WorldWideScience

Sample records for long-duration space flight

  1. Cognitive Assessment in Long-Duration Space Flight

    Science.gov (United States)

    Kane, Robert; Seaton, Kimberly; Sipes, Walter

    2011-01-01

    This slide presentation reviews the development and use of a tool for assessing spaceflight cognitive ability in astronauts. This tool. the Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) has been used to provide ISS flight surgeons with an objective clinical tool to monitor the astronauts cognitive status during long-duration space flight and allow immediate feedback to the astronaut. Its use is medically required for all long-duration missions and it contains a battery of five cognitive assessment subtests that are scheduled monthly and compared against the individual preflight baseline.

  2. Physiology, medicine, long-duration space flight and the NSBRI

    Science.gov (United States)

    McPhee, J. C.; White, R. J.

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  3. Long-Duration Space Flight and Bed Rest Effects on Testosterone and Other Steroids

    Science.gov (United States)

    Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L.; Zwart, Sara R.

    2012-01-01

    Context: Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. Objective: The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Design: Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Setting: Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. Participants: All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Main Outcome Measures: Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Results: Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. Conclusions: There was no evidence for decrements in testosterone during long-duration space flight or bed rest. PMID:22049169

  4. Effects of Short- and Long-Duration Space Flight on Neuromuscular Function

    Science.gov (United States)

    Buxton, Roxanne E.; Spiering, Barry A.; Ryder, Jeffrey W.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    The Functional Task Tests (FTT) is an interdisciplinary study designed to correlate the changes in functional tasks (such as emergency egress, ladder climbing, and hatch opening) with changes in neuromuscular, cardiovascular, and sensorimotor function. One aspect of the FTT, the neuromuscular function test, is used to investigate the neuromuscular component underlying changes in the ability of astronauts to perform functional tasks (representative of critical mission tasks) safely and quickly after flight. PURPOSE: To describe neuromuscular function after short- and long-duration space flight. METHODS: To date, 5 crewmembers on short-duration (10- to 15-day) missions and 3 on long-duration missions have participated. Crewmembers were assessed 30 days before flight, on landing day (short-duration subjects only) and 1, 6, and 30 days after landing. The interpolated twitch technique, which utilizes a combination of maximal voluntary contractions and electrically evoked contractions, was used to assess the maximal voluntary isometric force (MIF) and central activation capacity of the knee extensors. Leg-press and bench-press devices were used to assess MIF and maximal dynamic power of the lower and upper body respectively. Specifically, power was measured during concentric-only ballistic throws of the leg-press sled and bench-press bar loaded to 40% and 30% of MIF respectively. RESULTS: Data are currently being collected from both Shuttle and ISS crewmembers. Emerging data indicate that measures of knee extensor muscle function are decreased with long-duration flight. DISCUSSION: The relationships between flight duration, neural drive, and muscle performance are of particular interest. Ongoing research will add to the current sample size and will focus on defining changes in muscle performance measures after long-duration space flight.

  5. Habitability and Performance Issues for Long Duration Space Flights

    Science.gov (United States)

    Whitmore, Mihriban; McQuilkin, Meredith L.; Woolford, Barbara J.

    1997-01-01

    Advancing technology, coupled with the desire to explore space has resulted in increasingly longer manned space missions. Although the Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on human ability to function in extreme environments, findings indicate long duration missions take a toll on the individual, both physiologically and psychologically. These physiological and psychological issues manifest themselves in performance decrements; and could lead to serious errors endangering the mission, spacecraft and crew. The purpose of this paper is to document existing knowledge of the effects of LDSF on performance, habitability, and workload and to identify and assess potential tools designed to address these decrements as well as propose an implementation plan to address the habitability, performance and workload issues.

  6. Cognitive Assessment During Long-Duration Space Flight

    Science.gov (United States)

    Seaton, Kimberly; Kane, R. L.; Sipes, Walter

    2010-01-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a computer-based, self-administered battery of five cognitive assessment tests developed for medical operations at NASA's Johnson Space Center in Houston, Texas. WinSCAT is a medical requirement for U.S. long-duration astronauts and has been implemented with U.S. astronauts from one NASA/Mir mission (NASA-7 mission) and all expeditions to date on the International Space Station (ISS). Its purpose is to provide ISS crew surgeons with an objective clinical tool after an unexpected traumatic event, a medical condition, or the cumulative effects of space flight that could negatively affect an astronaut's cognitive status and threaten mission success. WinSCAT was recently updated to add network capability to support a 6-person crew on the station support computers. Additionally, WinSCAT Version 2.0.28 has increased difficulty of items in Mathematics, increased number of items in Match-to-Sample, incorporates a moving rather than a fixed baseline, and implements stricter interpretation rules. ISS performance data were assessed to compare initial to modified interpretation rules for detecting potential changes in cognitive functioning during space flight. WinSCAT tests are routinely taken monthly during an ISS mission. Performance data from these ISS missions do not indicate significant cognitive decrements due to microgravity/space flight alone but have shown decrements. Applying the newly derived rules to ISS data results in a number of off-nominal performances at various times during and after flight.. Correlation to actual events is needed, but possible explanations for off-nominal performances could include actual physical factors such as toxic exposure, medication effects, or fatigue; emotional factors including stress from the mission or life events; or failure to exert adequate effort on the tests.

  7. Men and Women in Space: Bone Loss and Kidney Stone Risk after Long-Duration Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.; Heer, Martina; Hudson, Edgar, K.; Shackelford, Linda; Morgan, Jennifer L. L.

    2014-01-01

    Bone loss on Earth is more prevalent in women than men, leading to the assumption that women may be at greater risk from bone loss during flight. Until recently, the number of women having flown long-duration missions was too small to allow any type of statistical analysis. We report here data from 42 astronauts on long-duration missions to the International Space Station, 33 men and 9 women. Bone mineral density (dual-energy X-ray absorptiometry), bone biochemistry (from blood and urine samples), and renal stone risk factors were evaluated before and after flight. Data were analyzed in two groups, based on available resistance exercise equipment. The response of bone mineral density to flight was the same for men and women, and the typical decrease in bone mineral density (whole body and/or regional) after flight was not observed for either sex for those using an Advanced Resistive Exercise Device. Bone biochemistry, specifically markers of formation and resorption, generally responded similarly in male and female astronauts. The response of urinary supersaturation risk to space flight was not significantly different between men and women, although risks were typically increased after flight in both groups and risks were generally greater in men than in women before and after flight. Overall, the bone and renal stone responses of men and women to space flight were not different.

  8. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    Science.gov (United States)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  9. Countermeasures to Mitigate the Negative Impact of Sensory Deprivation and Social Isolation in Long-Duration Space Flight

    Science.gov (United States)

    Bachman, Katharine Ridgeway OBrien; Otto, Christian; Leveton, Lauren

    2012-01-01

    Long-duration space flight presents several challenges to the behavioral health of crew members. The environment that they are likely to experience will be isolated, confined, and extreme (ICE) and, as such, crew members will experience extreme sensory deprivation and social isolation. The current paper briefly notes the behavioral, cognitive, and affective consequences of psychological stress induced by ICE environments and proposes nine countermeasures aimed at mitigating the negative effects of sensory deprivation and social isolation. Implementation of countermeasures aims to maintain successful crew performance and psychological well-being in a long-duration space flight mission.

  10. Epidemiologic Analyses of Risk Factors for Bone Loss and Recovery Related to Long-Duration Space Flight

    Science.gov (United States)

    Sibonga, Jean; Amin, Shreyasee

    2010-01-01

    AIM 1: To investigate the risk of microgravity exposure on long-term changes in bone health and fracture risk. compare data from crew members ("observed") with what would be "expected" from Rochester Bone Health Study. AIM 2: To provide a summary of current evidence available on potential risk factors for bone loss, recovery & fracture following long-duration space flight. integrative review of all data pre, in-, and post-flight across disciplines (cardiovascular, nutrition, muscle, etc.) and their relation to bone loss and recovery

  11. Advanced biosensors for monitoring astronauts' health during long-duration space missions.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Guardigli, Massimo; Zangheri, Martina; Caliceti, Cristiana; Calabria, Donato; Simoni, Patrizia

    2018-07-15

    Long-duration space missions pose important health concerns for astronauts, especially regarding the adverse effects of microgravity and exposure to high-energy cosmic rays. The long-term maintenance of crew health and performance mainly relies on prevention, early diagnoses, condition management, and medical interventions in situ. In-flight biosensor diagnostic devices and medical procedures must use few resources and operate in a microgravity environment, which complicates the collection and management of biological samples. Moreover, the biosensors must be certified for in-flight operation according to strict design and safety regulations. Herein, we report on the state of the art and recent advances in biosensing diagnostic instrumentation for monitoring astronauts' health during long-duration space missions, including portable and wearable biosensors. We discuss perspectives on new-format biosensors in autonomous space clinics. We also describe our own work in developing biosensing devices for non-invasively diagnosing space-related diseases, and how they are used in long-duration missions. Finally, we discuss the benefits of space exploration for Earth-based medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    Burnett, T.; Iwai, J.; Lord, J.J.; Strausz, S.; Wilkes, R.J.; Dake, S.; Oda, H.; Miyamura, O.; Fuki, M.; Jones, W.V.; Gregory, J.; Hayashi, T.; Takahashi, U.; Tominaga, Y.; Wefel, J.P.; Fountain, W.; Derrickson, J.; Parnell, T.A.; Roberts, E.; Tabuki, T.; Watts, J.W.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  13. Pilot Field Test: Use of a Compression Garment During a Stand Test After Long-Duration Space Flight

    Science.gov (United States)

    Laurie, S. S.; Stenger, M. B.; Phillips, T. R.; Lee, S. M. C.; Cerisano, J.; Kofman, I.; Reschke, M.

    2016-01-01

    Orthostatic intolerance (OI) is a concern for astronauts returning from long-duration space flight. One countermeasure that has been used to protect against OI after short-duration bed rest and space flight is the use of lower body and abdominal compression garments. However, since the end of the Space Shuttle era we have not been able to test crewmembers during the first 24 hours after landing on Earth. NASA's Pilot Field Test provided us the opportunity to test cardiovascular responses of crewmembers wearing the Russian Kentavr compression garment during a stand test at multiple time points throughout the first 24 hours after landing. HYPOTHESIS We hypothesized that the Kentavr compression garment would prevent an increase in heart rate (HR) >15 bpm during a 3.5-min stand test. METHODS: The Pilot Field Test was conducted up to 3 times during the first 24 hours after crewmembers returned to Earth: (1) either in a tent adjacent to the Soyuz landing site in Kazakhstan (approx.1 hr) or after transportation to the Karaganda airport (approx. 4 hr); (2) during a refueling stop in Scotland (approx.12 hr); and (3) upon return to NASA Johnson Space Center (JSC) (approx.24 hr). We measured HR and arterial pressure (finger photoplethysmography) for 2 min while the crewmember was prone and throughout 3.5 min of quiet standing. Eleven crewmembers consented to participate; however, 2 felt too ill to start the test and 1 stopped 30 sec into the stand portion of the test. Of the remaining 8 crewmembers, 2 did not wear the Russian Kentavr compression garment. Because of inclement weather at the landing site, 5 crewmembers were flown by helicopter to the Karaganda airport before initial testing and received intravenous saline before completing the stand test. One of these crewmembers wore only the portion of the Russian Kentavr compression garment that covered the lower leg and thus lacked thigh and abdominal compression. All crewmembers continued wearing the Russian Kentavr

  14. Visual Performance Challenges to Low-Frequency Perturbations After Long-Duration Space Flight, and Countermeasure Development

    Science.gov (United States)

    Mulavara, Ajitkumar; Wood, Scott; Fiedler, Matthew; Kofman, Igor; Kulecz, Walter B.; Miller, Chris; Peters, Brian; Serrador, Jorge; Cohen, Helen; Reschke, Millard; hide

    2010-01-01

    Astronauts experience sensorimotor disturbances after long-duration space flight. After a water landing, crewmembers may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions. Exposure to even low-frequency motions induced by sea conditions surrounding a vessel can cause significant motor control problems affecting critical functions. The first objective of this study was to document human visual performance during simulated wave motion below 2.0 Hz. We examined the changes in accuracy and reaction time when subjects performed a visual target acquisition task in which the location of the target was offset vertically during horizontal rotation at an oscillating frequency of 0.8 Hz. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements occurring when vertical targets were acquired at perturbing frequencies of 0.8 Hz in the horizontal plane. A second objective was to develop a countermeasure, base d on stochastic resonance (SR), to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to gravitational transitions after long-duration space flight. SR is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic electrical stimulation to the vestibular system (SVS) significantly improved balance and oculomotor responses. This study examined the effectiveness of SVS on improving balance performance. Subjects performed a standard balance task while bipolar SVS was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process. The main finding of this study was that balance performance with the application of SR showed significant improvement in the range of 10%-25%. Ultimately an SR-based countermeasure might be fielded either as preflight training

  15. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts: Persistence of Damage After Flight and the Effects of Repeat Long Duration Missions

    Science.gov (United States)

    George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  16. Habitability and Human Factors: Lessons Learned in Long Duration Space Flight

    Science.gov (United States)

    Baggerman, Susan D.; Rando, Cynthia M.; Duvall, Laura E.

    2006-01-01

    This study documents the investigation of qualitative habitability and human factors feedback provided by scientists, engineers, and crewmembers on lessons learned from the ISS Program. A thorough review and understanding of this data is critical in charting NASA's future path in space exploration. NASA has been involved in ensuring that the needs of crewmembers to live and work safely and effectively in space have been met throughout the ISS Program. Human factors and habitability data has been collected from every U.S. crewmember that has resided on the ISS. The knowledge gained from both the developers and inhabitants of the ISS have provided a significant resource of information for NASA and will be used in future space exploration. The recurring issues have been tracked and documented; the top 5 most critical issues have been identified from this data. The top 5 identified problems were: excessive onsrbit stowage; environment; communication; procedures; and inadequate design of systems and equipment. Lessons learned from these issues will be used to aid in future improvements and developments to the space program. Full analysis of the habitability and human factors data has led to the following recommendations. It is critical for human factors to be involved early in the design of space vehicles and hardware. Human factors requirements need to be readdressed and redefined given the knowledge gained during previous ISS and long-duration space flight programs. These requirements must be integrated into vehicle and hardware technical documentation and consistently enforced. Lastly, space vehicles and hardware must be designed with primary focus on the user/operator to successfully complete missions and maintain a safe working environment. Implementation of these lessons learned will significantly improve NASA's likelihood of success in future space endeavors.

  17. Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station.

    Science.gov (United States)

    Zwart, Sara R; Morgan, Jennifer L L; Smith, Scott M

    2013-07-01

    Increases in stored iron and dietary intake of iron during space flight have raised concern about the risk of excess iron and oxidative damage, particularly in bone. The objectives of this study were to perform a comprehensive assessment of iron status in men and women before, during, and after long-duration space flight and to quantify the association of iron status with oxidative damage and bone loss. Fasting blood and 24-h urine samples were collected from 23 crew members before, during, and after missions lasting 50 to 247 d to the International Space Station. Serum ferritin and body iron increased early in flight, and transferrin and transferrin receptors decreased later, which indicated that early increases in body iron stores occurred through the mobilization of iron to storage tissues. Acute phase proteins indicated no evidence of an inflammatory response during flight. Serum ferritin was positively correlated with the oxidative damage markers 8-hydroxy-2'-deoxyguanosine (r = 0.53, P < 0.001) and prostaglandin F2α (r = 0.26, P < 0.001), and the greater the area under the curve for ferritin during flight, the greater the decrease in bone mineral density in the total hip (P = 0.031), trochanter (P = 0.006), hip neck (P = 0.044), and pelvis (P = 0.049) after flight. Increased iron stores may be a risk factor for oxidative damage and bone resorption.

  18. Psychology and culture during long-duration space missions

    Science.gov (United States)

    Kanas, N.; Sandal, G.; Boyd, J. E.; Gushin, V. I.; Manzey, D.; North, R.; Leon, G. R.; Suedfeld, P.; Bishop, S.; Fiedler, E. R.; Inoue, N.; Johannes, B.; Kealey, D. J.; Kraft, N.; Matsuzaki, I.; Musson, D.; Palinkas, L. A.; Salnitskiy, V. P.; Sipes, W.; Stuster, J.; Wang, J.

    2009-04-01

    The objective of this paper is twofold: (a) to review the current knowledge of cultural, psychological, psychiatric, cognitive, interpersonal, and organizational issues that are relevant to the behavior and performance of astronaut crews and ground support personnel and (b) to make recommendations for future human space missions, including both transit and planetary surface operations involving the Moon or Mars. The focus will be on long-duration missions lasting at least six weeks, when important psychological and interpersonal factors begin to take their toll on crewmembers. This information is designed to provide guidelines for astronaut selection and training, in-flight monitoring and support, and post-flight recovery and re-adaptation.

  19. Locomotor Dysfunction after Long-duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    Science.gov (United States)

    Mulavara, Ajitkumar; Wood, Scott; Cohen, Helen; Bloomberg, Jacob

    2012-07-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth's gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight. Eighteen astronauts performed two tests of locomotion before and after 6 months of space flight: a treadmill walking test to examine vestibular reflexive mechanisms controlling head

  20. Analyses of Magnetic Resonance Imaging of Cerebrospinal Fluid Dynamics Pre and Post Short and Long-Duration Space Flights

    Science.gov (United States)

    Alperin, Noam; Barr, Yael; Lee, Sang H.; Mason,Sara; Bagci, Ahmet M.

    2015-01-01

    Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to post-flight changes in total cerebral blood flow (CBF) and craniospinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. Median CPG scores of the short and long-duration cohorts were similar, 2. Mean preflight total CBF for the short and long-duration cohorts were similar, 863+/-144 and 747+/-119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to post-flight changes in the craniospinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 4. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5. Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed

  1. Adapted ECC ozonesonde for long-duration flights aboard boundary-layer pressurised balloons

    Science.gov (United States)

    Gheusi, François; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clenet, Antoine; Derrien, Solène; Doerenbecher, Alexis; El Amraoui, Laaziz; Fontaine, Alain; Hache, Emeric; Jambert, Corinne; Jaumouillé, Elodie; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2016-12-01

    Since the 1970s, the French space agency CNES has developed boundary-layer pressurised balloons (BLPBs) with the capability to transport lightweight scientific payloads at isopycnic level and offer a quasi-Lagrangian sampling of the lower atmosphere over very long distances and durations (up to several weeks).Electrochemical concentration cell (ECC) ozonesondes are widely used under small sounding balloons. However, their autonomy is limited to a few hours owing to power consumption and electrolyte evaporation. An adaptation of the ECC sonde has been developed specifically for long-duration BLPB flights. Compared to conventional ECC sondes, the main feature is the possibility of programming periodic measurement sequences (with possible remote control during the flight). To increase the ozonesonde autonomy, the strategy has been adopted of short measurement sequences (2-3 min) regularly spaced in time (e.g. every 15 min). The rest of the time, the sonde pump is turned off. Results of preliminary ground-based tests are first presented. In particular, the sonde was able to provide correct ozone concentrations against a reference UV-absorption ozone analyser every 15 min for 4 days. Then we illustrate results from 16 BLBP flights launched over the western Mediterranean during three summer field campaigns of the ChArMEx project (http://charmex.lsce.ipsl.fr): TRAQA in 2012, and ADRIMED and SAFMED in 2013. BLPB drifting altitudes were in the range 0.25-3.2 km. The longest flight lasted more than 32 h and covered more than 1000 km. Satisfactory data were obtained when compared to independent ozone measurements close in space and time. The quasi-Lagrangian measurements allowed a first look at ozone diurnal evolution in the marine boundary layer as well as in the lower free troposphere. During some flight segments, there was indication of photochemical ozone production in the marine boundary layer or even in the free troposphere, at rates ranging from 1 to 2 ppbv h -1, which

  2. Career Excess Mortality Risk from Diagnostic Radiological Exams Required for Crewmembers Participating in Long Duration Space Flight

    Science.gov (United States)

    Dodge, C. W.; Gonzalez, S. M.; Picco, C. E.; Johnston, S. L.; Shavers, M. R.; VanBaalen, M.

    2008-01-01

    NASA requires astronauts to undergo diagnostic x-ray examinations as a condition for their employment. The purpose of these procedures is to assess the astronaut s overall health and to diagnose conditions that could jeopardize the success of long duration space missions. These include exams for acceptance into the astronaut corps, routine periodic exams, as well as evaluations taken pre and post missions. Issues: According to NASA policy these medical examinations are considered occupational radiological exposures, and thus, are included when computing the astronaut s overall radiation dose and associated excess cancer mortality risk. As such, astronauts and administrators are concerned about the amount of radiation received from these procedures due to the possibility that these additional doses may cause astronauts to exceed NASA s administrative limits, thus disqualifying them from future flights. Methods: Radiation doses and cancer mortality risks following required medical radiation exposures are presented herein for representative male and female astronaut careers. Calculation of the excess cancer mortality risk was performed by adapting NASA s operational risk assessment model. Averages for astronaut height, weight, number of space missions and age at selection into the astronaut corps were used as inputs to the NASA risk model. Conclusion: The results show that the level of excess cancer mortality imposed by all required medical procedures over an entire astronaut s career is approximately the same as that resulting from a single short duration space flight (i.e. space shuttle mission). In short the summation of all medical procedures involving ionizing radiation should have no impact on the number of missions an astronaut can fly over their career. Learning Objectives: 1. The types of diagnostic medical exams which astronauts are subjected to will be presented. 2. The level of radiation dose and excess mortality risk to the average male and female

  3. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.

    Science.gov (United States)

    Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim

    2016-01-01

    To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues

  4. Space Flight-Associated Neuro-ocular Syndrome.

    Science.gov (United States)

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  5. Improving Sensorimotor Adaptation Following Long Duration Space Flight by Enhancing Vestibular Information Transfer

    Science.gov (United States)

    Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.; hide

    2014-01-01

    Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after gravitational transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" - immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance to enhance information transfer by improving the brain's ability to detect vestibular signals (Vestibular Stochastic Resonance, VSR) especially when combined with balance training exercises such as sensorimotor adaptability (SA) training for rapid improvement in functional skill, for standing and mobility. This countermeasure to improve detection of vestibular signals is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation). To determine efficacy of vestibular stimulation on physiological and perceptual responses during otolith-canal conflicts and dynamic perturbations we have conducted a series of studies: We have shown that imperceptible binaural bipolar electrical stimulation of the vestibular system across the mastoids enhances balance performance in the mediolateral (ML) plane while standing on an unstable surface. We have followed up on the previous study showing VSR stimulation improved balance

  6. Modified ECC ozone sonde for long-duration flights aboard isopicnic drifting balloons

    Science.gov (United States)

    Gheusi, Francois; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clénet, Antoine; Fontaine, Alain; Jambert, Corinne; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2015-04-01

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPB) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electrochemical concentration cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (owing to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPB. The mechanical elements (Teflon pump and motor) and the electrochemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, a strategy has been adopted of short measurement sequences (typically 2-3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Consequently, the measurement sequence is typically composed of a one-minute spin-up period after the pump has been turned on, followed by a one- to two-minute acquisition period. All time intervals can be adjusted before and during the flight. Results of a preliminary ground-based test in spring 2012 are first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then we illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during summer field campaings in 2012 and 2013 (TRAQA and ChArMEx programmes). BLPB drifting

  7. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    Science.gov (United States)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  8. Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.

    Science.gov (United States)

    Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice

    2017-08-01

    Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.

  9. Aerobic Capacity Following Long Duration International Spaces Station (ISS) Missions: Preliminary Results

    Science.gov (United States)

    Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.

    2010-01-01

    Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.

  10. Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts

    Science.gov (United States)

    Meck, J. V.; Reyes, C. J.; Perez, S. A.; Goldberger, A. L.; Ziegler, M. G.

    2001-01-01

    OBJECTIVE: The incidence of postflight orthostatic intolerance after short-duration spaceflight is about 20%. However, the incidence after long-duration spaceflight was unknown. The purpose of this study was to test the hypothesis that orthostatic intolerance is more severe after long-duration than after short-duration flight. METHODS: We performed tilt tests on six astronauts before and after long-duration (129-190 days) spaceflights and compared these data with data obtained during stand tests before and after previous short-duration missions. RESULTS: Five of the six astronauts studied became presyncopal during tilt testing after long-duration flights. Only one had become presyncopal during stand testing after short-duration flights. We also compared the long-duration flight tilt test data to tilt test data from 20 different astronauts who flew on the short-duration Shuttle missions that delivered and recovered the astronauts to and from the Mir Space Station. Five of these 20 astronauts became presyncopal on landing day. Heart rate responses to tilt were no different between astronauts on long-duration flights and astronauts on short-duration flights, but long-duration subjects had lower stroke volumes and cardiac outputs than short-duration presyncopal subjects, suggesting a possible decrease in cardiac contractile function. One subject had subnormal norepinephrine release with upright posture after the long flight but not after the short flight. Plasma volume losses were not greater after long flights. CONCLUSION: Long-duration spaceflight markedly increases orthostatic intolerance, probably with multiple contributing factors.

  11. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  12. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  13. Investigation of periodontal tissue during a long space flights

    Science.gov (United States)

    Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina

    Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.

  14. Cultural and Gender Issues in Long-Duration Flights

    Science.gov (United States)

    1997-01-01

    Session TA5 includes short reports concerning: (1) Psychological Issues During Long-Duration International Space Missions; (2) Psychosocial Issues in Crew Selection: Finding the Right Mix of the Right Stuff; (3) Culture, Gender and Mission Accomplishment: Operational Experience; (4) Interpersonal Tension in Multicultural Crews; (5) Personality and Coping in Extreme Environments; and (6) Application of Expedition and Polar Work Group Findings for Enhancing Performance in Space.

  15. Long Duration Space Shelter Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed fiber reinforced ceramic composites for radiation shielding that can be used for external walls in long duration manned...

  16. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Program. Together, these validation flight findings demonstrate the capability to support long-duration RR on the ISS to achieve both basic science and biomedical objectives.

  17. Human tolerance to space flight

    Science.gov (United States)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  18. Persistence of Space Radiation-Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts and the Effects of Repeat Long Duration Space Missions

    Science.gov (United States)

    George, Kerry A.; Cucinotta, Francis A.

    2009-01-01

    The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.

  19. Psychosocial issues in long-term space flight: overview

    Science.gov (United States)

    Palinkas, L. A.

    2001-01-01

    Anecdotal evidence of the individual and interpersonal problems that occurred during the Shuttle-Mir Space Program (SMSP) and other long-duration Russian/Soviet missions, and studies of personnel in other isolated and confined extreme (ICE) environments suggest that psychosocial elements of behavior and performance are likely to have a significant impact on the outcome of long-duration missions in space. This impact may range from individual decrements in performance, health and well being, to catastrophic mission failure. This paper reviews our current understanding of the psychosocial issues related to long duration space missions according to three different domains of behavior: the individual domain, the interpersonal domain and the organizational domain. Individual issues include: personality characteristics that predict successful performance, stress due to isolation and confinement and its effect on emotions and cognitive performance, adaptive and maladaptive coping styles and strategies, and requirements for the psychological support of astronauts and their families during the mission. Interpersonal issues include: impact of crew diversity and leadership styles on small group dynamics, adaptive and maladaptive features of ground-crew interactions, and processes of crew cohesion, tension and conflict. Organizational issues include: the influence of organizational culture and mission duration on individual and group performance, and managerial requirements for long duration missions. Improved screening and selection of astronaut candidates, leadership, coping and interpersonal skills training of personnel, and organizational change are key elements in the prevention of performance decrements on long-duration missions.

  20. Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Space Flight

    Science.gov (United States)

    Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2010-01-01

    This slide presentation reviews a study that was conducted to ascertain if the immune system dysregulation, viral reactivation and stress from short duration space flight were a result of the stress of landing and readjustment to gravity. The objectives of the study were to replace several recent immune studies with one comprehensive study that will include in-flight sampling; address lack of in-flight data: (i.e., determine the in-flight status of immunity, physiological stress, viral immunity/reactivation); determine the clinical risk related to immune dysregulation for exploration class spaceflight; and determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  1. Incidence of clinical symptoms during long-duration orbital spaceflight.

    Science.gov (United States)

    Crucian, Brian; Babiak-Vazquez, Adriana; Johnston, Smith; Pierson, Duane L; Ott, C Mark; Sams, Clarence

    2016-01-01

    The environment of spaceflight may elevate an astronaut's clinical risk for specific diseases. The purpose of this study was to derive, as accurately as currently possible, an assessment of in-flight clinical "incidence" data, based on observed clinical symptoms in astronauts on board the International Space Station (ISS). Electronic medical records were examined from 46 long-duration ISS crew members, each serving approximately a 6-month mission on board the ISS, constituting 20.57 total flight years. Incidence for immunological-related adverse health events or relevant clinical symptoms was tabulated in a non-identifiable fashion. Event categories included infectious diseases, allergies, and rashes/hypersensitivities. A subsequent re-evaluation of more notable events, either of prolonged duration or unresponsive to treatment, was performed. For the disease/symptom categories used in this evaluation, the ISS incidence rate was 3.40 events per flight year. Skin rashes were the most reported event (1.12/flight year) followed by upper respiratory symptoms (0.97/flight year) and various other (non-respiratory) infectious processes. During flight, 46% of crew members reported an event deemed "notable". Among the notable events, 40% were classified as rashes/hypersensitivities. Characterization of on-orbit rashes manifested as redness with irritation, and could present on a variety of body locations. Based on reported symptoms, astronauts experience adverse medical events of varying severity during long-duration spaceflights. The data suggests caution, from both a vehicle design and biomedical countermeasures perspective, as space agencies plan for prolonged deep space exploration missions.

  2. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    Science.gov (United States)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  3. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance

    Science.gov (United States)

    Bloomberg, Jacob J.; Batson, Crystal D.; Buxton, Roxanne E.; Feiveson, Al H.; Kofman, Igor S.; Lee, Stuart M. C.; Miller, Chris A.; Mulavara, Ajitkumar P.; Peters, Brian T.; Phillips, Tiffany; hide

    2014-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure

  4. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  5. Use of Minute-by-Minute Cardiovascular Measurements During Tilt Tests to Strengthen Inference on the Effect of Long-Duration Space Flight on Orthostatic Hypotension

    Science.gov (United States)

    Feiveson, Alan H.; Lee, Stuart M. C.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.

    2011-01-01

    Typical methodology for evaluating the effects of spaceflight on orthostatic hypotension (OH) has been survival analysis of tolerance times from 80 head-up tilt tests. However when scheduled test durations are short, there may not be enough failures to allow survival analysis to adequately estimate and compare the effects of flight phase (e.g. pre-flight, number of days post-flight), flight duration, and their interaction, as well as interactions with effects of interventions or countermeasures. The problem is exacerbated in the presence of a repeated measures design, in which subjects participate in tilt tests during various flight phases. Here we show how it is possible to dramatically improve the efficiency of statistical inference in this setting by making use of the additional information contained in minute-by-minute observations of cardiovascular parameters thought to be reflective of progression towards presyncope during tilt testing. Methods: We retrospectively examined operational tilt test (OTT; 10 -min 80 head-up tilt) data from 20 International Space Station (ISS) and 66 Shuttle astronauts 10 d before launch (L-10), on landing day (R+0) and during recovery (R+1, R+3, R+6-10) depending on the level of participation. Data from 5 ISS astronauts tested on R+0 or R+1 who used non-standard countermeasures were excluded. In addition to OTT survival time, 8 cardiovascular parameters (CP: heart rate, systolic, diastolic, and mean arterial blood pressure, pulse pressure, stroke volume, cardiac output, and total peripheral resistance) that might be predictive of progression towards presyncope were measured every minute of each OTT. Statistical analysis was predicated on a two ]stage model of causation. In the first stage, flight duration and time from landing affect the astronauts' degree of OH, which is manifested in the time trends and variation of the above CPs during OTTs. In the second stage, the behavior of these parameters directly affects OTT survival

  6. Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation

    Science.gov (United States)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.

    2010-01-01

    INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The

  7. Intercultural crew issues in long-duration spaceflight

    Science.gov (United States)

    Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi

    2003-01-01

    Before long-duration flights with international crews can be safely undertaken, potential interpersonal difficulties will need to be addressed. Crew performance breakdown has been recognized by the American Institute of Medicine, in scientific literature, and in popular culture. However, few studies of human interaction and performance in confined, isolated environments exist, and the data pertaining to those studies are mostly anecdotal. Many incidents involving crew interpersonal dynamics, those among flight crews, as well as between flight crews and ground controllers, are reported only in non-peer reviewed books and newspapers. Consequently, due to this lack of concrete knowledge, the selection of astronauts and cosmonauts has focused on individual rather than group selection. Additional selection criteria such as interpersonal and communication competence, along with intercultural training, will have a decisive impact on future mission success. Furthermore, industrial psychological research has demonstrated the ability to select a group based on compatibility. With all this in mind, it is essential to conduct further research on heterogeneous, multi-national crews including selection and training for long-duration space missions.

  8. Computational Models of the Eye and their Applications in Long Duration Space Flight

    Science.gov (United States)

    Chen, Richard; Best, Lauren; Mason, Kyle; Mulugeta, Lealem

    2011-01-01

    Astronauts are exposed to cephalad fluid shift, increased carbon dioxide levels and other environmental factors during space flight. As a result of these conditions, it is believed that they are at risk of developing increased intracranial pressure (ICP) and intraocular pressure (IOP), which in turn may cause papilledema and other disorders of the eye that can lead to temporary or permanent changes in vision. However, the mechanisms behind this risk are not fully understood. Ground analog and flight studies pose challenges because there are limited non-invasive methods that can be used to study the eye and intracranial space. Therefore it is proposed that computational models can be applied to help address this gap by providing a low cost method for studying the effects of IOP, ICP and various properties of the eye on these diseases. The information presented by the authors provides a summary of several models found in literature that could potentially be augmented and applied to inform research. Specifically, finite element models of the optic nerve head, sclera and other structures of the eye can be readily adapted as potential building blocks. These models may also be integrated with a brain/cerebrospinal fluid (CSF) model which will take into account the interaction between the CSF fluid and its pressure on the optic nerve. This integration can enable the study of the effects of microgravity on the interaction between the vasculature system and CSF system and can determine the effects of these changes on the optic nerve, and in turn the eye. Ultimately, it can help pinpoint the influences of long-term exposure to microgravity on vision and inform the future research into countermeasure development. In addition to spaceflight, these models can provide deeper understanding of the mechanisms of glaucoma, papilledema and other eye disorders observed in terrestrial conditions.

  9. Incidence of clinical symptoms during long-duration orbital spaceflight

    Directory of Open Access Journals (Sweden)

    Crucian B

    2016-11-01

    Full Text Available Brian Crucian,1 Adriana Babiak-Vazquez,2 Smith Johnston,1 Duane L Pierson,1 C Mark Ott,1 Clarence Sams1 1Biomedical Research and Environmental Sciences Division, NASA-Johnson Space Center, 2Epidemiology/Lifetime Surveillance of Astronaut Health, KBR-Wyle, Houston, TX, USA Background: The environment of spaceflight may elevate an astronaut’s clinical risk for specific diseases. The purpose of this study was to derive, as accurately as currently possible, an assessment of in-flight clinical “incidence” data, based on observed clinical symptoms in astronauts on board the International Space Station (ISS.Methods: Electronic medical records were examined from 46 long-duration ISS crew members, each serving approximately a 6-month mission on board the ISS, constituting 20.57 total flight years. Incidence for immunological-related adverse health events or relevant clinical symptoms was tabulated in a non-identifiable fashion. Event categories included infectious diseases, allergies, and rashes/hypersensitivities. A subsequent re-evaluation of more notable events, either of prolonged duration or unresponsive to treatment, was performed.Results: For the disease/symptom categories used in this evaluation, the ISS incidence rate was 3.40 events per flight year. Skin rashes were the most reported event (1.12/flight year followed by upper respiratory symptoms (0.97/flight year and various other (non-respiratory infectious processes. During flight, 46% of crew members reported an event deemed “notable”. Among the notable events, 40% were classified as rashes/hypersensitivities. Characterization of on-orbit rashes manifested as redness with irritation, and could present on a variety of body locations.Conclusion: Based on reported symptoms, astronauts experience adverse medical events of varying severity during long-duration spaceflights. The data suggests caution, from both a vehicle design and biomedical countermeasures perspective, as space

  10. Psychosocial issues affecting crews during long-duration international space missions

    Science.gov (United States)

    Kanas, N.

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  11. Biotechnological experiments in space flights on board of space stations

    Science.gov (United States)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other

  12. Building a Shared Definitional Model of Long Duration Human Spaceflight

    Science.gov (United States)

    Orr, M.; Whitmire, A.; Sandoval, L.; Leveton, L.; Arias, D.

    2011-01-01

    In 1956, on the eve of human space travel Strughold first proposed a simple classification of the present and future stages of manned flight that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to optimize the potential of the ISS as a gateway to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Initial search of formal and grey literature augmented by liaison with subject matter experts. Search strategy focused on both the use of term long duration mission and long duration spaceflight, and also broader related current and historical definitions and classification models of spaceflight. The related sea and air travel literature was also subsequently explored with a view to identifying analogous models or classification systems. There are multiple different definitions and classification systems for spaceflight including phase and type of mission, craft and payload and related risk management models. However the frequently used concepts of long duration mission and long duration spaceflight are infrequently operationally defined by authors, and no commonly referenced classical or gold standard definition or model of these terms emerged from the search. The categorization (Cat) system for sailing was found to be of potential analogous utility, with its focus on understanding the need for crew and craft autonomy at various levels of potential adversity and inability to gain outside support or return to a safe location, due to factors of time, distance and location.

