. [Department of Electromechanical Engineering, University of Macau, Macau (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Long-term DLEPR data on duplex stainless steel. Black-Right-Pointing-Pointer Spinodal decomposition remains unabated even after 15,000 h of annealing. Black-Right-Pointing-Pointer Effect of long-term annealing on healing has been investigated. - Abstract: The effect of thermal annealing up to 15,000 h between 300 Degree-Sign C and 500 Degree-Sign C on the corrosion resistance of the duplex stainless steel (DSS) 7MoPLUS has been investigated by using the DLEPR test. Spinodal decomposition in 7MoPLUS is unabated even after annealing for 15,000 h and no healing has been observed. The possible healing mechanisms in this temperature range (back diffusion of Cr atoms from the Cr-rich ferrite ({alpha}{sub Cr}) and diffusion of Cr atoms from the austenite) and its absence in the present steel have been discussed.

  12. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  13. Long-term corrosion of rebars embedded in aerial and hydraulic binders - Mechanisms and crucial physico-chemical parameters

    International Nuclear Information System (INIS)

    Chitty, Walter-John; Berger, Pascal; Dillmann, Philippe; L'Hostis, Valerie

    2008-01-01

    The prediction of long-term behaviour of reinforced concrete structures involved in the nuclear industry requires the comprehension of the mechanism involved in long-term corrosion. Yet, studies on archeological artefacts allowed to identify a typical layout constituted of four layers: the metal, the dense product layer (DPL), the transformed medium (TM) and the binder. Oxygen reaction sites were labelled using oxygen 18 ( 18 O) and it was evidenced that the cathodic sites are located at the metal/dense product layer interface. So, oxygen has to crossed the DPL to react at the M/DPL interface or inside the marblings, and measurements of the effective tritiated water (2.6 ± 0.1 x 10 -11 m 2 /s) and iodide (1.0 ± 0.3 x 10 -11 m 2 /s) diffusivity of this layer saturated with water were made. Indeed, these two molecules have a diffusivity in water very closed to oxygen diffusivity

  14. Evaluation of long term leaching of borosilicate glasses

    International Nuclear Information System (INIS)

    Lanza, F.; Parnisari, E.

    1978-01-01

    For the evaluation of long term hazard of glass, data on long term glass leaching are needed. Moreover for long term leaching a model of homogeneous dissolution seems reasonable and ask for confirmation. Tests were performed at 30 0 , 80 0 , 100 0 , using an apparatus of the Soxhlet type, to 3.600 hours. Results were obtained as a weight loss and analysed following a relation with time composed by a parabolic and a linear part. Analysis of the surface layer using energy dispersion X ray spectrometry were performed. A critical analysis of the results and of the apparatus is presented

  15. Corrosion of metals in wood : comparing the results of a rapid test method with long-term exposure tests across six wood treatments

    Science.gov (United States)

    Samuel L. Zelinka; Donald S. Stone

    2011-01-01

    This paper compares two methods of measuring the corrosion of steel and galvanized steel in wood: a long-term exposure test in solid wood and a rapid test method where fasteners are electrochemically polarized in extracts of wood treated with six different treatments. For traditional wood preservatives, the electrochemical extract method correlates with solid wood...

  16. Contribution of archaeological analogs to the estimation of average corrosion rates and long term corrosion mechanisms of low carbon steel in soil

    International Nuclear Information System (INIS)

    Neff, D.

    2003-11-01

    . This corrosion form, constituted among others by a siderite layer is due to a particular environment: waterlogged soil containing wood. In the whole, analyses conducted in the TM show that it is composed of goethite badly crystallized in comparison with those of the DPL. Moreover, in this zone, the average elemental iron amount decreases progressively from the metal to the soil in which it stabilizes. In order to know the behaviour of the identified phases in soil water, some thermodynamic data have been involved to calculate their solubility in function of pH, potential and various water composition. The first conclusion concerns the influence of the composition and the structure of the material which is not important for the corrosion behaviour. From the results, some hypothesis have been formulated on the long term corrosion mechanisms of hypo-eutectoids steels in the considered environment. The role of the cracks formed in the DPL during the burial was evidenced. Moreover, these corrosion products undertake a dissolution in the soil water and a reprecipitation, explaining the progressive decrease of the iron amount in the TM. Lastly, some average corrosion rates have been measured with the help of the analytical and thermodynamic results: they do not exceed 4 μm/year. (author)

  17. A finite element modeling method for predicting long term corrosion rates

    International Nuclear Information System (INIS)

    Fu, J.W.; Chan, S.

    1984-01-01

    For the analyses of galvanic corrosion, pitting and crevice corrosion, which have been identified as possible corrosion processes for nuclear waste isolation, a finite element method has been developed for the prediction of corrosion rates. The method uses a finite element mesh to model the corrosive environment and the polarization curves of metals are assigned as the boundary conditions to calculate the corrosion cell current distribution. A subroutine is used to calculate the chemical change with time in the crevice or the pit environments. In this paper, the finite element method is described along with experimental confirmation

  18. Risk assessment in long-term storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ahn, T.; Guttmann, J.; Mohseni, A.

    2013-01-01

    This paper presents probabilistic risk-informed approaches that the Nuclear Regulatory Commission (NRC) staff is planning to consider in preparing regulatory bases for long-term storage of spent nuclear fuel (SNF) for up to 300 years. Due to uncertainties associated with long-term SNF storage, the NRC is considering a probabilistic risk-informed approach as well as a deterministic design-based approach. The uncertainties considered here are primarily associated with materials aging of the canister and SNF in the cask system during long-term storage of SNF. This paper discusses some potential risk contributors involved in long-term SNF storage. Methods of performance evaluation are presented that assess the various types of risks involved. They include deterministic evaluation, probabilistic evaluation, and consequence assessment under normal conditions and the conditions of accidents and natural hazards. Some potentially important technical issues resulting from the consideration of a probabilistic risk-informed evaluation of the cask system performance are discussed for the canister and SNF integrity. These issues are also discussed in comparison with the deterministic approach for comparison purposes, as appropriate. Probabilistic risk-informed methods can provide insights that deterministic methods may not capture. Two specific examples include stress corrosion cracking of the canister and hydrogen-induced cladding failure. These examples are discussed in more detail, in terms of their effects on radionuclide release and nuclear subcriticality associated with the failure. The plan to consider the probabilistic risk-informed approaches is anticipated to provide helpful regulatory insights for long-term storage of SNF that provide reasonable assurance for public health and safety. (authors)

  19. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    Science.gov (United States)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  20. Modelling the long-term corrosion behaviour of candidate alloys for Canadian SCWR

    Energy Technology Data Exchange (ETDEWEB)

    Steeves, G.; Cook, W., E-mail: wcook@unb.ca, E-mail: graham.steeves@unb.ca [University of New Brunswick, Department of Chemical Engineering, Fredericton, NB (Canada)

    2015-07-01

    Corrosion behaviour of Inconel 625 and Incoloy 800H, two of the candidate fuel cladding materials for Canadian supercritical water (SCW) reactor designs, were evaluated by exposing the metals to SCW in UNB's SCW flow loop. Individual experiments were conducted over a range of 370{sup o}C and 600{sup o}C. Exposure times were typically intervals of 100, 250, and 500 hours. Experimental data was used to create an empirical kinetic equation for each material. Activation energies for the alloys were determined, and showed a distinct difference between low-temperature electrochemical corrosion mechanism and direct high-temperature chemical oxidation. (author)

  1. Environmental variables evaluation on concrete structures corrosion for medium level activities repositories

    International Nuclear Information System (INIS)

    Requena, Carlos; Alvarez, Marta G.; Duffo, Gustavo S.

    2000-01-01

    The main purpose of this work was to evaluate the long term durability of reinforced concrete structures as medium-level waste container material. Electrochemical techniques have been used to evaluate the corrosion behaviour of steel rebars in several solutions simulating the liquid present in the pores of both alkaline and carbonated concrete in the presence of sulphate ions. Results shown that a decrease in p H has an adverse effect on the critical sulphate concentration. The inhibition effect of high carbonate/bicarbonate concentration is also shown. (author)

  2. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L [VUJE Inc. (Slovakia)

    2012-07-01

    In the Slovak Republic are under operation 6 units (4 in the Jaslovske Bohunice site, and 2 in the Mochovce), 2 units are under construction in Mochovce site. All units are WWER-440 type. The fresh fuel is imported from the Russian Federation. The spent fuel assemblies are stored in wet conditions in Bohunice Interim Storage Spent Fuel Facility (SFIS). By 15 July 2008, there were 8413 assemblies in SFIS. The objectives are: 1) Wet AR storage of spent fuel from the NPP Bohunice and Mochovce: Surveillance of conditions for spent fuel storage in the at-reactor (AR) storage pools of both NPP's (characteristics of pool water, corrosion product data); Visual control of storage pool components; Evaluation of storage conditions with respect to long-term stability (corrosion of fuel cladding, structural materials); 2) Wet SFIS storage at Bohunice: Measurement of spent fuel conditions during the long-term wet storage, activity data in the storage casks and amount of crud; Surveillance program for SFIS structural materials.

  3. Long term corrosion of iron and non alloy or low alloy steels in clay soils. Physico-chemical characterisation and electrochemical study of archaeological analogues

    International Nuclear Information System (INIS)

    Pons, Emmanuelle

    2002-01-01

    Archaeological objects of Gallo-Roman and Merovingian time, and from a battlefield of World War 1, were studied to better understand long term corrosion phenomena of iron in clay soils. This study is part of the French national program about nuclear waste deep repository, conducted by the ANDRA (French national Agency for Radioactive Waste Management). Iron archaeological analogues make a valuable contribution to the specifying of containers for long lived and high level wastes (HLWs), because they provide access to the considered time scale. The experimental issue is divided into two major parts: - a physico-chemical characterisation of corrosion products, by Raman spectroscopy; - an electrochemical study of the behaviour of the different corrosion layers. Although the metallic material is different between ancient artefacts (ferrite) and 1914-1918 remains (hypo-eutectoid steels), the same stable phases are identified in their corrosion products: mainly iron oxides and oxi-hydroxides. From a macroscopic point of view, these products are staggered into two layers: an internal one, and an external one, which contains soil markers. Under the microscope, a complex composite structure appears. Goethite a-FeOOH, which was identified on each object, is frequently in contact with the metal core. The average corrosion rate in the burial environment, deduced from the layers thickness, highlights a significant slowdown of corrosion after the first burial time, about one century. The electrochemical study showed the predominant role of transport phenomena in the pores of corrosion layers. The behaviour of the metal - internal layer system is well explained by a model of porous electrode (De Levie theory). Despite its porosity, the internal layer is protective, as it leads to a significant decrease of the corrosion rate (about ten time). (author) [fr

  4. Improvements in zirconium alloy corrosion resistance

    International Nuclear Information System (INIS)

    Kilp, G.R.; Thornburg, D.R.; Comstock, R.J.

    1990-01-01

    The corrosion rates of a series of Zircaloy 4 and Zr-Nb alloys were evaluated in long-term (exceeding 500 days in some cases) autoclave tests. The testing was done at various conditions including 633 K (680 F) water, 633 K (650 F) water, 633 k (680 F) lithiated water (70 PPM/0.01 molal lithium), and 673 K (750 F) steam. Materials evaluated are from the following three groups: (1) standard Zircaloy 4; (2) Zircaloy 4 with tightened controls on chemistry limits and heat-treatment history; and (3) Zr-Nb alloys. To optimize the corrosion resistance of the Zircaloy 4 material, the effects of specific chemistry controls (tighter limits on nitrogen, oxygen, silicon, carbon and tin) were evaluated. Also the effects of the thermal history, as measured by integrated annealing of ''A'' time were determined. The ''A'' times ranged from 0.1x10 -18 (h) to 46x10 -18 (h). A material referred to as ''Improved Zircaloy 4'', having optimized chemistry and ''A'' time levels for reduced corrosion, has been developed and tested. This material has a reduced and more uniform corrosion rate compared to the prior Zircaloy 4 material. Alternative alloys were also evaluated for potential improvement in cladding corrosion resistance. ZIRLO TM material was chosen for development and has been included in the long-term corrosion testing. Demonstration fuel assemblies using ZIRLO cladding are now operating in a commercial reactor. The results for the various test conditions and compositions are reported and the relative corrosion characteristics summarized. Based on the BR-3 data, there is a ranking correspondence between in-reactor corrosion and autoclave testing in lithiated water. In particular, the ZIRLO material has significantly improved relative corrosion resistance in the lithiated water tests. Reduced Zircaloy-4 corrosion rates are also obtained from the tighter controls on the chemistry (specifically lower tin, nitrogen, and carbon; higher silicon; and reduced oxygen variability) and ''A

  5. Catalytic heat exchangers - a long-term evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik A. [CATATOR AB, Lund (Sweden)

    2003-10-01

    A long-term evaluation concerning catalytic heat exchangers (CHEs) has been performed. The idea concerning CHEs was originally described in a number of reports issued by Catator almost a decade ago. The general idea with CHEs is to combust a fuel with a catalyst inside a heat exchanger to enable an effective heat transfer. The first design approaches demonstrated the function and the possibilities with CHEs but were defective concerning the heat exchanger design. Consequently, a heat exchanger company (SWEP International AB), which was specialised on brazed plate-type heat exchangers, joined the continued development project. Indeed, the new design approach containing Catator's wire-mesh catalysts and SWEP's plate-type heat exchangers enabled us to improve the concept considerably. The new design complied with a number of relevant technical demands, e.g.: Simplicity; Compactness and integration (few parts); High thermal efficiency; Low pressure drop; Excellent emissions; High turn-down ratio; Reasonable production cost. Spurred by the technical progresses, the importance of a long-term test under realistic conditions was clear. A long-term evaluation was initialised at Sydkraft Gas premises in Aastorp. The CHE was installed on a specially designed rig to enable accelerated testing with respect to the number of transients. The rig was operated continuously for 5000 hours and emission mapping was carried out at certain time intervals. Following some problems during the initial phase of the long-term evaluation, which unfortunately also delayed the project, the results indicated very stable conditions of operation. The emissions have been rather constant during the course of the test and we cannot see any tendencies to decreased performances. Indeed, the test verifies the function, operability and reliability of the CHE-concept. Apart from domestic boilers we foresee a number of interesting and relevant applications in heating and process technology. Since

  6. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  7. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  8. Long-term safety issues associated with mixer pump operation

    International Nuclear Information System (INIS)

    Kubic, W.L. Jr.

    1994-01-01

    In this report, we examine several long-term issues: the effect of pump operation on future gas release events (GREs), uncontrolled chemical reactions, chronic toxic gas releases, foaming, and erosion and corrosion. Heat load in excess of the design limit, uncontrolled chemical reactions, chronic toxic gas releases, foaming, and erosion and corrosion have been shown not to be safety concerns. The effect of pump operation on future GREs could not be quantified. The problem with evaluating the long-term effects of pump operation on GREs is a lack of knowledge and uncertainty. In particular, the phenomena governing gas retention, particle size distribution, and settling are not well understood, nor are the interactions among these factors understood. There is a possibility that changes in these factors could increase the size of future GREs. Bounding estimates of the potential increase in size of GREs are not possible because of a lack of engineering data. Proper management of the hazards can reduce, but not eliminate, the possibility of undesirable changes. Maintaining temperature within the historical limits can reduce the possibility of undesirable changes. A monitoring program to detect changes in the gas composition and crust thickness will help detect slowly occurring changes. Because pump operation has be shown to eliminate GREs, continued pump operation can eliminate the hazards associated with future GREs

  9. Long term study of mechanical

    Directory of Open Access Journals (Sweden)

    Ahmed M. Diab

    2016-06-01

    Full Text Available In this study, properties of limestone cement concrete containing different replacement levels of limestone powder were examined. It includes 0%, 5%, 10%, 15%, 20% and 25% of limestone powder as a partial replacement of cement. Silica fume was added incorporated with limestone powder in some mixes to enhance the concrete properties. Compressive strength, splitting tensile strength and modulus of elasticity were determined. Also, durability of limestone cement concrete with different C3A contents was examined. The weight loss, length change and cube compressive strength loss were measured for concrete attacked by 5% sodium sulfate using an accelerated test up to 525 days age. The corrosion resistance was measured through accelerated corrosion test using first crack time, cracking width and steel reinforcement weight loss. Consequently, for short and long term, the use of limestone up to 10% had not a significant reduction in concrete properties. It is not recommended to use blended limestone cement in case of sulfate attack. The use of limestone cement containing up to 25% limestone has insignificant effect on corrosion resistance before cracking.

  10. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Cao Zhong; Zhang Ling; Guo Chaoyan; Gong Fuchun; Long Shu; Tan Shuzhen; Xia Changbin; Xu Fen; Sun Lixian

    2009-01-01

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10 -5 ng.cm -2 .s -1 , corresponding to 1.3 x 10 8 Au atoms.cm -2 .s -1 , that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  11. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods.Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed.The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  12. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  13. Corrosion inhibition studies in support of the long term storage of AGR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Standring, P [Sellafield Limited (United Kingdom)

    2012-07-01

    Thorp Receipt and Storage (at Sellafield, UK) is currently being investigated as a bridging solution for the storage of AGR fuel pending the out-come of a national review into spent fuel management. AGR spent fuel is known to be susceptible to corrosion through inter-granular attack. To avoid this, the chosen storage regime for AGR fuel is sodium hydroxide dosed pond water to pH 11.4; now 22 years of operating experience. The conversion of TR and S will require a phased transition. During this transition sodium hydroxide cannot be used due to materials compatibility issues. Alternative corrosion inhibitors have been investigated as an interim measure and sodium nitrate has been selected as a suitable candidate. The efficiency of sodium nitrate to inhibit propagating inter-granular attack of active AGR materials has yet to be established. In the longer term sodium hydroxide will be deployed along with a move to a closed loop pond water management system. Given that carbon dioxide is known to be absorbed by sodium hydroxide dosed water and can affect fuel integrity, in the case of Magnox fuel, there is a need to establish its impact on AGR fuel. The objectives are: To establish the impact of carbonate on AGR fuel corrosion; To establish the efficiency of sodium nitrate to inhibit propagating inter-granular attack of irradiated AGR materials.

  14. Long-term behaviour of concrete under saline conditions for long-term stable sealing structures; Langzeitverhalten von Beton unter salinaren Bedingungen fuer langzeitstabile Verschlussbauwerke

    Energy Technology Data Exchange (ETDEWEB)

    Dahlhaus, Frank; Haucke, Joerg [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau und Spezialtiefbau

    2012-03-15

    The authors of the contribution under consideration examine the long-term behaviour of concrete under saline conditions and in particular the suitability of the dam construction materials salt concrete and brine concrete for the use as a part of a sealing system of long-term stable geotechnical sealing structures. The long-term stability of the building material mainly is determined by the corrosion of the cement paste phases. The specific shrinkage behaviour of the construction material is analyzed experimentally in order to verify the expected cracks. The mechanisms of cracking in the salt concrete and brine concrete are analyzed by means of a mesomechanical approach in numerical finite-element calculations.

  15. Corrosion evaluation technology

    International Nuclear Information System (INIS)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo.

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of ± 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs

  16. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  17. New results on long term aging tests for rad-waste container alloy selection

    Energy Technology Data Exchange (ETDEWEB)

    Alves, H.; Wahl, V.; Ibas, O.; Stenner, F. [ThyssenKrupp VDM GmbH, Altena (Germany)

    2004-07-01

    The current design of containers for high level nuclear waste proceeds on using an outer barrier of corrosion resistant Ni-based super alloy. The current alloy of choice is alloy 22 (UNS N06022). It is a quaternary Ni-Cr- Mo-W alloy system. The new but well established alloy 59 (UNS N06059) is an excellent equal or even a superior alternative to alloy 22 for the 10,000 years reliability being sought. Alloy 59 is a pure ternary alloy in the Ni-Cr-Mo alloy system. Objective of this paper is to present data comparing these two alloys. Therefore the behaviour of alloy 59 and alloy 22 was characterised after aging in air for 10,000 h and 20,000 h at different temperatures (200, 300 and 427 deg. C). Since the performance of weldments is of great concern, both welded and unwelded specimens were studied. Mechanical properties of the air aged alloys were measured at room temperature by tensile and notch impact-bending test. Thermal stability and aqueous corrosion are considered to be the key issues in the long-term performance of container materials proposed for the geological disposal of high level nuclear waste. The long-term thermal stability and corrosion resistance of the alloy 59 compared to alloy 22 is discussed. Corrosion resistance was evaluated in ASTM G28 A and 'green death' solution laboratory tests; hereby corrosion rates and depth of attack were determined. Metallo-graphical studies were performed in mill annealed and air aged conditions. The results of the aging tests at 10,000 h and 20,000 h show that alloy 59 is an equal or better candidate material due to its superior localised corrosion resistance behaviour (pitting and crevice corrosion resistance) and better thermal stability needed especially in multi-pass welding of thick sections. Therefore alloy 59 seems to be the most promising alternative to alloy 22. (authors)

  18. New results on long term aging tests for rad-waste container alloy selection

    International Nuclear Information System (INIS)

    Alves, H.; Wahl, V.; Ibas, O.; Stenner, F.

    2004-01-01

    The current design of containers for high level nuclear waste proceeds on using an outer barrier of corrosion resistant Ni-based super alloy. The current alloy of choice is alloy 22 (UNS N06022). It is a quaternary Ni-Cr- Mo-W alloy system. The new but well established alloy 59 (UNS N06059) is an excellent equal or even a superior alternative to alloy 22 for the 10,000 years reliability being sought. Alloy 59 is a pure ternary alloy in the Ni-Cr-Mo alloy system. Objective of this paper is to present data comparing these two alloys. Therefore the behaviour of alloy 59 and alloy 22 was characterised after aging in air for 10,000 h and 20,000 h at different temperatures (200, 300 and 427 deg. C). Since the performance of weldments is of great concern, both welded and unwelded specimens were studied. Mechanical properties of the air aged alloys were measured at room temperature by tensile and notch impact-bending test. Thermal stability and aqueous corrosion are considered to be the key issues in the long-term performance of container materials proposed for the geological disposal of high level nuclear waste. The long-term thermal stability and corrosion resistance of the alloy 59 compared to alloy 22 is discussed. Corrosion resistance was evaluated in ASTM G28 A and 'green death' solution laboratory tests; hereby corrosion rates and depth of attack were determined. Metallo-graphical studies were performed in mill annealed and air aged conditions. The results of the aging tests at 10,000 h and 20,000 h show that alloy 59 is an equal or better candidate material due to its superior localised corrosion resistance behaviour (pitting and crevice corrosion resistance) and better thermal stability needed especially in multi-pass welding of thick sections. Therefore alloy 59 seems to be the most promising alternative to alloy 22. (authors)

  19. Synthesis of recent investigations on corrosion behaviour of radioactive waste glasses

    International Nuclear Information System (INIS)

    Grauer, R.

    1985-03-01

    Work which has appeared since the earlier report (EIR--477) on the corrosion behaviour of borosilicate glasses as a solidification matrix for high-level radioactive waste has been evaluated. Many works have confirmed that for a particular glass, besides temperature and pH-value, the silicate concentration of the solution exerts the strongest influence on corrosion rate. The effect of silicate can be described in terms of simple reaction kinetics models which provides a more sound basis for prediction of long-term behaviour of glasses than previously existed. Meanwhile, the effects of backfill- and canister-materials and their corrosion products have been given the attention they merit. These materials affect glass corrosion primarily through regulation of silicic acid concentration. A particular finding which is of interest is the strong inhibition of glass corrosion by lead ions. Stationary corrosion rates in the order of magnitude of 10 -5 g/cm 2 .d can be derived from long-term corrosion experiments in stagnant water at 90 0 C. At the envisaged repository temperature of 55 0 C they will be one to two orders of magnitude less. The effects of radioactive decay on corrosion rate are either very small or not detectable at all. (Auth.)

  20. The photoelectrocatalytic activity, long term stability and corrosion performance of NiMo deposited titanium oxide nano-tubes for hydrogen production in alkaline medium

    Science.gov (United States)

    Mert, Mehmet Erman; Mert, Başak Doğru; Kardaş, Gülfeza; Yazıcı, Birgül

    2017-11-01

    In this study, titanium oxide nano-tubes are doped with Ni and Mo particles with various chemical compositions, in order to put forth the efficiency of single and binary coatings on hydrogen evolution reaction (HER) in 1 M KOH. The characterization was achieved by cyclic voltammetry, scanning electron microscopy and energy dispersive X-ray analysis. The water wettability characteristics of electrode surfaces were investigated using contact angle. The long-term catalyst stability and corrosion performance were determined by current-potential curves and electrochemical impedance spectroscopy. Furthermore, photoelectrochemical behavior was determined via linear sweep voltammetry. Results showed that, nano-structured Ni and Mo deposited titanium oxide nano-tubes decrease the hydrogen over potential and increase HER efficiency, it is stable over 168 h electrolysis and it exhibits higher corrosion performance.

  1. Evaluation of corrosive behavior of SAE 5155 by corrosion environment

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2005-01-01

    In this study, the influence of shot peening and corrosive condition for corrosion property was investigated on immersed in 3.5% NaCl, 10% HNO 3 + 3% HF, 6% FeCl 3 . The immersion test was performed on two kinds of specimen. The immersion periods was performed 30days. Corrosion potential, weight loss were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated

  2. Introduction: Long term prediction

    International Nuclear Information System (INIS)

    Beranger, G.

    2003-01-01

    Making a decision upon the right choice of a material appropriate to a given application should be based on taking into account several parameters as follows: cost, standards, regulations, safety, recycling, chemical properties, supplying, transformation, forming, assembly, mechanical and physical properties as well as the behaviour in practical conditions. Data taken from a private communication (J.H.Davidson) are reproduced presenting the life time range of materials from a couple of minutes to half a million hours corresponding to applications from missile technology up to high-temperature nuclear reactors or steam turbines. In the case of deep storage of nuclear waste the time required is completely different from these values since we have to ensure the integrity of the storage system for several thousand years. The vitrified nuclear wastes should be stored in metallic canisters made of iron and carbon steels, stainless steels, copper and copper alloys, nickel alloys or titanium alloys. Some of these materials are passivating metals, i.e. they develop a thin protective film, 2 or 3 nm thick - the so-called passive films. These films prevent general corrosion of the metal in a large range of chemical condition of the environment. In some specific condition, localized corrosion such as the phenomenon of pitting, occurs. Consequently, it is absolutely necessary to determine these chemical condition and their stability in time to understand the behavior of a given material. In other words the corrosion system is constituted by the complex material/surface/medium. For high level nuclear wastes the main features for resolving problem are concerned with: geological disposal; deep storage in clay; waste metallic canister; backfill mixture (clay-gypsum) or concrete; long term behavior; data needed for modelling and for predicting; choice of appropriate solution among several metallic candidates. The analysis of the complex material/surface/medium is of great importance

  3. Evaluation of long term creep-fatigue life for type 304 stainless steel

    International Nuclear Information System (INIS)

    Kawasaki, Hirotsugu; Ueno, Fumiyoshi; Aoto, Kazumi; Ichimiya, Masakazu; Wada, Yusaku

    1992-01-01

    The long term creep-fatigue life of type 304 stainless steel was evaluated by the creep-fatigue life prediction method based on a linear damage fraction rule. The displacement controlled creep-fatigue tests were carried out, and the time to failure of longer than 10000 hours was obtained. The creep damage of long term creep-fatigue was evaluated by taking into account the stress relaxation behavior with elastic follow-up during the hold period. The relationship between life reduction of creep-fatigue and fracture mode was provided by the creep cavity growth. The results of this study are summarized as follows; (1) The long term creep-fatigue data can be reasonably evaluated by the present method. The predicted lives were within a factor of 3 of the observed ones. (2) The present method provides the capability to predict the long term creep-fatigue life at lower temperatures as well as that at the creep dominant temperature. (3) The value of creep damage for the long term creep-fatigue data increased by elastic follow-up. The creep-fatigue damage diagram intercepted between 0.3 and 1 can represent the observed creep-fatigue damages. (4) The cavity growth depends on the hold time. The fracture of long term creep-fatigue is caused by the intergranular cavity growth. The intergranular fracture of creep-fatigue is initiated by the cavity growth and followed by the microcrack propagation along grain boundaries starting from creep cavities. (author)

  4. Application of Moessbauer spectroscopy on corrosion products of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Dekan, J., E-mail: julius.dekan@stuba.sk; Lipka, J.; Slugen, V. [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, SUT (Slovakia)

    2013-04-15

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original 'Bohunice' design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Moessbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Moessbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  5. Tapering off benzodiazepines in long-term users : an economic evaluation

    NARCIS (Netherlands)

    Oude Voshaar, Richard C; Krabbe, Paul F M; Gorgels, Wim J M J; Adang, Eddy M M; van Balkom, Anton J L M; van de Lisdonk, Eloy H; Zitman, Frans G

    2006-01-01

    BACKGROUND: Discontinuation of benzodiazepine usage has never been evaluated in economic terms. This study aimed to compare the relative costs and outcomes of tapering off long-term benzodiazepine use combined with group cognitive behavioural therapy (TO+CBT), tapering off alone (TOA) and usual

  6. Long-term in situ corrosion investigation of Zr alloys in simulated PWR environment by electrochemical measurements

    International Nuclear Information System (INIS)

    Goehr, H.; Schaller, J.; Ruhmann, H.; Garzarolli, F.

    1996-01-01

    The corrosion behavior of Zircaloy-type alloys with different tin contents of 1.55, 0.70, and 0.55 wt% was studied at 350 C and 17 MPa in an environment similar to PWR primary water. Impedance spectra were taken at time intervals and evaluated for thickness and morphology of the oxide layer as well as for its electrical resistance. The tests without any temperature and pressure cycling showed similar oxidation behavior with repeated transitions as in discontinuously performed standard autoclave tests. Early in the pre-transition range, a dense oxide layer is formed, and fast changes of corrosion potential and electrical resistance are observed. The dense layer increases in thickness and homogeneity up to the transition, where a sudden breakdown occurs. Abrupt changes of the corrosion potential and electrical resistance were observed also at those points. After transition, a new dense layer is built up. The corrosion potential changes are caused by a decrease of the electrical corrosion current with increasing oxide layer thickness, by the formation of a potential drop over the high-resistance dense oxide layer, and by structural changes at the transition points. In general, alloys with different tin contents show similar behavior. However, they show differences in the time to transition, the kinetic constants deduced from their impedance spectra, and in the ionic and electronic resistance of the dense inner layer controlling corrosion

  7. Long-term strategic asset allocation: An out-of-sample evaluation

    NARCIS (Netherlands)

    Diris, B.F.; Palm, F.C.; Schotman, P.C.

    We evaluate the out-of-sample performance of a long-term investor who follows an optimized dynamic trading strategy. Although the dynamic strategy is able to benefit from predictability out-of-sample, a short-term investor using a single-period market timing strategy would have realized an almost

  8. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  9. Contribution of archaeological analogs to the estimation of average corrosion rates and long term corrosion mechanisms of low carbon steel in soil; Apport des analogues archeologiques a l'estimation des vitesses moyennes et a l'etude des mecanismes de corrosion a tres long terme des aciers non allies dans les sols

    Energy Technology Data Exchange (ETDEWEB)

    Neff, D

    2003-11-15

    identified. This corrosion form, constituted among others by a siderite layer is due to a particular environment: waterlogged soil containing wood. In the whole, analyses conducted in the TM show that it is composed of goethite badly crystallized in comparison with those of the DPL. Moreover, in this zone, the average elemental iron amount decreases progressively from the metal to the soil in which it stabilizes. In order to know the behaviour of the identified phases in soil water, some thermodynamic data have been involved to calculate their solubility in function of pH, potential and various water composition. The first conclusion concerns the influence of the composition and the structure of the material which is not important for the corrosion behaviour. From the results, some hypothesis have been formulated on the long term corrosion mechanisms of hypo-eutectoids steels in the considered environment. The role of the cracks formed in the DPL during the burial was evidenced. Moreover, these corrosion products undertake a dissolution in the soil water and a reprecipitation, explaining the progressive decrease of the iron amount in the TM. Lastly, some average corrosion rates have been measured with the help of the analytical and thermodynamic results: they do not exceed 4 {mu}m/year. (author)

  10. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    International Nuclear Information System (INIS)

    Huet, Bruno; L'Hostis, Valerie; Le Bescop, Patrick; Idrissi, Hassane

    2004-01-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  11. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Bruno [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France)]|[Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France); L' Hostis, Valerie; Le Bescop, Patrick [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France); Idrissi, Hassane [Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France)

    2004-07-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  12. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takats, F [TS Enercon Kft. (Hungary)

    2012-07-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. The fresh fuel is imported from Russia so far. The spent fuel assemblies were shipped back to Russia until 1997 after about 6 years cooling at the plant. A dry storage facility (MVDS type) has been constructed and is operational since then. By 1 January 2008, there were 5107 assemblies in dry storage. The objectives are: 1) Wet AR storage of spent fuel from the NPP Paks: Measurements of conditions for spent fuel storage in the at-reactor (AR) storage pools of Paks NPP (physical and chemical characteristics of pool water, corrosion product data); Measurements and visual control of storage pool component characteristics; Evaluation of storage characteristics and conditions with respect to long-term stability (corrosion of fuel cladding, construction materials); 2) Dry AFR storage at Paks NPP: Calculation and measurement of spent fuel conditions during the transfer from the storage pool to the modular vault dry storage (MVDS) on the site; Calculation and measurement of spent fuel conditions during the preparation of fuel for dry storage (drying process), such as crud release, activity build-up; Measurement of spent fuel conditions during the long-term dry storage, activity data in the storage tubes and amount of crud.

  13. Coupling between corrosion and biphasic transport in porous media: Application to the evolution of a radioactive wastes disposal; Couplage entre corrosion et comportement diphasique dans un milieu poreux: Application a l'evolution d'un stockage des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2005-04-15

    In the actual concepts of geological disposal, high level radioactive wastes are packed in metallic containers surrounded by a partially or totally saturated clay media. In contact with the interstitial water, anoxic corrosion of this container will start producing hydrogen. In the scope of safety assessment, the present study deals with two main topics: prediction of the long-term corrosion of carbon steel with respect to clay water content and evaluation of the risk of damage of the clay barrier related to gas production. Elementary processes controlling the kinetics of corrosion are limited to oxide growth and mass transfer through the porosity of this film. Thanks to a macroscopic description of theses processes, followed by an interfacial kinetic law, a mechanistic modeling of the anoxic corrosion in partially saturated porous media is proposed. This approach is validated when confronted to the long-term corrosion tests performed in saturated clay. Both modeling and laboratory experiments have confirmed that kinetics of anoxic corrosion in partially saturated clay is mainly controlled by the surrounding relative humidity as in the case of aerated or atmospheric corrosion. In the gas generation topic, some numerical simulations are performed concerning the oedometric and triaxial test dealing with gas migration in saturated clay. Finally, long-term calculations are conducted concerning hydro-mechanical impact of corrosion in deep geological repositories. Due to a more realistic prediction of the long-term corrosion, the risks of gas overpressures, local desaturation and mechanical damage are reduced. (author)

  14. Long-term monitoring FBG-based cable load sensor

    Science.gov (United States)

    Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping

    2006-03-01

    Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.

  15. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  16. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  17. Coupling between corrosion and biphasic transport in porous media: Application to the evolution of a radioactive wastes disposal

    International Nuclear Information System (INIS)

    Dridi, W.

    2005-04-01

    In the actual concepts of geological disposal, high level radioactive wastes are packed in metallic containers surrounded by a partially or totally saturated clay media. In contact with the interstitial water, anoxic corrosion of this container will start producing hydrogen. In the scope of safety assessment, the present study deals with two main topics: prediction of the long-term corrosion of carbon steel with respect to clay water content and evaluation of the risk of damage of the clay barrier related to gas production. Elementary processes controlling the kinetics of corrosion are limited to oxide growth and mass transfer through the porosity of this film. Thanks to a macroscopic description of theses processes, followed by an interfacial kinetic law, a mechanistic modeling of the anoxic corrosion in partially saturated porous media is proposed. This approach is validated when confronted to the long-term corrosion tests performed in saturated clay. Both modeling and laboratory experiments have confirmed that kinetics of anoxic corrosion in partially saturated clay is mainly controlled by the surrounding relative humidity as in the case of aerated or atmospheric corrosion. In the gas generation topic, some numerical simulations are performed concerning the oedometric and triaxial test dealing with gas migration in saturated clay. Finally, long-term calculations are conducted concerning hydro-mechanical impact of corrosion in deep geological repositories. Due to a more realistic prediction of the long-term corrosion, the risks of gas overpressures, local desaturation and mechanical damage are reduced. (author)

  18. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    Science.gov (United States)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  19. Long-term behaviors of phosphate-based rapid repairing material for concrete shafts in coal mines.

    Science.gov (United States)

    Lei, Feng; Zhen-Ya, Zhang; Xiao-Dong, Wen; Chao, Xin; Dong-Yuan, Hu

    2018-04-01

    Concrete structures in shaft linings are apt to deteriorate prematurely and therefore prompt restoration is required. In considering this, desulphurization fly ash and machine-made tuff sand are employed to fabricate a phosphate-based rapid repairing material. The long-term efficiency of the material is evaluated based on combined factors, so drying shrinkage, interfacial bonding strength, corrosion resistance, and combustibility of the specimens are tested and researched in this paper. Experimental results showed that, under a dry circumstance, the material goes through a minor expansion at an early stage. It goes into a stage of rapid contraction after one day and a stable contraction after seven days. After 28 days, the total deformation is 67 micro-strains. On the other hand, the fabricated material manifests an excellent mechanical property. The one hour bending strength and compressive strength were 9.2 MPa and 32.6 MPa, respectively. A long-term mine water flushing simulation demonstrates that only 10% bending strength is lost and the corrosion resistance coefficient stays above 0.8, so a very good corrosion resistance is thus achieved. What is more, this repairing material retains its stability even at a high temperature of 1000°C, revealing its good thermo-stability. All these prominent properties make it a good prospective material for real restoration applications.

  20. Study on applying technology of utilizing long-term materials for corrosion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Chul; Park, Young Kyu; Baek, Soo Gon; Lee, Jong Sub [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Park, Yong Soo [Yonsei University, Seoul (Korea, Republic of); Hwang, Won Suk [Inha University (Korea, Republic of); Song, Rhyo Seong [Hankuk Aviation, University (Korea, Republic of)

    1996-12-31

    Nowadays, as the pollution in seawater is escalating rapidly because of fast industrialization, corrosion rate and repairing frequency of seawater facilities in power plant are increasing. In addition, new construction is restricted with narrow limits due to the deterioration of social condition, asking for extension of facility life and repairing frequency. The objectives of this study are to select the appropriate new high corrosion resistance materials and apply them in the field, to make the corrosion data base in accordance with their usage conditions and to predict the remaining life and optimum repairing period by predicting the life of facilities. (author). 77 refs., 54 figs.

  1. Long-term effects of neutron absorber and fuel matrix corrosion on criticality

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Zielinski, P.R.

    1994-01-01

    Proposed waste package designs will require the addition of neutron absorbing material to prevent the possibility of a sustained chain reaction occurring in the fuel in the event of water intrusion. Due to the low corrosion rates of the fuel matrix and the Zircaloy cladding, there is a possibility that the neutron absorbing material will corrode and leak from the waste container long before the subsequent release of fuel matrix material. An analysis of the release of fuel matrix and neutron absorber material based on a probabilistic model was conducted and the results were used to prepare input to KENO-V, an neutron criticality code. The results demonstrate that, in the presence of water, the computed values of k eff exceeded the maximum of 0.95 for an extended period of time

  2. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    International Nuclear Information System (INIS)

    Ewing, Rodney C.

    2004-01-01

    Spent nuclear fuel, essentially U 2 , accounts for over 95% of the total radioactivity of all of the radioactive wastes in the United States that require disposal, disposition or remediation. The UO 2 in SNF is not stable under oxiding conditions and may also be altered under reducing conditions. The alteration of SNF results in the formation of new uranium phases that can cause the release or retardation of actinide and fission product radionuclides. Over the long term, and depending on the extent to which the secondary uranium phases incorporate fission products and actinides, these alteration phases become the near-field source term

  3. Corrosion evaluation of metallic HLW/spent fuel disposal containers - review

    International Nuclear Information System (INIS)

    Kursten, B.; Smailos, E.; Azkarate, I.; Werme, L.; Smart, N.R.; Marx, G.; Cunado, M.A.; Santarini, G.

    2004-01-01

    Over the years a lot of investigations have been performed to choose suitable container materials and to characterize their long-term corrosion behaviour in contact with their potential disposal environments, i.e. salt, clay, and granite. Carbon steels, stainless steels, nickel-based alloys, titanium-based alloys, and copper have been widely investigated as potential container materials depending on the studied host rock formation. The results obtained in salt environments indicate that the passively corroding Ti99.8-Pd is the primary choice for the thin-walled corrosion-resistant concept, since its general corrosion rate is negligible and it is highly resistant to localized corrosion and stress corrosion cracking (SCC) in salt brines. The TStE 355 carbon steel is the first candidate for the corrosion-allowance concept because it is resistant to pitting corrosion and SCC and its general corrosion rates are sufficiently low to provide corrosion allowance acceptable for thick-walled containers. Stainless steels, Ni-based alloys, and Ti-based alloys are the most important candidate container materials in clay for the thin-walled concept, while carbon steel is considered the main choice for the thick-walled corrosion-allowance concept. Studies performed in granite seem to indicate that copper containers provide an excellent corrosion barrier with an estimated lifetime exceeding 100,000 years. The TStE 355 carbon steel is also a valid option for a thick-walled container concept in granite. In this paper, some relevant corrosion data of carbon steel and stainless steel in cementitious environments are given in addition because large amounts of concrete will be used as structural materials in most of the envisaged repository design concepts. This paper also provides recommendations for future studies. (authors)

  4. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    Energy Technology Data Exchange (ETDEWEB)

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  5. Long-term outcome of eosinophilic fasciitis : A cross-sectional evaluation of 35 patients

    NARCIS (Netherlands)

    Mertens, JS; Thurlings, Rogier M; Kievit, Wietske; Seyger, Marieke M B; Radstake, Timothy R D; de Jong, Elke M G J

    BACKGROUND: Eosinophilic fasciitis (EF) is a connective tissue disease with an unknown long-term course. OBJECTIVE: To evaluate presence and determinants of residual disease damage in patients with EF after long-term follow-up. METHODS: Patients with biopsy-proven EF were included for this

  6. Long-term outcome of eosinophilic fasciitis: A cross-sectional evaluation of 35 patients

    NARCIS (Netherlands)

    Mertens, J.S.; Thurlings, R.M.; Kievit, W.; Seyger, M.M.B.; Radstake, T.R.D.J.; Jong, E.M.G.J. de

    2017-01-01

    BACKGROUND: Eosinophilic fasciitis (EF) is a connective tissue disease with an unknown long-term course. OBJECTIVE: To evaluate presence and determinants of residual disease damage in patients with EF after long-term follow-up. METHODS: Patients with biopsy-proven EF were included for this

  7. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rodney C. Ewing

    2004-10-07

    Spent nuclear fuel, essentially U{sub 2}, accounts for over 95% of the total radioactivity of all of the radioactive wastes in the United States that require disposal, disposition or remediation. The UO{sub 2} in SNF is not stable under oxiding conditions and may also be altered under reducing conditions. The alteration of SNF results in the formation of new uranium phases that can cause the release or retardation of actinide and fission product radionuclides. Over the long term, and depending on the extent to which the secondary uranium phases incorporate fission products and actinides, these alteration phases become the near-field source term.

  8. Evaluation of limiting mechanisms for long-term spent fuel dry storage

    International Nuclear Information System (INIS)

    Rashid, J.; Machiels, A.

    2001-01-01

    Several failure mechanisms have been postulated that could become limiting for spent fuel in dry storage. These are: stress Corrosion Cracking (SCC), Delayed Hydride Cracking (DHC) and Creep Rupture (CR). These mechanisms are examined in some detail from two perspectives: their initial environments in which they were developed and applied, and in relation to their applicability to dry storage. Extrapolation techniques are used to transfer the mechanisms from their initial in-reactor and laboratory domains to out-of-reactor spent fuel dry storage environments. This transfer is accomplished both qualitatively where necessary and quantitatively when possible, with fracture toughness used as the transfer function. In this regard, the paper provides useful information on cladding fracture toughness estimates that recognize the specific physical conditions of the cladding, which would not be found elsewhere in the literature. The arguments presented in this paper confirm the general technical consensus that creep is the governing mechanism for spent fuel in long-term dry storage. (author)

  9. Evaluation of limiting mechanisms for long-term spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, J. [ANATECH Research Corp., San Diego, CA (United States); Machiels, A. [EPRI, Palo Alto, CA (United States)

    2001-07-01

    Several failure mechanisms have been postulated that could become limiting for spent fuel in dry storage. These are: stress Corrosion Cracking (SCC), Delayed Hydride Cracking (DHC) and Creep Rupture (CR). These mechanisms are examined in some detail from two perspectives: their initial environments in which they were developed and applied, and in relation to their applicability to dry storage. Extrapolation techniques are used to transfer the mechanisms from their initial in-reactor and laboratory domains to out-of-reactor spent fuel dry storage environments. This transfer is accomplished both qualitatively where necessary and quantitatively when possible, with fracture toughness used as the transfer function. In this regard, the paper provides useful information on cladding fracture toughness estimates that recognize the specific physical conditions of the cladding, which would not be found elsewhere in the literature. The arguments presented in this paper confirm the general technical consensus that creep is the governing mechanism for spent fuel in long-term dry storage. (author)

  10. Study on transition behavior of corrosion related environment near disposal site

    International Nuclear Information System (INIS)

    Masuda, K.; Nakanishi, T.; Kato, O.; Wada, R.

    2005-01-01

    Full text of publication follows: Disposal vessels are desired to stand for a certain period of time to stabilize radioactive wastes containing heat-generating substances. Besides, in case of wastes containing irradiated metal, which is a source of long-lived 14 C, long-term capability to enclose such long-life species is desired to the vessels. Since endurance of vessels is very affected by surrounding environment, evaluation of long-term environmental transition is important. In this study, we focused on the behavior of red-ox conditions and pH by reactive transport modeling in order to obtain fundamental knowledge about long-term transition of corrosion-related environment around metal vessels or metal-containing radioactive wastes. A two-dimensional reactive transport simulation was applied to a modeled repository site with engineering barrier system including cement and bentonite, etc., in consideration of following chemical models: - The metal corrosion rate was modeled to consider its effect on red-ox conditions. - The corrosion rate of carbon steel was modeled as kinetic reaction rate of production of ferrous ion and electrons as a function of pH and oxygen concentration, based on the experimental results observed under highly-controlled reducing conditions (1). - Formation of corrosion products was modeled by solubility products of iron oxides, such as magnetite, according to analytical results by in-situ XPS (2). - Cement composition and its reaction with groundwater were modeled by chemical equilibrium of primary and secondary minerals, for example, calcium silicates with several C/S ratios to consider the long-term transition of pH with cement degradations. According to the simulation results, the variation of red-ox conditions and pH around the disposal vessels has been estimated. Main component of cement composition slowly changes to calcium silicate having lower C/S ratios, resulting in decrease of pH. Although it depends on the bentonite efficiency

  11. Long term corrosion protection sleeve for tightly closed barrels with highly radioactive contents

    International Nuclear Information System (INIS)

    Koester, R.; Smailos, E.; Schwarzkopf, W.; Kiesow, A.

    1986-01-01

    The application of the corrosion resistant layer on the container body is achieved by blasting plating and by a special design of weld seams on the lid or floor stopper. The corrosion protection layer completely surrounds the container, is additionally applied to the layers in the area of the lid and bottom surface of one floor or lid plate, which consists of another material as corrosion protection layer and which has a diameter a little greater than the hollow cylinder container body. (orig./PW) [de

  12. Experimental Investigation on Corrosion of Cast Iron Pipes

    Directory of Open Access Journals (Sweden)

    H. Mohebbi

    2011-01-01

    Full Text Available It is well known that corrosion is the predominant mechanism for the deterioration of cast iron pipes, leading to the reduction of pipe capacity and ultimate collapse of the pipes. In order to assess the remaining service life of corroded cast iron pipes, it is imperative to understand the mechanisms of corrosion over a long term and to develop models for pipe deterioration. Although many studies have been carried out to determine the corrosion behavior of cast iron, little research has been undertaken to understand how cast iron pipes behave over a longer time scale than hours, days, or weeks. The present paper intends to fill the gap regarding the long-term corrosion behaviour of cast iron pipes in the absence of historical data. In this paper, a comprehensive experimental program is presented in which the corrosion behaviour of three exservice pipes was thoroughly examined in three simulated service environments. It has been found in the paper that localised corrosion is the primary form of corrosion of cast iron water pipes. It has also been found that the microstructure of cast irons is a key factor that affects the corrosion behaviour of cast iron pipes. The paper concludes that long-term tests on corrosion behaviour of cast iron pipes can help develop models for corrosion-induced deterioration of the pipes for use in predicting the remaining service life of the pipes.

  13. Modelling carbon steels corrosion during a long period in soils: Contribution of A.C. impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pons, E.; Lemaitre, C.; Crusset, D.; David, D. [Laboratoire Roberval de Mecanique, UMR 6066 du CNRS, Universite de Technologie de Compiegne, BP 20529, F - 60205 Compiegne cedex (France)

    2004-07-01

    The corrosion of historical objects from World War I fields were studied by using two methods: characterization of the corrosion products by Raman Laser Spectroscopy, and behaviour of the corrosion layers by using electrochemical studies. The first technique, previously used, had shown that two layers are present on these objects, containing both different oxides and oxy-hydroxides of iron. In the present part of the work, the A.C. Impedance Spectroscopy was used to show the differences between the two layers concerning the corrosion of these objects. In order to observe the different behaviours, the specimens were studied in three surface states: with the two layers, with the internal layer only, and without oxide. The results have shown that the internal layer limits the corrosion kinetics. Then this layer was especially studied, particularly its porosity, by a comparison of the impedance results in two media with very different conductivity, and the evolution of these results with different immersion times. The buried objects had the behaviour of a porous electrode, due to the presence of the internal layer. Thus, this behaviour can be modelled with the simplified De Levie's theory, considering that each porosity is a semi-infinite hole. It appeared that the corrosion process at the oxidized interface corresponds to the transport in the electrolyte in the pores completed by a part of transport in the solid phase. These properties can be used to predict the long term corrosion behaviour of carbon steels in soils for long periods. (authors)

  14. Modelling carbon steels corrosion during a long period in soils: Contribution of A.C. impedance spectroscopy

    International Nuclear Information System (INIS)

    Pons, E.; Lemaitre, C.; Crusset, D.; David, D.

    2004-01-01

    The corrosion of historical objects from World War I fields were studied by using two methods: characterization of the corrosion products by Raman Laser Spectroscopy, and behaviour of the corrosion layers by using electrochemical studies. The first technique, previously used, had shown that two layers are present on these objects, containing both different oxides and oxy-hydroxides of iron. In the present part of the work, the A.C. Impedance Spectroscopy was used to show the differences between the two layers concerning the corrosion of these objects. In order to observe the different behaviours, the specimens were studied in three surface states: with the two layers, with the internal layer only, and without oxide. The results have shown that the internal layer limits the corrosion kinetics. Then this layer was especially studied, particularly its porosity, by a comparison of the impedance results in two media with very different conductivity, and the evolution of these results with different immersion times. The buried objects had the behaviour of a porous electrode, due to the presence of the internal layer. Thus, this behaviour can be modelled with the simplified De Levie's theory, considering that each porosity is a semi-infinite hole. It appeared that the corrosion process at the oxidized interface corresponds to the transport in the electrolyte in the pores completed by a part of transport in the solid phase. These properties can be used to predict the long term corrosion behaviour of carbon steels in soils for long periods. (authors)

  15. Long-term corrosion of copper in a dilute anaerobic sulfide solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Qin, Z. [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.ca [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)

    2011-09-30

    The mechanism of corrosion of oxygen-free copper has been studied in stagnant aqueous sulfide solutions using corrosion potential and electrochemical impedance spectroscopy (EIS) measurements. Film structure and composition were examined on surfaces and on cross-sections prepared by focused ion beam (FIB) milling using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Experiments were conducted in anaerobic 5 x 10{sup -5} mol dm{sup -3} Na{sub 2}S + 0.1 mol dm{sup -3} NaCl solutions for exposure periods up to 4000 h ({approx}167 days) to mimic (at least partially) the conditions that could develop on a copper nuclear fuel waste container in a deep geologic repository. The corrosion film formed was a single cellular Cu{sub 2}S layer with a non-uniform thickness. The film thickness increased approximately linearly with immersion time, which implied that the sulfide film formed on the Cu surface is non-protective under these conditions up to this exposure time. The film growth process was controlled by HS{sup -} diffusion partially in the aqueous solution in the pores in the cellular sulfide film and partially in the bulk of the aqueous solution.

  16. Development of waste packages for the long-term confinement of C-14 in TRU waste disposal. 2. Confinement container with titanium alloy

    International Nuclear Information System (INIS)

    Nakamura, Ario; Owada, Hitoshi; Asano, Hidekazu; Jintoku, Takashi; Nakayama, Gen

    2008-01-01

    The long-term integrity of TRU waste package, with a titanium alloy for the outer corrosion resistance layer and carbon steel for the inner structural vessel, has been evaluated. The target confinement period is settled at 60,000 years in this study (i.e., 10 times of half-life). So the outer corrosion resistance layer with titanium (Ti-Pd alloy) is developed through focus on the high corrosion resistance of Ti alloy as a technology that has long-term confinement. In investigation about integrity of its passive film, the thickness of corrosion layer of 60,000 years is calculated by building an empirical formula between temperature and corrosion current density, considering the results of constant voltage examination in the TRU waste repository assumed environment. About crevice corrosion, its occurrence conditions is investigated in the TRU waste repository assumed environment, then, Ti.Gr-17 is selected as candidate material of the corrosion resistance layer. In investigation about SCC in Ti alloy, using the models of growth of hydride-layer, the thickness of hydride-layer after 60,000 years is estimated by the results of constant currents tests. Then, the hydride-layer of this thickness is confirmed not to generate cracks, in consideration of destructive critical hydride cracking thickness and the models of crack propagation. The knowledge that the process of generation of hydrogenated layers changes with differences in acceleration conditions (i.e., current density) is obtained. So we must confirm the adequacy of this model by the examination with natural condition. (author)

  17. Corrosion fatigue of bladed disk attachments of low-pressure turbine

    International Nuclear Information System (INIS)

    Asai, K.; Sakurai, S.; Nomura, K.; Saito, E.; Namura, K.

    2004-01-01

    The mechanism of a disk cracking in a low-pressure steam turbine was investigated by finite-element and fracture mechanics analysis and, based on the results of the investigation, a life assessment method was derived. The disk cracking was found to be caused by growth of corrosion pits, superposition of multiple vibration modes, and an increase in the standard deviation of the natural frequency of grouped blades after long-term operation. Taking these findings into consideration, the authors then developed a life-assessment method for disk cracking composed of evaluations (1) maximum corrosion pit size at the current situation, (2) corrosion pit growth after a certain term, and (3) failure-occurrence ratio for the estimated corrosion pit depth. Maximum corrosion-pit size is evaluated by extreme value statistical analysis using the data obtained by replica inspection. The failure-occurrence ratio is evaluated by Monte Carlo simulation considering two uncertainties, namely, the standard deviation of the natural frequency of grouped blades and the stimulus ratio. The values of both uncertainties were determined by the inverse problem analysis of the disk cracking. In light of these results, the authors found that replacing conventional tenon-shroud grouped blades with continuous-cover blades is effective from the view point of vibratory behavior. (orig.)

  18. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  19. Long-Term Stability Evaluation and Pillar Design Criterion for Room-and-Pillar Mines

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-10-01

    Full Text Available The collapse of abandoned room-and-pillar mines is often violent and unpredictable. Safety concerns often resulted in mine closures with no post-mining stability evaluations. As a result, large amounts of land resources over room-and-pillar mines are wasted. This paper attempts to establish an understanding of the long-term stability issues of goafs (abandoned mines. Considering progressive pillar failures and the effect of single pillar failure on surrounding pillars, this paper proposes a pillar peeling model to evaluate the long-term stability of coal mines and the associated criteria for evaluating the long-term stability of room-and-pillar mines. The validity of the peeling model was verified by numerical simulation, and field data from 500 pillar cases from China, South Africa, and India. It is found that the damage level of pillar peeling is affected by the peel angle and pillar height and is controlled by the pillar width–height ratio.

  20. Evaluation of short-term and long-term stability of emulsions by centrifugation and NMR

    International Nuclear Information System (INIS)

    Tcholakova, S.; Denkov, N.; Ivanov, I.; Marinov, R.

    2004-01-01

    The effect of storage time on the coalescence stability and drop size distribution of egg yolk and whey protein concentrate stabilized emulsions is studied. The emulsion stability is evaluated by centrifugation, whereas the drop size distribution is measured by means of NMR and optical microscopy. The experimental results show that there is no general relation between the emulsion stability and the changes in the mean drop diameter upon shelf-storage of protein emulsions. On the other hand, it is shown that the higher short-term stability, measured by centrifugation immediately after emulsion preparation, corresponds to higher long-term stability (after their self-storage up to 60 days) for emulsions stabilized by the same type of emulsifier. In this way, we are able to obtain information for the long-term stability of emulsions in a relatively short period of time.(authors)

  1. Evaluating long term forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Lady, George M. [Department of Economics, College of Liberal Arts, Temple University, Philadelphia, PA 19122 (United States)

    2010-03-15

    The U.S. Department of Energy's Energy Information Administration (EIA), and its predecessor organizations, has published projections of U.S. energy production, consumption, distribution and prices annually for over 30 years. A natural issue to raise in evaluating the projections is an assessment of their accuracy compared to eventual outcomes. A related issue is the determination of the sources of 'error' in the projections that are due to differences between the actual versus realized values of the associated assumptions. One way to do this would be to run the computer-based model from which the projections are derived at the time the projected values are realized, using actual rather than assumed values for model assumptions; and, compare these results to the original projections. For long term forecasts, this approach would require that the model's software and hardware configuration be archived and available for many years, possibly decades, into the future. Such archival creates many practical problems; and, in general, it is not being done. This paper reports on an alternative approach for evaluating the projections. In the alternative approach, the model is run many times for cases in which important assumptions are changed individually and in combinations. A database is assembled from the solutions and a regression analysis is conducted for each important projected variable with the associated assumptions chosen as exogenous variables. When actual data are eventually available, the regression results are then used to estimate the sources of the differences in the projections of the endogenous variables compared to their eventual outcomes. The results presented here are for residential and commercial sector natural gas and electricity consumption. (author)

  2. Accelerated Test Method for Corrosion Protective Coatings

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as...

  3. The Evaluation of the Corrosion Resistance of the Al-Si Alloys Antimony Alloyed

    Directory of Open Access Journals (Sweden)

    Svobodova J.

    2014-06-01

    Full Text Available This paper deals with the evaluation of the corrosion resistance of the Al-Si alloys alloyed with the different amount of antimony. Specifically it goes about the alloy AlSi7Mg0,3 which is antimony alloyed in the concentrations 0; 0,001; 0,005; 0,01 a 0,05 wt. % of antimony. The introduction of the paper is dedicated to the theory of the aluminium alloys corrosion resistance, testing and evaluation of the corrosion resistance. The influence of the antimony to the Al-Si alloys properties is described further in the introduction. The experimental part describes the experimental samples which were prepared for the experiment and further they were exposed to the loading in the atmospheric conditions for a period of the 3 months. The experimental samples were evaluated macroscopically and microscopically. The results of the experiment were documented and the conclusions in terms of the antimony impact to the corrosion resistance of the Al-Si alloy were concluded. There was compared the corrosion resistance of the Al-Si alloy antimony alloyed (with the different antimony content with the results of the Al-Si alloy without the alloying after the corrosion load in the atmospheric conditions in the experiment.

  4. Prediction method of long-term reliability in improving residual stresses by means of surface finishing

    International Nuclear Information System (INIS)

    Sera, Takehiko; Hirano, Shinro; Chigusa, Naoki; Okano, Shigetaka; Saida, Kazuyoshi; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2012-01-01

    Surface finishing methods, such as Water Jet Peening (WJP), have been applied to welds in some major components of nuclear power plants as a counter measure to Primary Water Stress Corrosion Cracking (PWSCC). In addition, the methods of surface finishing (buffing treatment) is being standardized, and thus the buffing treatment has been also recognized as the well-established method of improving stress. On the other hand, the long-term stability of peening techniques has been confirmed by accelerated test. However, the effectiveness of stress improvement by surface treatment is limited to thin layers and the effect of complicated residual stress distribution in the weld metal beneath the surface is not strictly taken into account for long-term stability. This paper, therefore, describes the accelerated tests, which confirmed that the long-term stability of the layer subjected to buffing treatment was equal to that subjected to WJP. The long-term reliability of very thin stress improved layer was also confirmed through a trial evaluation by thermal elastic-plastic creep analysis, even if the effect of complicated residual stress distribution in the weld metal was excessively taken into account. Considering the above findings, an approach is proposed for constructing the prediction method of the long-term reliability of stress improvement by surface finishing. (author)

  5. Corrosion behavior of zinc-nickel alloy electrodeposited coatings

    Energy Technology Data Exchange (ETDEWEB)

    Fabri Miranda, F.J. [USIMINAS, Ipatinga, Minas Gerais (Brazil); Margarit, I.C.P.; Mattos, O.R.; Barcia, O.E. [UFRJ, Rio de Janeiro (Brazil); Wiart, R. [Univ. Pierre et M. Curie, Paris (France)

    1999-08-01

    Various types of zinc-electrocoated steel sheets are used to improve the durability of car bodies. Among these coatings, the Zn-Ni alloy has higher corrosion resistance than pure Zn, as well as better welding and painting properties. The corrosion mechanism of the Zn-Ni alloy has been investigated mainly on the basis of accelerated tests and electrochemical measurements. There are few data about long-term corrosion tests. In the present study, the behavior of unpainted Zn-Ni alloy coated steel was studied during 3 years of exposure in industrial and marine environments. Electrochemical impedance spectroscopy (EIS) and surface analysis (scanning electron microscopy [SEM] and Auger electron spectroscopy [AES]) were the experimental techniques used. Long-term atmospheric corrosion mechanism of Zn-Ni coatings was discussed and compared with that proposed based on short-term tests.

  6. Evaluations of corrosion resistance of Ni-Cr plated and Zn-plated Fe Substrates Using an Electrolytic Corrosion Test

    International Nuclear Information System (INIS)

    Lee, Jaebong; Kim, Kyungwook; Park, Minwoo; Song, Taejun; Lee, Chaeseung; Lee, Euijong; Kim, Sangyeol

    2013-01-01

    An Eectrolytic Corrosion(EC) test method was evaluated by the comparison with Copper Accelerated Acetic Salt Spray(CASS) and Neutral Salt Spray(SS) tests. Those methods were applied in order to evaluate corrosion resistance of Ni-Cr plated and Zn-plated Fe substrates. The correlations between results obtained by different test methods were investigated. Results showed that the electrochemical method such as the EC test method was superior to the conventional methods such as CASS and SS, in terms of the quantitative accuracy and the test-time span. Furthermore, the EC test method provided the useful means to estimate the initiation of corrosion of each layer by monitoring the rest potentials of the coated layers such as Ni, Cr, and Zn on Fe substrate. With regard to test time spans, the EC test provided the 78 times and 182 times faster results than the CASS test in cases of Fe + 5μm Ni + 0.5 μm Cr and Fe + 20 μm Ni + 0.5 μm Cr respectively, while the EC test was 85 times faster results than the Salt Spray test in the case of Fe + 20 g/m 2 Zn. Therefore, the EC test can be the better method to evaluate the resistance to corrosion of coated layers than the conventional methods such as the SS test and the CASS

  7. Long-term deconditioning of gas-filled surge arresters

    Science.gov (United States)

    Stanković, Koviljka; Brajović, Dragan; Alimpijević, Mališa; Lončar, Boris

    2016-07-01

    pressure that is as high as possible (with pd = const), and that the electrode active surface should have a marked microscopic topography. In addition to this, an essential conclusion for GFSA manufacturers is that long-term system deconditioning is caused by impurities and adsorbed gases that appear at electrode during the state of rest. Out of these two causes, the influence of impurities is probably the dominant one, which is proved by considerably reduced long-term deconditioning in the case of noble metal electrodes, not susceptible to corrosion. This has also been confirmed by a less distinct effect of long-term deconditioning in the case of sandblasted electrodes that have a stronger tendency towards gas adsorption and a weaker tendency towards corrosion. However, it has been shown that adding of the third electrode (that is concentric to the main electrode system) on a free floating potential along with usage of sandblasted electrodes and with smaller interelectrode distance significantly reduces the effects of the long-term deconditioning.

  8. Criticality safety evaluation for long term storage of FFTF fuel in interim storage casks

    International Nuclear Information System (INIS)

    Richard, R.F.

    1995-01-01

    It has been postulated that a degradation phenomenon, referred to as ''hot cell rot'', may affect irradiated FFTF mixed plutonium-uranium oxide (MOX) fuel during dry interim storage. ''Hot cell rot'' refers to a variety of phenomena that degrade fuel pin cladding during exposure to air and inert gas environments. It is thought to be a form of caustic stress corrosion cracking or environmentally assisted cracking. Here, a criticality safety analysis was performed to address the effect of the ''hot cell rot'' phenomenon on the long term storage of irradiated FFTF fuel in core component containers. The results show that seven FFTF fuel assemblies or six Ident-69 pin containers stored in core component containers within interim storage casks will remain safely subcritical

  9. Long-term behaviour of waste-forms in the near-field environment of a deep underground storage site, overview

    International Nuclear Information System (INIS)

    Toulhoat, P.; Lassabatere, Th.; Galle, Ch.; Cranga, M.; Trotignon, L.; Maillard, S.; Iracane, D.

    1997-01-01

    CEA (French Atomic Energy Commission) is responsible for the achievement of high activity and/or long life waste conditioning processes. Various waste-forms are used (glass, bitumen, etc...). ANDRA (French National Agency for Nuclear Waste Management) has to integrate the long-term durability of such waste-forms in the conception of a deep disposal and the assessment of its long-term confinement performances. The influence of near-field and of the boundary conditions imposed by the far-field on the long-term evolution is being more and more documented. Transport properties and reactivity of silica in the near field is one of the best examples of such effects. A coherent framework with relevant successive events (site re-saturation, chemical evolution of the engineered barrier, overpack corrosion) and a thorough analysis of hierarchized couplings are necessary to evaluate the long term durability of waste-form, and finally, to deliver a near-field-integrated source-term of radionuclides versus lime. We present hereafter some preliminary results obtained in the framework of the CEA 'C3P' project - long-term behaviour of waste-forms in their near-field environment. (authors)

  10. Fireside corrosion and steamside oxidation of 9-12% Cr martensitic steels exposed for long term testing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Rasmussen, F.

    2009-01-01

    MoV121 and HCM12 for the 12% Cr steels. The test tubes were welded in as part of the existing final superheaters in actual plants and exposure has been conducted over a ten year period (1994-2005). Compared to the older steel types, T92 and HCM12 utilise tungsten to improve their creep strength. From......To obtain long term corrosion and steam oxidation data for the 9-12%Cr ferritic steels, test tube sections have been exposed in Amager 3 and Avedore 1 coal fired power plants in Denmark (formerly run by ENERGI E2). Thus direct comparisons can be made for T91 and T92 for the 9% Cr steels and X20Cr...... Avedore I testing, T91 and T92 can be compared for exposure times up to similar to 48 000 h exposure. From Amager 3 testing, X20, HCM12 and T92 were tested; T92 has been exposed for up to 31 000 h and X20 and HCM12 have had 84 500 h exposure. Tube sections were removed for various exposure durations...

  11. Evaluation on the long-term durability and leachability of cemented waste form

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hong; Lee, Jae Won; Ryue, Young Gerl [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-08-01

    The long-term durability and leachability on the cemented waste form containing boric acids produced in domestic nuclear nuclear power plants were evaluated. Compressive strength of waste form after durability test such as thermal stability and water immersion cycle was higher than before test and consistently increased with increasing of test time in range of 83 of 286 kgf/cm{sup 2}. Long-term leachability was evaluated by standard test methods, leach affecting factors, and prediction of long-term leachability with result data of short-term leach test. In all leach tests, the release of Cs-137 was controlled by diffusion, whereas release of Co-60 was not controlled by diffusion. Leach rate of Cs-137 was relatively constant at standard leach test methods such as NAS 16.1, IAEA, ISO-6961, and MCC-1, but that of Co-60 increased with leachant-renewal frequencies. The leach rate of both Cs-137 and Co-60 increased as test temperature raised. The release of Co-137 decreased in simulated seawater as leachant, but increased with increasing leachant volume. The prediciton of long-term release of Cs-137 from large-scale waste form using the results from short-term leach test of small-scale waste form were within {+-} 5% of actual release. The leachability indexes of Cs-137 were between 6.5 and 7.5 and those of Co-60 were ranged from 11.6 to 13.3, increasing as cumulative leaching time increased. (author). 22 refs., 14 figs., 15 tabs.

  12. Long-term properties of TVO's bituminized resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Vuorinen, U.

    1989-06-01

    Long-term properties of bituminized spent ion-exchange resins from Olkiluoto power plant have been studied since 1981. This report summarizes the results on water uptake and leaching obtained up till now. It is observed that water uptake in excess of rewetting of the ion-exchange resins is taking place. Leach test in water equilibrated with cement have been performed for about five years. Separation of granular resin particles caused by density differences observed in former experiments was further studied and confirmed in this work. Anaerobic corrosion of a steel drum has been studied in laboratory conditions generally giving corrosion rates below l μm/a. Radiolytic gases will accumulate and be trapped in the waste product. The rate of swelling is estimated by a specially constructed device based on ultrasonic distance meter observing changes in level of the product surface in the drum

  13. Heterogeneous tiny energy: An appealing opportunity to power wireless sensor motes in a corrosive environment

    International Nuclear Information System (INIS)

    Qiao, Guofu; Sun, Guodong; Li, Hui; Ou, Jinping

    2014-01-01

    Highlights: • Ultra-low ambient energy was scavenged to power the first of its kind wireless corrosion sensors. • Three feasible tiny-energy sources were exploited for long-term corrosion monitoring. • Automatic recharging control of heterogeneous tiny energy was proposed for human-free monitoring. • Corrosion itself was applied as an energy source to power the wireless corrosion-monitoring motes. - Abstract: Reinforcing steel corrosion is a significant factor leading to the durability deterioration of reinforced concrete (RC) structures. The on-line monitoring of the corrosion of RC structures in a long-term, human-free manner is not only valuable in industry, but also a significant challenge in academia. This paper presents the first of its kind corrosion-monitoring approach that only exploits three heterogeneous tiny energy sources to power commercial-off-the-shelf wireless sensor motes such that the corrosion-related data are automatically and autonomously captured and sent to users via wireless channels. We first investigated the availability of these three tiny energy sources: corrosion energy, a cement battery, and a weak solar energy. In particular, the two former energy sources inherently exist in RC structures and can be generated continually in the service-life of RC structures, which beneficial for the prospects of long-term corrosion monitoring. We then proposed a proof-of-concept prototype, which consisted of a Telosb wireless sensor mote and an energy harvester in order to evaluate the feasibility and effectiveness of the ultralow-power ambient energy as a type of power supply in corrosion monitoring applications. The critical metrics for the holographic monitoring of RC structures, including electrochemical noise, humidity and temperature, were successfully acquired and analysed using a post-processing program. This paper describes a unique and novel approach towards the realisation of smart structural monitoring and control system in the

  14. Evaluation of local corrosion life by statistical method

    International Nuclear Information System (INIS)

    Kato, Shunji; Kurosawa, Tatsuo; Takaku, Hiroshi; Kusanagi, Hideo; Hirano, Hideo; Kimura, Hideo; Hide, Koichiro; Kawasaki, Masayuki

    1987-01-01

    In this paper, for the purpose of achievement of life extension of light water reactor, we examined the evaluation of local corrosion by satistical method and its application of nuclear power plant components. There are many evaluation examples of maximum cracking depth of local corrosion by dowbly exponential distribution. This evaluation method has been established. But, it has not been established that we evaluate service lifes of construction materials by satistical method. In order to establish of service life evaluation by satistical method, we must strive to collect local corrosion dates and its analytical researchs. (author)

  15. Long-Term Evaluation of SSL Field Performance in Select Interior Projects

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilkerson, Andrea M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    This GATEWAY project evaluated four field installations to better understand the long-term performance of a number of LED products, which can hopefully stimulate improvements in designing, manufacturing, specifying, procuring, and installing LED products. Field studies provide the opportunity to discover and investigate issues that cannot be simulated or uncovered in a laboratory, but the installed performance over time of commercially available LED products has not been well documented. Improving long-term performance can provide both direct energy savings by reducing the need to over-light to account for light loss and indirect energy savings through better market penetration due to SSL’s competitive advantages over less-efficient light source technologies. The projects evaluated for this report illustrate that SSL use is often motivated by advantages other than energy savings, including maintenance savings, easier integration with control systems, and improved lighting quality.

  16. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  17. Appropriate zinc addition management into PWR primary coolant after the plant long-term maintenance

    International Nuclear Information System (INIS)

    Hirose, Atsushi; Matsui, Ryo; Imamura, Haruki; Takahashi, Akira; Shimizu, Yuichi; Kogawa, Noritaka; Nagamine, Kunitaka

    2014-01-01

    Zinc addition into the PWR primary coolant is known as an effective method to reduce the radioactivity build up. The reduction effect has been confirmed by actual plant experience of the Genkai Nuclear Power Plant Unit 1 to 4 and the Sendai Nuclear Power Plant Unit 1 to 2 which are operated by Kyushu Electric Power Co. in Japan. Zinc addition is suspended at shut-down, and is resumed after heat up or arrival at full power. In usual maintenance, the period when zinc addition is not applied is short; thus it is considered that suspension of zinc addition does not have practical influence on the corrosion and the radioactivity buildup in the oxide layer of surface for the primary equipment and piping. On the other hand, in case the maintenance period is much longer, the new oxide which does not contain zinc has grown, and then the structure of the oxide layer may be changed. Therefore, it is considered that zinc addition suspension in long-term period has possibilities to deteriorate the dose reduction effect. In order to verify the effect of long-term suspension of zinc addition upon oxide layer, the lab experiment was carried out using TT690 alloy which is the constitution material of the steam generator tubes under the conditions of long-term and the subsequent resuming operations. After the experiment, the specimens were analyzed by IMA and chemical analysis. These measurement results suggest the difference of the oxide layer is little or none between long-term suspension of zinc addition and short-term suspension of zinc suspension. Hence it is considered that influence of long-term maintenance on the oxide layer is small. Furthermore, in this study, in order to evaluate the influence of the suspension of zinc addition in the operation period, specimens of oxide film formed with zinc were carried out the corrosion test in the simulated RCS condition without zinc. These measurement results indicate the effect of reduction of the activity build up will become less

  18. Effective flow-accelerated corrosion programs in nuclear facilities

    International Nuclear Information System (INIS)

    Esselman, Thomas C.; McBrine, William J.

    2004-01-01

    Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)

  19. Special issue on ageing management and long term operation of light water reactors

    International Nuclear Information System (INIS)

    Kashima, Koichi; Kanno, Masanori; Kimura, Itsurou

    2008-01-01

    Ageing management and long term operation of light water reactors became important in Japan and relevant research on physical and materials ageing has been carried out among organizations of government, academia and industry and establishment of technical standards and guideline based on the results is under way. The Japan Energy Policy Institute (JEPI) issued a special number discussing this theme, which consisted of ten reports of experts describing these activities. Main topics were ageing evaluation of reactor components due to neutron irradiation embrittlement and stress corrosion cracking, regulatory evaluation of deteriorations due to ageing with technical information basis, technology development in the area of inspection/monitoring, ageing evaluation and preventive maintenance/repairs, nuclear power plant life management of electric utilities, and advancement of reactor maintenance and inspection. (T. Tanaka)

  20. Dissolution rates of DWPF glasses from long-term PCT

    International Nuclear Information System (INIS)

    Ebert, W.L.; Tam, S.W.

    1996-01-01

    We have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 per m at 90 degrees C in tuff groundwater at pH values near 12 for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively

  1. Evaluation of seawater corrosion of SSCs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the unit 1 to unit 4 of the Fukushima Daiichi Nuclear Power Plant, seawater was injected in reactor pressure vessels and spent fuel pools in order to cool nuclear fuel after the disaster of the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami. In fiscal 2012, overall plan of this project has been developed in consideration of corrosion events that might be assumed reactor pressure vessels, spent fuel pools and primary containment vessels of Fukushima Daiichi Nuclear Power Station that was designated to be as the 'Specified Nuclear Power Facilities'. In this project, crevice corrosion susceptibility of stainless steel, galvanic corrosion of aluminum alloy, and uniform corrosion of carbon steel piping will be evaluated. (author)

  2. EVALUATION OF LATE ADVERSE EVENTS IN LONG-TERM WILMS' TUMOR SURVIVORS

    NARCIS (Netherlands)

    van Dijk, Irma W. E. M.; Oldenburger, Foppe; Cardous-Ubbink, Mathilde C.; Geenen, Maud M.; Heinen, Richard C.; de Kraker, Jan; van Leeuwen, Flora E.; van der Pal, Helena J. H.; Caron, Huib N.; Koning, Caro C. E.; Kremer, Leontien C. M.

    2010-01-01

    Purpose: To evaluate the prevalence and severity of adverse events (AEs) and treatment-related risk factors in long-term Wilms' tumor (WT) survivors, with special attention to radiotherapy. Methods and Materials: The single-center study cohort consisted of 185 WT survivors treated between 1966 and

  3. Self-Powered Wireless Sensor Network for Automated Corrosion Prediction of Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Dan Su

    2018-01-01

    Full Text Available Corrosion is one of the key issues that affect the service life and hinders wide application of steel reinforcement. Moreover, corrosion is a long-term process and not visible for embedded reinforcement. Thus, this research aims at developing a self-powered smart sensor system with integrated innovative prediction module for forecasting corrosion process of embedded steel reinforcement. Vibration-based energy harvester is used to harvest energy for continuous corrosion data collection. Spatial interpolation module was developed to interpolate corrosion data at unmonitored locations. Dynamic prediction module is used to predict the long-term corrosion based on collected data. Utilizing this new sensor network, the corrosion process can be automated predicted and appropriate mitigation actions will be recommended accordingly.

  4. Surveillance and Monitoring Program Full-Scale Experiments to Evaluate the Potential for Corrosion in 3013 Containers

    Energy Technology Data Exchange (ETDEWEB)

    Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duque, Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harradine, David Martin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, Dallas Dwight [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kaczar, Gregory Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lillard, R. Scott [Univ. of Akron, OH (United States); Lopez, Annabelle Sarita [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Max Alfonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peppers, Larry G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rios, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Edward L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Leonardo Alberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilson, Kennard Virden Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    A set of six long-term, full-scale experiments were initiated to determine the type and extent of corrosion that occurs in 3013 containers packaged with chloride-bearing plutonium oxide materials. The materials were exposed to a high relative humidity environment representative of actual packaging conditions for the materials in storage. The materials were sealed in instrumented, inner 3013 containers with corrosion specimens designed to test the corrosiveness of the environment inside the containers under various conditions. This report focuses on initial loading conditions that are used to establish a baseline to show how the conditions change throughout the storage lifetime of the containers.

  5. Long-Term Atmospheric Corrosion Behavior of Epoxy Prime Coated Aluminum Alloy 7075-T6 in Coastal Environment

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2018-06-01

    Full Text Available The atmospheric corrosion of epoxy prime coated aluminum alloy 7075-T6 exposed for 7, 12 and 20 years was investigated. The remaining thicknesses of epoxy prime coatings for macroscopically intact coating areas followed a normal distribution and decreased linearly. EIS results demonstrated that the corrosion resistance of the coating decreased with exposure time. After 20 years of exposure, the epoxy coating had lost its protection as cracks existed within the coating and exfoliation corrosion had occurred on the substrate. The substrate was sensitive to exfoliation corrosion through metallographic and TEM analysis. The corrosion products were mainly hydroxides of aluminum. The morphology and chemical compositions of the coating bubbling area and propagation characterizations of exfoliation corrosion were analyzed by SEM, EPMA and EDS. Cracks between the lumps of corrosion products provided the channels for the transmission of corrosion mediums. Furthermore, the mechanical model was proposed to analyze the propagation characterization of exfoliation corrosion.

  6. Feasibility of long-life and corrosion-resistant canister with titanium cladding

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Tokiwai, Moriyasu; Saegusa, Toshiari

    2008-01-01

    In order to store nuclear spent fuels for a long term, we propose the concept of stainless steel canister with titanium cladding. The stainless canister is first brazed to titanium plates, and then the brazed joints are covered with other titanium plates. A MIG brazing for titanium and stainless steel was demonstrated with a brazing metal of Cu-1Mn-3Si alloy (MG960). JIS G 0601 shear strength, tensile shear stress and peel strength tests are conducted for the optimized MIG brazing conditions. These results showed the MIG brazing specimens possess adequate structural strength. After the salt spray test on the basis of JIS Z 2371, there were no pitting and general corrosions on a TIG welding specimen between titanium plates. The corrosion resistance is therefore, sufficiently high. Manufacturing cost estimation suggests that the titanium cladding concept is feasible thereby using 1-mm-thick titanium plates to reduce the material cost. In addition to this concept, we propose another concept of the canister by using titanium-stainless steel cladding plates to reduce a number of brazing joints. (author)

  7. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  8. GATEWAY Report Brief: SSL Demonstration: Long-Term Evaluation of Indoor Field Performance

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-02-28

    Report brief summarizing a GATEWAY program evaluation of the long-term performance characteristics (chromaticity change, maintained illuminance, and operations and maintenance) of LED lighting systems in four field installations previously documented in separate DOE GATEWAY reports.

  9. Corrosion resistance of a magnetic stainless steel ion-plated with titanium nitride.

    Science.gov (United States)

    Hai, K; Sawase, T; Matsumura, H; Atsuta, M; Baba, K; Hatada, R

    2000-04-01

    This in vitro study evaluated the corrosion resistance of a titanium nitride (TiN) ion-plated magnetic stainless steel (447J1) for the purpose of applying a magnetic attachment system to implant-supported prostheses made of titanium. The surface hardness of the TiN ion-plated 447J1 alloy with varying TiN thickness was determined prior to the corrosion testing, and 2 micrometers thickness was confirmed to be appropriate. Ions released from the 447J1 alloy, TiN ion-plated 447J1 alloy, and titanium into a 2% lactic acid aqueous solution and 0.1 mol/L phosphate buffered saline (PBS) were determined by means of an inductively coupled plasma atomic emission spectroscopy (ICP-AES). Long-term corrosion behaviour was evaluated using a multisweep cyclic voltammetry. The ICP-AES results revealed that the 447J1 alloy released ferric ions into both media, and that the amount of released ions increased when the alloy was coupled with titanium. Although both titanium and the TiN-plated 447J1 alloy released titanium ions into lactic acid solution, ferric and chromium ions were not released from the alloy specimen for all conditions. Cyclic voltamograms indicated that the long-term corrosion resistance of the 447J1 alloy was considerably improved by ion-plating with TiN.

  10. Long-term evaluation of treatment of chronic, therapeutically refractory tinnitus by neurostimulation

    NARCIS (Netherlands)

    Staal, M. J.; Holm, A. F.; Mooij, J. J. A.; Albers, F. W. J.; Bartels, H.

    2007-01-01

    Objective: Long-term evaluation of treatment of chronic, therapeutically refractory tinnitus by means of chronic electrical stimulation of the vestibulocochlear nerve. Patients: Inclusion criteria were severe, chronic, therapeutically refractory, unilateral tinnitus and severe hearing loss at the

  11. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  12. Phenomenological study on crystalline rock for evaluating of long-term behavior (Contract research)

    International Nuclear Information System (INIS)

    Okubo, Seisuke; Fukui, Katsunori; Hashiba, Kimihiro; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; Matsui, Hiroya; Sato, Toshinori

    2012-02-01

    Rock, under in situ conditions, shows time-dependent behavior such as creep/relaxation. With respect to high-level radioactive waste disposal, knowledge of the long-term mechanical stability of shafts and galleries excavated in rock is required, not only during construction and operation but also over a period of thousands of years after closure. Therefore, it is very important to understand the time-dependent behavior of rock for evaluating long-term mechanical stability. The purpose of this study is determining the mechanisms of time-dependent behavior of rock by precise testing, observation and measurement in order to develop methods for evaluating long-term mechanical stability of a rock mass. In the previous work, testing techniques have been established and basic evaluation methods were developed. Recently, some parameters needed for simulation of time-dependent behavior were determined at the Mizunami underground research facilities. However, sufficient data to check the reliability of the evaluation method for these parameters were not available. This report describes the results of the activities in fiscal year 2010. In Chapter 1, we provide an overview and the background to this study. In Chapter 2, the results of a long-term creep test on Tage tuff, started in fiscal year 1997 are described. In Chapter 3, the relation of loading-rate dependency of strength and stress dependency of creep life, the relation of time dependency, probability distribution and size effects are discussed to indicate more clearly the meaning of the value of 'n' to express the degree of time dependency of the rock. Furthermore, past studies concerning the value of 'n' are reviewed and the tests that could be carried out in future studies of mechanical properties and time dependency of Toki granite are considered in this Chapter. In Chapter 4, failure criterions of a rock mass considering time dependency are discussed. In Chapter 5, the FEM analysis implemented with a generalized

  13. Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    Science.gov (United States)

    Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho

    2004-12-01

    The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.

  14. Long-term damage management strategies for optimizing steam generator performance

    International Nuclear Information System (INIS)

    Egan, G.R.; Besuner, P.M.; Fox, J.H.; Merrick, E.A.

    1991-01-01

    Minimizing long-term impact of steam generator operating, maintenance, outage, and replacement costs is the goal of all pressurized water reactor utilities. Recent research results have led to deterministic controls that may be implemented to optimize steam generator performance and to minimize damage accumulation. The real dilemma that utilities encounter is the decision process that needs to be made in the face of uncertain data. Some of these decisions involve the frequency and extent of steam generator eddy current tube inspections; the definition of operating conditions to minimize the rate of corrosion reactions (T (hot) , T (cold) ; and the imposition of strict water quality management guidelines. With finite resources, how can a utility decide which damage management strategy provides the most return for its investment? Aptech Engineering Services, Inc. (APTECH) developed a damage management strategy that starts from a deterministic analysis of a current problem- primary water stress corrosion cracking (PWSCC). The strategy involves a probabilistic treatment that results in long-term performance optimization. By optimization, we refer to minimizing the total cost of operating the steam generator. This total includes the present value costs of operations, maintenance, outages, and replacements. An example of the application of this methodology is presented. (author)

  15. Evaluation of the Long-Term Stability and Temperature Coefficient of Dew-Point Hygrometers

    Science.gov (United States)

    Benyon, R.; Vicente, T.; Hernández, P.; De Rivas, L.; Conde, F.

    2012-09-01

    The continuous quest for improved specifications of optical dew-point hygrometers has raised customer expectations on the performance of these devices. In the absence of a long calibration history, users with a limited prior experience in the measurement of humidity, place reliance on manufacturer specifications to estimate long-term stability. While this might be reasonable in the case of measurement of electrical quantities, in humidity it can lead to optimistic estimations of uncertainty. This article reports a study of the long-term stability of some hygrometers and the analysis of their performance as monitored through regular calibration. The results of the investigations provide some typical, realistic uncertainties associated with the long-term stability of instruments used in calibration and testing laboratories. Together, these uncertainties can help in establishing initial contributions in uncertainty budgets, as well as in setting the minimum calibration requirements, based on the evaluation of dominant influence quantities.

  16. Corrosion issues in the long term storage of aluminum-clad spent nuclear fuels

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Peacock, H.B. Jr.; Sindelar, R.L.; Iyer, N.C.

    1996-01-01

    Approximately 8% of the spent nuclear fuel owned by the US Department of Energy is clad with aluminum alloys. The spent fuel must be either reprocessed or temporarily stored in wet or dry storage systems until a decision is made on final disposition in a repository. There are corrosion issues associated with the aluminum cladding regardless of the disposition pathway selected. This paper discusses those issues and provides data and analysis to demonstrate that control of corrosion induced degradation in aluminum clad spent fuels can be achieved through relatively simple engineering practices

  17. Long-term hearing preservation in vestibular schwannoma

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Thomsen, Jens; Tos, Mirko

    2010-01-01

    The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas.......The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas....

  18. Hot functional test chemistry - long term experience

    International Nuclear Information System (INIS)

    Vonkova, K.; Kysela, J.; Marcinsky, M.; Martykan, M.

    2010-01-01

    Primary circuit materials undergo general corrosion in high temperature, deoxygenated, neutral or mildly alkaline solutions to form thin oxide films. These oxide layers (films) serve as protective film and mitigate the further corrosion of primary materials. Inner chromium-rich oxide layer has low cation diffusion coefficients and thus control iron and nickel transport from the metal surface to the outer layer and their dissolution into the coolant. Much less corrosion products are generated by the compact, integral and stable oxide (passivation) layer. For the latest Czech and Slovak stations commissioned (Temelin and Mochovce) a modified Hot Functional Test (HFT) chemistry was developed in the NRI Rez. Chromium rich surface layer formatted due to modified HTF chemistry ensures lower corrosion rates and radiation field formation and thus also mitigates crud formation during operation. This procedure was also designed to prepare the commissioned unit for the further proper water chemistry practise. Mochovce 1 (SK) was the first station commissioned using these recommendations in 1998. Mochovce 2 (1999) and Temelin 1 and 2 (CZ - 2000 and 2002) were subsequently commissioned using these guidelines too. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. Samples from Mochovce indicated that duplex oxide layers up to 20 μm thick were produced, which were mainly magnetite substituted with nickel and chromium (e.g. 60-65% Fe, 18-28% Cr, 9-12% Ni, <1% Mn and 1-2% Si on a stainless steel primary circuit sample). Long term operation experience from both nuclear power plants are discussed in this paper. Radiation field, occupational radiation exposure and corrosion layers evolution during the first c. ten years of operation are

  19. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  20. Relationship between Corrosion Level of Rebar Embedded in Concrete, Corrosion Potential and Current Density Measured by Non-destructive Test Method

    International Nuclear Information System (INIS)

    Chung, Lan; Cho, Seung Ho; Roh, Young Sook; Kim, Joong Koo

    2004-01-01

    The purpose of this study is to identify corrosion mechanism and develop qualitative measurement method of corrosion level. Fist of all, structural behavior of each different level of corrosion states have been evaluated. And mathematical models that can predict corrosion level in terms of electric potential and corrosion intensity are proposed. Corrosion rate in reinforcing bar was investigated in this study using accelerated corrosion method due to electric potential differences based on Faradays law. Total 288 measurement spots were designed in terms of corrosion rates, diameter of reinforcing bars, and concrete cover thickness. Corrosion current densities and corrosion potentials of concrete were measured on these specimens using Gecor device. This study suggested the relationship between corrosion levels, and measured electric current density as follows

  1. Projection of primary energy in electricity generation with evaluation of demand and supply of energy in the medium-term horizon (2020), long-term (2035) and very long term (2060)

    International Nuclear Information System (INIS)

    Mafra, Olga Y.; Alvim, Carlos Feu; Eidelman, Frida; Guimaraes, Leonam dos Santos

    2013-01-01

    The Global Energy demand and the participation of electricity in scenarios of medium (2020), long (2035) and very long (2060) terms are estimated. It is also evaluated the share of different primary energies in electricity generation and their availability in the country. Three economic scenarios were considered and different hypothesis regarding the participation of nuclear energy were analyzed. (author)

  2. Evaluation of Long Term Behaviour of Polymers for Offshore Oil and Gas Applications

    Directory of Open Access Journals (Sweden)

    Le Gac P.-Y.

    2015-02-01

    Full Text Available Polymers and composites are very attractive for underwater applications, but it is essential to evaluate their long term behaviour in sea water if structural integrity of offshore structures is to be guaranteed. Accelerated test procedures are frequently required, and this paper will present three examples showing how the durability of polymers, in the form of fibres, matrix resins in fibre reinforced composites for structural elements, and thermal insulation coatings of flow-lines, have been evaluated for offshore use. The influence of the ageing medium, temperature, and hydrostatic pressure will be discussed first, then an example of the application of ageing test results to predict long term behavior of the thermal insulation coating of a flowline will be presented.

  3. Corrosion models for predictions of performance of high-level radioactive-waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-11-01

    The present plan for disposal of high-level radioactive waste in the US is to seal it in containers before emplacement in a geologic repository. A proposed site at Yucca Mountain, Nevada, is being evaluated for its suitability as a geologic repository. The containers will probably be made of either an austenitic or a copper-based alloy. Models of alloy degradation are being used to predict the long-term performance of the containers under repository conditions. The models are of uniform oxidation and corrosion, localized corrosion, and stress corrosion cracking, and are applicable to worst-case scenarios of container degradation. This paper reviews several of the models.

  4. Drywell corrosion stopped at Oyster Creek

    International Nuclear Information System (INIS)

    Lipford, B.L.; Flynn, J.C.

    1993-01-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results

  5. Magnetic strength and corrosion of rare earth magnets.

    Science.gov (United States)

    Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen

    2006-09-01

    Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.

  6. GATEWAY Demonstrations: Long-Term Evaluation of SSL Field Performance in Select Interior Projects

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilkerson, Andrea M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    The GATEWAY program evaluated the long-term performance characteristics (chromaticity change, maintained illuminance, and operations and maintenance) of LED lighting systems in four field installations previously documented in separate DOE GATEWAY reports.

  7. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    Science.gov (United States)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  8. A report on evaluation of research and development subjects in fiscal year 2001. Evaluation subject on the 'Middle- and long-term business program'

    International Nuclear Information System (INIS)

    2001-09-01

    The middle- and long-term business program determined by the Japan Nuclear Cycle Development Institute (JNC) is for elucidation of middle- and long-term targets to be expanded by JNC and is a base to promote individual R and D. This program is to be revised at a chance established on new long-term plan on research, development and application of nuclear energy on November, 2000 by the Committee of Atomic Energy under consideration of condition change after March, 1999. This report is a summary of evaluation results on the present middle- and long-term business program established by JNC, especially at a center of its revised portion, as a form of opinion. The evaluated results are described on two forms of the subject evaluation committees on the fast reactor and fuel cycle and on the wastes processing and disposal. (G.K.)

  9. Stress corrosion crack preventive method for long housing

    International Nuclear Information System (INIS)

    Sugano, Maki.

    1992-01-01

    If a neutron flux monitoring housing or a control rod driving mechanism (CRD) housing, as a long housing, is welded to reactor container, a portion of the long housing put under the effect of heat upon welding is converted to a sensitized austenite stainless steel, to cause stress corrosion cracks (SCC). Then, the inner surface of the a region of the long housing put under the effect of heat by welding is melted by a relatively low amount of heat input so that δ-ferrite tissues are caused to deposit in this region. With such procedures, crack sensitivity can be lowered, thereby enabling to improve SCC resistance. (T.M.)

  10. Evaluation of effects of long term exposure on lethal toxicity with mammals

    International Nuclear Information System (INIS)

    Verma, Vibha; Yu, Qiming J.; Connell, Des W.

    2014-01-01

    The relationship between exposure time (LT 50 ) and lethal exposure concentration (LC 50 ) has been evaluated over relatively long exposure times using a novel parameter, Normal Life Expectancy (NLT), as a long term toxicity point. The model equation, ln(LT 50 ) = aLC 50 ν + b, where a, b and ν are constants, was evaluated by plotting lnLT 50 against LC 50 using available toxicity data based on inhalation exposure from 7 species of mammals. With each specific toxicant a single consistent relationship was observed for all mammals with ν always <1. Use of NLT as a long term toxicity point provided a valuable limiting point for long exposure times. With organic compounds, the Kow can be used to calculate the model constants a and v where these are unknown. The model can be used to characterise toxicity to specific mammals and then be extended to estimate toxicity at any exposure time with other mammals. -- Highlights: • Model introduces a new parameter, normal life expectancy, to explain changes in toxicity with time. • Model is innovatory as it can be used to calculate toxicity at any, particularly long exposure times. • Toxicity is influenced by normal life expectancy of the organism particularly longer exposure times. • The model was applicable to all the mammals (7 species) evaluated. • The model can be used to predict toxicity at different exposure times with untested mammals species. -- The RLE model provides a mathematical description of the change in toxicity over time for a particular chemical. This represents a major advance on the use of Haber's Rule in toxicology

  11. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions - Part 1: Long term corrosion behaviour

    International Nuclear Information System (INIS)

    Sherar, B.W.A.; Keech, P.G.; Shoesmith, D.W.

    2011-01-01

    Highlights: → Anaerobic-aerobic cycling on pipeline steel forms two distinct surface morphologies. → Seventy-five percentage of the surface was covered by a black, compact layer ∼4.5 μm thick. → A tubercle, ∼3 to 4 mm in cross section, covered the remaining 25% of surface. → The tubercle cross section showed a single large pit ∼275 μm deep. - Abstract: The influence of anaerobic-aerobic cycling on pipeline steel corrosion was investigated in near-neutral carbonate/sulphate/chloride solution (pH 9) over 238 days. The corrosion rate increased and decreased as exposure conditions were switched between redox conditions. Two distinct corrosion morphologies were observed. The majority of the surface corroded uniformly to produce a black magnetite/maghemite layer approximately 4.5 μm thick. The remaining surface was covered with an orange tubercle, approximately 3-4 mm in cross section. Analysis of the tubercle cross section revealed a single large pit approximately 275 μm deep. Repeated anaerobic-aerobic cycling localized the corrosion process within this tubercle-covered pit.

  12. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    Science.gov (United States)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  13. AREVA's toolbox for long-term best performance and reliable operation of nuclear steam generators

    International Nuclear Information System (INIS)

    Drexler, Andreas; Weiss, Steffen; Caris, Neil; Stiepani, Christoph

    2015-01-01

    Long-term integrity and high performance of major plant systems and components are of uppermost importance for the successful operation of any power plant. AREVA's experience gathered with water-steam cycle chemistry treatments in more than 40 years yields the conclusion: Accumulation of corrosion products in SGs may result in local overheating and enrichment of impurities up to critical levels. This can lead to several degradation phenomena of the structural materials of the SGs. Therefore, minimization of corrosion product generation and prevention of deposit accumulation is required. The objective of AREVA's asset management program is to support operators by minimizing corrosion damage and performance losses of water-steam cycle systems and components and thereby to maximize the availability and economic performance of the plant. Such asset management program is in principle a closed cycle process. It is based on control, corrective and preventive measures. The objective of control measure is deriving a widespread assessment of the corrosion status of the steam-water cycle which yields to weak points and identifying the best suited corrective and/or preventive measures. In the subsequent steps appropriate measures which improve the current status or counteract on identified issues are identified and applied. Corrective measures, likes mechanical and/or chemical cleaning are targeting the minimization of negative influence on plant performance caused by corrosion in the steam-water cycle. Complementary to corrective measures are preventive ones, like optimization of pH strategy and AREVA's FFA technology could by applied. They are focusing on the origin of corrosion product generation. AREVA is offering a toolbox for long-term best performance and reliable operation of NPPs. (author)

  14. Study on the system development for evaluating long-term alteration of hydraulic field in Near Field. 3

    International Nuclear Information System (INIS)

    Okutu, Kazuo; Morikawa, Seiji; Taguchi, Katsunori

    2004-02-01

    For the high performance evaluation of reliability of TRU waste repository, the system development for evaluating long-term alteration in consideration of the changes action of barrier materials of hydraulic field in Near Fields is required. In this research, the system development for evaluating the long-term alteration of hydraulic field in near field was examined. The 'Evidential Support logic' for ensuring the long-term stability of the repository was developed and evaluated. Furthermore, the developed chemical/mechanical alteration action analysis system was verified and improved. The system was coupled for the long-term alteration evaluation analysis. The research results of this year are shown below. 1) A logic tree was constructed for the purpose of supporting the high performance evaluation of reliability of a TRU waste repository. The thesis that the long term safety of the TRU waste repository is preserved was ramified into subsidiary theses until all the final theses were supported by objective evidence. The probability of the subsidiary thesis supporting the upper thesis was established by interviewing specialists. The reliability of the thesis was evaluated by applying present knowledge. Furthermore, the sensitivity of the reliability of the highest thesis to increasing reliability of evidence was investigated. Appropriate targets for experiment and analysis were presented based on the sensitivity of evidence. 2) The object of the hydraulic - chemical analysis was determined from the above-mentioned logic tree. The analysis system was improved to perform the 2D analysis. A user interface was developed to simplify the setting of analysis conditions. The system was demonstrated by comparing the results with the experimental results. Furthermore, the system was applied to the near field problem to fix the condition that the safety of the TRU waste repository is preserved. 3) Both the model of bentonite material and the model of cement material were

  15. ELECTROCHEMICAL STUDIES OF URANIUM METAL CORROSION MECHANISM AND KINETICS IN WATER

    International Nuclear Information System (INIS)

    Boudanova, Natalya; Maslennikov, Alexander; Peretroukhine, Vladimir F.; Delegard, Calvin H.