  13. Nutrition, endocrinology, and body composition during space flight

    Science.gov (United States)

    Lane, H. W.; Gretebeck, R. J.; Smith, S. M.

    1998-01-01

    Space flight induces endocrine changes that perturb metabolism. This altered metabolism affects both the astronauts' body composition and the nutritional requirements necessary to maintain their health. During the last 25 years, a combination of studies conducted on Skylab (the first U.S. space laboratory), U.S. Shuttle flights, and Soviet and Russian flights provides a range of data from which general conclusions about energy and protein requirements can be drawn. We have reviewed the endocrine data from those studies and related it to changes in body composition. From these data it appears that protein and energy intake of astronauts are similar to those on Earth. However, a combination of measures, including exercise, appropriate diet, and, potentially, drugs, is required to provide the muscle health needed for long duration space flight.

  14. Alterations in adaptive immunity persist during long-duration spaceflight

    Science.gov (United States)

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716

  15. Biochemical and hematologic changes after short-term space flight

    Science.gov (United States)

    Leach, C. S.

    1992-01-01

    Clinical laboratory data from blood samples obtained from astronauts before and after 28 flights (average duration = 6 days) of the Space Shuttle were analyzed by the paired t-test and the Wilcoxon signed-rank test and compared with data from the Skylab flights (duration approximately 28, 59, and 84 days). Angiotensin I and aldosterone were elevated immediately after short-term space flights, but the response of angiotensin I was delayed after Skylab flights. Serum calcium was not elevated after Shuttle flights, but magnesium and uric acid decreased after both Shuttle and Skylab. Creatine phosphokinase in serum was reduced after Shuttle but not Skylab flights, probably because exercises to prevent deconditioning were not performed on the Shuttle. Total cholesterol was unchanged after Shuttle flights, but low density lipoprotein cholesterol increased and high density lipoprotein cholesterol decreased. The concentration of red blood cells was elevated after Shuttle flights and reduced after Skylab flights. Reticulocyte count was decreased after both short- and long-term flights, indicating that a reduction in red blood cell mass is probably more closely related to suppression of red cell production than to an increase in destruction of erythrocytes. Serum ferritin and number of platelets were also elevated after Shuttle flights. In determining the reasons for postflight differences between the shorter and longer flights, it is important to consider not only duration but also countermeasures, differences between spacecraft, and procedures for landing and egress.

  16. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  17. A review of the habitability aspects of prior space flights from the flight crew perspective with an orientation toward designing Space Station Freedom

    Science.gov (United States)

    Stramler, J. H.

    1990-01-01

    Habitability is a very important issue in long-duration spaceflight. With this concern, a review of much of the existing U.S. Skylab, Spacelab, and some Soviet literature on habitability aspects of long-duratioin space flight was completed for the Astronaut Space Station Support Office. The data were organized to follow as closely as possible the SSF distributed systems, such as Life Support, Data Management, etc. A new definition of habitability is proposed.

  18. Long-duration space exploration and emotional health: Recommendations for conceptualizing and evaluating risk

    Science.gov (United States)

    Alfano, Candice A.; Bower, Joanne L.; Cowie, Jennifer; Lau, Simon; Simpson, Richard J.

    2018-01-01

    Spaceflight to Mars will by far exceed the duration of any previous mission. Although behavioral health risks are routinely highlighted among the most serious threats to crew safety, understanding of specific emotional responses most likely to occur and interfere with mission success has lagged in comparison to other risk domains. Even within the domain of behavioral health, emotional constructs remain to be 'unpacked' to the same extent as other factors such as attention and fatigue. The current paper provides a review of previous studies that have examined emotional responses in isolated, confined, extreme environments (ICE) toward informing a needed research agenda. We include research conducted during space flight, long-duration space simulation analogs, and polar environments and utilize a well-established model of emotion and emotion regulation to conceptualize specific findings. Lastly, we propose four specific directions for future research: (1) use of a guiding theoretical framework for evaluating emotion responses in ICE environments; (2) leveraging multi-method approaches to improve the reliability of subjective reports of emotional health; (3) a priori selection of precise emotional constructs to guide measure selection; and (4) focusing on positive in addition to negative emotion in order to provide a more complete understanding of individual risk and resilience.

  19. A cubesat centrifuge for long duration milligravity research.

    Science.gov (United States)

    Asphaug, Erik; Thangavelautham, Jekan; Klesh, Andrew; Chandra, Aman; Nallapu, Ravi; Raura, Laksh; Herreras-Martinez, Mercedes; Schwartz, Stephen

    2017-01-01

    We advocate a low-cost strategy for long-duration research into the 'milligravity' environment of asteroids, comets and small moons, where surface gravity is a vector field typically less than 1/1000 the gravity of Earth. Unlike the microgravity environment of space, there is a directionality that gives rise, over time, to strangely familiar geologic textures and landforms. In addition to advancing planetary science, and furthering technologies for hazardous asteroid mitigation and in situ resource utilization, simplified access to long-duration milligravity offers significant potential for advancing human spaceflight, biomedicine and manufacturing. We show that a commodity 3U (10 × 10 × 34 cm 3 ) cubesat containing a laboratory of loose materials can be spun to 1 r.p.m. = 2 π /60 s -1 on its long axis, creating a centrifugal force equivalent to the surface gravity of a kilometer-sized asteroid. We describe the first flight demonstration, where small meteorite fragments will pile up to create a patch of real regolith under realistic asteroid conditions, paving the way for subsequent missions where landing and mobility technology can be flight-proven in the operational environment, in low-Earth orbit. The 3U design can be adapted for use onboard the International Space Station to allow for variable gravity experiments under ambient temperature and pressure for a broader range of experiments.

  20. Selective weighting of cutaneous receptor feedback and associated balance impairments following short duration space flight.

    Science.gov (United States)

    Strzalkowski, Nicholas D J; Lowrey, Catherine R; Perry, Stephen D; Williams, David R; Wood, Scott J; Bent, Leah R

    2015-04-10

    The present study investigated the perception of low frequency (3 Hz) vibration on the foot sole and its relationship to standing balance following short duration space flight in nine astronauts. Both 3 Hz vibration perception threshold (VPT) and standing balance measures increased on landing day compared to pre-flight. Contrary to our hypothesis, a positive linear relationship between these measures was not observed; however astronauts with the most sensitive skin (lowest 3 Hz VPT) were found to have the largest sway on landing day. While the change in foot sole sensitivity does not appear to directly relate to standing balance control, an exploratory strategy may be employed by astronauts whose threshold to pressure information is lower. Understanding sensory adaptations and balance control has implications to improve balance control strategies following space flight and in sensory impaired populations on earth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Training Concept for Long Duration Space Mission

    Science.gov (United States)

    O'Keefe, William

    2008-01-01

    There has been papers about maintenance and psychological training for Long Duration Space Mission (LDSM). There are papers on the technology needed for LDSMs. Few are looking at how groundbased pre-mission training and on-board in-transit training must be melded into one training concept that leverages this technology. Even more importantly, fewer are looking at how we can certify crews pre-mission. This certification must ensure, before the crew launches, that they can handle any problem using on-board assets without a large ground support team.

  2. Countermeasures to Neurobehavioral Deficits from Cumulative Partial Sleep Deprivation During Space Flight

    Science.gov (United States)

    Dinges, David F.

    1999-01-01

    This project is concerned with identifying ways to prevent neurobehavioral and physical deterioration due to inadequate sleep in astronauts during long-duration manned space flight. The performance capability of astronauts during extended-duration space flight depends heavily on achieving recovery through adequate sleep. Even with appropriate circadian alignment, sleep loss can erode fundamental elements of human performance capability including vigilance, cognitive speed and accuracy, working memory, reaction time, and physiological alertness. Adequate sleep is essential during manned space flight not only to ensure high levels of safe and effective human performance, but also as a basic regulatory biology critical to healthy human functioning. There is now extensive objective evidence that astronaut sleep is frequently restricted in space flight to averages between 4 hr and 6.5 hr/day. Chronic sleep restriction during manned space flight can occur in response to endogenous disturbances of sleep (motion sickness, stress, circadian rhythms), environmental disruptions of sleep (noise, temperature, light), and curtailment of sleep due to the work demands and other activities that accompany extended space flight operations. The mechanism through which this risk emerges is the development of cumulative homeostatic pressure for sleep across consecutive days of inadequate sleep. Research has shown that the physiological sleepiness and performance deficits engendered by sleep debt can progressively worsen (i.e., accumulate) over consecutive days of sleep restriction, and that sleep limited to levels commonly experienced by astronauts (i.e., 4 - 6 hr per night) for as little as 1 week, can result in increased lapses of attention, degradation of response times, deficits in complex problem solving, reduced learning, mood disturbance, disruption of essential neuroendocrine, metabolic, and neuroimmune responses, and in some vulnerable persons, the emergence of uncontrolled

  3. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    Science.gov (United States)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  4. Esrange Space Center, a Gate to Space

    Science.gov (United States)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  5. Vacuum-Compatible Multi-Axis Manipulator/Machining Center for Long-Duration Space Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has many needs for maintenance and repair technologies for long-duration human space missions. We propose to continue developing a compact, portable,...

  6. Vacuum-Compatible Multi-Axis Manipulator/Machining Center for Long-Duration Space Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has many needs for maintenance and repair technologies for long-duration human space missions. We propose to develop a compact, portable, vacuum-compatible,...

  7. Evaluation of potentially significant increase of lead in the blood during long-term bed rest and space flight.

    Science.gov (United States)

    Kondrashov, Vladislav; Rothenberg, Stephen J; Chettle, David; Zerwekh, Joseph

    2005-02-01

    We address a gap in the knowledge of lead turnover under conditions of prolonged bed rest and microgravity by developing a quantitative model of the amount of lead returned to blood circulation from bone. We offer the hypothesis that skeletal unloading, such as typically occurs during extended bed rest or microgravity, will result in bone lead being released to the blood, as has already been demonstrated in the case of calcium. We use initial bone lead concentrations to develop predictive models of blood lead elevation. Our theoretical calculations with typical bone lead loads measured in today's 40-60-year-old generation, suggest that the estimated blood lead concentrations in long duration (e.g., 100 days) space flight could average between 20 and 40 microg dl(-1), a range with well-established toxic effects. For a similar duration of bed rest, estimated blood lead concentration could be as high as 10-20 microg dl(-1), which is a level of concern, particularly if we consider females of childbearing age. The preliminary experimental results were obtained under multi-institutional collaborations, with the main outcome received from an on-going bed rest study, Prevention of Microgravity-Induced Stone Risk by KMgCitrate, conducted at the General Clinical Research Center (GCRC) of the University of Texas Southwestern Medical Center, Dallas. Based on theoretical modeling and some preliminary experimental results, this concept may have important clinical implications by allowing prediction of the magnitude of blood lead elevation, thereby establishing the means to prevent lead toxicity during long duration space flight of astronauts and in conditions of prolonged bed rest such as complicated pregnancy, spinal cord injury induced paralysis and comatose patients.

  8. Continuity and Change in Family's Role in Long-Duration Space Missions

    Science.gov (United States)

    Johnson, Phyllis

    As long-duration missions become commonplace, it will be important to consider the effect of the astronaut's career on his/her family, and the role of family in supporting that career. In the short history of the space program, archival information about three long-duration programs- Skylab, Shuttle-Mir, and the International Space Station—-provides valuable information about the astronauts' adjustment to increasingly longer times in space. These sources potentially include the astronaut's views about the role of family in that adjustment. The purpose of this paper is to present a qualitative analysis of the astronauts' views about the role family played in his/her career, as well as the effect of the astronaut career on his/her family. Specifically, what roles did family play, e.g., being there at important events, accepting the importance of the astronaut career? How did astronauts view the effects of separation, risks, and publicity on their family? How much did astronauts emphasize dealing with separation through communication with family? How consistent have astronauts' views remained over the three types of missions which have spanned from 1973 to today? The data base for this qualitative study is the Johnson Space Center oral histories for astronauts who participated in Skylab or Shuttle-Mir, and the Johnson Space Center archives of ISS mission journals and logs, and pre-flight interviews with ISS astronauts. Male astronauts are the main focus of the change-over-time information as only one woman participated in Shuttle- Mir and no women were in the Skylab program. However, qualitative data will be presented about female astronauts on ISS and on Shuttle-Mir for some comparative information by sex for those programs. Skylab preliminary findings: Having a wife and parents who were supportive made all of the difference in the astronaut career. It would not have been possible to maintain some semblance of family life without the wife's managing it. Private

  9. Space Physiology and Operational Space Medicine

    Science.gov (United States)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  10. The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions

    International Nuclear Information System (INIS)

    Voorhies, Alexander A.; Lorenzi, Hernan A.

    2016-01-01

    Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.

  11. The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions

    Energy Technology Data Exchange (ETDEWEB)

    Voorhies, Alexander A.; Lorenzi, Hernan A., E-mail: hlorenzi@jcvi.org [Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD (United States)

    2016-07-22

    Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.

  12. The Challenge of Maintaining a Healthy Microbiome During Long-Duration Space Missions.

    Directory of Open Access Journals (Sweden)

    Alexander Arnot Voorhies

    2016-07-01

    Full Text Available Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.

  13. A Virtual Social Support System for Long-Duration Space Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our overall goal is to enhance the overall behavior health and performance of personnel on (future potential) long-duration missions. We propose to use a local...

  14. Particle Astrophysics in NASA's Long Duration Balloon Program

    International Nuclear Information System (INIS)

    Gorham, Peter W.

    2013-01-01

    A century after Viktor Hess' discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons

  15. Intraocular Lens Use in an Astronaut During Long Duration Spaceflight.

    Science.gov (United States)

    Mader, Thomas H; Gibson, C Robert; Schmid, Josef F; Lipsky, William; Sargsyan, Ashot E; Garcia, Kathleen; Williams, Jeffrey N

    2018-01-01

    The purpose of this paper is to report the first use of an intraocular lens (IOL) in an astronaut during long duration spaceflight (LDSF). An astronaut developed a unilateral cataract and underwent phacoemulsification with insertion of an acrylic IOL. Approximately 15 mo later he flew on a Soyuz spacecraft to the International Space Station (ISS), where he successfully completed a 6-mo mission. Ocular examination, including ultrasound (US), was performed before, during, and after his mission and he was questioned regarding visual changes during each portion of his flight. We documented no change in IOL position during his space mission. This astronaut reported excellent and stable vision during liftoff, entry into microgravity (MG), 6 mo on the ISS, descent, and landing. Our results suggest that modern IOLs are stable, effective, and well tolerated during LDSF.Mader TH, Gibson CR, Schmid JF, Lipsky W, Sargsyan AE, Garcia K, Williams JN. Intraocular lens use in an astronaut during long duration spaceflight. Aerosp Med Hum Perform. 2018; 89(1):63-65.

  16. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  17. Ultra Long-Life Spacecraft for Long Duration Space Exploration Missions

    Science.gov (United States)

    Chau, Savio

    2002-01-01

    redundant components are still functioning properly. In contrast, an innovative avionics system architecture has been developed for ultra long-life system that uses redundant resources much more efficiently. This architecture employs generic function blocks that can be programmed to replace any type of components in-flight. In that way, each individual generic block is essentially equivalent to an entire redundant string of components in the conventional approach. Hence, the ultra long-life system can achieve much higher level of reliability while carrying much less components. For digital circuits, the generic redundant block can be implemented by large FPGAs. For analog or mixed-signal circuits, new technologies still need to be developed to implement the generic redundant block. Due to the programmability of the generic redundant blocks, the location of a specific component might not be pre-determined. Therefore, the connectivity among components has to be very flexible. Technologies such as wireless interconnection, switching network or free space optical connections are candidates for supporting the high flexibility interconnection. The performance and reliability of these technologies is being evaluated and breakthrough technologies and design techniques will be highlighted in the paper.

  18. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    Science.gov (United States)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (pperformance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature.

  19. Human Activity Behavior and Gesture Generation in Virtual Worlds for Long- Duration Space Missions. Chapter 8

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Damer, Bruce; Brodsky, Boris; vanHoff, Ron

    2007-01-01

    A virtual worlds presentation technique with embodied, intelligent agents is being developed as an instructional medium suitable to present in situ training on long term space flight. The system combines a behavioral element based on finite state automata, a behavior based reactive architecture also described as subsumption architecture, and a belief-desire-intention agent structure. These three features are being integrated to describe a Brahms virtual environment model of extravehicular crew activity which could become a basis for procedure training during extended space flight.

  20. Long duration balloon flights in the middle stratosphere

    Science.gov (United States)

    Malaterre, P.

    1993-02-01

    Research and development performed by the French Space Agency (CNES) over the past 10 years has given the scientific community the Infrared Montgolfiere, a balloon capable of lifting 50-kg payloads into the stratosphere for periods of several weeks. The Infrared Montgolfiere is a hot air balloon that captures infrared radiation using the earth as a heat source. Thirty flights have been launched so far, some lasting more than sixty days and circling the globe twice.

  1. Optimization of the design of X-Calibur for a long-duration balloon flight and results from a one-day test flight

    Science.gov (United States)

    Kislat, Fabian; Abarr, Quin; Beheshtipour, Banafsheh; De Geronimo, Gianluigi; Dowkontt, Paul; Tang, Jason; Krawczynski, Henric

    2018-01-01

    X-ray polarimetry promises exciting insights into the physics of compact astrophysical objects by providing two observables: the polarization fraction and angle as function of energy. X-Calibur is a balloon-borne hard x-ray scattering polarimeter for the 15- to 60-keV energy range. After the successful test flight in September 2016, the instrument is now being prepared for a long-duration balloon (LDB) flight in December 2018 through January 2019. During the LDB flight, X-Calibur will make detailed measurements of the polarization of Vela X-1 and constrain the polarization of a sample of between 4 and 9 additional sources. We describe the upgraded polarimeter design, including the use of a beryllium scattering element, lower-noise front-end electronics, and an improved fully active CsI(Na) anticoincidence shield, which will significantly increase the instrument sensitivity. We present estimates of the improved polarimeter performance based on simulations and laboratory measurements. We present some of the results from the 2016 flight and show that we solved several problems, which led to a reduced sensitivity during the 2016 flight. We end with a description of the planned Vela X-1 observations, including a Swift/BAT-guided observation strategy.

  2. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission).

    Science.gov (United States)

    Proshchina, A E; Krivova, Y S; Saveliev, S C

    2015-11-01

    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  3. A Psychiatric Formulary for Long-Duration Spaceflight.

    Science.gov (United States)

    Friedman, Eric; Bui, Brian

    2017-11-01

    Behavioral health is essential for the safety, well-being, and performance of crewmembers in both human spaceflight and Antarctic exploration. Over the past five decades, psychiatric issues have been documented in orbital spaceflight. In Antarctica, literature suggests up to 5% of wintering crewmembers could meet criteria for a psychiatric illness, including mood disorders, stressor-related disorders, sleep-wake disorders, and substance-related disorders. Experience from these settings indicates that psychiatric disorders on deep space missions must be anticipated. An important part of planning for the psychological health of crewmembers is the onboard provision of psychotropic drugs. These medications have been available on orbital missions. A greater variety and supply of these drugs exist at Antarctic facilities. The size and diversity of a deep space psychiatric formulary will be greater than that provided on orbital missions. Drugs to be provisioned include anxiolytics, antidepressants, mood stabilizers, antipsychotics, and hypnotics. Each drug category should include different medications, providing diverse pharmacokinetic, pharmacodynamic, and side effect profiles. The formulary itself should be rigorously controlled, given the abuse potential of some medications. In-flight treatment strategies could include psychological monitoring of well-being and early intervention for significant symptoms. Psychiatric emergencies would be treated aggressively with behavioral and pharmacological interventions to de-escalate potentially hazardous situations. On long-duration space missions, a robust psychiatric formulary could provide crewmembers autonomy and flexibility in treating a range of behavioral issues from depression to acute psychosis. This will contribute to the safety, health, and performance of crewmembers, and to mission success.Friedman E, Bui B. A psychiatric formulary for long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(11):1024-1033.

  4. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission)

    Science.gov (United States)

    Proshchina, A. E.; Krivova, Y. S.; Saveliev, S. C.

    2015-11-01

    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions.

  5. The dynamics of blood biochemical parameters in cosmonauts during long-term space flights

    Science.gov (United States)

    Markin, Andrei; Strogonova, Lubov; Balashov, Oleg; Polyakov, Valery; Tigner, Timoty

    Most of the previously obtained data on cosmonauts' metabolic state concerned certain stages of the postflight period. In this connection, all conclusions, as to metabolism peculiarities during the space flight, were to a large extent probabilistic. The purpose of this work was study of metabolism characteristics in cosmonauts directly during long-term space flights. In the capillary blood samples taken from a finger, by "Reflotron IV" biochemical analyzer, "Boehringer Mannheim" GmbH, Germany, adapted to weightlessness environments, the activity of GOT, GPT, CK, gamma-GT, total and pancreatic amylase, as well as concentration of hemoglobin, glucose, total bilirubin, uric acid, urea, creatinine, total, HDL- and LDL cholesterol, triglycerides had been determined. HDL/LDL-cholesterol ratio also was computed. The crewmembers of 6 main missions to the "Mir" orbital station, a total of 17 cosmonauts, were examined. Biochemical tests were carryed out 30-60 days before lounch, and in the flights different stages between the 25-th and the 423-rd days of flights. In cosmonauts during space flight had been found tendency to increase, in compare with basal level, GOT, GPT, total amylase activity, glucose and total cholesterol concentration, and tendency to decrease of CK activity, hemoglobin, HDL-cholesterol concentration, and HDL/LDL — cholesterol ratio. Some definite trends in variations of other determined biochemical parameters had not been found. The same trends of mentioned biochemical parameters alterations observed in majority of tested cosmonauts, allows to suppose existence of connection between noted metabolic alterations with influence of space flight conditions upon cosmonaut's body. Variations of other studied blood biochemical parameters depends on, probably, pure individual causes.

  6. Long-Duration Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Rosen, Micha; Mulloth, Lila; Varghese, Mini

    2005-01-01

    This paper describes the results of long-duration testing of a temperature-swing adsorption compressor that has application in the International Space Station (ISS) and future spacecraft for closing the air revitalization loop. The air revitalization system of the ISS operates in an open loop mode and relies on the resupply of oxygen and other consumables from Earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. The TSAC was developed and its operation was successfully verified in integration tests with the flight-like Carbon Dioxide Removal Assembly (CDRA) at Marshall Space Flight Center prior to the long-duration tests. Long-duration tests reveal the impacts of repeated thermal cycling on the compressor components and the adsorbent material.

  7. Gardening for Therapeutic People-Plant Interactions during Long-Duration Space Missions

    Directory of Open Access Journals (Sweden)

    Odeh Raymond

    2017-02-01

    Full Text Available Plants provide people with vital resources necessary to sustain life. Nutrition, vitamins, calories, oxygen, fuel, and medicinal phytochemicals are just a few of the life-supporting plant products, but does our relationship with plants transcend these physical and biochemical products? This review synthesizes some of the extant literature on people-plant interactions, and relates key findings relevant to space exploration and the psychosocial and neurocognitive benefits of plants and nature in daily life. Here, a case is made in support of utilizing plant-mediated therapeutic benefits to mitigate potential psychosocial and neurocognitive decrements associated with long-duration space missions, especially for missions that seek to explore increasingly distant places where ground-based support is limited.

  8. Retrieving Balloon Data in Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ultra Long Duration Balloon (ULDB) program will soon make flights lasting up to 100 days. Some flights may generate high data rates and retrieving this data...

  9. Ambiguous Tilt and Translation Motion Cues after Space Flight and Otolith Assessment during Post-Flight Re-Adaptation

    Science.gov (United States)

    Wood, Scott J.; Clarke, A. H.; Harm, D. L.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.

  10. Development of an Integrated Countermeasure Device for Long Duration Space Flight and Exploration Missions

    Science.gov (United States)

    Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.

    2010-01-01

    Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can

  11. Space-DRUMS trade mark sign experimental development using parabolic reduced gravity flights

    International Nuclear Information System (INIS)

    Guigne, J.Y.; Millan, D.; Davidson, R.

    2000-01-01

    Space-DRUMS trade mark sign is a microgravity containerless-processing facility that uses acoustic beams to position large diameter liquid or solid samples within a gas-filled chamber. Its capacity to control the position of large diameter (6 cm) low density solid materials was successfully demonstrated on NASA's DC-9 parabolic aircraft in July 1996; two subsequent flights occurred in 1998 using the KC-135 and A-300 aircraft to further refine the technology used in the system. The working environment for the Space-DRUMS trade mark sign facility is the Space Shuttle/Space Station where long duration microgravity experimentation can take place. Since the reduced gravity environment of an A-300 or a KC-135 parabolic flight is much harsher than that of the Space Shuttle in terms of residual acceleration magnitudes experienced by the samples to be held in position; this more extreme environment allows for most Space-DRUMS trade mark sign technical payload functionality tests to be conducted. In addition to flight hardware shakedowns, parabolic flights continue to be extensively used to study and evaluate the behavior of candidate-advanced materials proposed for ISS Space-DRUMS trade mark sign campaigns. The first samples to be processed in 2001 involve combustion synthesis (also known as SHS - Self-propagating High Temperature Synthesis) of large glass-ceramic and of porous ceramic spheres. Upmassing Space-DRUMS trade mark sign for the International Space Station is scheduled for early 2001

  12. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  13. Joint US-USSR Long duration Antarctic Mars calibration Balloon (LAMB) mission

    Science.gov (United States)

    Floyd, S. R.; Trombka, J. I.; Evans, L. G.; Starr, R.; Squyres, S. W.; Surkov, Iu. A.; Moskaleva, L. P.; Shcheglov, O.; Mitugov, A. G.; Rester, A. C.

    1991-01-01

    The Long duration Antarctic Mars calibration Balloon (LAMB) project has been established at Goddard Space Flight Center for the evaluation and cross calibration of U.S. and USSR remote sensing gamma-ray and neutron detectors. These detectors are analogs of those flown on the Soviet Phobos mission around Mars and those to be flown on the upcoming U.S. Mars Observer mission. Cosmic rays, which are normally filtered out by the atmosphere, and the earth's magnetic field, will induce gamma-ray and neutron emissions from about a half ton of simulated Mars soil aboard the gondola. The cross calibration of these instruments should greatly facilitate the data analysis from both missions and play a role in U.S.-USSR cooperation in space.

  14. Increased Intracranial Pressure and Visual Impairment Associated with Long-Duration Spaceflight

    Science.gov (United States)

    Marshall-Bowman, Karina

    2011-01-01

    Although humans have been flying in space since the 1960s, more recent missions have revealed a new suite of physiological adaptations and consequences of space flight. Notably, 60% of long-duration crewmembers (ISS/MIR) and >25% of short-duration (Shuttle) crewmembers have reported subjective degradation in vision (based on debrief comments) (Gibson 2011). Decreased near-visual acuity was demonstrated in 46% of ISS/Mir and 21% of Shuttle crewmembers, resulting in a shift of up to 1-2 diopters in their refractive correction. It is likely that the recently revealed ophthalmic changes have been present since the first days of human space flight, but have been overlooked or attributed to other causations. The reported changes in vision have occurred at various time points throughout missions, with ranging degrees of visual degradation. Although some cases resolved upon return to Earth, several astronauts have not regained preflight visual acuity, indicating that the damage may be permanent. While observing these changes over the years, without other overt symptomology and with the given age range of the flying population, this has largely been attributed to an expected hyperopic shift due to aging. However, the availability of onboard analysis techniques, including visual acuity assessments, retinal imagery, and ultrasounds of the eye and optic nerve tracts, along with more detailed post-flight techniques, has led to the recent recognition of a wider syndrome. Along with vision changes, findings include flattening of the globe, swelling of the optic disc (papilledema), choroidal folds in the retina, swelling of the optic nerve sheath, and visual field defects. It is widely hypothesized that this constellation of findings may be explained by an elevation of intracranial pressure (ICP). Out of the 60% of long-duration astronauts that have reported a subjective degradation in vision, a subset (currently 10 astronauts) have developed this syndrome. The National

  15. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  16. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  17. The Impact of Apollo-Era Microbiology on Human Space Flight

    Science.gov (United States)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of

  18. Personal growth following long-duration spaceflight

    Science.gov (United States)

    Suedfeld, Peter; Brcic, Jelena; Johnson, Phyllis J.; Gushin, Vadim

    2012-10-01

    that cosmonauts do experience various aspects of positive personal growth following their space flights. As long-duration missions are (and will remain) the norm, it is important for the space agencies and the voyagers themselves to develop a better understanding and possible enhancement of this phenomenon.

  19. Studies of social group dynamics under isolated conditions. Objective summary of the literature as it relates to potential problems of long duration space flight

    Science.gov (United States)

    Vinograd, S. P.

    1974-01-01

    Scientific literature which deals with the study of human behavior and crew interaction in situations simulating long term space flight is summarized and organized. A bibliography of all the pertinent U.S. literature available is included, along with definitions of the behavioral characteristics terms employed. The summarized studies are analyzed according to behavioral factors and environmental conditions. The analysis consist of two matrices. (1) The matrix of factors studied correlates each research study area and individual study with the behavioral factors that were investigated in the study. (2) The matrix of conclusions identifies those studies whose investigators appeared to draw specific conclusions concerning questions of importance to NASA.

  20. New Development in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    Science.gov (United States)

    Shirazi-Fard, Y.; Choi, S.; Harris, C.; Gong, C.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. G.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research program at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. Throughout phases of these missions, our practices, hardware and operations have evolved from tested to developed standards, and we are able to modify and customize our procedure and operations for mission specific requirements. The Rodent Research Habitat is capable of providing a living environment for animals on ISS according to standard animal welfare requirements. Using the cameras in the Habitat, the Rodent Research team has the ability to perform daily health checks on animals, and further analyze the collected videos for behavioral studies. A recent development of the Rodent Research hardware is inclusion of enrichment, to provide the animals the ability to rest and huddle. The Enrichment Hut is designed carefully for adult mice (up to 35 week old) within animal welfare, engineering, and operations constraints. The Hut is made out of the same stainless steel mesh as the cage interior, it has an ingress and an egress to allow animals move freely, and a hinge door to allow crewmembers remove the

  1. Lessons Learned from Biosphere 2: When Viewed as a Ground Simulation/Analogue for Long Duration Human Space Exploration and Settlement

    Science.gov (United States)

    MacCallum, T.; Poynter, J.; Bearden, D.

    A human mission to Mars, or a base on the Moon or Mars, is a longer and more complex mission than any space endeavor undertaken to date. Ground simulations provide a relevant, analogous environment for testing technologies and learning how to manage complex, long duration missions, while addressing inherent mission risks. Multiphase human missions and settlements that may preclude a rapid return to Earth, require high fidelity, end-to-end, at least full mission duration tests in order to evaluate a system's ability to sustain the crew for the entire mission and return the crew safely to Earth. Moreover, abort scenarios are essentially precluded in many mission scenarios, though certain risks may only become evident late in the mission. Aging and compounding effects cannot be simulated through accelerated tests for all aspects of the mission. Until such high fidelity long duration simulations are available, and in order to help prepare those simulations and mission designs, it is important to extract as many lessons as possible from analogous environments. Possibly the best analogue for a long duration space mission is the two year mission of Biosphere 2. Biosphere 2 is a three-acre materially closed ecological system that supported eight crewmembers with food, air and water in a sunlight driven bioregenerative system for two years. It was designed for research applicable to environmental management on Earth and the development of human life support for space. A brief overview of the two-year Biosphere 2 mission is presented, followed by select data and lessons learned that are applicable to the design and operation of a long duration human space mission, settlement or test bed. These lessons include technical, programmatic, and psychological issues

  2. Development of an In Flight Vision Self-Assessment Questionnaire for Long Duration Space Missions

    Science.gov (United States)

    Byrne, Vicky E.; Gibson, Charles R.; Pierpoline, Katherine M.

    2010-01-01

    OVERVIEW A NASA Flight Medicine optometrist teamed with a human factors specialist to develop an electronic questionnaire for crewmembers to record their visual acuity test scores and perceived vision assessment. It will be implemented on the International Space Station (ISS) and administered as part of a suite of tools for early detection of potential vision changes. The goal of this effort was to rapidly develop a set of questions to help in early detection of visual (e.g. blurred vision) and/or non-visual (e.g. headaches) symptoms by allowing the ISS crewmembers to think about their own current vision during their spaceflight missions. PROCESS An iterative process began with a Space Shuttle one-page paper questionnaire generated by the optometrist that was updated by applying human factors design principles. It was used as a baseline to establish an electronic questionnaire for ISS missions. Additional questions needed for the ISS missions were included and the information was organized to take advantage of the computer-based file format available. Human factors heuristics were applied to the prototype and then they were reviewed by the optometrist and procedures specialists with rapid-turn around updates that lead to the final questionnaire. CONCLUSIONS With about only a month lead time, a usable tool to collect crewmember assessments was developed through this cross-discipline collaboration. With only a little expenditure of energy, the potential payoff is great. ISS crewmembers will complete the questionnaire at 30 days into the mission, 100 days into the mission and 30 days prior to return to Earth. The systematic layout may also facilitate physicians later data extraction for quick interpretation of the data. The data collected along with other measures (e.g. retinal and ultrasound imaging) at regular intervals could potentially lead to early detection and treatment of related vision problems than using the other measures alone.

  3. Mouse infection models for space flight immunology

    Science.gov (United States)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  4. The Reduction and Treatment of Serious Mental Illness during Long Duration Space Mission.

    Science.gov (United States)

    Mardon, Austin; Nichol, Kenneth; Mardon, Catherine; Mardon, Austin

    It is well known in the history of terrestrial naval expeditions that members of long expeditions could and did suffered from serious mental illnesses. Depression and even psychosis could inflict crew members, and in serious cases this sometimes resulted in violence directed towards others or themselves. There was little that the medical practitioners of the time could do to alleviate these illnesses. Modern psychiatry operates within a paradigm of the normalcy of the modern western standard of living. When we place humans outside these normal experiences, we place them in vulnerable positions. For the foreseeable future, spaceflight will continue to result in extremely physically, mentally and spiritually arduous expeditions. As we start our journey towards Mars and beyond, the time humans will be in the isolation of space, and subjected to these extraordinary stresses, will increase. The recent incident where an American astronaut had a mental collapse and was criminally charged is indicative of this real possibility. One solution could be to have more pre-screening but this only goes so far, especially when the rigorous training and the actual mission might cause psychological problems that were never present before hand. Eastern and Western philosophies and religious systems can provide a framework to draw upon to strengthen the mental and spiritual psyche of the astronauts on a long duration expedition. Meditative techniques and prayer techniques, if within the belief system of the astronaut, might serve to prevent or ameliorate the severity of a mental collapse should it occur during a space mission. Many of the American astronauts that went to the Moon reported having intense emotional and spiritual reactions based on the intensity of their experiences. For several of these men, the courses of their lives were changed. What astronauts will face by going back to the Moon and further a field to Mars, will be dangerous and extremely mentally taxing. At the

  5. Medical support and technology for long-duration space missions

    Science.gov (United States)

    Furukawa, S.; Nicogossian, A.; Buchanan, P.; Pool, S. L.

    1982-01-01

    The current philosophy and development directions being taken towards realization of medical systems for use on board space stations are discussed. Data was gained on the performance of physical examinations, venipuncture and blood flow, blood smear and staining, white blood cell differential count, throat culture swab and colony count, and microscopy techniques during a 28-day period of the Skylab mission. It is expected that the advent of Shuttle flights will rapidly increase the number of persons in space, create a demand for in-space rather than on-earth medical procedures, and necessitate treatments for disorders without the provision for an early return to earth. Attention is being given to pressurized environment and extravehicular conditions of treatment, the possibilities of the use of the OTV for moving injured or ill crewmembers to other space stations, and to isolation of persons with communicable diseases from station crews.

  6. Critical Technology Determination for Future Human Space Flight

    Science.gov (United States)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  7. Insulin secretion and sensitivity in space flight: diabetogenic effects

    Science.gov (United States)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  8. Spectrophotometric analysis of tomato plants produced from seeds exposed under space flight conditions for a long time

    Science.gov (United States)

    Nechitailo, Galina S.; Yurov, S.; Cojocaru, A.; Revin, A.

    The analysis of the lycopene and other carotenoids in tomatoes produced from seeds exposed under space flight conditions at the orbital station MIR for six years is presented in this work. Our previous experiments with tomato plants showed the germination of seeds to be 32%Genetic investigations revealed 18%in the experiment and 8%experiments were conducted to study the capacity of various stimulating factors to increase germination of seeds exposed for a long time to the action of space flight factors. An increase of 20%achieved but at the same time mutants having no analogues in the control variants were detected. For the present investigations of the third generation of plants produced from seeds stored for a long time under space flight conditions 80 tomatoes from forty plants were selected. The concentration of lycopene in the experimental specimens was 2.5-3 times higher than in the control variants. The spectrophotometric analysis of ripe tomatoes revealed typical three-peaked carotenoid spectra with a high maximum of lycopene (a medium maximum at 474 nm), a moderate maximum of its predecessor, phytoin, (a medium maximum at 267 nm) and a low maximum of carotenes. In green tomatoes, on the contrary, a high maximum of phytoin, a moderate maximum of lycopene and a low maximum of carotenes were observed. The results of the spectral analysis point to the retardation of biosynthesis of carotenes while the production of lycopene is increased and to the synthesis of lycopene from phytoin. Electric conduction of tomato juice in the experimental samples is increased thus suggesting higher amounts of carotenoids, including lycopene and electrolytes. The higher is the value of electric conduction of a specimen, the higher are the spectral maxima of lycopene. The hydrogen ion exponent of the juice of ripe tomatoes increases due to which the efficiency of ATP biosynthesis in cell mitochondria is likely to increase, too. The results demonstrating an increase in the content

  9. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.

  10. Adaptation of the Skeletal System during Long-duration Spaceflight

    Science.gov (United States)

    Sibonga, Jean D.; Cavanagh, Peter R.; Lang, Thomas F.; LeBlanc, Adrian D.; Schneider, Victor S.; Shackelford, Linda C.; Smith, Scott M.; Vico, Laurence

    2008-01-01

    This review will highlight evidence from crew members flown on space missions greater than 90 days to suggest that the adaptations of the skeletal system to mechanical unloading may predispose crew members to an accelerated onset of osteoporosis after return to Earth. By definition, osteoporosis is a skeletal disorder - characterized by low bone mineral density and structural deterioration - that reduces the ability of bones to resist fracture under the loading of normal daily activities. Involutional or agerelated osteoporosis is readily recognized as a syndrome afflicting the elderly population because of the insipid and asymptomatic nature of bone loss that does not typically manifest as fractures until after age approximately 60. It is not the thesis of this review to suggest that spaceflight-induced bone loss is similar to bone loss induced by metabolic bone disease; rather this review draws parallels between the rapid and earlier loss in females that occurs with menopause and the rapid bone loss in middle-aged crew members that occurs with spaceflight unloading and how the cumulative effects of spaceflight and ageing could be detrimental, particularly if skeletal effects are totally or partially irreversible. In brief, this report will provide detailed evidence that long-duration crew members, exposed to the weightlessness of space for the typical long-duration (4-6 months) mission on Mir or the International Space Station -- 1. Display bone resorption that is aggressive, that targets normally weight-bearing skeletal sites, that is uncoupled to bone formation and that results in areal BMD deficits that can range between 6-20% of preflight BMD; 2. Display compartment-specific declines in volumetric BMD in the proximal femur (a skeletal site of clinical interest) that significantly reduces its compressive and bending strength and which may account for the loss in hip bone strength (i.e., force to failure); 3. Recover BMD over a post-flight time period that

  11. Computational Modeling of Space Physiology

    Science.gov (United States)

    Lewandowski, Beth E.; Griffin, Devon W.

    2016-01-01

    The Digital Astronaut Project (DAP), within NASAs Human Research Program, develops and implements computational modeling for use in the mitigation of human health and performance risks associated with long duration spaceflight. Over the past decade, DAP developed models to provide insights into space flight related changes to the central nervous system, cardiovascular system and the musculoskeletal system. Examples of the models and their applications include biomechanical models applied to advanced exercise device development, bone fracture risk quantification for mission planning, accident investigation, bone health standards development, and occupant protection. The International Space Station (ISS), in its role as a testing ground for long duration spaceflight, has been an important platform for obtaining human spaceflight data. DAP has used preflight, in-flight and post-flight data from short and long duration astronauts for computational model development and validation. Examples include preflight and post-flight bone mineral density data, muscle cross-sectional area, and muscle strength measurements. Results from computational modeling supplement space physiology research by informing experimental design. Using these computational models, DAP personnel can easily identify both important factors associated with a phenomenon and areas where data are lacking. This presentation will provide examples of DAP computational models, the data used in model development and validation, and applications of the model.

  12. An Alternative Water Processor for Long Duration Space Missions

    Science.gov (United States)

    Barta, Daniel J.; Pickering, Karen D.; Meyer, Caitlin; Pennsinger, Stuart; Vega, Leticia; Flynn, Michael; Jackson, Andrew; Wheeler, Raymond

    2014-01-01

    A new wastewater recovery system has been developed that combines novel biological and physicochemical components for recycling wastewater on long duration human space missions. Functionally, this Alternative Water Processor (AWP) would replace the Urine Processing Assembly on the International Space Station and reduce or eliminate the need for the multi-filtration beds of the Water Processing Assembly (WPA). At its center are two unique game changing technologies: 1) a biological water processor (BWP) to mineralize organic forms of carbon and nitrogen and 2) an advanced membrane processor (Forward Osmosis Secondary Treatment) for removal of solids and inorganic ions. The AWP is designed for recycling larger quantities of wastewater from multiple sources expected during future exploration missions, including urine, hygiene (hand wash, shower, oral and shave) and laundry. The BWP utilizes a single-stage membrane-aerated biological reactor for simultaneous nitrification and denitrification. The Forward Osmosis Secondary Treatment (FOST) system uses a combination of forward osmosis (FO) and reverse osmosis (RO), is resistant to biofouling and can easily tolerate wastewaters high in non-volatile organics and solids associated with shower and/or hand washing. The BWP has been operated continuously for over 300 days. After startup, the mature biological system averaged 85% organic carbon removal and 44% nitrogen removal, close to stoichiometric maximum based on available carbon. To date, the FOST has averaged 93% water recovery, with a maximum of 98%. If the wastewater is slighty acidified, ammonia rejection is optimal. This paper will provide a description of the technology and summarize results from ground-based testing using real wastewater

  13. Measurements of Cosmic-Ray Proton and Helium Spectra from the BESS-Polar Long-Duration Balloon Flights Over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; hide

    2016-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.

  14. Developing and Evaluating Computer-Based Teamwork Skills Training for Long-Duration Spaceflight Crews

    Science.gov (United States)

    Hixson, Katharine

    2013-01-01

    Due to the long-duration and long distance nature of future exploration missions, coupled with significant communication delays from ground-based personnel, NASA astronauts will be living and working within confined, isolated environments for significant periods of time. This extreme environment poses concerns for the flight crews' ability to…

  15. Enhancing Team Performance for Long-Duration Space Missions

    Science.gov (United States)

    Orasanu, Judith M.

    2009-01-01

    Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.

  16. Radiation investigations during space flight

    International Nuclear Information System (INIS)

    Akatov, A.Yu.; Nevzgodina, L.V.; Sakovich, V.A.; Fekher, I.; Deme, Sh.; Khashchegan, D.

    1986-01-01

    Results of radiation investigations during ''Salyut-6'' orbital station flight are presented. The program of studying the environmental radioactivity at the station included ''Integral'' and ''Pille'' experiments. In the course of the ''Integral'' experiment absorbed dose distributions of cosmic radiation and heavy charged particle fluence for long time intervals were studied. Method, allowing one to study dose distributions and determine individual doses for any time interval rapidity and directly on board the station was tested in the course of ''Pille'' experiment for the first time. Attention is paid to measuring equipment. Effect of heavy charged particles on the cellular structure of air-dry Lactuca sativa lettuce seeds was studied in the course of radiobiological experiments conducted at ''Salyut-6'' station. It is shown, that with the increase of flight duration the frequency of cells with chromosomal aberrations increases

  17. MEASUREMENTS OF COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE BESS-POLAR LONG-DURATION BALLOON FLIGHTS OVER ANTARCTICA

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Itazaki, A.; Kusumoto, A.; Matsukawa, Y.; Orito, R. [Kobe University, Kobe, Hyogo 657-8501 (Japan); Fuke, H. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Haino, S.; Hasegawa, M.; Horikoshi, A.; Kumazawa, T.; Makida, Y.; Matsuda, S.; Matsumoto, K.; Nozaki, M. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Hams, T.; Mitchell, J. W. [NASA-Goddard Space Flight Center (NASA-GSFC), Greenbelt, MD 20771 (United States); Kim, K. C.; Lee, M. H.; Myers, Z. [IPST, University of Maryland, College Park, MD 20742 (United States); Nishimura, J., E-mail: Kenichi.Sakai@nasa.gov [The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); and others

    2016-05-10

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2–160 GeV and helium nuclei in the range 0.15–80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6–160 GV for protons and 1.1–160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.

  18. Self-guided Depression Treatment on Long-duration Space Flights: A Continuation Study

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2008-2009, we completed development and alpha-testing (debugging) of a depression treatment computer program. The program uses video, audio, graphics, and...

  19. Atmosphere Resource Recovery & Environmental Monitoring for Long Duration Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Atmosphere Resource Recovery & Environmental Monitoring (ARREM) for Long Duration Exploration Project project is maturing Atmosphere Revitalization...

  20. HyPlane for Space Tourism and Business Transportation

    Science.gov (United States)

    Savino, R.

    In the present work a preliminary study on a small hypersonic airplane for a long duration space tourism mission is presented. It is also consistent with a point-to-point medium range (5000-6000 km) hypersonic trip, in the frame of the "urgent business travel" market segment. The main ideas is to transfer technological solutions developed for aeronautical and space atmospheric re-entry systems to the design of such a hypersonic airplane. A winged vehicle characterized by high aerodynamic efficiency and able to manoeuvre along the flight path, in all aerodynamic regimes encountered, is taken into consideration. Rocket-Based Combined Cycle and Turbine-Based Combined Cycle engines are investigated to ensure higher performances in terms of flight duration and range. Different flight-paths are also considered, including sub-orbital parabolic trajectories and steady state hypersonic cruise. The former, in particular, takes advantage of the high aerodynamic efficiency during the unpowered phase, in combination with a periodic engine actuation, to guarantee a long duration oscillating flight path. These trajectories offer Space tourists the opportunity of extended missions, characterized by repeated periods of low-gravity at altitudes high enough to ensure a wide view of the Earth from Space.

  1. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  2. Ultrastructure of chlorella pyrenoidosa (Strain g-11-1) cell grown for a long time under conditions of space flight

    International Nuclear Information System (INIS)

    Sitnik, K.M.; Kordyum, Ye.L.; Mashins'kij, O.L.; Popova, A.F.; Grechko, G.M.

    1979-01-01

    Presented are the data on the electron-microscopic analysis of the Chlorella pyrenoidosa culture (the D-11-1 strain, a pigmentary mutant) growing in the IFS-2 instruments (an organic nutrient medium, darkness) during 28 days on board the space laboratory ''Salyut-6''. The cell density in the experimental culture is 4.6 times greater than the one under control. A number of differences in the structural-functional organization of experimental and control cells is shown. The investigations performed have shown that the cosmic flight factors significantly affect the growth and vital activity of the Chlorella culture having been in a physiologically active state for a long time under conditions of space flight

  3. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  4. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  5. Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle

    Science.gov (United States)

    Linne, Diane L.; Palaszewski, Bryan A.; Gokoglu, Suleyman; Gallo, Christopher A.; Balasubramaniam, Ramaswamy; Hegde, Uday G.

    2014-01-01

    The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.

  6. A new TDRSS Compatible Transceiver for Long Duration HIgh Altitude Scientific Balloon Missions

    Science.gov (United States)

    Stilwell, B.; Siemon, M.

    High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to several weeks. Longer missions with durations of up to 100 days (Ultra-Long) are on the drawing board. An enabling technology for the growth of the scientific balloon missions is the use of the NASA Tracking and Data Relay Satellite System (TDRSS) for telemetering the health, status, position and payload science data to mission operations personnel. The TDRSS system provides global coverage by relaying the data through geostationary relay satellites to a single ground station in White Sands New Mexico. Data passes from the White Sands station to the user via commercial telecommunications services including the Internet. A forward command link can also be established to the balloon for real- time command and control. Early TDRSS communications equipment used by the National Scientific Balloon Facility was either unreliable or too expensive. The equipment must be a le tob endure the rigors of space flight including radiation exposure, high temperature extremes and the shock of landing and recovery. Since a payload may occasionally be lost, the cost of the TDRSS communications gear is a limiting factor in the number of missions that can be supported. Under sponsorship of the NSBF, General Dynamics Decision Systems has developed a new TDRSS compatible transceiver that reduces the size, weight and cost to approximately one half that of the prior generation of hardware. This paper describes the long and ultra-long balloon missions and the role that TDRSS communications plays in mission success. The new transceiver design is described, along with its interfaces, performance characteristics, qualification and production status. The transceiver can also be used in other space, avionics or

  7. Exercise countermeasures for long-duration spaceflight: muscle- and intensity-specific considerations

    Science.gov (United States)

    Trappe, Todd

    2012-07-01

    On-orbit and ground-based microgravity simulation studies have provided a wealth of information regarding the efficacy of exercise countermeasures for protecting skeletal muscle and cardiovascular function during long-duration spaceflights. While it appears that exercise will be the central component to maintaining skeletal muscle and cardiovascular health of astronauts, the current exercise prescription is not completely effective and is time consuming. This lecture will focus on recent exercise physiology studies examining high intensity, low volume exercise in relation to muscle specific and cardiovascular health. These studies provide the basis of the next generation exercise prescription currently being implemented during long-duration space missions on the International Space Station.

  8. Young PHD's in Human Space Flight

    Science.gov (United States)

    Wilson, Eleanor

    2002-01-01

    The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.

  9. Cultivation in space flight produces minimal alterations in the susceptibility of Bacillus subtilis cells to 72 different antibiotics and growth-inhibiting compounds.

    Science.gov (United States)

    Morrison, Michael D; Fajardo-Cavazos, Patricia; Nicholson, Wayne L

    2017-08-18

    Past results have suggested that bacterial antibiotic susceptibility is altered during space flight. To test this notion, Bacillus subtilis cells were cultivated in matched hardware, medium, and environmental conditions either in spaceflight microgravity on the International Space Station, termed Flight (FL) samples, or at Earth-normal gravity, termed Ground Control (GC) samples. Susceptibility of FL and GC samples was compared to 72 antibiotics and growth-inhibitory compounds using the Omnilog Phenotype Microarray (PM) system. Only 9 compounds were identified by PM screening as exhibiting significant differences ( P flight. Importance: This study addresses a major concern of mission planners for human spaceflight, that bacteria accompanying astronauts on long-duration missions might develop a higher level of resistance to antibiotics due to exposure to the spaceflight environment. The results of this study do not support that notion. Copyright © 2017 American Society for Microbiology.

  10. Development and Provision of Functional Foods to Promote Health on Long-Duration Space Missions

    Science.gov (United States)

    Bermudez-Aguirre, D.; Cooper, M. R.; Douglas, G.; Smith, S.

    2016-01-01

    During long-duration NASA space missions, such as proposed missions to Mars, astronauts may experience negative physiological effects such as bone loss. Functional foods such as high-lycopene, high-flavonoids and high-omega-3 products and fruits and vegetables may mitigate the negative effects of spaceflight on physiological factors including the bone health of crewmembers. Previous studies showed that current ISS provisions provide high-lycopene and high-omega-3 food items but the variety is limited, which could promote menu fatigue. Bioactive compounds can degrade like other chemical compounds and lose functionality. The native concentrations and stability of bioactive compounds have never been determined in spaceflight foods, and adequate information is not available for commercial products for the storage durations required for space exploration (5 years). The purpose of this task is to develop new spaceflight foods that are high in omega-3 fatty acids, lycopene, or flavonoids, identify commercial products with these bioactive compounds that meet spaceflight requirements, and define the stability of these nutrients in storage to enable purposeful functional food incorporation into the space food system. The impact of storage temperature on the stability of lutein, lycopene, beta-carotene, omega-3 fatty acids, phenolics, anthocyanins and sterols is being studied in 12 ISS menu items stored at three different temperatures (4, 21, 35 degree C) over 2 years. Additionally, nutrient and quality stability are being assessed on a larger food set stored at 21 degree C over 2 years that contains twelve newly developed foods, 10 commercial products repackaged to spaceflight requirements, and another 5 current ISS menu items expected to be good sources of omega-3 fatty acids, lycopene, or flavonoids. All items were shipped overnight to the Linus Pauling Institute at Oregon State University (Corvalis, OR) after processing and 1-year of storage and analyzed for bioactive

  11. Virtual reality based surgical assistance and training system for long duration space missions.

    Science.gov (United States)

    Montgomery, K; Thonier, G; Stephanides, M; Schendel, S

    2001-01-01

    Access to medical care during long duration space missions is extremely important. Numerous unanticipated medical problems will need to be addressed promptly and efficiently. Although telemedicine provides a convenient tool for remote diagnosis and treatment, it is impractical due to the long delay between data transmission and reception to Earth. While a well-trained surgeon-internist-astronaut would be an essential addition to the crew, the vast number of potential medical problems necessitate instant access to computerized, skill-enhancing and diagnostic tools. A functional prototype of a virtual reality based surgical training and assistance tool was created at our center, using low-power, small, lightweight components that would be easy to transport on a space mission. The system consists of a tracked, head-mounted display, a computer system, and a number of tracked surgical instruments. The software provides a real-time surgical simulation system with integrated monitoring and information retrieval and a voice input/output subsystem. Initial medical content for the system has been created, comprising craniofacial, hand, inner ear, and general anatomy, as well as information on a number of surgical procedures and techniques. One surgical specialty in particular, microsurgery, was provided as a full simulation due to its long training requirements, significant impact on result due to experience, and likelihood for need. However, the system is easily adapted to realistically simulate a large number of other surgical procedures. By providing a general system for surgical simulation and assistance, the astronaut-surgeon can maintain their skills, acquire new specialty skills, and use tools for computer-based surgical planning and assistance to minimize overall crew and mission risk.

  12. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  13. Job stress and risk of menstrual duration disorder in female civilian flight attendants in Indonesia

    Directory of Open Access Journals (Sweden)

    Melissa Audry Rampen

    2016-03-01

    disorder in female flight attendants.Methods: A cross-sectional study with convenient sampling was conducted on civilian female flightattendants age 19–50 years who underwent routine medical examination at Civil Aviation Medical Centerand Garuda Sentra Medika, Jakarta on May 18-29 2015. Menstrual duration disorder is menstruation morethan 8 days and/or shorter than usual perid (3-5 days. Stress was identified by usingcriteria of NationalInstitute for Occupational Safety and Health Generic Job Stress Questionnaire Mental Demands FormNumber 11. Relative risk was analyzed usng Cox regression.Results: Among 521 female civilian flight attendants, 393 were willing to participate in this study. Nineteensubjects were excluded, leaving 374 subjects for this analysis, and 35.8% of subjects had menstrualduration disorder. Job stress, flight type and age were dominant risk factors for menstrual duration disorder.Subjects with job stress and long haul flight within three months had higher risk for having menstrualduration disorder by 58% [adjusted relative risk (RRa = 1.58; confidence interval (CI = 0.96-2.62; P =0.071] and 69% (RRa = 1.69; CI = 1.17-2.43 respectively. Those between aged 30-39 years had 50% hadless risk of having menstrual duration disorder (RRa=0.50; 95% CI = 0.22-1.02; P = 0.057.Conclusion: Female civilian flight attendants with job stress, long haul flight within three months and youngerage had higher risk to be menstrual duration disorder. (Health Science Journal of Indonesia 2015;6:87-91Key words: menstrual duration, job stress, female civilian flight attendant, Indonesia

  14. Applicability of Long Duration Exposure Facility environmental effects data to the design of Space Station Freedom electrical power system

    Science.gov (United States)

    Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene

    1992-01-01

    Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.

  15. Reproduction in the space environment: Part II. Concerns for human reproduction

    Science.gov (United States)

    Jennings, R. T.; Santy, P. A.

    1990-01-01

    Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.

  16. Enhancing data from commercial space flights (Conference Presentation)

    Science.gov (United States)

    Sherman, Ariel; Paolini, Aaron; Kozacik, Stephen; Kelmelis, Eric J.

    2017-05-01

    Video tracking of rocket launches inherently must be done from long range. Due to the high temperatures produced, cameras are often placed far from launch sites and their distance to the rocket increases as it is tracked through the flight. Consequently, the imagery collected is generally severely degraded by atmospheric turbulence. In this talk, we present our experience in enhancing commercial space flight videos. We will present the mission objectives, the unique challenges faced, and the solutions to overcome them.

  17. Determinants of long-duration commuting and long-duration commuters' perceptions and attitudes toward commuting time: Evidence from Kunming, China

    Directory of Open Access Journals (Sweden)

    Mingwei He

    2017-04-01

    Full Text Available Understanding the commuting patterns of long-duration commuters and the possible changes in these patterns can help policymakers adopt the more reasonable land use and transportation policies. With Kunming in China as a case study, the determinants of long-duration commuting trips were identified based on logistic regression model. The results indicated that age, education level, number of workers, presence of retirees, and residential location have a significant impact on the occurrence of long-duration commuting trips. The ideal commuting times and tolerance thresholds of commuting time of long-duration commuters were also investigated. The statistical results revealed the distributions of ideal commuting times and tolerance thresholds of commuting time of both short- and long-duration commuters. The average tolerance threshold of commuting time and the average ideal commuting time of long-duration commuters were greater than those of short-duration commuters. For 97.2% of the long-duration commuters, their actual commuting time was longer than the ideal commuting time; this finding indicates that most long-duration commuters are dissatisfied with their commuting time. The actual commuting time of 40.1% long-duration commuters exceeded their tolerance thresholds; these commuters are eager to reduce their commuting time.

  18. Behavioral Issues Associated With Long Duration Space Expeditions: Review and Analysis of Astronaut Journals

    Science.gov (United States)

    Struster, Jack

    2010-01-01

    Personal journals maintained by NASA astronauts during six-month expeditions onboard the International Space Station were analyzed to obtain information concerning a wide range of behavioral and human factors issues. Astronauts wrote most about their work, followed by outside communications (with mission control, family, and friends), adjustment to the conditions, interactions with crew mates, recreation/leisure, equipment (installation, maintenance), events (launches, docking, hurricanes, etc.), organization/management, sleep, and food. The study found evidence of a decline in morale during the third quarters of the missions and identified key factors that contribute to sustained adjustment and optimal performance during long-duration space expeditions. Astronauts reported that they benefited personally from writing in their journals because it helped maintain perspective on their work and relations with others. Responses to questions asked before, during, and after the expeditions show that living and working onboard the ISS is not as difficult as the astronauts anticipate before starting their six-month tours of duty. Recommendations include application of study results and continuation of the experiment to obtain additional data as crew size increases and operations evolve.

  19. Leak Mitigation in Mechanically Pumped Fluid Loops for Long Duration Space Missions

    Science.gov (United States)

    Miller, Jennifer R.; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Bhandari, Pradeep; Lee, Darlene; Karlmann, Paul; Liu, Yuanming

    2013-01-01

    Mechanically pumped fluid loops (MPFLs) are increasingly considered for spacecraft thermal control. A concern for long duration space missions is the leak of fluid leading to performance degradation or potential loop failure. An understanding of leak rate through analysis, as well as destructive and non-destructive testing, provides a verifiable means to quantify leak rates. The system can be appropriately designed to maintain safe operating pressures and temperatures throughout the mission. Two MPFLs on the Mars Science Laboratory Spacecraft, launched November 26, 2011, maintain the temperature of sensitive electronics and science instruments within a -40 deg C to 50 deg C range during launch, cruise, and Mars surface operations. With over 100 meters of complex tubing, fittings, joints, flex lines, and pumps, the system must maintain a minimum pressure through all phases of the mission to provide appropriate performance. This paper describes the process of design, qualification, test, verification, and validation of the components and assemblies employed to minimize risks associated with excessive fluid leaks from pumped fluid loop systems.

  20. Epstein-Barr virus shedding by astronauts during space flight

    Science.gov (United States)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  1. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    Science.gov (United States)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  2. Human factors and nuclear space technology in long-term exploration

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; VanHoozer, W.R.

    2000-01-01

    Allocation of manual versus automated tasks for operation and maintenance of nuclear power systems in space will be crucial at the onset and at the return of a space flight. Such factors as space adaptation syndrome (SAS), a temporary space motion sickness that has affected 40 to 50% of crew members on past space flights, can result in lost effort ranging from a few hours to a full day. This could have a significant impact on manual performance where high levels of execution are likely to be required in the very early stages of the mission. Other considerations involving higher-level behavioral phenomena such as interpersonal and group processes, individual belief systems, social and motivational factors, and (subjective) cognitive function have received little attention; nevertheless these will be essential elements for success in long-term exploration. Understanding that long-term space flight missions may create groups that become unique societies distinct unto themselves will test current ethical, moral, and social belief systems, requiring one to examine the amalgamation as well as organizational structures for the safety and balance of the crew

  3. Development of an Indexing Media Filtration System for Long Duration Space Missions

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles derived from multiple biological and material sources. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reduce-gravity flight tests data will be presented. The features of the new filter system may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical.

  4. Back pain in space and post-flight spine injury: Mechanisms and countermeasure development

    Science.gov (United States)

    Sayson, Jojo V.; Lotz, Jeffrey; Parazynski, Scott; Hargens, Alan R.

    2013-05-01

    During spaceflight many astronauts experience moderate to severe lumbar pain and deconditioning of paraspinal muscles. There is also a significant incidence of herniated nucleus pulposus (HNP) in astronauts post-flight being most prevalent in cervical discs. Relief of in-flight lumbar back pain is facilitated by assuming a knee-to-chest position. The pathogenesis of lumbar back pain during spaceflight is most likely discogenic and somatic referred (from the sinuvertebral nerves) due to supra-physiologic swelling of the lumbar intervertebral discs (IVDs) due to removal of gravitational compressive loads in microgravity. The knee-to-chest position may reduce lumbar back pain by redistributing stresses through compressive loading to the IVDs, possibly reducing disc volume by fluid outflow across IVD endplates. IVD stress redistribution may reduce Type IV mechanoreceptor nerve impulse propagation in the annulus fibrosus and vertebral endplate resulting in centrally mediated pain inhibition during spinal flexion. Countermeasures for lumbar back pain may include in-flight use of: (1) an axial compression harness to prevent excessive IVD expansion and spinal column elongation; (2) the use of an adjustable pulley exercise developed to prevent atrophy of spine muscle stabilisers; and (3) other exercises that provide Earth-like annular stress with low-load repetitive active spine rotation movements. The overall objective of these countermeasures is to promote IVD health and to prevent degenerative changes that may lead to HNPs post-flight. In response to "NASA's Critical Path Roadmap Risks and Questions" regarding disc injury and higher incidence of HNPs after space flight (Integrated Research Plan Gap-B4), future studies will incorporate pre- and post-flight imaging of International Space Station long-duration crew members to investigate mechanisms of lumbar back pain as well as degeneration and damage to spinal structures. Quantitative results on morphological, biochemical

  5. The Effects of Long-Duration Spaceflight on Training Retention and Transfer

    Science.gov (United States)

    Barshi, Immanuel; Healy, Alice; Dempsey, Donna L.; McGuire, Kerry M.; Landon, Lauren B.

    2018-01-01

    Training our crew members for long duration, exploration-class missions will have to maximize long-term retention and transfer of the trained skills. The expected duration of the missions, our inability to predict all the possible tasks the crew will be called upon to perform, and the low training-to-mission time ratio require that the training be maximally effective such that the skills acquired during training will be retained and will be transferrable across a wide range of specific tasks that are different from the particular tasks used during training. However, to be able to design training that can achieve these ambitious goals, we must first understand the ways in which long-duration spaceflight affects training retention and transfer. Current theories of training retention and transfer are largely based on experimental studies conducted at university laboratories using undergraduate students as participants. Furthermore, all such studies have been conducted on Earth. We do not know how well the results of these studies predict the performance of crew members. More specifically, we do not know how well the results of these studies predict the performance of crew members in space and especially during long-duration missions. To address this gap in our knowledge, the current on-going study seeks to test the null hypothesis that performance of university undergraduate students on Earth on training retention and transfer tests do in fact predict accurately the performance of crew members during long-duration spaceflights. To test this hypothesis, the study employs a single 16-month long experimental protocol with 3 different participant groups: undergraduate university students, crew members on the ground, and crew members in space. Results from this study will be presented upon its completion. This poster presents results of study trials of the two tasks used in this study: a data entry task and a mapping task. By researching established training principles, by

  6. Latent viral reactivation is associated with changes in plasma antimicrobial protein concentrations during long-duration spaceflight

    Science.gov (United States)

    Spielmann, G.; Laughlin, M. S.; Kunz, H.; Crucian, B. E.; Quiriarte, H. D.; Mehta, S. K.; Pierson, D. L.; Simpson, R. J.

    2018-05-01

    Long duration spaceflights are associated with profound dysregulation of the immune system and latent viral reactivations. However, little is known on the impact of long duration spaceflight on innate immunity which raises concerns on crewmembers' ability to fight infections during a mission. The aim of this study was to determine the effects of spaceflight on plasma antimicrobial proteins (AMPs) and how these changes impact latent herpesvirus reactivations. Plasma, saliva and urine samples were obtained from 23 crewmembers before, during and after a 6-month mission on the International Space Station (ISS). Plasma AMP concentrations were determined by ELISA, and saliva Epstein-Barr virus (EBV) and varicella zoster virus (VZV) and urine cytomegalovirus (CMV) DNA levels were quantified by Real-Time PCR. There was a non-significant increase in plasma HNP1-3 and LL-37 during the early and middle stages of the missions, which was significantly associated with changes in viral DNA during and after spaceflight. Plasma HNP1-3 and Lysozyme increased at the late mission stages in astronauts who had exhibited EBV and VZV reactivations during the early flight stages. Following return to Earth and during recovery, HNP1-3 and lysozyme concentrations were associated with EBV and VZV viral DNA levels, reducing the magnitude of viral reactivation. Reductions in plasma LL-37 upon return were associated with greater CMV reactivation. This study shows that biomarkers of innate immunity appeared to be partially restored after 6-months in space and suggests that following adaptation to the space environment, plasma HNP1-3 and lysozyme facilitate the control of EBV and VZV reactivation rate and magnitude in space and upon return on earth. However, the landing-associated decline in plasma LL-37 may enhance the rate of CMV reactivation in astronauts following spaceflight, potentially compromising crewmember health after landing.

  7. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    Science.gov (United States)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  8. Pioneering Space Research with Balloons

    Science.gov (United States)

    Jones, W. V.

    NASA s Scientific Ballooning Planning Team has concluded that ballooning enables significant scientific discoveries while providing test beds for space instruments and training for young scientists Circumpolar flights around Antarctica have been spectacularly successful with fight durations up to 42 days Demand for participation in this Long-Duration Balloon LDB program a partnership with the U S National Science Foundation Office of Polar Programs is greater than the current capacity of two flights per campaign Given appropriate international agreements LDB flights in the Northern Hemisphere would be competitive with Antarctic flights and super-pressure balloons would allow comparable flights at any latitude The Balloon Planning Team made several recommendations for LDB flights provide a reliable funding source for sophisticated payloads extend the Antarctic capability to three flights per year and develop a comparable capability in the Arctic provide aircraft for intact-payload recovery develop a modest trajectory modification capability to enable longer flights and enhance super-pressure balloons to carry 1-ton payloads to 38 km Implementation of these recommendations would facilitate frequent access to near-space for cutting-edge research and technology development for a wide range of investigations

  9. Results from the Joint US/Russian Sensory-Motor Investigations

    Science.gov (United States)

    1997-01-01

    In this session, Session FA3, the discussion focuses on the following topics: The Effect of Long Duration Space Flight on the Acquisition of Predictable Targets in Three Dimensional Space; Effects of Microgravity on Spinal Reflex Mechanisms; Three Dimensional Head Movement Control During Locomotion After Long-Duration Space Flight; Human Body Shock Wave Transmission Properties After Long Duration Space Flight; Adaptation of Neuromuscular Activation Patterns During Locomotion After Long Duration Space Flight; Balance Control Deficits Following Long-Duration Space Flight; Influence of Weightlessness on Postural Muscular Activity Coordination; and The Use of Inflight Foot Pressure as a Countermeasure to Neuromuscular Degradation.

  10. Nutrition for Space Exploration

    Science.gov (United States)

    Smith, Scott M.

    2005-01-01

    Nutrition has proven to be critical throughout the history of human exploration, on both land and water. The importance of nutrition during long-duration space exploration is no different. Maintaining optimal nutritional status is critical for all bodily systems, especially in light of the fact that that many are also affected by space flight itself. Major systems of concern are bone, muscle, the cardiovascular system, the immune system, protection against radiation damage, and others. The task ahead includes defining the nutritional requirements for space travelers, ensuring adequacy of the food system, and assessing crew nutritional status before, during, and after flight. Accomplishing these tasks will provide significant contributions to ensuring crew health on long-duration missions. In addition, development and testing of nutritional countermeasures to effects of space flight is required, and assessment of the impact of other countermeasures (such as exercise and pharmaceuticals) on nutrition is also critical for maintaining overall crew health. Vitamin D stores of crew members are routinely low after long-duration space flight. This occurs even when crew members take vitamin D supplements, suggesting that vitamin D metabolism may be altered during space flight. Vitamin D is essential for efficient absorption of calcium, and has numerous other benefits for other tissues with vitamin D receptors. Protein is a macronutrient that requires additional study to define the optimal intake for space travelers. Administration of protein to bed rest subjects can effectively mitigate muscle loss associated with disuse, but too much or too little protein can also have negative effects on bone. In another bed rest study, we found that the ratio of protein to potassium was correlated with the level of bone resorption: the higher the ratio, the more bone resorption. These relationships warrant further study to optimize the beneficial effect of protein on both bone and muscle

  11. Dose measurements and LET-determination in space station MIR during the Russian long term flight RLF

    International Nuclear Information System (INIS)

    Vana, N.; Schoener, N.; Fugger, M.; Akatov, Y.; Shurshakov, V.

    1996-01-01

    For determination of the absorbed dose and the dose equivalent in complex mixed radiation fields, new methods were developed in the frame of the Austrian-Soviet space mission AUSTROMIR in October 1991. The method utilizes the changes of peak height ratios in thermoluminescence glowcurves. Peak height ratios depend on the linear energy transfer (LET) of absorbed radiation. This effect was calibrated in different radiation fields (alpha-, beta-, gamma-, neutron fields and heavy charged particle beams). The method was approached for dose measurements during several space programs (DOSIMIR, BION-10, PHOTONS). During the Russian long term flight RLF six dosemeter packets were exposed in three different periods. Two positions with different shielding (the working area and the cabin of the board engineer) were chosen for the exposition of the dosemeters during each period in order to measure the variation of absorbed dose as well as the variation of average LET of absorbed radiation within the habitable part of space station MIR. These results will be compared with the results during two former periods of measurements on space station MIR (AUSTROMIR/DOSIMIR) and results obtained inside of biosatellite BION-10 and during the space shuttle mission STS-60. (author)

  12. NASA Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  13. Sensory-Motor Adaptation to Space Flight: Human Balance Control and Artificial Gravity

    Science.gov (United States)

    Paloski, William H.

    2004-01-01

    Gravity, which is sensed directly by the otolith organs and indirectly by proprioceptors and exteroceptors, provides the CNS a fundamental reference for estimating spatial orientation and coordinating movements in the terrestrial environment. The sustained absence of gravity during orbital space flight creates a unique environment that cannot be reproduced on Earth. Loss of this fundamental CNS reference upon insertion into orbit triggers neuro-adaptive processes that optimize performance for the microgravity environment, while its reintroduction upon return to Earth triggers neuro-adaptive processes that return performance to terrestrial norms. Five pioneering symposia on The Role of the Vestibular Organs in the Exploration of Space were convened between 1965 and 1970. These innovative meetings brought together the top physicians, physiologists, and engineers in the vestibular field to discuss and debate the challenges associated with human vestibular system adaptation to the then novel environment of space flight. These highly successful symposia addressed the perplexing problem of how to understand and ameliorate the adverse physiological effects on humans resulting from the reduction of gravitational stimulation of the vestibular receptors in space. The series resumed in 2002 with the Sixth Symposium, which focused on the microgravity environment as an essential tool for the study of fundamental vestibular functions. The three day meeting included presentations on historical perspectives, vestibular neurobiology, neurophysiology, neuroanatomy, neurotransmitter systems, theoretical considerations, spatial orientation, psychophysics, motor integration, adaptation, autonomic function, space motion sickness, clinical issues, countermeasures, and rehabilitation. Scientists and clinicians entered into lively exchanges on how to design and perform mutually productive research and countermeasure development projects in the future. The problems posed by long duration

  14. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  15. Comparing future options for human space flight

    Science.gov (United States)

    Sherwood, Brent

    2011-09-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10 10/year expense in the US. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options— Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon—which are then analyzed for their purpose, societal myth, legacy benefits, core needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialog with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  16. Effects of prolonged exposure to space flight factors for 175 days on lettuce seeds

    International Nuclear Information System (INIS)

    Nevzgodina, L.V.; Maximova, E.N.; Akatov, Yu.A.

    1981-01-01

    The effects of prolonged (up to 175 days) exposure of Lactuca sativa seeds to space flight factors, including primary cosmic radiation heavy ions have been studied. The data obtained evidence a significant fourfold increase of spontaneous mutagenesis in seeds both with regard to the total number of aberrant cells as well as the formation of single cells with multiple aberrations. Comparison of the present experiment with earlier works shows that the frequency of such aberrations increases with the duration of the flight

  17. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  18. Space exercise and Earth benefits.