    2006-01-01

    During long-term underwater storage of low burn-up uranium metal fuel, a corrosion product sludge forms containing uranium metal grains, uranium dioxide, uranates and, in some cases, uranium peroxide. Literature data on the corrosion of non-irradiated uranium metal and its alloys do not allow unequivocal prediction of the paragenesis of irradiated uranium in water. The goal of the present work conducted under the program 'CORROSION OF IRRADIATED URANIUM ALLOYS FUEL IN WATER' is to study the corrosion of uranium and uranium alloys and the paragenesis of the corrosion products during long-term underwater storage of uranium alloy fuel irradiated at the Hanford Site. The elucidation of the physico-chemical nature of the corrosion of irradiated uranium alloys in comparison with non-irradiated uranium metal and its alloys is one of the most important aspects of this work. Electrochemical methods are being used to study uranium metal corrosion mechanism and kinetics. The present part of work aims to examine and revise, where appropriate, the understanding of uranium metal corrosion mechanism and kinetics in water

  16. Life assessment of gas turbine blades after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, Pertti; Salonen, Jorma [VTT, Espoo (Finland); Maekinen, Sari [Helsingin Energia, Helsinki (Finland); Karvonen, Ikka; Tanttari, Heikki [Lappeenrannan Laempoevoima, Lappeenranta (Finland); Kangas, Pekka [Neste Oil, Kilpilahti (Finland); Scholz, Alfred [Technische Univ. Darmstadt (Germany); Vacchieri, Erica [Ansaldo Richerche, Genoa (Italy)

    2010-07-01

    Turbine blade samples from three land based gas turbines have been subjected to systematic condition and life assessment after long term service (88000 - 109000 equivalent operating hours, eoh), when approaching the nominal or suggested life limits. The blades represent different machine types, materials and design generations, and uncooled blading outside the hottest front end of the turbine, i.e. blades with relatively large size and considerable expected life. For a reasonable assessment, a range of damage mechanisms need to be addressed and evaluated for the impact in the residual life. The results suggested significant additional safe life for all three blade sets. In some cases this could warrant yet another life cycle comparable to that of new blades, even after approaching the nominal end of life in terms of recommended equivalent operating hours. This is thought to be partly because of base load combined cycle operation and natural gas fuel, or modest operational loading if the design also accounted for more intensive cycling operation and more corrosive oil firing. In any case, long term life extension is only appropriate if not intervened by events of overloading, overheating or other sudden events such as foreign object damage (FOD), and if supported by the regular inspection and maintenance program to control in-service damage. Condition based assessment therefore remains an important part of the blade life management after the decision of accepted life extension. (orig.)

  17. Sexuality and Physical Intimacy in Long Term Care: Sexuality, long term care, capacity assessment

    OpenAIRE

    Lichtenberg, Peter A.

    2014-01-01

    Sexuality and sexual needs in older adults remains a neglected area of clinical intervention, particularly so in long term care settings. Because older adults in medical rehabilitation and long term care beds present with significant frailties, and often significant neurocognitive disorders it makes it difficult for occupational therapists and other staff to evaluate the capacity of an older adult resident to participate in sexual relationships. The current paper reviews the current literatur...

  18. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P; Spahiu, K; Bruno, J [MBT Tecnologia Ambiental, Cerdanyola (Spain)

    1994-09-01

    A new modelling approach for canister corrosion which emphasises chemical processes and diffusion at the bentonite-canister interface is presented. From the geochemical boundary conditions corrosion rates for both an anoxic case and an oxic case are derived and uncertainties thereof are estimated via sensitivity analyses. Time scales of corrosion are assessed by including calculations of the evolution of redox potential in the near field and pitting corrosion. This indicates realistic corrosion depths in the range of 10{sup -7} and 4*10{sup -5} mm/yr, respectively for anoxic and oxic corrosion. Taking conservative estimates, depths are increased by a factor of about 200 for both cases. From these predictions it is suggested that copper canister corrosion does not constitute a problem for repository safety, although certain factors such as temperature and radiolysis have not been explicitly included. The possible effect of bacterial processes on corrosion should be further investigated as it might enhance locally the described redox process. 35 refs, 11 figs, 6 tabs.

  19. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions

    International Nuclear Information System (INIS)

    Wersin, P.; Spahiu, K.; Bruno, J.

    1994-09-01

    A new modelling approach for canister corrosion which emphasises chemical processes and diffusion at the bentonite-canister interface is presented. From the geochemical boundary conditions corrosion rates for both an anoxic case and an oxic case are derived and uncertainties thereof are estimated via sensitivity analyses. Time scales of corrosion are assessed by including calculations of the evolution of redox potential in the near field and pitting corrosion. This indicates realistic corrosion depths in the range of 10 -7 and 4*10 -5 mm/yr, respectively for anoxic and oxic corrosion. Taking conservative estimates, depths are increased by a factor of about 200 for both cases. From these predictions it is suggested that copper canister corrosion does not constitute a problem for repository safety, although certain factors such as temperature and radiolysis have not been explicitly included. The possible effect of bacterial processes on corrosion should be further investigated as it might enhance locally the described redox process. 35 refs, 11 figs, 6 tabs

  20. Metallic materials corrosion in the CRNL radwaste incinerator

    International Nuclear Information System (INIS)

    Tapping, R.L.; McVey, E.G.; Disney, D.J.

    1987-01-01

    Corrosion coupon evaluation and in-service materials performance for the CRNL waste incinerator has been carried out since 1980. Data are presented to show that types 309, 310 and 446 stainless steel, Alloy 625 and Alloy 333 all perform well in short-term tests in the afterburner environment (850-1000 0 C) but are subject to sigma-phase embrittlement and grain boundary carbide precipitation following long-term exposures. Several alloys performed satisfactorily in the primary chamber (500 0 C), and the material of construction, type 310 stainless steel, continues to provide good service

  1. From nuclear field to cultural heritage conservation - Understanding of the long term corrosion mechanisms of ferrous alloys through multi scale characterization

    International Nuclear Information System (INIS)

    Neff, D.

    2012-01-01

    The corrosion of metals such as steel presents a high variability depending on the environments of alteration (aqueous aerated and deaerated atmosphere, binders and concrete...) and durations considered. As part of my research, in order to understand these mechanisms over long periods the study of archaeological artefacts corroded over tens to hundreds of years has been chosen. This research was crucial in many application areas, ranging from the preservation of objects of cultural heritage and studies for the storage and disposal of radioactive waste in deep geological environment. In this area the archaeological artefacts constitute unparalleled analogues for the study of corrosion of steel elements embedded in the multi-barrier to separate the radionuclides from the biosphere. Characterization of corrosion systems was conducted through a methodology based on the coupling of multi scale techniques for materials characterization (SEM-EDS, Raman microspectroscopy, micro XRD, XAS synchrotron radiation...) providing information on the location, morphology, composition and structure of the crystalline phases present in a layer of corrosion products. Moreover, studies of the reaction processes and of the chemical or electrochemical reactivity of the systems by re-corrosion experiments of archaeological objects in labeled medium (D 2 O, 18 O) or under external stimuli (chemical, electrochemical) have highlighted phenomena controlling the corrosion process at the micrometric scale. Perspectives of my research are the study of further constraints of the corrosion processes such as the presence of bacteria in the environment, the study of processes at the nano-scale (TEM, STXM) but also the methodological development of new analytical approaches based on a combination of morphological imaging methods (FEG-SEM), composition (EDS), structure (μXRD under synchrotron radiation) or hyper spectral (Raman microspectroscopy) to determine the synergy of the nano and microscale

  2. Long Term Corrosion Experiment of Steel Rebar in Fly Ash-Based Geopolymer Concrete in NaCl Solution

    Directory of Open Access Journals (Sweden)

    Y. P. Asmara

    2016-01-01

    Full Text Available This research focuses on an experimental investigation to identify the effects of fly ash on the electrochemical process of concrete during the curing time. A rebar was analysed using potentiostat to measure the rest potential, polarization diagram, and corrosion rate. Water-to-cement ratio and amount of fly ash were varied. After being cured for 24 hours at a temperature of 65°C, the samples were immersed in 3.5% of NaCl solution for 365 days for electrochemical measurement. Measurements of the half-cell potential and corrosion current density indicated that the fly ash has significant effects on corrosion behaviour of concrete. Although fly ash tends to create passivity on anodic current, it increases corrosion rate. The corrosion potential of this concrete mixture decreases compared to concrete without fly ash. From the result, it can be summarized that concrete mixture with 70% of OPC (Ordinary Portland Cement and 30% fly ash has shown the best corrosion resistance.

  3. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  4. TEM characterization of corrosion products formed on a SS-15ZR alloy

    International Nuclear Information System (INIS)

    Luo, J. S.; Abraham, D. P.

    2000-01-01

    The corrosion products formed on a stainless steel-15Zr (SS-15Zr) alloy have been characterized by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS). Examination of alloy particles that were immersed in 90 C deionized water for two years revealed that different corrosion products were formed on the stainless steel and intermetallic phases. Two corrosion products were identified on an austenite particle: trevorite (NiFe 2 O 4 ) in the layer close to the metal and maghemite (Fe 2 O 3 ) in the outer layer. The corrosion layer formed on the intermetallic was uniform, adherent, and amorphous. The EDS analysis indicated that the layer was enriched in zirconium when compared with the intermetallic composition. High-resolution TEM images of the intermetallic-corrosion layer interface show an interlocking metal-oxide interface which may explain the relatively strong adherence of the corrosion layer to the intermetallic surface. These results will be used to evaluate corrosion mechanisms and predict long-term corrosion behavior of the alloy waste form

  5. Physicochemical properties and long-term behavior of french R7T7 nuclear waste glass

    International Nuclear Information System (INIS)

    Vernaz, E.

    1990-01-01

    The French R7T7 nuclear glass composition was carefully selected to allow incorporation of some thirty different oxides found in fission product solutions. The resulting glass exhibits very low crystallization, and its physical and chemical properties are very similar to those of standard industrial glasses. Nuclear glasses have been shown to withstand α doses corresponding to several hundred thousand years under repository conditions. Predicting the long-term behavior of fission product glasses subjected to aqueous corrosion is no doubt the most difficult aspect of the problem. Predictions are necessarily based on mathematical models. A substantial research effort has been undertaken to identify all the basic corrosion mechanisms liable to control long-term alteration. These mechanisms are now relatively well understood, and provide the basis for developing the indispensable models. Realistic storage conditions exist under which glass alteration occurs at a very slow rate, and can fulfill its role as the first containment barrier for several tens of thousands of years

  6. Approach for evaluating the general and localized corrosion of carbon-steel containers for nuclear waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Sharland, S.M.; Tasker, P.W.

    1987-01-01

    The paper considers the long term corrosion of carbon-steel containers for heat generating nuclear waste in a granitic repository. Under such conditions carbon steel may exhibit general, localized or passive corrosion behavior depending on the exact composition and redox potential of the groundwater contacting the containers; localized corrosion being of most concern because it has the fastest propagation rate. It is well established, however, that such localized corrosion is only possible when the environment is sufficiently oxidizing to maintain a positive potential gradient between the cathodic surface and the corrosion sites, which requires that species with oxidizing potentials greater than water need to be present. This fact provides a basis for estimating the periods during which containers may be subject to localized and subsequently to general corrosion, and hence for making an overall assessment of the metal allowance required for a specified container life. A model for the diffusion transport of oxygen has been developed, and a sensitivity analysis has shown that the period of possible localized attack is strongly dependent on the passive film leakage current, the radiation dose rate and the oxygen diffusion coefficient. 20 references, 5 figures

  7. Corrosion monitoring of storage bins for radioactive calcines

    International Nuclear Information System (INIS)

    Hoffman, T.L.

    1975-01-01

    Highly radioactive liquid waste produced at the Idaho Chemical Processing Plant is calcined to a granular solid for long term storage in stainless steel bins. Corrosion evaluation of coupons withdrawn from these bins indicates excellent performance for the materials of construction of the bins. At exposure periods of up to six years the average penetration rates are 0.01 and 0.05 mils per year for Types 304 and 405 stainless steels, respectively. (auth)

  8. Mechanisms of the multi-secular atmospheric corrosion of ferrous alloys: The case of the Metz cathedral reinforcements

    International Nuclear Information System (INIS)

    Bouchar, Marie

    2015-01-01

    The study of the mechanisms of the multi-secular atmospheric corrosion of ferrous alloys has various applications, from the preservation and restoration of cultural heritage metals, to the evaluation of their long term behaviour, specifically when they are used for the storage containers surrounding nuclear wastes. The study of the corrosion product layers (CPL) developed during 5 centuries on the Metz cathedral reinforcements brings new results for a better understanding of the complex processes involved in the formation of the atmospheric CPL. The phases and chemical elements constituting the CPL of these reinforcements were characterized at the micrometric scale (μDRX, Raman μ-spectroscopy (μRS), SEM-EDS). Results specifically showed that these CPL differ from other multi-secular systems previously studied by their very high content in ferri-hydrite (5Fe 2 O 3 , 9H 2 O). This very reactive phase is distributed in the whole CPL and mixed at the microscopic scale with goethite (a-FeOOH) and lepidocrocite (g-FeOOH). Diffusion experiments of bromide ions followed by in situ X-ray μ-fluorescence allowed a better understanding of the transport of dissolved species in the porous network of the CPL. Furthermore, a test of the corrosion system behavior in conditions simulating the wetting stage of the RH cycle of atmospheric corrosion, also followed in situ by μRS, highlighted the reduction of ferri-hydrite at the metal/CPL interface. These results allowed to verify for the first time a fundamental hypothesis about the mechanisms of very long term atmospheric corrosion. Finally, re-corrosion experiments of the corrosion system were monitored in a climatic chamber simulating accelerated atmospheric cycles in an 18 O-labelled environment. Then the detection of the 18 O isotope linked to the precipitated phases, by nuclear reaction analysis using a nuclear microprobe, allowed to localise the formation sites of the new corrosion products. All these results improve the

  9. Component wall thinning and a corrosion-erosion monitoring system

    International Nuclear Information System (INIS)

    Bogard, T.; Batt, T.; Roarty, D.

    1989-01-01

    Since a 1986 incident involving failure of a piping elbow due to erosion-corrosion, the electric utility industry has been actively developing technology for implementing long term programs to address corrosion-erosion. This paper describes a typical corrosion-erosion monitoring program, the types of non-destructive examinations (NDE) performed on components, and the extensive NDE data obtained when the program is applied to components in a power plant. To facilitate evaluation of the NDE data on components, an automated NDE data manipulation and data display system is advisable and perhaps necessary due to the large amounts of NDE data typically obtained during a program. Such a comprehensive corrosion-erosion monitoring system (CEMS) needs to be integral with methods for selection of inspection locations and perform NDE data analysis to help in replace, repair, or run decisions. The structure for one CEMS is described which uses IBM PC compatible hardware and a set of software addressing most data evaluation and decision making needs. CEMS features include automated input/output for typical NDE devices, database structuring, graphics outputs including color 2-D or 3-D contour plots of components, trending and predictive evaluations for future inspection planning, EC severity determination, integration of piping isometrics and component properties, and desktop publishing capabilities

  10. Long-term storage of compressed radioactive krypton in cylinders

    International Nuclear Information System (INIS)

    Niephaus, D.; Nommensen, O.; Bruecher, H.

    1982-01-01

    The recommendations of the German Radiation Protection Commission necessitate the separation of the radioactive noble gas krypton-85 (Kr-85) produced in large LWR reprocessing plants from the dissolver off-gas. A possible method of removal is a long-term storage of the compressed noble gas above ground in cylinders. The aim of the present study is to develop such a storage concept and evaluate its feasibility under the aspects of safety and cost. After having been filled, the gas cylinders are placed separately into transport racks serving to protect the cylinders. Following this, the cylinders are transferred out of the filling station in a transport cask, conveyed to the storage building and stored there. The storage building protects the gas cylinders against external impacts. The storage cells constitute a second barrier against the release of Kr-85. The heat produced during decay of the Kr-85 in the gas cylinders is carried off by natural convection of the air circulating in the storage cells. To study possible corrosion attack on special steels due to rubidium, experiments were conducted at 200 0 C during test periods up to 3500h. In order to compare properties at elevated temperatures, corrosion experiments were conducted at 500 0 C, which is far above the maximum licensed storage temperature of 200 0 C. Experiments were conducted concerning the adsorption of krypton on various adsorbents, thus reducing the pressure inside the gas cylinder during storage. A cost estimate based on 1980 prices

  11. Long-term release from high level waste glass. Part IV. The effect of leaching mechanism

    International Nuclear Information System (INIS)

    Freude, E.; Grambow, B.; Lutze, W.; Rabe, H.; Ewing, R.C.

    1984-01-01

    A linear time dependence for the corrosion under near saturation conditions is considered, and a rate equation in the QTERM code is used to model the long-term behavior of the German glass, C-31-3EC, JSS A, and SRL TDS 131. 22 refs., 4 figs., 1 tab

  12. Random fractional ultrapulsed CO2 resurfacing of photodamaged facial skin: long-term evaluation.

    Science.gov (United States)

    Tretti Clementoni, Matteo; Galimberti, Michela; Tourlaki, Athanasia; Catenacci, Maximilian; Lavagno, Rosalia; Bencini, Pier Luca

    2013-02-01

    Although numerous papers have recently been published on ablative fractional resurfacing, there is a lack of information in literature on very long-term results. The aim of this retrospective study is to evaluate the efficacy, adverse side effects, and long-term results of a random fractional ultrapulsed CO2 laser on a large population with photodamaged facial skin. Three hundred twelve patients with facial photodamaged skin were enrolled and underwent a single full-face treatment. Six aspects of photodamaged skin were recorded using a 5 point scale at 3, 6, and 24 months after the treatment. The results were compared with a non-parametric statistical test, the Wilcoxon's exact test. Three hundred one patients completed the study. All analyzed features showed a significant statistical improvement 3 months after the procedure. Three months later all features, except for pigmentations, once again showed a significant statistical improvement. Results after 24 months were similar to those assessed 18 months before. No long-term or other serious complications were observed. From the significant number of patients analyzed, long-term results demonstrate not only how fractional ultrapulsed CO2 resurfacing can achieve good results on photodamaged facial skin but also how these results can be considered stable 2 years after the procedure.

  13. Bio-corrosion for underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Libert, M.; Esnault, L.; Esnault, L.; Feron, D.

    2011-01-01

    The safety disposal of high level nuclear waste (HLNW) is the major breakthrough allowing socially acceptable development of nuclear energy over the coming decades. The French concept for geological disposal of HLNW is based on a multi-barrier system made by metallic containers confined in natural clay. The main alteration parameter is water arriving on waste after the corrosion of metallic components. The anoxic aqueous corrosion phenomena are studied in order to evaluate the confinement capacity of metallic barriers. The discover of active micro-organisms in deep clayey environments raises the question of the impact of micro-organisms on corrosion parameters due to processes such as 'biologically induced corrosion'. Despite of extreme conditions in deep nuclear geological disposal (redox conditions, high pressure and temperature, irradiation), bacterial activity will adapt and survive in these environments. Anoxic corrosion of nuclear waste containers and radiolysis will produce H 2 , which represents a new energetic source for bacterial development, especially in this environment that contains a low amount of biodegradable organic matter. Besides, the formation of Fe(III)-bearing minerals such as magnetite (Fe 3 O 4 ) as corrosion products will provide electron acceptors favouring the development of bacteria. Bio-corrosion studies of nuclear waste disposal need to investigate the activity of hydrogenotrophic bacteria able to reduce iron oxides (passivation layer) or sulfates (iron reducing bacteria and sulfate reducing bacteria) in order to evaluate their impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level nuclear waste containment. (authors)

  14. Study on crystalline rock for evaluating method of long-term behavior. FY2012 (Contract research)

    International Nuclear Information System (INIS)

    Fukui, Katsunori; Hashiba, Kimihiro; Tanno, Takeo; Hikima, Ryoichi; Sanada, Hiroyuki; Sato, Toshinori

    2013-12-01

    Rock shows time-dependent behavior such as creep/relaxation. With respect to high-level radioactive waste disposal, knowledge of the long-term mechanical stability of shafts and galleries excavated in rock are required, over a period of thousands of years after closure as well as during construction and operation. Therefore, it is very important to understand the time-dependent behavior of rock for evaluating long-term mechanical stability. The purpose of this study is to determine the mechanisms of time-dependent behavior of rock by the precise test (e.g. laboratory creep test), observation and measurement and to develop methods for evaluating long-term mechanical stability. In previous works, testing techniques were established and basic evaluation methods were developed. Recently, some parameters, which required for simulation of time-dependent behavior, were determined for the modeling of biotite granite (Toki granite) distributed around the Mizunami underground research laboratory. However, we were not able to obtain enough data to assess the reliability of the method to evaluate these parameters. This report describes the results of the research activities carried out in fiscal year 2012. In Chapter 1, we provide background and an overview of this study. In Chapter 2, the results of a long-term creep test on Tage tuff, started in fiscal year 1997, are described. In Chapter 3, the experimental results concerning the loading-rate dependency of rock strength were examined to understand the time-dependent behavior of rock. In Chapter 4, the stability of tunnels, under conditions which rock stress is larger than that around a circular tunnel, were examined to obtain useful information on the future plan for in-situ tests in the underground research laboratory. (author)

  15. Long-term performance of structures comprising nuclear power plants PART 1: Deterioration assessment of nuclear power station buildings PART 2: Long-term stability and the leak-tightness of reactor containments

    International Nuclear Information System (INIS)

    Pocock, D.C.; Worthington, J.C.; Oberpichler, R.; Van Exel, H.; Beukelmann, D.; Huth, R.; Rose, B.

    1990-01-01

    The objective of this research was to study the long-term performance of structures comprising nuclear power plants. The time period of interest for this study is 140 years (this figure is based on maximum periods of 40 years for operation and 100 years of storage). It was divided in two parts: - the first based on four UK nuclear power plants examine the principle deterioration mechanism of reinforced structure which is chloride ingress and carbonation penetration - the second based on 2 German nuclear power plants examine the long term behaviour of reinforced and prestressed concrete and also the corrosion of steel containments with particular reference on plastic seals and potential risk areas

  16. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  17. Mechanistic modelling of the corrosion behaviour of copper nuclear fuel waste containers

    Energy Technology Data Exchange (ETDEWEB)

    King, F; Kolar, M

    1996-10-01

    A mechanistic model has been developed to predict the long-term corrosion behaviour of copper nuclear fuel waste containers in a Canadian disposal vault. The model is based on a detailed description of the electrochemical, chemical, adsorption and mass-transport processes involved in the uniform corrosion of copper, developed from the results of an extensive experimental program. Predictions from the model are compared with the results of some of these experiments and with observations from a bronze cannon submerged in seawater saturated clay sediments. Quantitative comparisons are made between the observed and predicted corrosion potential, corrosion rate and copper concentration profiles adjacent to the corroding surface, as a way of validating the long-term model predictions. (author). 12 refs., 5 figs.

  18. Evaluation of effects of long term exposure on lethal toxicity with mammals.

    Science.gov (United States)

    Verma, Vibha; Yu, Qiming J; Connell, Des W

    2014-02-01

    The relationship between exposure time (LT50) and lethal exposure concentration (LC50) has been evaluated over relatively long exposure times using a novel parameter, Normal Life Expectancy (NLT), as a long term toxicity point. The model equation, ln(LT50) = aLC50(ν) + b, where a, b and ν are constants, was evaluated by plotting lnLT50 against LC50 using available toxicity data based on inhalation exposure from 7 species of mammals. With each specific toxicant a single consistent relationship was observed for all mammals with ν always mammals and then be extended to estimate toxicity at any exposure time with other mammals. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Thermal spray coating for corrosion under insulation (CUI) prevention

    Science.gov (United States)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  20. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  1. Lifetime evaluation of superheater tubes exposed to steam oxidation, high temperature corrosion and creep

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, N [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark); Hede Larsen, O; Blum, R [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark)

    1996-12-01

    Advanced fossil fired plants operating at high steam temperatures require careful design of the superheaters. The German TRD design code normally used in Denmark is not precise enough for the design of superheaters with long lifetimes. The authors have developed a computer program to be used in the evaluation of superheater tube lifetime based on input related to tube dimensions, material, pressure, steam temperature, mass flux, heat flux and estimated corrosion rates. The program is described in the paper. As far as practically feasible, the model seems to give a true picture of the reality. For superheaters exposed to high heat fluxes or low internal heat transfer coefficients as is the case for superheaters located in fluidized bed environments or radiant environments, the program has been extremely useful for evaluation of surface temperature, oxide formation and lifetime. The total uncertainty of the method is mainly influenced by the uncertainty of the determination of the corrosion rate. More precise models describing the corrosion rate as a function of tube surface temperature, fuel parameters and boiler parameters need to be developed. (au) 21 refs.

  2. EVALUATION OF RADIONUCLIDE ACCUMULATION IN SOIL DUE TO LONG-TERM IRRIGATION

    International Nuclear Information System (INIS)

    De Wesley Wu

    2006-01-01

    Radionuclide accumulation in soil due to long-term irrigation is an important part of the model for predicting radiation dose in a long period of time. The model usually assumes an equilibrium condition in soil with a constant irrigation rate, so that radionuclide concentration in soil does not change with time and can be analytically solved. This method is currently being used for the dose assessment in the Yucca Mountain project, which requires evaluating radiation dose for a period of 10,000 years. There are several issues associated with the method: (1) time required for the equilibrium condition, (2) validity of constant irrigation rate, (3) agricultural land use for a long period of time, and (4) variation of a radionuclide concentration in water. These issues are evaluated using a numerical method with a simple model built in the GoldSim software. Some key radionuclides, Tc-99, Np-237, Pu-239, and Am-241 are selected as representative radionuclides. The results indicate that the equilibrium model is acceptable except for a radionuclide that requires long time to accumulate in soil and that its concentration in water changes dramatically with time (i.e. a sharp peak). Then the calculated dose for that radionuclide could be overestimated using the current equilibrium method

  3. In situ corrosion tests on HLW glass as part of a larger approach

    International Nuclear Information System (INIS)

    Van Iseghem, P.

    1997-01-01

    In-situ corrosion tests were performed on various candidate high-level waste glasses in the underground laboratory in clay underneath SCK x CEN. The tests exposed the glass samples directly to the Boom clay rock, for maximum durations of 7.5 years. We succeeded to interpret the corrosion data at 90 deg C in terms of dissolution mechanisms, and we concluded that the glass composition has a determining effect on the corrosion stability. The data from our in-situ tests were of high relevance for estimating the long-term behaviour of the glasses. The long-term in-situ tests provide corrosion data which show different trends than other corrosion tests, e.g. shorter duration tests in Boom clay, or tests in deionized water. The initial dissolution rate using MCC1 test at 90 deg C is about the same for the three glasses discussed, but the longest duration in Boom clay at 90 deg C shows a difference in mass loss of about 25 times. We finally present some ideas on how the corrosion tests can meet the needs, such as the modelling of the glass corrosion or providing input in the performance assessment. (author)

  4. An approach for evaluating the general and localised corrosion of carbon steel containers for nuclear waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Sharland, S.M.; Tasker, P.W.

    1987-06-01

    The paper considers the long term corrosion of carbon steel containers for heat generating nuclear waste in a granitic repository. Under such conditions carbon steel may exhibit general, localised or passive corrosion behaviour depending on the exact composition and redox potential of the groundwater contacting the containers; localised corrosion being of most concern because it has the fastest propagation rate. It is well established, however, that such localised corrosion is only possible when the environment is sufficiently oxidising to maintain a positive potential gradient between the cathodic surface and the corrosion sites, which requires that species which oxidising potentials greater than water need to be present. This fact provides a basis for estimating the periods during which containers may be subject to localised and subsequently to general corrosion, and hence for making an overall assessment of the metal allowance required for a specified container life. A model for the diffusion transport of oxygen has been developed, and a sensitivity analysis has shown that the period of possible attack is strongly dependent on the passive film leakage current, the radiation dose rate and the oxygen diffusion coefficient. (orig.)

  5. EVALUATION OF CORROSION COST OF CRUDE OIL PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    ADESANYA A.O.

    2012-08-01

    Full Text Available Crude oil production industry as the hub of Nigeria Economy is not immune to the global financial meltdown being experienced world over which have resulted in a continual fall of oil price. This has necessitated the need to reduce cost of production. One of the major costs of production is corrosion cost, hence, its evaluation. This research work outlined the basic principles of corrosion prevention, monitoring and inspection and attempted to describe ways in which these measures may be adopted in the context of oil production. A wide range of facilities are used in crude oil production making it difficult to evaluate precisely the extent of corrosion and its cost implication. In this study, cost of corrosion per barrel was determined and the annualized value of corrosion cost was also determined using the principles of engineering economy and results analyzed using descriptive statistics. The results showed that among the corrosion prevention methods identified, the use of chemical treatment gave the highest cost contribution (81% of the total cost of prevention while coating added 19%. Cleaning pigging and cathodic protection gave no cost. The contribution of corrosion maintenance methods are 60% for repairs and 40% for replacement. Also among the corrosion monitoring and inspection identified, NDT gave the highest cost contribution of 41% of the total cost, followed by coating survey (34%. Cathodic protection survey and crude analysis gives the lowest cost contribution of 19% and 6% respectively. Corrosion control cost per barrel was found to be 77 cent/barrel. The significance of this cost was not much due to high price of crude oil in the international market. But the effect of corrosion in crude oil processing takes its toll on crude oil production (i.e. deferment.

  6. Localized corrosion of high performance metal alloys in an acid/salt environment

    Science.gov (United States)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  7. Shadow corrosion evaluation in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Sanders, Ch.; Lysell, G.

    2000-01-01

    Post-irradiation examination has shown that increased corrosion occurs when zirconium alloys are in contact with or in proximity to other metallic objects. The observations indicate an influence of irradiation from the adjacent component as the enhanced corrosion occurs as a 'shadow' of the metallic object on the zirconium surface. This phenomenon could ultimately limit the lifetime of certain zirconium alloy components in the reactor. The Studsvik R2 materials test reactor has an In-Core Autoclave (INCA) test facility especially designed for water chemistry and materials research. The INCA facility has been evaluated and found suitable for shadow corrosion studies. The R2 reactor core containing the INCA facility was modeled with the Monte Carlo N-Particle (MCNP) code in order to evaluate the electron deposition in various materials and to develop a hypothesis of the shadow corrosion mechanism. (authors)

  8. Corrosion of nickel and stainless steels in concentrated lithium hydroxide solutions

    International Nuclear Information System (INIS)

    Graydon, J.W.; Kirk, D.W.

    1990-06-01

    The corrosion behaviour of four alloys in 3 and 5 mol/L lithium hydroxide solutions under a hydrogen atmosphere at 95 degrees C was investigated. Corrosion of Nickel 200 and the stainless steels 316, 316L, and E-Brite 26-1 was assessed in two sets of immersion tests lasting 10 and 136 days. Corrosion rates were determined by weight loss, susceptibility to stress corrosion cracking was evaluated using U-bends, and the details of the corrosion process were studied on specimens with a mirror finish using light and electron microscopy, x-ray spectrometry and mapping, and x-ray diffraction. The long term corrosion rates were low for all alloys ( 2 , β-LiFeO 2 , and a very iron-rich β-LiFe 5 0 8 . The passivating layer on the nickel was Ni(OH) 2 . The underlying metal corroded evenly except for the 316 stainless steels. These showed a uniform intergranular corrosion with minor drop-out of smaller grains likely because of segregation of impurities to the grain boundaries. The walls of these intergranular crevices were covered with a passivating layer of chromium oxide. (8 figs., 5 tabs., 11 refs.)

  9. The use of natural analogues in the long-term extrapolation of glass corrosion processes

    International Nuclear Information System (INIS)

    Lutze, W.; Grambow, B.; Ewing, R.C.; Jercinovic, M.J.

    1987-01-01

    One of the most critical aspects of nuclear waste management is the extrapolation of materials and systems behavior from short term experiments, typically on the order of one year, over comparatively very long periods of time. Safety and risk analyses have to rely on extrapolations and the respective findings have to be evaluated in the frame of licensing procedures. In this unique situation, any source of information that can lend support to the credibility of predicted behavior, should be exploited and investigated with great care. There are natural systems, e.g. the Oklo reactor, which can provide evidence of radionuclide migration over very long periods of time and thus help to answer specific questions of interest. Natural glasses and minerals can serve as analogues for both glass and crystalline nuclear waste forms, and the alteration of the natural materials can be studied to infer information on the behavior of the man-made products in geologic environments. This paper reviews most of the work performed by the authors and their colleagues in this field together with information available from literature and discusses the extent to which natural glasses can be used to validate or verify predictions. (author)

  10. Corrosion of container and infrastructure materials under clay repository conditions

    International Nuclear Information System (INIS)

    Debruyn, W.; Dresselaers, J.; Vermeiren, P.; Kelchtermans, J.; Tas, H.

    1991-01-01

    With regard to the disposal of high-level radioactive waste, it was recommended in a IAEA Technical Committee meeting to perform tests in realistic environments corresponding with normal and accidental conditions, to qualify and apply corrosion monitoring techniques for corrosion evaluation under real repository conditions and to develop corrosion and near-field evolution models. The actual Belgian experimental programme for the qualification of a container for long-term HLW storage in clay formations complies with these recommendations. The emphasis in the programme is indeed on in situ corrosion testing and monitoring and on in situ control of the near-field chemistry. Initial field experiments were performed in a near-surface clay quarry at Terhaegen. Based on a broad laboratory material screening programme and in agreement with the Commission of the European Communities, three reference materials were chosen for extensive in situ overpack testing. Ti/0.2 Pd and Hastelloy C-4 were chosen as reference corrosion resistant materials and a low-carbon steel as corrosion allowance reference material. This report summarizes progress made in the material qualification programme since the CEC contract of 1983-84. 57 Figs.; 15 Tabs.; 18 Refs

  11. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1999-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  12. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  13. Corrosion study for a radioactive waste vitrification facility

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE's Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200 degree C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack

  14. Long-term effects as the cause of failure in electronic components

    International Nuclear Information System (INIS)

    Renz, H.; Kreichgauer, H.

    1989-01-01

    After a brief presentation of the utilisation properties of electronic components, their failure rates are discussed with particular reference to the socalled bath-tub curve. The main emphasis is on the construction and manufacture of integrated circuits and the possible types and causes of failure arising from the individual manufacturing stages (layout faults, internal corrosion, masking and etching errors, leakage currents, inadequate heat removal, etc.). A technical insurance assessment is then provided of the long-term failures associated with technological matters. (orig.) [de

  15. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    International Nuclear Information System (INIS)

    Worgan, K.J.; Apted, M.J.

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented

  16. Long term liquidity analysis of the firm

    Directory of Open Access Journals (Sweden)

    Jaroslav Gonos

    2009-09-01

    Full Text Available Liquidity control is a very difficult and important function. If the business is not liquid in the long term, it is under threatof bankruptcy, and on the other hand surplus of the cash in hand threaten its future efficiency, because the cash in hand is a sourceof only limited profitability. Long term liquidity is related to the ability of the short term and long term liabilities payment. Articleis trying to point out to the monitoring and analyzing of the long term liquidity in the concrete business, in this case the printing industrycompany. Hereby at the end of the article mentioned monitored and analyzed liquidity is evaluated in the five years time period.

  17. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape, size, and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control

  18. The role of natural glasses as analogues in projecting the long-term alteration of high-level nuclear waste glasses: Part 1

    International Nuclear Information System (INIS)

    Mazer, J.J.

    1993-01-01

    The common observation of glasses persisting in natural environments for long periods of time (up to tens of millions of years) provides compelling evidence that these materials can be kinetically stable in a variety of subsurface environments. This paper reviews how natural and historical synthesized glasses can be employed as natural analogues for understanding and projecting the long-term alteration of high-level nuclear waste glasses. The corrosion of basaltic glass results in many of the same alteration features found in laboratory testing of the corrosion of high-level radioactive waste glasses. Evidence has also been found indicating similarities in the rate controlling processes, such as the effects of silica concentration on corrosion in groundwater and in laboratory leachates. Naturally altered rhyolitic glasses and tektites provide additional evidence that can be used to constrain estimates of long-term waste glass alteration. When reacted under conditions where water is plentiful, the corrosion for these glasses is dominated by network hydrolysis, while the corrosion is dominated by molecular water diffusion and secondary mineral formation under conditions where water contact is intermittent or where water is relatively scarce. Synthesized glasses that have been naturally altered result in alkali-depleted alteration features that are similar to those found for natural glasses and for nuclear waste glasses. The characteristics of these alteration features appear to be dependent on the alteration conditions which affect the dominant reaction processes during weathering. In all cases, care must be taken to ensure that the information being provided by natural analogues is related to nuclear waste glass corrosion in a clear and meaningful way

  19. Graphene as a long-term metal oxidation barrier: worse than nothing.

    Science.gov (United States)

    Schriver, Maria; Regan, William; Gannett, Will J; Zaniewski, Anna M; Crommie, Michael F; Zettl, Alex

    2013-07-23

    Anticorrosion and antioxidation surface treatments such as paint or anodization are a foundational component in nearly all industries. Graphene, a single-atom-thick sheet of carbon with impressive impermeability to gases, seems to hold promise as an effective anticorrosion barrier, and recent work supports this hope. We perform a complete study of the short- and long-term performance of graphene coatings for Cu and Si substrates. Our work reveals that although graphene indeed offers effective short-term oxidation protection, over long time scales it promotes more extensive wet corrosion than that seen for an initially bare, unprotected Cu surface. This surprising result has important implications for future scientific studies and industrial applications. In addition to informing any future work on graphene as a protective coating, the results presented here have implications for graphene's performance in a wide range of applications.

  20. benzoic acid Schiff base and evaluation as corrosion

    African Journals Online (AJOL)

    user

    acid Schiff base and evaluation as corrosion inhibitor of steel in 2.0 M H2SO4. *. 1. ECHEM .... adopted for this experiment was in accordance with .... Table 4: Kinetic data for mild steel corrosion in 2M H2SO4 containing SBDAB from weight loss measurement. inhibitor .... and anti-bacterial activity of Schiff base derived.

  1. Risk evaluation of cosmic-ray exposure in long-term manned space mission

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu; Majima, Hideyuki; Ando, Koichi; Yasuda, Hiroshi; Suzuki, Masao

    1999-03-01

    Long-term manned space missions are planned to be implemented within the first two decades of the 21st century. The International Space Station (ISS) will be ready to run, and a plan to visit Mars is also under way. Humans will live in space for long periods of time and we are planning to do experiments in space to examine various aspects of space science. The main risk in long-term manned space missions is large exposure to space radiation. Human safety must be ensured in space where exposure to cosmic rays is almost 1 mSv a day. As such missions will inevitably result in significant exposure for astronauts, there is increasing need to protect them adequately based on both physical and biological knowledge. A good method to evaluate realistic risk associated with space missions will be in urgent demand. At the National Institute of Radiological Sciences (NIRS), Chiba, Japan, a research institutes of the Science Technology Agency of Japan, high energy cosmic radiation can be simulated only with heavy ion irradiation accelerated by the particle accelerator, Heavy Ion Medical Accelerator (HIMAC). Research to evaluate risk of space radiation, including physical measurement techniques, protective effects, biological effects and risk adjustment, aging, neuronal cell damage and cancer risk are undergoing. We organized a workshop of the latest topics and experimental results of physics and biology related to space radiation supported by Japan Science and Technology Corporation (JST). This workshop was held as a satellite meeting associated with the 32nd Committee on Space Research (COSPAR) Scientific Assembly (Nagoya, July 12-19th, 1998). This volume is an extended proceedings of the workshop. The proceedings contain six main subjects covering the latest information on Risk Evaluation of Cosmic-Ray Exposure in Long-Term Manned Space Mission'. 1. Risk Estimation of Heavy Ion Exposure in Space. 2. Low Dose-Rate Effects and Microbeam-Related Heavy Ions. 3. Chromosome and

  2. Benchmarking of Zinc Coatings for Corrosion Protection: A Detailed Characterization of Corrosion and Electrochemical Properties of Zinc Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, Sudesh L; Zixi, Tan [Singapore Institute of Manufacturing Technology, Nanyang Drive (Singapore)

    2017-02-15

    Due to various types of Zn coatings for many decades for various applications, it is imperative to study and compare their corrosion resistance properties of some of these. Here, we introduce a systematic methodology for evaluation and validation of corrosion protection properties of metallic coatings. According to this methodology, samples are were exposed in an advanced cyclic corrosion test chamber according to ISO 14993, and removed at the end of each withdrawal for respective corrosion and electrochemical characterization to evaluate both barrier and galvanic protection properties. Corrosion protection properties of coatings were evaluated by visual examination according to ISO 10289, mass loss and subsequent corrosion rate measurements, electrochemical properties, and advanced electrochemical scanning techniques. In this study, corrosion protection properties of a commercial zinc rich coating (ZRC) on AISI 1020 mild steel substrates were evaluated and benchmarked against hot dip galvanized (HDG). Results were correlated, and corrosion protection capabilities of the two coatings were compared. The zinc rich coating performed better than hot dip galvanized coating in terms of overall corrosion protection properties, according to the exposure and experimental conditions used in this study. It proved to be a suitable candidate to replace hot dip galvanized coatings for desired applications.

  3. A review of methodologies applied in Australian practice to evaluate long-term coastal adaptation options

    Directory of Open Access Journals (Sweden)

    Timothy David Ramm

    2017-01-01

    Full Text Available Rising sea levels have the potential to alter coastal flooding regimes around the world and local governments are beginning to consider how to manage uncertain coastal change. In doing so, there is increasing recognition that such change is deeply uncertain and unable to be reliably described with probabilities or a small number of scenarios. Characteristics of methodologies applied in Australian practice to evaluate long-term coastal adaptation options are reviewed and benchmarked against two state-of-the-art international methods suited for conditions of uncertainty (Robust Decision Making and Dynamic Adaptive Policy Pathways. Seven out of the ten Australian case studies assumed the uncertain parameters, such as sea level rise, could be described deterministically or stochastically when identifying risk and evaluating adaptation options across multi-decadal periods. This basis is not considered sophisticated enough for long-term decision-making, implying that Australian practice needs to increase the use of scenarios to explore a much larger uncertainty space when assessing the performance of adaptation options. Two Australian case studies mapped flexible adaptation pathways to manage uncertainty, and there remains an opportunity to incorporate quantitative methodologies to support the identification of risk thresholds. The contextual framing of risk, including the approach taken to identify risk (top-down or bottom-up and treatment of uncertain parameters, were found to be fundamental characteristics that influenced the methodology selected to evaluate adaptation options. The small sample of case studies available suggests that long-term coastal adaptation in Australian is in its infancy and there is a timely opportunity to guide local government towards robust methodologies for developing long-term coastal adaptation plans.

  4. Evaluation of nickel-based materials for VHTR heat exchanger

    International Nuclear Information System (INIS)

    Burlet, H.; Gentzbittel, J.M.; Cabet, C.; Lamagnere, P.; Blat, M.; Renaud, D.; Dubiez-Le Goff, S.; Pierron, D.

    2008-01-01

    Two available conventional nickel-based alloys (617 and 230) have been selected as structural materials for the advanced gas-cooled reactors, especially for the heat exchanger. An extensive research programme has been launched in France within the framework of the ANTARES programme to evaluate the performances of these materials in VHTR service environment. The experimental work is focused on mechanical properties, thermal stability and corrosion resistance in the temperature range (700-1 000 deg C) over long time. Thus the experimental work includes creep and fatigue tests on as-received materials, short- and medium-term thermal exposure tests followed by tensile and impact toughness tests, short- and medium-term corrosion exposure tests under impure He environment. The status of the results obtained up to now is given in this paper. Additional tests such as long-term thermal ageing and long-term corrosion tests are required to conclude on the selection of the material. (author)

  5. The corrosion behavior of DWPF glasses

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.

    1995-01-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed

  6. Microstructure, surface characterization and long-term stability of new quaternary Ti-Zr-Ta-Ag alloy for implant use.

    Science.gov (United States)

    Vasilescu, C; Osiceanu, P; Moreno, J M Calderon; Drob, S I; Preda, S; Popa, M; Dan, I; Marcu, M; Prodana, M; Popovici, I A; Ionita, D; Vasilescu, E

    2017-02-01

    The novel Ti-20Zr-5Ta-2Ag alloy was characterised concerning its microstructure, morphology, mechanical properties, its passive film composition and thickness, its long-term electrochemical stability, corrosion resistance, ion release rate in Ringer solution of acid, neutral and alkaline pH values and antibacterial activity. The new alloy has a crystalline α microstructure (by XRD). Long-term XPS and SEM analyses show the thickening of the passive film and the deposition of hydroxyapatite in neutral and alkaline Ringer solution. The values of the electrochemical parameters confirm the over time stability of the new alloy passive film. All corrosion parameters have very favourable values in time which attest a high resistance to corrosion. Impedance spectra evinced a bi-layered passive film formed by the barrier, insulating layer and the porous layer. The monitoring of the open circuit potentials indicated the stability of the protective layers and their thickening in time. The new alloy releases (by ICP-MS measurements) very low quantities of Ti, Zr, Ag ions and no Ta ions. The new alloy exhibits a low antibacterial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Structural Performance Evaluation of Tsing MA Bridge Deck Using Long-Term Monitoring Data

    Science.gov (United States)

    Ni, Y. Q.; Xia, H. W.; Ko, J. M.

    The Tsing Ma Bridge in Hong Kong is suspension bridge with a main span of 1377 m carrying both highway and railway traffic. After completing its construction in 1997, the bridge was instrumented by the Hong Kong SAR Government Highways Department with a long-term structural health monitoring system comprising about 300 sensors permanently installed on the bridge. As part of this monitoring system, a total of 110 strain gauges have been installed to measure strain at the deck cross-sections and bearings. In this study, a method for real-time structural performance evaluation of the stiffening deck system making use of long-term strain measurement data is proposed and verified using the strain monitoring data from a typical deck cross-section of the Tsing Ma Bridge.

  8. Evaluation of properties of low activation Mn-Cr steel. 3. Evaluation of corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Takahashi, Heishichiro [Hokkaido Univ., Sapporo, Hokkaido (Japan); Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-05-01

    JAERI and the Japan Steel Works LTD. (JSW) have developed new Mn-Cr steels as low induced activation material. Until now, chemical composition and metallurgical processes were optimized and some steels named VC-series were selected. The properties of the steels have been evaluated and reported elsewhere. In this study, corrosion resistance of VC-series was studied. Corrosion tests for stainless steels were performed to investigate a relationship between corrosion rate and chemical composition or sensitization. Furthermore, corrosion tests under actual environment for the vacuum vessel of the reinforced JT-60 were done for non-magnetic steels. As a result, almost no weight change was observed for uniform and gap corrosion tests, No crack was shown for double U-bend corrosion tests. (author)

  9. Standard practice for preparing, cleaning, and evaluating corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers suggested procedures for preparing bare, solid metal specimens for tests, for removing corrosion products after the test has been completed, and for evaluating the corrosion damage that has occurred. Emphasis is placed on procedures related to the evaluation of corrosion by mass loss and pitting measurements. (Warning—In many cases the corrosion product on the reactive metals titanium and zirconium is a hard and tightly bonded oxide that defies removal by chemical or ordinary mechanical means. In many such cases, corrosion rates are established by mass gain rather than mass loss.) 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 1 and 7.2.

  10. Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux

    Science.gov (United States)

    Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.

    2017-12-01

    Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order

  11. Long-term results of symptomatic fibroids treated with uterine artery embolization: In conjunction with MR evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Deuk [Department of Diagnostic Radiology Bundang CHA General Hospital, Pochon CHA University (Korea, Republic of)], E-mail: mdkim@cha.ac.kr; Lee, Hyun Seok [Department of Diagnostic Radiology Bundang CHA General Hospital, Pochon CHA University (Korea, Republic of); Lee, Mee Hwa [Department of Obstetrics and Gynecology, Bundang CHA General Hospital, Pochon CHA University (Korea, Republic of); Kim, Hee Jin [Department of Diagnostic Radiology Bundang CHA General Hospital, Pochon CHA University (Korea, Republic of); Cho, Jin Ho; Cha, Sun Hee [Department of Obstetrics and Gynecology, Bundang CHA General Hospital, Pochon CHA University (Korea, Republic of)

    2010-02-15

    Objective: The aim of the present study is to determine long-term clinical efficacy of uterine fibroid embolization (UFE) for symptomatic fibroids in conjunction with MR evaluation. Materials and methods: Sixteen patients with a follow-up period of 4 years or longer were analyzed retrospectively. Ages ranged from 27 to 45 (mean 39.5) years. Mean follow-up periods were 5.8 years (range: 4.1-6.9 years). The symptom changes, in terms of menorrhagia and dysmenorrhea and bulk-related symptoms, were assessed. The primary embolic agent was polyvinyl alcohol particle (250-710 {mu}m). All patients underwent preprocedural and long-term follow up MR imaging. Uterine volumes were calculated using MRI. Results: Symptom improvements were reported for menorrhagia (8/9, 88.9%), dysmenorrhea (5/5, 100%), and bulk-related symptoms (7/9, 77.8%) at long-term follow up. Two patients (12.5%) had symptom recurrences at long-term follow-up. Tumor regrowth from incomplete infarction was a cause of recurrence in one patient and newly developed leiomyomas in the other one. One patient underwent hysterectomy because endometriosis developed 4 years after UFE. Of the 14 necrotic myomas on short-term follow up MR after UFE, eight (57.1%) demonstrated maintaining necrosis with further shrinkage and six (42.9%) were no longer visualized on long-term follow up MR images. Overall, the mean volume reduction rates of the predominant fibroid and uterus were 80.5%, 36.7% at long-term follow up, respectively. Conclusion: UFE is an effective treatment for symptomatic fibroids with an acceptable long-term success rate. Long-term MR imaging after UFE revealed persistent necrotic fibroid, non-visualization of fibroids and tumor regrowth when incompletely infarcted.