    Science.gov (United States)

    Macias, Brandon R; Groppo, Eli R; Eastlack, Robert K; Watenpaugh, Donald E; Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Smith, Scott M; Cutuk, Adnan; Pedowitz, Robert A; Meyer, R Scott; Hargens, Alan R

    2005-08-01

    The detrimental impact of long duration space flight on physiological systems necessitates the development of exercise countermeasures to protect work capabilities in gravity fields of Earth, Moon and Mars. The respective rates of physiological deconditioning for different organ systems during space flight has been described as a result of data collected during and after missions on the Space Shuttle, International Space Station, Mir, and bed rest studies on Earth. An integrated countermeasure that simulates the body's hydrostatic pressure gradient, provides mechanical stress to the bones and muscles, and stimulates the neurovestibular system may be critical for maintaining health and well being of crew during long-duration space travel, such as a mission to Mars. Here we review the results of our studies to date of an integrated exercise countermeasure for space flight, lower body negative pressure (LBNP) treadmill exercise, and potential benefits of its application to athletic training on Earth. Additionally, we review the benefits of Lower Body Positive Pressure (LBPP) exercise for rehabilitation of postoperative patients. Presented first are preliminary data from a 30-day bed rest study evaluating the efficacy of LBNP exercise as an integrated exercise countermeasure for the deconditioning effects of microgravity. Next, we review upright LBNP exercise as a training modality for athletes by evaluating effects on the cardiovascular system and gait mechanics. Finally, LBPP exercise as a rehabilitation device is examined with reference to gait mechanics and safety in two groups of postoperative patients.

  19. Objective techniques for psychological assessment, phase 2. [techniques for measuring human performance during space flight stress

    Science.gov (United States)

    Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.

    1974-01-01

    Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.

  20. Stressors, stress and stress consequences during long-duration manned space missions: a descriptive model

    Science.gov (United States)

    Geuna, Stefano; Brunelli, Francesco; Perino, Maria A.

    Keeping crew members in good health is a major factor in the success or failure of long-duration manned space missions. Among the many possible agents that can affect the crew's general well-being, stress is certainly one of the most critical because of its implications on human health and performance, both physical and mental. Nevertheless, very few studies have been performed on this fundamental issue and none of them has addressed it in its entirity, considering its diverse physical and psychological aspects. In this work, a descriptive model is proposed to expound the mechanism and sequence of events which mediate stress. A critical analysis of the information provided by past manned spaceflights and by dedicated research performed in analogous environments is presented, and an extrapolation of the available data on human stress in such extreme conditions is proposed. Both internal and external stressors have been identified, at physical and psychosocial levels, thus providing the basis for their early detection and preventive reduction. The possible negative consequences of stress that may lead to disease in crewmembers are described. Finally, the most effective instruments which may be of help in reducing space-related human stress and treating its negative consequences are suggested.

  1. Use of the Long Duration Exposure Facility's thermal measurement system for the verification of thermal models

    Science.gov (United States)

    Berrios, William M.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) postflight thermal model predicted temperatures were matched to flight temperature data recorded by the Thermal Measurement System (THERM), LDEF experiment P0003. Flight temperatures, recorded at intervals of approximately 112 minutes for the first 390 days of LDEF's 2105 day mission were compared with predictions using the thermal mathematical model (TMM). This model was unverified prior to flight. The postflight analysis has reduced the thermal model uncertainty at the temperature sensor locations from +/- 40 F to +/- 18 F. The improved temperature predictions will be used by the LDEF's principal investigators to calculate improved flight temperatures experienced by 57 experiments located on 86 trays of the facility.

  2. Space Plant Biology Research at KSC

    Science.gov (United States)

    Romeyn, Matthew

    2016-01-01

    Long duration space exploration will require the capability for crews to grow their own food. Growing food is desirable from a mass-efficiency standpoint, as it is currently not feasible to carry enough prepackaged food on spacecraft to sustain crews for long duration missions. Nutritionally, fresh produce provides key nutrients that are not preserved well in pre-packaged meals (e.g. vitamins C and K) and those that are able to counteract detrimental effects of space flight, such as antioxidants to combat radiation exposure and lutein for decreasing macular degeneration. Additionally, there are significant psychological benefits of maintaining gardens, one being an indicator for the passage of time.

  3. Microcontroller uses in Long-Duration Ballooning

    Science.gov (United States)

    Jones, Joseph

    This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required

  4. Space shuttle solid rocket booster cost-per-flight analysis technique

    Science.gov (United States)

    Forney, J. A.

    1979-01-01

    A cost per flight computer model is described which considers: traffic model, component attrition, hardware useful life, turnaround time for refurbishment, manufacturing rates, learning curves on the time to perform tasks, cost improvement curves on quantity hardware buys, inflation, spares philosophy, long lead, hardware funding requirements, and other logistics and scheduling constraints. Additional uses of the model include assessing the cost per flight impact of changing major space shuttle program parameters and searching for opportunities to make cost effective management decisions.

  5. Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: An emerging understanding

    Science.gov (United States)

    Marshall-Bowman, Karina; Barratt, Michael R.; Gibson, C. Robert

    2013-06-01

    For many years, there have been anecdotal reports of vision changes by astronauts following short and long-duration spaceflight. Much of this was attributed to hyperopic shifts related to the age of the flying population. However, it has recently been recognized that vision changes are actually quite common in astronauts and are associated with a constellation of findings including elevated intracranial pressure, optic disc edema, globe flattening, optic nerve sheath thickening, hyperopic shifts and retinal changes. With advanced imaging modalities available on the ground along with the fidelity of in-flight diagnostic capabilities previously unavailable, information on this newly recognized syndrome is accumulating. As of this writing, 11 cases of visual impairment experienced by astronauts during missions on-board the International Space Station (ISS) have been documented and studied. Although the exact mechanisms of the vision changes are unknown, it is hypothesized that increased intracranial pressure (ICP) is a contributing factor. Microgravity is the dominant cause of many physiological changes during spaceflight and is thought to contribute significantly to the observed ophthalmic changes. However, several secondary factors that could contribute to increased ICP and vision changes in spaceflight have been proposed. Possible contributors include microgravity-induced cephalad fluid shift, venous obstruction due to microgravity-induced anatomical shifts, high levels of spacecraft cabin carbon dioxide, heavy resistive exercise, and high sodium diet. Individual susceptibility to visual impairment is not fully understood, though a demographic of affected astronauts is emerging. This paper describes the current understanding of this newly recognized syndrome, presents data from 11 individual cases, and discusses details of potential contributing factors. The occurrence of visual changes in long duration missions in microgravity is one of the most significant

  6. Design and Parametric Sizing of Deep Space Habitats Supporting NASA'S Human Space Flight Architecture Team

    Science.gov (United States)

    Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary

    2012-01-01

    NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.

  7. In-flight observation of long duration gamma-ray glows by aircraft

    Science.gov (United States)

    Kochkin, Pavlo; (Lex) van Deursen, A. P. J.; de Boer, Alte; Bardet, Michiel; Allasia, Cedric; Boissin, Jean Francois; Ostgaard, Nikolai

    2017-04-01

    The Gamma-Ray Glow is a long-lasting (several seconds to minutes) X- and gamma radiation presumably originated from high-electric field of thunderclouds. Such glows were previously observed by aircraft, balloons, and from the ground. When detected on ground with other particles, i.e. electrons and neutrons, they are usually called Thunderstorm Ground Enhancements (TGEs). Their measured spectra are often consistent with Relativistic Runaway Electron Avalanche (RREA) mechanism. That is why RREA is a commonly accepted explanation for their existence. The gamma-ray glows are observed to be interrupted by lightning discharge, which terminates the high-electric field region. In January 2016 an Airbus A340 factory test aircraft was performing intentional flights through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system called ILDAS (http://ildas.nlr.nl). The system also contained two scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. While being at 12 km altitude the system detected a gamma-ray flux enhancement 30 times the background counts. It lasted for 20 seconds and was abruptly terminated by a lightning flash. The flash hit the aircraft and its parameters were recorded with 10 ns sampling time including gamma radiation. Ground-based lightning detection network WWLLN detected 4 strikes in the nearby region, all in association with the same flash. The ILDAS system recorded the time-resolved spectrum of the glow. In 6 minutes, after making a U-turn, the aircraft passed the same glow region. Smaller gamma-ray enhancement was again detected. In this presentation we will show the mapped event timeline including airplane, gamma-ray glow, WWLLN, and cloud data. We will discuss the glow's properties, i.e. intensity and differential spectrum, and its possible origin. This result will also be compared to previously reported observations.

  8. HUMAN SPACE FLIGHTS: FACTS AND DREAMS

    Directory of Open Access Journals (Sweden)

    Mariano Bizzarri

    2011-12-01

    Full Text Available Manned space flight has been the great human and technological adventure of the past half-century. By putting people into places and situations unprecedented in history, it has stirred the imagination while expanding and redefining the human experience. However, space exploration obliges men to confront a hostile environment of cosmic radiation, microgravity, isolation and changes in the magnetic field. Any space traveler is therefore submitted to relevant health threats. In the twenty-first century, human space flight will continue, but it will change in the ways that science and technology have changed on Earth: it will become more networked, more global, and more oriented toward primary objectives. A new international human space flight policy can help achieve these objectives by clarifying the rationales, the ethics of acceptable risk, the role of remote presence, and the need for balance between funding and ambition to justify the risk of human lives.

  9. Development of Storage Methods for Saccharomyces Strains to be Utilized for In situ Nutrient Production in Long-Duration Space Missions

    Science.gov (United States)

    Ball, Natalie; Kagawa, Hiromi; Hindupur, Aditya; Hogan, John

    2017-01-01

    Long-duration space missions will benefit from closed-loop life support technologies that minimize mass, volume, and power as well as decrease reliance on Earth-based resupply. A system for In situ production of essential vitamins and nutrients can address the documented problem of degradation of stored food and supplements. Research has shown that the edible yeast Saccharomyces cerevisiae can be used as an on-demand system for the production of various compounds that are beneficial to human health. A critical objective in the development of this approach for long-duration space missions is the effective storage of the selected microorganisms. This research investigates the effects of different storage methods on survival rates of the non-sporulating probiotic S. boulardii, and S. cerevisiae spores and vegetative cells. Dehydration has been shown to increase long-term yeast viability, which also allows increased shelf-life and reduction in mass and volume. The process of dehydration causes detrimental effects on vegetative cells, including oxidative damage and membrane disruption. To maximize cell viability, various dehydration methods are tested here, including lyophilization (freeze-drying), air drying, and dehydration by vacuum. As a potential solution to damage caused by lyophilization, the efficacy of various cryoprotectants was tested. Furthermore, in an attempt to maintain higher survival rates, the effect of temperature during long-term storage was investigated. Data show spores of the wild-type strain to be more resilient to dehydration-related stressors than vegetative cells of either strain, and maintain high viability rates even after one year at room temperature. In the event that engineering the organism to produce targeted nutrient compounds interferes with effective sporulation of S. cerevisiae, a more robust method for improving vegetative cell storage is being sought. Therefore, anhydrobiotic engineering of S. cerevisiae and S. boulardii is being

  10. Game-based evaluation of personalized support for astronauts in long duration missions

    NARCIS (Netherlands)

    Smets, N.J.J.M.; Abbing, M.S.; Neerincx, M.A.; Lindenberg, J.; Oostendorp, H. van

    2008-01-01

    Long duration missions set high requirements for personalized astronaut support that takes into account the social, cognitive and affective state of the astronaut. Such support should be tested as thoroughly as possible before deployment into space. The in-orbit influences of the astronaut's state

  11. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    Science.gov (United States)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  12. Fluid Shifts Before, During and After Prolonged Space Flight and Their Association with Intracranial Pressure and Visual Impairment

    Science.gov (United States)

    Stenger, Michael; Hargens, Alan; Dulchavsky, Scott

    2014-01-01

    Future human space travel will primarily consist of long duration missions onboard the International Space Station or exploration class missions to Mars, its moons, or nearby asteroids. Current evidence suggests that long duration missions might increase risk of permanent ocular structural and functional changes, possibly due to increased intracranial pressure resulting from a spaceflight-induced cephalad (headward) fluid shift.

  13. Radiations and space flight

    International Nuclear Information System (INIS)

    Maalouf, M.; Vogin, G.; Foray, N.; Maalouf; Vogin, G.

    2011-01-01

    A space flight is submitted to 3 main sources of radiation: -) cosmic radiation (4 protons/cm 2 /s and 10000 times less for the heaviest particles), -) solar radiation (10 8 protons/cm 2 /s in the solar wind), -) the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm 2 /s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 μGray per day with an average dose rate of 0.28 μGray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  14. Changes of hormones regulating electrolyte metabolism after space flight and hypokinesia

    Science.gov (United States)

    Macho, L.; Fickova, M.; Lichardus, B.; Kvetnansky, R.; Carrey, R. M.; Grigoriev, A.; Popova, I. A.; Tigranian, R. A.; Noskov, V. B.

    The changes of hormones in plasma involved in the body fluid regulation were studied in human subjects during and after space flights in relation to redistribution of body fluids in the state of weightlessness. Since hypokinesia was used as a model for simulation of some effects of the stay in microgravity the plasma hormone levels in rats exposed to hypokinesia were also investigated. Plasma aldosterone values showed great individual variations during the first inflight days, the increased levels were observed with prolongation of space flights. The important elevation was found in the recovery period, however it was interesting to note, that in some cosmonauts with repeated exposure to space flight, the postflight plasma aldosterone levels were not elevated. The urine excretion of aldosterone was increased inflight, however in postflight period the decrease or increase were found in the first 1-5 days. The increase of plasma renin activity was observed in flight and postflight period. The rats were exposed to hypokinesia (forced restriction of motor activity) for 1, 7 and 60 days and urine was collected during last 24 hours. The animals were sacrificed and the concentration of electrolytes and of levels of corticosterone aldosteron (A), ANF and plasma-renin activity (PRA) were determined in plasma. In urine excretion of sodium and potassium were estimated. An important increase of plasma renin activity and aldosterone concentration was found after short-term hypokinesia (1 day). These hormonal values appear to decrease with time (7 days) and are not significantly different from controls after long-term hypokinesia (60 days). A decrease of values ANF in plasma was observed after 1 and 7 days hypokinesia. After prolonged hypokinesia a decrease of sodium plasma concentration was observed. The excretion of sodium in urine was higher in long-term hypokinetic animals. There were no significant changes of plasma potassium levels in rats exposed to hypokinesia, however

  15. The Texas space flight liability act and efficient regulation for the private commercial space flight era

    Science.gov (United States)

    Johnson, Christopher D.

    2013-12-01

    In the spring of 2011, the American state of Texas passed into law an act limiting the liability of commercial space flight entities. Under it, those companies would not be liable for space flight participant injuries, except in cases of intentional injury or injury proximately caused by the company's gross negligence. An analysis within the framework of international and national space law, but especially informed by the academic discipline of law and economics, discusses the incentives of all relevant parties and attempts to understand whether the law is economically "efficient" (allocating resources so as to yield maximum utility), and suited to further the development of the fledgling commercial suborbital tourism industry. Insights into the Texas law are applicable to other states hoping to foster commercial space tourism and considering space tourism related legislation.

  16. Solar Cell to Support Perpetual Flight of High Altitude Long Endurance UAV ITB

    Science.gov (United States)

    Luqmanul Hakim, Muhammad; Silitonga, Faber Y.; Rosid, Nurhayyan H.; Mochammad Agoes Moelyadi, Ing., Dr.

    2018-04-01

    Research on a High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is currently being conducted at Bandung Institute of Technology to reach the flight duration needed and to get the solution of today’s challenges, minimizing pollution. Besides the good aerodynamic efficiency needed, energy resource is now becoming important. The energy resource must have a good endurance, easy to get, and of course, less pollution. Discussion in this paper is about the analysis of power needed by HALE UAV while takeoff and cruise flight conditions, and then determine the amount of solar cell and battery needed by the UAV.

  17. Women's Health Issues in the Space Environment

    Science.gov (United States)

    Jennings, Richard T.

    1999-01-01

    Women have been an integral part of US space crews since Sally Ride's mission in 1983, and a total of 40 women have been selected as US astronauts. The first Russian female cosmonaut flew in 1963. This presentation examines the health care and reproductive aspects of flying women in space. In addition, the reproductive implications of delaying one's childbearing for an astronaut career and the impact of new technology such as assisted reproductive techniques are examined. The reproductive outcomes of the US female astronauts who have become pregnant following space flight exposure are also presented. Since women have gained considerable operational experience on the Shuttle, Mir and during EVA, the unique operational considerations for preflight certification, menstruation control and hygiene, contraception, and urination are discussed. Medical and surgical implications for women on long-duration missions to remote locations are still evolving, and enabling technologies for health care delivery are being developed. There has been considerable progress in the development of microgravity surgical techniques, including laparoscopy, thoracoscopy, and laparotomy. The concepts of prevention of illness, conversion of surgical conditions to medically treatable conditions and surgical intervention for women on long duration space flights are considered.

  18. Heart rate variability and short duration spaceflight: relationship to post-flight orthostatic intolerance

    Directory of Open Access Journals (Sweden)

    Blaber Andrew P

    2004-04-01

    Full Text Available Abstract Background Upon return from space many astronauts experience symptoms of orthostatic intolerance. Research has implicated altered autonomic cardiovascular regulation due to spaceflight with further evidence to suggest that there might be pre-flight autonomic indicators of post-flight orthostatic intolerance. We used heart rate variability (HRV to determine whether autonomic regulation of the heart in astronauts who did or did not experience post-flight orthostatic intolerance was different pre-flight and/or was differentially affected by short duration (8 – 16 days spaceflight. HRV data from ten-minute stand tests collected from the 29 astronauts 10 days pre-flight, on landing day and three days post-flight were analysed using coarse graining spectral analysis. From the total power (PTOT, the harmonic component was extracted and divided into high (PHI: >0.15 Hz and low (PLO: = 0.15 Hz frequency power regions. Given the distribution of autonomic nervous system activity with frequency at the sinus node, PHI/PTOT was used as an indicator of parasympathetic activity; PLO/PTOT as an indicator of sympathetic activity; and, PLO/PHI as an estimate of sympathovagal balance. Results Twenty-one astronauts were classified as finishers, and eight as non-finishers, based on their ability to remain standing for 10 minutes on landing day. Pre-flight, non-finishers had a higher supine PHI/PTOT than finishers. Supine PHI/PTOT was the same pre-flight and on landing day in the finishers; whereas, in the non-finishers it was reduced. The ratio PLO/PHI was lower in non-finishers compared to finishers and was unaffected by spaceflight. Pre-flight, both finishers and non-finishers had similar supine values of PLO/PTOT, which increased from supine to stand. Following spaceflight, only the finishers had an increase in PLO/PTOT from supine to stand. Conclusions Both finishers and non-finishers had an increase in sympathetic activity with stand on pre-flight

  19. Body mass, energy intake, and water consumption of rats and humans during space flight

    Science.gov (United States)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  20. Bisphosphonate ISS Flight Experiment

    Science.gov (United States)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; hide

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control

  1. Real-time Ultrasound Assessment of Astronaut Spinal Anatomy and Disorders on the International Space Station.

    Science.gov (United States)

    Garcia, Kathleen M; Harrison, Michael F; Sargsyan, Ashot E; Ebert, Douglas; Dulchavsky, Scott A

    2018-04-01

    Back pain is one of the most common conditions of astronauts during spaceflight and is hypothesized to be attributed to pathologic anatomic changes. Ultrasound (US) represents the only available imaging modality on the International Space Station, but a formal US protocol for imaging the structures of the spinal column does not exist. This investigation developed a method of acquiring diagnostic-quality images of the anterior lumbar and cervical regions of the spine during long-duration spaceflight. Comprehensive spinal US examinations were conducted on 7 long-duration spaceflight astronauts before flight, in flight, and after flight and compared to preflight and postflight magnetic resonance imaging data. In-flight scans were conducted after just-in-time training assisted by remote expert tele-US guidance. Novice users were able to obtain diagnostic-quality spinal images with a 92.5% success rate. Thirty-three anomalous or pathologic findings were identified during the preflight US analysis, and at least 14 new findings or progressions were identified during the postflight US analysis. Common findings included disk desiccation, osteophytes, and qualitative changes in the intervertebral disk height and angle. Ultrasound has proven efficacy as a portable and versatile diagnostic imaging modality under austere conditions. We demonstrated a potential role for US to evaluate spinal integrity and alterations in the extreme environment of space on the International Space Station. Further investigations should be performed to corroborate this imaging technique and to create a larger database related to in-flight spinal conditions during long-duration spaceflight. © 2017 by the American Institute of Ultrasound in Medicine.

  2. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    Science.gov (United States)

    Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  3. Advanced Resistive Exercise Device (ARED) Flight Software (FSW): A Unique Approach to Exercise in Long Duration Habitats

    Science.gov (United States)

    Mangieri, Mark

    2005-01-01

    ARED flight instrumentation software is associated with an overall custom designed resistive exercise system that will be deployed on the International Space Station (ISS). This innovative software application fuses together many diverse and new technologies into a robust and usable package. The software takes advantage of touchscreen user interface technology by providing a graphical user interface on a Windows based tablet PC, meeting a design constraint of keyboard-less interaction with flight crewmembers. The software interacts with modified commercial data acquisition (DAQ) hardware to acquire multiple channels of sensor measurment from the ARED device. This information is recorded on the tablet PC and made available, via International Space Station (ISS) Wireless LAN (WLAN) and telemetry subsystems, to ground based mission medics and trainers for analysis. The software includes a feature to accept electronically encoded prescriptions of exercises that guide crewmembers through a customized regimen of resistive weight training, based on personal analysis. These electronically encoded prescriptions are provided to the crew via ISS WLAN and telemetry subsystems. All personal data is securely associated with an individual crew member, based on a PIN ID mechanism.

  4. The French balloon and sounding rocket space program

    Science.gov (United States)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  5. Biofilm initiation and growth of Pseudomonas aeruginosa on 316L stainless steel in low gravity in orbital space flight

    Science.gov (United States)

    Todd, Paul; Pierson, Duane L.; Allen, Britt; Silverstein, JoAnn

    The formation of biofilms by water microorganisms such as Pseudomonas aeruginosa in spacecraft water systems has been a matter of concern for long-duration space flight. Crewed spacecraft plumbing includes internal surfaces made of 316L stainless steel. Experiments were therefore undertaken to compare the ability of P. aeruginosa to grow in suspension, attach to stainless steel and to grow on stainless steel in low gravity on the space shuttle. Four categories of cultures were studied during two space shuttle flights (STS-69 and STS-77). Cultures on the ground were held in static horizontal or vertical cylindrical containers or were tumbled on a clinostat and activated under conditions identical to those for the flown cultures. The containers used on the ground and in flight were BioServe Space Technologies’ Fluid Processing Apparatus (FPA), an open-ended test tube with rubber septa that allows robotic addition of bacteria to culture media to initiate experiments and the addition of fixative to conclude experiments. Planktonic growth was monitored by spectrophotometry, and biofilms were characterized quantitatively by epifluorescence and scanning electron microscopy. In these experiments it was found that: (1) Planktonic growth in flown cultures was more extensive than in static cultures, as seen repeatedly in the history of space microbiology, and closely resembled the growth of tumbled cultures. (2) Conversely, the attachment of cells in flown cultures was as much as 8 times that in tumbled cultures but not significantly different from that in static horizontal and vertical cultures, consistent with the notion that flowing fluid reduces microbial attachment. (3) The final surface coverage in 8 days was the same for flown and static cultures but less by a factor of 15 in tumbled cultures, where coverage declined during the preceding 4 days. It is concluded that cell attachment to 316L stainless steel in the low gravity of orbital space flight is similar to that

  6. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  7. Assessment of Nutritional Intake During Space Flight and Space Flight Analogs

    Science.gov (United States)

    Rice, Barbara L.; Dlouhy, Holly; Zwart, Sara R.; Smith, Scott M.

    2011-01-01

    Background: Maintaining adequate nutrient intake in microgravity is important not only to meet health maintenance needs of astronauts but also to help counteract the negative effects of space flight. Beyond this, food provides psychosocial benefits throughout a mission. Objective: The purpose of this presentation is to discuss dietary intake data from multiple space programs, including Space Shuttle and the International Space Station. Description: These data arise from medical monitoring of both dietary intake and crew health, as well as research protocols designed to assess the role of diet in counteracting bone loss and other health concerns. Ground-based studies are conducted to better understand some of the negative issues related to space flight. Examples of these analog studies are extended bed rest studies, vitamin D supplementation studies in Antarctica, and saturation diving missions on the floor of the ocean. Methods and findings will be presented describing the use of weighed records, diet diaries, and food frequency questionnaires in these various environments. Provision of food and nutrients in spaceflight is important for many body systems including cardiovascular, musculoskeletal, endocrine, immune, and others. Some key areas of concern are loss of body mass, bone and muscle loss, radiation exposure, nutrient intakes during spacewalks, depletion of nutrient stores, and inadequate dietary intake. Initial experimental research studies using food and nutrition as a countermeasure to aid in mitigating these concerns are underway. Conclusion: Beyond their importance for the few individuals leaving the planet, these studies have significant implications for those remaining on Earth.

  8. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss: SMO-021

    Data.gov (United States)

    National Aeronautics and Space Administration — The original intent of this study was to test 10 long-duration crewmembers taking one of two bisphosphonate regimens: either 70 mg per week alendronate or a single...

  9. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    Science.gov (United States)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  10. Novel Ultralow-Weight Metal Rubber Sensor System for Ultra Long-Duration Scientific Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, ultralow mass density, and non-intrusive sensor system for ultra long duration balloons that will operate in the most...

  11. About influencing specificity of space flights on the information, perceived by astronauts

    Science.gov (United States)

    Prisniakova, L.; Prisniakov, V.

    Research of influence of gravitational fields on character of decision-making by the cosmonaut in reply to the information acting to him is the purpose of the report. The magnitude of perceived consciously of flow of the information for all sensory systems (visual, acoustical, somatosensory, chemical, kinaesthetical, balance of a head and time) is analysed. The coefficient of transformation of the incoming information from an environment to the person and the information realized by him has been received equal κ =105. As the susceptibility of the cosmonaut to the incoming of information to him depends on his temperament, the hypothesis about modification of his temperament and accordingly about modification of character of activity of the cosmonaut during duration of flight is voiced. B.Tsukanov's hypothesis is used, that as a measure of mobility of nervous system (temperament) of the person it is possible to use of the magnitude of subjectively experienced time τz. The formula for definition τz is offered using the period of an of alpha waves. The known data of authors, on the one hand, about communication of a time constant of information processing in memory of person T with frequency of alpha waves f and on the other hand, on its relationship with overloads j were used. This dependence of the period of fluctuations of alpha waves Tα from overloads (or microgravitation) enable to find magnitude of change of individually experienced time τ z at action of distinct from normal gravitational fields. The increase of this value of magnitude in case of presence of overloads can lead to to uncontrollable change of behaviour of cosmonauts in connection by erroneous perception of time and space. Acknowledgement to this is display by pilots - verifiers of "loss of orientation''.This result essentially supplements an explanation of this effect which was considered by authors in Houston on the basis of the analysis of the basic psychophysical law. Dependence of change

  12. Cytogenetic examination of cosmonauts for space radiation exposure estimation

    Science.gov (United States)

    Snigiryova, G. P.; Novitskaya, N. N.; Fedorenko, B. S.

    2012-08-01

    PurposeTo evaluate radiation induced chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). Materials and methodsCytogenetic examination which has been performed in the period 1992-2008 included the analysis of chromosome aberrations using conventional Giemsa staining method in 202 blood samples from 48 cosmonauts who participated in flights on Mir Orbital Station and ISS. ResultsSpace flights led to an increase of chromosome aberration frequency. Frequency of dicentrics plus centric rings (Dic+Rc) depend on the space flight duration and accumulated dose value. After the change of space stations (from Mir Orbital Station to ISS) the radiation load of cosmonauts based on data of cytogenetic examination decreased. Extravehicular activity also adds to chromosome aberration frequency in cosmonauts' blood lymphocytes. Average doses after the first flight, estimated by the frequency of Dic+Rc, were 227 and 113 mGy Eq for long-term flights (LTF) and 107 and 53 mGy Eq for short-term flights (STF). ConclusionCytogenetic examination of cosmonauts can be applied to assess equivalent doses.

  13. Optimizing Light for Long Duration Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of our work is to optimize lighting that supports vision and serves as a circadian countermeasure for astronauts and ground crew during space missions. Due...

  14. Decline in Aerobic Fitness After Long-Term Stays on the International Space Station

    Science.gov (United States)

    Lynn, Peggy A.; Minard, Charles; Moore, Alan; Babiak-Vazquez, Adriana

    2010-01-01

    U.S. and non-Russian International Partner astronauts who participate in long-term International Space Station (ISS) expeditions perform submaximal cycle exercise tests before, during, and after space flight. The heart rate (HR) and oxygen uptake (VO2) responses to exercise are used to estimate peak VO2 (EVO2pk). Purpose: To determine if the following factors are associated with the preflight-to-post flight change in EVO2pk: gender, age, body weight (BW), number of aerobic exercise sessions/wk- during flight, length of flight, EVO2pk measured before and late during the flight, ISS Expedition number and time between landing and the first post flight test. Methods: Records of 37 ISS astronauts (30 male, BW=81.6 plus or minus 8.6 kg; 7 female BW=66.1 plus or minus 4.9 kg [mean plus or minus SD]), age 46 plus or minus 4 years, were retrospectively examined. Peak HR and VO2 were measured approximately 9 months before flight to establish the test protocol. The submaximal cycle test consisted of three 5-minute stages designed to elicit 25, 50, and 75% of VO2pk. EVO2pk was calculated using linear least-squares extrapolation of average HR and VO2 during the last minute of each stage to predict VO2 at maximal HR. VO2 was not measured during flight and was assumed to not be different from preflight. Testing was performed 45 days before launch, late during flight, and during the week after landing. A random-intercept multivariate model was used to determine which characteristics significantly contributed to post flight EVO2pk. Results: In-flight aerobic exercise averaged 5.4 plus or minus 1.2 sessions/wk. ISS flight duration averaged 163 plus or minus 39 d. Mean EVO2pk values were 3.41 plus or minus 0.64 L (raised dot) per minute before flight, 3.09 plus or minus 0.57 L (raised dot) per minute late in flight, and 3.02 plus or minus 0.65 L (raised dot) per minute after flight. Late- and after-flight values were lower (p less than 0.05) than preflight values and did not differ

  15. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    International Nuclear Information System (INIS)

    Caiani, Enrico G.; Martin-Yebra, Alba; Landreani, Federica; Bolea, Juan; Laguna, Pablo; Vaïda, Pierre

    2016-01-01

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  16. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    Energy Technology Data Exchange (ETDEWEB)

    Caiani, Enrico G. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Martin-Yebra, Alba [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Landreani, Federica [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Bolea, Juan; Laguna, Pablo [Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza (Spain); Vaïda, Pierre, E-mail: enrico.caiani@polimi.it [École Nationale Supérieure de Cognitique, Institut Polytechnique de Bordeaux, Université de Bordeaux, Bordeaux (France)

    2016-08-23

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  17. Position of cytogenetic examination of cosmonauts for the space radiation exposure estimate

    Science.gov (United States)

    Snigiryova, Galina; Novitskaya, Natalia; Fedorenko, Boris

    The cytogenetic monitoring was carried out to evaluate of radiation induced stable and un-stable chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). In the period of 1992 -2008 chromosome aberrations in 202 blood samples from 48 cosmonauts were analyzed using the conventional method. In addition 23 blood samples from 12 cosmonauts were analyzed using FISH (fluorescence in situ hybridization) technique. Whole chromosome painting probes for chromosomes 1, 4 and 12 were used simultaneously with a pancentromeric probe. Samples taken before and after the flights were analyzed. Long-term space flights led to an increase of stable (FISH method) and unstable (conventional method) chromosome aber-ration frequencies. The frequencies of dicentrics and centric rings depend on the space flight duration and accumulated dose value. Extravehicular activity also adds to chromosome aber-ration frequency in blood lymphocytes of cosmonauts. Several years after the space flight the increased level of unstable chromosome aberrations is still apparent. The radiation load was decreased for cosmonauts after taking ISS over from MIR station. The cytogenetic results were in agreement with data of physical dosimetry. The dose interval after the first flight, estimated by the frequency of dicentrics, was 113-227 mSv for long-term flights (73 -199 days) and 53-107 mSv for short-term flights (1 -21 days). According to the frequency of FISH translocations, the average dose after the first long-term flight was 186 mSv, which is comparable with estimates made from the dicentric assay. Cytogenetic examination of cosmonauts, including analysis of dicentrics (conventional method) and translocations (FISH method) should find wider applica-tion to assessment of radiation effects associated with long-term space flights such as flights to Mars.

  18. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  19. Assessment of Proficiency During Simulated Rover Operations Following Long-Duration Spaceflight

    Science.gov (United States)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; MacDougall, H. G.; Moore, S. T.

    2011-01-01

    Following long-duration space travel, pressurized rovers will enhance crew mobility to explore Mars and other planetary surfaces. Adaptive changes in sensorimotor function may limit the crew s proficiency when performing some rover operations shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify postflight decrements in operational proficiency in a motion-based rover simulation after International Space Station (ISS) expeditions. Given that postflight performance will also be influenced by the level of preflight proficiency attained, a ground-based normative study was conducted to characterize the acquisition of skills over multiple sessions.

  20. Developing the NASA food system for long-duration missions.

    Science.gov (United States)

    Cooper, Maya; Douglas, Grace; Perchonok, Michele

    2011-03-01

    Even though significant development has transformed the space food system over the last 5 decades to attain more appealing dietary fare for low-orbit space crews, the advances do not meet the need for crews that might travel to Mars and beyond. It is estimated that a food system for a long-duration mission must maintain organoleptic acceptability, nutritional efficacy, and safety for a 3- to 5-y period to be viable. In addition, the current mass and subsequent waste of the food system must decrease significantly to accord with the allowable volume and payload limits of the proposed future space vehicles. Failure to provide the appropriate food or to optimize resource utilization introduces the risk that an inadequate food system will hamper mission success and/or threaten crew performance. Investigators for the National Aeronautics and Space Administration (NASA) Advanced Food Technology (AFT) consider identified concerns and work to mitigate the risks to ensure that any new food system is adequate for the mission. Yet, even with carefully planned research, some technological gaps remain. NASA needs research advances to develop food that is nutrient-dense and long-lasting at ambient conditions, partial gravity cooking processes, methods to deliver prescribed nutrients over time, and food packaging that meets the mass, barrier, and processing requirements of NASA. This article provides a brief review of research in each area, details the past AFT research efforts, and describes the remaining gaps that present barriers to achieving a food system for long exploration missions.

  1. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  2. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  3. Space Flight Software Development Software for Intelligent System Health Management

    Science.gov (United States)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  4. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  5. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    Science.gov (United States)

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. © 2013 European Sleep Research Society.

  6. Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI.

    Science.gov (United States)

    Roberts, Donna R; Albrecht, Moritz H; Collins, Heather R; Asemani, Davud; Chatterjee, A Rano; Spampinato, M Vittoria; Zhu, Xun; Chimowitz, Marc I; Antonucci, Michael U

    2017-11-02

    There is limited information regarding the effects of spaceflight on the anatomical configuration of the brain and on cerebrospinal fluid (CSF) spaces. We used magnetic resonance imaging (MRI) to compare images of 18 astronauts' brains before and after missions of long duration, involving stays on the International Space Station, and of 16 astronauts' brains before and after missions of short duration, involving participation in the Space Shuttle Program. Images were interpreted by readers who were unaware of the flight duration. We also generated paired preflight and postflight MRI cine clips derived from high-resolution, three-dimensional imaging of 12 astronauts after long-duration flights and from 6 astronauts after short-duration flights in order to assess the extent of narrowing of CSF spaces and the displacement of brain structures. We also compared preflight ventricular volumes with postflight ventricular volumes by means of an automated analysis of T 1 -weighted MRIs. The main prespecified analyses focused on the change in the volume of the central sulcus, the change in the volume of CSF spaces at the vertex, and vertical displacement of the brain. Narrowing of the central sulcus occurred in 17 of 18 astronauts after long-duration flights (mean flight time, 164.8 days) and in 3 of 16 astronauts after short-duration flights (mean flight time, 13.6 days) (P<0.001). Cine clips from a subgroup of astronauts showed an upward shift of the brain after all long-duration flights (12 astronauts) but not after short-duration flights (6 astronauts) and narrowing of CSF spaces at the vertex after all long-duration flights (12 astronauts) and in 1 of 6 astronauts after short-duration flights. Three astronauts in the long-duration group had optic-disk edema, and all 3 had narrowing of the central sulcus. A cine clip was available for 1 of these 3 astronauts, and the cine clip showed upward shift of the brain. Narrowing of the central sulcus, upward shift of the brain

  7. "Space flight is utter bilge"

    Science.gov (United States)

    Yeomans, Donald

    2004-01-01

    Despite skepticism and ridicule from scientists and the public alike, a small handful of dreamers kept faith in their vision of space flight and planned for the day when humanity would break loose from Earth.