  12. Long-term results of symptomatic fibroids treated with uterine artery embolization: In conjunction with MR evaluation

    International Nuclear Information System (INIS)

    Kim, Man Deuk; Lee, Hyun Seok; Lee, Mee Hwa; Kim, Hee Jin; Cho, Jin Ho; Cha, Sun Hee

    2010-01-01

    Objective: The aim of the present study is to determine long-term clinical efficacy of uterine fibroid embolization (UFE) for symptomatic fibroids in conjunction with MR evaluation. Materials and methods: Sixteen patients with a follow-up period of 4 years or longer were analyzed retrospectively. Ages ranged from 27 to 45 (mean 39.5) years. Mean follow-up periods were 5.8 years (range: 4.1-6.9 years). The symptom changes, in terms of menorrhagia and dysmenorrhea and bulk-related symptoms, were assessed. The primary embolic agent was polyvinyl alcohol particle (250-710 μm). All patients underwent preprocedural and long-term follow up MR imaging. Uterine volumes were calculated using MRI. Results: Symptom improvements were reported for menorrhagia (8/9, 88.9%), dysmenorrhea (5/5, 100%), and bulk-related symptoms (7/9, 77.8%) at long-term follow up. Two patients (12.5%) had symptom recurrences at long-term follow-up. Tumor regrowth from incomplete infarction was a cause of recurrence in one patient and newly developed leiomyomas in the other one. One patient underwent hysterectomy because endometriosis developed 4 years after UFE. Of the 14 necrotic myomas on short-term follow up MR after UFE, eight (57.1%) demonstrated maintaining necrosis with further shrinkage and six (42.9%) were no longer visualized on long-term follow up MR images. Overall, the mean volume reduction rates of the predominant fibroid and uterus were 80.5%, 36.7% at long-term follow up, respectively. Conclusion: UFE is an effective treatment for symptomatic fibroids with an acceptable long-term success rate. Long-term MR imaging after UFE revealed persistent necrotic fibroid, non-visualization of fibroids and tumor regrowth when incompletely infarcted.

  13. Synthesis of recent investigations on corrosion behaviour of radioactive waste glasses

    International Nuclear Information System (INIS)

    Grauer, R.

    1985-03-01

    By way of a supplement to an earlier report (NTB 83-01, EIR-Report Nr. 477), work which has appeared in the meantime on the corrosion behaviour of borosilicate glasses as a solidification matrix for high-level radioactive waste has been evaluated. Many works have confirmed that for a particular glass, besides temperature and pH-value, the silicate concentration of the solution exerts the strongest influence on corrosion rate. The effect of silicate can be described in terms of simple reaction kinetic models which provides a more sound basis for prediction of longterm behaviour of glasses than previously existed. Meanwhile, the effects of backfill- and canister-materials and their corrosion products have been given the attention they merit. These materials affect glass corrosion primarily through regulation of silicic acid concentration. A particular finding which is of interest is the strong inhibition of glass corrosion by lead ions. Stationary corrosion rates in the order of magnitude of 10 -5 g/cm 2 ·d can be derived from long-term corrosion experiments in stagnant water at 90 C. At the envisaged repository temperature of 55 C they will be one to two orders of magnitude less. The effects of radioactive decay on corrosion rate are either very small or not detectable at all. No further new viewpoints have been put forward with regard to a possible thermal re-structuring of glasses under repository conditions: re-crystallisation (devitrification) is not to be feared. With regard to future experiments, further work on quantification of the effects of canister- and backfill-materials and experiments with corrosion inhibitors would be of primary interest. (author)

  14. Developmental Dyslexia and Explicit Long-Term Memory

    Science.gov (United States)

    Menghini, Deny; Carlesimo, Giovanni Augusto; Marotta, Luigi; Finzi, Alessandra; Vicari, Stefano

    2010-01-01

    The reduced verbal long-term memory capacities often reported in dyslexics are generally interpreted as a consequence of their deficit in phonological coding. The present study was aimed at evaluating whether the learning deficit exhibited by dyslexics was restricted only to the verbal component of the long-term memory abilities or also involved…

  15. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D.; Morris, G.M.

    2000-01-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED 50 ) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  16. Development of an evaluation method for long-term sealability of the spent fuel storage cask

    International Nuclear Information System (INIS)

    Kato, Osamu; Ito, Chihiro; Saegusa, Toshiari

    1996-01-01

    One of the characteristics of the cask storage method of spent fuel is that containment of radioactive materials is assured by the storage cask itself. Thus, the seal structure of the cask is designed to have a highly reliable multi-barrier system using metallic gaskets instead of the conventional rubber gaskets. Although, it has been reported that the containment feature of the metallic gaskets is influenced by the plastic deformation and stress relaxation of the gaskets for a short-term usage, no research report has been published on the containment feature of the metallic gaskets for a long-term usage. In this paper, the stress relaxation features of the metallic gaskets is investigated which will directly influence the long-term sealability of the storage cask, at first. Next, the relationship between the temperature/time dependence of the plastic deformation and the containment features of the metallic gaskets. Finally, an evaluation method of the long-term sealability from experimental data of a short-term behavior of the metallic gaskets is proposed. (author)

  17. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Stoermer, M.; Dietzel, W.

    2009-01-01

    PEO coatings were produced on AM50 magnesium alloy by plasma electrolytic oxidation process in silicate and phosphate based electrolytes using a pulsed DC power source. The microstructure and composition of the PEO coatings were analyzed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The corrosion resistance of the PEO coatings was evaluated using open circuit potential (OCP) measurements, potentiodynamic polarisation tests and electrochemical impedance spectroscopy (EIS) in 0.1 M NaCl solution. It was found that the electrolyte composition has a significant effect on the coating evolution and on the resulting coating characteristics, such as microstructure, composition, coating thickness, roughness and thus on the corrosion behaviour. The corrosion resistance of the PEO coating formed in silicate electrolyte was found to be superior to that formed in phosphate electrolyte in both the short-term and long-term electrochemical corrosion tests.

  18. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa

  19. Evaluation of the flow-accelerated corrosion downstream of an orifice. 2. Measurement of corrosion rate and evaluation on the effects of the flow field

    International Nuclear Information System (INIS)

    Nagaya, Yukinori; Utanohara, Yoichi; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), a corrosion rate downstream of an orifice was measured using the electric resistance method. The diameter of the pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity of the experimental loop was set at 5m/s, and the temperature of water was controlled within ±1 at 150deg-C. There were no significant circumferential difference in measured corrosion rate, and the maximum corrosion rate was observed at 1D or 2D downstream from the orifice. The ratios of the measured corrosion rate and the calculated wall shear stress at the 1D downstream from the orifice to the value at upstream under well developed flow agreed well. (author)

  20. Microbial induced corrosion in French concept of nuclear waste underground disposal

    International Nuclear Information System (INIS)

    Feron, D.; Crusset, D.

    2014-01-01

    The objective of this paper is to give a short overview of how the bacteria, that may influence the corrosion behaviour of metals and alloys, are taken into account in the French concept of geological repository. It is important to underline that microbial induced corrosion is not a new corrosion phenomena but the presence of bacteria may modify (increase or decrease) anodic or cathodic corrosion reactions. In aerobic conditions, high corrosion rates may be obtained due to the bio-oxidation of pyrites. Under anaerobic conditions (longer period), bacteria may have negative (localised corrosion) or positive (consumption of hydrogen) effects. The mixed conditions (with and without oxygen) may be the most dangerous period for localised corrosion of metals and alloys due to the coupling and galvanic corrosion phenomena enhanced by aerobic and anaerobic bacteria. The first conclusions lead to consider that MIC is a 'short term' issue rather than a long term one. (authors)

  1. Long-term monitored catchments in Norway - a hydrologic and chemical evaluation -

    Energy Technology Data Exchange (ETDEWEB)

    Lydersen, E

    1994-10-20

    About 20 years ago, long-term monitoring of small Norwegian catchments were initiated, because of increasing concern regarding acidification of surface water and damage to fish populations. Long range transported air pollutants were considered to be the major acidification factor and so both precipitation and runoff chemistry were included in the monitoring programme. This report contains a thorough hydrologic and chemical evaluation of precipitation and runoff water separately as well as relationships between precipitation chemistry and runoff chemistry. The data comes from four catchments: Birkenes, Storgama, Langtjern and Kaarvatn. The chapters are (1) Sampling and analysis, (2) Description of the catchments, (3) Hydrology, (4) Chemistry, with subsections on wet deposition, dry deposition, concentration of marine compounds with distance from the sea, acid precipitation, runoff chemistry, sulphuric acid and other acidifying compounds, acid neutralizing capacity, and aluminium, (5) Time trends in precipitation and runoff chemistry. The time trends are evaluated in relation to the declining emissions of sulphur compounds in Europe since the late seventies. 134 refs., 213 figs., 54 tabs.

  2. Durable Corrosion Resistance of Copper Due to Multi-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Abhishek Tiwari

    2017-09-01

    Full Text Available Ultra-thin graphene coating has been reported to provide considerable resistance against corrosion during short-term exposures, however, there is great variability in the corrosion resistance due to graphene coating in different studies. It may be possible to overcome the problem of hampered corrosion protection ability of graphene that is caused due to defective single layer graphene by applying multilayer graphene. Systematic electrochemical characterization showed that the multilayer graphene coating developed in the study provided significant corrosion resistance in a chloride solution and the corrosion resistance was sustained for long durations (~400 h, which is attributed to the multilayer graphene.

  3. Study on the corrosion assessment of overpack welds-II (Joint research)

    International Nuclear Information System (INIS)

    Mitsui, Hiroyuki; Otsuki, Akiyoshi; Asano, Hidekazu; Taniguchi, Naoki; Kawakami, Susumu; Yui, Mikazu

    2006-06-01

    The corrosion resistance at the overpack welds is possible to be inferior to that at base metal, so that it has been concerned that a short-term failure of overpack may occur due to the corrosion penetration at the welds. In this study, corrosion mechanisms specific to the welds were extracted for carbon steel which is one of the candidate materials for overpacks. And then the corrosion experiments for welded carbon steel were planed to evaluate long-term integrity of overpack welds. Based on this plan, electrochemical tests for welded carbon steel using the samples welded by EBW and TIG were carried out, and the corrosion behavior of welded zone was compared with that of base metal. The results of anodic polarization tests in 0.01M and 0.1M carbonate aqueous solutions for base metal, heat affected zone and welded metal showed that; As for EBW, the anodic polarization curves were not affected by welding although the metallurgical structures vary with base metal, heat affected zone and welded metal. As for TIG, the current density of welded metal was larger than that of base metal and of heat affected zone, and local dissolution with immediate in current density was observed in 0.01M-pH10 carbonate aqueous solution. As shown in these results, it is expected that the corrosion resistance at the welds by EBW will be equal to that at base metal. As for TIG, however, it was indicated that the corrosion resistance is possible to be lower than base metal. (author)

  4. Corrosion behaviour of container materials for the disposal of high-level wastes in rock salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1986-01-01

    In 1983-84 extensive laboratory-scale experiments (immersion tests) to evaluate the long-term corrosion behaviour of selected materials in salt brines and first in situ experiments were performed. In the laboratory experiments the materials Ti 99.8-Pd, Hastelloy C4 and hot-rolled low carbon steel (reference materials in the joint European corrosion programme) as well as cast steel, spheoroidal cast iron, Si-cast iron and the Ni-Resists type D2 and D4 were investigated. The investigated parameters were: temperature (90 0 C; 170 0 C, 200 0 C), gamma-radiation (10 5 rad/h) and different compositions of salt brines. The results obtained show that, in addition to Ti 99.8-Pd, also Hastelloy C4 and unalloyed steels are in principle suitable for being used for long-term stable HLW-containers if the gamma dose rate is reduced by suitable shielding. Furthermore, the susceptibility of Hastelloy C4 to crevice corrosion must be taken into account. Further studies will be necessary to provide final evidence of the suitability of the materials examined. These will mainly involve clarification of questions related to hydrogen embrittlement (Ti 99.8-Pd, unalloyed steels) and to the influence of pressure and saline impurities (e.g. antiJ, antiBr) on corrosion

  5. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Pan, T.J., E-mail: tjpan@cczu.edu.cn [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Material Surface Technology, Changzhou 213164 (China); Chen, Y.; Zhang, B. [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Hu, J. [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Material Surface Technology, Changzhou 213164 (China); Li, C. [Light Industry College of Liaoning University, Shenyang 110036 (China)

    2016-04-30

    Highlights: • The Nb coating produced by HEMAA offers good protection for 304SS in acid solution. • The coating increases corrosion potential and induces decrease of corrosion rate. • The protection of coating is ascribed to the stability of Nb in acid solution. - Abstract: The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  6. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    International Nuclear Information System (INIS)

    Pan, T.J.; Chen, Y.; Zhang, B.; Hu, J.; Li, C.

    2016-01-01

    Highlights: • The Nb coating produced by HEMAA offers good protection for 304SS in acid solution. • The coating increases corrosion potential and induces decrease of corrosion rate. • The protection of coating is ascribed to the stability of Nb in acid solution. - Abstract: The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  7. A synoptic summary approach to better understanding groundwater contamination problems and evaluating long-term environmental consequences

    International Nuclear Information System (INIS)

    Nelson, R.W.

    1990-09-01

    A summary approach has been developed within groundwater hydrology to communicate with a broad audience and more completely evaluate the long-term impacts of subsurface contamination problems. This synoptic approach both highlights the dominant features occurring in subsurface contamination problems and emphasizes the information required to determine the long-term environmental impacts. The special merit of a summary approach is in providing a better understanding of subsurface contamination problems to adjoining technical disciplines, public decision makers, and private citizens. 14 refs

  8. Are underground clay disposal conditions favorable for microbial activity and bio-corrosion?

    Energy Technology Data Exchange (ETDEWEB)

    Libert, M.; Kerber-Schuetz, M.; Bildstein, O. [CEA, DEN/DTN/SMTM/LMTE, bat. 307, 13108 Saint Paul Lez Durance Cedex (France); Esnault, L. [ECOGEOSAFE, Technopole de l' Environnement Arbois- Mediterranee, BP 90027 Aix en Provence (France)

    2013-07-01

    The French concept for geological disposal of high-level radioactive waste is based on a multi-barrier system including metallic containers confined in a clay-stone layer. The main alteration vector is water coming from the host rock and triggering corrosion of metallic components. Despite extreme conditions, microorganisms can adapt and survive in these environments. Anoxic corrosion of metallic containers and water radiolysis produce H{sub 2}, which potentially represents an abundant energetic source for microbial development, especially in this type of environment containing low amounts of biodegradable organic matter. Moreover, formation of Fe(III)-bearing corrosion products such as magnetite (Fe{sub 3}O{sub 4}) can provide electron acceptors for microbial development. Therefore, bio-corrosion studies are needed in order to investigate the activity of hydrogenotrophic bacteria able to reduce sulphates or Fe(III) from iron oxides (passive layer). These studies help in evaluating such microbial impacts on the long-term stability of metallic components involved in radioactive waste disposal. (authors)

  9. Quantitative evaluation of safety use limit for crevice corrosion in Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Fukaya, Yuichi; Akashi, Masatsune; Sasaki, Hidetsugu; Tsujikawa, Shigeo

    2007-01-01

    The most important problem with corrosion-resistant alloys such as stainless steels is localized corrosion. Crevice corrosion, which is a typical localized corrosion, occurs under the mildest environmental conditions. Consequently, whether crevice corrosion occurs or not is an important issue in structural material selection. This study investigated highly corrosion-resistant Ni-Cr-Mo alloys whose resistance for crevice corrosion is difficult to evaluate with the JIS G 0592 standard for common strainless steels. The optimized procedures for determining the critical potential and temperature for crevice corrosion of the alloys were developed based on the JIS method. The limits of safety usage of various Ni-Cr-Mo alloys were evaluated quantitatively in chloride solution environments. (author)

  10. Evaluation of long-term RD and D programs in the presence of market uncertainties

    International Nuclear Information System (INIS)

    Hazelrigg, G.A. Jr.

    1982-01-01

    Long-term research, development, and demonstration (RD and D) programs such as fusion research can span several decades, progressing through a number of discrete RD and D phases. Pursuit of a technology such as fusion does not mean commitment to the entire RD and D program, but only to the next phase of RD and D. The evaluation of a long-term RD and D program must account for the decision process to continue, modify, or discontinue the program upon completion of each RD and D phase, the technological uncertainties inherent in a long-term RD and D program, and the uncertainty inherent in the future marketplace for the technology if and when it becomes available. Presented here is a methodology that does this. An application of the methodology to fusion research is included. The example application shows that the perceived economic value of fusion research is strongly dependent on market uncertainty, with increasing market uncertainty yielding greatly increased perceived value to the research effort. 7 references, 8 figures, 2 tables

  11. Evaluation of alternatives for upgrading double shell tank corrosion monitoring at Hanford

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1996-01-01

    Recent discovery of low hydroxide conditions in Double Shell Tanks have demonstrated that the current corrosion control system of waste sampling and analysis is inadequate to monitor and maintain specified chemistries for dilute and low volume waste tanks. Moreover, waste sampling alone cannot provide adequate information to resolve the questions raised regarding tank corrosion. This report evaluates available technologies which could be used to improve on the existing corrosion control system. The evaluation concludes that a multi-technique corrosion monitoring system is necessary, utilizing ultrasonic and visual examinations for direct evaluation of tank liner condition, probes for rapid detection (alarm) of corrosive conditions, and waste sampling and analysis for determination of corrective action. The probes would incorporate electrochemical noise and linear polarization resistance techniques. When removed from the waste tank, the probe electrodes would be physically examined as corrosion coupons. The probes would be used in addition to a modified regimen of waste sampling and the existing schedule for ultrasonic examination of the tank liners. Supporting information would be obtained by examination of in-tank equipment as it is removed

  12. Long-term reliability evaluation of nuclear containments with tendon force degradation

    International Nuclear Information System (INIS)

    Kim, Sang-Hyo; Choi, Moon-Seock; Joung, Jung-Yeun; Kim, Kun-Soo

    2013-01-01

    Highlights: • A probabilistic model on long-term degradation of tendon force is developed. • By using the model, we performed reliability evaluation of nuclear containment. • The analysis is also performed for the case with the strict maintenance programme. • We showed how to satisfy the target safety in the containments facing life extension. - Abstract: The long-term reliability of nuclear containment is important for operating nuclear power plants. In particular, long-term reliability should be clarified when the service life of nuclear containment is being extended. This study focuses not only on determining the reliability of nuclear containment but also presenting the reliability improvement by strengthening the containment itself or by running a strict maintenance programme. The degradation characteristics of tendon force are estimated from the data recorded during in-service inspection of containments. A reliability analysis is conducted for a limit state of through-wall cracking, which is conservative, but most crucial limit state. The results of this analysis indicate that reliability is the lowest at 3/4 height of the containment wall. Therefore, this location is the most vulnerable for the specific limit state considered in this analysis. Furthermore, changes in structural reliability owing to an increase in the number of inspecting tendons are analysed for verifying the effect of the maintenance program's intensity on expected containment reliability. In the last part of this study, an example of obtaining target reliability of nuclear containment by strengthening its structural resistance is presented. A case study is conducted for exemplifying the effect of strengthening work on containment reliability, especially during extended service life

  13. Corrosion studies on selected metallic materials for application in nuclear waste disposal containers

    International Nuclear Information System (INIS)

    Smailos, E.; Fiehn, B.; Gago, J.A.; Azkarate, I.

    1994-03-01

    In previous corrosion studies, carbon steels and the alloy Ti 99.8-Pd were identified as promising materials for heat-generating nuclear waste containers acting as a radionuclide barrier in a rock-salt repository. To characterize the long-term corrosion behaviour of these materials in more detail, a research programme including laboratory-scale and in-situ corrosion studies has been undertaken jointly by KfK and ENRESA/INASMET. In the period under review, gamma irradiation corrosion studies of up to about 6 months at 10 Gy/h and stress corrosion cracking studies at slow strain rates (10 -4 -10 -7 s -1 ) were performed on three preselected carbon steels in disposal relevant brines (NaCl-rich, MgCl 2 -rich) at 90 C and 150 C (TStE 355, TStE 460, 15 MnNi 6.3). Moreover, results were obtained from long-term in-situ corrosion studies (maximum test duration 9 years) conducted on carbon steel, Ti 99.8-Pd, Hastelloy C4, Ni-resist D4, and Si-cast iron in boreholes in the Asse salt mine. (orig./MM) [de

  14. Corrosion resistance of steel fibre reinforced concrete – a literature review

    DEFF Research Database (Denmark)

    Marcos Meson, Victor; Michel, Alexander; Solgaard, Anders

    2016-01-01

    Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of prefabricated segmental linings for bored tunnels, since it entails simplified production processes and higher quality standards. However, international standards and guidelines are not consistent regarding...... the consideration of steel fibres for the structural verification of SFRC elements exposed to corrosive environments, hampering the development of civil infrastructure built of SFRC. In particular, the long-term effect of exposure to chlorides is in focus and under discussion. This paper reviews the existing...... the existence of a critical crack width, below 0.20 mm, where corrosion of carbon-steel fibres is not critical and the structural integrity of the exposed SFRC can be ensured over the long-term. A doctoral project investigating chloride-induced corrosion of steel fibres on cracked SFRC has been initiated...

  15. Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  16. Long-dated evaluation of the external costs of the nuclear; L'evaluation des couts externes a long terme de la filiere nucleaire: interets et limites

    Energy Technology Data Exchange (ETDEWEB)

    Le Dars, A.; Schneider, T

    2002-09-01

    Since the middle of the years 1990, the European Commission developed an ''ExternE'' methodology to propose an homogenous evaluation of the sanitary and environmental external costs of the various energy sectors in Europe. This document discusses the taking into account of the long-dated and analyzes the interests and the limits of the monetary evaluation, in terms of external costs, of the nuclear choice. It is organized in three chapters: 1. a presentation and a discussion on the various evaluation of the ''ExternE'' methodology; 2. a description of the available methods for the monetary evaluation of the long-dated impacts and more particularly the analysis of the monetary values actualization principle; 3. highlighted of the impacts for which the monetary evaluations exist. (A.L.B.)

  17. Long-term evaluation of Class II subdivision treatment with unilateral maxillary first molar extraction

    NARCIS (Netherlands)

    Livas, Christos; Pandis, Nikolaos; Booij, Johan Willem; Katsaros, Christos; Ren, Yijin

    Objective: To evaluate the long-term effects of asymmetrical maxillary first molar (M1) extraction in Class II subdivision treatment. Materials and Methods: Records of 20 Class II subdivision whites (7 boys, 13 girls; mean age, 13.0 years; SD, 1.7 years) consecutively treated with the Begg technique

  18. Accelerated forgetting? An evaluation on the use of long-term forgetting rates in patients with memory problems

    Directory of Open Access Journals (Sweden)

    Sofie eGeurts

    2015-06-01

    Full Text Available The main focus of this review was to evaluate whether long-term forgetting rates (delayed tests days to weeks after initial learning are a more sensitive measure to detect memory problems in various patient groups than standard delayed recall measures. It has been suggested that accelerated forgetting might be characteristic for epilepsy patients, but little research has been performed within other populations. Here, we identified ten studies in a wide range of brain injured patient groups, whose long-term forgetting patterns were compared to that of healthy controls. Signs of accelerated forgetting were found within two studies. The results of seven studies showed normal forgetting over time for the patient groups. However, most of the studies used only a recognition procedure, after optimizing initial learning. Based on the results, we discuss recommendations for assessing long-term forgetting and the need for future research to truly evaluate the usefulness for clinical practice.

  19. Formation of secondary phases during the corrosion of vitrified nuclear waste

    International Nuclear Information System (INIS)

    Zimmer, P.

    2003-11-01

    The first aim of this work was the examination of the formation and long-term stability of secondary phases that form during an aquatic attack on simulated, vitrified nuclear waste. In the glasses used for the investigations actinides had been replaced by rare earth elements (chemical analogues), other radionuclides by inactive isotopes. For predictions about the long-term safety of nuclear waste disposals it is important to identify secondary phases that have formed during the glass corrosion process and to determine their stability. Two different saline solutions (rich in MgCl 2 and in NaCl, respectively) are relevant as a corrosion medium for waste disposals. It showed that in such an environment sulfates, silicates and molybdates represent the main new formations of minerals after 7.5 years of corrosion. However, the formation, long-term stability and sorption characteristics of those minerals regarding rare earth elements depend to a high degree on the corrosion medium as well as on changes in the geochemical environment in the course of the experiment. By means of SEM/EDX barytes of different morphology with up to 15% w/w Sr ((Ba,Sr)SO 4 ) were identified in both corrosion media; they were capable of binding long-term stable radionuclides like Sr. Furthermore, pure rare earth (RE) sulfates were observed in the saline solution rich in MgCl 2 . This formation of RE-sulfates has not been described in the literature so far. Depending on the saline solution, the secondary silicate and molybdate minerals that formed on the glass surfaces differed noticeably in their sorption characteristics and their stability. Another focus of the work was a more profound understanding of the glass corrosion mechanism in the presence of metallic iron since steel jackets are used as technical barriers for the vitrified nuclear waste in nuclear waste disposals. Another important point in connection with the mobilization and immobilization of radionuclides released during glass

  20. Long-term EEG in children.

    Science.gov (United States)

    Montavont, A; Kaminska, A; Soufflet, C; Taussig, D

    2015-03-01

    Long-term video-EEG corresponds to a recording ranging from 1 to 24 h or even longer. It is indicated in the following situations: diagnosis of epileptic syndromes or unclassified epilepsy, pre-surgical evaluation for drug-resistant epilepsy, follow-up of epilepsy or in cases of paroxysmal symptoms whose etiology remains uncertain. There are some specificities related to paediatric care: a dedicated pediatric unit; continuous monitoring covering at least a full 24-hour period, especially in the context of pre-surgical evaluation; the requirement of presence by the parents, technician or nurse; and stronger attachment of electrodes (cup electrodes), the number of which is adapted to the age of the child. The chosen duration of the monitoring also depends on the frequency of seizures or paroxysmal events. The polygraphy must be adapted to the type and topography of movements. It is essential to have at least an electrocardiography (ECG) channel, respiratory sensor and electromyography (EMG) on both deltoids. There is no age limit for performing long-term video-EEG even in newborns and infants; nevertheless because of scalp fragility, strict surveillance of the baby's skin condition is required. In the specific context of pre-surgical evaluation, long-term video-EEG must record all types of seizures observed in the child. This monitoring is essential in order to develop hypotheses regarding the seizure onset zone, based on electroclinical correlations, which should be adapted to the child's age and the psychomotor development. Copyright © 2015. Published by Elsevier SAS.

  1. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  2. Performance evaluation of corrosion-affected reinforced concrete ...

    Indian Academy of Sciences (India)

    M B Anoop

    Abstract. A methodology for performance evaluation of reinforced concrete bridge girders in corrosive ... concrete (RC) members of infrastructural systems, espe- ... bility will be useful for making engineering decisions for ...... Water-cement ratio.

  3. Evaluation of long-term natural gas marketing agreements: An application of commodity forward and option pricing theory

    International Nuclear Information System (INIS)

    Salahor, G.S.; Laughton, D.G.

    1993-01-01

    Methods that have been empirically validated in the analysis of short-term traded securities are adapted to evaluate long-term natural gas direct-sale contracts. A sample contract is examined from the perspective of the producer, and analyzed as a series of forward and option contracts. The assessment of contract value is based on the gas price forecast, the volatility in that forecast, and the valuation of risk caused by that volatility. The method presented allows the gas producer to quantify these elements, and to evaluate the variety of terms encountered in direct-sale natural gas agreements, including features such as load factors and penalty charges. The analysis uses as inputs a probabilistic price forecast and a determination of a price of risk for gas prices. Once the forecast volatility is derived from the probabilistic forecast, the forward contracts imbedded in the long-term gas contract can be valued with a risk-discounting model, and optional aspects can be evaluated using the Black-Scholes option pricing method. 10 refs., 3 figs., 2 tabs

  4. Copper corrosion under expected conditions in a deep geologic repository

    International Nuclear Information System (INIS)

    King, F.; Ahonen, L.; Taxen, C.; Vuorinen, U.; Werme, L.

    2001-12-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 20 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear disposal repository located in he Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long- term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature.Various areas are considered: the expected evolution of the geochemical conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion before and during saturation of the compacted bentonite buffer by groundwater, general and localized corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. Much has been learnt about the long-term corrosion behaviour of copper canisters over the past 20 years. The majority of the information reviewed here is drawn from the Swedish/Finnish and Canadian programmes. Despite differences in scientific approach, and canister and repository design, the results of these two programmes both suggest that copper provides an excellent corrosion barrier in an underground repository. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid

  5. Copper corrosion under expected conditions in a deep geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    King, F. [Integrity Corrosion Consulting Ltd, Calgary, Alberta (Canada); Ahonen, L. [Geological Survey of Finland, Espoo (Finland); Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden); Vuorinen, U. [VTT Chemical Technology, Espoo (Finland); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-12-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 20 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear disposal repository located in he Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long- term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature.Various areas are considered: the expected evolution of the geochemical conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion before and during saturation of the compacted bentonite buffer by groundwater, general and localized corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. Much has been learnt about the long-term corrosion behaviour of copper canisters over the past 20 years. The majority of the information reviewed here is drawn from the Swedish/Finnish and Canadian programmes. Despite differences in scientific approach, and canister and repository design, the results of these two programmes both suggest that copper provides an excellent corrosion barrier in an underground repository. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid.

  6. Copper corrosion under expected conditions in a deep geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    King, F.; Ahonen, L.; Taxen, C.; Vuorinen, U.; Werme, L

    2002-01-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 20 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear disposal repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion before and during saturation of the compacted bentonite buffer by groundwater, general and localized corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. Much has been learnt about the long-term corrosion behaviour of copper canisters over the past 20 years. The majority of the information reviewed here is drawn from the Swedish/Finnish and Canadian programmes. Despite differences in scientific approach, and canister and repository design, the results of these two programmes both suggest that copper provides an excellent corrosion barrier in an underground repository. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid. (orig.)

  7. Long-term stability of high-level waste forms

    International Nuclear Information System (INIS)

    Vernaz, E.; Loida, A.; Malow, G.; Marples, J.A.C.; Matzke, H.J.

    1990-01-01

    The long-term stability of HLW forms is reviewed with regard to temperature, irradiation and aqueous corrosion in a geological environment. The paper focuses on borosilicate glasses, but the radiation stability results are compared with some HLW ceramics. Thermal stability: most nuclear waste glass compositions have been adjusted to ensure a low final crystallized fraction. The crystallization of highly active Pamela glass samples was similar to that of nonradioactive glass. Radiation stability: No adverse effect of irradiation damage was found in glasses doped with short-lived actinides: volume changes were small, no significant change in the leach rate was observed, and the fracture toughness increased. For most ceramics investigated, volume changes of up to 9%, amorphization and higher leach rates were observed as a consequence of high α decay doses. For the KAB 78 ceramic, however, none of these effects were detected since the matrix was not subject to α recoil damage. Chemical stability: It has been demonstrated that alteration by water depends largely on the repository conditions. Most clay act as silica sinks, and increase the glass corrosion rate. It is possible, however, to specify realistic temperature, pressure and environmental conditions to ensure glass integrity for more than 10 000 years

  8. An overview of erosion corrosion models and reliability assessment for corrosion defects in piping system

    International Nuclear Information System (INIS)

    Srividya, A.; Suresh, H.N.; Verma, A.K.; Gopika, V.; Santosh

    2006-01-01

    Piping systems are part of passive structural elements in power plants. The analysis of the piping systems and their quantification in terms of failure probability is of utmost importance. The piping systems may fail due to various degradation mechanisms like thermal fatigue, erosion-corrosion, stress corrosion cracking and vibration fatigue. On examination of previous results, erosion corrosion was more prevalent and wall thinning is a time dependent phenomenon. The paper is intended to consolidate the work done by various investigators on erosion corrosion in estimating the erosion corrosion rate and reliability predictions. A comparison of various erosion corrosion models is made. The reliability predictions based on remaining strength of corroded pipelines by wall thinning is also attempted. Variables in the limit state functions are modelled using normal distributions and Reliability assessment is carried out using some of the existing failure pressure models. A steady state corrosion rate is assumed to estimate the corrosion defect and First Order Reliability Method (FORM) is used to find the probability of failure associated with corrosion defects over time using the software for Component Reliability evaluation (COMREL). (author)

  9. In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris

    Science.gov (United States)

    Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun

    2018-05-01

    Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.

  10. Study on behaviour in long term of vitrified materials

    International Nuclear Information System (INIS)

    Vernaz, E.

    1993-01-01

    In collaboration with EDF (Electricite de France), after testing fusion of Refiom (Residus d'Epuration des Fumees d'Incineration d'Ordures Menageres), residues from purification of incineration smokes of household rubbish, realised at Porcheville and at the Laboratory of Renardieres with experimental processing of vitrification by plasma, CEA (Centre d'Etudes Atomiques), atomic center of research, began study on resistance in long term of vitrified products. From about thirty five years, CEA carries out research to confine radioactive waste of high activity in stable materials. Glass was the first best one which allowed to incorporate about thirty different chemical elements found in fission products solutions into a stable die with a good chemical durability; three vitrification shops raised, one at Marcoule ('AVM', 1978) in the south of France, the two other ones at La Hague ('R7', 1989 and 'T7', 1992) in Normandy. To determine a possible impact of a deep radioactive waste disposal on human and environment, several studies began. In particular, studies on aqueous corrosion of glasses to determine behaviour in long term of glass package (first barrier of confinement) and to estimate kinetics of releasing confined toxical elements on periods of several thousands years. Principal results are exposed in this conference. Experience shows that safety analysis cannot be based on long term extrapolation of a simple lixiviation result. This analysis must include: a sufficient knowledge in basic mechanisms of alteration to predict the kinetic evolution in a long term. To take in account environment conditions with a normal or accidental scheme (acidity, clay, organic compounds,...). This knowledge broadly developed by CEA for nuclear glasses seems to be easily transposable to different wastes (industrial ones or from hospitals) and takes place in a contract of research CEA/EDF to valorize vitrified products. 9 figs. 4 refs

  11. Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

    International Nuclear Information System (INIS)

    Kwon, S. O.; Bae, S. H.; Lee, H. J.; Lee, K. M.; Jung, S. H.

    2014-01-01

    Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased

  12. Long-term stabilization considerations for decommissioned and reclaimed uranium sites

    International Nuclear Information System (INIS)

    Abt, S.R.; Nelson, J.D.; Johnson, T.L.

    1988-01-01

    The long-term stabilization of decommissioned uranium mill sites and of reclaimed uranium mill tailings sites encompass a broad spectrum of design capabilities. This paper presents a few of the quantitative methodologies recently developed or refined to evaluate physical factors (i.e. precipitation, fluvial geomorphology, stable slope, slope stabilization with riprap and riprap selection) that influence long-term stabilization of uranium mill and mill tailings sites. It is acknowledged that the degree of refinement of these methodologies are in their infancy and that extensive research and development are warranted to increase the level of assurance. However, these methodologies provide an initial guideline for evaluating long-term stabilization that has not been previously existed. The purpose of this paper is to present a review of currently available state-of-the-art engineering techniques and methodologies for the evaluation of reclamation plans designed to provide long-term stability against potential failure modes. In some cases, evaluative techniques have been developed for long-term stabilization where methodologies have not previously existed. Each methodology to be presented represents a starting point upon which additional research and/or development may be warranted

  13. Evaluating Steam Generator Tubing Corrosion through Shutdown Nickel and Cobalt Releases

    International Nuclear Information System (INIS)

    Marks, Chuck; Little, Mike; Krull, Peter; Dennis Hussey; Kenny Epperson

    2012-09-01

    During power operation in PWRs, steam generator tubing corrodes. In PWRs with nickel alloy steam generator tubing this leads to the release of nickel into the coolant. While not structurally significant, this process leads to corrosion product deposition on the fuel surfaces that can threaten fuel integrity, provide a site for boron precipitation, and, through activation and subsequent release, lead to increased out-of-core radiation fields. During shutdown, decreases in temperature and pH and an increase in the oxidation potential lead to dissolution of some corrosion products from the core. This work evaluated the masses of corrosion products released during shutdown as a proxy for steam generator tubing corrosion rates. The masses were evaluated for trends with time (e.g., the number of cycles) and for the influence of design and operating features such as tubing manufacturer, plant design (e.g., three loop versus four loop), and operating chemistry program. This project utilized the EPRI PWR Chemistry Monitoring and Assessment database. Data from over 20 units, many over several cycles, were assessed. The focus was on corrosion product release from Alloy 690TT tubing and all data were from units that had replaced steam generators. Data were analyzed using models developed from corrosion rate test data reported in the literature with a heavy reliance on data from the EDF BOREAL testing. The most striking result of this analysis was a clear division between plants that exhibited corrosion with a falling rate (i.e., following an exponential decay as has been observed, for example, in the BOREAL testing) and those that showed a constant corrosion rate, sustained for many outages. This difference appears to be most closely correlated with the manufacturer of the tubing. Within the two distinct plant groups (decaying corrosion rate and constant corrosion rate), details of the trends were evaluated for correlation with zinc addition history, plant type, and operating

  14. Long-term outcome for gastric marginal zone lymphoma treated with radiotherapy

    DEFF Research Database (Denmark)

    Wirth, A; Gospodarowicz, M; Aleman, B M P

    2013-01-01

    We evaluated the long-term results of radiotherapy for patients with gastric marginal zone lymphoma (GMZL).......We evaluated the long-term results of radiotherapy for patients with gastric marginal zone lymphoma (GMZL)....

  15. Modeling of atmospheric corrosion environments and its application to constant dew-point corrosion test; Yagai taiki fushoku kankyo no modeling to sore ni motozuku teirotengata saikuru fushoku shikenho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Muto, I. [Nippon Steel Corp., Tokyo (Japan)] Sugimoto, K. [Tohoku Univ., Sendai (Japan)

    1998-08-15

    Recently, stainless steel is increasing its demand for corrosion resistant building materials. Then, as it is necessary to develop and accelerating testing method capable of accurately estimating weatherability at sea side area, such testing method has no been developed yet because of difficulty to quantify corrosive environment relating to atmospheric corrosion phenomenon. As air temperature and relative humidity in outdoor change in complex, specific temperature and relative humidity cannot be used for their representative values. And, construction of corrosive factors such as sea salt particles, and so on are also much different at each area. However, at coastal area, a dew water dissolving the sea salt particles, so called droplets of chlorides aqueous solution is formed onto material surface. Then, in this study, on a base of drying and humidity absorption behavior and daily change behavior of temperature and humidity in outdoor, modeling of atmospheric corrosion environment was tried. An accelerating testing method according to this modeling was developed, long-term weathering test was compared with the corrosion behavior of the same steel, and validity of a new accelerating testing method was evaluated. 22 refs., 12 figs., 2 tabs.

  16. Thick film nickel plating - the alternative. Long-term experiences; Dickschichtvernickelung - die Alternative. Langzeiterfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Senff-Wollenberg, Ralf [Baumgarte Boiler Systems GmbH, Bielefeld (Germany). Technik; Ansey, Johann-Wilhelm [Baumgarte Boiler Systems GmbH, Bielefeld (Germany). Forschung und Entwicklung; Reinmoeller, Frank [Baumgarte Boiler Systems GmbH, Bielefeld (Germany)

    2013-03-01

    The ecologic and energetic demands on modern plants fort he thermal utilization of waste materials increase continuously. Beside low costs of investment, enhanced efficiencies, an enhanced availability, long journey times as well as low costs of operation and maintenance are important factors for the investment decision. The primary and secondary measures for the shrinkage of corrosion are decisive for achieving the factors for the decision of investment and maintenance. The authors of the contribution under consideration report on long-term experiences on the thick film nickel plating. Especially, the process of galvanic nickel plating, the fields of application as well as the operational experiences are described.

  17. Long term storage techniques for 85Kr

    International Nuclear Information System (INIS)

    Foster, B.A.; Pence, D.T.; Staples, B.A.

    1975-01-01

    As new nuclear fuel reprocessing plants go on stream, the collection of fission product 85 Kr will be required to avoid potential local release problems and long-term atmospheric buildup. Storage of the collected 85 Kr for a period of at least 100 years will be necessary to allow approximately 99.9 percent decay before it is released. A program designed to develop and evaluate proposed methods for long-term storage of 85 Kr is discussed, and the results of a preliminary evaluation of three methods, high pressure steel cylinders, zeolite encapsulation, and clathrate inclusion are presented. (U.S.)

  18. Intergranular corrosion testing of austenitic stainless steels in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Whillock, G.O.H.; Dunnett, B. F. [British Nuclear Fuels plc, BNFL, B170, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2004-07-01

    In hot strong nitric acid solutions, stainless steels exhibit intergranular corrosion. Corrosion rates are often measured from immersion testing of specimens manufactured from the relevant material (e.g. plate or pipe). The corrosion rates, measured from weight loss, are found to increase with time prior to reaching steady state, which can take thousands of hours to achieve. The apparent increase in corrosion rate as a function of time was found to be an artefact due to the surface area of the specimen's being used in the corrosion rate calculations, rather than that of the true area undergoing active corrosion i.e. the grain boundaries. The steady state corrosion rate coincided with the onset of stable grain dropping, where the use of the surface area of the specimen to convert the weight loss measurements to corrosion rates was found to be appropriate. This was confirmed by sectioning of the specimens and measuring the penetration depths. The rate of penetration was found to be independent of time and no induction period was observed. A method was developed to shorten considerably the testing time to reach the steady state corrosion rate by use of a pre-treatment that induces grain dropping. The long-term corrosion rates from specimens which were pre-treated was similar to that achieved after prolonged testing of untreated (i.e. initially ground) specimens. The presence of cut surfaces is generally unavoidable in the simple immersion testing of specimens in test solutions. However, inaccuracy in the results may occur as the measured corrosion rate is often influenced by the orientation of the microstructure, the highest rates typically being observed on the cut surfaces. Two methods are presented which allow deconvolution of the corrosion rates from immersion testing of specimens containing cut surfaces, thus allowing reliable prediction of the long-term corrosion rate of plate surfaces. (authors)

  19. Corrosion, inspection and other problems associated with Heat exchangers in the heavy water industry

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1980-01-01

    Corrosion, fabrication and inspection problems encountered in the heavy water industry Heat exchangers are discussed. Among the problems examined are erosion/corrosion of two pass exchangers, rolling of tubes, pitting, fretting and protection for long term storage. (auth)

  20. Prediction of long term crevice corrosion and hydrogen embrittlement behavior of ASTM grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Jain, H.

    1984-01-01

    Crevice corrosion and hydrogen embrittlement are potential failure modes of Grade-12 titanium high-level nuclear waste containers emplaced in rock salt repositories. A method is presented to estimate the environment domains for which immunity to these failure modes will exist for periods of hundreds of years. The estimation is based on the identification and quantification of mechanisms involved. Macroscopic concentration cell formation is responsible for crevice corrosion. The cell formation is accompanied by oxygen depletion, potential drop, anion accumulation and acidification inside the crevice. This process is quantified by simple mass balance equations which show that the immunity domain is a function of the time the container is exposed to the corrosion environment. Strain induced hydride formation is responsible for hydrogen assisted crack initiation. A simple model for slow crack growth is developed using data on growth rates measured at various temperatures. The parameters obtained in the model are used to estimate the threshold stress intensity and hydrogen solubility limit in the alloy at infinite container service time. This value gives a crack size below which container failure will not occur for a given applied stress and hydrogen concentration, and a hydrogen concentration limit at a given stress intensity. 37 references, 5 figures, 4 tables

  1. Archaeological analogs and corrosion; Analogues archeologiques et corrosion

    Energy Technology Data Exchange (ETDEWEB)

    David, D

    2008-07-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  2. Corrosion of steel tanks in liquid nuclear wastes

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, Eduardo

    2005-01-01

    The objective of this work is to understand how solution chemistry would impact on the corrosion of waste storage steel tanks at the Hanford Site. Future tank waste operations are expected to process wastes that are more dilute with respect to some current corrosion inhibiting waste constituents. Assessment of corrosion damage and of the influence of exposure time and electrolyte composition, using simulated (non-radioactive) wastes, of the double-shell tank wall carbon steel alloys is being conducted in a statistically designed long-term immersion experiment. Corrosion rates at different times of immersion were determined using both weight-loss determinations and electrochemical impedance spectroscopy measurements. Localized corrosion susceptibility was assessed using short-term cyclic potentiodynamic polarization curves. The results presented in this paper correspond to electrochemical and weight-loss measurements of the immersed coupons during the first year of immersion from a two year immersion plan. A good correlation was obtained between electrochemical measurements, weight-loss determinations and visual observations. Very low general corrosion rates ( -1 ) were estimated using EIS measurements, indicating that general corrosion rate of the steel in contact with liquid wastes would no be a cause of tank failure even for these out-of-chemistry limit wastes. (author) [es

  3. Evaluation of the potential of additives as corrosion inhibitors of CA-50 carbon steel used as reinforcement in concretes

    International Nuclear Information System (INIS)

    Mennucci, Marina Martins

    2006-01-01

    In this work, various compounds were tested to evaluate their potential capability for their use as corrosion inhibitors of carbon steel reinforcement in concretes. The additives tested were sodium benzoate, polyethylene glycol, hexamethylenetetramine, benzotriazole and yttrium carbonate. Initially, exploratory tests were carried out to select the ones to be used as corrosion inhibitors, based on the inhibit ion efficiency determined from electrochemical tests, specifically polarization tests and electrochemical impedance spectroscopy. These tests were carried out in a solution composed of 0.01 N sodium hydroxide (NaOH) and 0.05 N potassium hydroxide (KOH) to simulate the composition of the solution inside the pores in concretes. The additive that presented the most promising potential to be used as corrosion inhibitor was benzotriazole (BTA). After the elimination of some compounds and selection of the additive with higher corrosion inhibit ion efficiency in the test medium, the effect of its concentration on the corrosion inhibition efficiency was evaluated. Sodium nitrite solutions with the same concentrations as those solutions with BTA were tested for comparison reasons. Sodium nitrite is a well established corrosion inhibitor for carbon steel reinforcement in concretes but it has been related to toxic effects. The BTA was associated to higher corrosion inhibition efficiencies than that of sodium nitrite in similar concentrations. A blackish adherent film was formed on the steel surface exposed to BTA solutions during long periods of immersion in the alkaline medium. The results suggest that BTA is a potential candidate for substitution of nitrites as corrosion inhibitor of reinforcements in concrete. (author)

  4. Evaluation on Long-term Cooling of CANDU after Sump Blockage using MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seon Oh; Cho, Yong Jin [KINS, Daejeon (Korea, Republic of); Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    There was a real incident that part of the fibrous insulation debris stripped by steam jet was transported to the pool and clogged the intake strainers of the drywell spray system, which revealed a weakness in the defense-in-depth concept which under other circumstances could have led to the ECCS failing to provide coolant to the core. Since the above Barseback-2 incident in 1992, lots of the international activities have been carried out to identify essential parameters and physical phenomena and to promote consensus on the technical issues, important for safety and possible paths for their resolution. In nuclear power plant under operation, if an unplanned reactor trip or a power reduction occurs, operators are required to maintain the reactor in a stable state according to emergency operating procedure (EOP) and to take diagnosis and appropriate mitigation actions if necessary. Subject to the EOP of Wolsong unit 1 (the first Korean PHWR NPP) under LOCA, intact or broken loops are diagnosed using the available plant information such as pressure and temperature of outlet headers. For the intact loop, effective long-term cooling is envisioned through the operation of shutdown cooling system as implemented in the EOP. In this work, the adequacy of long-term cooling during the recirculation phase of LOCA was evaluated under the postulated condition of the reduced flow path of the recirculation sump due to the inflow of substantial amount of debris released by the break flow with high energy. For the intact loop, although the incipience of boiling in the fuel channel was evaluated to occur, the effective long-term cooling can be achieved through the shutdown cooling system as guided in the EOP.

  5. Corrosion resistance of metal materials for HLW canister

    International Nuclear Information System (INIS)

    Furuya, Takashi; Muraoka, Susumu; Tashiro, Shingo

    1982-02-01

    In order to verify the materials as an important artificial barrier for canister of vitrified high-level waste from spent fuel reprocessing, data and reports were researched on corrosion resistance of the materials under conditions from glass form production to final disposal. Then, in this report, investigated subjects, improvement methods and future subjects are reviewed. It has become clear that there would be no problem on the inside and outside corrosion of the canister during glass production, but long term corrosion and radiation effect tests and the vitrification methods would be subjects in future on interim storage and final disposal conditions. (author)

  6. Dry oxidation behaviour of metallic containers during long term interim storages

    International Nuclear Information System (INIS)

    Desgranges, C.; Terlain, A.; Bertrand, N.; Gauvain, D.

    2004-01-01

    Low-alloyed steels or carbon steels are considered candidate materials for the fabrication of some nuclear waste package containers for long term interim storage. The containers are required to remain retrievable for centuries. One factor limiting their performance on this time scale is corrosion. The estimation of the metal thickness lost by dry oxidation over such long periods requires the construction of reliable models from short-time experimental data. Two complementary approaches for modelling dry oxidation have been considered. First, basic models following simple analytical laws from classical oxidation theories have been adjusted on the apparent activation energy of oxidation deduced from experimental data. Their extrapolation to long oxidation periods confirms that the expected damage due to dry oxidation could be small. Second, a numerical model able to take in consideration several mechanisms controlling the oxide scale growth is under development. Several preliminary results are presented. (authors)

  7. Localized Corrosion Behavior of Type 304SS with a Silica Layer Under Atmospheric Corrosion Environments

    International Nuclear Information System (INIS)

    E. Tada; G.S. Frankel

    2006-01-01

    The U.S. Department of Energy (DOE) has proposed a potential repository for spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nevada. [I] The temperature could be high on the waste packages, and it is possible that dripping water or humidity could interact with rock dust particulate to form a thin electrolyte layer with concentrated ionic species. Under these conditions, it is possible that highly corrosion-resistant alloys (CRAs) used as packages to dispose the nuclear waste could suffer localized corrosion. Therefore, to better understand long-term corrosion performance of CRAs in the repository, it is important to investigate localized corrosion under a simulated repository environment. We measured open circuit potential (OCP) and galvanic current (i g ) for silica-coated Type 304SS during drying of salt solutions under controlled RH environments to clarify the effect of silica layer as a dust layer simulant on localized corrosion under atmospheric environments. Type 304SS was used as a relatively susceptible model CRA instead of the much more corrosion resistant alloys, such as Alloy 22, that are being considered as, waste package materials

  8. Evaluation of corrosion inhibitors for high temperature decontamination applications

    International Nuclear Information System (INIS)

    Sathyaseelan, V.S.; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Normally, chemical decontamination of coolant systems of nuclear power reactors is carried out at temperatures less than 90 °C. At these temperatures, though magnetite dissolves effectively, the rate of dissolution of chromium and nickel containing oxides formed over stainless steel and other non-carbon steel coolant system surfaces is not that appreciable. A high temperature dissolution process using 5 mM NTA at 160 °C developed earlier by us was very effective in dissolving the oxides such as ferrites and chromites. However, the corrosion of structural materials such as carbon steel (CS) and stainless steel (SS) also increased beyond the acceptable limits at elevated temperatures. Hence, the control of base metal corrosion during the high temperature decontamination process is very important. In view of this, it was felt essential to investigate and develop a suitable inhibitor to reduce the corrosion that can take place on coolant structural material surfaces during the high temperature decontamination applications with weak organic acids. Three commercial inhibitors viz., Philmplus 5K655, Prosel PC 2116 and Ferroqest were evaluated at ambient and at 160 °C temperature in NTA formulation. Preliminary evaluation of these corrosion inhibitors carried out using electrochemical techniques showed maximum corrosion inhibition efficiency for Philmplus. Hence, it was used for high temperature applications. A concentration of 500 ppm was found to be optimum at 160 °C and at this concentration it showed an inhibition efficiency of 62% for CS. High temperature dissolution of oxides such as Fe 3 O 4 and NiFe 2 O 4 , which are relevant to nuclear reactors, was also carried out and the rate of dissolution observed was less in the presence of Philmplus. Studies were also carried out to evaluate hydrazine as a corrosion inhibitor for high temperature applications. The results revealed that for CS inhibition efficiency of hydrazine is comparable to that of Philmplus, while

  9. Long-term evaluation for engineered capping (cover) of radioactive repository or landfill

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Mohd Abdul Wahab Yusof

    2010-01-01

    This paper discussed the long-term evaluation of engineered capping for radioactive repository. It was done to gather knowledge and understand the suitability of granitic residual soil. Its resistance to hydrologic cycle and durability through a period of 100 to 300 years was checked. A hydrological program was used with forecast weather and manual checking all layers for hydraulic gradient to verify the results. Overall result shown that the grantic residual soil is able to last a few centuries before surcome to infiltration. (author)

  10. Evaluation of long-term patient satisfaction and experience with the Baha(®) bone conduction implant

    DEFF Research Database (Denmark)

    Rasmussen, Jacob; Olsen, Steen Østergaard; Nielsen, Lars Holme

    2012-01-01

    Objective: Evaluate long-term patient satisfaction with bone-anchored hearing aids (the Baha(R), now referred to by Cochlear as a 'bone conduction implant') in our hospital clinic spanning the eighteen-year period from the inception of our Baha program. The researchers further wished to analyse t...

  11. Corrosion calculations report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    2010-12-01

    This report is a compilation of the quantitative assessments of corrosion of the copper canisters in a KBS-3 repository. The calculations are part of the safety assessment SR-Site that is the long-term safety assessment to support the license application for building a final repository for spent nuclear fuel at Forsmark, Sweden. The safety assessment methodology gives the frame for the structured and documented approach to assess all conceivable corrosion processes. The quantitative assessments are done in different ways depending on the nature of the process and on the implications for the long-term safety. The starting point for the handling of the corrosion processes is the description of all known corrosion processes for copper with the current knowledge base and applied to the specific system and geology. Already at this stage some processes are excluded for further analysis, for example if the repository environment is not a sufficient prerequisite for the process to occur. The next step is to identify processes where the extent of corrosion could be bounded, e.g. by a mass balance approach. For processes where a mass balance is not limiting, the mass transport of corrodants (or corrosion products) is taken into account. A simple approach would be just to calculate the diffusive transport of corrodants through the bentonite, but generally the transport resistance for the interface between groundwater in a rock fracture intersecting the deposition hole and the bentonite buffer is more important. In SR-Site, the concept of equivalent flowrate, Q eq , is used. This assessment is done integrated with the evaluation of the geochemical and hydrogeological evolution of the repository. For most of the corrosion processes analysed, the corrosion depth is much smaller than the copper shell thickness, even for the assessment time of 10 6 years. Several processes give corrosion depths less than 100 μm, but no process give corrosion depths larger than a few millimetres

  12. Corrosion calculations report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This report is a compilation of the quantitative assessments of corrosion of the copper canisters in a KBS-3 repository. The calculations are part of the safety assessment SR-Site that is the long-term safety assessment to support the license application for building a final repository for spent nuclear fuel at Forsmark, Sweden. The safety assessment methodology gives the frame for the structured and documented approach to assess all conceivable corrosion processes. The quantitative assessments are done in different ways depending on the nature of the process and on the implications for the long-term safety. The starting point for the handling of the corrosion processes is the description of all known corrosion processes for copper with the current knowledge base and applied to the specific system and geology. Already at this stage some processes are excluded for further analysis, for example if the repository environment is not a sufficient prerequisite for the process to occur. The next step is to identify processes where the extent of corrosion could be bounded, e.g. by a mass balance approach. For processes where a mass balance is not limiting, the mass transport of corrodants (or corrosion products) is taken into account. A simple approach would be just to calculate the diffusive transport of corrodants through the bentonite, but generally the transport resistance for the interface between groundwater in a rock fracture intersecting the deposition hole and the bentonite buffer is more important. In SR-Site, the concept of equivalent flowrate, Q{sub eq}, is used. This assessment is done integrated with the evaluation of the geochemical and hydrogeological evolution of the repository. For most of the corrosion processes analysed, the corrosion depth is much smaller than the copper shell thickness, even for the assessment time of 106 years. Several processes give corrosion depths less than 100 mum, but no process give corrosion depths larger than a few

  13. Space ventures and society long-term perspectives

    Science.gov (United States)

    Brown, W. M.

    1985-01-01

    A futuristic evaluation of mankind's potential long term future in space is presented. Progress in space will not be inhibited by shortages of the Earth's physical resources, since long term economic growth will be focused on ways to constrain industrial productivity by changing social values, management styles, or government competence. Future technological progress is likely to accelerate with an emphasis on international cooperation, making possible such large joint projects as lunar colonies or space stations on Mars. The long term future in space looks exceedingly bright even in relatively pessimistic scenarios. The principal driving forces will be technological progress, commercial and public-oriented satellites, space industrialization, space travel, and eventually space colonization.

  14. Inflammatory markers in relation to long-term air pollution

    NARCIS (Netherlands)

    Mostafavi Montazeri, Nahid|info:eu-repo/dai/nl/375290575; Vlaanderen, Jelle|info:eu-repo/dai/nl/31403160X; Chadeau-Hyam, Marc; Beelen, Rob|info:eu-repo/dai/nl/30483100X; Modig, Lars; Palli, Domenico; Bergdahl, Ingvar A; Vineis, Paolo; Hoek, Gerard|info:eu-repo/dai/nl/069553475; Kyrtopoulos, Soterios Α; Vermeulen, Roel|info:eu-repo/dai/nl/216532620

    Long-term exposure to ambient air pollution can lead to chronic health effects such as cancer, cardiovascular and respiratory disease. Systemic inflammation has been hypothesized as a putative biological mechanism contributing to these adverse health effects. We evaluated the effect of long-term

  15. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Tan Yongjun, E-mail: yj.tan@curtin.edu.a [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia); Fwu, Young; Bhardwaj, Kriti [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia)

    2011-04-15

    Research highlights: A new experiment method for evaluating under-deposit corrosion and its inhibitors. Under-deposit corrosion did not occur in a CO{sub 2} saturated pure brine solution. Inhibitor imidazoline addition and O{sub 2} contamination initiated under-deposit corrosion. Inhibitor imidazoline reduced general corrosion but enhanced localised corrosion. - Abstract: A new experimental method has been applied to evaluate under-deposit corrosion and its inhibition by means of an electrochemically integrated multi-electrode array, namely the wire beam electrode (WBE). Maps showing galvanic current and corrosion potential distributions were measured from a WBE surface that was partially covered by sand. Under-deposit corrosion did not occur during the exposure of the WBE to carbon dioxide saturated brine under ambient temperature. The introduction of corrosion inhibitor imidazoline and oxygen into the brine was found to significantly affect the patterns and rates of corrosion, leading to the initiation of under-deposit corrosion over the WBE.

  16. Audit of long-term and short-term liabilities

    Directory of Open Access Journals (Sweden)

    Korinko M.D.

    2017-03-01

    Full Text Available The article determines the importance of long-term and short-term liabilities for the management of financial and material resources of an enterprise. It reviews the aim, objects and information generators for realization of audit of short-term and long-term obligations. The organizing and methodical providing of audit of long-term and short-term liabilities of an enterprise are generalized. The authors distinguish the stages of realization of audit of long-term and short-term liabilities, the aim of audit on each of the presented stages, and recommend methodical techniques. It is fixed that it is necessary to conduct the estimation of the systems of internal control and record-keeping of an enterprise by implementation of public accountant procedures for determination of volume and maintenance of selection realization. After estimating the indicated systems, a public accountant determines the methodology for realization of public accountant verification of long-term and short-term liabilities. The analytical procedures that public accountants are expedient to use for realization of audit of short-term and long-term obligations are determined. The authors suggest the classification of the educed defects on the results of the conducted public accountant verification of short-term and long-term obligations.

  17. Evaluation of long term radiological impact on population close to remediated uranium mill tailings storages

    International Nuclear Information System (INIS)

    Kerouanton, David; Delgove, Laure

    2008-01-01

    A methodology is elaborated in order to evaluate the long term radiological impact of remediated uranium mill tailings storage. Different scenarios are chosen and modelled to cover future evolution of the tailings storages. Radiological impact is evaluated for different population such as adults and children living in the immediate vicinity or directly on the storage, road workers or walkers on the storage. Equation and methods are detailed. (author)

  18. Methods to Evaluate Corrosion in Buried Steel Structures: A Review

    Directory of Open Access Journals (Sweden)

    Lorena-de Arriba-Rodriguez

    2018-05-01

    Full Text Available Around the world, there are thousands of metal structures completely or partially buried in the soil. The main concern in their design is corrosion. Corrosion is a mechanism that degrades materials and causes structural failures in infrastructures, which can lead to severe effects on the environment and have direct impact on the population health. In addition, corrosion is extremely complex in the underground environment due to the variability of the local conditions. The problem is that there are many methods to its evaluation but none have been clearly established. In order to ensure the useful life of such structures, engineers usually consider an excess thickness that increases the economic cost of manufacturing and does not satisfy the principles of efficiency in the use of resources. In this paper, an extended revision of the existing methods to evaluate corrosion is carried out to optimize the design of buried steel structures according to their service life. Thus, they are classified into two categories depending on the information they provide: qualitative and quantitative methods. As a result, it is concluded that the most exhaustive methodologies for estimating soil corrosion are quantitative methods fed by non-electrochemical data based on experimental studies that measure the mass loss of structures.

  19. Laboratory testing of waste glass aqueous corrosion; effects of experimental parameters

    International Nuclear Information System (INIS)

    Ebert, W.L.; Mazer, J.J.

    1993-01-01

    A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be utilized to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion-exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the affects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and which processes are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion-exchange reactions dominate the observed glass corrosion in dilute solutions while hydrolysis reactions dominant in more concentrated solutions. Which process(es) controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited

  20. Improving Service Quality in Long-term Care Hospitals: National Evaluation on Long-term Care Hospitals and Employees Perception of Quality Dimensions

    OpenAIRE

    Kim, Jinkyung; Han, Woosok

    2012-01-01

    Objectives To investigate predictors for specific dimensions of service quality perceived by hospital employees in long-term care hospitals. Methods Data collected from a survey of 298 hospital employees in 18 long-term care hospitals were analysed. Multivariate ordinary least squares regression analysis with hospital fixed effects was used to determine the predictors of service quality using respondents? and organizational characteristics. Results The most significant predictors of employee-...

  1. An Electrochemical Method to Predict Corrosion Rates in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Dafter, M. R. [Hunter Water Australia Pty Ltd, Newcastle (Australia)

    2016-10-15

    Linear polarization resistance (LPR) testing of soils has been used extensively by a number of water utilities across Australia for many years now to determine the condition of buried ferrous water mains. The LPR test itself is a relatively simple, inexpensive test that serves as a substitute for actual exhumation and physical inspection of buried water mains to determine corrosion losses. LPR testing results (and the corresponding pit depth estimates) in combination with proprietary pipe failure algorithms can provide a useful predictive tool in determining the current and future conditions of an asset{sup 1)}. A number of LPR tests have been developed on soil by various researchers over the years{sup 1)}, but few have gained widespread commercial use, partly due to the difficulty in replicating the results. This author developed an electrochemical cell that was suitable for LPR soil testing and utilized this cell to test a series of soil samples obtained through an extensive program of field exhumations. The objective of this testing was to examine the relationship between short-term electrochemical testing and long-term in-situ corrosion of buried water mains, utilizing an LPR test that could be robustly replicated. Forty-one soil samples and related corrosion data were obtained from ad hoc condition assessments of buried water mains located throughout the Hunter region of New South Wales, Australia. Each sample was subjected to the electrochemical test developed by the author, and the resulting polarization data were compared with long-term pitting data obtained from each water main. The results of this testing program enabled the author to undertake a comprehensive review of the LPR technique as it is applied to soils and to examine whether correlations can be made between LPR testing results and long-term field corrosion.

  2. Backcasting long-term climate data: evaluation of hypothesis

    Science.gov (United States)

    Saghafian, Bahram; Aghbalaghi, Sara Ghasemi; Nasseri, Mohsen

    2018-05-01

    Most often than not, incomplete datasets or short-term recorded data in vast regions impedes reliable climate and water studies. Various methods, such as simple correlation with stations having long-term time series, are practiced to infill or extend the period of observation at stations with missing or short-term data. In the current paper and for the first time, the hypothesis on the feasibility of extending the downscaling concept to backcast local observation records using large-scale atmospheric predictors is examined. Backcasting is coined here to contrast forecasting/projection; the former is implied to reconstruct in the past, while the latter represents projection in the future. To assess our hypotheses, daily and monthly statistical downscaling models were employed to reconstruct past precipitation data and lengthen the data period. Urmia and Tabriz synoptic stations, located in northwestern Iran, constituted two case study stations. SDSM and data-mining downscaling model (DMDM) daily as well as the group method of data handling (GMDH) and model tree (Mp5) monthly downscaling models were trained with National Center for Environmental Prediction (NCEP) data. After training, reconstructed precipitation data of the past was validated against observed data. Then, the data was fully extended to the 1948 to 2009 period corresponding to available NCEP data period. The results showed that DMDM performed superior in generation of monthly average precipitation compared with the SDSM, Mp5, and GMDH models, although none of the models could preserve the monthly variance. This overall confirms practical value of the proposed approach in extension of the past historic data, particularly for long-term climatological and water budget studies.

  3. Evaluation of the long-term efficacy of CT-guided epidural steroid injection for the treatment of sciatica

    International Nuclear Information System (INIS)

    Tong Guohai; Wang Wei; Chen Wei; Chen Kemin

    2005-01-01

    Objective: To evaluate the long-term efficacy of CT-guided epidural steroid injection for the treatment of sciatica. Methods: CT-guided epidural steroid injection was performed in 180 patients with sciatica from May 1998 to March 2004, and all patients had failure to previous conservative treatment. Visual analogue scale was used to evaluate the pain of the patient before and after the treatment. Results: Follow-up was taken for 112 cases during 1-6 years after the treatment, 89 patients (79.5%) had successful long-term outcome and 80 patients (71.4%) were satisfied. Conclusions: CT-guided epidural steroid injection can reduce low back pain and radical pain. It should be preferentially considered as the first choice when conservative treatments are failed. (authors)

  4. Corrosion of Structural Materials in Liquid Metals Used as Fast Reactor Coolants

    International Nuclear Information System (INIS)

    Balbaud-Célérier, F.; Courouau, J.L.; Martinelli, L.

    2013-01-01

    Conclusions: • Thermodynamic data give the stable state of the system, the compounds susceptible to form but no information on the kinetics of the process; • Need to perform corrosion tests in controlled conditions of temperature, chemistry, hydrodynamics; • Comparison of the materials behaviour: first selection of materials, optimisation of the composition; • Fundamental work on the understanding of the corrosion process to develop corrosion models and predictive laws to guarantee the long term behaviour

  5. Radiological evaluation of long term complications of oral rehabilitations of thin ridges with titanium blade implants

    Directory of Open Access Journals (Sweden)

    P. Diotallevi

    2014-03-01

    Full Text Available Aim: The aim of this study was to assess the sensitivity of orthopantomography (OPT in the diagnosis of long term complications in oral rehabilitations with blade implants. Materials and methods A total of 235 blade implants in 189 patients, inserted between 1988 and 2003, were retrospectively analyzed. The records consisted of a first OPT taken between January and December 2010, and a second one 12 months after. The evaluation of implant health considered: integrity of the blade, normal radiological representation of the bone around the implant, dense and cortical appearance of bone around the implant collar. The evaluation of radiological complications considered: implant fracture, bone resorption around the implant, recession of the bone around the implant collar. Results The sensitivity of the panoramic evaluation was equal to 100%. The complications detected were 5 cases of periimplantitis, 9 cases of bone pericervical bone recession and 3 cases of fracture of the implant body. In cases of pericervical bone resorption the following radiological check up 12 months after the first one showed the progression of the disease in 6 out of 9 cases, with irreversible implant failure. In subjects with a radiological pattern of implant health there were no complications in the subsequent check up after 12 months. In the subjects with complications the specificity was equal to 100%. Conclusion The radiographic evaluation by the means of OPT has shown high sensitivity in the diagnosis of long term complications of oral rehabilitations with blade implants and allows prompt therapeutic interventions. Radiological complications appeared mostly in the long term check ups and mainly consisted in recession of the bone around the neck or around the entire implant. More rarely implant fractures occurred, which, in the case of blades, sometimes were not associated with any clinical symptoms: therefore, postsurgical evaluation should not be separated from

  6. Long-term product consistency test of simulated 90-19/Nd HLW glass

    International Nuclear Information System (INIS)

    Gan, X.Y.; Zhang, Z.T.; Yuan, W.Y.; Wang, L.; Bai, Y.; Ma, H.

    2011-01-01

    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface (S/V = 6000 m -1 ) and elevated temperature (150 o C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3 Fe 2 Si 4 O 10 (OH) 2 .4H 2 O) and montmorillonite (Ca 0.2 (Al,Mg) 2 Si 4 O 10 (OH) 2 .4H 2 O), and those of aluminosilicates are mordenite ((Na 2 ,K 2 ,Ca)Al 2 Si 10 O 24 .7H 2 O)) and clinoptilolite ((Na,K,Ca) 5 Al 6 Si 30 O 72 .18H 2 O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  7. A wireless embedded passive sensor for monitoring the corrosion potential of reinforcing steel

    International Nuclear Information System (INIS)

    Bhadra, Sharmistha; Thomson, Douglas J; Bridges, Greg E

    2013-01-01

    Corrosion of reinforcing steel, which results in premature deterioration of reinforced concrete structures, is a worldwide problem. Most corrosion sensing techniques require some type of wired connection between the sensor and monitoring electronics. This causes significant problems in their installation and long-term use. In this paper we describe a new type of passive embeddable wireless sensor that is based on an LC coil resonator where the resonant frequency is changed by the corrosion potential of the reinforcing steel. The resonant frequency can be monitored remotely by an interrogator coil inductively coupled to the sensor coil. The sensor unit comprises an inductive coil connected in parallel with a voltage dependent capacitor (varactor) and a pair of corrosion electrodes consisting of a reinforcing steel sensing electrode and a stainless steel reference electrode. Change of potential difference between the electrodes due to variation of the corrosion potential of the reinforcing steel changes the capacitance of the varactor and shifts the resonant frequency of the sensor. A time-domain gating method was used for the interrogation of the inductively coupled corrosion sensor. Results of an accelerated corrosion test using the sensor indicate that the corrosion potential can be monitored with a resolution of less than 10 mV. The sensor is simple in design and requires no power source, making it an inexpensive option for long-term remote monitoring of the corrosion state of reinforcing steel. (paper)

  8. Long-term care financing through Federal tax incentives.

    Science.gov (United States)

    Moran, D W; Weingart, J M

    1988-12-01

    Congress and the Administration are currently exploring various methods of promoting access to long-term care. In this article, an inventory of recent legislative proposals for using the Federal tax code to expand access to long-term care services is provided. Proposals are arrayed along a functional typology that includes tax mechanisms to encourage accumulation of funds, promote purchase of long-term care insurance, or induce the diversion of funds accumulated for another purpose (such as individual retirement accounts). The proposals are evaluated against the public policy objective of encouraging risk pooling to minimize social cost.

  9. Modeling the effects of evolving redox conditions on the corrosion of copper containers

    International Nuclear Information System (INIS)

    Kng, F.; LeNeveu, D.M.; Jobe, D.J.

    1994-01-01

    The corrosive environment around the containers in a Canadian nuclear fuel waste disposal vault will change over time from open-quotes warm and oxidizingclose quotes to open-quotes cool and anoxic.close quotes As the conditions change, so too will the corrosion behaviour of the containers. For copper containers, uniform corrosion and, possibly, pitting will occur during the initial aggressive phase, to be replaced by slow uniform corrosion during the long-term anoxic period. The corrosion behaviour of copper has been studied over a range of conditions representing all phases in the evolution of the vault environment. The results of these studies are summarized and used to illustrate how a model can be developed to predict the corrosion behaviour and container lifetimes over long periods of time. Lifetimes in excess of 10 6 a are predicted for 25-mm-thick copper containers under Canadian disposal conditions

  10. Long-term follow-up study and long-term care of childhood cancer survivors

    Directory of Open Access Journals (Sweden)

    Hyeon Jin Park

    2010-04-01

    Full Text Available The number of long-term survivors is increasing in the western countries due to remarkable improvements in the treatment of childhood cancer. The long-term complications of childhood cancer survivors in these countries were brought to light by the childhood cancer survivor studies. In Korea, the 5-year survival rate of childhood cancer patients is approaching 70%; therefore, it is extremely important to undertake similar long-term follow-up studies and comprehensive long-term care for our population. On the basis of the experiences of childhood cancer survivorship care of the western countries and the current Korean status of childhood cancer survivors, long-term follow-up study and long-term care systems need to be established in Korea in the near future. This system might contribute to the improvement of the quality of life of childhood cancer survivors through effective intervention strategies.

  11. Musical and Verbal Memory in Alzheimer's Disease: A Study of Long-Term and Short-Term Memory

    Science.gov (United States)

    Menard, Marie-Claude; Belleville, Sylvie

    2009-01-01

    Musical memory was tested in Alzheimer patients and in healthy older adults using long-term and short-term memory tasks. Long-term memory (LTM) was tested with a recognition procedure using unfamiliar melodies. Short-term memory (STM) was evaluated with same/different judgment tasks on short series of notes. Musical memory was compared to verbal…

  12. Experimental Researches on Long-Term Strength of Granite Gneiss

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2015-01-01

    Full Text Available It is important to confirm the long-term strength of rock materials for the purpose of evaluating the long-term stability of rock engineering. In this study, a series of triaxial creep tests were conducted on granite gneiss under different pore pressures. Based on the test data, we proposed two new quantitative methods, tangent method and intersection method, to confirm the long-term strength of rock. Meanwhile, the isochronous stress-strain curve method was adopted to make sure of the accuracy and operability of the two new methods. It is concluded that the new methods are suitable for the study of the long-term strength of rock. The effect of pore pressure on the long-term strength of rock in triaxial creep tests is also discussed.

  13. Corrosion problems of PWR steam generators

    International Nuclear Information System (INIS)

    Urbancik, L.; Kostal, M.

    Literature data are assessed on corrosion failures of steam generator tubes made of INCONEL 600 or INCOLOY 800. It was found that both alloys with high nickel content showed good stability in a corrosion environment while being sensitive to carbide formation on grain boundaries. The gradual depletion of chromium results from the material and corrosion resistance deteriorates. INCOLOY 800 whose chromium carbide precipitation on grain boundaries in pure water and steam is negligible up to 75O degC and which is not subject to corrosion attacks in the above media and in an oxidizing environment at a temperature to about 700 degC shows the best corrosion resistance. Its favourable properties were tested in long-term operation in the Peach Bottom 1 nuclear power plant where no failures due to corrosion of this material have been recorded since 1967. In view of oxygenic-acid surface corrosion, it is necessary to work in a neutral or slightly basic environment should any one of the two alloys be used for steam generator construction. The results are summed up of an analysis conducted for the Beznau I NOK reactor. Water treatment with ash-free amines can be used as prevention against chemical corrosion mechanisms, although the treatment itself does not ensure corrosion resistance of steam generator key components. (J.B.)

  14. Long-term complications in Hodgkin's lymphoma survivors.

    Science.gov (United States)

    Kilickap, Saadettin; Barista, Ibrahim; Ulger, Sukran; Celik, Ismail; Selek, Ugur; Güllü, Ibrahim; Yildiz, Ferah; Kars, Ayse; Ozisik, Yavuz; Tekuzman, Gülten

    2012-01-01

    Background. Although patients with Hodgkin's lymphoma (HL) achieve prolonged survival, long-term complications are a major cause of morbidity and mortality among long-term survivors of HL. Methods. We retrospectively evaluated long-term complications in 336 HL survivors treated between January 1990 and January 2006 at the Department of Medical Oncology of the Hacettepe University Institute of Oncology who were >16 years old at presentation. All patients were regularly followed up every 3 months for the first 2 years after complete response, biannually for 3 years, and annually after 5 years. Results. Median follow-up was 8.5 years. The mean age (±SD) of the patients at the time of diagnosis was 35.7 ± 13.1 years. The male to female ratio was 61%/39%. During follow-up, 29 second malignancies (8.6%) were diagnosed in 28 patients with HL; 22 were solid tumors and 7 were hematological malignancies. Forty-seven (14.0%) of all patients with HL were found to have thyroid abnormalities. During follow-up, 54 (16.1%) patients developed cardiovascular complications. Overall, 29 (8.6%) patients developed late pulmonary toxicities. The cumulative number of chronic viral infections was 13 (3.9%). Conclusions. Long-term survivors of HL need to be properly followed up not only for disease control but also for evaluation of possible late morbidities to minimize the consequences.

  15. Stress corrosion in a borosilicate glass nuclear wasteform

    International Nuclear Information System (INIS)

    Ringwood, A.E.; Willis, P.

    1984-01-01

    The authors discuss a typical borosilicate glass wasteform which, when exposed to water vapour and water for limited periods, exhibits evidence of stress corrosion cracking arising from the interaction of polar OH groups with stressed glass surfaces. Glass wasteforms may experience similar stress corrosion cracking when buried in a geological repository and exposed to groundwaters over an extended period. This would increase the effective surface areas available for leaching by groundwater and could decrease the lifetime of the wasteform. Conventional leach-testing methods are insensitive to the longer-term effects of stress corrosion cracking. It is suggested that specific fracture-mechanics tests designed to evaluate susceptibility to stress corrosion cracking should be used when evaluating the wasteforms for high-level nuclear wastes. (author)

  16. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  17. Corrosion Monitors for Embedded Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Casias, Adrian L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  18. Corrosion performance of new Zircaloy-2-based alloys

    International Nuclear Information System (INIS)

    Rudling, P.; Mikes-Lindbaeck, M.; Lethinen, B.; Andren, H.O.; Stiller, K.

    1994-01-01

    A material development project was initiated to develop a new zirconium alloy, outside the ASTM specifications for Zircaloy-2 and Zircaloy-4, with optimized hydriding and corrosion properties for both boiling water reactors and pressurized water reactors. A number of different alloys were manufactured. These alloys were long-term corrosion tested in autoclaves at 400 C in steam. Also, a 520 C/24 h steam test was carried out. The zirconium metal microstructure and the chemistry of precipitates were characterized by analytical electron microscopy. The metal matrix chemistry was determined by atom probe analysis. The paper describes the correlations between corrosion material performance and zirconium alloy microstructure

  19. Development of evaluation method on flow-induced vibration and corrosion of components in two-phase flow by coupled analysis. 2. Evaluation of corrosive conditions in cooling systems of nuclear power plants

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Katono, Kenichi; Ichikawa, Ryoko; Hotta, Koji

    2007-01-01

    In order to establish safety and reliable plant operation, it is required to forecast future troubles on structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious problems on plant operation. The models are divided into two parts, which are as follows. 1. Prediction model of future trouble on structural materials based on evaluation of corrosive conditions. 2. Evaluation model of wall thinning caused by flow accelerated corrosion. (author)

  20. Long-term health status of Danish women with silicone breast implants

    DEFF Research Database (Denmark)

    Breiting, Vibeke B; Hölmich, Lisbet R; Brandt, Bodil

    2004-01-01

    Long-term safety data are important in the evaluation of possible adverse health outcomes related to silicone breast implants. The authors evaluated long-term symptoms and conditions and medication use among 190 Danish women with cosmetic silicone breast implants compared with 186 women who had u...

  1. Corrosion evaluation of cooling-water treatments for gas centrifuge facilities

    International Nuclear Information System (INIS)

    Schmidt, C.R.; Meredith, P.F.

    1980-01-01

    The corrosion resistance of six different types of weighted metal coupons was evaluated at 29 0 C (84 0 F) in flowing water containing nitrite-borate-silicate corrosion inhibitors. The question for evaluation was whether it would be more advantageous: (1) to drain the treated cooling water from the centrifuge machine and to expose them to moisture-laden air over an assumed shop downtime and repair perid of 1 month; or (2) to let the treated cooling water remain stagnant in the machines during this downtime. The moisture-laden-air exposure was more detrimental

  2. Evaluation of erosion-corrosion resistance in Fe-Mn-Al austenitic steels

    Directory of Open Access Journals (Sweden)

    William Arnulfo Aperador

    2013-04-01

    Full Text Available In this paper, the effects of Mn and Al against corrosion/errosion resistance of three samples of the Fe-Mn-Al austenitic alloys are evaluated. The samples have composition Fe-(4,9 ~ 11,0 wt. (% Al-(17,49 ~ 34,3 wt. (% Mn-(0,43 ~ 1,25 wt. (%C, those were prepared in an induction furnace from high purity materials. The alloys were evaluated in a composed solution of NaCl 0,5 M and Silica in a special chamber and AISI 316 stainless steel as reference material. The electrochemical characterization was performed by Tafel curve polarizations technique. This microstructural characterization was by Scanning Electron Microscopy (SEM. It was observed the significant decrease in the corrosion rate for steels Fermanal with a lower percentage of aluminum and manganese under conditions of dynamic corrosion and erosion-corrosion. SEM allows assessment of the dominant damage mechanisms and corroborated the results obtained by electrochemical measurements.

  3. Examination of constitutive model for evaluating long-term mechanical behavior of buffer (II). Document prepared by other organization, based on the trust contract

    International Nuclear Information System (INIS)

    Shigeno, Yoshimasa; Namikawa, Tsutomu; Takaji, Kazuhiko

    2003-02-01

    On the R and D of the high-level radioactive waste repository, it is essential that Engineered Barrier System (EBS) is stable mechanically over a long period of time for maintaining each ability required to EBS. After closing the repository, the various external forces will be affected to buffer intricately for a long period of time. So, to make clear the mechanical deformation behavior of buffer against the external force is important, because of carrying out safety assessment of EBS accurately. In this report, reversal sets of parameters are chosen for the previously selected constitutive models, Sekiguchi-Ohta model and Adachi-Oka model and the element tests are simulated using these parameters. Through the simulation, applicability of the constitutive models and these parameters is examined. Using these parameters, sensitivity analysis of prototype EBS model is also done. Analysis is carried out with two cases. 1: Settlement of the over with no corrosion expansion. 2: Settlement of the over pack with corrosion expansion. The results of the analysis area as follows. Settlement by the weight is mainly affected by the viscous parameters. The whole destruction of the EBS does not occur with any set of applicable parameters. Viscous parameters are important to evaluate the effect of the over pack expansion on surrounding rocks. (author)

  4. Waterwall corrosion evaluation in coal-fired boilers using electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.; Lee, C.; Seeley, R.; Harding, S.; Heap, M.; Cox, W.

    2000-07-01

    Until recently, waterwall corrosion in North American coal-fired boilers was uncommon and relatively mild. However, the introduction of combustion modifications to reduce in-furnace NOx formation has led to notable increases in the frequency and severity of waterwall wastage. Reaction Engineering International (REI) has worked with the Department of Energy and EPRI to improve predictive capabilities and provide solutions for furnace wall wastage for a wide range of coal-fired furnaces. To date, this work has emphasized computational simulations. More recently, REI in partnership with Corrosion Management has begun complementary efforts to improve their services by evaluating technologies capable of determining the location/rate of high water wall wastage resulting from corrosion. After an evaluation of commercially available options, electrochemical noise (EN) technology has been chosen for continued development. This approach has been successfully applied to corrosion-related problems involving acid dewpoint corrosion in flue gas ductwork, FGD systems, cooling water systems, oil and gas production, and acid cleaning (Cox et al, 1999). This paper presents the results of preliminary testing of an EN probe in a high temperature environment typical of the lower furnace of a cyclone-fired boiler operating under staged conditions. The relationship between electrochemical responses and (1) stoichiometry and (2) local hydrogen sulfide concentration is investigated and the qualitative and quantitative usefulness of the approach for on-line risk management is considered.

  5. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    International Nuclear Information System (INIS)

    Lim, H. K.; Kim, Y. S.

    2009-01-01

    When austenitic stainless steels are heat treated in the range of 500∼850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month

  6. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H. K.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of)

    2009-12-15

    When austenitic stainless steels are heat treated in the range of 500{approx}850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month.

  7. Postoperative CPAP use impacts long-term weight loss following bariatric surgery.

    Science.gov (United States)

    Collen, Jacob; Lettieri, Christopher J; Eliasson, Arn

    2015-03-15

    Obstructive sleep apnea (OSA) is common among bariatric surgery candidates. After surgical weight loss, OSA frequently persists and untreated OSA can lead to weight gain. Long-term continuous positive airway pressure (CPAP) adherence is unclear and poor adherence may worsen weight loss outcomes. We sought to determine the impact of CPAP use on long-term weight-loss outcomes in a cohort of bariatric patients. Long-term observational study of bariatric surgery patients with OSA. Patients were evaluated with polysomnography preoperatively and one-year postoperatively. The cohort was again evaluated a mean of 7.2 years later to determine the relationship between long-term CPAP use and subsequent regain of weight. Twenty-four consecutive patients (aged 48.5 ± 9.4 years at time of surgery; 73% female) were included in the initial assessment, and long-term outcome data were available on 22 subjects. Persistent OSA was documented in 21 of 22 subjects (95%) one year postoperatively. Final evaluation occurred 7.2 ± 2.3 years following surgery. Weight (213.3 ± 39.1 to 235.3 ± 47.1 lb, p = 0.10) and BMI (32.5 ± 5.4 to 37.3 ± 8.2 kg/m(2), p = 0.03) increased in most (n = 19, 86.4%) from postoperative to final evaluation. CPAP use declined from 83.3% (preoperatively) to 38.1% (one year) and to 23.8% (final evaluation). BMI increased among those not using CPAP at long-term follow-up compared to those with continued CPAP use (6.8% v -1.8%, p = 0.05). In our cohort of bariatric patients with OSA, long-term adherence to CPAP therapy was poor, and non-adherence was associated with weight gain. Ongoing follow-up of OSA in this population may help to preserve initial achievements after surgical weight loss. © 2014 American Academy of Sleep Medicine.

  8. On the characterisation of the corrosion layout of ferrous archaeological analogues in binders

    Energy Technology Data Exchange (ETDEWEB)

    Chitty, Walter-John [Laboratoire Pierre Sue, CEA-CNRS, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Dillmann, Philippe [LRC CEA DSM 01-27: CNRS IRAMAT UMR5060, IPSE, and Laboratoire Pierre Sue, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); L' Hostis, Valerie [Laboratoire d' Etude du Comportement des Betons et Argiles, CEA, CE Saclay, 91191 Gif-sur-Yvette cedex (France); Beranger, Gerard [Universite de technologie de Compiegne, BP 60319, 60203 Compiegne (France)

    2004-07-01

    This paper deals with an analytical study on ferrous reinforcements embedded in hydraulic binders found in ancient buildings from the Middle Age period to the beginning of the 20. c. AD. The study of these kind of archaeological analogues is necessary to improve the knowledge on the long-term corrosion of low carbon steels that could be used in concrete to build the substructure of nuclear wastes reversible storage facilities. The corrosion system can be described as a multi-layer pattern made of the metal, a dense corrosion product layer, a transformed medium and a binder. All the morphological and physicochemical properties as composition, structure and porosities of these different parts were studied with different analytical methods as optical and electron microscopy, EDS coupled to SEM, EPMA, mercury porosimetry, micro Raman spectroscopy and micro Diffraction under Synchrotron Radiation. Moreover, average corrosion rates were evaluated by two different methods. These rates are relatively low compared to the same parameters measured on low alloyed steels immersed in aqueous environments and are comparable with results obtained for passivated systems. (authors)

  9. On the characterisation of the corrosion layout of ferrous archaeological analogues in binders

    International Nuclear Information System (INIS)

    Chitty, Walter-John; Dillmann, Philippe; L'Hostis, Valerie; Beranger, Gerard

    2004-01-01

    This paper deals with an analytical study on ferrous reinforcements embedded in hydraulic binders found in ancient buildings from the Middle Age period to the beginning of the 20. c. AD. The study of these kind of archaeological analogues is necessary to improve the knowledge on the long-term corrosion of low carbon steels that could be used in concrete to build the substructure of nuclear wastes reversible storage facilities. The corrosion system can be described as a multi-layer pattern made of the metal, a dense corrosion product layer, a transformed medium and a binder. All the morphological and physicochemical properties as composition, structure and porosities of these different parts were studied with different analytical methods as optical and electron microscopy, EDS coupled to SEM, EPMA, mercury porosimetry, micro Raman spectroscopy and micro Diffraction under Synchrotron Radiation. Moreover, average corrosion rates were evaluated by two different methods. These rates are relatively low compared to the same parameters measured on low alloyed steels immersed in aqueous environments and are comparable with results obtained for passivated systems. (authors)

  10. The effect of heat treatments on the corrosion behavior of Zircaloy-4

    International Nuclear Information System (INIS)

    Zhou Bangxin; Zhao Wenjin; Miao Zhi; Pan Shufang; Li Cong; Jiang Yourong

    1996-06-01

    The effect of penultimate annealing temperature and cooling rate on the corrosion behavior of Zircaloy-4 cladding tube has been investigated. Both nodular corrosion and uniform corrosion resistance can be improved obviously after changing the heat treatment from the original annealing at 650 degree C to quenching from 830 degree C (upper temperature of alpha phase region or lower temperature of beta phase region). Although the nodular corrosion resistance can be improved obviously after quenching from beta phase, there was a second transition in the variation between weight gain and exposure time, which shows a poor uniform corrosion resistance after a long exposure time during the autoclave tests. The main factor of affecting corrosion behavior is the solid solution contents of Fe and Cr in alpha zirconium rather than the size of second phase particles. About 200 μg/g Fe and Cr super saturated solid solution in alpha zirconium could get good uniform and nodular corrosion resistance, but much more solid solution contents of Fe and Cr in alpha zirconium could bring about a trend toward poor uniform corrosion resistance for long-term exposure time. (14 refs., 10 figs., 1 tab.)

  11. Detecting long-term growth trends using tree rings: a critical evaluation of methods.

    Science.gov (United States)

    Peters, Richard L; Groenendijk, Peter; Vlam, Mart; Zuidema, Pieter A

    2015-05-01

    Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability

  12. Evaluation of short- and long-term fission product sources at the Fukushima Daiichi NPP

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Suzuki, Hiroaki; Okada, Hidetoshi; Pellegrini, Marco; Achilli, Andrea; Hanamoto, Yukio; Sasaki, Hiroaki

    2014-01-01

    Research on fission product (FP) behaviors used to be one of the most important subjects in water chemistry but it is not done nowadays as a consequence of the increased integrity of nuclear fuels and the minimization of FP release into the environment. Evaluation of FP release into the environment is still one of the key issues for severe accident analysis, though. Although there have been a long quiet period in nuclear safety research, how to detect initiation of severe accidents, how to prevent them and how to mitigate them are still important subjects for nuclear engineering, and how to control the severe accidents after their occurrence, especially how to control FP release into the environment, has seldom been discussed in the water chemistry group recently. The paper is intended to address the issue of fewer activities for FP studies. FP sources are divided into two categories, short- and long-term FP sources. Short-term FP source can be evaluated based on the measured data obtained from monitoring posts (MPs), which give us clear evidence on the importance of radioactive iodine and cesium releases into the environment. It used to be considered that during primary containment vessel (PCV) venting, release of each element, e.g., iodine and cesium, was determined by the suppression pool scrubbing efficiency and most of the cesium would likely be removed in the pool due to its large scrubbing efficiency. But as a result of analyzing the MP data at early stage of the Fukushima Daiichi nuclear power plant (NPP) accident, it was confirmed that the releases of both elements were in proportion to their inventories in the reactors and their scrubbing efficiencies were almost the same. The scrubbing efficiency which increased with the pool water temperature became almost the same for iodine and cesium around the pool water boiling temperature. As a result of the mass balance analysis for FPs in the contaminated water accumulated in the Fukushima Daiichi plant site, it

  13. Long-term evaluation of opioid treatment in fibromyalgia.

    Science.gov (United States)

    Peng, Xiaomei; Robinson, Rebecca L; Mease, Philip; Kroenke, Kurt; Williams, David A; Chen, Yi; Faries, Douglas; Wohlreich, Madelaine; McCarberg, Bill; Hann, Danette

    2015-01-01

    In a 12-month observational study, we evaluated the effect of opioid use on the outcomes in 1700 adult patients with fibromyalgia. Data were evaluated using propensity score matching after patients were divided into cohorts based on their baseline medication use: (1) taking an opioid (concurrent use of tramadol was permitted); (2) taking tramadol (but no opioids); and (3) not taking opioids or tramadol. Changes in outcomes were assessed using the Brief Pain Inventory for severity and pain-related interference (BPI-S, BPI-I), Fibromyalgia Impact Questionnaire (FIQ), Patient Health Questionnaire for depression (PHQ-8), Insomnia Severity Index (ISI), Sheehan Disability Scale (SDS), 7-item Generalized Anxiety Disorder Scale (GAD-7), and economic factors. Time-to-opioid or tramadol discontinuation was analyzed using Kaplan-Meier survival analyses. Compared with the opioid cohort, the nonopioid cohort demonstrated significantly greater reductions (PFIQ, PHQ-8, SDS, and ISI; the tramadol cohort compared with the opioid group showed greater reductions on FIQ and ISI. Reductions in BPI-S and GAD-7 did not differ significantly among cohorts. Compared with the opioid cohort, patients in the tramadol cohort had fewer outpatient visits to health care providers. Few significant differences were found between the tramadol and nonopioid cohorts across outcomes. Although pain severity was reduced over time in all cohorts, opioid users showed less improvement in pain-related interference with daily living, functioning, depression, and insomnia. Overall, the findings show little support for the long-term use of opioid medications in patients with fibromyalgia given the poorer outcomes across multiple assessment domains associated with this cohort.

  14. General corrosion, irradiation-corrosion, and environmental-mechanical evaluation of nuclear-waste-package structural-barrier materials. Progress report

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.; Nelson, J.L.

    1982-09-01

    Pacific Northwest Laboratory is studying the general corrosion, irradiation-corrosion, and environmentally enhanced crack propagation of five candidate materials in high-temperature aqueous environments simulating those expected in basalt and tuff repositories. The materials include three cast ferrous materials (ductile cast iron and two low-alloy Cr-Mo cast steels) and two titanium alloys, titanium Grade 2 (commercial purity) and Grade 12 (a Ti-Ni-Mo alloy). The general corrosion results are being obtained by autoclave exposure of specimens to slowly replenished simulated ground water flowing upward through a bed of the appropriate crushed rock (basalt or tuff), which is maintained at the desired test temperature (usually 250 0 C). In addition, tests are being performed in deionized water. Metal penetration rates of iron-base alloys are being derived by stripping off the corrosion product film and weighing the specimen after the appropriate exposure time. The corrosion of titanium alloy specimens is being determined by weight gain methods. The irradiation-corrosion studies are similar to the general corrosion tests, except that the specimen-bearing autoclaves are held in a 60 Co gamma radiation field at dose rates up to 2 x 10 6 rad/h. For evaluating the resistance of the candidate materials to environmentally enhanced crack propagation, three methods are being used: U-bend and fracture toughness specimens exposed in autoclaves; slow strain rate studies in repository-relevant environments to 300 0 C; and fatigue crack growth rate studies at ambient pressure and 90 0 C. The preliminary data suggest a 1-in. corrosion allowance for iron-base barrier elements intended for 1000-yr service in basalt or tuff repositories. No evidence has yet been found that titanium Grade 2 or Grade 12 is susceptible to environmentally induced crack propagation or, by extension, to stress corrosion cracking

  15. Intelligent Evaluation Method of Tank Bottom Corrosion Status Based on Improved BP Artificial Neural Network

    Science.gov (United States)

    Qiu, Feng; Dai, Guang; Zhang, Ying

    According to the acoustic emission information and the appearance inspection information of tank bottom online testing, the external factors associated with tank bottom corrosion status are confirmed. Applying artificial neural network intelligent evaluation method, three tank bottom corrosion status evaluation models based on appearance inspection information, acoustic emission information, and online testing information are established. Comparing with the result of acoustic emission online testing through the evaluation of test sample, the accuracy of the evaluation model based on online testing information is 94 %. The evaluation model can evaluate tank bottom corrosion accurately and realize acoustic emission online testing intelligent evaluation of tank bottom.

  16. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Research Committee on Water Chemistry Standard; Naitoh, Masanori [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Computational Science and Engineering Div.; Uehara, Yasushi; Okada, Hidetoshi [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Hotta, Koji [ITOCHU Techno-Solutions Corporation (Japan); Ichikawa, Ryoko [Mizuho Information and Research Inst., Inc. (Japan); Koshizuka, Seiichi [Tokyo Univ. (Japan)

    2007-03-15

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  17. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Hotta, Koji; Ichikawa, Ryoko; Koshizuka, Seiichi

    2007-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  18. Evaluation of long-term creep-fatigue life of stainless steel weldment based on a microstructure degradation model

    International Nuclear Information System (INIS)

    Asayama, Tai; Hasebe, Shinichi

    1997-01-01

    This paper describes a newly developed analytical method of evaluation of creep-fatigue strength of stainless weld metals. Based on the observation that creep-fatigue crack initiates adjacent to the interface of sigma-phase/delta-ferrite and matrix, a mechanistic model which allows the evaluation of micro stress/strain concentration adjacent to the interface was developed. Fatigue and creep damage were evaluated using the model which describes the microstructure after exposed to high temperatures for a long time. Thus it was made possible to predict analytically the long-term creep-fatigue life of stainless steel metals whose microstructure is degraded as a result of high temperature service. (author)

  19. Corrosion Cost and Corrosion Map of Korea - Based on the Data from 2005 to 2010

    International Nuclear Information System (INIS)

    Kim, Y. S.; Lim, H. K.; Kim, J. J.; Hwang, W. S.; Park, Y. S.