  8. Ethernet for Space Flight Applications

    Science.gov (United States)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  9. Altered Venous Function during Long-Duration Spaceflights

    Directory of Open Access Journals (Sweden)

    Jacques-Olivier Fortrat

    2017-09-01

    Full Text Available Aims: Venous adaptation to microgravity, associated with cardiovascular deconditioning, may contribute to orthostatic intolerance following spaceflight. The aim of this study was to analyze the main parameters of venous hemodynamics with long-duration spaceflight.Methods: Venous plethysmography was performed on 24 cosmonauts before, during, and after spaceflights aboard the International Space Station. Venous plethysmography assessed venous filling and emptying functions as well as microvascular filtration, in response to different levels of venous occlusion pressure. Calf volume was assessed using calf circumference measurements.Results: Calf volume decreased during spaceflight from 2.3 ± 0.3 to 1.7 ± 0.2 L (p < 0.001, and recovered after it (2.3 ± 0.3 L. Venous compliance, determined as the relationship between occlusion pressure and the change in venous volume, increased during spaceflight from 0.090 ± 0.005 to 0.120 ± 0.007 (p < 0.01 and recovered 8 days after landing (0.071 ± 0.005, arbitrary units. The index of venous emptying rate decreased during spaceflight from −0.004 ± 0.022 to −0.212 ± 0.033 (p < 0.001, arbitrary units. The index of vascular microfiltration increased during spaceflight from 6.1 ± 1.8 to 10.6 ± 7.9 (p < 0.05, arbitrary units.Conclusion: This study demonstrated that overall venous function is changed during spaceflight. In future, venous function should be considered when developing countermeasures to prevent cardiovascular deconditioning and orthostatic intolerance with long-duration spaceflight.

  10. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  11. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    Science.gov (United States)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2013-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry

  12. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    Science.gov (United States)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2012-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the Office of the Chief Technologist (OCT) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1 ). The tank geometry simulates

  13. Deep-Space Ka-Band Flight Experience

    Science.gov (United States)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  14. Habitability and Behavioral Issues of Space Flight.

    Science.gov (United States)

    Stewart, R. A., Jr.

    1988-01-01

    Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…

  15. Evaluation of NASA Foodbars as a Standard Diet for Use in Short-Term Rodent Space Flight Studies

    Science.gov (United States)

    Tou, Janet; Grindeland, Richard; Barrett, Joyce; Dalton, Bonnie; Mandel, Adrian; Wade, Charles

    2003-01-01

    standard diet for short-term space flight studies. However, nutritional adequacy of NASA Rodent Foodbars as a standard diet on longer duration (>20 d) space flight missions remains to be determined.

  16. Habitability during long-duration space missions - Key issues associated with a mission to Mars

    Science.gov (United States)

    Stuster, Jack

    1989-01-01

    Isolation and confinement conditions similar to those of a long-duration mission to Mars are examined, focusing on 14 behavioral issues with design implications. Consideration is given to sleep, clothing, exercise, medical support, personal hygiene, food preparation, group interaction, habitat aesthetics, outside communications, recreational opportunities, privacy, waste disposal, onboard training, and the microgravity environment. The results are used to develop operational requirements and habitability design guidelines for interplanetary spacecraft.

  17. Design considerations and practical results with long duration systems for manned world flights

    Science.gov (United States)

    Nott, Julian

    2004-01-01

    This paper describes development of three balloon types by the author, all proposed for piloted flights around the world. The first was a superpressure pumpkin used to cross Australia. However, the balloon took up an incorrect shape when inflated. Because of this and other problems, the pumpkin was abandoned and the author built a combined helium-hot air balloon. This in turn was abandoned because it was cumbersome and costly. The author then developed an entirely new system, carrying cryogenic liquid helium to create lift in flight. Two very successful 24-h flights were made. In addition several inventions were developed for crew safety. Perhaps the most important is an entirely new way to protect pilots against sudden cabin pressure loss, with potentially broad use.

  18. Search method for long-duration gravitational-wave transients from neutron stars

    International Nuclear Information System (INIS)

    Prix, R.; Giampanis, S.; Messenger, C.

    2011-01-01

    We introduce a search method for a new class of gravitational-wave signals, namely, long-duration O(hours-weeks) transients from spinning neutron stars. We discuss the astrophysical motivation from glitch relaxation models and we derive a rough estimate for the maximal expected signal strength based on the superfluid excess rotational energy. The transient signal model considered here extends the traditional class of infinite-duration continuous-wave signals by a finite start-time and duration. We derive a multidetector Bayes factor for these signals in Gaussian noise using F-statistic amplitude priors, which simplifies the detection statistic and allows for an efficient implementation. We consider both a fully coherent statistic, which is computationally limited to directed searches for known pulsars, and a cheaper semicoherent variant, suitable for wide parameter-space searches for transients from unknown neutron stars. We have tested our method by Monte-Carlo simulation, and we find that it outperforms orthodox maximum-likelihood approaches both in sensitivity and in parameter-estimation quality.

  19. Immune resistance of man in space flights

    Science.gov (United States)

    Irina, V.; Konstantinova, M. D.

    The immune system of 72 cosmonauts was studied after their flights on board Salyut 6, 7 and Mir orbital stations. PHA lymphocyte reactivity, T helper activity and NK capacity to recognize and kill the target were decreased on 1-7 days after prolonged (3-11 months) space flights. Certain alterations were found in the ultrastructure of the NK secretory and locomotor apparatuses. Decrement of IL 2 production was shown using the biological test. However immunoenzymatic analysis did not reveal a decrease in IL 2 synthesis. Production of α-interferon remained unchanged while that of γ-interferon either rose or was diminished. Several cosmonanauts displayed a trend towards increased OAF production. The observed decrease in immune system functioning may increase the risk of various diseases during prolonged space flights.

  20. Looking Up: Multimedia about Space and Flight.

    Science.gov (United States)

    Walter, Virginia A.

    1998-01-01

    The best CD-ROMs for young people about space and flight exploit the promise of hypermedia to create informative simulations. This article provides an annotated bibliography of CD-ROMs on astronomy and flight for K-12 students; suggests book and Internet connections; and highlights poetry for astronomers, science fiction, a biography of Charles…

  1. Vestibular cerebellum of thick-toed geckos (Chondrodactylus turnery GRAY, 1864) and C57/BL6N mice after the long-term space flight on the biosatellite BION-M1.

    Science.gov (United States)

    Alexandra, Proshchina; Anastasia, Kharlamova; Valeriy, Barabanov; Victoria, Gulimova; Sergey, Saveliev

    2017-01-01

    The aim of this study was to estimate the effects of long-term space flights on neuronal and glial cells of the vestibular cerebellum of C57/BL6N mice and thick-toed geckos (Chondrodactylus turnery GRAY, 1864). The cerebella from 26 mice and 13 geckos were used in this study. Ten mice and five geckos were flown aboard the BION-M1 biosatellite. The other animals were used as controls. We used immunohistochemical techniques and classical histological method to reveal cell types in the vestibular cerebellum. Nonspecific pathomorphological changes in the Purkinje cells (such as chromatolysis, vacuolization and hyperchromatosis) were observed in the flight groups. However, these changes are reversible and were also found in some neurons in the control groups. In addition, as the vestibular cerebellum is an evolutionarily stable structure, thick-toed geckos may be a useful model for space flight studies on the vertebrate cerebellum. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. HUMAN SPACE FLIGHTS: FACTS AND DREAMS

    OpenAIRE

    Mariano Bizzarri; Enrico Saggese

    2011-01-01

    Manned space flight has been the great human and technological adventure of the past half-century. By putting people into places and situations unprecedented in history, it has stirred the imagination while expanding and redefining the human experience. However, space exploration obliges men to confront a hostile environment of cosmic radiation, microgravity, isolation and changes in the magnetic field. Any space traveler is therefore submitted to relevant health threats. In the twenty-first ...

  3. Application of virtual reality for crew mental health in extended-duration space missions

    Science.gov (United States)

    Salamon, Nick; Grimm, Jonathan M.; Horack, John M.; Newton, Elizabeth K.

    2018-05-01

    Human exploration of the solar system brings a host of environmental and engineering challenges. Among the most important factors in crew health and human performance is the preservation of mental health. The mental well-being of astronaut crews is a significant issue affecting the success of long-duration space missions, such as habitation on or around the Moon, Mars exploration, and eventual colonization of the solar system. If mental health is not properly addressed, these missions will be at risk. Upkeep of mental health will be especially difficult on long duration missions because many of the support systems available to crews on shorter missions will not be available. In this paper, we examine the use of immersive virtual reality (VR) simulations to maintain healthy mental states in astronaut crews who are removed from the essential comforts typically associated with terrestrial life. Various methods of simulations and their administration are analyzed in the context of current research and knowledge in the fields of psychology, medicine, and space sciences, with a specific focus on the environment faced by astronauts on long-term missions. The results of this investigation show that virtual reality should be considered a plausible measure in preventing mental state deterioration in astronauts, though more work is needed to provide a comprehensive view of the effectiveness and administration of VR methods.

  4. [Doctor, may I travel in space? Aeromedical considerations regarding commercial suborbital space flights].

    Science.gov (United States)

    Haerkens, Marck H T M; Simons, Ries; Kuipers, André

    2011-01-01

    Within a few years, the first commercial operators will start flying passengers on suborbital flights to the verge of space. Medical data on the effects of space journeys on humans have mainly been provided by professional astronauts. There is very little research into the aeromedical consequences of suborbital flights for the health of untrained passengers. Low air pressure and oxygen tension can be compensated for by pressurising the spacecraft or pressure suit. Rapid changes in gravitational (G-)force pose ultimate challenges to cardiovascular adaptation mechanisms. Zero-gravity and G-force may cause motion sickness. Vibrations and noise during the flight may disturb communication between passengers and crew. In addition, the psychological impact of a suborbital flight should not be underestimated. There are currently no legal requirements available for medical examinations for commercial suborbital flights, but it seems justifiable to establish conditions for potential passengers' states of health.

  5. Preliminary Sensorimotor and Cardiovascular Results from the Joint Russian and U.S. Pilot Field Test with Planning for the Full Field Test Beginning with the Year Long Intenational Space Station

    Science.gov (United States)

    Reschke, M. F.; Kozlovskaya, I. B.; Tomilovskaya, E. S.; Bloomberg, J. J.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Stenger, M. B.; Lee, S. M. C.; Wood, S. J.; hide

    2014-01-01

    Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (testing at landing site. By joint agreement, this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long duration space flight crews beginning as soon after landing as possible (test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data will be acquired at a minimum of one to three more other times within the 24 hr following landing and continue until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a single trial run comprised of jointly agreed upon subset of tests from the full FT and relies heavily on IBMP's Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT was first conducted following the September 2013 landing of the Soyuz spacecraft (34S) and again following the landing of Soyuz 35S in November

  6. Historical parallels of biological space experiments from Soyuz, Salyut and Mir to Shenzhou flights

    Science.gov (United States)

    Nechitailo, Galina S.; Kondyurin, Alexey

    2016-07-01

    Human exploitation of space is a great achievement of our civilization. After the first space flights a development of artificial biological environment in space systems is a second big step. First successful biological experiments on a board of space station were performed on Salyut and Mir stations in 70-90th of last century such as - first long time cultivation of plants in space (wheat, linen, lettuce, crepis); - first flowers in space (Arabidopsis); - first harvesting of seeds in space (Arabidopsis); - first harvesting of roots (radish); - first full life cycle from seeds to seeds in space (wheat), Guinness recorded; - first tissue culture experiments (Panax ginseng L, Crocus sativus L, Stevia rebaundiana B; - first tree growing in space for 2 years (Limonia acidissima), Guinness recorded. As a new wave, the modern experiments on a board of Shenzhou Chinese space ships are performed with plants and tissue culture. The space flight experiments are now focused on applications of the space biology results to Earth technologies. In particular, the tomato seeds exposed 6 years in space are used in pharmacy industry in more then 10 pharmaceutical products. Tissue culture experiments are performed on the board of Shenzhou spaceship for creation of new bioproducts including Space Panax ginseng, Space Spirulina, Space Stetatin, Space Tomato and others products with unique properties. Space investments come back.

  7. Low-Weight, Durable, and Low-Cost Metal Rubber Sensor System for Ultra Long Duration Scientific Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, low-cost, ultra low mass density, and non-intrusive sensor system for ultra long duration balloons (ULDB) that will...

  8. Space flight calcium: implications for astronaut health, spacecraft operations, and Earth.

    Science.gov (United States)

    Smith, Scott M; McCoy, Torin; Gazda, Daniel; Morgan, Jennifer L L; Heer, Martina; Zwart, Sara R

    2012-12-18

    The space flight environment is known to induce bone loss and, subsequently, calcium loss. The longer the mission, generally the more bone and calcium are lost. This review provides a history of bone and calcium studies related to space flight and highlights issues related to calcium excretion that the space program must consider so that urine can be recycled. It also discusses a novel technique using natural stable isotopes of calcium that will be helpful in the future to determine calcium and bone balance during space flight.

  9. The role of cross-cultural factors in long-duration international space missions: lessons from the SFINCSS-99 study.

    Science.gov (United States)

    Tomi, Leena M; Rossokha, Katherine; Hosein, Janette

    2002-01-01

    The role of cross-cultural factors in long-duration international space missions was examined during an isolation study that simulated many of the conditions aboard the International Space Station. Interactions involving two heterogeneous crews and one homogeneous crew staying in isolation from 110 to 240 days were studied. Data consisted of post-isolation interviews with crewmembers, ground support personnel and management, observational data, and public statements by crewmembers. Data was analyzed using the techniques of linguistic anthropology and ethnography. Sub-cultural (organizational and professional) differences played a larger role than national differences in causing misunderstandings in this study. Conversely, some misunderstandings and conflicts were escalated by participants falsely assuming cultural differences or similarities. Comparison between the two heterogeneous crews showed the importance of training, personality factors, and commander and language skills in preventing and alleviating cultural misunderstandings. The study revealed a number of ways that cultural differences, real as well as assumed, can play a role and interact with other, non-cultural, factors in causing and/or precipitating conflict situations. It is postulated that such difficulties can be avoided by selecting culturally adaptive crewmembers and by cross-cultural and language training. Also the crew composition and role of commander were found to be important in mitigating conflict situations. c2002 Lister Science.

  10. The Effects of Long Duration Head Down Tilt Bed Rest on Neurocognitive Performance: The Effects of Exercise Interventions

    Science.gov (United States)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz. B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. Our ongoing bed rest participants are also engaging in exercise studies directed by Dr. Lori Ploutz Snyder. In this presentation, I will briefly highlight the existing literature linking exercise and fitness to brain and behavioral functions. I will also overview the metrics from my study that could be investigated in relation to the exercise and control subgroups.

  11. A distributed planning concept for Space Station payload operations

    Science.gov (United States)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  12. Efficient Neural Network Modeling for Flight and Space Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Ayman Hamdy Kassem

    2011-01-01

    Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.

  13. Biosafety in manned space flight

    International Nuclear Information System (INIS)

    De Boever, P.

    2006-01-01

    The main goal of manned exploration is to achieve a prolonged stay in space, for example in an orbital station (such as the International Space Station (ISS)) or in planetary bases on the Moon and/or Mars. It goes without saying that such missions can only be realized when the astronaut's health and well-being is secured. In this respect, the characterization of the microbiological contamination on board spacecraft and orbital stations and the influence of cosmic radiation and microgravity are of paramount importance. Microbial contamination may originate from different sources and includes the initial contamination of space flight materials during manufacturing and assembly, the delivery of supplies to the orbital station, the supplies themselves, secondary contamination during the lifetime of the orbital station, the crew and any other biological material on board e.g. animals, plants, micro-organisms used in scientific experiments. Although most microorganisms do not threaten human health, it has been reported that in a confined environment, such as a space cabin, microorganisms may produce adverse effects on the optimal performance of the space crew and the integrity of the spacecraft or habitat. These effects range from infections, allergies, and toxicities to degradation of air and water supplies. Biodegradation of critical materials may result in system failure and this may jeopardize the crew. The research aims at monitoring the biological airborne and surface contamination during manned space flight. The ISS has been selected as primary test bed for this study. The majority of the investigations are being done by the Russian Institute of Biomedical Problems (IBMP), which is responsible for monitoring the biological contamination in the habitable compartments of the ISS for safety and hygienic reasons. Within the frame of a collaboration between IBMP and the European Space Agency (ESA), SCK-CEN is able to participate in the analyses

  14. The NASA Human Space Flight Supply Chain, Current and Future

    Science.gov (United States)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  15. Skin surface hydration decreases rapidly during long distance flights.

    Science.gov (United States)

    Guéhenneux, Sabine; Gardinier, Sophie; Morizot, Frederique; Le Fur, Isabelle; Tschachler, Erwin

    2012-05-01

    Dehydration of the stratum corneum leads to sensations and symptoms of 'dry skin' such as skin tightness and itchiness. As these complaints are frequently experienced by airline travellers, the aim of this study was to investigate the changes in skin surface hydration during long distance flights. The study was performed on four healthy Caucasian, and on four Japanese women aged 29-39 years, travelling on long distance flights. They had stopped using skin care products at least 12 h before, and did not apply them during the flights. The air temperature and relative humidity inside the cabin, as well as skin capacitance of the face and forearm of participants, were registered at several time points before and during the flights. Relative humidity of the aircraft cabin dropped to levels below 10% within 2 h after take-off and stayed at this value throughout the flight. Skin capacitance decreased rapidly on both the face and forearms with most pronounced changes on the cheeks where it decreased by up to 37%. Our results demonstrate that during long distance flights, the aircraft cabin environment leads to a rapid decrease in stratum corneum hydration, an alteration, which probably accounts for the discomfort experienced by long distance aircraft travellers. © 2011 John Wiley & Sons A/S.

  16. Surviving space flight: case study on MELiSSA's CIII nitrifying compartment

    Science.gov (United States)

    Ilgrande, Chiara; Lasseur, Christophe; Mastroleo, Felice; Paille, Christel; Leys, Natalie; Morozova, Julia; Ilyin, Vyacheslav; Clauwaert, Peter; Christiaens, Marlies E. R.; Lindeboom, Ralph E. F.; Vlaeminck, Siegfried; Prat, Delphine; Arroyo, Jose M. C.; Conincx, Ilse; Van Hoey, Olivier; Roume, Hugo; Udert, Kai; Sas, Benedikt

    2016-07-01

    Space synthetic biology offers key opportunities for long-term space missions. Planets mining, terraformation, space medicine and Life Support technologies would all benefit from an integrative biological approach. However, space is a harsh environment for life: microgravity, temperature, UV and cosmic radiation can affect the health and functionality of microorganisms and plants, possibly preventing the optimal performance of the systems. The European Space Agency's Life Support System (MELiSSA) has been developed as a model for future long term Space missions and Space habitation. MELiSSA is a 5 compartment artificial ecosystem with microorganisms and higher, that aims at completely recycling gas, liquid and solid waste. In this study, the survival and functional activity after Lower Earth Orbit conditions of microbial nitrogen conversions, relevant for MELiSSA's CIII compartment, was tested. Synthetic communities containing Nitrosomonas europeae, Nitrosomonas ureae, Nitrobacter winogradskyi, Nitrospira moscoviensis and Cupriavidus pinatubonensis were exposed to the Lower Earth Orbit conditions of the International Space Station (ISS) for 7 days. Nitrosomonas europeae, Nitrobacter winogradskyi, Cupriavidus pinatubonensis, and three mixed communities (a urine nitrification sludge, a sludge containing aerobic ammonia oxidizing bacteria and anammox bacteria (OLAND), and an aquaculture sludge containing ammonia oxidizing archaea) were exposed to Lower Earth Orbit conditions for 44 days. Survival after both space flights was demonstrated because nitritation, nitratation, denitrification and anammox activity could be restored at a rate comparable to ground storage conditions. Our results validate the potential survival feasibility and suggest future space applications for N-related microorganisms.

  17. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    Science.gov (United States)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  18. Human System Risk Management for Space Flight

    Science.gov (United States)

    Davis, Jeffrey

    2015-01-01

    This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in

  19. R and T report: Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  20. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    Science.gov (United States)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  1. Analysis of Adult Female Mouse (Mus musculus) Group Behavior on the International Space Station (ISS)

    Science.gov (United States)

    Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.

    2016-01-01

    As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group

  2. Research progress on the space-flight mutation breeding of woodyplant

    International Nuclear Information System (INIS)

    Cui Binbin; Sun Yuhan; Li Yun

    2013-01-01

    The space-flight mutation breeding conception, characteristics, mutagenic effects, research progress at home and abroad in woody plant were reviewed in this paper. Compared with crops, although the research of the woody plants space-flight mutation breeding in China started later, but it has developed rapidly and has gotten certain achievement. Now the satellite and high-altitude balloon experiment were conducted with over 20 tree species such as Populus ussuriensis and 50 flower species such as Paeonia suffruticosa. The above work will has profound significance for space-flight breeding technology application on woody plants. In the end, this thesis analyzes the prospect in the future from four aspects such as using woody plants asexual reproduction characteristic, strengthening the space mutation mechanism study, enhancing new space mutation varieties screen and strengthening ornamental specific types selection. This thesis also thinks that the space mutation breeding is expected to become an effective way in woody plant genetic breeding. (authors)

  3. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  4. Women in Space

    Science.gov (United States)

    Mukai, Chiaki

    Since 1963 women have successfully flown and worked in space so much so that having a female aboard the shuttle, on Soyuz or on the International Space Station is considered commonplace. We do know that women have historically been virturally equal in capabilities and performance with their male counterparts. For example, there have been superb shuttle pilots, shuttle commanders, EVA participants as well as mission specialists and payload specialists. Thus, gender is not an issue within the ranks, rather a simple fact. In addition, there is a positive psychological factor that has been noted in that a mixed crew seems to have better intercommunications dynamics. JAXA has conducted the experiments on 7 subjects on bone mineral density in short duration of space flight and noticed a slight decrease in that density in both male and female. Lean body mass was also examined and found to be reduced by 3.0 % on average. There was no significant difference between male and female subjects in short duration of space flight. Unfortunately, only 1 of the 7 subjects was a woman. In fact, only 48 women have flown in total, some more than once, and science is still discovering the effects of the space experience. This is due to the limited exposure on orbit and in microgravity and the limited number of potential subjects. Time in space is beginning to increase with the continued progress of the ISS, thereby creating a demand for more knowledge on what effects long term exposure will have on the female of the species. The presentation will address these and other concerns involved with women in space from the perspective of a female scientist and an astronaut.

  5. IceBridge Sigma Space Lidar L0 Raw Time-of-Flight Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Sigma Space Lidar L0 Raw Time-of-Flight Data (ILSIG0) contain raw time-of-flight values for Antarctica and Greenland using the Sigma Space Lidar....

  6. Genomic and proteomic analysis of soybean heritable variations induced by space flight

    Institute of Scientific and Technical Information of China (English)

    HE Jie; GAO Yong; SUN Ye-qing

    2009-01-01

    To analyze the biological effects of space environment, the diversity of genomic DNA between the space flight soybean 194(4126) with phenotype of good yield and good fruit quality induced by space flight and the soybean with ground control was studied by amplified fragment length polymorphism (AFLP) method, and the polymorphism of space flight soybean 194(4126) was 3.56%. The differences of protein expression of seeds and leaves between the two kinds of soybeans were analysed by two-dimensional electrophoresis, PDQuest software and MALDI-TOF mass spectrometry. Results show that the loss and decrease of protein expression in 194(4126) soybean are subjected to the space fight of seeds, and three special proteins including Dehydrin, MAT1 and ceQORH are identified. It is concluded that the space environment changes the phenotype and geno-type of soybeans due to the space flight of seeds.

  7. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures

    Science.gov (United States)

    Clément, Gilles; Allaway, Heather C. M.; Demel, Michael; Golemis, Adrianos; Kindrat, Alexandra N.; Melinyshyn, Alexander N.; Merali, Tahir; Thirsk, Robert

    2015-01-01

    The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5–6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70–30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of “illusory” depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues. PMID:26146839

  8. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5-6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70-30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues.

  9. Motion perception during tilt and translation after space flight

    Science.gov (United States)

    Clément, Gilles; Wood, Scott J.

    2013-11-01

    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  10. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  11. Study of the Most Harmful Solar Energetic Particle for Shielding next Human Space Flights

    Science.gov (United States)

    Komei Yamashiro, Bryan

    2015-04-01

    Solar energetic particles (SEPs) accelerated by solar events such as flares and coronal mass ejections are radiation risks for humans in space on board the International Space Station (ISS), and will be significant obstacles for future long-duration manned space flight missions. This research supported efforts to improve predictions of large solar storms and aimed for a better understanding of Heliophysics. The main objective was to generate a dated catalog of the highest energy range SEPs measured by the Alpha Magnetic Spectrometer (AMS-02). Using online graphical user interfaces from the satellites, Solar and Heliospeheric Observatory (SOHO) and Geostationary Operational Environmental Satellite (GOES-13, 15), the generated data files from the mounted particle detectors were plotted along a specified energy range. The resulting histograms illustrated the low energy range data from SOHO (4 MeV to 53 MeV) and the low-mid energy range from GOES (0.8 MeV to 500 MeV), which collectively provided a low- to mid-energy range spectrum of the specific event energy ranges versus the SEP proton flux. The high energy range results of the AMS-02 (125 MeV to a few TeV) will eventually be incorporated with the two alternative space satellites of lower energy ranges for a complete analysis across a full SEP energy range. X-ray flux from GOES-15 were then obtained and plotted with the corresponding time to portray initial phenomena of the solar events. This procedure was reproduced for 5 different events determined energetic enough to be measured by AMS-02. The generated plots showed correlation between the different satellite detectors.

  12. Alertness management in two-person long-haul flight operations

    Science.gov (United States)

    Rosekind, M. R.; Gander, P. H.

    1992-01-01

    Long-haul flight operations involve cumulative sleep loss, circadian disruption, and extended and irregular duty schedules. These factors reduce pilot alertness and performance on the flightdeck. Conceptually and operationally, alertness management in flight operations can be divided into preventive strategies and operational countermeasures. Preventive strategies are utilized prior to a duty period to mitigate or reduce the effects of sleep loss, circadian disruption and fatigue during subsequent flight operations. Operational countermeasures are used during operations as acute techniques for maintaining performance and alertness. Results from previous NASA Ames field studies document the sleep loss and circadian disruption in three-person long-haul flying and illustrate the application of preventive strategies and operational countermeasures. One strategy that can be used in both a preventive and operational manner is strategic napping. The application and effectiveness of strategic napping in long-haul operations will be discussed. Finally, long-haul flying in two-person highly automated aircraft capable of extended range operations will create new challenges to maintaining pilot alertness and performance. Alertness management issues in this flight environment will be explored.

  13. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight

    DEFF Research Database (Denmark)

    Norsk, Peter; Asmar, Ali; Damgaard, Morten

    2015-01-01

    KEY POINTS: Weightlessness in space induces initially an increase in stroke volume and cardiac output, accompanied by unchanged or slightly reduced blood pressure.It is unclear whether these changes persist throughout months of flight.Here, we show that cardiac output and stroke volume increase...... by 35–41% between 3 and 6 months on the International Space Station, which is more than during shorter flights.Twenty-four hour ambulatory brachial blood pressure is reduced by 8–10 mmHg by a decrease in systemic vascular resistance of 39%, which is not a result of the suppression of sympathetic nervous...... brachial arterial pressures were automatically recorded at 1–2 h intervals with portable equipment in eight male astronauts: once before launch, once between 85 and 192 days in space on the International Space Station and, finally, once at least 2 months after flight. During the same 24 h, cardiac output...

  14. The human quest in space; Proceedings of the Twenty-fourth Goddard Memorial Symposium, Greenbelt, MD, Mar. 20, 21, 1986

    Science.gov (United States)

    Burdett, Gerald L. (Editor); Soffen, Gerald A. (Editor)

    1987-01-01

    Papers are presented on the Space Station, materials processing in space, the status of space remote sensing, the evolution of space infrastructure, and the NASA Teacher Program. Topics discussed include visionary technologies, the effect of intelligent machines on space operations, future information technology, and the role of nuclear power in future space missions. Consideration is given to the role of humans in space exploration; medical problems associated with long-duration space flights; lunar and Martian settlements, and Biosphere II (the closed ecology project).

  15. Dynamics and cultural specifics of information needs under conditions of long-term space flight

    Science.gov (United States)

    Feichtinger, Elena; Shved, Dmitry; Gushin, Vadim

    Life in conditions of space flight or chamber study with prolonged isolation is associated with lack of familiar stimuli (sensory deprivation), monotony, significant limitation of communication, and deficit of information and media content (Myasnikov V.I., Stepanova S.I. et al., 2000). Fulfillment of a simulation experiment or flight schedule implies necessity of performance of sophisticated tasks and decision making with limited means of external support. On the other hand, the “stream” of information from the Mission Control (MC) and PI’s (reminders about different procedures to be performed, requests of reports, etc.) is often inadequate to communication needs of crewmembers. According to the theory of “information stress” (Khananashvili M.M., 1984), a distress condition could be formed if: a) it’s necessary to process large amounts of information and make decisions under time pressure; b) there is a prolonged deficit of necessary (e.g. for decision making) information. Thus, we suppose that one of the important goals of psychological support of space or space simulation crews should be forming of favorable conditions of information environment. For that purpose, means of crew-MC information exchange (quantitative characteristics and, if possible, content of radiograms, text and video messages, etc.) should be studied, as well as peculiarities of the crewmembers’ needs in different information and media content, and their reactions to incoming information. In the space simulation experiment with 520-day isolation, communication of international crew with external parties had been studied. Dynamics of quantitative and content characteristics of the crew’s messages was related to the experiment’s stage, presence of “key” events in the schedule (periods of high autonomy, simulated “planetary landing”, etc.), as well as to events not related to the experiment (holidays, news, etc.). It was shown that characteristics of information exchange

  16. Space Station flight telerobotic servicer functional requirements development

    Science.gov (United States)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  17. The Legacy of Space Shuttle Flight Software

    Science.gov (United States)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  18. Cytological changes of root tip cells of alfalfa seeds after space flight

    International Nuclear Information System (INIS)

    Ren Weibo; Xu Zhu; Chen Libo; Guo Huiqin; Wang Mi; Zhao Liang

    2008-01-01

    To understand the cytological effects of space flight on alfalfa seeds, dry seeds of three lines (Line 1, Line 2 and Line 4) were selected and loaded onto 'Shijian No.8' satellite for space flight. After returning to the ground, root tips of alfalfa were clipped and chromosome aberrations were observed by microscope. Data showed that space flight had two types of effect on cell mitotic: one was positive (Line 2, Line 4) and the other was negative (Line 1). Such chromosome aberrations were observed as micronucleus, chromosome bridge, fragments, lagging and so on. The frequency of aberration varied with the different materials. Conclusion was that space flight had significant effect on root tip cells, which mainly showed as the chromosome aberrations. (authors)

  19. Carotid and Femoral Arterial Wall Distensibility During Long-Duration Spaceflight.

    Science.gov (United States)

    Arbeille, Philippe; Provost, Romain; Zuj, Kathryn

    2017-10-01

    This study aimed to assess changes in common carotid (CA) and superficial femoral (FA) arterial stiffness during long-duration spaceflight. Ultrasound imaging was used to investigate the CA and FA of 10 astronauts preflight (PRE), on flight day 15 (FD15), after 4-5 mo (FD4-5m), and 4 d after return to Earth (R+4). Arterial wall properties were assessed through the calculation of strain, stiffness (β), pressure-strain elastic modulus (Ep), and distensibility (DI). Stiffness indices were assessed for potential correlations to measurements of intima-media thickness (IMT). Significant effects of spaceflight were found for all CA stiffness indices, indicating an increase in arterial stiffness. CA strain was reduced by 34 ± 31% on FD15 and 50 ± 16% on FD4-5m and remained reduced by 42 ± 14% on R+4 with respect to PRE values. On FD4-5m, with respect to PRE values, DI was reduced by 46 ± 25% and β and Ep were increased by 124 ± 95% and 118 ± 92%, respectively. FA arterial stiffness indices appeared to show similar changes; however, a main effect of spaceflight was only found for strain. Correlation analysis showed weak but significant relationships between measurements of CA IMT and arterial stiffness indices, but no relationships were found for FA measurements. The observed change in CA and FA stiffness indices suggest that spaceflight results in an increase in arterial stiffness. That these changes were not strongly related to measurements of IMT suggests the possibility of different mechanisms contributing to the observed results.Arbeille P, Provost R, Zuj K. Carotid and femoral arterial wall distensibility during long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(10):924-930.

  20. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    Science.gov (United States)

    1999-01-01

    for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew

  1. Modification of Otolith Reflex Asymmetries Following Space Flight

    Science.gov (United States)

    Clarke, Andrew H.; Schoenfeld, Uwe; Wood, Scott J.

    2011-01-01

    We hypothesize that changes in otolith-mediated reflexes adapted for microgravity contribute to perceptual, gaze and postural disturbances upon return to Earth s gravity. Our goal was to determine pre- versus post-fight differences in unilateral otolith reflexes that reflect these adaptive changes. This study represents the first comprehensive examination of unilateral otolith function following space flight. Ten astronauts participated in unilateral otolith function tests three times pre-flight and up to four times after Shuttle flights from landing day through the subsequent 10 days. During unilateral centrifugation (UC, +/- 3.5cm at 400deg/s), utricular function was examined by the perceptual changes reflected by the subjective visual vertical (SVV) and by video-oculographic measurement of the otolith-mediated ocular counter-roll (OOR). Unilateral saccular reflexes were recorded by measurement of collic Vestibular Evoked Myogenic Potential (cVEMP). Although data from a few subjects were not obtained early post-flight, a general increase in asymmetry of otolith responses was observed on landing day relative to pre-flight baseline, with a subsequent reversal in asymmetry within 2-3 days. Recovery to baseline levels was achieved within 10 days. This fluctuation in the asymmetry measures appeared strongest for SVV, in a consistent direction for OOR, and in an opposite direction for cVEMP. These results are consistent with our hypothesis that space flight results in adaptive changes in central nervous system processing of otolith input. Adaptation to microgravity may reveal asymmetries in otolith function upon to return to Earth that were not detected prior to the flight due to compensatory mechanisms.

  2. Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program

    Science.gov (United States)

    Risin, Diana; Stepaniak, P. C.; Grounds, D. J.

    2011-01-01

    As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of

  3. Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight

    Science.gov (United States)

    Johanson, Kelly; Allen, Patricia L.; Gonzalez-Villalobos, Romer A.; Nesbit, Jacqueline; Nickerson, Cheryl A.; Höner zu Bentrup, Kerstin; Wilson, James W.; Ramamurthy, Rajee; D'Elia, Riccardo; Muse, Kenneth E.; Hammond, Jeffrey; Freeman, Jake; Stodieck, Louis S.; Hammond, Timothy G.

    2007-02-01

    This study identifies genes that determine survival during a space flight, using the model eukaryotic organism, Saccharomyces cerevisiae. Select strains of a haploid yeast deletion series grew during storage in distilled water in space, but not in ground based static or clinorotation controls. The survival advantages in space in distilled water include a 133-fold advantage for the deletion of PEX19, a chaperone and import receptor for newly- synthesized class I peroxisomal membrane proteins, to 77-40 fold for deletion strains lacking elements of aerobic respiration, isocitrate metabolism, and mitochondrial electron transport. Following automated addition of rich growth media, the space flight was associated with a marked survival advantage of strains with deletions in catalytically active genes including hydrolases, oxidoreductases and transferases. When compared to static controls, space flight was associated with a marked survival disadvantage of deletion strains lacking transporter, antioxidant and catalytic activity. This study identifies yeast deletion strains with a survival advantage during storage in distilled water and space flight, and amplifies our understanding of the genes critical for survival in space.

  4. Fundamentals of Space Medicine

    Science.gov (United States)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  5. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Iimoto, Takeshi

    2000-01-01

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  6. Business Plan: The Virginia Space Flight Center

    Science.gov (United States)

    Reed, Billie M.

    1997-01-01

    The Virginia Commercial Space Flight Authority (VCSFA) was established on July 1, 1995 and codified at Sections 9-266.1 et seq., Code of Virginia. It is governed by an eleven person Board of Directors representing industry, state and local government and academia. VCSFA has designated the Center for Commercial Space Infrastructure as its Executive Directorate and Operating Agent. This Business Plan has been developed to provide information to prospective customers, prospective investors, state and federal government agencies, the VCSFA Board and other interested parties regarding development and operation of the Virginia Space Flight Center (VSFC) at Wallops Island. The VSFC is an initiative sponsored by VCSFA to achieve its stated objectives in the areas of economic development and education. Further, development of the VSFC is in keeping with the state's economic goals set forth in Opportunity Virginia, the strategic plan for jobs and prosperity, which are to: (1) Strengthen the rapidly growing aerospace industry in space based services including launch services, remote sensing, satellite manufacturing and telecommunications; and (2) Capitalize on intellectual and technical resources throughout the state and become a leader in the development of advanced technology businesses.

  7. Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    Science.gov (United States)

    Crucian, B. E.; Mehta, S.; Stowe, R. P.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.

    2011-01-01

    This poster presentation reviews a study that is designed to address immune system dysregulation and the risk to crewmembers in long duration exploration class missions. This study will address these objectives: (1) Determine the status of adaptive immunity physiological stress, viral immunity, latent herpesvirus reactivation in astronauts during 6 month missions to the International Space Station; (2) determine the clinical risk related to immune dysregulation for exploration class spaceflight; and (3) determine an appropriate monitoring strategy for spaceflight-associated immune dysfunction that could be used for the evaluation of countermeasures. The study anticipates 17 subjects, and for this presentation, (midpoint study data) 10 subjects are reviewed.

  8. Thrust imbalance of solid rocket motor pairs on Space Shuttle flights

    Science.gov (United States)

    Foster, W. A., Jr.; Shu, P. H.; Sforzini, R. H.