    2011-01-01

    Corrosion of metallic materials occurs by the reaction with corrosive environment such as atmosphere, marine, soil, urban, high temperature etc. In general, reduction of thickness and cracking and degradation are resulted from corrosion. Corrosion in all industrial facilities and infrastructure causes large economic losses as well as a large number of accidents. Economic loss by corrosion has been reported to be nearly 1-6% of GNP or GDP. In order to reduce corrosion damage of industrial facilities, corrosion map as well as a systematic investigation of the loss of corrosion in each industrial sector is needed. The Corrosion Science Society of Korea in collaboration with 15 universities and institutes has started to survey on the cost of corrosion and corrosion map of Korea since 2005. This work presents the results of the survey on cost of corrosion by Uhlig, Hoar, and input-output methods, and the evaluation of atmospheric corrosion rate of carbon steel, weathering steel, galvanized steel, copper, and aluminum in Korea. The total corrosion cost was estimated in terms of the percentage of the GDP of industry sectors and the total GDP of Korea. According to the result of Input/output method, corrosion cost of Korea was calculated as 2.9% to GDP (2005). Time of wetness was shown to be categories 3 to 4 in all exposure areas. A definite seasonal difference was observed in Korea. In summer and fall, time of wetness was higher than in other seasons. Because of short exposure period (12 months), significant corrosion trends depending upon materials and exposure corrosion environments were not revealed even though increased mass loss and decreased corrosion rate by exposure time

  20. Evaluation of short- and long-term complications after endoscopically assisted gastropexy in dogs.

    Science.gov (United States)

    Dujowich, Mauricio; Keller, Mattew E; Reimer, S Brent

    2010-01-15

    To determine short- and long-term complications in clinically normal dogs after endoscopically assisted gastropexy. Prospective case series. 24 dogs. Endoscopically assisted gastropexy was performed on each dog. Dogs were evaluated laparoscopically at 1 or 6 months after surgery to assess integrity of the gastropexy. Long-term outcome was determined via telephone conversations conducted with owners > or = 1 year after surgery. Mean +/- SD gastropexy length was 4.5 +/- 0.9 cm, and mean duration of surgery was 22 +/- 5 minutes. One dog had a partially rotated stomach at the time of insufflation, which was corrected by untwisting the stomach with Babcock forceps. Two dogs vomited within 4 weeks after surgery, but the vomiting resolved in both dogs. Four dogs had diarrhea within 4 weeks after surgery, which resolved without medical intervention. In all dogs, the gastropexy site was firmly adhered to the abdominal wall at the level of the pyloric antrum. Long-term follow-up information was available for 23 dogs, none of which had any episodes of gastric dilatation-volvulus a mean of 1.4 years after gastropexy. Endoscopically assisted gastropexy can be a simple, fast, safe, and reliable method for performing prophylactic gastropexy in dogs. At 1 and 6 months after gastropexy, adequate placement and adhesion of the gastropexy site to the body wall was confirmed. Such a procedure could maximize the benefits of minimally invasive surgery, such as decreases in morbidity rate and anesthetic time. This technique appeared to be suitable as an alternative to laparoscopic-assisted gastropexy.

  1. TiO{sub 2} coated multi-wall carbon nanotube as a corrosion inhibitor for improving the corrosion resistance of BTESPT coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhu, Hongzheng; Zhuang, Chen [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Chen, Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Wang, Longqiang [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Dong, Lihua [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai, 200135 (China); Yin, Yansheng, E-mail: ysyin@shmtu.edu.cn [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai, 200135 (China)

    2016-08-15

    The composite coatings of TiO{sub 2} coated multi-wall carbon nanotube (MWCNTs)/bis-[triethoxysilylpropyl]tetrasulfide (BTESPT) with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technique and the experimental conditions were optimized to attain the appropriate volume ratio. The modified MWCNTs obviously improved the corrosion resistance of BTESPT and BTESPT/TiO{sub 2} coatings, especially for the long-term corrosion resistance ability because of the good dispersion of MWCNTs. The geometry of composite coatings were explored by scanning electron microscopy, fourier transform infrared spectra and the surface coverage rate (θ), the results indicate that the composite coatings produce good cross-linked structure at the interfacial layer, the coating compactness increases gradually with the addition of TiO{sub 2} and/or MWCNTs, and the composite coating effectively postpones the production of cracks with the addition of MWCNTs. - Highlights: • The composite coatings with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technology. • The formation of composite coating on AA 2024 surface considerably improved the corrosion resistance ability. • The composite coating with a TiO{sub 2} to MWCNTs volume ratio of 4/1 shows the best corrosion resistance. • The kinetic evaluation of inhibitive behavior for different coatings against immersion time was explored.

  2. Crevice corrosion and hydrogen embrittlement of grades-2 and -12 titanium under Canadian nuclear waste vault conditions

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Bailey, M.G.; Clarke, C.F.; Shoesmith, D.W.

    1990-01-01

    Results on the corrosion of titanium grades 2 and 12 under the saline conditions anticipated in Canadian nuclear waste vaults are presented. The experimental approach included short-term electrochemical experiments to determine corrosion mechanisms, the susceptibility of titanium to crevice corrosion under a variety of conditions, and the extent of hydrogen uptake under controlled conditions; medium-term corrosion tests lasting a few weeks to a few months; and long-term immersion tests to provide rates for uniform corrosion, crevice corrosion, and hydrogen pickup. Results indicated that propagation, not initiation, is important in establishing susceptibility to crevice corrosion. Increasing the iron content of Ti-2 to 0.13 weight percent prevents crevice corrosion by causing repassivation. Crevice corrosion initiates on Ti-12, but repassivation is rapid. The supply of oxidant is essential to maintain crevice propagation. Hydrogen embrittlement is unlikely unless oxide film breakdown occurs. Film breakdown occurs under crevice conditions, and hydrogen pickup is to be expected. Film breakdown could occur if the strain or creep rate is fast enough to compete with repassivation reactions, a highly unlikely situation

  3. Long-term clinical evaluation of a 800-nm long-pulsed diode laser with a large spot size and vacuum-assisted suction for hair removal.

    Science.gov (United States)

    Ibrahimi, Omar A; Kilmer, Suzanne L

    2012-06-01

    The long-pulsed diode (800-810-nm) laser is one of the most commonly used and effective lasers for hair removal. Limitations of currently available devices include a small treatment spot size, treatment-associated pain, and the need for skin cooling. To evaluate the long-term hair reduction capabilities of a long-pulsed diode laser with a large spot size and vacuum assisted suction. Thirty-five subjects were enrolled in a prospective, self-controlled, single-center study of axillary hair removal. The study consisted of three treatments using a long-pulsed diode laser with a large spot size and vacuum-assisted suction at 4- to 6-week intervals with follow-up visits 6 and 15 months after the last treatment. Hair clearance was quantified using macro hair-count photographs taken at baseline and at 6- and 15-month follow-up visits. Changes in hair thickness and color, levels of treatment-associated pain, and adverse events were additional study endpoints. There was statistically significant hair clearance at the 6 (54%) and 15-month (42%) follow-up visits. Remaining hairs were thinner and lighter at the 15-month follow-up visit, and the majority of subjects reported feeling up to mild to moderate pain during treatment without the use of pretreatment anesthesia or skin cooling. A long-pulsed diode laser with a large spot size and vacuum-assisted suction is safe and effective for long-term hair removal. This is the largest prospective study to evaluate long-term hair removal and the first to quantify decreases in hair thickness and darkness with treatment. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  4. Long-term Evaluation of Type 2 Thyroplasty with Titanium Bridges for Adductor Spasmodic Dysphonia.

    Science.gov (United States)

    Sanuki, Tetsuji; Yumoto, Eiji

    2017-07-01

    Objectives Standard treatments of adductor spasmodic dysphonia (AdSD) provide temporary relief of symptoms. Type 2 thyroplasty offers a long-term solution; however, long-term voice outcome data are lacking. The objective of this study was to assess the long-term voice outcomes of type 2 thyroplasty with titanium bridges through use of a validated voice questionnaire. Study Design Case series with chart review. Setting University hospital. Subjects and Methods Forty-seven consecutively enrolled patients with AdSD underwent type 2 thyroplasty with titanium bridges between August 2006 and November 2014. Questionnaires were completed during regularly scheduled follow-ups and, in some cases, were sent to patients who missed follow-up appointments. In 2015, questionnaires were mailed to all 47 patients and included a Voice Handicap Index-10 evaluation, as well as questions on postoperative vocal symptoms, surgical site, and status of the implanted titanium bridges. Results Of 47 patients with AdSD, 31 (66%) completed the questionnaires. The average follow-up interval was 41.3 months. No patient reported experiencing an adverse event around the surgical site, and almost all were satisfied with their voices postoperatively. The mean postoperative (>3 years) Voice Handicap Index-10 score improved significantly, from 26.3 to 9.4 (n = 17, P = .0009). Conclusions Type 2 thyroplasty for AdSD significantly improved patient quality of life and voice symptoms and continued to do so long after the surgery. The results of this study suggest that type 2 thyroplasty provides relief from vocal symptoms in patients with AdSD for >3 years.

  5. Study on the system development for evaluating long-term alteration of hydraulic field in near field

    International Nuclear Information System (INIS)

    Okutu, Kazuo; Morikawa, Seiji; Takamura, Hisashi

    2002-02-01

    For the high performance evaluation of reliability of TRU waste repository, the system development for evaluating long-term alteration in consideration of the changes action of barrier materials of hydraulic field in Near Field is required. In this research, system development for evaluating long-term alteration of hydraulic field in Near Field was examined. Examination of the basic specification of chemical/dynamic alteration action analysis system used as the composition element of this system and a whole system were performed. The research result of this year is shown below. 1) The system by which the chemical changes happened by Near Field as influence of the exudation liquid from cement material are evaluated was examined. In this year, document investigation about the various processes about chemical alteration and extraction of a choice, presentation of the uncertainty about a model or data, preliminary modeling, a simple analysis tool creation and sensitivity analysis, extraction of the process which should be taken into consideration in a system valuation modeling and a phenomenon analysis model, and a corresponding mathematics model, optimization of the software composition for development of a system valuation modeling, the exercise by the preliminary system analysis model, the experiment plan for the corroboration of a model were shown. 2) In consideration of change of the physical characteristic accompanying chemical alteration of bentonite material and cement material, the system by which dynamic changes action of repository is evaluated was examined. In this year, arrangement of the dynamics action of repository for long-term were shown. Extraction of a phenomenon made applicable to evaluation was shown. And the dynamic models were investigated and the prototype of the dynamics model that can take into consideration the characteristic of bentonite material was shown. And the basic composition of a dynamic changes action analysis system was shown. 3

  6. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    Science.gov (United States)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  7. Assessments of long term mechanical behavior of CANDU fuel channel by means of PFEM analysis

    International Nuclear Information System (INIS)

    Florea, S.; Pavelescu, M.

    2005-01-01

    Structural analysis with finite elements method is today a usual way to evaluate and predict the behavior of structural assemblies exposed to severe conditions, in order to ensure their safety end reliability. CANDU 600 fuel channel is an example in which long time irradiation with implicit consequences on material properties evolution interfere with the corrosion and thermal aggression. A high degree of uncertainty in the evolution of the material's properties must be considered. These are the reasons for developing, in association with deterministic evaluations with computer codes, the probabilistic and statistical methods, in order to predict the structural components response. In INR (Institute of Nuclear Research) in the past years, a code for thermo-mechanical analysis of the fuel channel from CANDU 600 nuclear power plant of Cernavoda was developed using finite element methods (FEM). The CANTUP code evaluate the stress and strain state of the mechanical assembly of fuel channel, considered to be divided into pressure tube, calandria tube and four spacers, supposed to be equidistantly distributed along the pressure tube. The main achievement obtained with this code was the prediction of the long-term behavior of the sag of the pressure tube, by analysis in which the creep phenomenon and the contact between the spacers and calandria tube were considered. This reason has sustained the attempt to estimate the possibility to use this code in order to perform probabilistic evaluations. (authors)

  8. Assessments of long term mechanical behavior of CANDU fuel channel by means of PFEM analysis

    International Nuclear Information System (INIS)

    Florea, S.; Pavelescu, M.

    2005-01-01

    Full text: Structural analysis with finite elements method is today a usual way to evaluate and predict the behavior of structural assemblies exposed to severe conditions, in order to ensure their safety end reliability. CANDU 600 fuel channel is an example in which long time irradiation with implicit consequences on material properties evolution interfere with the corrosion and thermal aggression. A high degree of uncertainty in the evolution of the material's properties must be considered. These are the reasons for developing, in association with deterministic evaluations with computer codes, the probabilistic and statistical methods, in order to predict the structural components response. In INR (Institute of Nuclear Research) in the past years, a code for thermo-mechanical analysis of the fuel channel from CANDU 600 nuclear power plant of Cernavoda was developed using finite element methods (FEM). The CANTUP code evaluate the stress and strain state of the mechanical assembly of fuel channel, considered to be divided into pressure tube, calandria tube and four spacers, supposed to be equidistantly distributed along the pressure tube. The main achievement obtained with this code was the prediction of the long-term behavior of the sag of the pressure tube, by analysis in which the creep phenomenon and the contact between the spacers and calandria tube were considered. This reason has sustained the attempt to estimate the possibility to use this code in order to perform probabilistic evaluations. (authors)

  9. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation)], E-mail: bechta@sbor.spb.su; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almiashev, V.I. [Institute of Silicate Chemistry, Russian Academy of Sciences (ISCh RAS), St. Petersburg (Russian Federation); Lopukh, D.B. [SPb State Electrotechnical University (SPbGETU), St. Petersburg (Russian Federation); Bottomley, D. [EUROPAISCHE KOMMISSION, Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA NP GmbH, Erlangen (Germany); Piluso, P. [CEA/DEN/DSNI, Saclay (France); Miassoedov, A.; Tromm, W. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Altstadt, E. [Forschungszentrum Rossendorf (FZR), Dresden (Germany); Fichot, F. [IRSN/DPAM/SEMCA, St. Paul lez Durance (France); Kymalainen, O. [FORTUM Nuclear Services Ltd., Espoo (Finland)

    2009-06-15

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  10. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    International Nuclear Information System (INIS)

    Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Bottomley, D.; Fischer, M.; Piluso, P.; Miassoedov, A.; Tromm, W.; Altstadt, E.; Fichot, F.; Kymalainen, O.

    2009-01-01

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  11. Factors Affecting the Prevalence of Gastro-oesophageal Reflux in Childhood Corrosive Oesophageal Strictures.

    Science.gov (United States)

    Iskit, Serdar H; Ozçelik, Zerrin; Alkan, Murat; Türker, Selcan; Zorludemir, Unal

    2014-06-01

    Gastro-oesophageal reflux may accompany the corrosive oesophageal damage caused by the ingestion of corrosive substances and affect its treatment. The factors that affect the development of reflux in these cases and their effects on treatment still remain unclear. Our aim is to investigate the prevalence of gastro-oesophageal reflux in children with corrosive oesophageal strictures, the risk factors affecting this prevalence and the effects of gastro-oesophageal reflux on treatment. Case-control study. We enrolled 52 patients with oesophageal stricture due to corrosive substance ingestion who were referred to our clinic between 2003 and 2010. Groups, which were determined according to the presence of gastro-oesophageal reflux (GER), were compared with each other in terms of clinical findings, results of examination methods, characteristics of the stricture and success of the treatment. The total number of patients in our study was 52; 30 of them were male and 22 of them were female. The mean age of our study population was 4.2±2.88 years. Thirty-three patients had gastrooesophageal reflux (63.5%). Patients who had strictures caused by the ingestion of alkali substances were 1.6-times more likely to have reflux. There were no differences between patients with or without reflux in terms of number and localisation of strictures. Mean distance of stricture was longer in patients with reflux (3.7±1.8 cm) than in patients without (2.2±1.0 cm) (preflux. Patients with long stricture were 1.9-times more likely to have reflux. Dilatation treatment was successful in 69.6% of patients with reflux and in 78.9% of patients without. The mean treatment period was 8.41±6.1 months in patients with reflux and 8.21±8.4 months in the other group. There was no significant difference between groups in terms of frequency of dilatation and dilator diameters (p>0.05). Corrosive oesophageal stricture was usually accompanied by gastro-oesophageal reflux and the length of stricture is an

  12. [Long-term psychiatric hospitalizations].

    Science.gov (United States)

    Plancke, L; Amariei, A

    2017-02-01

    Long-term hospitalizations in psychiatry raise the question of desocialisation of the patients and the inherent costs. Individual indicators were extracted from a medical administrative database containing full-time psychiatric hospitalizations for the period 2011-2013 of people over 16 years old living in the French region of Nord-Pas-de-Calais. We calculated the proportion of people who had experienced a hospitalization with a duration of 292 days or more during the study period. A bivariate analysis was conducted, then ecological data (level of health-care offer, the deprivation index and the size of the municipalities of residence) were included into a multilevel regression model in order to identify the factors significantly related to variability of long-term hospitalization rates. Among hospitalized individuals in psychiatry, 2.6% had had at least one hospitalization of 292 days or more during the observation period; the number of days in long-term hospitalization represented 22.5% of the total of days of full-time hospitalization in psychiatry. The bivariate analysis revealed that seniority in the psychiatric system was strongly correlated with long hospitalization rates. In the multivariate analysis, the individual indicators the most related to an increased risk of long-term hospitalization were: total lack of autonomy (OR=9.0; 95% CI: 6.7-12.2; P<001); diagnoses of psychological development disorders (OR=9.7; CI95%: 4.5-20.6; P<.001); mental retardation (OR=4.5; CI95%: 2.5-8.2; P<.001): schizophrenia (OR=3.0; CI95%: 1.7-5.2; P<.001); compulsory hospitalization (OR=1.7; CI95%: 1.4-2.1; P<.001); having experienced therapeutic isolation (OR=1.8; CI95%: 1.5-2.1; P<.001). Variations of long-term hospitalization rates depending on the type of establishment were very high, but the density of hospital beds or intensity of ambulatory activity services were not significantly linked to long-term hospitalization. The inhabitants of small urban units had

  13. A study of the long-term effect of malar fat repositioning in face lift surgery: short-term success but long-term failure.

    Science.gov (United States)

    Hamra, Sam T

    2002-09-01

    In 1990, the author reported on a series of 403 cases of deep plane face lifts, the first published technique describing the repositioning of the cheek fat, known as malar fat, in face lift surgery. This study examines the long-term results of 20 of the original series in an attempt to determine what areas of the rejuvenated face (specifically, the malar fat) showed long-term improvement. The results were judged by comparing the preoperative and long-term postoperative views in a half-and-half same-side hemiface photograph. The anatomy of the jawline (superficial musculoaponeurotic system [SMAS]), the nasolabial fold (malar fat), and the periorbital diameter were evaluated. The results confirmed that repositioning of the SMAS remained for longer than improvement in the nasolabial fold and that the vertical diameter of the periorbit did not change at all. The early results of malar fat repositioning shown at 1 to 2 years were successful, but the long-term results showed failure of the early improvement, manifested by recurrence of the nasolabial folds. There was, however, continuation of the improved results of the forehead lift and SMAS maneuvers of the original procedure. The conclusion is that only a direct excision will produce a permanent correction of the aging nasolabial fold.

  14. Evaluating Indicator-Based Methods of "Measuring Long-Term Impacts of a Science Center on Its Community"

    Science.gov (United States)

    Jensen, Eric Allen

    2016-01-01

    This article addresses some of the challenges faced when attempting to evaluate the long-term impact of informal science learning interventions. To contribute to the methodological development of informal science learning research, we critically examine (Falk and Needham (2011) "Journal of Research in Science Teaching," 48: 1-12.) study…

  15. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  16. NUMO's approach for long-term safety assessment - 59404

    International Nuclear Information System (INIS)

    Ebashi, Takeshi; Kaku, Kenichi; Ishiguro, Katsuhiko

    2012-01-01

    One of NUMO's policies for ensuring safety is staged and flexible project implementation and decision-making based on iterative confirmation of safety. The safety assessment takes the central role in multiple lines of reasoning and argumentation by providing a quantitative evaluation of long-term safety; a key aspect is uncertainty management. This paper presents NUMO's basic strategies for long-term safety assessment based on the above policy. NUMO's approach considering Japanese boundary conditions is demonstrated as a starting-point for evaluating the long-term safety of an actual site. In Japan, the Act on Final Disposal of Specified Radioactive Waste states that the siting process shall consist of three stages. The Nuclear Waste Management Organization of Japan (NUMO) is responsible for geological disposal of vitrified high-level waste and some types of TRU waste. NUMO has chosen to implement a volunteer approach to siting. NUMO decided to prepare the so-called 2010 technical report, which sets out three safety policies, one of which is staged project implementation and decision-making based on iterative confirmation of safety. Based on this policy, NUMO will gradually integrate relevant interdisciplinary knowledge to build a safety case when a formal volunteer application is received that would allow site investigations to be initiated. The safety assessment takes the central role in multiple lines of reasoning and argumentation by providing a quantitative evaluation of long-term safety; one of a key aspect is uncertainty management. This paper presents the basic strategies for NUMO's long-term safety assessment based on the above policy. In concrete terms, the common procedures involved in safety assessment are applied in a stepwise manner, based on integration of knowledge obtained from site investigations/evaluations and engineered measures. The results of the safety assessment are then reflected in the planning of site investigations and engineered

  17. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    Science.gov (United States)

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  18. Long term alteration of glass/iron systems in anoxic conditions: contribution of archaeological analogues to the study of mechanisms

    International Nuclear Information System (INIS)

    Michelin, A.

    2011-01-01

    The knowledge of glass alteration mechanisms arouses a great interest over the last decades, particularly in the nuclear field, since vitrification is used to stabilize high-level radioactive wastes in many countries. In the French concept, these nuclear glasses would be stored in geological repositories. This multi-barrier system (glass matrix, stainless steel container, low carbon steel over-container, geological barrier) must ensure the durable confinement of radionuclides. But laboratory experiments do not permit to predict directly the behaviour of these materials over typically a million-year timescale and the extrapolation of short-term laboratory data to long time periods remains problematic. Part of the validation of the predictive models relies on natural and archaeological analogues. Here, the analogues considered are vitreous slags produced as wastes by a blast furnace working during the 16. century in the iron making site of Glinet (Normandy, France). The choice of these specific artefacts is due to the presence of particular interface between corrosion products and glass matrix inside the blocks. Thus, they can help us to understand the influence of iron corrosion products from the steel containers on the glass alteration mechanisms and kinetics. A first part of this work concerns the characterization of the archaeological artefacts especially the interfacial area between glass and corrosion products inside cracks using micro and nano-beam techniques (μRaman spectroscopy, FEG-SEM, TEM, STXM...). This study has enabled to suggest an alteration process with different geochemical steps that leads to alteration profile observed. One of these steps is the precipitation of an iron silicate phase. In a second time, leaching experiments were set up on a synthetic glass of similar composition than the archaeological one to understand the first stages of alteration with and without iron. Two phenomena can be observed: silicon sorption and precipitation of iron

  19. Methodologies for evaluating long-term stabilization designs of uranium mill tailings impoundments

    International Nuclear Information System (INIS)

    Nelson, J.D.; Abt, S.R.; Volpe, R.L.; Van Zye, D.; Hinkle, N.E.; Staub, W.P.

    1986-06-01

    Uranium mill tailings impoundments require long-term (200 to 1000 years) stabilization. This report reviews currently available methodologies for evaluating factors that can have a significant influence on tailings stabilization and develops methodologies in technical areas where none presently exist. Mill operators can use these methodologies to assist with (1) the selection of sites for mill tailings impoundments, (2) the design of stable impoundments, and (3) the development of reclamation plans for existing impoundments. These methodologies would also be useful for regulatory agency evaluations of proposals in permit or license applications. Methodologies were reviewed or developed in the following technical areas: (1) prediction of the Probable Maximum Precipitation (PMP) and an accompanying Probable Maximum Flood (PMF); (2) prediction of the stability of local and regional fluvial systems; (3) design of impoundment surfaces resistant to gully erosion; (4) evaluation of the potential for surface sheet erosion; (5) design of riprap for protecting embankments from channel flood flow and overland flow; (6) selection of riprap with appropriate durability for its intended use; and (7) evaluation of oversizing required for marginal quality riprap

  20. Tank 241-AY-102 Secondary Liner Corrosion Evaluation - 14191

    International Nuclear Information System (INIS)

    Boomer, Kayle D.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2014-01-01

    In October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of 241-AY-102 (AY-102) was leaking. A number of evaluations were performed after discovery of the leak which identified corrosion from storage of waste at the high waste temperatures as one of the major contributing factors in the failure of the tank. The propensity for corrosion of the waste on the annulus floor will be investigated to determine if it is corrosive and must be promptly removed or if it is benign and may remain in the annulus. The chemical composition of waste, the temperature and the character of the steel are important factors in assessing the propensity for corrosion. Unfortunately, the temperatures of the wastes in contact with the secondary steel liner are not known; they are estimated to range from 45 deg C to 60 deg C. It is also notable that most corrosion tests have been carried out with un-welded, stress-relieved steels, but the secondary liner in tank AY-102 was not stress-relieved. In addition, the cold weather fabrication and welding led to many problems, which required repeated softening of the metal to flatten secondary bottom during its construction. This flame treatment may have altered the microstructure of the steel

  1. The establishment of a method for evaluating the long-term water-tightness durability of underground concrete structure taking into account some deteriorations

    International Nuclear Information System (INIS)

    Hironaga, Michihiko; Kawanishi, Motoi

    1996-01-01

    To establish a method of evaluating the long-term water-tightness durability of underground concrete structures, the authors firstly studied a deterioration evaluation model to express the deterioration condition of concrete structures and constructed, on the basis of this model, a function evaluation model to estimate the lowering of functions due to deterioration, consequently indicating a 'concept for evaluating the deterioration and functions of concrete structures' which will make it possible to perform the functional evaluation of concrete structures. Based on this concept, the authors then discusses a technique for evaluating the long-term water-tightness durability of underground concrete structures, specifically indicating the technique by means of illustrations. (author)

  2. Standard guide for conducting and evaluating galvanic corrosion tests in electrolytes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1981-01-01

    1.1 This guide covers conducting and evaluating galvanic corrosion tests to characterize the behavior of two dissimilar metals in electrical contact in an electrolyte under low-flow conditions. It can be adapted to wrought or cast metals and alloys. 1.2 This guide covers the selection of materials, specimen preparation, test environment, method of exposure, and method for evaluating the results to characterize the behavior of galvanic couples in an electrolyte. Note 1—Additional information on galvanic corrosion testing and examples of the conduct and evaluation of galvanic corrosion tests in electrolytes are given in Refs (1) through (7). 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicabil...

  3. [Cardiac surgery in octogenarian patients: evaluation of predictive factors of mortality, long-term outcome and quality of life].

    Science.gov (United States)

    Viana-Tejedor, Ana; Domínguez, Francisco J; Moreno Yangüela, Mar; Moreno, Raúl; López de Sá, Esteban; Mesa, José M; López-Sendón, José

    2008-10-04

    Increasing life expectancy in Western countries in the last decades has resulted in a significant gradual increasing number of octogenarians referred for cardiac surgery. There is a need for a critical evaluation of the long-term surgical outcome and quality of life in the elderly. The aim of this study is to identify risk factors of mortality in octogenarians undergoing cardiac surgery and to assess the long term survival and quality of life. Data were reviewed on 150 patients aged over 80 years--mean age (standard deviation): 82.7 (2.5) years--who underwent cardiac surgery at our institution in the last 26 years. We analyzed clinical and epidemiological variables included in the European System for Cardiac Operative Risk Evaluation (euroSCORE), in-hospital morbidity and mortality, long term survival and quality of life after cardiac surgery. The 30-day mortality rate was 30.1%, with a mean hospital stay of 16.5 days (13-27). Emergent procedure, reparation of postinfarction ventricular ruptures, New York Heart Association functional class IV, chronic renal failure and previous myocardial infarction were independent predictors of in-hospital mortality. Mean follow up was 72.2 (9.9) months with survival rates of 87.3% and 57% at 1 and 5 years, respectively. Late postoperative quality of life in our 53 long-term survivors was significantly better than prior to surgery. New York Heart Association functional class improved from 2.52 to 1.48. Most survivors (97.7%) were satisfied with present quality of life Cardiac surgery in octogenarians is associated with increased in-hospital mortality rate and longer hospital stay. Our findings support that cardiac surgery can be performed in a selected elderly population with good long-term survival and quality of life.

  4. Corrosion Evaluation of INTEC Waste Storage Tank WM-182

    International Nuclear Information System (INIS)

    Dirk, W. J.; Anderson, P. A.

    1999-01-01

    Irradiated nuclear fuel has been stored and reprocessed at the Idaho National Engineering and Environmental Laboratory since 1953 using facilities located at the Idaho Nuclear Technology and Engineering Center (INTEC). This reprocessing produced radioactive liquid waste which was stored in the Tank Farm. The INTEC Tank Farm consists of eleven vaulted 300,000-gallon underground tanks including Tank WM-182. Tank WM-182 was put into service in 1955, has been filled four times, and has contained aluminum and zirconium fuel reprocessing wastes as well as sodium bearing waste. A program to monitor corrosion in the waste tanks was initiated in 1953 when the first of the eleven Tank Farm tanks was placed in service. Austenitic stainless steel coupons representative of the materials of construction of the tanks are used to monitor internal tank corrosion. This report documents the final inspection of the WM-182 corrosion coupons. Physical examination of the welded corrosion test coupons exposed to the tank bottom conditions of Tank WM-182 revealed very light uniform corrosion. Examination of the external surfaces of the extruded pipe samples showed very light uniform corrosion with slight indications of preferential attack parallel to extrusion marks and start of end grain attack of the cut edges. These indications were only evident when examined under stereo microscope at magnifications of 20X and above. There were no definite indications of localized corrosion, such as cracking, pitting, preferential weld attack, or weld heat affected zone attack on either the welded or extruded coupons. Visual examination of the coupon support cables, where they were not encased in plastic, failed to reveal any indication of liquid-liquid interface attack of any crevice corrosion. Based on the WM-182 coupon evaluations, which have occurred throughout the life of the tank, the metal loss from the tank wall due to uniform corrosion is not expected to exceed 5.5 x 10-1 mil (0.00 055 inch

  5. Trials carried out on corrosive (fluorinated) atmosphere vacuum gauges

    International Nuclear Information System (INIS)

    Constant, M.; Houyvet, A.; Noe, P.

    1966-01-01

    Study of the stability of readings given by a modified Pirani type measurement probe with a view to long term operation in the presence of corrosive gases. Results of measurements carried out before and after use under these conditions. (author) [fr

  6. Long-term potentiation and long-term depression: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Timothy V.P. Bliss

    2011-01-01

    Full Text Available Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke.

  7. Corrosion behavior of boride layers evaluated by the EIS technique

    Energy Technology Data Exchange (ETDEWEB)

    Campos, I. [Instituto Politecnico Nacional. SEPI-ESIME U.P. Adolfo Lopez Mateos, Zacatenco, Mexico D.F. 07738 (Mexico)], E-mail: icampos@ipn.mx; Palomar-Pardave, M. [Universidad Autonoma Metropolitana-Azcapotzalco, Materials Department, Avenue San Pablo 180 Col. Reynosa Tamaulipas, Mexico D.F. 02200 (Mexico); Amador, A. [Tecnologico de Monterrey, Campus Ciudad de Mexico, Calle del Puente 222 Col. Ejidos de Huipulco, Mexico D.F. 14380 (Mexico); VillaVelazquez, C. [Instituto Politecnico Nacional. SEPI-ESIME U.P. Adolfo Lopez Mateos, Zacatenco, Mexico D.F. 07738 (Mexico); Hadad, J. [Tecnologico de Monterrey, Campus Ciudad de Mexico, Calle del Puente 222 Col. Ejidos de Huipulco, Mexico D.F. 14380 (Mexico)

    2007-09-30

    The corrosion behavior of boride layers at the AISI 304 steel surface is evaluated in the present study. Electrochemical impedance spectroscopy (EIS) technique was used for the evaluation of the polarization resistance at the steel surface, with the aid of AUTOLAB potentiostat. Samples were treated with boron paste thickness of 4 and 5 mm, in the range of temperatures 1123 {<=} T {<=} 1273 K and exposed time of 4 and 6 h. The electrochemical technique employed 10 mV AC with a frequency scan range from 8 kHz to 3 mHz in deaerated 0.1 M NaCl solution. Nyquist diagrams show that the highest values of corrosion resistance are present in the samples borided at the temperature of 1273 K, with treatment time of 4 h and 4 mm of boron paste thickness. The values of corrosion resistance on borided steels are compared with the porosity exhibited in the layers.

  8. Gasbuggy, New Mexico Long-Term Hydrologic Monitoring Program Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-01

    This report summarizes an evaluation of the Long-Term Hydrologic Monitoring Program (LTHMP) that has been conducted since 1972 at the Gasbuggy, New Mexico underground nuclear detonation site. The nuclear testing was conducted by the U.S. Atomic Energy Commission under the Plowshare program, which is discussed in greater detail in Appendix A. The detonation at Gasbuggy took place in 1967, 4,240 feet below ground surface, and was designed to fracture the host rock of a low-permeability natural gas-bearing formation in an effort to improve gas production. The site has historically been managed under the Nevada Offsites Project. These underground nuclear detonation sites are within the United States but outside of the Nevada Test Site where most of the experimental nuclear detonations conducted by the U.S. Government took place. Gasbuggy is managed by the U.S. Department of Energy (DOE) Office of Legacy Management (LM ).

  9. Strategies to meet the need for long-term data.

    Science.gov (United States)

    Chalmers, John; Woodward, Mark; Borghi, Claudio; Manolis, Athanasios; Mancia, Giuseppe

    2016-08-01

    Chronic diseases afflict patients for many years, often to the end of life, and there is increasing need for estimating lifelong risk and for evaluating the effects of treatment in the long term. Yet recommendations for lifelong treatment are most frequently based on findings from randomized clinical trials lasting only a few years. There is therefore a clear need for much longer term data, and here we present the advantages and disadvantages of many strategies, including the use of long-term posttrial follow-up, of long-term prospective cohort studies, registry databases, and of administrative databases. We also emphasize the need for long-term cost-effectiveness studies. One of the most promising strategies comes from linkage of data gathered through the ever-expanding pool of administrative databases worldwide with data from other sources, including randomized trials and the many forms of observational study.

  10. Atmospheric corrosion in Gran Canaria specifically meteorological and pollution conditions

    International Nuclear Information System (INIS)

    Gonzalez, J.E.G.; Valles, M.L.; Mirza R, J.C.

    1998-01-01

    Carbon steel, copper, zinc and aluminium samples were exposed in different sizes with known ambient parameters in Gran Canaria Island and atmospheric corrosion was investigated. Weight-loss measurements used to determine corrosion damage were complemented with metallographic and XP S determination in order to characterize the structure and morphology of surface corrosion products. The ambient aggressiveness could be well evaluated from meteorological and pollution data. All atmospheric corrosion and environmental data were statistically processed for establishing general corrosion damage functions for carbon steel, copper, aluminium and zinc in terms of Gran Canaria extreme meteorological and pollution parameters. (Author)

  11. An analysis methodology of degradation by corrosion mechanisms and preventive actions of the negative effects in the NPP circuits with direct impact in the long-term development

    International Nuclear Information System (INIS)

    Dinu, A.

    2010-01-01

    The corrosion mechanisms, implied in the degradation processes of several alloys, preoccupied the scientific world, producers and users of metallic materials, as well. Due to permanent presence of a potential danger, a great importance was given to corrosion evaluation and prevention in power domain, also including the nuclear power. The main activities have as aim the development of techniques and methods of investigation of structural materials corrosion. Also, there were developed methods of chemical investigation of the environment as well as data bases that allow the simulation of several corrosion types, characteristic of different materials systems and/or media. This made possible the prediction of safe operation life of several structural components. In this context, the paper presents the most important results of project with acronym 'PERFORMCOR' developed in the framework of PNCDI II, 'Capacities' Programme, Modulus I, with the aim of ensuring a R and D infrastructure upgrade of 'LADICON' laboratory of INR - Pitesti. (author)

  12. Influence of sulfide concentration on the corrosion behavior of pure copper in synthetic seawater

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawasaki, Manabu

    2008-01-01

    Corrosion rate and stress corrosion cracking (SCC) behavior of pure copper under anaerobic conditions were studied by immersion tests and slow strain rate tests (SSRT) in synthetic seawater containing Na 2 S. The corrosion rate was increased with sulfide concentration both in simple saline solution and in bentnite-sand mixture. The results of SSRT showed that copper was susceptible to intergranular attack; selective dissolution at lower sulfide concentration (less than 0.005 M) and SCC at higher sulfide concentration (0.01 M). It was expected that if the sulfide concentration in groundwater is less than 0.001 M, pure copper is possible to exhibit superior corrosion resistance under anaerobic condition evident by very low corrosion rates and immunity to SCC. In such a low sulfide environment, copper overpack has the potential to achieve super-long lifetimes exceeding several tens of thousands years according to long-term simulations of corrosion based on diffusion of sulfide in buffer material

  13. Corrosion studies on HGW-canister materials for marine disposal

    International Nuclear Information System (INIS)

    Taylor, K.J.; Bland, I.D.; Marsh, G.P.

    1984-07-01

    A combination of mathematical modelling and experimental studies has been used to investigate and assess the long term corrosion behaviour of heat generating waste canister/ overpack materials under conditions relevant to deep ocean disposal. Preliminary operation of the model, using improved electrochemical kinetic data from the experimental programme, has indicated that the general corrosion rate of carbon steel at 90 deg C will be 57 μm yr -1 which is equivalent to a metal loss of 57 mm in 1000 years. This prediction compares favourably with the results from long term tests, which are also in progress, for plain and electron beam welded carbon steel specimens embedded in marine sediment at 90 deg C under active dissolution conditions. Tests with γ-radiation at a dose rate of 1.5 x 10 5 R h -1 have shown that the pH of seawater falls to 3.7 after 5000 hours exposure causing a significant increase in the corrosion rate of carbon steel from 50 to 80 μm yr -1 . Further work is in progress to investigate the mechanism of this acidification and whether it also occurs at the more realistic lower radiation dose rates. (author)

  14. Evaluation of safety of excessive intake and efficacy of long-term intake of beverages containing apple polyphenols.

    Science.gov (United States)

    Akazome, Yoko; Kametani, Norihiro; Kanda, Tomomasa; Shimasaki, Hiroyuki; Kobayashi, Shuhei

    2010-01-01

    In the present study, a randomized, double-blind, placebo-controlled study was performed to evaluate the safety of an excessive intake and the efficacy of a long-term intake of polyphenols derived from apples for moderately underweight to moderately obese subjects (long-term intake: 94 subjects; excessive intake: 30 subjects). For each trial, the subjects were divided into the following two groups: a group that drank beverages with apple polyphenols (600 mg) (hereinafter referred to as the apple group) and a group that drank beverages without apple polyphenols (hereinafter referred to as the placebo group). For the long-term intake trial, the subjects were given a regular amount of the beverage (340 g) each day for 12 weeks. For the excessive intake trial, the subjects were given three times the regular amount of the beverage each day for 4 weeks. It is noteworthy that the visceral fat area (VFA) of subjects in the apple group for the long-term intake trial had decreased significantly by the 8- and 12-week marks (week 8: p or = 100 cm(2)) had decreased significantly by the 8- and 12-week marks compared to the baseline (week 8: p safety of the beverage with apple polyphenols.

  15. Assessment of long-term creep strength of grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Kazuhiro; Sawada, Kota; Kushima, Hideaki [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    In 2004 and 2005 long-term creep rupture strength of ASME Grade 91 type steels of plate, pipe, forging and tube materials was evaluated in Japan by means of region splitting analysis method in consideration of 50% of 0.2% offset yield stress. According to the evaluated 100,000h creep rupture strength of 94MPa for plate, pipe and forging steels and 92MPa for tube steel at 600 C, allowable tensile stress of the steels regulated in the Interpretation for the Technical Standard for Thermal Power Plant was slightly reduced. New creep rupture data of the steels obtained in the long-term indicate further reduction of long-term creep rupture strength. Not only creep rupture strength, but also creep deformation property of the ASME Grade 91 steel was investigated and need of reevaluation of long-term creep strength of Grade 91 steel was indicated. A refinement of region splitting analysis method for creep rupture like prediction was discussed. (orig.)

  16. Long-term capital planning considering nuclear plant life-cycle management

    International Nuclear Information System (INIS)

    Negin, C.A.; Simpson, J.M.; Hostetler, D.R.

    1992-09-01

    The creation of a Life Cycle Management (LCM) group at utilities to evaluate the long term capital refurbishment needs is gaining favor. Among the functions of such groups can be the responsibility for recommending long term capital planning projects based on results of evaluations of systems, structures, and components that are not only essential to achieving the full current license term of operation, but also to extend the service life of the plant. Making such recommendations, in content and timing, requires the ability to view all recommendations in the context of an overall capital budget and long range outage impacts. This report illustrates an approach for creating a Long-Term Capital Plan with methods for deciding on, compiling, integrating, and presenting projects from the perspective of an LCM program for a nuclear power plant. It also addresses a rationale for capitalization of LCM program activities that would not be allowed under current accounting treatment

  17. Long-term evaluation of intraoperative neurophysiological monitoring-assisted tethered cord surgery

    NARCIS (Netherlands)

    Dulfer, S E; Drost, G; Lange, F; Journee, H L; Wapstra, F H; Hoving, E W

    2017-01-01

    PURPOSE: Patients with tethered spinal cord have been investigated for short-term effects after tethered spinal cord surgery in the past. However, little is known about the long-term effects in this patient group. In this retrospective, longitudinal, observational study, a patient sample of a

  18. Long-time corrosion and high-temperature oxidation of zirconium alloys applied on NPP like fuel elements cover

    International Nuclear Information System (INIS)

    Vrtilkova, V.; Novotny, L.; Lingart, S.; Doukha, R.; Yarosh, Ya.; Kolenchik, Ya.

    2007-01-01

    Zirconium is applying in nuclear energy since 50-th of last century in capacity of material for cover production for fuel elements, reactor fuel and structural parts, and mainly due to both corrosion stability and low effective cross section for thermal neutrons capture. Impurities in doping elements form and alloy production technology has influence on mechanical and corrosion properties of finite alloy. Long-time corrosion tests for several zirconium alloys in forcing autoclave under different reaction conditions were carried out. After that process kinetics was studied, mass increase, hydrogen formation, zirconium hydride forming morphology, zirconium oxide layer thickness have been determined as well

  19. Corrosion evaluation and control of cooling systems of nuclear power plants

    International Nuclear Information System (INIS)

    Kim, U. C.; Sung, K. W.; Na, J. W.

    2002-04-01

    We supplemented a database for evaluation of problems in high temperature corrosion degradation at domestic NPPs, and investigated corrosion mitigation methodologies for modification of water chemistry guidelines and operating conditions for life extension as follows: 1) crevice chemistry evaluation by using CAP code, hide-out return tests in a Crevice Test Apparatus, analysis of water chemistry guideline revision history; 2) analysis on main steam generator tube damages, H 2 -dependent crack propagation rate tests of Alloy 600 CRDM material, SCC test of Ni-based alloy in mid-ranged pH by electrochemical polarization and of reduced sulfur influence by corrosion potential measurement, Pb-and CuO-SCC behavior tests, TiO 2 inhibitor penetration test, SCC evaluation, electrochemical observation; 3) loop tests on erosion-corrosion resistance of piping material with ICr-1/2Mo and 21/4 Cr-1Mo, evaluation of current pH-controlling agents based on thermodynamic analysis of amines; 4) SCC susceptibility and H 2 -embrittlement tests of turbine material(3.5NiCrMoV); 5) analyses of Zn-compound for radioactivity reduction and of hydrolysis equilibrium with adsorption test against resins, CERT tests on PWSCC susceptibility of Alloy 600, evaluation of operation mode-dependent radiation level by using CRUSIM code; 6) solubility calculation of radiolysis products of NH 3 , the pH-controlling agent of small-and medium-sized reactors, temperature estimation for obtaining lowest N 2 solubility and of NH 3 content required for optimum pH control, fatigue crack growth test of SG materials(ASTM Grade 2 Ti)

  20. Impact of long-term and short-term therapies on seminal parameters

    Directory of Open Access Journals (Sweden)

    Jlenia Elia

    2013-04-01

    Full Text Available Aim: The aim of this work was: i to evaluate the prevalence of male partners of subfertile couples being treated with long/short term therapies for non andrological diseases; ii to study their seminal profile for the possible effects of their treatments on spermatogenesis and/or epididymal maturation. Methods: The study group was made up of 723 subjects, aged between 25 and 47 years. Semen analysis was performed according to World Health Organization (WHO guidelines (1999. The Superimposed Image Analysis System (SIAS, which is based on the computerized superimposition of spermatozoa images, was used to assess sperm motility parameters. Results: The prevalence of subjects taking pharmacological treatments was 22.7% (164/723. The prevalence was 3.7% (27/723 for the Short-Term Group and 18.9% (137/723 for the Long-Term Group. The subjects of each group were also subdivided into subgroups according to the treatments being received. Regarding the seminal profile, we did not observe a significant difference between the Long-Term, Short-Term or the Control Group. However, regarding the subgroups, we found a significant decrease in sperm number and progressive motility percentage in the subjects receiving treatment with antihypertensive drugs compared with the other subgroups and the Control Group. Conclusions: In the management of infertile couples, the potential negative impact on seminal parameters of any drugs being taken as Long-Term Therapy should be considered. The pathogenic mechanism needs to be clarified.

  1. Prospects of ion implantation and ion beam mixing for corrosion protection

    International Nuclear Information System (INIS)

    Wolf, G.K.; Munn, P.; Ensinger, W.

    1985-01-01

    Ion implantation is very useful new low temperature treatment for improving the mechanical surface properties of materials without any dimensional changes. In addition also the corrosion properties of metals can be modified considerably by this technique. The long term corrosion behaviour of implanted metals, however, has been studied only for a very limited number of cases. In this contribution a survey of attempts to do this will be presented. As examples of promising systems for corrosion protection by ion beams iron, steel and titanium were examined with and without pretreatment by ion implantation and ion beam mixing. The corrosion rates of the systems have been obtained by neutron activation analysis and by electrochemical methods. Experimental results are presented on: Palladium implanted in titanium - crevice corrosion in salt solution; Palladium implanted in and deposited on titanium -corrosion in sulfuric acid; Platinum implanted in stainless steel -corrosion in sulfuric acid. (author)

  2. Long-Term Symbolic Learning

    National Research Council Canada - National Science Library

    Kennedy, William G; Trafton, J. G

    2007-01-01

    What are the characteristics of long-term learning? We investigated the characteristics of long-term, symbolic learning using the Soar and ACT-R cognitive architectures running cognitive models of two simple tasks...

  3. Surface treatment and history-dependent corrosion in lead alloys

    International Nuclear Information System (INIS)

    Li Ning; Zhang Jinsuo; Sencer, Bulent H.; Koury, Daniel

    2006-01-01

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services

  4. Surface treatment and history-dependent corrosion in lead alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Los Alamos National Laboratory, Los Alamos, NM (United States)]. E-mail: ningli@lanl.gov; Zhang Jinsuo [Los Alamos National Laboratory, Los Alamos, NM (United States); Sencer, Bulent H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Koury, Daniel [University of Nevada, Las Vegas, NV (United States)

    2006-06-23

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services.

  5. Pediatric polytrauma : Short-term and long-term outcomes

    NARCIS (Netherlands)

    vanderSluis, CK; Kingma, J; Eisma, WH; tenDuis, HJ

    Objective: To assess the short-term and long-term outcomes of pediatric polytrauma patients and to analyze the extent to which short-term outcomes can predict long-term outcomes. Materials and Methods: Ail pediatric polytrauma patients (Injury Severity Score of greater than or equal to 16, less than

  6. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs

  7. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  8. Environmental and other evaluations of alternatives for long-term management of stored INEL transuranic waste

    International Nuclear Information System (INIS)

    1979-12-01

    This study identifies, develops, and evaluates, in a preliminary manner, alternatives for long-term management of TRU waste stored at the Radioactive Waste Management Complex (RWMC) at the INEL. The evaluations concern waste currently at the RWMC and waste expected to be received by the beginning of the year 1985. The effects of waste that might be received after that data are addressed in an appendix. The technology required for managing the waste, the environmental effects, the risks to the public, the radiological and nonradiological hazards to workers, and the estimated costs are discussed

  9. Environmental and other evaluations of alternatives for long-term management of stored INEL transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    This study identifies, develops, and evaluates, in a preliminary manner, alternatives for long-term management of TRU waste stored at the Radioactive Waste Management Complex (RWMC) at the INEL. The evaluations concern waste currently at the RWMC and waste expected to be received by the beginning of the year 1985. The effects of waste that might be received after that date are addressed in an appendix. The technology required for managing the waste, the environmental effects, the risks to the public, the radiological and nonradiological hazards to workers, and the estimated costs are discussed.

  10. Environmental and other evaluations of alternatives for long-term management of stored INEL transuranic waste

    International Nuclear Information System (INIS)

    1979-02-01

    This study identifies, develops, and evaluates, in a preliminary manner, alternatives for long-term management of TRU waste stored at the Radioactive Waste Management Complex (RWMC) at the INEL. The evaluations concern waste currently at the RWMC and waste expected to be received by the beginning of the year 1985. The effects of waste that might be received after that date are addressed in an appendix. The technology required for managing the waste, the environmental effects, the risks to the public, the radiological and nonradiological hazards to workers, and the estimated costs are discussed

  11. Numerical evaluation of oxide growth in metallic support microstructures of Solid Oxide Fuel Cells and its influence on mass transport

    DEFF Research Database (Denmark)

    Reiss, Georg; Frandsen, Henrik Lund; Persson, Åsa Helen

    2015-01-01

    is evaluated by determining an effective diffusion coefficient and the equivalent electrical area specific resistance (ASR) due to diffusion over time. It is thus possible to assess the applicability (in terms of corrosion behaviour) of potential metallic supports without costly long-term experiments......-temperature corrosion theory, and the required model parameters can be retrieved by standard corrosion weight gain measurements. The microstructure is reconstructed from X-ray computed tomography, and converted into a computational grid. The influence of the changing microstructure on the fuel cell performance...

  12. Sexuality and physical intimacy in long-term care.

    Science.gov (United States)

    Lichtenberg, Peter A

    2014-01-01

    Sexuality and sexual needs in older adults remains a neglected area of clinical intervention, particularly so in long-term care settings. Because older adults in medical rehabilitation and long-term care beds present with significant frailties, and often significant neurocognitive disorders, it makes it difficult for occupational therapists and other staff to evaluate the capacity of an older adult resident to participate in sexual relationships. The current paper reviews the current literature on sexuality and aging, examines some of the clinical practices and guidelines regarding sexual expression in long-term care, and presents two case examples. A semistructured interview and decision tree is presented to assist therapists in making careful and informed decisions and thereby balancing the needs for protection with the needs for autonomy.