    1986-01-01

    This analysis extends the investigation presented at the 17th Joint Propulsion Conference in 1981 to include fifteen sets of Space Shuttle flight data. The previous report dealt only with static test data and the first flight pair. The objective is to compare the authors' previous theoretical analysis of thrust imbalance with actual Space Shuttle performance. The theoretical prediction method, which involves a Monte Carlo technique, is reviewed briefly as are salient features of the flight instrumentation system and the statistical analysis. A scheme for smoothing flight data is discussed. The effects of changes in design parameters are discussed with special emphasis on the filament wound motor case being developed to replace the steel case. Good agreement between the predictions and the flight data is demonstrated.

  9. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  10. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  11. Psycho-social training for man in space

    Science.gov (United States)

    Kass, R.; Kass, J. R.

    1999-11-01

    In preparation for the international manned space station various international and national space agencies are already participating with the Russian MIR programme with short, medium, and long term presence on the MIR station. Although selection criteria for all crew include careful psychological screening, with some effort also regarding team build-up, this has proved insufficient; moreover, little or no effort is expended in the area of psycho-social- or team training. This paper propounds the authors' thesis that, in addition to the steps already being taken, psycho-social training is essential for long-duration flight. A concrete proposal is made for such a training program, with an overview of how such a program will look like; examples of past applications are given.

  12. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  13. Pharmacotherapeutic Aspects of Space Medicine

    Science.gov (United States)

    Putcha, Lakshmi

    2004-01-01

    Medications are used for a wide variety of indications during space flight. For example, astronauts have taken drugs in flight to ameliorate or prevent symptoms of space motion sickness, headache, sleeplessness, backache, nasal congestion, and constipation. Russian cosmonauts reportedly take medications to prevent metabolic disturbances of the myocardium and intestinal flora, and to optimize their work capacity. Although the discomfort associated with some acute responses to microgravity (e.g., space motion sickness) is expected to diminish with length of time in flight, other responses that have delayed onset (e.g., maintaining nutritional status, bone and muscle strength, and perhaps immune response) may affect health and quality of life during longer missions. Therefore, as the duration of space flights increases, the need for treatment with medications is expected to increase accordingly. Medications carried on Space Shuttle missions have varied somewhat from flight to flight, depending on the individual needs of the crewmembers. Medications use during Shuttle flights seems to be more prevalent than during earlier programs, perhaps because drugs are provided in easy-to-use forms. In fact, nearly all medications taken to date have been ingested orally in tablet form. However, given that the oral route may not be ideal for those suffering motion-sickness symptoms, intramuscular and intranasal preparations are being tested. For example, intramuscular administration of promethazine hydrochloride (Phenergan(Registered TradeMark)) has been reported to be more effective in alleviating motion-sickness symptoms. The difficulties involved in conducting definitive studies of drug efficacy during U.S. space flights have been compounded by the absence of a systematic approach to determining which drugs were taken by whom and under what circumstances. The use of some drugs in space has been less efficacious than expected. The onset, intensity, and duration of the response

  14. Summary results of the first United States manned orbital space flight

    Science.gov (United States)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  15. Radiation doses at high altitudes and during space flights

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    There are three main sources of radiation exposure during space flights and at high altitudes--galactic cosmic radiation, solar cosmic radiation and radiation of the earth's radiation belt. Their basic characteristics are presented in the first part of this paper.Man's exposure during space flights is discussed in the second part of the paper. Particular attention is devoted to the quantitative and qualitative characteristics of the radiation exposure on near-earth orbits: both theoretical estimation as well as experimental data are presented. Some remarks on radiation protection rules on-board space vehicles are also given.The problems connected with the radiation protection of air crew and passengers of subsonic and supersonic air transport are discussed in the last part of the paper. General characteristics of on-board radiation fields and their variations with flight altitude, geomagnetic parameters of a flight and the solar activity are presented, both based on theoretical estimates and experimental studies. The questions concerning air crew and passenger radiation protection arising after the publication of ICRP 60 recommendation are also discussed. Activities of different institutions relevant to the topic are mentioned; strategies to manage and check this type of radiation exposure are presented and discussed. Examples of results based on the author's personal experience are given, analyzed and discussed. (author)

  16. Space Flight Orthostatic Intolerance Protection

    Science.gov (United States)

    Luty, Wei

    2009-01-01

    This paper summarizes investigations conducted on different orthostatic intolerance protection garments. This paper emphasizes on the engineering and operational aspects of the project. The current Shuttle pneumatic Anti-G Suit or AGS at 25 mmHg (0.5 psi) and customized medical mechanical compressive garments (20-30 mmHg) were tested on human subjects. The test process is presented. The preliminary results conclude that mechanical compressive garments can ameliorate orthostatic hypotension in hypovolemic subjects. A mechanical compressive garment is light, small and works without external pressure gas source; however the current garment design does not provide an adjustment to compensate for the loss of mass and size in the lower torso during long term space missions. It is also difficult to don. Compression garments that do not include an abdominal component are less effective countermeasures than garments which do. An early investigation conducted by the Human Adaptation and Countermeasures Division at Johnson Space Center (JSC) has shown there is no significant difference between the protection function of the AGS (at 77 mmHg or 1.5 psi) and the Russian anti-g suit, Kentavr (at 25 mmHg or 0.5 psi). Although both garments successfully countered hypovolemia-induced orthostatic intolerance, the Kentavr provided protection by using lower levels of compression pressure. This more recent study with a lower AGS pressure shows that pressures at 20-30 mmHg is acceptable but protection function is not as effective as higher pressure. In addition, a questionnaire survey with flight crewmembers who used both AGS and Kentavr during different missions was also performed.

  17. Effect of 90-day space flight (MDS-ISS) on immunological parameters in mice: lymphocyte distribution and function

    Science.gov (United States)

    Roberts, Arthur; Lhuillier, Andrew; Liu, Yi; Ruggiu, Alessandra; Shi, Yufang

    Elucidation of the effects of space flight on the immune system of astronauts and other animal species is important for the survival and success of manned space flight, especially long-term missions. Space flight exposes astronauts to microgravity, galactic cosmic radiation (GCR), and various psycho-social stressors. Blood samples from astronauts returning from space flight have shown changes in the numbers and types of circulating leukocytes. Similarly, normal lym-phocyte homeostasis has been shown to be severely affected in mice using ground-based models of microgravity and GCR exposure, as demonstrated by profound effects on several immuno-logical parameters examined by other investigators and ourselves. In particular, lymphocyte numbers are significantly reduced and subpopulation distribution is altered in the spleen, thy-mus, and peripheral blood following hindlimb unloading (HU) in mice. Lymphocyte depletion was found to be mediated through corticosteroid-induced apoptosis, although the molecular mechanism of apoptosis induction is still under investigation. The proliferative capacity of TCR-stimulated lymphocytes was also inhibited after HU. We have similarly shown that mice exposed to high-energy 56Fe ion radiation have decreased lymphocyte numbers and perturba-tions in proportions of various subpopulations, including CD4+ and CD8+ T cells, and B cells in the spleen, and maturation stages of immature T cells in the thymus. To compare these ground-based results to the effects of actual space-flight, fresh spleen and thymus samples were recently obtained from normal and transgenic mice immediately after 90 d. space-flight in the MDS, and identically-housed ground control mice. Total leukocyte numbers in each organ were enumerated, and subpopulation distribution was examined by flow cytometric analysis of CD3, CD4, CD8, CD19, CD25, DX-5, and CD11b. Splenic T cells were stimulated with anti-CD3 and assessed for proliferation after 2-4 d., and production of

  18. Long Term Perspective On Interstellar Flight

    Science.gov (United States)

    Millis, M. G.

    2017-12-01

    The process and interim findings of a broad interstellar flight assessment is presented. In contrast to precursor mission studies, this assessment takes a longer view and also considers factors that have been underrepresented in prior studies. The goal is to chart a conceptual roadmap for interstellar flight development that takes all the factors into account and ultimately identifies which research options, today, might have the greatest overall impact on future progress. Three envisioned flight eras are examined, the "era of precursors," the "era of infrastructure," and the "unforeseeable future." Several influential factors have typically been missing from prior studies that will now be assessed; a) the impact of different, often implicit, motivations, b) the interdependency of infrastructure with vehicle design, c) the pace of different developments, and d) the enormous energy required for any interstellar mission. Regarding motivations for example, if the driving motivation is to launch soon, then the emphasis is on existing technologies. In contrast, if the motivation is the survival of humanity, then the emphasis would be on 'world ships.' Infrastructure considerations are included in a broader system-level context. Future infrastructure will support multiple in-space activities, not just one mission-vehicle development. Though it may be too difficult to successfully assess, the study will attempt to compare the rates of different developments, such as the pace of Earth-based astronomy, miniaturization, artificial intelligence, infrastructure development, transhumanism, and others. For example, what new information could be acquired after 30 years of further advances in astronomy compared to a space probe with current technology and a 30 year flight time? The final factor of the study is to assess the pace and risks of the enormous energy levels required for interstellar flight. To compare disparate methods, a set of 'meta measures' will be defined and

  19. Mutational effects of space flight on Zea mays seeds

    Science.gov (United States)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-01-01

    The growth and development of more than 500 Zea mays seeds flown on Long Duration Exposure Facility (LDEF) were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  20. Long-term duration of function of ovarian tissue transplants

    DEFF Research Database (Denmark)

    Andersen, Claus; Silber, Sherman J; Berghold, Stinne Holm

    2012-01-01

    These three case reports describe the long-term duration of function of ovarian cortical tissue grafts among patients in a university fertility preservation programme in Europe and in a private practice programme in the USA. One woman underwent sterilizing cancer treatment and had frozen ovarian...... or to alleviate its symptoms. These three case reports describe the long-term duration of function of ovarian cortical tissue grafts among patients in a university fertility preservation programme in Europe and in a private practice programme in the USA. One woman underwent sterilizing cancer treatment and had...

  1. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  2. A long term model of circulation. [human body

    Science.gov (United States)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  3. Anesthesia and critical-care delivery in weightlessness: A challenge for research in parabolic flight analogue space surgery studies

    Science.gov (United States)

    Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.

    2010-03-01

    BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic

  4. No supernovae detected in two long-duration gamma-ray bursts.

    Science.gov (United States)

    Watson, D; Fynbo, J P U; Thöne, C C; Sollerman, J

    2007-05-15

    There is strong evidence that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. In the standard version of the collapsar model, a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies the GRB. This association has been confirmed in observations of several nearby GRBs. Recent observations show that some long-duration GRBs are different. No SN emission accompanied the long-duration GRBs 060505 and 060614 down to limits fainter than any known Type Ic SN and hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration. Furthermore, the bursts originated in star-forming galaxies, and in the case of GRB 060505, the burst was localized to a compact star-forming knot in a spiral arm of its host galaxy. We find that the properties of the host galaxies, the long duration of the bursts and, in the case of GRB 060505, the location of the burst within its host, all imply a massive stellar origin. The absence of an SN to such deep limits therefore suggests a new phenomenological type of massive stellar death.

  5. Automation of Commanding at NASA: Reducing Human Error in Space Flight

    Science.gov (United States)

    Dorn, Sarah J.

    2010-01-01

    Automation has been implemented in many different industries to improve efficiency and reduce human error. Reducing or eliminating the human interaction in tasks has been proven to increase productivity in manufacturing and lessen the risk of mistakes by humans in the airline industry. Human space flight requires the flight controllers to monitor multiple systems and react quickly when failures occur so NASA is interested in implementing techniques that can assist in these tasks. Using automation to control some of these responsibilities could reduce the number of errors the flight controllers encounter due to standard human error characteristics. This paper will investigate the possibility of reducing human error in the critical area of manned space flight at NASA.

  6. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    Science.gov (United States)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  7. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  8. On-Orbit Prospective Echocardiography on International Space Station Crew

    Science.gov (United States)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David S.; Garcia, Kathleen M.; Melton, Shannon L.; Feiveson, Alan; Dulchavsky, Scott A.

    2010-01-01

    Introduction A prospective trial of echocardiography was conducted on of six crewmembers onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what "space normal" echocardiographic data is. Methods Each crewmember operator (n=6) had 2-hour preflight training. Baseline echocardiographic data were collected 55 to 167days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure - 114 days (34 -- 190)). On Orbit ultrasound operators used an e-learning system within 24h of these sessions. Expert assistance was provided using ultrasound video downlink and two-way voice. Testing was repeated 5 to 16 days after landing. Separate ANOVA was used on each echocardiographic variable (n=33). Within each ANOVA, three tests were made: a) effect of mission phase (preflight, in-flight, post flight); b) effect of echo technician (two technicians independently analyzed the data); c) interaction between mission phase and technician. Results Nine rejections of the null hypothesis (mission phase or technician or both had no effect) were discovered and considered for follow up. Of these, six rejections were for significant technician effects, not as a result of space flight. Three rejections of the null hypothesis (Aortic Valve time velocity integral, Mitral E wave Velocity and heart rate) were attributable to space flight, however determined not to be clinically significant. No rejections were due to the interaction between technician and space flight. Conclusion No consistent clinically significant effects of long-duration space flight were seen in echocardiographic variables of the given group of subjects.

  9. Effect of space flight factors on the homeostasis of the human

    Directory of Open Access Journals (Sweden)

    С.Т. Поліщук

    2006-04-01

    Full Text Available  The influence of the flight duration, state of weightlessness and ionizing radiation on human organism at the time of being the spaceship abroad of the Earth geomagnetic field is considered.

  10. An unorthodox X-Class Long-Duration Confined Flare

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Gou, Tingyu; Wang, Yuming; Liu, Kai [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Titov, Viacheslav S. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Wang, Haimin, E-mail: rliu@ustc.edu.cn [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, NJIT, Newark, NJ 07102 (United States)

    2014-07-20

    We report the observation of an X-class long-duration flare which is clearly confined. It appears as a compact-loop flare in the traditional EUV passbands (171 and 195 Å), but in the passbands sensitive to flare plasmas (94 and 131 Å), it exhibits a cusp-shaped structure above an arcade of loops like other long-duration events. Inspecting images in a running difference approach, we find that the seemingly diffuse, quasi-static cusp-shaped structure consists of multiple nested loops that repeatedly rise upward and disappear approaching the cusp edge. Over the gradual phase, we detect numerous episodes of loop rising, each lasting minutes. A differential emission measure analysis reveals that the temperature is highest at the top of the arcade and becomes cooler at higher altitudes within the cusp-shaped structure, contrary to typical long-duration flares. With a nonlinear force-free model, our analysis shows that the event mainly involves two adjacent sheared arcades separated by a T-type hyperbolic flux tube (HFT). One of the arcades harbors a magnetic flux rope, which is identified with a filament that survives the flare owing to the strong confining field. We conclude that a new emergence of magnetic flux in the other arcade triggers the flare, while the preexisting HFT and flux rope dictate the structure and dynamics of the flare loops and ribbons during the long-lasting decay phase, and that a quasi-separatrix layer high above the HFT could account for the cusp-shaped structure.

  11. Implementation and Qualifications Lessons Learned for Space Flight Photonic Components

    Science.gov (United States)

    Ott, Melanie N.

    2010-01-01

    This slide presentation reviews the process for implementation and qualification of space flight photonic components. It discusses the causes for most common anomalies for the space flight components, design compatibility, a specific failure analysis of optical fiber that occurred in a cable in 1999-2000, and another ExPCA connector anomaly involving pins that broke off. It reviews issues around material selection, quality processes and documentation, and current projects that the Photonics group is involved in. The importance of good documentation is stressed.

  12. Preliminary project definition for long duration. Tests of coal fired MHD generators

    International Nuclear Information System (INIS)

    Van der Laken, R.A.

    1992-01-01

    In its final report the Faraday Working Group recommended the CEC amongst others to explore the possibility of a long duration test of a 'state-of-the-art', MHD-generator in order to remove uncertainties concerning the lifetime and availability of such a generator design. The duration of the test should be several thousands of hours, considerably more than the duration tests carried out until now. The scope of the present study is to prepare a project definition document for a long duration test of a coal fired, state-of-the-art MHD-generator

  13. [Prediction of cardiac function deviations (ECG data) in the course of permanent cosmonaut's monitoring starting from selection till return to earth after short-duration space flight].

    Science.gov (United States)

    Kotovskaia, A R; Koloteva, M I; Luk'ianiuk, V Iu; Stepanova, G P; Filatova, L M; Buĭlov, S P; Zhernavkov, A F; Kondratiuk, L L

    2007-01-01

    Analyzed were deviations in cardiac function in 29 cosmonauts with previous aviation and other occupations ranging of 29 to 61 y.o. who made 8- to 30-day space flights (totai number of flights = 34) between 1982 and 2006. The deviations were identified in ECG records collected during clinical selection, clinical physiological examination (CPE) before flight, insertion and deorbit in transport vehicles, and post-flight CPE. Based on the analysis, the cosmonauts were distributed into three groups. The first group (55.2% of the cosmonauts) did not exhibit noticeable shifts and unfavorable trends in ECG at any time of the period of observation. The second group (34.5%) showed some deviations during selection and pre-flight CPE that became more apparent in the period of deorbit and were still present in post-flight ECG records. The third group (10.3%) displayed health-threatening deviations in cardiac function during deorbit. These findings give start to important investigations with the purpose to define permissible medical risks and ensuing establishment and perfection of medical criteria for candidates to cosmonauts with certain health problems.

  14. Long Duration Gamma-Ray Flares & Solar Energetic Particles — Is there a Connection?

    Science.gov (United States)

    de Nolfo, G. A.; Boezio, M.; Bruno, A.; Christian, E. R.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Ryan, J. M.; Share, G.; Stochaj, S.

    2017-12-01

    Little is known still about the origin of the high-energy and sustained emission from Long Duration Gamma-Ray Flares (LDGRFs), identified with Compton Gamma-Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/LAT has identified dozens of flares with LDGRF emission, the nature of this emission has been a challenge to explain both due to the extreme energies and long durations. The highest energy emission has generally been attributed to pion production from the interaction of high-energy protons with the ambient matter, suggesting that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from CME-driven shocks. It is possible to test these models by making direct comparisons between the accelerated ion population at the flare derived from the observations of Fermi/LAT with PAMELA measurements of solar energetic particles in the energy range corresponding to the pion-related emission observed with Fermi. For nearly a dozen SEP events, we compare the two populations (SEPs in space and the interacting population at the Sun) and discuss the implications in terms of particle acceleration and transport models.

  15. Exercise Countermeasures for Bone Loss During Space Flight: A Method for the Study of Ground Reaction Forces and their Implications for Bone Strain

    Science.gov (United States)

    Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.

    1999-01-01

    Effective countermeasures to prevent loss of bone mineral during long duration space flight remain elusive. Despite an exercise program on MIR flights, the data from LeBlanc et al. (1996) indicated that there was still a mean rate of loss of bone mineral density in the proximal femur of 1.58% per month (n=18, flight duration 4 - 14.4 months). The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. A plausible hypothesis is that bone loss during space flight, such as that reported by LeBlanc et al. (1996), may result from failure to effectively load the skeleton in order to generate localized bone strains of sufficient magnitude to prevent disuse osteoporosis. A variety of methods have been proposed to simulate locomotor exercise in reduced gravity. In such simulations, and in an actual microgravity environment, a gravity replacement load (GRL) must always be added to return the exercising subject to the support surface and the resulting skeletal load is critically dependent upon the magnitude of the GRL. To our knowledge, GRLs during orbital flight have only been measured once (on STS 81) and it is likely that most or all prior treadmill exercise in space has used GRLs that were less than one body weight. McCrory (1997) has shown that subjects walking and running in simulated zero-G can tolerate GRLs of 1 if an appropriate harness is used. Several investigators have attempted to measure in vivo strains and forces in the bones of humans, but have faced ethical and technical limitations. The anteromedial aspect of the tibial midshaft has been a common site for the placement of strain gauges; one reason to measure strains in the anterior tibia is that this region is surgically accessible. Aamodt et al. (1997) were able to measure strains on the lateral surface of the proximal femur only because their experimental subjects were

  16. Effect of space flight on physiological indexes and antioxidant enzymes of Acer mono

    International Nuclear Information System (INIS)

    Li Yunfei; Yang Fan; Ren Yunhui

    2012-01-01

    To investigate the effects of space flight on physiological indexes and antioxidant enzymes of Acer mono, seeds were divided into two groups, one was treated by carrying on Shijian No.8 breeding satellite for 15 d, and the other was kept on the ground as controls. 5 years old seedlings that derived from the seeds of space flight and the seeds of ground control were chosen as materials, then the growth characteristics, photosynthetic characteristics, soluble protein content and antioxidant enzymes activities were analyzed. The results showed that the plant growth, net photosynthetic rate (Pn), chlorophyll content, superoxide dismutase (SOD) activity and soluble protein content of seedlings after space flight were much higher than those of ground control. However, the changes of malondialdehyde (MDA) content, peroxidase (POD), transpiration rate (Tr), intercellular carbon dioxide concentration (Ci) and stomatal conductance (Gs) were not significantly changed. The net photosynthetic rate (Pn), as well as the plant growth of seedlings after space flight were higher than those of the control. The improved ability of photosynthesis may be one of the reasons that seedlings from seeds of space flight have higher speed of growth. (authors)

  17. Qualification and issues with space flight laser systems and components

    Science.gov (United States)

    Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.

    2006-02-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  18. Spacecraft Architecture in long Duration Space Travels

    Science.gov (United States)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  19. Advances in Rodent Research Missions on the International Space Station

    Science.gov (United States)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  20. Detecting long-duration cloud contamination in hyper-temporal NDVI imagery

    NARCIS (Netherlands)

    Ali, A.; de Bie, C.A.J.M.; Skidmore, A.K.

    2013-01-01

    Cloud contamination impacts on the quality of hyper-temporal NDVI imagery and its subsequent interpretation. Short-duration cloud impacts are easily removed by using quality flags and an upper envelope filter, but long-duration cloud contamination of NDVI imagery remains. In this paper, an approach

  1. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; hide

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural

  2. Use of phytochrome-dependent reaction in evaluating the effect of space flight factors on the plant organism

    Science.gov (United States)

    Shteyne, B. A.; Nevzgodina, L. V.; Miller, A. T.

    1982-01-01

    The effects of space flight factors on lettuce seeds aboard the Kosmos-936 and Kosmos-1129 satellites for 20 days were studied. The phytochrome dependent (PD) reaction of light sensitive seeds was a sensitive criterion for evaluating the biological effects of space flight factors. The PD reaction of air dry lettuce seeds was suppressed after space flight, especially if the seeds were exposed to open space during the flight. Space flight affects the physiological activity of both phytochrome forms, and both the phi sub 730 dependent reactions of lettuce seeds were suppressed.

  3. Physical Training for Long-Duration Spaceflight.

    Science.gov (United States)

    Loehr, James A; Guilliams, Mark E; Petersen, Nora; Hirsch, Natalie; Kawashima, Shino; Ohshima, Hiroshi

    2015-12-01

    Physical training has been conducted on the International Space Station (ISS) for the past 10 yr as a countermeasure to physiological deconditioning during spaceflight. Each member space agency has developed its own approach to creating and implementing physical training protocols for their astronauts. We have divided physical training into three distinct phases (preflight, in-flight, and postflight) and provided a description of each phase with its constraints and limitations. We also discuss how each member agency (NASA, ESA, CSA, and JAXA) prescribed physical training for their crewmembers during the first 10 yr of ISS operations. It is important to understand the operational environment, the agency responsible for the physical training program, and the constraints and limitations associated with spaceflight to accurately design and implement exercise training or interpret the exercise data collected on ISS. As exploration missions move forward, resolving agency differences in physical training programs will become important to maximizing the effectiveness of exercise as a countermeasure and minimizing any mission impacts.

  4. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock

    Directory of Open Access Journals (Sweden)

    Natalie Leys

    2017-04-01

    Full Text Available Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50% and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES, showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.

  5. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used......Space science is subject to a constantly increasing demand for larger coherence lengths or apertures of the space observation systems, which in turn translates into a demand for increased dimensions and subsequently cost and complexity of the systems. When this increasing demand reaches...... the pratical limitations of increasing the physical dimensions of the spacecrafts, the observation platforms will have to be distributed on more spacecrafts flying in very accurate formations. Consequently, the observation platform becomes much more sensitive to disturbances from the space environment...

  6. System security in the space flight operations center

    Science.gov (United States)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  7. Dose limits for cosmic radiation during space flights

    International Nuclear Information System (INIS)

    Draaisma, F.S.

    1991-01-01

    Astronauts are exposed to raised levels of ionizing radiation, which may cause biologic effects during space flights. Insights in these effects should lead to doselimits for astronauts during their full career. (author). 4 refs.; 4 tabs

  8. Humans and machines in space: The vision, the challenge, the payoff; Proceedings of the 29th Goddard Memorial Symposium, Washington, Mar. 14, 15, 1991

    Science.gov (United States)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    The present conference discusses the currently envisioned goals of human-machine systems in spacecraft environments, prospects for human exploration of the solar system, and plausible methods for meeting human needs in space. Also discussed are the problems of human-machine interaction in long-duration space flights, remote medical systems for space exploration, the use of virtual reality for planetary exploration, the alliance between U.S. Antarctic and space programs, and the economic and educational impacts of the U.S. space program.

  9. Space Launch System Ascent Flight Control Design

    Science.gov (United States)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  10. Two Types of Long-duration Quasi-static Evolution of Solar Filaments

    Science.gov (United States)

    Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.

    2018-04-01

    In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.

  11. Management of Service Projects in Support of Space Flight Research

    Science.gov (United States)

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  12. Ocular Counter Rolling in Astronauts After Short- and Long-Duration Spaceflight.

    Science.gov (United States)

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-05-17

    Ocular counter-rolling (OCR) is a reflex generated by the activation of the gravity sensors in the inner ear that stabilizes gaze and posture during head tilt. We compared the OCR measures that were obtained in 6 astronauts before, during, and after a spaceflight lasting 4-6 days with the OCR measures obtained from 6 astronauts before and after a spaceflight lasting 4-9 months. OCR in the short-duration fliers was measured using the afterimage method during head tilt at 15°, 30°, and 45°. OCR in the long-duration fliers was measured using video-oculography during whole body tilt at 25°. A control group of 7 subjects was used to compare OCR measures during head tilt and whole body tilt. No OCR occurred during head tilt in microgravity, and the response returned to normal within 2 hours of return from short-duration spaceflight. However, the amplitude of OCR was reduced for several days after return from long-duration spaceflight. This decrease in amplitude was not accompanied by changes in the asymmetry of OCR between right and left head tilt. These results indicate that the adaptation  of otolith-driven reflexes to microgravity is a long-duration process.

  13. Leaders in space: Mission commanders and crew on the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    Understanding the relationship between leaders and their subordinates is important for building better interpersonal connections, improving group cohesion and cooperation, and increasing task success. This relationship has been examined in many types of groups but not a great amount of analysis has been applied to spaceflight crews. We specifically investigated differences between mission commanders and flight commanders during missions to the International Space Station (ISS). Astronauts and cosmonauts on the ISS participate in long-duration missions (2 to 6 months in length) in which they live and work in close proximity with their 2 or 3 member crews. The leaders are physically distant from their command centres which may result in delay of instructions or important advice. Therefore, the leaders must be able to make quick, sound decisions with unwavering certainty. Potential complications include that the leaders may not be able to exercise their power fully, since material reward or punishment of any one member affects the whole group, and that the leader's actions (or lack thereof) in this isolated, confined environment could create stress in members. To be effective, the mission commander must be able to prevent or alleviate any group conflict and be able to relate to members on an emotional level. Mission commanders and crew are equal in the competencies of spaceflight; therefore, what are the unique characteristics that enable the commanders to fulfill their role? To highlight the differences between commander and crew, astronaut journals, diaries, pre- flight interviews, NASA oral histories, and letters written to family from space were scored and analyzed for values and coping styles. During pre-flight, mission commanders scored higher than other crew members on the values of Stimulation, Security, Universalism, Conformity, Spirituality, and Benevolence, and more often used Self-Control as a coping style. During the long-duration mission on ISS, mission

  14. The endocrine system in space flight

    Science.gov (United States)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  15. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    Science.gov (United States)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  16. Future Standardization of Space Telecommunications Radio System with Core Flight System

    Science.gov (United States)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and

  17. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  18. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    Science.gov (United States)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  19. The Importance of HRA in Human Space Flight: Understanding the Risks

    Science.gov (United States)

    Hamlin, Teri

    2010-01-01

    Human performance is critical to crew safety during space missions. Humans interact with hardware and software during ground processing, normal flight, and in response to events. Human interactions with hardware and software can cause Loss of Crew and/or Vehicle (LOCV) through improper actions, or may prevent LOCV through recovery and control actions. Humans have the ability to deal with complex situations and system interactions beyond the capability of machines. Human Reliability Analysis (HRA) is a method used to qualitatively and quantitatively assess the occurrence of human failures that affect availability and reliability of complex systems. Modeling human actions with their corresponding failure probabilities in a Probabilistic Risk Assessment (PRA) provides a more complete picture of system risks and risk contributions. A high-quality HRA can provide valuable information on potential areas for improvement, including training, procedures, human interfaces design, and the need for automation. Modeling human error has always been a challenge in part because performance data is not always readily available. For spaceflight, the challenge is amplified not only because of the small number of participants and limited amount of performance data available, but also due to the lack of definition of the unique factors influencing human performance in space. These factors, called performance shaping factors in HRA terminology, are used in HRA techniques to modify basic human error probabilities in order to capture the context of an analyzed task. Many of the human error modeling techniques were developed within the context of nuclear power plants and therefore the methodologies do not address spaceflight factors such as the effects of microgravity and longer duration missions. This presentation will describe the types of human error risks which have shown up as risk drivers in the Shuttle PRA which may be applicable to commercial space flight. As with other large PRAs

  20. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  1. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  2. Sleep and sleepiness during an ultra long-range flight operation between the Middle East and United States.

    Science.gov (United States)

    Holmes, Alexandra; Al-Bayat, Soha; Hilditch, Cassie; Bourgeois-Bougrine, Samira

    2012-03-01

    This study provides a practical example of fatigue risk management in aviation. The sleep and sleepiness of 44 pilots (11 trips × 4 pilot crew) working an ultra long-range (ULR; flight time >16 h) round-trip operation between Doha and Houston was assessed. Sleep was assessed using activity monitors and self-reported sleep diaries. Mean Karolinska Sleepiness Scores (KSS) for climb and descent did not exceed 5 ("neither alert nor sleepy"). Mean daily sleep duration was maintained above 6.3h throughout the operation. During in-flight rest periods, 98% of pilots obtained sleep and sleepiness was subsequently reduced. On layover (49.5h) crew were advised to sleep on Doha or Universal Co-ordinated Time (UTC), but 64% slept during the local (social) night time. Pilots originating from regions with a siesta culture were more likely to nap and made particularly effective use of their daytime in-flight rest periods. The results indicate that the operation is well designed from a fatigue management perspective. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. NASA Space Flight Program and Project Management Handbook

    Science.gov (United States)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  4. CCSDS telemetry systems experience at the Goddard Space Flight Center

    Science.gov (United States)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  5. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  6. Automated Behavior and Cohesion Assessment Tools, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An important consideration of long duration space flight operations is interpersonal dynamics that effect crew cohesion and performance. Flight surgeons have stated...

  7. Custom Gradient Compression Stockings May Prevent Orthostatic Intolerance in Astronauts After Space Flight

    Science.gov (United States)

    Stenger, Michael B.; Lee, Stuart M. C.; Westby, Christian M.; Platts, Steven H.

    2010-01-01

    Orthostatic intolerance after space flight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. NASA astronauts currently wear an inflatable anti-gravity suit (AGS) during re-entry, but this device is uncomfortable and loses effectiveness upon egress from the Shuttle. We recently determined that thigh-high, gradient compression stockings were comfortable and effective after space flight, though to a lesser degree than the AGS. We also recently showed that addition of splanchnic compression to this thigh-high compression stocking paradigm improved orthostatic tolerance to a level similar to the AGS, in a ground based model. Purpose: The purpose of this study was to evaluate a new, three-piece breast-high gradient compression garment as a countermeasure to post-space flight orthostatic intolerance. Methods: Eight U.S. astronauts have volunteered for this experiment and were individually fitted for a three-piece, breast-high compression garment to provide 55 mmHg compression at the ankle which decreased to approximately 20 mmHg at the top of the leg and provides 15 mmHg over the abdomen. Orthostatic testing occurred 30 days pre-flight (w/o garment) and 2 hours after flight (w/ garment) on landing day. Blood pressure (BP), Heart Rate (HR) and Stroke Volume (SV) were acquired for 2 minutes while the subject lay prone and then for 3.5 minutes after the subject stands up. To date, two astronauts have completed pre- and post-space flight testing. Data are mean SD. Results: BP [pre (prone to stand): 137+/-1.6 to 129+/-2.5; post: 130+/-2.4 to 122+/-1.6 mmHg] and SV [pre (prone to stand): 61+/-1.6 to 38+/-0.2; post: 58+/-6.4 to 37+/-6.0 ml] decreased with standing, but no differences were seen post-flight w/ compression garments compared to pre-flight w/o garments. HR [pre (prone to stand): 66+/-1.6 to 74+/-3.0, post: 67+/-5.6 to 78+/-6.8 bpm] increased with standing, but no differences were seen pre- to post-flight. Conclusion: After space

  8. [Application prospect of human-artificial intelligence system in future manned space flight].

    Science.gov (United States)

    Wei, Jin-he

    2003-01-01

    To make the manned space flight more efficient and safer, a concept of human-artificial (AI) system is proposed in the present paper. The task of future manned space flight and the technique requirement with respect to the human-AI system development were analyzed. The main points are as follows: 1)Astronaut and AI are complementary to each other functionally; 2) Both symbol AI and connectionist AI should be included in the human-AI system, but expert system and Soar-like system are used mainly inside the cabin, the COG-like robots are mainly assigned for EVA either in LEO flight or on the surface of Moon or Mars; 3) The human-AI system is hierarchical in nature with astronaut at the top level; 4) The complex interfaces between astronaut and AI are the key points for running the system reliably and efficiently. As the importance of human-AI system in future manned space flight and the complexity of related technology, it is suggested that the R/D should be planned as early as possible.

  9. Design Criteria for the Future of Flight Controls. Proceedings of the Flight Dynamics Laboratory Flying Qualities and Flight Control Symposium 2-5 March 1982.

    Science.gov (United States)

    1982-07-01

    launch platform . But as a transport, obviously, long duration flights must be accomplished without undue crew fatigue. Underlying all this is an...Modes a weapons platforme throah sore effective flight listed in Figure 1. control design. VII. Sugestd Frthr Research Rfrne There are certain...A KIat KiOW CC~~i at Pilot m1A~ MloU. ftm of a h m ad ftf trn* weD kqr~&~ m Wix a I -n ** Wuma of Am 1 Tbalam, ad axazw Dpi c Fwa PltwsAp ad A

  10. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1981-01-01

    The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

  11. Microarray analysis of gene expression patterns of high lycopene tomato generated from seeds after long-term space flight

    Science.gov (United States)

    Lu, Jinying; Ren, Chunxiao; Pan, Yi; Nechitailo, Galina S.; Liu, Min

    Lycopene content is a most vital trait of tomatoes due to the role of lycopene in reducing the risk of some kinds of cancers. In this experiment, we gained a high lycopene (hl) tomato (named HY-2), after seven generations of self-cross selection, from seeds Russian MNP-1 carried in Russia MIR space station for six years. HPLC result showed that the lycopene content was 1.6 times more than that in Russian MNP-1 (the wild type). Microarray analysis presented the general profile of differential expressed genes at the tomato developmental stage of 7DPB (days post breaker). One hundred and forty three differential expression genes were identified according to the following criterion: the average changes were no less than 1.5 folds with q-value (similar to FDR) less than 0.05 or changes were no less than 1.5 folds in all three biological replications. Most of the differential expressed genes were mainly involved in metabolism, response to stimulus, biosynthesis, development and regulation. Particularly, we discussed the genes involved in protein metabolism, response to unfolded protein, carotenoid biosynthesis and photosynthesis that might be related to the fruit development and the accumulation of lycopene. What's more, we conducted QRT-PCR validation of five key genes (Fps, CrtL-b, CrtR-b, Zep and Nxs) in the lycopene biosynthesis pathway through time courses and that provided the direct molecular evidence for the hl phenotype. Our results demonstrate that long-term space flight, as a rarely used tool, can positively cause some beneficial mutations in the seeds and thus to help to generate a high quality variety, combined with ground selections.

  12. Development of Countermeasures to Aid Functional Egress from the Crew Exploration Vehicle Following Long Duration Spaceflight

    Science.gov (United States)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Fisher, Elizabeth; Wood, Scott; Serrador, Jorge; Peters, Brian; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2009-01-01

    assist and hence enhance the response of neural systems to relevant, subthreshold sensory signals. Application of subthreshold stochastic resonance noise coupled to sensory input either through the proprioceptive, visual or vestibular sensory systems, has been shown to improve motor function. Crew members who have adapted to microgravity have acquired new sensorimotor strategies that take time to discard. We hypothesize that detection of time-critical subthreshold sensory signals will play a crucial role in improving strategic responses and thus the rate of skill re-acquisition will be faster, leading to faster recovery of function during their re-adaptation to Earth G. Therefore, we expect the use of stochastic resonance mechanisms will enhance the acquisition of new strategic abilities. This process should ensure rapid restoration of functional egress capabilities during the initial return to Earth G after prolonged space flight. Therefore, the overall goals of this project are to investigate performance of motor and visual tasks during varying sea state conditions and develop a countermeasure based on stochastic resonance that could be implemented to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to Earth s gravity, allowing rapid CEV egress on water in varying sea states following long-duration space flight.