  13. Long-term Follow-Up of Individuals with Celiac Disease: An Evaluation of Current Practice Guidelines

    Directory of Open Access Journals (Sweden)

    Jocelyn A Silvester

    2007-01-01

    Full Text Available INTRODUCTION: Celiac disease can be treated by following a strict gluten-free diet for life. If properly followed, the diet resolves symptoms and nutritional deficiencies. It is generally recommended that individuals with celiac disease have careful long-term follow-up. However, it is not clear which elements of disease status evaluation, laboratory investigations and self-management support should be included in follow-up.

  14. Applications of cathodic protection for the protection of aqueous and soil corrosion of power plant components

    International Nuclear Information System (INIS)

    Sinha, A.K.; Mitra, A.K.; Bhakta, U.C.; Sanyal, S.K.

    2000-01-01

    Power plant components exposed to environments such as water and soil are susceptible to severe corrosion. Many times the effect of corrosion in power plant components can be catastrophic. The problem is aggravated for underground pipelines due to additional factors such as large network of pipelines, proximity to earth mat, high voltage transmission lines, corrosive chemicals, inadequate approach etc. Other components such as condenser water boxes, internals of pipelines, clarifier bridge structures, cooling water inlet gates and pipes etc. which are in continuous contact with water, are subjected to severe corrosion. The nature and locations of all such components are at places which are not accessible for routine maintenance and hence they require long term reliable protection against corrosion. Experience has shown that anti-corrosive coatings are inadequate in preventing corrosion and due to their location regular maintenance coatings are also not feasible. Under such circumstances the applications of cathodic protection provides a long term solution the design of cathodic protection, for such applications differs from the commonly employed cathodic protection for cross-country pipelines and submerged structures due to other complexities in the plant region and maintenance of the applied system. The present paper intends to discuss the applications of cathodic protection with suitable anti-corrosive coatings for protection of various power plant components and the specific features of each type of application. (author)

  15. Kinetic modelling of bentonite - canister interaction. Implications for Cu, Fe and Pb corrosion in a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Wersin, P.; Bruno, J.; Spahiu, K.

    1993-06-01

    The chemical corrosion of three potential canister materials, Fe, Cu, and Pb is reviewed in terms of their thermodynamic and kinetic behavior in a repository. Thermodynamic predictions which are compatible with sedimentological observations indicate that for all three metals, chemical corrosion is expected at any time in a repository. From the kinetic information obtained by experimental and archeological data, long-term corrosion rates are assessed. In the case of Fe, the selected data allow extrapolation to repository conditions with a tolerable degree of uncertainty except for the possible effect of local corrosion in the initial oxic phase, For the other two metals, the scarcity of consistent experimental and archeological data limits the feasibility of this approach. In view of this shortcoming, a kinetic, single-box model, based on the STEADYQL code, is presented for quantitative prediction of long-term canister-bentonite interaction. The model is applied to the corrosion of Cu under anoxic conditions and upper and lower limits of corrosion rates are derived. The possibilities of extending this single-box model to a multi-box, diffusion-extended version are discussed. Finally, further potentials of STEADYQL for future applications of near field modelling are highlighted. 32 refs

  16. A copper container corrosion model for the in-room emplacement of used CANDU fuel

    International Nuclear Information System (INIS)

    King, F.

    1996-11-01

    Copper containers in a Canadian nuclear fuel waste disposal vault are expected to undergo uniform corrosion and, possibly, pitting. The corrosion behaviour of the containers will be dictated by the evolution of environmental conditions within the disposal vault. The environment will evolve from an early warm, oxidizing phase, during which fast uniform corrosion and pitting may occur, to an indefinite period of cool, anoxic conditions, during which the container will only be susceptible to slow uniform corrosion. The results of corrosion and electrochemical studies of the uniform corrosion of Cu in O 2 -containing Cl - solutions are discussed and a detailed reaction mechanism presented. The relevant literature on pitting corrosion is briefly reviewed and models for the prediction of pit depth discussed. The potential for microbially influenced corrosion and stress-corrosion cracking is discussed, as are vapour-phase corrosion and the effects of β-radiation. The use of natural analogues for justifying long-term corrosion predictions is also considered. Finally, a model for uniform corrosion and pitting is presented and container lifetimes predicted. Copper containers having a minimum wall thickness of 25.4 mm are not predicted to fail by corrosion in periods 6 a. Thus, despite the assumption of poor rock quality made here, the safety of the entire disposal concept can be assured by the use of a long-lived container. (author). 125 refs., 1 tab., 24 figs

  17. Evaluation of quality of life in long-term survivors of paediatric brain stem tumors, treated with radiotherapy

    International Nuclear Information System (INIS)

    Skowronska-Gardas, Anna; Pedziwiatr, Katarzyna; Chojnacka, Marzanna

    2004-01-01

    The quality of life in long-term survivors of paediatric brain stem tumors, treated with radiotherapy is evaluated. They suffer predominantly from pre-treatment neurological impairments, which seriously influence their quality of life. The most often observed treatment sequelae are pituitary insufficiency and hearing loss

  18. Long term creep behavior of concrete

    International Nuclear Information System (INIS)

    Kennedy, T.W.

    1975-01-01

    This report presents the findings of an experimental investigation to evaluate the long term creep behavior of concrete subjected to sustained uniaxial loads for an extended period of time at 75 0 F. The factors investigated were (1) curing time (90, 183, and 365 days); (2) curing history (as-cast and air-dried); and (3) uniaxial stress (600 and 2400 psi). The experimental investigation applied uniaxial compressive loads to cylindrical concrete specimens and measured strains with vibrating wire strain gages that were cast in the concrete specimen along the axial and radial axes. Specimens cured for 90 days prior to loading were subjected to a sustained load for a period of one year, at which time the loads were removed; the specimens which were cured for 183 or 365 days, however, were not unloaded and have been under load for 5 and 4.5 years, respectively. The effect of each of the above factors on the instantaneous and creep behavior is discussed and the long term creep behavior of the specimens cured for 183 or 365 days is evaluated. The findings of these evaluations are summarized. (17 figures, 10 tables) (U.S.)

  19. Long-term psychological functioning of adults with severe congenital facial disfigurement

    NARCIS (Netherlands)

    Passchier, J.; Versnel, S.L.; Plomp, R.G.; Duivenvoorden, H.J.; Mathijssen, I.M.

    2012-01-01

    BACKGROUND: In adults with severe congenital facial disfigurement, assessment of long-term psychological impact remains limited. This study determines the long-term psychological functioning in these patients and evaluates differences compared with patients with acquired facial disfigurement and a

  20. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.

    1999-01-01

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed

  1. Factors Affecting the Prevalence of Gastro-oesophageal Reflux in Childhood Corrosive Oesophageal Strictures

    Directory of Open Access Journals (Sweden)

    Serdar H. İskit

    2014-06-01

    Full Text Available Background: Gastro-oesophageal reflux may accompany the corrosive oesophageal damage caused by the ingestion of corrosive substances and affect its treatment. The factors that affect the development of reflux in these cases and their effects on treatment still remain unclear. Aims: Our aim is to investigate the prevalence of gastro-oesophageal reflux in children with corrosive oesophageal strictures, the risk factors affecting this prevalence and the effects of gastro-oesophageal reflux on treatment. Study Design: Case-control study. Methods: We enrolled 52 patients with oesophageal stricture due to corrosive substance ingestion who were referred to our clinic between 2003 and 2010. Groups, which were determined according to the presence of gastro-oesophageal reflux (GER, were compared with each other in terms of clinical findings, results of examination methods, characteristics of the stricture and success of the treatment. Results: The total number of patients in our study was 52; 30 of them were male and 22 of them were female. The mean age of our study population was 4.2±2.88 years. Thirty-three patients had gastro-oesophageal reflux (63.5%. Patients who had strictures caused by the ingestion of alkali substances were 1.6-times more likely to have reflux. There were no differences between patients with or without reflux in terms of number and localisation of strictures. Mean distance of stricture was longer in patients with reflux (3.7±1.8 cm than in patients without (2.2±1.0 cm (p0.05. Conclusion: Corrosive oesophageal stricture was usually accompanied by gastro-oesophageal reflux and the length of stricture is an important risk factor. Negative effects of reflux over dilatation treatment have not yet been demonstrated in the short-term. Nevertheless, this frequent rate of reflux may eventually increase the risk of oesophagitis and Barrett’s oesophagus; therefore, we suggest that these effects should be prospectively evaluated in a

  2. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  3. An application of RELAP5/MOD3 to the post-LOCA long term cooling performance evaluation

    International Nuclear Information System (INIS)

    Bang, Young Seok; Jung, Jae Won; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    A realistic long-term calculation to be used in the post-LOCA long term cooling (LTC) analysis is described in this study, which was required to resolve the post-LOCA LTC issues including the concern on boric acid precipitation in the reactor core. The analysis scope is defined according to the LTC plan of UCN Units 3/4 and the plant calculation model are developed suitable to the LTC procedure. The LTC sequences following the cold leg small break LOCAs of 0.02 ft2 to 0.5 ft2 are calculated by RELAP5/ MOD3.2.2. Based on the calculation results, the establishment of shutdown cooling system entry condition and the behavior of boron transport are evaluated. The effect of model simplification is also investigated

  4. Corrosion of a hot potassium carbonate CO/sub 2/ removal plant

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1987-01-01

    After ten years of successful operation, a hot potassium carbonate CO/sub 2/ removal plant experienced severe corrosion to the 2'' (50 mm) thick carbon steel absorber process vessel over a fourteen month period. This corrosive attack resulted in complete penetration on three separate occasions. Although the cause of this corrosion is still uncertain, it appears to be the result of decreasing strength of the vanadium pentoxide inhibitor, due to increasing concentrations of hydrogen sulfide in the feed gas. After extensive research, Chevron believes that stainless steel metallurgy or replacement of the hot potassium carbonate process are the only reliable long-term solutions

  5. Probabilistic models for steel corrosion loss and pitting of marine infrastructure

    International Nuclear Information System (INIS)

    Melchers, R.E.; Jeffrey, R.J.

    2008-01-01

    With the increasing emphasis on attempting to retain in service ageing infrastructure models for the description and prediction of corrosion losses and for maximum pit depth are of increasing interest. In most cases assessment and prediction will be done in a probabilistic risk assessment framework and this then requires probabilistic corrosion models. Recently, novel models for corrosion loss and maximum pit depth under marine immersion conditions have been developed. The models show that both corrosion loss and pit depth progress in a non-linear fashion with increased exposure time and do so in a non-monotonic manner as a result of the controlling corrosion process changing from oxidation to being influenced by bacterial action. For engineers the importance of this lies in the fact that conventional 'corrosion rates' have no validity, particularly for the long-term corrosion effects as relevant to deteriorated infrastructure. The models are consistent with corrosion science principles as well as current understanding of the considerable influence of bacterial processes on corrosion loss and pitting. The considerable practical implications of this are described

  6. Corrosion inhibitor development for slightly sour environments with oxygen intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Wylde, J.; Wang, H.; Li, J. [Clariant Oil Services North America, Calgary, AB (Canada)

    2009-07-01

    This presentation reported on a study that examined the effect of oxygen on the inhibition of carbon steel in slightly sour corrosion, and the initiation and propagation of localized attack. Oxygen can enter sour water injection systems through the vapor space in storage tanks and process system. Oxygen aggravates the corrosion attack by participating in the cathodic reaction under full or partial diffusion control. Laboratory testing results were reported in this presentation along with the development of corrosion inhibitors for such a slightly sour system. Bubble testing cells were used with continuous H{sub 2}/CO{sub 2} mixture gas sparging and occasional oxygen intrusion of 2 to 4 hours during a week long test. Linear polarization resistance (LPR) measurements and weight loss corrosion coupons were used to quantify the corrosion attack. The findings were presented in terms of the magnitude of localized attacks at different oxygen concentrations and intrusion periods, with and without the presence of corrosion inhibitors. tabs., figs.

  7. The effect of fatigue on the corrosion resistance of common medical alloys.

    Science.gov (United States)

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. Glass dissolution at 20, 40, 70 and 90 C: Short-term effects of solution chemistry and long-term Na release

    International Nuclear Information System (INIS)

    Bakel, A.J.; Ebert, W.L.; Strachan, D.M.

    1996-01-01

    The corrosion behavior of a borosilicate glass containing 20 mass 5 Na 2 O was assessed using static dissolution tests. This glass (LD6-5412) is representative of high Na glasses that may be used to stabilize Hanford low-level radioactive waste. The normalized mass loss (NL) decreases as NL(Na) ∼ NL(B) > NL(Si) in 20 and 40 C for tests conducted at glass surface area to leachant volume (S/V) ratio of 10 m -1 , and decreases as NL(Na) > NL(B) ∼ NL(Si) in 90 C tests conducted at 10 m -1 and in all tests conducted at higher S/V. The difference in the corrosion behavior is probably caused by the influence of dissolved glass components in the leachates. The NL(Na) is greater than the NL(B) or NL(Si) in all the tests conducted. Results from long-term tests at 2,000 m -1 show that the preferential release of Na persists for longer than one year at all temperatures and indicate that Na is released from this glass by an ion exchange process

  9. Phenomenological study on crystalline rock for evaluating of long-term behavior (Contract research)

    International Nuclear Information System (INIS)

    Okubo, Seisuke; Seno, Yasuhiro; Hirano, Toru; Matsui, Hiroya; Nakama, Shigeo

    2008-08-01

    The Japan Atomic Energy Agency (JAEA) is conducting the Mizunami Underground Research Laboratory (MIU) Project in order to develop comprehensive geological investigation and engineering techniques for deep underground applications (e.g. repository of HLW). The purpose of this study is to contribute to the evaluation of the mechanical stability of a research drift and to plan the future studies. Rock shows time-dependent behavior such as creep/relaxation. For the shaft and gallery of the geological disposal for the radioactive waste, the mechanical stability over a period of thousands of years is demanded not only during construction and operation but also after back-filling. So, to understand the time-dependent behavior of rock is very important for evaluating the long-term mechanical stability. This study is aiming to find out the mechanism of time-dependent behavior of rock such as creep by the precision test, observation and measurement, to develop the evaluating method of long-term behavior of rock mass, and to get the information for planning the study of the Phase III (Operation Phase) at the Mizunami URL. In the previous work conducted before this fiscal year 2007, we improved the testing technique and started test of Toki granite sampled from target site. Furthermore we studied the in-situ measurement method for evaluating the scatter of rock properties. This report describes the results of the works in the fiscal year 2007. In Chapter 1, we described the overview and background of this study. In Chapter 2, the result of continuing creep test of Tage tuff which was started from the fiscal year 1997 was described. Although there was some annual variability, the precious data were obtained. In Chapter 3, the control program for the generalized relaxation test was developed. The generalized relaxation test of Toki granite was conducted in order to get basically data. In Chapter 4, the extended constitutive equation of variable compliance was analytically

  10. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  11. Near-Term Actions to Address Long-Term Climate Risk

    Science.gov (United States)

    Lempert, R. J.

    2014-12-01

    Addressing climate change requires effective long-term policy making, which occurs when reflecting on potential events decades or more in the future causes policy makers to choose near-term actions different than those they would otherwise pursue. Contrary to some expectations, policy makers do sometimes make such long-term decisions, but not as commonly and successfully as climate change may require. In recent years however, the new capabilities of analytic decision support tools, combined with improved understanding of cognitive and organizational behaviors, has significantly improved the methods available for organizations to manage longer-term climate risks. In particular, these tools allow decision makers to understand what near-term actions consistently contribute to achieving both short- and long-term societal goals, even in the face of deep uncertainty regarding the long-term future. This talk will describe applications of these approaches for infrastructure, water, and flood risk management planning, as well as studies of how near-term choices about policy architectures can affect long-term greenhouse gas emission reduction pathways.

  12. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate.

    Science.gov (United States)

    Drelich, Adam J; Zhao, Shan; Guillory, Roger J; Drelich, Jaroslaw W; Goldman, Jeremy

    2017-08-01

    Metallic zinc implanted into the abdominal aorta of rats out to 6months has been demonstrated to degrade while avoiding responses commonly associated with the restenosis of vascular implants. However, major questions remain regarding whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated fibrous encapsulation process that prevents the diffusion of critical reactants and products at the metal surface. Here, we have conducted clinically relevant long term in vivo studies in order to characterize late stage zinc implant biocorrosion behavior and products to address these critical questions. We found that zinc wires implanted in the murine artery exhibit steady corrosion without local toxicity for up to at least 20months post-implantation, despite a steady buildup of passivating corrosion products and intense fibrous encapsulation of the wire. Although fibrous encapsulation was not able to prevent continued implant corrosion, it may be related to the reduced chronic inflammation observed between 10 and 20months post-implantation. X-ray elemental and infrared spectroscopy analyses confirmed zinc oxide, zinc carbonate, and zinc phosphate as the main components of corrosion products surrounding the Zn implant. These products coincide with stable phases concluded from Pourbaix diagrams of a physiological solution and in vitro electrochemical impedance tests. The results support earlier predictions that zinc stents could become successfully bio-integrated into the arterial environment and safely degrade within a time frame of approximately 1-2years. Previous studies have shown zinc to be a promising candidate material for bioresorbable endovascular stenting applications. An outstanding question, however, is whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated tissue encapsulation process that prevented the diffusion of critical

  13. Immersion-scanning-tunneling-microscope for long-term variable-temperature experiments at liquid-solid interfaces

    Science.gov (United States)

    Ochs, Oliver; Heckl, Wolfgang M.; Lackinger, Markus

    2018-05-01

    Fundamental insights into the kinetics and thermodynamics of supramolecular self-assembly on surfaces are uniquely gained by variable-temperature high-resolution Scanning-Tunneling-Microscopy (STM). Conventionally, these experiments are performed with standard ambient microscopes extended with heatable sample stages for local heating. However, unavoidable solvent evaporation sets a technical limit on the duration of these experiments, hence prohibiting long-term experiments. These, however, would be highly desirable to provide enough time for temperature stabilization and settling of drift but also to study processes with inherently slow kinetics. To overcome this dilemma, we propose a STM that can operate fully immersed in solution. The instrument is mounted onto the lid of a hermetically sealed heatable container that is filled with the respective solution. By closing the container, both the sample and microscope are immersed in solution. Thereby solvent evaporation is eliminated and an environment for long-term experiments with utmost stable and controllable temperatures between room-temperature and 100 °C is provided. Important experimental requirements for the immersion-STM and resulting design criteria are discussed, the strategy for protection against corrosive media is described, the temperature stability and drift behavior are thoroughly characterized, and first long-term high resolution experiments at liquid-solid interfaces are presented.

  14. Development of stress corrosion techniques for structural integrity evaluation and life extension of PWR facilities

    International Nuclear Information System (INIS)

    Moreira, Pedro A.L.D.L. Pinheiro; Vilela, Jeferson J.; Lorenzo, Roberto F. Di; Lopes, Jadir A.M.

    2000-01-01

    The stress corrosion is a mechanism of degradation present in the nuclear plants. To extend the life of the plants components, this corrosion type it should be known. An evaluation for the implantation of methodologies of stress corrosion study in CDTN/CNEN, shows that the technique of slow deformation can be used in the evaluation of integrity structural nuclear power stations. This technique consists of straining a sample slowly, usually, in strain rate between 10 -4 and 10- 8 s -1 and in conditions that simulate the reactivity of the metal in environment (pressure, temperature, chemical composition of the water and etc) similar to the found at the nuclear power power stations. This simulation allows evaluating susceptibility the stress corrosion of components mechanical and structure that operate in central nuclear. (author)

  15. Long-term durability test of acid recovery evaporators made of Ti-5% Ta alloy and zirconium

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Koizumi, Tsutomu; Koyama, Tomozo

    2001-05-01

    Mock-ups of acid recovery evaporators which are made of Ti-5% Ta alloy and Zr were tested under inactive condition for forty thousands hours to improve a corrosion resistance of acid recovery evaporator in Tokai reprocessing plant (TRP). The mock-up unit was designed and produced referring to the specification of acid recovery evaporator in TRP and the evaporation performance of the mock-up was 1/27 of TRP. A long-term durability of both evaporators was demonstrated by results of operation data, evaporation performance and corrosion resistance. The mock-up unit did not suffer from any trouble during the running test and the operation data such as temperature, flow, concentrations of nitric acid and metal ions were fairly stable within standard condition. As for the corrosion resistance, cracks and local corrosion such as intergranular attack were not observed on both evaporators after the running test, and a corrosion of weld was not selective. The average corrosion rates at measuring points were less than 0.1 mm/yr, respectively, however, thickness of the Ti-5% Ta alloy evaporator was slightly reduced at all points of vapor phase region. In addition, from the result by test coupon, it is found that both materials have low susceptibility to stress corrosion cracking in this environment. The destructive inspection showed that the mechanical properties of both materials were not degraded during the running test. Finally, the total running time of the mock-up unit is much more than a maximum running time of acid recovery evaporator made of stainless steel in TRP (nearly 15,000 hours). On the basis of the test results, an excellent durability of Ti-5% Ta alloy and Zr evaporators under was successfully demonstrated throughout the mock-up test from an engineering perspective. (author)

  16. Long Term Behaviour of Cementitious Materials in the Korean Repository Environment

    International Nuclear Information System (INIS)

    Park, J.-W.; Kim, C.-L.

    2013-01-01

    The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. After the selection of the final candidate site for low- and intermediate-level waste (LILW) disposal in Korea, a construction and operation license was issued for the Wolsong LILW Disposal Center (WLDC) for the first stage of disposal. Underground silo type disposal has been determined for the initial phase. The engineered barrier system of the disposal silo consists of waste packages, disposal containers, backfills, and a concrete lining. Main objective of our study in this IAEA-CRP is to investigate closure concepts and cementitious backfill materials for the closure of silos. For this purpose, characterisation of cementitious materials, development of silo closure concept, and evaluation of long-term behaviour of cementitious materials, including concrete degradation in repository environment, have been carried out. The overall implementation plan for the CRP comprises performance testing for the physic-chemical properties of cementitious materials, degradation modelling of concrete structures, comparisons of performance for silo closure options, radionuclide transport modelling (considering concrete degradation in repository conditions), and the implementation of an input parameter database and quality assurance for safety/performance assessment. In particular, the concrete degradation modelling study has been focused on the corrosion of reinforcement steel induced by chloride attack, which was of primary concern in the safety assessment of the WLDC. A series of electrochemical experiments were conducted to investigate the effect of dissolved oxygen, pH, and Cl on the corrosion rate of reinforcing steel in a concrete structure saturated with groundwater. Laboratory-scale experiments and a thermodynamic modelling were performed to understand the porosity change of cement pastes, which were prepared using

  17. Synthesis and evaluation of new long alkyl side chain acetamide, isoxazolidine and isoxazoline derivatives as corrosion inhibitors

    International Nuclear Information System (INIS)

    Yildirim, A.; Cetin, M.

    2008-01-01

    2-(Alkylsulfanyl)-N-(pyridin-2-yl) acetamide derivatives were synthesized via amidation reaction of acyl chlorides bearing S atom in the long chain with 2-aminopyridine. Derivatives of isoxazolidine and isoxazoline were synthesized through 1,3-dipolar cycloaddition reactions with three different long chain alkenes containing O or S as hetero atoms and C,N-diphenyl nitrone or benzonitrile-N-oxide, respectively. Synthesized compounds were characterized with their FT-IR, 1 H NMR spectra and then their physical properties and corrosion prevention efficiencies were investigated. All compounds were tested with steel coupons in acidic medium by gravimetric method, and also some of them were tested with steel stripe in paraffin based mineral oil medium via standard method. Acidic test was done with a medium concentration of 2 M HCl for 20 h at room temperature. Mineral oil was used and the test in this medium was done at 60 deg. C constant temperature but varying time from 42 to 63 h. The best inhibition was generally obtained at 50 ppm inhibitor concentration in the acidic medium. All tested inhibitors except two of them in oil medium also showed promising inhibition efficiencies

  18. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl

    International Nuclear Information System (INIS)

    Zhang, Dongqin; Tang, Yongming; Qi, Sijun; Dong, Dawei; Cang, Hui; Lu, Gang

    2016-01-01

    Highlights: • Inhibition performance of long-chain alkyl-substituted benzimidazole. • Benzimidazole segment donating electrons to metal surface. • Non-polar long chain enhancing inhibition by the barrier effect. • Molecular form of DBI more tightly adsorbs on the steel than its protonated form. - Abstract: The corrosion inhibition of a new benzimidazole derivative, 6-(dodecyloxy)-1H-benzo[d]imidazole (DBI), for mild steel in 1 M HCl was investigated in this paper. Computational chemistry was performed to explore the adsorption of DBI on metal surface. Inhibition performance of DBI is attributed to both the direct interaction of benzimidazole segment with iron surface and the barrier effect of the non-polar long chain against aggressive solution. Compared to the protonated form, the molecular form of DBI could more tightly interact with iron surface. These results show that the long-chain alkyl-substituted benzimidazole derivative is of great potential application as corrosion inhibitor.

  19. Corrosion evaluation of materials in sulfur compound environments

    International Nuclear Information System (INIS)

    Maoying Teng; Iuanjou Yang

    1993-01-01

    The para-toluene sulfonic acid (PTSA) serves as a catalyst in producing diethylene glycol dibenzoate (DEGDB) and decomposes with increasing time at elevated temperature. Due to the presence of bisulfite ion, it is important to evaluate the corrosion properties of materials in this metastable environments. A potentiodynamic method was used to screen materials' properties in a PTSA solution. A surface analysis technique was also performed to investigate the oxide films. The critical current density and passive current density were substantially reduced when Fe alloyed with Cr and/or Ni. With the addition of Mo in Fe-Ni-Cr alloys, the critical current density was lowered further to show the beneficial effect of alloyed Mo. A plot of the corrosion rate of materials in DEGDB as a function of Ni/Cr ratio shows the linearity with increasing Ni/Cr ratio, disregard the type of materials. The corrosion rate of pure chromium can be estimated as ∼ 2.0 mpy by extrapolation of the linearity to Ni/Cr = 0. This is also the minimum corrosion rate that even Fe-Ni-Cr alloys were alloyed with Mo. Surface analysis results showed that the dissolution of Fe and/or Ni leads to a higher surface chromium content and results in the formation of chromium oxide on metal surface. This chromium oxide then prevents metal from corrosion. It is concluded that the higher the nickel content the higher the corrosion rate of materials. The composition potential-pH diagrams for Fe-S-H 2 O and Ni-S-H 2 O show that the stability fields of FeS and NiS cover a wide range of pH. The effect of sulfur or sulfide ions in promoting dissolution of Fe and/or Ni are highly possible. The activating influence of sulfur compounds on Ni is stronger than that of Fe, although the highly electronic conductivity of iron sulfides can catalyze the cathodic reaction. Undoubtedly, sulfur compound strongly depassivates high Ni contents materials

  20. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    Science.gov (United States)

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Long Term Financing of Infrastructure

    OpenAIRE

    Sinha, Sidharth

    2014-01-01

    Infrastructure projects, given their long life, require long term financing. The main sources of long term financings are insurance and pension funds who seek long term investments with low credit risk. However, in India household financial savings are mainly invested in bank deposits. Insurance and pension funds account for only a small percentage of household financial savings. In addition most infrastructure projects do not qualify for investment by insurance and pension funds because of t...

  2. Influence of femtosecond laser marking on the corrosion resistance of stainless steels

    International Nuclear Information System (INIS)

    Valette, S.; Steyer, P.; Richard, L.; Forest, B.; Donnet, C.; Audouard, E.

    2006-01-01

    Marking is of prime importance in the field of biomaterials to allow the identification of surgical tools as well as prostheses. Nowadays, marking is often achieved by means of laser beam, which may modify the characteristics of the treated surfaces. The use of laser devices delivering nanosecond pulses is known to induce dramatic corrosion degradations during sterilization or decontamination processes of the biomaterials. The aim of the present study is to investigate the ability of femtosecond (pulse duration in the 10 -15 s range) laser treatments to avoid preferential corrosion processes of the marked areas, in order to extend the durability and the reliability of biomaterials. Experiments have been performed on martensitic Z30C13 and austenitic 316L stainless steels. Electrochemical measurements (cyclic polarization curves) were carried out to determine the passive state of samples before and after engraving, their corrosion rate and their susceptibility to localized corrosion. Further protracted immersion tests were also carried out to evaluate the natural long-term degradation of engraved parts. The electrochemical behavior is then explained on the basis of surface characterizations. Femtosecond laser marking is shown to provide an electrochemical ennoblement. Moreover, the chemical composition is not affected so that the passive character of both stainless steels is maintained, even improved if we consider the susceptibility to localized corrosion

  3. Corrosion of Zircaloy-clad fuel rods in high-temperature PWRs: Measurement of waterside corrosion in North Anna Unit 1

    International Nuclear Information System (INIS)

    Balfour, M.G.; Kilp, G.R.; Comstock, R.J.; McAtee, K.R.; Thornburg, D.R.

    1992-03-01

    Twenty-four peripheral rods and two interior rods from North Anna Unit 1, End-of-Cycle 7, were measured at poolside for waterside corrosion on four-cycle Region 6 assemblies F35 and F66, with rod average burnups of 60 GWD/MTU. Similar measurements were obtained on 24 two-cycle fuel rods from Region 8A assemblies H02 and H10 with average burnups of about 40 GWD/MTU. The Region 6 peripheral rods had been corrosion measured previously after three cycles, at 45 GWD/MTU average burnup. The four-cycle Region 6 fuel rods showed high corrosion, compared to only intermediate corrosion level after three cycles. The accelerated corrosion rate in the fourth cycle was accompanied by extensive laminar cracking and spalling of the oxide film in the thickest regions. The peak corrosion of the two-cycle region 8A rods was 32 μm to 53 μm, with some isolated incipient oxide spalling. In conjunction with the in-reactor corrosion measurements, extensive characterization tests plus long-term autoclave corrosion tests were performed on archive samples of the three major tubing lots represented in the North Anna measurements. The autoclave tests generally showed the same ordering of corrosion by tubing lot as in the reactor; the chief difference between the archive tubing samples was a lower tin content (1.38 percent) for the lot with the lowest corrosion rate compared with a higher tin content (1.58) for the lot with the highest corrosion rate. There was no indication in the autoclave tests of an accelerated rate of corrosion as observed in the reactor

  4. Technical evaluation on high aging, and performance conditions on long-term conservation program

    International Nuclear Information System (INIS)

    Yamashita, Atsushi

    2001-01-01

    In order to secure safety and safe operation of power plants, in every nuclear power plants, conservation actions based on preventive conservation are performed. They contain operative condition monitoring, patrolling inspection, and periodical tests on important systems and apparatus by operators under plant operation and condition monitoring by maintenance workers, and so on, and when finding out their abnormal conditions, their detailed survey is performed to adopt adequate countermeasures such as recovery, exchange, and so on. And, to equipments for nuclear power generation periodical conditions were obliged by legal examinations and by independent inspections. As a result of these conservation actions, even on a plant elapsed about 30 years since beginning of its operation it was thought that the plant was aged with elapsing time even if not recognizing any indication on its aged deterioration at that time. Therefore, for its concrete countermeasure, by supposing long-term operation of a plant with longer operation history, some technical evaluation on aged phenomena were carried out, to investigate on reflection of the obtained results to present conservation actions. Here were described on efforts on the high aging countermeasures, and performing conditions of long-term conservation in the Tsuruga Unit No. 1 Nuclear Power Station. (G.K.)

  5. Analysis of long-term energy scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J.; Morthorst, P.E.

    1998-09-01

    When addressing the role of fusion energy in the 21. century, the evaluation of possible future structures in the electricity market and the energy sector as a whole, can be a useful tool. Because fusion energy still needs demonstration, commercialized fusion energy is not likely to be a reality within the next few decades. Therefore long-term scenarios are needed describing the energy markets, which fusion energy eventually will be part of. This report performs an analysis of two of the most detailed existing long-term scenarios describing possible futures of the energy system. The aim is to clarify the frames in which the future development of the global energy demand, as well as the structure of the energy system can be expected to develop towards the year 2100. (au) 19 refs.

  6. Microbiologically influenced corrosion. Final report for fiscal year 1995

    International Nuclear Information System (INIS)

    Jones, D.A.; Amy, P.J.

    1996-01-01

    Microbiologically influenced corrosion (MIC) is a serious concern when considering measures to guard against long-term corrosion of waste package containers at Yucca Mountain. An experimental program has been initiated to gain a better fundamental understanding of MIC in repository environments. Some engineering objectives will be achieved during the investigation: a reproducible apparatus and procedure for electrochemical monitoring of MIC will be developed; the most aggressive combinations of bacteria will be determined, and the MIC resistance of various candidate alloys for the multipurpose container (MPC) will be measured

  7. Microbiologically influenced corrosion. Final report for fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.A. [Univ. of Nevada, Reno, NV (United States); Amy, P.J. [Univ. of Nevada, Las Vegas, NV (United States)

    1996-06-06

    Microbiologically influenced corrosion (MIC) is a serious concern when considering measures to guard against long-term corrosion of waste package containers at Yucca Mountain. An experimental program has been initiated to gain a better fundamental understanding of MIC in repository environments. Some engineering objectives will be achieved during the investigation: a reproducible apparatus and procedure for electrochemical monitoring of MIC will be developed; the most aggressive combinations of bacteria will be determined, and the MIC resistance of various candidate alloys for the multipurpose container (MPC) will be measured.

  8. Stress corrosion crack growth in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.

    1978-10-01

    Experimental techniques suitable for the determination of stress corrosion crack growth rates in irradiated Zircaloy tube have been developed. The techniques have been tested on unirradiated. Zircaloy and it was found that the results were in good agreement with the results of other investigations. Some of the results were obtained at very low stress intensities and the crack growth rates observed, gave no indication of the existance of a K sub(ISCC) for iodine induced stress corrosion cracking in Zircaloy. This is of importance both for fuel rod behavior after a power ramp and for long term storage of spent Zircaloy-clad fuel. (author)

  9. Safety of long-term PPI therapy

    DEFF Research Database (Denmark)

    Reimer, Christina

    2013-01-01

    Proton pump inhibitors have become the mainstay of medical treatment of acid-related disorders. Long-term use is becoming increasingly common, in some cases without a proper indication. A large number of mainly observational studies on a very wide range of possible associations have been publishe...... to a careful evaluation of the indication for PPI treatment....

  10. Long term stability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Kundur, P; Gao, B [Powertech Labs. Inc., Surrey, BC (Canada)

    1994-12-31

    Power system long term stability is still a developing subject. In this paper we provide our perspectives and experiences related to long term stability. The paper begins with the description of the nature of the long term stability problem, followed by the discussion of issues related to the modeling and solution techniques of tools for long term stability analysis. Cases studies are presented to illustrate the voltage stability aspect and plant dynamics aspect of long term stability. (author) 20 refs., 11 figs.

  11. Evaluation of corrosion attack of chimney liners

    Directory of Open Access Journals (Sweden)

    Blahetová M.

    2016-06-01

    Full Text Available The case study of chimney liner corrosion addresses three specific cases of damage of chimney systems from of stainless steels. These systems were used for flue of gas arising from the combustion of brown coal in small automatic boilers, which are used for heating. Detailed analyzes implied that the cause of devastating corrosion of the steel AISI 316 and 304 steel (CSN 17349, 17241 was particularly high content of halides (chlorides and fluorides, which caused a severe pitting corrosion, which led up to the perforation of the liner material. Simultaneous reduction of the thickness of the used sheets was due to by the general corrosion, which was caused by the sulfur in the solid fuel. The condensation then led to acid environment and therefore the corrosion below the dew point of the sulfuric acid has occurred. All is documented by metallographic analysis and microanalysis of the corrosion products.

  12. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  13. What are the differences between long-term, short-term, and working memory?

    Science.gov (United States)

    Cowan, Nelson

    2008-01-01

    In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rather encouraging regarding the existence of both decay and capacity limits. Working memory has been conceived and defined in three different, slightly discrepant ways: as short-term memory applied to cognitive tasks, as a multi-component system that holds and manipulates information in short-term memory, and as the use of attention to manage short-term memory. Regardless of the definition, there are some measures of memory in the short term that seem routine and do not correlate well with cognitive aptitudes and other measures (those usually identified with the term "working memory") that seem more attention demanding and do correlate well with these aptitudes. The evidence is evaluated and placed within a theoretical framework depicted in Fig. 1.

  14. Winning market positioning strategies for long term care facilities.

    Science.gov (United States)

    Higgins, L F; Weinstein, K; Arndt, K

    1997-01-01

    The decision to develop an aggressive marketing strategy for its long term care facility has become a priority for the management of a one-hundred bed facility in the Rocky Mountain West. Financial success and lasting competitiveness require that the facility in question (Deer Haven) establish itself as the preferred provider of long term care for its target market. By performing a marketing communications audit, Deer Haven evaluated its present market position and created a strategy for solidifying and dramatizing this position. After an overview of present conditions in the industry, we offer a seven step process that provides practical guidance for positioning a long term care facility. We conclude by providing an example application.

  15. Archaeological analogs and corrosion

    International Nuclear Information System (INIS)

    David, D.

    2008-01-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  16. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    Science.gov (United States)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  17. Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform.

    Science.gov (United States)

    Versari, Cristian; Stoma, Szymon; Batmanov, Kirill; Llamosi, Artémis; Mroz, Filip; Kaczmarek, Adam; Deyell, Matt; Lhoussaine, Cédric; Hersen, Pascal; Batt, Gregory

    2017-02-01

    With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar , a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others. © 2017 The Authors.

  18. Evaluation of several corrosion protective coating systems on aluminum

    Science.gov (United States)

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  19. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (2), flow dynamics calculations for determining mixing factors and mass transfer coefficients

    International Nuclear Information System (INIS)

    Uehara, Yasushi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Koshizuka, Seiichi

    2009-01-01

    In order to predict and mitigate flow accelerated corrosion (FAC) of carbon steel piping in PWR and BWR secondary systems, computer program packages for evaluating FAC have been developed by coupling one through three dimensional (1-3D) computational flow dynamics (CFD) models and corrosion models. To evaluate corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path, flow pattern and temperature in each elemental volume were obtained with 1D computational flow dynamics (CFD) codes. Precise flow turbulence and mass transfer coefficients at the structure surface were calculated with 3D CFD codes to determine wall thinning rates. One of the engineering options is application of k-ε calculation as a 3D CFD code, which has limitation of detail evaluation of flow distribution at very surface of large scale piping. A combination of k-ε calculation and wall function was proposed to evaluate precise distribution of mass transfer coefficients with reasonable CPU volume and computing time and, at the same time, reasonable accuracy. (author)

  20. Long-term child follow-up after large obstetric randomised controlled trials for the evaluation of perinatal interventions: a systematic review of the literature

    NARCIS (Netherlands)

    Teune, M. J.; van Wassenaer, A. G.; Malin, G. L.; Asztalos, E.; Alfirevic, Z.; Mol, B. W. J.; Opmeer, B. C.

    2013-01-01

    Although the hope is that many perinatal interventions are performed with an ultimate aim to improve the long-term health and development of the child, long-term outcome is rarely used as a primary end-point in perinatal randomised controlled trials (RCTs). To evaluate how often and with which tools

  1. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [Los Alamos National Laboratory

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  2. Predicting concrete corrosion of sewers using artificial neural network.

    Science.gov (United States)

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Corrosion behaviour of low alloy steels: from ancient past to far future

    Energy Technology Data Exchange (ETDEWEB)

    Santarini, G. [Commissariat a l' Energie Atomique, CEA-Saclay DEN/DPC, Bat 450, 91191 Gif-sur-Yvette Cedex (France)

    2004-07-01

    With the envisaged concepts of long term storage and underground disposal of high level radioactive waste, corrosion science has to face a new challenge: to obtain reliable behaviour predictions over very long periods of time, up to thousands of years. For such durations, the development of mechanistically based models becomes an absolute necessity. In France, the first candidate materials considered for the containers of high level waste are low alloy steels because of their relatively low sensitivity to localized corrosion, when compared, for example, to passive materials: this characteristics makes their corrosion behaviour less difficult to predict. In this mechanistic modelling, numerous physicochemical steps have to be taken into consideration, such as chemical and/or electrochemical reactions, solid state diffusion of point defects, liquid state diffusion of chemical species in oxide pores, etc. However, since the complex links between all these steps highly depend on the nature and on the characteristics (porosity, conductivity, protectiveness, etc.) of the corrosion products, the first stage before the model construction is to obtain experimental data on this phenomenology in the very near environment of the metal. At the opposite, once a model constructed, it is necessary to compare its predictions to field experience, and to verify that the mechanisms and phenomenology retained in the model remain unchanged over very long periods of time. In the various stages of a progressive iterative model improvement, the examination of archaeological objects is liable to provide useful information. The considerable interest of such objects, in this context, comes from the long duration of the contact with a natural environment, a duration of the same order of magnitude as the one considered for high level waste storage. However, the differences between the ancient materials and the modern ones and also the poor knowledge about the initial conditions and about the

  4. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    Science.gov (United States)

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  5. Evaluation and rehabilitation of corrosion damaged reinforced concrete structures

    International Nuclear Information System (INIS)

    Paul, I.S.

    1999-01-01

    For the last two decades, rehabilitation of corrosion damaged concrete structures has been one of the most important challenges faced by the construction industry throughout the world. The extent of the damage is significant in cold climates and also in hot and humid climates. In both cases, the corrosion is invariably initiated by ingress of salts into the concrete either from de-icing salts used on roads, or from salt-laden air, soils or ground water. However, there is a contrast in sites of distress in the two climatic regions mentioned above. In cold climates, where de-icing salts are used, the damage is generally to superstructures and is therefore visible, but in hot, humid coastal regions damage is primarily in the substructures and may not be so clearly apparent. This paper presents the corrosion mechanism in concrete deterioration, the methods of evaluation of the damaged structures, and rehabilitation strategies. A case history of a concrete rehabilitation project is included together with some lessons learned in rehabilitation of corrosion damaged structures. Recommendations are made for maintenance of concrete structures and a warning is issued that salt run-off from roads in cold climates may cause distress in below ground concrete structures, similar to structures in hot and humid climates with saline groundwater and soils. (author)

  6. Bio-corrosion for underground disposal of radioactive waste; Biocorrosion en conditions de stockage geologique de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Libert, M.; Esnault, L. [CEA, DEN/DTN/SMTM/LMTE, 13108 St Paul lez Durance, (France); Esnault, L. [ECOGEOSAFE, Technopole environnement Arbois-Mediterranee, avenue Louis Philibert, 13545 Aix-en-Provence Cedex, (France); Feron, D. [CEA, DEN/DANS/DPC, 91191 Gif-sur-Yvette, (France)

    2011-07-01

    The safety disposal of high level nuclear waste (HLNW) is the major breakthrough allowing socially acceptable development of nuclear energy over the coming decades. The French concept for geological disposal of HLNW is based on a multi-barrier system made by metallic containers confined in natural clay. The main alteration parameter is water arriving on waste after the corrosion of metallic components. The anoxic aqueous corrosion phenomena are studied in order to evaluate the confinement capacity of metallic barriers. The discover of active micro-organisms in deep clayey environments raises the question of the impact of micro-organisms on corrosion parameters due to processes such as 'biologically induced corrosion'. Despite of extreme conditions in deep nuclear geological disposal (redox conditions, high pressure and temperature, irradiation), bacterial activity will adapt and survive in these environments. Anoxic corrosion of nuclear waste containers and radiolysis will produce H{sub 2}, which represents a new energetic source for bacterial development, especially in this environment that contains a low amount of biodegradable organic matter. Besides, the formation of Fe(III)-bearing minerals such as magnetite (Fe{sub 3}O{sub 4}) as corrosion products will provide electron acceptors favouring the development of bacteria. Bio-corrosion studies of nuclear waste disposal need to investigate the activity of hydrogenotrophic bacteria able to reduce iron oxides (passivation layer) or sulfates (iron reducing bacteria and sulfate reducing bacteria) in order to evaluate their impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level nuclear waste containment. (authors)

  7. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  8. Balloon dilatation of tuberculous bronchial stenosis: immediate and long term effect

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Kwak, Byung Kook; Kang, Ho Yeong; Kim, Tae Hoon; Kim, Soo Rhan; Park, Hyun Sun; Lee, Shin Hyung; Lee, Chang Joon

    1997-01-01

    To evaluate the long-term immediate effects of balloon dilatation of the tuberculous bronchial stenosis. Twenty-three women with tuberculous bronchial stenosis (19, left main bronchus ; 4, right main bronchus) underwent balloon dilatation (13 bronchoscopically guided ; 10 fluoroscopically guided). Immediate (n=23) and long-term follow-up (mean, 17.2 months; range, 1month-6years 3months ; n=20) assessments focused on changes in the results of the pulmonary function test (PFT). An increase in FVC or FEVI of more than 10% after the procedure was considered effective. In all patients, any complications were evaluated. Balloon dilatation was effective at immediate follow-up in 69.5% of patients(16/23) and in 75.0%(15/20) at long-term follow-up. Bronchoscopically and fluoroscopically-guided balloon dilatation proved effective in 61.5%(8/13) and 80.0% of patients(8/10) on immediate follow-up respectively, but in 90.0%(9/10) and 60.0%(6/10) on long term follow-up respectively. Balloon dilatation was effective in the active(n 10) and inactive(n = 13) stage of tuberculous bronchitis in 80.0%(8/10) and 61.5% of cases(8/13) on immediate follow-up respectively, but in 66.6%(6/9) and 81.8%(9/11) on long term follow-up study, respectively. On immediate follow-up, balloon dilatation of tubular bronchial stenosis was more effective in the active than in the inactive stage, but on long-term follow-up was less effective ; long-term improvement in the inactive stage was, however, well-maintained

  9. Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes.

    Science.gov (United States)

    Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier

    2014-06-01

    This study emphasizes different experimental approaches and provides perspectives to apprehend biocorrosion phenomena in the specific disposal environment by investigating microbial activity with regard to the modification of corrosion rate, which in turn can have an impact on the safety of radioactive waste geological disposal. It is found that iron-reducing bacteria are able to use corrosion products such as iron oxides and "dihydrogen" as new energy sources, especially in the disposal environment which contains low amounts of organic matter. Moreover, in the case of sulphate-reducing bacteria, the results show that mixed aerobic and anaerobic conditions are the most hazardous for stainless steel materials, a situation which is likely to occur in the early stage of a geological disposal. Finally, an integrated methodological approach is applied to validate the understanding of the complex processes and to design experiments aiming at the acquisition of kinetic data used in long term predictive modelling of biocorrosion processes. © 2013.

  10. Standard practice for conducting and evaluating laboratory corrosions tests in soils

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for conducting laboratory corrosion tests in soils to evaluate the corrosive attack on engineering materials. 1.2 This practice covers specimen selection and preparation, test environments, and evaluation of test results. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Characteristics of asthma attack with long-term management for bronchial asthma.

    Science.gov (United States)

    Kawahara, Noriko; Hasegawa, Shunji; Hashimoto, Kunio; Matsubara, Tomoyo; Ichiyama, Takashi; Furukawa, Susumu

    2009-10-01

    There have been no reports on the evaluation of the usefulness of long-term asthma management based on the Japanese Pediatric Guideline for the Treatment and Management of Bronchial Asthma 2005 (JPGL 2005). The purpose of the present study was to retrospectively investigate the records of 350 patients admitted to Yamaguchi University Hospital who had asthma attacks from January 2006 to June 2008. There were 149 patients who were treated for more than 3 months in accordance with the guideline (long-term management group) and 201 who were not (non-long-term management group). The patients were divided into three age groups: 100 infants, 159 toddlers, and 91 schoolchildren. The onset age of asthma in the long-term management group was earlier than that in the non-long-term management group in toddlers and schoolchildren. The white blood cell counts and C-reactive protein levels were higher in the non-long-term management group in schoolchildren, suggesting the complication of some infections. The severity of asthma in the long-term management group was greater than that in the non-long-term management group among all three age groups. There were no significant differences, however, in the severity of asthma attack at admission between the long-term and non-long-term management groups in the three age groups. Patients who had severe asthma tended to be treated with long-term management, which suggests that long-term asthma management according to JPGL 2005 may reduce the severity of asthma attack at that admission, because the severity of asthma in patients undergoing long-term management correlates with the severity of asthma attack.

  12. Evaluation of flexible membrane liners as long-term barriers for uranium mill tailings

    International Nuclear Information System (INIS)

    1984-07-01

    The National Uranium Tailings Program has commissioned a study to evaluate flexible membrane liners (geomembranes) as long-term barriers for Canadian uranium mill tailings. This study reviews the common liner type and addresses flexible liners (polymeric membranes and asphalt) in detail. Liner fabrication, design, installation, and performance are reviewed. Conceptual designs are presented for basins to accommodate 20 years accumulation of uranium tailings from mills in Elliot Lake and southeastern Athabasca. Nine polymeric and three asphalt liner types have been considered with respect to the physical and chemical environment in the uranium producing areas of Canada. All materials indicate good chemical resistance to uranium wastes but are subject to installation problems

  13. Evaluation of corrosion characteristics of SMART materials (III)

    International Nuclear Information System (INIS)

    Jeong, Y. H.; Park, S. Y.; Baek, J. H.; Choi, B. K.; Park, J. Y.; Lee, M. H.; Kim, J. H.; Bang, J. G.

    2006-02-01

    The corrosion characteristics of materials (Low-Sn Zircaloy-4, Zr-1.0Nb, PT-7M, ASTM Gr. 2 Ti, Inconel-690 alloys) for cladding and heat-exchanger tubes of SMART were evaluated in ammonia aqueous solution contained recirculating loop of pH 9.98 at 360 .deg. C 300 .deg. C. And CEDM materials (ball bearing, ball screw, magnetic material) were evaluated in ammonia aqueous solution contained static autoclave of pH 9.98 at 120 .deg. C

  14. Qualification of polysiloxanes for long-term storage of radioactive waste

    International Nuclear Information System (INIS)

    Kucharczyk, P.