  13. A passion for space adventures of a pioneering female NASA flight controller

    CERN Document Server

    Dyson, Marianne J

    2016-01-01

    Marianne J. Dyson recounts for us a time when women were making the first inroads into space flight control, a previously male-dominated profession. The story begins with the inspiration of the Apollo 11 landing on the Moon and follows the challenges of pursuing a science career as a woman in the 70s and 80s, when it was far from an easy path.  Dyson relates the first five space shuttle flights from the personal perspective of mission planning and operations in Houston at the Johnson Space Center, based almost exclusively on original sources such as journals and NASA weekly activity reports. The book’s historical details about astronaut and flight controller training exemplify both the humorous and serious aspects of space operations up through the Challenger disaster, including the almost unknown fire in Mission Control during STS-5 that nearly caused an emergency entry of the shuttle.  From an insider with a unique perspective and credentials to match, this a must-read for anyone interested in the worki...

  14. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, M. S.; Murray, J. D.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    INTRODUCTION Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors. Thus, the purpose of this project was to perform an initial evaluation of reported post-flight back pain and injury cases to relevant spaceflight risk factors in United States astronauts that have completed an ISS mission. METHODS All US astronauts who completed an ISS mission between Expeditions (EXP) 1 and 41 (2000-2015) were included in this evaluation. Forty-five astronauts (36 males and 9 females) completed 50 ISS missions during the study time period, as 5 astronauts completed 2 ISS missions. Researchers queried medical records of the 45 astronauts for occurrences of back pain and injury. A case was defined as any reported event of back pain or injury to the cervical, thoracic, lumbar, sacral, or coccyx spine regions. Data sources for the cases included the Flight Medicine Clinic's electronic medical record; Astronaut Strength, Conditioning and Rehabilitation electronic documentation; the Private Medical Conference tool; and the Space Medicine Operations Team records. Post-flight cases were classified as an early case if reported within 45 days of landing (R + 45) or a late case if reported from R + 46 to R + 365 days after landing (R + 1y). Risk factors in the astronaut population for back pain include age, sex, prior military service, and prior history of back pain. Additionally, spaceflight specific risk factors such as type of landing vehicle and onboard exercise countermeasures were included to evaluate their

  15. Planning to Explore: Using a Coordinated Multisource Infrastructure to Overcome Present and Future Space Flight Planning Challenges

    Data.gov (United States)

    National Aeronautics and Space Administration — Few human endeavors present as much of a planning and scheduling challenge as space flight, particularly manned space flight. Just on the operational side of it,...

  16. Use of animal models for space flight physiology studies, with special focus on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  17. Space dosimetry measurement results using the Pille instrument during the EUROMIR/NASAMIR space flights

    International Nuclear Information System (INIS)

    Hejja, I.; Apathy, J.; Deme, S.

    1997-01-01

    The Pille dosimeter developed in Hungary for space applications is described briefly, and its two versions are presented for the two space flights. The results of the EUROMIR mission in 1995-1996 are discussed for positional dosimetric applications. The characteristic dose rates at various space stations in the Salyut range are displayed. The NASAMIR4 mission between January 1997 and September 1998 are also discussed from the dosimetric point of view. The results of the measurements are presented and a preliminary analysis is reported. (R.P.)

  18. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  19. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks

    Science.gov (United States)

    Ross, M. D.

    2001-01-01

    Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.

  20. Microgravity Flight - Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  1. Effect of space flight factors on alfalfa seeds | Ren | African Journal ...

    African Journals Online (AJOL)

    Abstract. To explore the effect of space flight factors on the early development of alfalfa seedling, dry seeds were placed onboard a satellite for a 15-day flight. After retrieval, the ultra structure of seed coat and the chemical content of seed were tested, followed by tests for germinate ability, seedling growth, and mitotic and ...

  2. Habitability and Human Factors Contributions to Human Space Flight

    Science.gov (United States)

    Sumaya, Jennifer Boyer

    2011-01-01

    This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.

  3. Human Factors in Training - Space Flight Resource Management Training

    Science.gov (United States)

    Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.

    2009-01-01

    Accidents and incidents show that high workload-induced stress and poor teamwork skills lead to performance decrements and errors. Research on teamwork shows that effective teams are able to adapt to stressful situations, and to reduce workload by using successful strategies for communication and decision making, and through dynamic redistribution of tasks among team members. Furthermore, superior teams are able to recognize signs and symptoms of workload-induced stress early, and to adapt their coordination and communication strategies to the high workload, or stress conditions. Mission Control Center (MCC) teams often face demanding situations in which they must operate as an effective team to solve problems with crew and vehicle during onorbit operations. To be successful as a team, flight controllers (FCers) must learn effective teamwork strategies. Such strategies are the focus of Space Flight Resource Management (SFRM) training. SFRM training in MOD has been structured to include some classroom presentations of basic concepts and case studies, with the assumption that skill development happens in mission simulation. Integrated mission simulations do provide excellent opportunities for FCers to practice teamwork, but also require extensive technical knowledge of vehicle systems, mission operations, and crew actions. Such technical knowledge requires lengthy training. When SFRM training is relegated to integrated simulations, FCers can only practice SFRM after they have already mastered the technical knowledge necessary for these simulations. Given the centrality of teamwork to the success of MCC, holding SFRM training till late in the flow is inefficient. But to be able to train SFRM earlier in the flow, the training cannot rely on extensive mission-specific technical knowledge. Hence, the need for a generic SFRM training framework that would allow FCers to develop basic teamwork skills which are mission relevant, but without the required mission knowledge

  4. Detection of pseudo gamma-ray bursts of long duration

    International Nuclear Information System (INIS)

    Frontera, F.; Fuligni, F.; Morelli, E.; Pizzichini, G.; Ventura, G.

    1981-01-01

    It is known that the counting rate of both Na I and Cs I hard X-ray detectors can have intense enhancements of brief (< 1 s) duration, which appear like very short cosmic gamma-ray bursts but probably are due to phosphorescence in the detector itself. Unfortunately, this problem is not limited to short bursts. We present here three much longer (up to 80 s) pseudo-gamma-ray bursts observed during a transatlantic balloon flight. We conclude that detections of gamma-ray bursts (and probably also of hard X-ray source flares) based only on a rate increase by a single scintillator should always be confirmed by at least one other instrument. (orig.)

  5. The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry

    Science.gov (United States)

    Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve

    2010-01-01

    This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available

  6. Walt Disney visited Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    1965-01-01

    Walt Disney toured the West Test Area during his visit to the Marshall Space Flight Center on April 13, 1965. The three in center foreground are Karl Heimburg, Director, Test Division; Dr. von Braun, Director, MSFC; and Walt Disney. The Dynamic Test Stand with the S-1C stage being installed is in the background.

  7. HAL/S programmer's guide. [space shuttle flight software language

    Science.gov (United States)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    HAL/S is a programming language developed to satisfy the flight software requirements for the space shuttle program. The user's guide explains pertinent language operating procedures and described the various HAL/S facilities for manipulating integer, scalar, vector, and matrix data types.

  8. Vitamin D endocrine system after short-term space flight

    Science.gov (United States)

    Rhoten, William B. (Principal Investigator); Sergeev, Igor N. (Principal Investigator)

    1996-01-01

    The exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca(2+) metabolism, yet the cellular/molecular mechanisms leading to these changes are poorly understood. There is some evidence for microgravity-induced alterations in the vitamin D endocrine system, which is known to be primarily involved in the regulation of Ca(2+) metabolism. Vitamin D-dependent Ca(2+) binding proteins, or calbindins, are believed to have a significant role in maintaining cellular Ca(2+) homeostasis. We used immunocytochemical, biochemical and molecular approaches to analyze the expression of calbindin-D(sub 28k) and calbindin-D(sub 9k) in kidneys and intestines of rats flown for 9 days aboard the Spacelab 3 mission. The effects of microgravity on calbindins in rats in space vs. 'grounded' animals (synchronous Animal Enclosure Module controls and tail suspension controls) were compared. Exposure to microgravity resulted in a significant decrease in calbindin-D(sub 28k) content in kidneys and calbindin-D(sub 9k) in the intestine of flight and suspended animals, as measured by enzyme-linked immunosorbent assay (ELISA). Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in kidneys and intestine, and insulin in pancreas. There was a large decrease in the distal tubular cell-associated calbindin-D(sub 28k) and absorptive cell-associated calbindin-D(sub 9k) immunoreactivity in the space and suspension kidneys and intestine, as compared with matched ground controls. No consistent differences in pancreatic insulin immunoreactivity between space, suspension and ground controls was observed. There were significant correlations between results by quantitative ICC and ELISA. Western blot analysis showed no consistent changes in the low levels of intestinal and renal vitamin D receptors. These findings suggest that a decreased expression of calbindins after a short

  9. Cardiovascular response to lower body negative pressure stimulation before, during, and after space flight

    Science.gov (United States)

    Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.

    2000-01-01

    BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.

  10. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with

  11. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space.

    Science.gov (United States)

    Tascher, Georg; Brioche, Thomas; Maes, Pauline; Chopard, Angèle; O'Gorman, Donal; Gauquelin-Koch, Guillemette; Blanc, Stéphane; Bertile, Fabrice

    2017-07-07

    The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.

  12. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts

    Science.gov (United States)

    Arai, Tatsuya; Lee, Kichang; Stenger, Michael B.; Platts, Steven H.; Meck, Janice V.; Cohen, Richard J.

    2011-04-01

    Orthostatic intolerance (OI) is a significant challenge for astronauts after long-duration spaceflight. Depending on flight duration, 20-80% of astronauts suffer from post-flight OI, which is associated with reduced vascular resistance. This paper introduces a novel algorithm for continuously monitoring changes in total peripheral resistance (TPR) by processing the peripheral arterial blood pressure (ABP). To validate, we applied our novel mathematical algorithm to the pre-flight ABP data previously recorded from twelve astronauts ten days before launch. The TPR changes were calculated by our algorithm and compared with the TPR value estimated using cardiac output/heart rate before and after phenylephrine administration. The astronauts in the post-flight presyncopal group had lower pre-flight TPR changes (1.66 times) than those in the non-presyncopal group (2.15 times). The trend in TPR changes calculated with our algorithm agreed with the TPR trend calculated using measured cardiac output in the previous study. Further data collection and algorithm refinement are needed for pre-flight detection of OI and monitoring of continuous TPR by analysis of peripheral arterial blood pressure.

  13. Application of Telemedicine Technologies to Long Term Spaceflight Support

    Science.gov (United States)

    Orlov, O. I.; Grigoriev, A. I.

    projects on space biology and medicine at the modern high level. In spite of the ISS international cooperation transparency space research programs require to follow the biomedicine ethics and provide confidentiality of the special medical information exchange. That can be achieved in the telemedicine support system built on the network principle. Presently we have all technical facilities needed to create such a system. In Russia activities on space telemedicicine support improvement are carried out by the State Scientific Center of the Russian Federation - Institute for Biomedical Problems of the Russian Academy of Sciences, Mission Control Center of the Russian Aviation and Space Agency, Space Biomedical Center for Training and Research and Yu. Gagarin Cosmonaut Training Center. Communications development and next generation Internet systems creation almost eliminate differences in the types of information technologies implementation both in the earth-based and near-earth space conditions. In prospect of the information community creation the telecommunication system of the near-earth space objects and its telemedicine element will become a natural part of the Earth unified information field that will open unlimited perspectives for flight support system improvement and space biomedical research conducting. Russia has unique data of numerous investigations on simulation of long, up to a year, effects of space flight factors on the human body. The sphere of situations studied by space medicine specialists embraced orbit manned space flights of the escalating duration (438 days in 1995). However a number of biomedical problems related to space flights didn't face optimal solutions. It's evident that during a space flight to Mars biomedical problems will be much more difficult in comparison with those of the orbit flights of the same duration. The summed up factors of such flights specify a level of the total medical risk that require assessment and application of

  14. Long duration performance of high temperature irradiation resistant thermocouples

    International Nuclear Information System (INIS)

    Rempe, J.; Knudson, D.; Condie, K.; Cole, J.; Wilkins, S.C.

    2007-01-01

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature in-pile degrade at temperatures above 1100 C degrees. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INL's recommended thermocouple design, a series of high temperature (from 1200 to 1800 C) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 C that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests. (authors)

  15. Dynamic Visual Acuity and Landing Sickness in Crewmembers Returning from Long-Duration Spaceflight

    Science.gov (United States)

    Rosenberg, M.J.F; Peters, B.T.; Reschke, M. F.

    2016-01-01

    Long-term exposure to microgravity causes sensorimotor adaptations that result in functional deficits upon returning to a gravitational environment. At landing the vestibular system and the central nervous system, responsible for coordinating head and eye movements, are adapted to microgravity and must re-adapt to the gravitational environment. This re-adaptation causes decrements in gaze control and dynamic visual acuity, with astronauts reporting oscillopsia and blurred vision. Dynamic visual acuity (DVA) is assessed using an oscillating chair developed in the Neuroscience Laboratory at JSC. This chair is lightweight and easily portable for quick deployment in the field. The base of the chair is spring-loaded and allows for manual oscillation of the subject. Using a metronome, the chair is vertically oscillated plus or minus 2 cm at 2 Hz by an operator, to simulate walking. While the subject is being oscillated, they are asked to discern the direction of Landolt-C optotypes of varying sizes and record their direction using a gamepad. The visual acuity thresholds are determined using an algorithm that alters the size of the optotype based on the previous response of the subject using a forced-choice best parameter estimation that is able to rapidly converge on the threshold value. Visual acuity thresholds were determined both for static (seated) and dynamic (oscillating) conditions. Dynamic visual acuity is defined as the difference between the dynamic and static conditions. Dynamic visual acuity measures will be taken prior to flight (typically L-180, L-90, and L-60) and up to eight times after landing, including up to 3 times on R plus 0. Follow up measurements will be taken at R plus 1 (approximately 36 hours after landing). Long-duration International Space Station crewmembers will be tested once at the refueling stop in Europe and once again upon return to Johnson Space Center. In addition to DVA, subjective ratings of motion sickness will be recorded

  16. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  17. Development of a New Generation of High-Temperature Thermoelectric Unicouples for Space Applications

    Science.gov (United States)

    Caillat, Thierry; Gogna, P.; Sakamoto, J.; Jewell, A.; Cheng, J.; Blair, R.; Fleurial, J. -P.; Ewell, R.

    2006-01-01

    RTG's have enabled surface and deep space missions since 1961: a) 26 flight missions without any RTG failures; and b) Mission durations in excess of 25 years. Future NASA missions require RTG s with high specific power and high efficiency, while retaining long life (> 14 years) and high reliability, (i.e. 6-8 W/kg, 10-15% efficiency). JPL in partnership with NASA-GRC, NASA-MSFC, DOE, Universities and Industry is developing advanced thermoelectric materials and converters to meet future NASA needs.

  18. Rationale for evaluating a closed food chain for space habitats

    Science.gov (United States)

    Modell, M.; Spurlock, J. M.

    1980-01-01

    Closed food cycles for long duration space flight and space habitation are examined. Wash water for a crew of six is economically recyclable after a week, while a total closed loop water system is effective only if the stay exceeds six months' length. The stoichiometry of net plant growth is calculated and it is shown that the return of urine, feces, and inedible plant parts to the food chain, along with the addition of photosynthesis, closes the food chain loop. Scenarios are presented to explore the technical feasibility of achieving a closed loop system. An optimal choice of plants is followed by processing, waste conversion, equipment specifications, and control requirements, and finally, cost-effectiveness.

  19. Space transportation system flight 2 OSTA-1 scientific payload data management plan: Addendum

    Science.gov (United States)

    1982-01-01

    Flight events for the OSTA-1 scientific payload on the second flight of the Space Shuttle, STS-2 are described. Data acquisition is summarized. A discussion of problems encountered and a preliminary evaluation of data quality is also provided.

  20. Behavior and Performance on Long-Duration Spaceflights: Evidence from Analogue Environments

    Science.gov (United States)

    Palinkas, Lawrence A.; Gunderson, E. K. Eric; Johnson, Jeffrey C.; Holland, Albert W.

    1999-01-01

    Analyses of data collected in Antarctica since 1963 were conducted to identify features of behavior and performance likely to occur during long-duration missions in space.The influence of mission duration and station latitude on POMS mood scores was examined in 450 American men and women who overwintered in Antarctica between 1991 and 1998. The influence of crewmember social characteristics, personality traits, interpersonal needs, and station environments on measures of behavior and performance at the end of the austral winter was examined in 657 American men who overwintered between 1963 and 1974. Both data sets were used to examine the influence of crew social structure on individual performance. Results: Seasonal variations in mood appear to be associated with the altered diurnal cycle and psychological segmentation of the mission. Concurrent measures of personality, interpersonal needs, and coping styles are better predictors of depressed mood and peer-supervisor performance evaluations than baseline measures because of the unique features of the station social and physical environments and the absence of resources typically used to cope with stress elsewhere. Individuals in crews with a clique structure report significantly more depression, anxiety, anger, fatigue and confusion than individuals in crews with a core-periphery structure. Depressed mood is inversely associated with severity of station physical environment, supporting the existence of a positive or "salutogenic" effect for individuals seeking challenging experiences in extreme environments.

  1. Autogenic Feedback Training Applications for Man in Space

    Science.gov (United States)

    Cowings, Patricia S.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. This paper reviews the back-round research and procedures of an experiment designed to prevent space motion sickness in shuttle crewmembers. The preventive method used, Autogenic - Feedback Training (AFT) involves training subjects to control voluntarily several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during around based tests in over 300 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Other applications of AFT described include; (1) a potential treatment for post flight orthostatic intolerance, a serious biomedical problem resulting from long duration exposure to micro-g and (2) improving pilot performance during emergency flying conditions.

  2. Habitability research priorities for the International Space Station and beyond.

    Science.gov (United States)

    Whitmore, M; Adolf, J A; Woolford, B J

    2000-09-01

    Advanced technology and the desire to explore space have resulted in increasingly longer manned space missions. Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on the ability of humans to adapt and function in microgravity environments. In addition, studies conducted in analogous environments, such as winter-over expeditions in Antarctica, have complemented the scientific understanding of human performance in LDSF. These findings indicate long duration missions may take a toll on the individual, both physiologically and psychologically, with potential impacts on performance. Significant factors in any manned LDSF are habitability, workload and performance. They are interrelated and influence one another, and therefore necessitate an integrated research approach. An integral part of this approach will be identifying and developing tools not only for assessment of habitability, workload, and performance, but also for prediction of these factors as well. In addition, these tools will be used to identify and provide countermeasures to minimize decrements and maximize mission success. The purpose of this paper is to identify research goals and methods for the International Space Station (ISS) in order to identify critical factors and level of impact on habitability, workload, and performance, and to develop and validate countermeasures. Overall, this approach will provide the groundwork for creating an optimal environment in which to live and work onboard ISS as well as preparing for longer planetary missions.

  3. Effects of Long Duration Spaceflight on Venous and Arterial Compliance in Astronants

    Science.gov (United States)

    Platts, Steven; Ribeiro, L. Christine

    2014-01-01

    noninvasive measures of venous and arterial compliance are altered by long-duration spaceflight exposure in ISS astronauts and whether these changes are related to the development of the VIIP syndrome. (Flight) 2. To determine whether previous spaceflight experience predispose astronauts to lower venous compliance and/or the development of the VIIP syndrome. (Ground + Flight) 3. To use a 14-day, 6deg head-down-tilt bed rest as a model of spaceflight, to evaluate the effect of aging on vascular compliance using a subject population similar to younger (25-35 yr) and older (45-55 yr) astronaut cohorts. (Bed Rest) 4. To determine what factors contribute to lower venous compliance and/or the development of the VIIP syndrome in astronauts. (Data Mining) 3. Earth Applications This research may inform the mechanisms that regulate blood/fluid flow in and out of the brain in the head and neck. This information may help with understanding of the mechanisms behind idiopathic intracranial hypertension. 4. Link to NASA Taskbook Entry Not Yet Available

  4. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  5. Effect of Microgravity on Bone Tissue and Calcium Metabolism

    Science.gov (United States)

    1997-01-01

    Session TA4 includes short reports concerning: (1) Human Bone Tissue Changes after Long-Term Space Flight: Phenomenology and Possible Mechanics; (2) Prediction of Femoral Neck Bone Mineral Density Change in Space; (3) Dietary Calcium in Space; (4) Calcium Metabolism During Extended-Duration Space Flight; (5) External Impact Loads on the Lower Extremity During Jumping in Simulated Microgravity and the Relationship to Internal Bone Strain; and (6) Bone Loss During Long Term Space Flight is Prevented by the Application of a Short Term Impulsive Mechanical Stimulus.

  6. Survey of On-Orbit Sleep Quality: Short-Duration Flyers

    Science.gov (United States)

    Locke, J.; Leveton, L.; Keeton, K.; Whitmire, A.; Patterson, H.; Faulk, J.

    2010-01-01

    The NASA Human Research Program (HRP) Behavioral Health and Performance Element (BHP), in conjunction with the NASA Space Medicine Division, is currently completing the largest systematic, subjective assessment of shuttle astronauts sleep behaviors and sleep quality on Earth, during training periods, and during space flight missions. Since July 2009, a total of 66 astronauts have completed a secure online survey regarding specific sleep strategies, crew policies, and mitigation effectiveness. In addition to the survey, each astronaut participant met individually with trained BHP and SD representatives for a structured, follow-up interview. Data are currently being assessed and the study s principal investigator will be providing some preliminary findings at the Investigators Workshop. Additional analyses will be conducted in the following months to examine predictors of optimal sleep in space, and to evaluate the differences in countermeasure effectiveness between groups based on their sleep experience on the ground and on orbit. A revised survey for a subsequent investigation on the experiences of long-duration flyers will be developed in the Spring and implemented in the Summer of 2010. Findings from both of these investigations will inform countermeasure strategies for astronauts, medical operations, and habitat designers for future exploration missions, as well as upcoming shuttle and ISS missions.

  7. Nutrition and human physiological adaptations to space flight

    Science.gov (United States)

    Lane, H. W.; LeBlanc, A. D.; Putcha, L.; Whitson, P. A.

    1993-01-01

    Space flight provides a model for the study of healthy individuals undergoing unique stresses. This review focuses on how physiological adaptations to weightlessness may affect nutrient and food requirements in space. These adaptations include reductions in body water and plasma volume, which affect the renal and cardiovascular systems and thereby fluid and electrolyte requirements. Changes in muscle mass and function may affect requirements for energy, protein and amino acids. Changes in bone mass lead to increased urinary calcium concentrations, which may increase the risk of forming renal stones. Space motion sickness may influence putative changes in gastro-intestinal-hepatic function; neurosensory alterations may affect smell and taste. Some or all of these effects may be ameliorated through the use of specially designed dietary countermeasures.

  8. Human space flight and future major space astrophysics missions: servicing and assembly

    Science.gov (United States)

    Thronson, Harley; Peterson, Bradley M.; Greenhouse, Matthew; MacEwen, Howard; Mukherjee, Rudranarayan; Polidan, Ronald; Reed, Benjamin; Siegler, Nicholas; Smith, Hsiao

    2017-09-01

    Some concepts for candidate future "flagship" space observatories approach the payload limits of the largest launch vehicles planned for the next few decades, specifically in the available volume in the vehicle fairing. This indicates that an alternative to autonomous self-deployment similar to that of the James Webb Space Telescope will eventually be required. Moreover, even before this size limit is reached, there will be significant motivation to service, repair, and upgrade in-space missions of all sizes, whether to extend the life of expensive facilities or to replace outworn or obsolete onboard systems as was demonstrated so effectively by the Hubble Space Telescope program. In parallel with these challenges to future major space astronomy missions, the capabilities of in-space robotic systems and the goals for human space flight in the 2020s and 2030s offer opportunities for achieving the most exciting science goals of the early 21st Century. In this paper, we summarize the history of concepts for human operations beyond the immediate vicinity of the Earth, the importance of very large apertures for scientific discovery, and current capabilities and future developments in robot- and astronaut-enabled servicing and assembly.

  9. Some results of the effect of space flight factors on Drosophila melanogaster

    International Nuclear Information System (INIS)

    Filatova, L.P.; Vaulina, E.N.

    1983-01-01

    Chromosomal effects of space flight factors were investigated in Drosophila melanogaster flown aboard the Salyut 6 orbital station. Drosophila males heterozygous for four linked traits were exposed to space flight conditions for periods of eight days, and the progeny when the males were mated with homozygous recessive females were compared with those from control flies exposed to the same vibration and acceleration environment, and the progeny of laboratory controls. Increases in recombination and nondisjunction frequencies were observed in the flies exposed to the space environment, with recombinant flies also found in the F1 generation of the vibration and acceleration controls. Results suggest that it is the action of heavy particles that accounts for the major portion of the genetic effects observed. 17 references

  10. Signal-averaged P wave duration and the long-term risk of permanent atrial fibrillation

    DEFF Research Database (Denmark)

    Dixen, Ulrik; Larsen, Mette Vang; Ravn, Lasse Steen

    2008-01-01

    of permanent AF. The risk of permanent AF after 3 years follow-up was 0.72 with an SAPWD equal to 180 ms versus 0.39 with a normal SAPWD (130 ms). We found no prognostic effect of age, gender, dilated left atrium, long duration of AF history, or long duration of the most recent episode of AF. Co...

  11. Spaceflight Microbiology: Benefits for Long Duration Spaceflight and Our Understanding of Microorganisms on Earth

    Science.gov (United States)

    Ott, C. Mark

    2014-01-01

    Spaceflight microbiology is composed of both operational and experimental components that complement each other in our understanding of microbial interactions and their responses in the microgravity of spaceflight. Operationally, efforts to mitigate microbiological risk to the crew and the spacecraft have historically focused on minimizing the number of detectable organisms, relying heavily on preventative measures, including appropriate vehicle design, crew quarantine prior to flight, and stringent microbial monitoring. Preflight monitoring targets have included the astronauts, spaceflight foods, potable water systems, the vehicle air and surfaces, and the cargo carried aboard the spacecraft. This approach has been very successful for earlier missions; however, the construction and long-term habitation of the International Space Station (ISS) has created the need for additional inflight monitoring of the environment and potable water systems using hardware designed for both in-flight microbial enumeration and sample collection and return to Earth. In addition to operational activities, the ISS is providing a research platform to advance our understanding of microbiomes in the built environment. Adding to the research possibilities of this system are multiple reports of unique changes in microbial gene expression and phenotypic responses, including virulence and biofilm formation, in response to spaceflight culture. The tremendous potential of the ISS research platform led the National Research Council to recommend that NASA utilize the ISS as a microbial observatory. Collectively, the findings from operational and research activities on the ISS are expected to both enable future space exploration and translate to basic and applied research on Earth.

  12. Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2008-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (operator) to a basic level of effectiveness in 1 year. SFRM training uses a two-pronged approach to expediting operator certification: 1) imbed SFRM skills training into all operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills. Methods: A mentor works with an operator throughout the training flow. Inserted into the training flow are guided-discussion sessions and on-the-job observation opportunities focusing on specific SFRM skills, including: situational leadership, conflict management, stress management, cross-cultural awareness, self care and team care while on-console, communication, workload management, and situation awareness. The mentor and operator discuss the science and art behind the skills, cultural effects on skills applications, recognition of good and bad skills applications, recognition of how skills application changes subtly in different situations, and individual goals and techniques for improving skills. Discussion: This mentoring program provides an additional means of transferring SFRM knowledge compared to traditional CRM training programs. Our future endeavors in training SFRM skills (as well as other organization s) may benefit from adding team performance skills mentoring. This paper

  13. Multicultural Ground Teams in Space Programs

    Science.gov (United States)

    Maier, M.

    2012-01-01

    In the early years of space flight only two countries had access to space. In the last twenty years, there have been major changes in how we conduct space business. With the fall of the iron curtain and the growing of the European Union, more and more players were able to join the space business and space science. By end of the last century, numerous countries, agencies and companies earned the right to be equal partners in space projects. This paper investigates the impact of multicultural teams in the space arena. Fortunately, in manned spaceflight, especially for long duration missions, there are several studies and simulations reporting on multicultural team impact. These data have not been as well explored on the team interactions within the ground crews. The focus of this paper are the teams working on the ISS project. Hypotheses will be drawn from the results of space crew research to determine parallels and differences for this vital segment of success in space missions. The key source of the data will be drawn from structured interviews with managers and other ground crews on the ISS project.

  14. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    Science.gov (United States)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  15. Workplace Social Support and Behavioral Health Prior to Long-Duration Spaceflight.

    Science.gov (United States)

    Deming, Charlene A; Vasterling, Jennifer J

    2017-06-01

    Preparation and training for long-duration spaceflight bring with them psychosocial stressors potentially affecting the well-being and performance of astronauts, before and during spaceflight. Social support from within the workplace may mitigate behavioral health concerns arising during the preflight period and enhance resiliency before and during extended missions. The purpose of this review was to evaluate evidence addressing the viability of workplace social support as a pre-mission countermeasure, specifically addressing: 1) the observed relationships between workplace social support and behavioral health; 2) perceived need, acceptability, and format preference for workplace social support among high-achievers; 3) potential barriers to delivery/receipt of workplace social support; 4) workplace social support interventions; and 5) delivery timeframe and anticipated duration of workplace social support countermeasure benefits. We conducted an evidence review examining workplace social support in professional contexts sharing one or more characteristics with astronauts and spaceflight. Terms included populations of interest, social support constructs, and behavioral health outcomes. Abstracts of matches were subsequently reviewed for relevance and quality. Research findings demonstrate clear associations between workplace social support and behavioral health, especially following exposure to stress. Further, studies indicate strong need for support and acceptability of support countermeasures, despite barriers. Our review revealed two general formats for providing support (i.e., direct provision of support and training to optimize skills in provision and receipt of support) with potential differentiation of expected duration of benefits, according to format. Workplace social support countermeasures hold promise for effective application during pre-mission phases of long-duration spaceflight. Specific recommendations are provided.Deming CA, Vasterling JJ

  16. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    Science.gov (United States)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  17. Duration of works, flight hours, and blood pressure related to noise-induced hearing loss among Indonesian Air Force helicopter pilots

    Directory of Open Access Journals (Sweden)

    Kholidah Hanum

    2006-09-01

    Full Text Available Helicopter pilots exposed to high intensity noise and other risk factors had increased risk to be noise-induced hearing loss (NIHL. Therefore, it is beneficial to study several risk factors related to NIHL. This study was a nested case-control. Data was extracted from available medical records among helicopter pilots who performed routine aerophysiology training indoctrination (ILA during 1980 through March 2004 at Saryanto Institute for Aviation and Aerospace Medicine (Lakespra, Jakarta. Case was those who had audiogram with a notch of 40 dB or more and of 4000 Hertz on one site or bilateral ears. A case was matched by two controls who free from NIHL up to 2004. All risk factors for cases and controls were counted as of reference date of cases diagnosed. There were 187 medical records available for this study. A number of 32 cases and 64 controls were identified. The final model reveals that NIHL was related to total duration of works, flight hours, and blood pressure. Those who had 500 hours or more than less 500 hours had a moderate increased risk for 2.5 to be NIHL [Adjusted odds ratio (ORa= 2.50; 95% confidence intervals (CI = 0.66-9.29; p = 0.180]. Those who had total duration works 11-24 years had a moderate increased to be NIHL for 2.7 times (ORa = 2.71; 95% CI=0.90-8.10; p = 0.075. Furthermore, prehypertension and hypertension stage 1 subjects than normal blood pressure had moderate trend increased risk to be NIHL. In conclusion total flight hours for 500 hours or more, total duration works 11-24 years, or prehypertension and hypertension stage 1 increased risk NIHL. (Med J Indones 2006; 15:185-90 Keywords: noise induced hearing loss, flight hours, working duration, blood pressure

  18. Space Environmental Testing of the Electrodynamic Dust Shield Technology

    Science.gov (United States)

    Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2013-01-01

    NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.

  19. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  20. Identification of long-duration noise transients in LIGO and Virgo

    International Nuclear Information System (INIS)

    Coughlin, Michael W

    2011-01-01

    The LIGO and Virgo detectors are sensitive to a variety of noise sources, such as instrumental artifacts and environmental disturbances. The Stochastic Transient Analysis Multi-detector Pipeline has been developed to search for long-duration (t ≥ 1 s) gravitational-wave (GW) signals. This pipeline can also be used to identify environmental noise transients. Here, we present an algorithm to determine when long-duration noise sources couple into the interferometers, as well as identify what these noise sources are. We analyze the cross-power between a GW strain channel and an environmental sensor, using pattern recognition tools to identify statistically significant structure in cross-power time-frequency maps. We identify interferometer noise from airplanes, helicopters, thunderstorms and other sources. Examples from LIGO's sixth science run, S6, and Virgo's third scientific run, VSR3, are presented. (paper)

  1. Viscoelastic Characterization of Long-Eared Owl Flight Feather Shaft and the Damping Ability Analysis

    Directory of Open Access Journals (Sweden)

    Jia-li Gao

    2014-01-01

    Full Text Available Flight feather shaft of long-eared owl is characterized by a three-parameter model for linear viscoelastic solids to reveal its damping ability. Uniaxial tensile tests of the long-eared owl, pigeon, and golden eagle flight feather shaft specimens were carried out based on Instron 3345 single column material testing system, respectively, and viscoelastic response of their stress and strain was described by the standard linear solid model. Parameter fitting result obtained from the tensile tests shows that there is no significant difference in instantaneous elastic modulus for the three birds’ feather shafts, but the owl shaft has the highest viscosity, implying more obvious viscoelastic performance. Dynamic mechanical property was characterized based on the tensile testing results. Loss factor (tanδ of the owl flight feather shaft was calculated to be 1.609 ± 0.238, far greater than those of the pigeon (0.896 ± 0.082 and golden eagle (1.087 ± 0.074. It is concluded that the long-eared owl flight feather has more outstanding damping ability compared to the pigeon and golden eagle flight feather shaft. Consequently, the long-eared owl flight feathers can dissipate the vibration energy more effectively during the flying process based on the principle of damping mechanism, for the purpose of vibration attenuation and structure radiated noise reduction.

  2. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The PI has developed a miniature time-of-flight mass spectrometer (TOF-MS), which can be op-timized for space and extraterrestrial applications, by using a...

  3. Estimation of absorbed dose for poor shields under conditions of near-earth space flight

    International Nuclear Information System (INIS)

    Konyukov, V.V.; Krajnyukov, V.I.; Trufanov, A.I.

    1995-01-01

    Estimation of electron absorbed dose in materials of a space vehicle for poor shields under conditions of near-earth space flight is carried out. Impact of power and angular distribution of incidence electrons and radiation scattering processes under conditions of complex geometry and multitude of materials of flight vehicle elements and nodes is studied through simulator model by example of isolating layer of aluminium-polyethylene assembly. 3 refs.; 2 figs

  4. Ultra Reliable Closed Loop Life Support for Long Space Missions

    Science.gov (United States)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  5. The radiation protection problems of high altitude and space flight

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers

  6. Defining the Relationship Between Biomarkers of Oxidation and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, Stuart M. C.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis.

  7. Effects of Long-Duration Ground Motions on Liquefaction Hazards

    Science.gov (United States)

    Greenfield, Michael W.

    Soil liquefaction during past earthquakes has caused extensive damage to buildings, bridges, dam, pipelines and other elements of infrastructure. Geotechnical engineers use empirical observations from earthquake case histories in conjunction with soil mechanics to predict the behavior of liquefiable soils. However, current empirical databases are insufficient to evaluate the behavior of soils subject to long-duration earthquakes, such as a possible Mw = 9.0 Cascadia Subduction Zone earthquake. The objective of this research is to develop insight into the triggering and effects of liquefaction due to long-duration ground motions and to provide recommendations for analysis and design. Recorded ground motions from 21 case histories with surficial evidence of liquefaction showed marked differences in soil behavior before and after liquefaction was triggered. In some cases, strong shaking continued for several minutes after the soil liquefied, and a variety of behaviors were observed including dilation pulses, continued softening due to soil fabric degradation, and soil stiffening due to pore pressure dissipation and drainage. Supplemental field and laboratory investigations were performed at three sites that liquefied during the 2011 Mw = 9.0 Tohoku earthquake. The recorded ground motions and field investigation data were used in conjunction with laboratory observations, analytical models, and numerical models to evaluate the behavior of liquefiable soils subjected to long-duration ground motions. Observations from the case histories inspired a framework to predict ground deformations based on the differences in soil behavior before and after liquefaction has triggered. This framework decouples the intensity of shaking necessary to trigger liquefaction from the intensity of shaking that drives deformation by identifying the time when liquefaction triggers. The timing-based framework promises to dramatically reduce the uncertainty in deformation estimates compared to

  8. Radiations and space flight; Quand les radiations font partie du voyage

    Energy Technology Data Exchange (ETDEWEB)

    Maalouf, M.; Vogin, G.; Foray, N. [Groupe de Radiobiologie, Inserm U836, Institut des Neurosciences, 38 - Grenoble (France); Maalouf [CNES, Dept. des Sciences de la Vie, 75 - Paris (France); Vogin, G. [Laboratoire de Radiobiologie, EA3738, Faculte de Medecine de Lyon Sud, 69- Oullins (France)

    2011-02-15

    A space flight is submitted to 3 main sources of radiation: cosmic radiation (4 protons/cm{sup 2}/s and 10000 times less for the heaviest particles), solar radiation (10{sup 8} protons/cm{sup 2}/s in the solar wind), the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm{sup 2}/s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 {mu}Gray per day with an average dose rate of 0.28 {mu}Gray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  9. Transient immune impairment after a simulated long-haul flight.