    2005-12-01

    At present German policy envisages interim storage of all radioactive waste (for approximately 30 years) until a final repository is available. This therefore leads to higher standards for storage containers. Silicone elastomers (polysiloxanes), materials on the basis of silicon and oxygen with organic substituents, have various physical and chemical properties and seem to be suitable for the long-term storage of low- and intermediate-level radioactive waste. The aim of the present work is the qualification of a new coating material for storage containers. The use of polysiloxanes in other applications was also investigated. An important criterion for the coating is the simplicity of its application. Moreover, it should also have a high adhesion on steel as well as providing protection against corrosion. These properties were investigated for different polysiloxanes. The spraying tests showed that polysiloxane material with a viscosity of up to 45 000 mPas could be applied by the airless spraying method. An elastic coating was produced which could ensure protection against mechanical impacts. In the framework of water vapour experiments, a very high diffusion constant was determined. The corrosion test confirmed that the polysiloxane coating provided only insufficient corrosion protection if the sample was in contact with water and water vapour at the same time. This problem was solved by using an additional priming coat of 60 μm zinc paint. The adhesion test showed that polysiloxanes have different levels of adhesion. The best adhesion was determined for condensation-cured silicones. The addition-cured materials had a lower adhesion, which was improved by the application of a priming coat. The outcome of these investigations is a wide spectrum of applications for polysiloxanes which can be used as firmly adhering coatings or removable decontamination layers. (orig.)

  15. Sleep Quality, Short-Term and Long-Term CPAP Adherence

    Science.gov (United States)

    Somiah, Manya; Taxin, Zachary; Keating, Joseph; Mooney, Anne M.; Norman, Robert G.; Rapoport, David M.; Ayappa, Indu

    2012-01-01

    Study Objectives: Adherence to CPAP therapy is low in patients with obstructive sleep apnea/hypopnea syndrome (OSAHS). The purpose of the present study was to evaluate the utility of measures of sleep architecture and sleep continuity on the CPAP titration study as predictors of both short- and long-term CPAP adherence. Methods: 93 patients with OSAHS (RDI 42.8 ± 34.3/h) underwent in-laboratory diagnostic polysomnography, CPAP titration, and follow-up polysomnography (NPSG) on CPAP. Adherence to CPAP was objectively monitored. Short-term (ST) CPAP adherence was averaged over 14 days immediately following the titration study. Long-term (LT) CPAP adherence was obtained in 56/93 patients after approximately 2 months of CPAP use. Patients were grouped into CPAP adherence groups for ST ( 4 h) and LT adherence ( 4 h). Sleep architecture, sleep disordered breathing (SDB) indices, and daytime outcome variables from the diagnostic and titration NPSGs were compared between CPAP adherence groups. Results: There was a significant relationship between ST and LT CPAP adherence (r = 0.81, p CPAP adherence groups had significantly lower %N2 and greater %REM on the titration NPSG. A model combining change in sleep efficiency and change in sleep continuity between the diagnostic and titration NPSGs predicted 17% of the variance in LT adherence (p = 0.006). Conclusions: These findings demonstrate that characteristics of sleep architecture, even on the titration NPSG, may predict some of the variance in CPAP adherence. Better sleep quality on the titration night was related to better CPAP adherence, suggesting that interventions to improve sleep on/prior to the CPAP titration study might be used as a therapeutic intervention to improve CPAP adherence. Citation: Somiah M; Taxin Z; Keating J; Mooney AM; Norman RG; Rapoport DM; Ayappa I. Sleep quality, short-term and long-term CPAP adherence. J Clin Sleep Med 2012;8(5):489-500. PMID:23066359

  16. Corrosion and deposit evaluation in large diameter pipes using radiography

    International Nuclear Information System (INIS)

    Boateng, A.

    2012-01-01

    The reliability and safety of industrial equipment in the factories and processing industries are substantially influenced by degradation processes such as corrosion, erosion, deposits and blocking of pipes. These might lead to low production, unpredictable and costly shutdowns due to repair and replacement and sometimes combined environmental pollution and risk of personnel injuries. Only periodic inspection for the integrity of pipes and equipment can reduce the risk in connection with other maintenance activities. The research explored two methods of radiographic inspection techniques, the double wall technique and the tangential radiographic technique using Ir-192 for evaluating deposits and corrosion attacks across the inner and outer walls of steel pipes with diameter greater than 150 mm with or without insulation. The application of both techniques was conducted depending on pipe diameter, wall thickness, radiation source (Ir-92) and film combination. The iridium source was positioned perpendicular with respect to the pipe axis projecting the double wall of the pipe on the plated radiographic film. With the tangential radiographic technique, the source was placed tangential to the pipe wall and because of its large diameter, the source was collimated to prevent backscatter and also to focus the beam at the target area of interest. All measurements were performed on special designed test pieces to simulate corrosion attack and deposits on industrial pipes. Pitting corrosion measurements based on Tangential Radiographic Technique were more sophisticated, and therefore magnification factor and correction were used to establish the estimated pit depth on the film. The insulating material used to conserve the thermodynamic properties of the transported media had relatively negligible attenuation coefficient compared to the concrete deposit. The two explored techniques were successful in evaluating corrosion attack and deposit on the walls of the pipe and the risk

  17. Corrosion Evaluation of Tank 40 Leak Detection Box

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.I.

    1999-07-29

    'Leak detection from the transfer lines in the tank farm has been a concern for many years because of the need to minimize exposure of personnel and contamination of the environment. The leak detection box (LDB) is one line of defense, which must be maintained to meet this objective. The evaluation of a failed LDB was one item from an action plan aimed at minimizing the degradation of LDBs. The Tank 40 LDB, which failed in service, was dug up and shipped to SRTC for evaluation. During a video inspection while in service, this LDB was found to have black tubercles on the interior, which suggested possible microbial involvement. The failure point, however, was believed to have occurred in the drain line from the transfer line jacket. Visual, metallurgical, and biological analyses were performed on the LDB. The analysis results showed that there was not any adverse microbiological growth or significant localized corrosion. The corrosion of the LDB was caused by exposure to aqueous environments and was typical of carbon steel pipes in soil environments.'

  18. Microstructural evaluation of the lacquered layer quality after corrosion load

    Directory of Open Access Journals (Sweden)

    Jaroslava Svobodova

    2015-03-01

    Full Text Available Surface pre-treatment is one of the most important steps before applying the final surface treatment. These pre-treatments, like phosphating, alkaline degreasing, pickling in acids, is used to remove impurities from the surface of the base material and to create appropri-ate conditions for adhesion of the final coating (metal coatings, organic coatings. Currently are on the rise surface treatments technologies, which are based on nanotechnology. It's a new generation of chemical products for the chemical surface preparation. This paper deals with the evaluation of microstructure of painted sheet metal after corrosion load with salt spray in the corrosion chamber. Metal sheets used for the experiment have been produced from low-carbon non alloy steel. For pre-treatment of the sheet metal was used alkaline degreasing (CC, iron phosphating (Feph and nanotechnology based product Alfipas (Zr in combinations: group A - CC + Zr, group B - Feph + Zr and group C - CC + Feph + Zr. The aim of this paper is to analyze the behavior of painted sheet metal after corrosion load and evaluate the effect of pretreatment to resistance of painted surface layer.

  19. Long term impacts of nuclear energy: On which purpose do we try to evaluate them?

    International Nuclear Information System (INIS)

    Beutler, Didier

    1998-01-01

    The indicators and the time limits for evaluation of the long term impacts of nuclear energy depend on the purpose: assessing the total cost of electricity generation; comparing different nuclear strategies; responding to public acceptance concerns; elaborating and selecting the most sustainable energy systems. Indicators that can be used are: consumption of non renewable resources; concentrations in the environment; individual exposures; collective dose; potential radiotoxicity. For all of them predicted or conditional values can be applied

  20. Long-term evaluation of a Canadian back pain mass media campaign.

    Science.gov (United States)

    Suman, Arnela; Bostick, Geoffrey P; Schopflocher, Donald; Russell, Anthony S; Ferrari, Robert; Battié, Michele C; Hu, Richard; Buchbinder, Rachelle; Gross, Douglas P

    2017-09-01

    This paper evaluates the long-term impact of a Canadian mass media campaign on general public beliefs about staying active when experiencing low back pain (LBP). Changes in beliefs about staying active during an episode of LBP were studied using telephone and web-based surveys. Logistic regression analysis was used to investigate changes in beliefs over time and the effect of exposure to campaign messaging. The percentage of survey respondents agreeing that they should stay active through LBP increased annually from 58.9 to ~72.0%. Respondents reporting exposure to campaign messaging were statistically significantly more likely to agree with staying active than respondents who did not report exposure to campaign messaging (adjusted OR, 95% CI = 1.96, 1.73-2.21). The mass media campaign had continued impact on public LBP beliefs over the course of 7 years. Improvements over time were associated with exposure to campaign messaging.

  1. Advancing nursing leadership in long-term care.

    Science.gov (United States)

    O'Brien, Jennifer; Ringland, Margaret; Wilson, Susan

    2010-05-01

    Nurses working in the long-term care (LTC) sector face unique workplace stresses, demands and circumstances. Designing approaches to leadership training and other supportive human-resource strategies that reflect the demands of the LTC setting fosters a positive work life for nurses by providing them with the skills and knowledge necessary to lead the care team and to address resident and family issues. Through the St. Joseph's Health Centre Guelph demonstration site project, funded by the Nursing Secretariat of Ontario's Ministry of Health and Long-Term Care, the Excelling as a Nurse Leader in Long Term Care training program and the Mentor Team program were developed to address these needs. Evaluation results show that not only have individual nurses benefitted from taking part in these programs, but also that the positive effects were felt in other parts of the LTC home (as reported by Directors of Care). By creating a generally healthier work environment, it is anticipated that these programs will also have a positive effect on recruitment and retention.

  2. Corrosion behaviour of carbon steel in the Tournemire clay

    International Nuclear Information System (INIS)

    Foct, F.; Dridi, W.; Cabrera, J.; Savoye, S.

    2004-01-01

    Carbon steels are possible materials for the fabrication of nuclear waste containers for long term geological disposal in argillaceous environments. Experimental studies of the corrosion behaviour of such materials has been conducted in various conditions. Concerning the numerous laboratory experiments, these conditions (water and clay mixture or compacted clay) mainly concern the bentonite clay that would be used for the engineered barrier. On the opposite, only few in-situ experiments has been conducted directly in the local clay of the repository site (such as Boom clay, etc.). In order to better estimate the corrosion behaviour of carbon steels in natural clay site conditions, an experimental study has been conducted jointly by EDF and IRSN in the argillaceous French site of Tournemire. In this study, A42 carbon steel specimens have been exposed in 3 different zones of the Tournemire clay formation. The first type of environmental conditions concerns a zone where the clay has not been affected by the excavation (EDZ) of the main tunnel neither by the main fracture zone of the clay formation. The second and third ones are located in the EDZ of the tunnel. In the second zone, an additional aerated water flows from the tunnel, whereas it does not in the third place. Some carbon steel specimens have been extracted after several years of exposure to these conditions. The average corrosion rate has been measured by the weight loss technique and the pitting corrosion depth has been evaluated under an optical microscope. Corrosion products have also been characterised by scanning electron microscopy and X-ray diffraction technique. Results are then discussed regarding the surrounding environmental conditions. Calculations of the oxygen transport from the tunnel through the clay and of the clay re-saturation can explain, in a first approach, the corrosion behaviour of the carbon steel in the different tested zones. (authors)

  3. Short- and long-term reproducibility of radioisotopic examination of gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Jonderko, K. (Silesian School of Medicine, Katowice (Poland). Dept. of Gastroenterology)

    1990-01-01

    Reproducibility of gastric emptying (GE) of a radiolabelled solid meal was assessed. The short-term reproducibility was evaluated on the basis of 12 paired GE examinations performed 1-3 days apart. Twelve paired GE examinations taken 3-8 months apart enabled long-term reproducibility assessment. Reproducibility of GE parameters was expressed in terms of the coefficient of variation, CV. No significant between-day variation of solid GE was found either regarding the short-term or the long-term reproducibility. Although slightly higher CV values characterized the long-term reproducibility of the GE parameters considered, the variations of the differences between repeated GE examinations did not differ significantly between short- and long-term GE reproducibility. The results obtained justify the use of radioisotopic GE measurement for the assessment of early and late results of pharmacologic or surgical management. (author).

  4. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  5. Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation.

    Science.gov (United States)

    Adekanmbi, Isaiah; Mosher, Christopher Z; Lu, Helen H; Riehle, Mathis; Kubba, Haytham; Tanner, K Elizabeth

    2017-08-01

    Biodegradable magnesium alloys including AZ31 are exciting candidates for temporary implants as they eliminate the requirement for surgical removal, yet have higher mechanical properties than degradable polymers. However, the very long term mechanical properties and degradation of these alloys have not been fully characterized. The tensile, bending and corrosion behaviour of biodegradable AZ31 Mg alloy specimens have been investigated for up to 9months in vitro in phosphate buffered saline (PBS). Small AZ31 Mg specimens showed a significant drop in bend yield strength and modulus after 3months in vitro degradation and an average mass loss of 6.1%. Larger dumbbell specimens showed significant drops in tensile strength from 251.96±3.53MPa to 73.5±20.2MPa and to 6.43±0.9MPa and in modulus from 47.8±5.6GPa to 25.01±3.4GPa and 2.36±0.89GPa after 3 and 9months respectively. These reductions were accompanied by an average mass loss of 18.3% in 9months. Degradation rate for the small and large specimens followed similar profiles with immersion time, with peak degradation rates of 0.1747gm -2 h - 1 and 0.0881gm -2 h - 1 , and average rates of 0.1038gm -2 h - 1 and 0.0397gm -2 h - 1 respectively. SEM fractography and polished specimen cross-sections revealed corrosion pits, cracks and corrosion induced defects. These data indicate the potential of AZ31 Mg for use in implants that require medium term degradation with load bearing mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Quantitative measures of corrosion and prevention: application to corrosion in agriculture

    NARCIS (Netherlands)

    Schouten, J.C.; Gellings, P.J.

    1987-01-01

    The corrosion protection factor (c.p.f.) and the corrosion condition (c.c.) are simple instruments for the study and evaluation of the contribution and efficiency of several methods of corrosion prevention and control. The application of c.p.f. and c.c. to corrosion and prevention in agriculture in

  7. Determination of the corrosion mechanisms of high level waste containing glass

    International Nuclear Information System (INIS)

    Conradt, R.; Roggendorf, H.

    1985-01-01

    The purpose of the reported work was to determine the corrosion behaviour of the inactive HLW glass SM 58 LW 11 in Q-solution at temperatures up to 200 0 C and elevated pressures up to 13 MPa. In particular, a parametric study on the effects of time, temperature, pressure, crystallization, metallic impurities a.o. was performed. Further tests helped to identify the rate determining steps in the entire process and the most likely long-term corrosion law. (orig./RB)

  8. The Effects of CO{sub 2} Pressure on Corrosion and Carburization Behaviors of Chromia-forming Austenitic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    By applying S-CO{sub 2} cycle to SFR, the inherent safety could be improved by alleviating the concern of explosive reaction between high temperature steam and liquid sodium as well as increased thermal efficiency at 500-550 .deg. C compared to helium Brayton cycle. Meanwhile, from the material point of view, a compatibility such as corrosion and carburization of candidate materials in S-CO{sub 2} environment should be evaluated to assure the long-term integrity of IHX. It has been previously reported that Ni-base alloys and high-Cr Fe-base austenitic alloys showed a good corrosion resistance by the formation of thin chromia layer while carburization behaviors of those materials were not properly investigated. Corrosion and carburization behaviors of three chromia-forming austenitic alloys (Ni-base alloys and Alloy 800HT) were evaluated in S-CO{sub 2} (200 bar) and CO{sub 2} (1 bar) environment at 550.650 .deg. C for 1000 h. For all test materials, a good corrosion resistance was exhibited by the formation of thin chromia (Cr{sub 2}O{sub 3}) with small amount of minor oxides such as Mn1.5Cr1.5O{sub 4}, Al{sub 2}O{sub 3}, and TiO{sub 2}.

  9. Long-term urethral catheterisation.

    Science.gov (United States)

    Turner, Bruce; Dickens, Nicola

    This article discusses long-term urethral catheterisation, focusing on the relevant anatomy and physiology, indications for the procedure, catheter selection and catheter care. It is important that nurses have a good working knowledge of long-term catheterisation as the need for this intervention will increase with the rise in chronic health conditions and the ageing population.

  10. LONG-TERM OUTCOME IN PEDIATRIC TRICHOTILLOMANIA.

    Science.gov (United States)

    Schumer, Maya C; Panza, Kaitlyn E; Mulqueen, Jilian M; Jakubovski, Ewgeni; Bloch, Michael H

    2015-10-01

    To examine long-term outcome in children with trichotillomania. We conducted follow-up clinical assessments an average of 2.8 ± 0.8 years after baseline evaluation in 30 of 39 children who previously participated in a randomized, double-blind, placebo-controlled trial of N-acetylcysteine (NAC) for pediatric trichotillomania. Our primary outcome was change in hairpulling severity on the Massachusetts General Hospital Hairpulling Hospital Hairpulling Scale (MGH-HPS) between the end of the acute phase and follow-up evaluation. We also obtained secondary measures examining styles of hairpulling, comorbid anxiety and depressive symptoms, as well as continued treatment utilization. We examined both correlates and predictors of outcome (change in MGH-HPS score) using linear regression. None of the participants continued to take NAC at the time of follow-up assessment. No significant changes in hairpulling severity were reported over the follow-up period. Subjects reported significantly increased anxiety and depressive symptoms but improvement in automatic pulling symptoms. Increased hairpulling symptoms during the follow-up period were associated with increased depression and anxiety symptoms and increased focused pulling. Older age and greater focused pulling at baseline assessment were associated with poor long-term prognosis. Our findings suggest that few children with trichotillomania experience a significant improvement in trichotillomania symptoms if behavioral treatments are inaccessible or have failed to produce adequate symptom relief. Our findings also confirm results of previous cross-sectional studies that suggest an increased risk of depression and anxiety symptoms with age in pediatric trichotillomania. Increased focused pulling and older age among children with trichotillomania symptoms may be associated with poorer long-term prognosis. © 2015 Wiley Periodicals, Inc.

  11. Evaluation of Mid-IR Laser radiation effect on 316l stainless steel corrosion resistance in physiological saline

    International Nuclear Information System (INIS)

    Khosroshahi, M.E.; Valanezhad, A.; Tavakoli, J.

    2004-01-01

    The effects of a short pulsed (∼ 400 ns ) multi line hydrogen fluoride laser radiation operating on average at 2.8 μm has been studied on 316l stainless steel in terms of optical and physical parameters. At low fluences ≤ 8 Jcm -2 (phase l) no morphological changes occurred at the surface and melting began at ∼ 8.8 Jcm -2 (phase l l) which continued up to about 30 Jcm -2 . In this range the melting zone was effectively produced by high temperature surface centres growth which subsequently joined these centres together. Thermal ablation via surface vaporization began at ∼ 33 Jcm -2 (phase lll). The results of scanning electron microscopy evaluation and corrosion resistance experiment which was carried out using Eg and G device with cyclic potentiodynamic polarization method in a physiological (Hank's) solution indicated that pitting corrosion sensitivity was decreased i.e.. enhancement of corrosion resistance. Also, the x-ray diffraction results showed a double increase of γ (lll) at microstructure, thus in effect a super austenite stainless steel was obtained at an optimized melting fluence

  12. Automated analysis of phantom images for the evaluation of long-term reproducibility in digital mammography

    International Nuclear Information System (INIS)

    Gennaro, G; Ferro, F; Contento, G; Fornasin, F; Di Maggio, C

    2007-01-01

    The performance of an automatic software package was evaluated with phantom images acquired by a full-field digital mammography unit. After the validation, the software was used, together with a Leeds TORMAS test object, to model the image acquisition process. Process modelling results were used to evaluate the sensitivity of the method in detecting changes of exposure parameters from routine image quality measurements in digital mammography, which is the ultimate purpose of long-term reproducibility tests. Image quality indices measured by the software included the mean pixel value and standard deviation of circular details and surrounding background, contrast-to-noise ratio and relative contrast; detail counts were also collected. The validation procedure demonstrated that the software localizes the phantom details correctly and the difference between automatic and manual measurements was within few grey levels. Quantitative analysis showed sufficient sensitivity to relate fluctuations in exposure parameters (kV p or mAs) to variations in image quality indices. In comparison, detail counts were found less sensitive in detecting image quality changes, even when limitations due to observer subjectivity were overcome by automatic analysis. In conclusion, long-term reproducibility tests provided by the Leeds TORMAS phantom with quantitative analysis of multiple IQ indices have been demonstrated to be effective in predicting causes of deviation from standard operating conditions and can be used to monitor stability in full-field digital mammography

  13. Numerical simulation of gender differences in a long-term microgravity exposure

    Science.gov (United States)

    Perez-Poch, Antoni

    The objective of this work is to analyse and simulate gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairment which may put in jeopardy a long-term mission is also evaluated. Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numerical Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular architecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electricallike model of this control system, using inexpensive software development frameworks, and has been tested and validated with the available experimental data. Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobical exercise, and also thermal stress simulating an extra-vehicular activity. Results show

  14. Long term testing of PSI-membranes

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J; Brack, H P; Geiger, F; Buechi, F N; Tsukada, A; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Long term tests of PSI membranes based on radiation-grafted FEP and ETFE films were carried out and FEP-based membranes were evaluated by monitoring the in-situ membrane area resistance measured by a current pulse method. By modifying our irradiation procedure and using the double crosslinking concept we obtain reproducible membrane cell lifetimes (in term of in-situ membrane resistance) of greater than 5000 hours at 60-65{sup o}C. Preliminary tests at 80-85{sup o}C with lifetimes of greater than 2500 demonstrate the potential long term stability of PSI proton exchange membranes based on FEP over the whole operating temperature range of low-temperature polymer electrolyte fuel cells. Radiation grafted PSI membranes based on ETFE have better mechanical properties than those of the FEP membranes. Mechanical properties are particularly important in large area cells and fuel cell stacks. ETFE membranes have been tested successfully for approximately 1000 h in a 2-cell stack (100 cm{sup 2} active area each cell). (author) 4 figs., 4 refs.

  15. Research on A3 steel corrosion behavior of basic magnesium sulfate cement

    Science.gov (United States)

    Xing, Sainan; Wu, Chengyou; Yu, Hongfa; Jiang, Ningshan; Zhang, Wuyu

    2017-11-01

    In this paper, Tafel polarization technique is used to study the corrosion behavior of A3 steel basic magnesium sulfate, and then analyzing the ratio of raw materials cement, nitrites rust inhibitor and wet-dry cycle of basic magnesium sulfate corrosion of reinforced influence, and the steel corrosion behavior of basic magnesium sulfate compared with magnesium oxychloride cement and Portland cement. The results show that: the higher MgO/MgSO4 mole ratio will reduce the corrosion rate of steel; Too high and too low H2O/MgSO4 mole ratio may speed up the reinforcement corrosion effect; Adding a small amount of nitrite rust and corrosion inhibitor, not only can obviously reduce the alkali type magnesium sulfate in the early hydration of cement steel bar corrosion rate, but also can significantly reduce dry-wet circulation under the action of alkali type magnesium sulfate cement corrosion of reinforcement effect. Basic magnesium sulfate cement has excellent ability to protect reinforced, its long-term corrosion of reinforcement effect and was equal to that of Portland cement. Basic magnesium sulfate corrosion of reinforced is far below the level in the MOC in the case.

  16. Insertion of a self-expandable metallic stent in canine lacrimal Sac : a long-term evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Young; Sung, Kyu Bo; Yoon, Hyun Ki [Univ. of Ulsan, Ulsan (Korea, Republic of). College of Medicine; Kwon, Soon Tae [Chungnam National Univ., Taejon (Korea, Republic of). Medical School; Lee, Ho Jung; Lee, In Chul; Kim, Tae Hyung; Park, Sang Soo; Huh, Soo Jin [Univ. of Ulsan, Ulsan (Korea, Republic of). College of Medicine

    1998-01-01

    To evaluate the feasibility and long-term outcome of the use of self-expandable metallic Z-stents in the canine lacrimal sac. Stent placement was technically successful and well tolerated in all but one lacrimal sac, in which the stent was misplaced. At three and six months after stent placement, stent wires were not encased by epithelium, but at nine months, and one, two and three years after placement, six of the 12 stents had become encased in a proliferation of this where the stent wires contacted the lacrimal sac wall. In no lacrimal system in which stent placement had been successful was migration, stenosis or obstruction of the lacrimal system observed. One misplaced stent caused obstruction of the lacrimal sac, however . In 11 of 12 case (92%), fluoroscopic placement of an expandable metallic stent in the canine lacrimal sac was successful: in 6 of 8 cases (75%), the stent wires became encased by a proliferation of mucosa, but during long-term follow-up of 9 months to 3 years, no obstruction was observed. (author). 20 refs., 1 tab., 5 figs.

  17. Insertion of a self-expandable metallic stent in canine lacrimal Sac : a long-term evaluation

    International Nuclear Information System (INIS)

    Song, Ho Young; Sung, Kyu Bo; Yoon, Hyun Ki; Kwon, Soon Tae; Lee, Ho Jung; Lee, In Chul; Kim, Tae Hyung; Park, Sang Soo; Huh, Soo Jin

    1998-01-01

    To evaluate the feasibility and long-term outcome of the use of self-expandable metallic Z-stents in the canine lacrimal sac. Stent placement was technically successful and well tolerated in all but one lacrimal sac, in which the stent was misplaced. At three and six months after stent placement, stent wires were not encased by epithelium, but at nine months, and one, two and three years after placement, six of the 12 stents had become encased in a proliferation of this where the stent wires contacted the lacrimal sac wall. In no lacrimal system in which stent placement had been successful was migration, stenosis or obstruction of the lacrimal system observed. One misplaced stent caused obstruction of the lacrimal sac, however . In 11 of 12 case (92%), fluoroscopic placement of an expandable metallic stent in the canine lacrimal sac was successful: in 6 of 8 cases (75%), the stent wires became encased by a proliferation of mucosa, but during long-term follow-up of 9 months to 3 years, no obstruction was observed. (author). 20 refs., 1 tab., 5 figs

  18. Evaluation of the long-term energy analysis program used for the 1978 EIA Administrator's Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, R. W.; Weisbin, C. R.; Alsmiller, Jr., R. G.

    1981-10-01

    An evaluation of the Long-Term Energy Analysis Program (LEAP), a computer model of the energy portion of the US economy that was used for the 1995-2020 projections in its 1978 Annual Report to Congress, is presented. An overview of the 1978 version, LEAP Model 22C, is followed by an analysis of the important results needed by its users. The model is then evaluated on the basis of: (1) the adequacy of its documentation; (2) the local experience in operating the model; (3) the adequacy of the numerical techniques used; (4) the soundness of the economic and technical foundations of the model equations; and (5) the degree to which the computer program has been verified. To show which parameters strongly influence the results and to approach the question of whether the model can project important results with sufficient accuracy to support qualitative conclusions, the numerical sensitivities of some important results to model input parameters are described. The input data are categorized and discussed, and uncertainties are given for some parameters as examples. From this background and from the relation of LEAP to other available approaches for long-term energy modeling, an overall evaluation is given of the model's suitability for use by the EIA.

  19. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  20. Energy evaluations, graphite corrosion in Bugey I

    International Nuclear Information System (INIS)

    Brisbois, J.; Fiche, C.

    1967-01-01

    Bugey I presents a problem of radiolytic corrosion of the graphite by the CO 2 under pressure at high temperature. This report aims to evaluate the energy transferred to the gas by a Bugey I core cell, in normal operating conditions. The water, the carbon oxides and the hydrogen formed quantities are deduced as the consumed graphite and methane. Experimental studies are realized in parallel to validate the presented results. (A.L.B.)

  1. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates

    Science.gov (United States)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Zhang, Qiuxiang; Zhao, Junfeng; Lu, Hongbin; Meng, Xiangkang

    2017-12-01

    Conductive polymer coating doped with large molecular organic acid is an alternative method used to protect stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). However, it is difficult to select the proper doping acid, which improves the corrosion resistance of the coating without affecting its conductivity. In this study, large spatial molecular group camphorsulfonic acid (CSA) doped polypyrrole (PPY) conductive coating was prepared by galvanostatic electropolymerization on 304SS. The electrochemical properties of the coating were evaluated in 0.1 M H2SO4 solution in order to simulate the PEMFC service environment. The results indicate that the coating increased the corrosion potential and shifted Ecorr towards more positive value, particularly the jcorr value of PPY-CSA coated 304SS was dropped from 97.3 to 0.00187 μA cm-2. The long-term immersion tests (660 h) show that the PPY-CSA coating exhibits better corrosion resistance in comparison with the small acid (SO42-) doped PPY-SO42- or PPY/PPY-SO42- coatings. Moreover, the PPY-CSA coating presents low contact resistance and maintains strong corrosion resistance during the prolonged exposure time due to barrier effect and anodic protection.

  2. An accurately controllable imitative stress corrosion cracking for electromagnetic nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Uchimoto, Tetsuya; Takagi, Toshiyuki; Hashizume, Hidetoshi

    2012-01-01

    Highlights: ► We propose a method to simulate stress corrosion cracking. ► The method offers nondestructive signals similar to those of actual cracking. ► Visual and eddy current examinations validate the method. - Abstract: This study proposes a simple and cost-effective approach to fabricate an artificial flaw that is identical to stress corrosion cracking especially from the viewpoint of electromagnetic nondestructive evaluations. The key idea of the approach is to embed a partially-bonded region inside a material by bonding together surfaces that have grooves. The region is regarded as an area of uniform non-zero conductivity from an electromagnetic nondestructive point of view, and thus simulates the characteristics of stress corrosion cracking. Since the grooves are introduced using electro-discharge machining, one can control the profile of the imitative stress corrosion cracking accurately. After numerical simulation to evaluate the spatial resolution of conventional eddy current testing, six specimens made of type 316L austenitic stainless steel were fabricated on the basis of the results of the simulations. Visual and eddy current examinations were carried out to demonstrate that the artificial flaws well simulated the characteristics of actual stress corrosion cracking. Subsequent destructive test confirmed that the bonding did not change the depth profiles of the artificial flaw.

  3. Manufacture and evaluation of integrated metal-oxide electrode prototype for corrosion monitoring in high temperature water

    International Nuclear Information System (INIS)

    Hashimoto, Yoshinori; Tani, Jun-ichi

    2014-01-01

    We have developed an integrated metal-oxide (M/O) electrode based on an yttria-stabilized-zirconia-(YSZ)-membrane M/O electrode, which was used as a reference electrode for corrosion monitoring in high temperature water. The YSZ-membrane M/O electrode can operate at high temperatures because of the conductivity of YSZ membrane tube. We cannot utilize it for long term monitoring at a wide range of temperatures. It also has a braze juncture between the YSZ membrane and metal tubes, which may corrode in high-temperature water. This corrosion should be prevented to improve the performance of the M/O electrode. An integrated M/O electrode was developed (i.e., integrated metal-oxide electrode, IMOE) to eliminate the braze juncture and increase the conductivity of YSZ. These issues should be overcome to improve the performance of M/O electrode. So we have developed two type of IMOE prototype with sputter - deposition or thermal oxidation. In this paper we will present and discuss the performance of our IMOEs in buffer solution at room temperature. (author)

  4. Evaluation of cytotoxicity and corrosion resistance of orthodontic mini-implants

    Science.gov (United States)

    Alves, Celha Borges Costa; Segurado, Márcio Nunes; Dorta, Miriam Cristina Leandro; Dias, Fátima Ribeiro; Lenza, Maurício Guilherme; Lenza, Marcos Augusto

    2016-01-01

    ABSTRACT Objective: To evaluate and compare in vitro cytotoxicity and corrosion resistance of mini-implants from three different commercial brands used for orthodontic anchorage. Methods: Six mini-implants (Conexão(tm), Neodent(tm) and SIN(tm)) were separately immersed in artificial saliva (pH 6.76) for 30 and 60 days. The cytotoxicity of the corrosion extracts was assessed in L929 cell cultures using the violet crystal and MTT assays, as well as cell morphology under light microscopy. Metal surface characteristics before and after immersion in artificial saliva were assessed by means of scanning electron microscopy (SEM). The samples underwent atomic absorption spectrophotometry to determine the concentrations of aluminum and vanadium ions, constituent elements of the alloy that present potential toxicity. For statistical analysis, one-way ANOVA/Bonferroni tests were used for comparisons among groups with p corrosion. The extracts assessed by means of atomic absorption spectrophotometry presented concentrations of aluminum and vanadium ions below 1.0 µg/mL and 0.5 µg/mL, respectively. Conclusion: Orthodontic mini-implants manufactured by Conexão(tm), Neodent(tm) and SIN(tm) present high corrosion resistance and are not cytotoxic. PMID:27901227

  5. Risk assessment for long-term post-accident sequences

    International Nuclear Information System (INIS)

    Ellia-Hervy, A.; Ducamp, F.

    1987-11-01

    Probabilistic risk analysis, currently conducted by the CEA (French Atomic Energy Commission) for the French replicate series of 900 MWe power plants, has identified accident sequences requiring long-term operation of some systems after the initiating event. They have been named long-term sequences. Quantification of probabilities of such sequences cannot rely exclusively on equipment failure-on-demand data: it must also take into account operating failures, the probability of which increase with time. Specific studies have therefore been conducted for a number of plant systems actuated during these long-term sequences. This has required: - Definition of the most realistic equipment utilization strategies based on existing emergency procedures for 900 MWe French plants. - Evaluation of the potential to repair failed equipment, given accessibility, repair time, and specific radiation conditions for the given sequence. - Definition of the event bringing the long-term sequence to an end. - Establishment of an appropriate quantification method, capable of taking into account the evolution of assumptions concerning equipment utilization strategies or repair conditions over time. The accident sequence quantification method based on realistic scenarios has been used in the risk assessment of the initiating event loss of reactor coolant accident occurring at power and at shutdown. Compared with the results obtained from conventional methods, this method redistributes the relative weight of accident sequences and also demonstrates that the long term can be a significant contribution to the probability of core melt

  6. Evaluation of Corrosion Resistance of Titanium Alloys Used for Medical Implants

    Directory of Open Access Journals (Sweden)

    Szewczenko J.

    2016-06-01

    Full Text Available The study presents the results of investigations of modeling the usable properties of implant surfaces made of Ti6Al7Nb alloy, using the example of a dynamic hip screw (DHS applied in surgical treatment of intertrochanteric femoral neck fractures. Numerical simulation has been performed for the model load of femoral fixation with DHS screw. The load simulation results provided the basis to select mechanical properties of the fixator elements and to define those fixation areas which are mostly susceptible to development of corrosion. The surfaces of Ti6Al7Nb alloy were ground, vibro-abrasive machined, mechanically polished, sandblasted, anode oxidized at different voltage values and steam sterilized. Results of surface topography evaluation, resistance to pitting and crevice corrosion as well as degradation kinetics of the outer layer were presented. Usability of the formed passive layer in clinical applications was evaluated through wear and corrosion tests of the femoral fixation model. The test results proved usefulness of the proposed surface modification methods for clinical application of different size and shape implants

  7. Corrosion evaluation in insulated pipes by non destructive testing method

    International Nuclear Information System (INIS)

    Abd Razak Hamzah; Azali Muhammad; Mohammad Pauzi Ismail; Abd Nassir Ibrahim; Abd Aziz Mohamed; Sufian Saad; Saharuddin Sayuti; Shukri Ahmad

    2002-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as a very challenging tasks. In General this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method were studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  8. A clustering based method to evaluate soil corrosivity for pipeline external integrity management

    International Nuclear Information System (INIS)

    Yajima, Ayako; Wang, Hui; Liang, Robert Y.; Castaneda, Homero

    2015-01-01

    One important category of transportation infrastructure is underground pipelines. Corrosion of these buried pipeline systems may cause pipeline failures with the attendant hazards of property loss and fatalities. Therefore, developing the capability to estimate the soil corrosivity is important for designing and preserving materials and for risk assessment. The deterioration rate of metal is highly influenced by the physicochemical characteristics of a material and the environment of its surroundings. In this study, the field data obtained from the southeast region of Mexico was examined using various data mining techniques to determine the usefulness of these techniques for clustering soil corrosivity level. Specifically, the soil was classified into different corrosivity level clusters by k-means and Gaussian mixture model (GMM). In terms of physical space, GMM shows better separability; therefore, the distributions of the material loss of the buried petroleum pipeline walls were estimated via the empirical density within GMM clusters. The soil corrosivity levels of the clusters were determined based on the medians of metal loss. The proposed clustering method was demonstrated to be capable of classifying the soil into different levels of corrosivity severity. - Highlights: • The clustering approach is applied to the data extracted from a real-life pipeline system. • Soil properties in the right-of-way are analyzed via clustering techniques to assess corrosivity. • GMM is selected as the preferred method for detecting the hidden pattern of in-situ data. • K–W test is performed for significant difference of corrosivity level between clusters

  9. Challenges in long-term operation of nuclear power plants - Implications for regulatory bodies

    International Nuclear Information System (INIS)

    Soda, Kunihisa; Van Wonterghem, Frederik; Khouaja, Hatem; Vilpas, Martti; Osouf, Nicolas; Harikumar, S.; Ishigaki, Hiroki; Osaki, Toru; Yamada, Tomoho; Carlsson, Lennart; Shepherd, David; Galloway, Melanie; Liszka, Ervin; Svab, Miroslav; Pereira, Ken; Huerta, Alejandro

    2012-01-01

    Nuclear power reactors have become a major source of electricity supply in many countries in the past half a century. Based on this experience, many operators have sought and have received authorisation for long-term operation, whereby plant operation continues beyond the period considered in the design of the plant. Acceptance of a nuclear power plant for extended service should be based on assurance of the fitness of the plant and the operator for safe and reliable operation over the entire period considered for long-term operation. This assurance may be obtained by establishment of appropriate regulatory requirements, specification of goals and safety levels and regulatory assessment and oversight of the operator's programme for long-term operation. The operators and regulators should ensure that operating experience continues to be evaluated during long-term operation to ensure that any relevant lessons are effectively applied. Other considerations for assurance of safe operation are effective management of ageing, possible need for safety improvements, application of lessons learnt from operating experience, evaluation of environmental impacts, adequate staff resources and performance, review of security at the plant, action in response to emerging issues, and openness and transparency in the transition to long-term operation. Even though most of these considerations are addressed under the regulatory framework that applies to the initial operating period, additional regulatory activities in these areas may be necessary for long-term operation. Although there can be significant differences in regulatory approaches used by different countries for evaluating acceptability of long-term operation, there is general agreement on the purposes and goals of the regulatory reviews. An authorisation of long-term operation could involve a licence renewal or a periodic safety review or an approach that melds elements of both. This report presents guidance that is intended

  10. Long-term outcome in patients with juvenile dermatomyositis

    DEFF Research Database (Denmark)

    Mathiesen, P; Hegaard, H; Herlin, Troels

    2012-01-01

    To evaluate a group of 53 patients with juvenile dermatomyositis (JDM), on average 13.9 years after disease onset, in order to describe the long-term disease outcome and to identify disease-related parameters associated with poor disease outcome....

  11. Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency

    Energy Technology Data Exchange (ETDEWEB)

    Babaei, Mahdi, E-mail: mahdi.babaei@ut.ac.ir; Dehghanian, Changiz; Vanaki, Mojtaba

    2015-12-01

    Highlights: • PEO coatings formed on Cp Ti from phosphate electrolyte with zirconate additive. • The SEM results provide information of microdischarge behavior. • The effect of additive on structure and long-term corrosion behavior was investigated. • The additive influence on coating performance varies with processing frequency. - Abstract: The plasma electrolytic oxidation (PEO) coating containing zirconium oxide was fabricated on CP Ti at different processing frequencies viz., 100 Hz and 1000 Hz in a (Na{sub 2}ZrO{sub 3}, Na{sub 2}SiO{sub 3})-additive containing NaH{sub 2}PO{sub 4}-based solution, and long-term electrochemical corrosion behavior of the coatings was studied using electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Electrochemical degradation behavior of two-layered coatings formed at different frequencies was turned out to be governed by concentration of electrolyte additive. With increasing additive concentration, the coating obtained at frequency of 1000 Hz exhibited enhanced corrosion resistance. However, corrosion resistance of the coating prepared at 100 Hz was found to decrease with increased additive, which was attributed to intensified microdischarges damaging the protective effect of inner layer. Nevertheless, the electrolyte additive was found to mitigate the long-term degradation of the coatings to a significant extent.

  12. Evaluating the marginal utility principle for long-term hydropower scheduling

    International Nuclear Information System (INIS)

    Zhao, Tongtiegang; Zhao, Jianshi; Liu, Pan; Lei, Xiaohui

    2015-01-01

    Highlights: • Analysis of one-, two- and multi-period hydropower scheduling. • Derivation of marginal cost and marginal return of carry-over storage. • Evaluation of the marginal utility principle in a case study of the Three Gorges Reservoir. - Abstract: The conversion of the potential energy of dammed water into hydropower depends on both reservoir storage and release, which are the major difficulties in hydropower reservoir operation. This study evaluates the marginal utility principle, which determines the optimal carry-over storage between periods, for long-term hydropower scheduling. Increasing marginal cost and decreasing marginal return are two important characteristics that determine the marginal utility principle in water supply. However, the notion of decreasing marginal return is inapplicable in hydropower scheduling. Instead, the carry-over storage from one period has an increasing marginal contribution to the power generation in the next period. Although carry-over storage incurs an increasing marginal cost to the power generation in the current period, the marginal return is higher than the marginal cost. The marginal return from the carry-over storage further increases in the multi-period case. These findings suggest saving as much carry-over storage as possible, which is bounded by the operational constraints of storage capacity, environmental flow, and installed capacity in actual hydropower scheduling. The marginal utility principle is evaluated for a case study of the Three Gorges Reservoir, and the effects of the constraints are discussed. Results confirm the theoretical findings and show that the marginal return from carry-over storage is larger than the marginal cost. The operational constraints help determine the optimal carry-over storage.

  13. Evaluation of the long-term performance of six alternative disposal methods for LLRW

    Energy Technology Data Exchange (ETDEWEB)

    Kossik, R.; Sharp, G. [Golder Associates, Inc., Redmond, WA (United States); Chau, T. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States)

    1995-12-31

    The State of New York has carried out a comparison of six alternative disposal methods for low-level radioactive waste (LLRW). An important part of these evaluations involved quantitatively analyzing the long-term (10,000 yr) performance of the methods with respect to dose to humans, radionuclide concentrations in the environment, and cumulative release from the facility. Four near-surface methods (covered above-grade vault, uncovered above-grade vault, below-grade vault, augered holes) and two mine methods (vertical shaft mine and drift mine) were evaluated. Each method was analyzed for several generic site conditions applicable for the state. The evaluations were carried out using RIP (Repository Integration Program), an integrated, total system performance assessment computer code which has been applied to radioactive waste disposal facilities both in the U.S. (Yucca Mountain, WIPP) and worldwide. The evaluations indicate that mines in intact low-permeability rock and near-surface facilities with engineered covers generally have a high potential to perform well (within regulatory limits). Uncovered above-grade vaults and mines in highly fractured crystalline rock, however, have a high potential to perform poorly, exceeding regulatory limits.

  14. Long-term associative learning predicts verbal short-term memory performance.

    Science.gov (United States)

    Jones, Gary; Macken, Bill

    2018-02-01

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  15. Long-term allocation of power from the Snettisham Project

    International Nuclear Information System (INIS)

    1993-01-01

    The Alaska Power Administration (APA) has prepared an Environmental Assessment (EA) (DOE/EA-0839) evaluating the Final Marketing Plan for the Snettisham Project that establishes long-term allocation and sales of power. The proposed long-term sales contract will replace a 20-year sales agreement that expires at the end of December, 1993. The EA evaluates the proposed alternative and the no action alternative. The proposed alternative replaces the expiring contract with a new 20-year contract with the same terms, conditions and allocation as the previous long-term contract. No other alternatives were developed, as there is only one utility in the Juneau area. The divestiture of this Federal project is expected to be approved by Congress; the present contractor would then assume the ownership and operation of the Snettisham Project. The EA identified no actions associated with the proposal that will cause significant environmental or socioeconomic impacts. The Final Marketing Plan for the Snettisham Project deals with the replacement of an expiring contract. The Final Marketing Plan does not include the addition of any major new resources, service to discrete major new loads, or major changes in operating parameters. No changes in rates are proposed in the Final Marketing Plan

  16. A discussion for stabilization time of carbon steel in atmospheric corrosion

    Science.gov (United States)

    Zhang, Zong-kai; Ma, Xiao-bing; Cai, Yi-kun

    2017-09-01

    Stabilization time is an important parameter in long-term prediction of carbon steel corrosion in atmosphere. The range of the stabilization time of carbon steel in atmospheric corrosion has been published in many scientific literatures. However, the results may not precise because engineering experiences is dominant. This paper deals with the recalculation of stabilization time based on ISO CORRAG program, and analyzes the results and makes a comparison to the data mentioned above. In addition, a new thinking to obtain stabilization time will be proposed.

  17. Reliability-based management of buried pipelines considering external corrosion defects

    Science.gov (United States)

    Miran, Seyedeh Azadeh

    -system. Sensitivity analysis is also performed to determine to which incorporated parameter(s) in the growth models reliability of the studied pipeline is most sensitive. The reliability analysis results suggest that newly generated defects should be considered in calculating failure probability, especially for prediction of long-term performance of the pipeline and also, impact of the statistical uncertainty in the model parameters is significant that should be considered in the reliability analysis. Finally, with the evaluated time-dependent failure probabilities, a life cycle-cost analysis is conducted to determine optimal inspection interval of studied pipeline. The expected total life-cycle costs consists construction cost and expected costs of inspections, repair, and failure. The repair is conducted when failure probability from any described failure mode exceeds pre-defined probability threshold after each inspection. Moreover, this study also investigates impact of repair threshold values and unit costs of inspection and failure on the expected total life-cycle cost and optimal inspection interval through a parametric study. The analysis suggests that a smaller inspection interval leads to higher inspection costs, but can lower failure cost and also repair cost is less significant compared to inspection and failure costs.

  18. Effect of sulfide on the corrosion behavior of pure copper under anaerobic condition and possibility of super long lifetime for copper overpacks

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Naitou, Morimasa; Kawasaki, Manabu

    2007-03-01

    In general, copper is thermodynamically stable under anaerobic condition, so that corrosion due to water reduction can not be occurred on copper. In the presence of sulfide, however, this property of immunity to corrosion is lost and corrosion as copper sulfide is occurred. Therefore, it is necessary to understand the effect of sulfide on the corrosion behavior of copper for using the copper as a material for overpacks. In this study, immersion tests and stress corrosion cracking tests were carried out using synthetic seawater containing sodium sulfide. Based on the experimental results, the possibility of super long lifetime for copper overpacks was discussed. The results were summarized as follows; 1) As the results of the immersion tests of copper in buffer material for 2 years, the corrosion rates became large with increase in the concentration of sodium sulfide. The corrosion rates of copper in sodium sulfide of 0.001M, 0.005M and 0.1M were estimated to be 0.55μm/y, 2.2μm/y, 15μm/y respectively. 2) Corrosion product film with black or dark-gray was formed on the surface of copper specimens, and it was identified as Cu 2 S(Chalcocite) by the X-ray diffraction. 3) As the results of stress corrosion cracking experiments by means of slow strain rate technique, copper has little susceptibility to crack initiation for the specimen of the experiment under 0.001M-Na 2 S condition. Obvious cracks were observed for the specimens of the experiment over 0.005M Na 2 S condition. 4) According to the results of immersion tests and stress corrosion cracking tests, copper overpacks have a potential to accomplish super long lifetime far over 1000 years owing to very low corrosion rate and no stress corrosion cracking if the sulfide concentration in repository environment is promised to be less than 0.001M. (author)

  19. Corrosion performance of iron aluminides in fossil energy environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-12-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification and combustion is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S or SO{sub 2} and chlorine as HCl. This paper presents a comprehensive review of the current status of the corrosion performance of alumina scales that are thermally grown on Fe-base alloys, including iron aluminides, in multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the electrospark deposition process or by weld overlay techniques.

  20. Fluoroscopically guided caudal epidural steroid injection for management of degenerative lumbar spinal stenosis: short-term and long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Woo; Myung, Jae Sung; Kang, Heung Sik [Seoul National University Bundang Hospital, Department of Radiology, Seong Nam, Gyeongi-do (Korea); Park, Kun Woo; Yeom, Jin S. [Seoul National University Bundang Hospital, Department of Orthopaedic Surgery, Seong Nam, Gyeongi-do (Korea); Kim, Ki-Jeong; Kim, Hyun-Jib [Seoul National University Bundang Hospital, Department of Neurosurgery, Seong Nam, Gyeongi-do (Korea)

    2010-07-15

    To evaluate the short-term and long-term effects of fluoroscopically guided caudal epidural steroid injection (ESI) for the management of degenerative lumbar spinal stenosis (DLSS) and to analyze outcome predictors. All patients who underwent caudal ESI in 2006 for DLSS were included in the study. Response was based on chart documentation (aggravated, no change, slightly improved, much improved, no pain). In June 2009 telephone interviews were conducted, using formatted questions including the North American Spine Society (NASS) patient satisfaction scale. For short-term and long-term effects, age difference was evaluated by the Mann-Whitney U test, and gender, duration of symptoms, level of DLSS, spondylolisthesis, and previous operations were evaluated by Fisher's exact test. Two hundred and sixteen patients (male: female = 75:141; mean age 69.2 years; range 48{proportional_to}91 years) were included in the study. Improvements (slightly improved, much improved, no pain) were seen in 185 patients (85.6%) after an initial caudal ESI and in 189 patients (87.5%) after a series of caudal ESIs. Half of the patients (89/179, 49.8%) replied positively to the NASS patient satisfaction scale (1 or 2). There were no significant outcome predictors for either the short-term or the long-term responses. Fluoroscopically guided caudal ESI was effective for the management of DLSS (especially central canal stenosis) with excellent short-term and good long-term results, without significant outcome predictors. (orig.)