    Science.gov (United States)

    Wilder-Smith, Annelies; Mustafa, Fatima B; Peng, Chung Mien; Earnest, Arul; Koh, David; Lin, Gen; Hossain, Iqbal; MacAry, Paul A

    2012-04-01

    Almost 2 billion people travel aboard commercial airlines every year, with about 20% developing symptoms of the common cold within 1 wk after air travel. We hypothesize that hypobaric hypoxic conditions associated with air travel may contribute to immune impairment. We studied the effects of hypobaric hypoxic conditions during a simulated flight at 8000 ft (2438 m) cruising altitude on immune and stress markers in 52 healthy volunteers (mean age 31) before and on days 1, 4, and 7 after the flight. We did a cohort study using a generalized estimating equation to examine the differences in the repeated measures. Our findings show that the hypobaric hypoxic conditions of a 10-h overnight simulation flight are not associated with severe immune impairment or abnormal IgA or cortisol levels, but with transient impairment in some parameters: we observed a transient decrease in lymphocyte proliferative responses combined with an upregulation in CD69 and CD14 cells and a decrease in HLA-DR in the immediate days following the simulated flight that normalized by day 7 in most instances. These transient immune changes may contribute to an increased susceptibility to respiratory infections commonly seen after long-haul flights.

  10. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques

    International Nuclear Information System (INIS)

    Zhao, Lei; Gao, Ying; Mi, Dong; Sun, Yeqing

    2016-01-01

    Highlights: • A combined algorithm is proposed to mine biomarkers of spaceflight in C. elegans. • This algorithm makes the feature selection more reliable and robust. • Apply this algorithm to predict 17 positive biomarkers to space environment stress. • The strategy can be used as a general method to select important features. - Abstract: To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  11. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China); Gao, Ying [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Mi, Dong, E-mail: mid@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Sun, Yeqing, E-mail: yqsun@dlmu.edu.cn [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-09-15

    Highlights: • A combined algorithm is proposed to mine biomarkers of spaceflight in C. elegans. • This algorithm makes the feature selection more reliable and robust. • Apply this algorithm to predict 17 positive biomarkers to space environment stress. • The strategy can be used as a general method to select important features. - Abstract: To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  12. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.

    2015-01-01

    The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion

  13. Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans

    Science.gov (United States)

    Smith, S. M.; Davis-Street, J. E.; Rice, B. L.; Nillen, J. L.; Gillman, P. L.; Block, G.

    2001-01-01

    Adequate nutrition is critical during long-term spaceflight, as is the ability to easily monitor dietary intake. A comprehensive nutritional status assessment profile was designed for use before, during and after flight. It included assessment of both dietary intake and biochemical markers of nutritional status. A spaceflight food-frequency questionnaire (FFQ) was developed to evaluate intake of key nutrients during spaceflight. The nutritional status assessment protocol was evaluated during two ground-based closed-chamber studies (60 and 91 d; n = 4/study), and was implemented for two astronauts during 4-mo stays on the Mir space station. Ground-based studies indicated that the FFQ, administered daily or weekly, adequately estimated intake of key nutrients. Chamber subjects maintained prechamber energy intake and body weight. Astronauts tended to eat 40--50% of WHO-predicted energy requirements, and lost >10% of preflight body mass. Serum ferritin levels were lower after the chamber stays, despite adequate iron intake. Red blood cell folate concentrations were increased after the chamber studies. Vitamin D stores were decreased by > 40% on chamber egress and after spaceflight. Mir crew members had decreased levels of most nutritional indices, but these are difficult to interpret given the insufficient energy intake and loss of body mass. Spaceflight food systems can provide adequate intake of macronutrients, although, as expected, micronutrient intake is a concern for any closed or semiclosed food system. These data demonstrate the utility and importance of nutritional status assessment during spaceflight and of the FFQ during extended-duration spaceflight.

  14. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  15. Validation of the Pulmonary Function System for Use on the International Space Station

    Science.gov (United States)

    McCleary, Frank A.; Moore, Alan D., Jr.; Hagan, R. Donald

    2007-01-01

    Aerobic deconditioning occurs during long duration space flight despite the use of exercise countermeasures (Convertino, 1996). As a part of International Space Station (ISS) medical operations, periodic tests designed to estimate aerobic capacity are performed to track changes in aerobic fitness and to determine the effectiveness of exercise countermeasures. These tests are performed prior to, during, and after missions of greater than 30 days in duration. Crewmembers selected for missions aboard the ISS perform a graded exercise test on a cycle ergometer approximately 270 days prior to their scheduled launch date in order to measure peak oxygen consumption (VO2PK) and peak heart rate (HRpk). Approximately 30 to 45 days prior to launch, crewmembers perform a submaximal cycle ergometer test at work rates set to elicit 25, 50 and 75% of their pre-flight VO2PK. This test, known as the Periodic Fitness Evaluation (PFE), serves as a baseline measure to which subsequent in-and post-flight exercise tests are compared. While onboard the ISS, crewmembers are normally scheduled to perform the PFE beginning with flight day (FD) 14 and every 30 days thereafter. The PFE is also conducted 5 and 30 days following flight. Using PFE data, aerobic fitness is estimated by quantifying the VO2 vs. HR relationship using linear regression and calculating the VO2 that would occur at the crewmember s previously measured HRpk. Currently, for data collected during flight, this technique assumes that the pre- vs. in-flight oxygen consumption per given cycle workload is similar. However, the validity of this assumption is based upon a sparse amount of data collected during the Skylab era (Michel, et al. 1977). The method of using heart rate and cycle ergometer work rates has been used to estimate aerobic fitness in normal gravity (Astrand and Ryhming, 1954; Lee, 1993). Due to spaceflight induced physiological alterations, such as shifts in extracellular fluid (e.g. plasma) volume, this method

  16. Analysis of Flight of Near-Space Balloon

    Science.gov (United States)

    Miller, Zech; Evans, Austin; Seyfert, James; Leadlove, Kyle; Gumina, Kaitlyn; Martell, Eric

    2015-04-01

    In December 2014, the Electronics class at Millikin University launched a balloon designed to travel into the near-space region of the atmosphere. The balloon was equipped with an instrumentation package including a camera, accelerometer, barometric pressure sensor, temperature probes, as well as a system for tracking using an Automatic Packet Reporting System (APRS). The balloon was launched from Decatur, IL, and landed in Marysville, OH, nearly 320 miles away. The students then analyzed the data from the flight and compared results to expectations.

  17. Evolution of telemedicine in the space program and earth applications

    Science.gov (United States)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  18. Use of Virtual Reality for Space Flight

    Science.gov (United States)

    Harm, Deborah; Taylor, L. C.; Reschke, M. F.

    2011-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational

  19. Defining the Relationship Between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, S. M. C.; Martin, D. S.; Smith, S. M.; Zwart, S. R.; Laurie, S. S; Ribeiro, L. C.; Stenger, M. B.

    2017-01-01

    Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.

  20. Flight simulation program for high altitude long endurance unmanned vehicle; Kokodo mujinki no hiko simulation program

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hashidate, M. [National Aerospace Laboratory, Tokyo (Japan)

    1995-11-01

    An altitude of about 20 km has the atmospheric density too dilute for common aircraft, and the air resistance too great for satellites. Attention has been drawn in recent years on a high-altitude long-endurance unmanned vehicle that flies at this altitude for a long period of time to serve as a wave relaying base and perform traffic control. Therefore, a development was made on a flight simulation program to evaluate and discuss the guidance and control laws for the high-altitude unmanned vehicle. Equations of motion were derived for three-dimensional six freedom and three-dimensional three freedom. Aerodynamic characteristics of an unmanned vehicle having a Rectenna wing were estimated, and formulation was made according to the past research results on data of winds that the unmanned vehicle is anticipated to encounter at an altitude of 20 km. Noticing the inside of a horizontal plane, a proposal was given on a guidance law that follows a given path. A flight simulation was carried out to have attained a prospect that the unmanned vehicle may be enclosed in a limited space even if the vehicle is encountered with a relatively strong wind. 18 refs., 20 figs., 1 tab.

  1. Keynote speech - Manned Space Flights: Lessons Learned from Space Craft Operation and Maintenance

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Following graduation in 1973 from the Ecole de l'Air (the French Air Force Academy), Michel Tognini served in the French Air Force as an operational fighter pilot, flight leader in 1976, flight commander in 1979, test pilot then chief test pilot from 1983 to 1985. In 1985, France opened a recruitment program to expand its astronaut corps, and Michel Tognini was one of seven candidates selected by CNES. In July 1986, he was one of four candidates to undergo medical examinations in Moscow. In August 1986, he was assigned as a back-up crew member for the Soyuz TM-7 mission. Although he remained a French Air Force officer, he was placed on detachment to CNES for his space flight activities from September 1986 onwards. In 1991 he went to Star City, Russia, to start prime crew training for the third Soviet-French ANTARES mission. During his stay in Russia, he linked up with Mir (ANTARES mission) and spent 14 days (July 27–Aug. 10, 1992; Soyuz TM-14 and TM-14)carrying out a program of joint Soviet-French experimen...

  2. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    Science.gov (United States)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  3. Dietary and Urinary Sulfur can Predict Changes in Bone Metabolism During Space Flight

    Science.gov (United States)

    Zwart, Sara R.; Heer, Martina; Shackelford, Linda; Smith, Scott M.

    2015-01-01

    Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort. Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest. In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. The final three subjects' inflight samples are awaiting return from the International Space Station via Space-X. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses show that urinary excretion of sulfate (normalized to lean body mass) is a significant predictor of urinary n-telopeptide (NTX). Dietary sulfate (normalized to lean body mass) is also a significant predictor of urinary NTX. The results from this study, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. This study was funded by the Human Health Countermeasures Element of the NASA Human Research Program.

  4. Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man

    Science.gov (United States)

    Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.

    1985-01-01

    An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.

  5. Space Psychology and Psychiatry

    Science.gov (United States)

    Kanas, N.; Manzey, D.

    2003-09-01

    This book deals with psychological, psychiatric, and psychosocial issues that affect people who live and work in space. Unlike other books that focus on anecdotal reports and ground-based simulation studies, this book emphasizes the findings from psychological research conducted during actual space missions. Both authors have been active in such research. What is presented in this readable text has previously been found only in scientific journal articles. Topics that are discussed include: behavioral adaptation to space; human performance and cognitive effects; crewmember interactions; psychiatric responses; psychological counter-measures related to habitability factors, work-design, selection, training, and in-flight monitoring and support; and the impact of expeditionary missions to Mars and beyond. People finding this book of interest will include: psychology and social science students and professors in universities; medical students and residents in psychiatry and aerospace medicine; human factors workers in space and aviation professions; individuals involved with isolated environments on Earth (e.g., the Antarctic, submarines); aerospace workers in businesses and space agencies such as NASA and ESA; and anyone who is interested in learning the facts about the human side of long-duration space missions. Link: http://www.wkap.nl/prod/b/1-4020-1341-8

  6. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  7. Cognitive Abilities Explaining Age-Related Changes in Time Perception of Short and Long Durations

    Science.gov (United States)

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2011-01-01

    The current study investigated how the development of cognitive abilities explains the age-related changes in temporal judgment over short and long duration ranges from 0.5 to 30 s. Children (5- and 9-year-olds) as well as adults were given a temporal bisection task with four different duration ranges: a duration range shorter than 1 s, two…

  8. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  9. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  10. Insomnia in patients on hemodialysis for a short versus long duration

    Directory of Open Access Journals (Sweden)

    Tomita T

    2016-09-01

    Full Text Available Tetsu Tomita,1 Norio Yasui-Furukori,1 Masaki Oka,1 Takaaki Shimizu,2 Aya Nagashima,2 Kento Mitsuhashi,2 Hisao Saito,3 Kazuhiko Nakamura1 1Department of Neuropsychiatry, Graduate School of Medicine, 2School of Medicine, Hirosaki University, 3Department of Urology, Oyokyo Kidney Research Institute, Hirosaki, Japan Background: Many studies have investigated insomnia and the factors associated with this condition in hemodialysis (HD patients, although the influence of HD duration has not been thoroughly investigated. In the present study, we investigated the factors, especially the duration of HD, associated with insomnia in HD patients.Patients and methods: A total of 138 patients undergoing HD were recruited, and the Japanese version of the Pittsburgh Sleep Quality Index (PSQI was used to assess the quality of sleep. Subjects with a total PSQI score up to 4 and those with a score of at least 5 were identified as normal subjects and subjects with insomnia, respectively. Additionally, we assessed restless legs syndrome, depression using the Center for Epidemiologic Studies Depression Scale, and health-related quality of life (QOL using the Short Form 8 Health Survey. We divided the subjects into two groups according to the median HD duration.Results: The prevalence rate of insomnia was 54.3% among all the subjects. Twenty-one subjects (15.2% had depression, 26 (18.8% had restless legs syndrome, and 75 (54.3% had insomnia. The median HD duration was 4 years. The scores of components 1 and 4 of the PSQI, subjective sleep quality and habitual sleep efficiency, did not show a significant difference between the normal and insomnia groups. The score of component 7, daytime dysfunction, showed a significant difference between the short and long HD duration groups. In multiple regression analysis, the score of the Short Form 8 Health Survey showed a significant association with the PSQI score in the long HD duration group, but no variable showed a

  11. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    Science.gov (United States)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  12. Infectious Disease Risk Associated with Space Flight

    Science.gov (United States)

    Pierson, Duane L.

    2010-01-01

    This slide presentation opens with views of the shuttle in various stages of preparation for launch, a few moments after launch prior to external fuel tank separation, a few pictures of the earth,and several pictures of astronomical interest. The presentation reviews the factors effecting the risks of infectious disease during space flight, such as the crew, water, food, air, surfaces and payloads and the factors that increase disease risk, the factors affecting the risk of infectious disease during spaceflight, and the environmental factors affecting immunity, such as stress. One factor in space infectious disease is latent viral reactivation, such as herpes. There are comparisons of the incidence of viral reactivation in space, and in other analogous situations (such as bed rest, or isolation). There is discussion of shingles, and the pain and results of treatment. There is a further discussion of the changes in microbial pathogen characteristics, using salmonella as an example of the increased virulence of microbes during spaceflight. A factor involved in the risk of infectious disease is stress.

  13. Poor flight performance in deep-diving cormorants.

    Science.gov (United States)

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  14. Space ventures and society long-term perspectives

    Science.gov (United States)

    Brown, W. M.

    1985-01-01

    A futuristic evaluation of mankind's potential long term future in space is presented. Progress in space will not be inhibited by shortages of the Earth's physical resources, since long term economic growth will be focused on ways to constrain industrial productivity by changing social values, management styles, or government competence. Future technological progress is likely to accelerate with an emphasis on international cooperation, making possible such large joint projects as lunar colonies or space stations on Mars. The long term future in space looks exceedingly bright even in relatively pessimistic scenarios. The principal driving forces will be technological progress, commercial and public-oriented satellites, space industrialization, space travel, and eventually space colonization.

  15. Assessment of Nutrient Stability in Space Foods

    Science.gov (United States)

    Zwart, S. R.; Perchonok, M.; Braby, L. A.; Kloeris, V. A.; Smith, S. M.

    2009-01-01

    Maintaining an intact nutrient supply in the food system flown on spacecraft is a critical issue for mission success and crew health and safety. Early polar expeditions and exploration expeditions by sailing vessels have taught us that a deficiency, or excess, of even a single vitamin in the food supply can be catastrophic. Evidence from ground-based research indicates that some vitamins are destroyed and fatty acids are oxidized (and therefore rendered dangerous or useless) by different types of radiation and by conditions of long-term storage. We hypothesize that radiation and long-term storage in the space-flight environment will affect the stability of vitamins, amino acids, and fatty acids in the space food system. The research objectives of our ongoing stability studies are to determine the stability of water- and fat-soluble vitamins, fatty acids, and amino acids in the space food supply before and after space flight on the International Space Station (ISS). Foods were analyzed after 2 weeks (a flight control), 11, 19, and 28 months of flight. Along with the space-flown foods, ground-based controls matched for time, light, and temperature are analyzed. The flight studies complement planned ground-based studies of the effects of radiation on vitamins, amino acids, and fatty acids. Flight studies are needed because a model based on ground-based data cannot predict all of the effects of the space-flight environment. Flight studies provide a more accurate test system to determine the effects on these nutrients of the temperature, and radiation conditions in the space-flight environment. Ground studies are required to evaluate longer missions and higher radiation levels expected outside low-Earth orbit. In addition to providing information about nutrient stability in space, the results of these studies will help NASA determine if a need exists to develop special packaging that can ensure stability of foods and nutrients in space, or if further studies of nutrient

  16. [Severe upper abdominal pain during a long distance flight].

    Science.gov (United States)

    Bestehorn, D; Schmidt, C; Lock, G

    2014-10-01

    A 43-year-old woman of Ghanaian origin presented with severe upper abdominal pain starting on a long distance flight. Physical examination revealed tenderness on palpation in the left upper abdomen and flank. There was no report of pre-existing conditions or permanent medication in the medical history. Laboratory tests showed signs of haemolytic anemia and elevated inflammatory parameters. The "thick blood smear" was normal. Ultrasonography revealed an enlarged spleen (14×5 cm) with inhomogeneous parenchyma and vast, diffusely spread hypoechoic lesions in perihilar location, interpreted as extended splenic infarction. Symptom onset on a long distance flight, haemolytic anemia and extended splenic infarction led to the assumption of a vasoocclusive crisis with haemolysis. Moleculargenetic tests proved the presence of HbSC-sickle cell disease and heterozygous alpha-thalassemia. After infusion of crystalloid solution the patient was asymptomatic further on. Due to splenic infarction she received prophylactic treatment with Cefuroxim. A vaccination against pneumococci, meningococci and Haemophilus influenza B was recommended. Mild hypoxia and dehydration on a long distance flight can trigger a sickle cell crisis and may contribute to late clinical manifestation and diagnosis of sickle cell disease in some cases. Patients suffering from HbSC-sickle cell disease are at risk for the same life-threatening complications as patients with HbSS-sickle cell disease. HbSC-sickle cell disease should not be considered as a mild form of HbSS-sickle cell disease but as a separate disease with specific clinical manifestations. In contrast-enhanced ultrasonography, splenic infarction due to sickle cell crisis may markedly differ from "typical" arterial thromboembolic infarction. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Within-summer variation in out-of-hospital cardiac arrest due to extremely long sunshine duration.

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2017-03-15

    Although several studies have reported the impacts of extremely high temperatures on cardiovascular diseases, no studies have examined whether variation in out-of-hospital cardiac arrest (OHCA) due to extremely long sunshine duration changes during the summer. We obtained daily data on all cases of OHCA and weather variations for all 47 prefectures of Japan during the summer (June to September) between 2005 and 2014. A distributed lag non-linear model combined with a quasi-Poisson regression model was used to estimate within-summer variation in OHCA due to extremely long sunshine duration for each prefecture. Then, multivariate random-effects meta-analysis was performed to derive overall effect estimates of sunshine duration at the national level. A total of 166,496 OHCAs of presumed cardiac origin met the inclusion criteria. The minimum morbidity percentile (MMP) was the 0th percentile of sunshine duration at the national level. The overall cumulative relative risk (RR) at the 99th percentile vs. the MMP was 1.15 (95% CI: 1.05-1.27) during the summer. The effect of extremely long sunshine duration on OHCA in early summer was acute and did not persist, whereas an identical effect was observed in late summer, but it was delayed and lasted for several days. During summer periods, excessive sunshine duration could increase the risk of OHCA. Timely preventive measures to reduce the OHCA risk due to extremely long sunshine duration are important in early summer, whereas these measures could include a wider time window of several days to reduce the risk in late summer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    Science.gov (United States)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  19. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    Science.gov (United States)

    Bohnhoff-Hlavacek, Gail

    1992-09-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  20. NASA Goddard Space Flight Center Supply Chain Management Program

    Science.gov (United States)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  1. CSLAA and FAA'S Rules: Incorporating a 'Risk Management Framework' to Minimise Human Space Flight Risks

    Science.gov (United States)

    Chaddha, S.

    2012-01-01

    th This year marks the 50 anniversary of a landmark victory for humankind in its endeavour of entering and exploring the final frontier. During these years of space activity, we have witnessed a number of cumulative successes. One of which is the emergence of the commercial human space flight, or "space tourism", market. Commercial companies have the aim of travelling people into space safely and affordably. This paper shall consider the U.S. regulatory framework governing the space tourism market. It scrutinises the adequacy of the Commercial Space Launch and Amendment Act of 2004 (CSLAA), as bolstered by the FAA's requirements, to protect launching passengers to an acceptable standard of safety from the inherent risks associated with human space flights. It is argued that the legislative regime embeds a three-limb "risk management framework" as an appropriate response to address the concern over the safety of public space travel.

  2. ZAG-Otolith: Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control during Variable Radius Centrifugation Following Space Flight

    Science.gov (United States)

    Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.

  3. Return and profitability of space programs. Information - the main product of flights in space

    Science.gov (United States)

    Nikolova, Irena

    The basic branch providing global information, as a product on the market, is astronautics and in particular aero and space flights. Nowadays economic categories like profitability, return, and self-financing are added to space information. The activity in the space information service market niche is an opportunity for realization of high economic efficiency and profitability. The present report aims at examining the possibilities for return and profitability of space programs. Specialists in economics from different countries strive for defining the economic effect of implementing space technologies in the technical branches on earth. Still the priorities here belong to government and insufficient market organization and orientation is apparent. Attracting private investors and searching for new mechanisms of financing are the factors for increasing economic efficiency and return of capital invested in the mentioned sphere. Return of utilized means is an economically justified goal, a motive for a bigger enlargement of efforts and directions for implementing the achievements of astronautics in the branches of economy on earth.

  4. Assessment of Utilization of Food Variety on the International Space Station

    Science.gov (United States)

    Cooper, M. R.; Paradis, R.; Zwart, S. R.; Smith, S. M.; Kloeris, V. L.; Douglas, G. L.

    2018-01-01

    Long duration missions will require astronauts to subsist on a closed food system for at least three years. Resupply will not be an option, and the food supply will be older at the time of consumption and more static in variety than previous missions. The space food variety requirements that will both supply nutrition and support continued interest in adequate consumption for a mission of this duration is unknown. Limited food variety of past space programs (Gemini, Apollo, International Space Station) as well as in military operations resulted in monotony, food aversion, and weight loss despite relatively short mission durations of a few days up to several months. In this study, food consumption data from 10 crew members on 3-6-month International Space Station missions was assessed to determine what percentage of the existing food variety was used by crew members, if the food choices correlated to the amount of time in orbit, and whether commonalities in food selections existed across crew members. Complete mission diet logs were recorded on ISS flights from 2008 - 2014, a period in which space food menu variety was consistent, but the food system underwent an extensive reformulation to reduce sodium content. Food consumption data was correlated to the Food on Orbit by Week logs, archived Data Usage Charts, and a food list categorization table using TRIFACTA software and queries in a SQL SERVER 2012 database.

  5. Future perspectives on space psychology: Recommendations on psychosocial and neurobehavioural aspects of human spaceflight

    Science.gov (United States)

    De La Torre, Gabriel G.; van Baarsen, Berna; Ferlazzo, Fabio; Kanas, Nick; Weiss, Karine; Schneider, Stefan; Whiteley, Iya

    2012-12-01

    Recently the psychological effects of space flight have gained in attention. In uncovering the psychological challenges that individuals and teams can face, we need research options that integrate psychosocial aspects with behavioral, performance, technical and environmental issues. Future perspectives in Space Psychology and Human Spaceflight are reviewed in this paper. The topics covered include psychosocial and neurobehavioural aspects, neurocognitive testing tools, decision making, autonomy and delayed communications, well being, mental health, situational awareness, and methodology. Authors were members of a European Space Agency (ESA) Research Topical Team on Psychosocial and Behavioral Aspects of Human Spaceflight. They discuss the different topics under a common perspective of a theoretical and practical framework, showing interactions, relationships and possible solutions for the different aspects and variables in play. Recommendations for every topic are offered and summarized for future research in the field. The different proposed research ideas can be accomplished using analogs and simulation experiments, short- and long-duration bed rest, and in-flight microgravity studies. These topics are especially important for future Moon and Mars mission design and training.

  6. Previous experience in manned space flight: A survey of human factors lessons learned

    Science.gov (United States)

    Chandlee, George O.; Woolford, Barbara

    1993-01-01

    Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.

  7. Deep Space Habitat Configurations Based on International Space Station Systems

    Science.gov (United States)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  8. Low Earth orbit thermal control coatings exposure flight tests: A comparison of U.S. and Russian results. Report, 8 November-12 August 1993

    International Nuclear Information System (INIS)

    Tribble, A.C.; Lukins, R.; Watts, E.; Naumov, S.F.; Sergeev, V.K.

    1995-03-01

    Both the United States (US) and Russia have conducted a variety of space environment effects on materials (SEEM) flight experiments in recent years. A prime US example was the Long Duration Exposure Facility (LDEF), which spent 5 years and 9 months in low Earth orbit (LEO) from April 1984 to January 1990. A key Russian experiment was the Removable Cassette Container experiment, (RCC-1), flown on the Mir Orbital Station from 11 January 1990 to 26 April 1991. This paper evaluates the thermal control coating materials data generated by these two missions by comparing: environmental exposure conditions, functionality and chemistry of thermal control coating materials, and pre- and post-flight analysis of absorptance, emittance, and mass loss due to atomic oxygen erosion. It will be seen that there are noticeable differences in the US and Russian space environment measurements and models, which complicates comparisons of environments. The results of both flight experiments confirm that zinc oxide and zinc oxide orthotitanate white thermal control paints in metasilicate binders (Z93, YB71, TP-co-2, TP-co-11, and TP-co-12), are the most stable upon exposure to the space environment. It is also seen that Russian flight materials experience broadens to the use of silicone and acrylic resin binders while the US relies more heavily on polyurethane

  9. Integrated Systems Health Management for Space Exploration

    Science.gov (United States)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  10. Restoring normoglycaemia by use of a very low calorie diet in long- and short-duration Type 2 diabetes.

    Science.gov (United States)

    Steven, S; Taylor, R

    2015-09-01

    To establish whether an 8-week very-low-calorie diet could improve glycaemic control in Type 2 diabetes of long duration. A total of 29 people with Type 2 diabetes [short-duration group (diabetes duration diabetes duration > 8 years), n = 14] completed an 8-week very-low-calorie diet, with assessments of fasting anthropometry, blood tests and blood pressure at baseline and weeks 1, 4 and 8 of the diet. Similar weight loss was achieved in the short- and long-duration groups (14.8 ± 0.8% and 14.4 ± 0.7% respectively; P = 0.662). The glucose response to acute calorie restriction was heterogeneous in the long-duration group with some responding similarly to those in the short-duration group, some responding, but only slowly, and others not responding at all. Overall, HbA1c concentration in the short- vs. long-duration groups fell to 44 ± 2 vs. 64 ± 6 mmol/l (6.2 ± 0.2 vs. 8.0 ± 0.5%; P = 0.002). Fasting plasma glucose levels decreased to 5.8 ± 0.2 vs. 8.4 ± 1.1 mmol/l (P = 0.024) respectively. A total of 87% of the short-duration group and 50% of the long-duration group achieved non-diabetic fasting plasma glucose levels at week 8. Clinically significant improvements in blood pressure and lipid profile were seen regardless of diabetes duration. In people with Type 2 diabetes of > 8 years' duration, a therapeutic trial of a very-low-calorie diet may be undertaken with a 50% chance of achieving non-diabetic fasting glucose levels off all antidiabetic therapies. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  11. Space flight research leading to the development of enhanced plant products: Results from STS-94

    Science.gov (United States)

    Stodieck, Louis S.; Hoehn, Alex; Heyenga, A. Gerard

    1998-01-01

    Products derived from plants, such as foods, pharmaceuticals, lumber, paper, oils, etc., are pervasive in everyday life and generate revenues in the hundreds of billions of dollars. Research on space-grown plants has the potential to alter quantities, properties and types of plant-derived products in beneficial ways. Research on space grown plants may help expand the utilization of this resource for Earth based benefit to an even greater extent. The use of space flight conditions may help provide a greater understanding and ultimate manipulation of the metabolic and genetic control of commercially important plant products. Companies that derive and sell plant products could significantly benefit from investing in space research and development. A flight investigation was conducted on the Shuttle mission STS-94 to establish the initial experimental conditions necessary to test the hypothesis that the exposure of certain plant forms to an adequate period of microgravity may divert the cell metabolic expenditure on structural compounds such as lignin to alternative secondary metabolic compounds which are of commercial interest. Nine species of plants were grown for 16 days in the Astro/Plant Generic Bioprocessing Apparatus (Astro/PGBA) under well-controlled environmental conditions. Approximately half of the plant species exhibited significant growth comparable with synchronous ground controls. The other flight plant species were stunted and showed signs of stress with the cause still under investigation. For the plants that grew well, analyses are underway and are expected to demonstrate the potential for space flight biotechnology research.

  12. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned

    Science.gov (United States)

    Housch, Helen

    2008-01-01

    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  13. Which Way is Up? Lessons Learned from Space Shuttle Sensorimotor Research

    Science.gov (United States)

    Wood, S. J.; Reschke, M. F.; Harm, D. L.; Paloski, W. H.; Bloomberg, J. J.

    2011-01-01

    The Space Shuttle Program provided the opportunity to examine sensorimotor adaptation to space flight in unprecedented numbers of astronauts, including many over multiple missions. Space motion sickness (SMS) severity was highly variable across crewmembers. SMS generally lasted 2-3 days in-flight with approximately 1/3 of crewmembers experiencing moderate to severe symptoms, and decreased incidence in repeat flyers. While SMS has proven difficult to predict from susceptibility to terrestrial analogs, symptoms were alleviated by medications, restriction of early activities, maintaining familiar orientation with respect to the visual environment and maintaining contact cues. Adaptive changes were also reflected by the oculomotor and perceptual disturbances experienced early inflight and by the perceptual and motor coordination problems experienced during re-entry and landing. According to crew self-reports, systematic head movements performed during reentry, as long as paced within one's threshold for motion tolerance, facilitated the early readaptation process. The Shuttle provided early postflight crew access to document the initial performance decrements and time course of recovery. These early postflight measurements were critical to inform the program of risks associated with extending the duration of Shuttle missions. Neurological postflight deficits were documented using a standardized subjective rating by flight surgeons. Computerized dynamic posturography was also implemented as a quantitative means of assessing sensorimotor function to support crew return-to-duty assessments. Towards the end of the Shuttle Program, more emphasis has been placed on mapping physiological changes to functional performance. Future commercial flights will benefit from pre-mission training including exposures to launch and entry G transitions and sensorimotor adaptability assessments. While SMS medication usage will continue to be refined, non-pharmacological countermeasures (e

  14. The Visual Impairment Intracranial Pressure Syndrome in Long Duration NASA Astronauts: An Integrated Approach

    Science.gov (United States)

    Otto, C. A.; Norsk, P.; Shelhamer, M. J.; Davis, J. R.

    2015-01-01

    The Visual Impairment Intracranial Pressure (VIIP) syndrome is currently NASA's number one human space flight risk. The syndrome, which is related to microgravity exposure, manifests with changes in visual acuity (hyperopic shifts, scotomas), changes in eye structure (optic disc edema, choroidal folds, cotton wool spots, globe flattening, and distended optic nerve sheaths). In some cases, elevated cerebrospinal fluid pressure has been documented postflight reflecting increased intracranial pressure (ICP). While the eye appears to be the main affected end organ of this syndrome, the ocular affects are thought to be related to the effect of cephalad fluid shift on the vascular system and the central nervous system. The leading hypotheses for the development of VIIP involve microgravity induced head-ward fluid shifts along with a loss of gravity-assisted drainage of venous blood from the brain, both leading to cephalic congestion and increased ICP. Although not all crewmembers have manifested clinical signs or symptoms of the VIIP syndrome, it is assumed that all astronauts exposed to microgravity have some degree of ICP elevation in-flight. Prolonged elevations of ICP can cause long-term reduced visual acuity and loss of peripheral visual fields, and has been reported to cause mild cognitive impairment in the analog terrestrial population of Idiopathic Intracranial Hypertension (IIH). These potentially irreversible health consequences underscore the importance of identifying the factors that lead to this syndrome and mitigating them.

  15. Long Duration Exposure Facility experiment M0003 deintegration observation data base

    Science.gov (United States)

    Gyetvay, S. R.; Coggi, J. M.; Meshishnek, M. J.

    1993-01-01

    The four trays (2 leading edge and 2 trailing edge) of the M0003 materials experiment on the Long Duration Exposure Facility (LDEF) contained 1274 samples from 20 subexperiments. The complete sample complement represented a broad range of materials, including thin film optical coatings, paints, polymer sheets and tapes, adhesives, and composites, for use in various spacecraft applications, including thermal control, structures, optics, and solar power. Most subexperiments contained sets of samples exposed on both the leading and trailing edge trays of LDEF. Each individual sample was examined by high resolution optical microscope during the deintegration of the subexperiments from the M0003 trays. Observations of the post-flight condition of the samples made during this examination were recorded in a computer data base. The deintegration observation data base is available to requesters on floppy disk in 4th Dimension for the Macintosh format. Over 3,000 color macrographs and photomicrographs were shot to complement the observation records and to document the condition of the individual samples and of the M0003 trays. The photographs provide a visual comparison of the response of materials in leading and trailing edge LDEF environments. The Aerospace Corporate Archives is distributing photographs of the samples and hard copies of the database records to the general public upon request. Information on obtaining copies of the data base disks and for ordering photographs and records of specific samples or materials are given.

  16. Environmental stressors during space flight: potential effects on body temperature

    Science.gov (United States)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  17. The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral

    Science.gov (United States)

    Wood, Bill; Pate, Dennis; Thelen, David

    2010-01-01

    This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.

  18. Metabolic profile of long-distance migratory flight and stopover in a shorebird

    NARCIS (Netherlands)

    Landys, MM; Piersma, T; Guglielmo, CG; Jukema, J; Ramenofsky, M; Wingfield, JC; Guglielmo, Christopher G.; Wingfield, John C.

    2005-01-01

    Migrating birds often complete long non-stop flights during which body energy stores exclusively support energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km

  19. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    Science.gov (United States)

    Treichel, Todd H.

    Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized <70%. Findings from Phase 2 human factors testing showed no statistically significant evidence that the NASA approved ISS fluorescent lights or blue or white LEDs caused fatigue, eye strain and/or headache, when study participants perform

  20. Environmental control and life support testing at the Marshall Space Flight Center

    Science.gov (United States)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  1. Long-term memory, sleep, and the spacing effect.

    Science.gov (United States)

    Bell, Matthew C; Kawadri, Nader; Simone, Patricia M; Wiseheart, Melody

    2014-01-01

    Many studies have shown that memory is enhanced when study sessions are spaced apart rather than massed. This spacing effect has been shown to have a lasting benefit to long-term memory when the study phase session follows the encoding session by 24 hours. Using a spacing paradigm we examined the impact of sleep and spacing gaps on long-term declarative memory for Swahili-English word pairs by including four spacing delay gaps (massed, 12 hours same-day, 12 hours overnight, and 24 hours). Results showed that a 12-hour spacing gap that includes sleep promotes long-term memory retention similar to the 24-hour gap. The findings support the importance of sleep to the long-term benefit of the spacing effect.

  2. Activity enhances dopaminergic long-duration response in Parkinson disease

    Science.gov (United States)

    Auinger, Peggy; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Mendis, Tilak

    2012-01-01

    Objective: We tested the hypothesis that dopamine-dependent motor learning mechanism underlies the long-duration response to levodopa in Parkinson disease (PD) based on our studies in a mouse model. By data-mining the motor task performance in dominant and nondominant hands of the subjects in a double-blind randomized trial of levodopa therapy, the effects of activity and dopamine therapy were examined. Methods: We data-mined the Earlier versus Later Levodopa Therapy in Parkinson's Disease (ELLDOPA) study published in 2005 and performed statistical analysis comparing the effects of levodopa and dominance of handedness over 42 weeks. Results: The mean change in finger-tapping counts from baseline before the initiation of therapy to predose at 9 weeks and 40 weeks increased more in the dominant compared to nondominant hand in levodopa-treated subjects in a dose-dependent fashion. There was no significant difference in dominant vs nondominant hands in the placebo group. The short-duration response assessed by the difference of postdose performance compared to predose performance at the same visit did not show any significant difference between dominant vs nondominant hands. Conclusions: Active use of the dominant hand and dopamine replacement therapy produces synergistic effect on long-lasting motor task performance during “off” medication state. Such effect was confined to dopamine-responsive symptoms and not seen in dopamine-resistant symptoms such as gait and balance. We propose that long-lasting motor learning facilitated by activity and dopamine is a form of disease modification that is often seen in trials of medications that have symptomatic effects. PMID:22459675

  3. Validation of Procedures for Monitoring Crewmember Immune Function

    Science.gov (United States)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2009-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation, however the nature of the phenomenon as it equilibrates over longer flights has not been determined. This dysregulation may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) for exploration-class space flight is unknown, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles (RNA, intracellular, secreted), viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. This study is currently ongoing. To date, 10 short duration and 5 long-duration crewmembers have completed the study. Technically, the study is progressing well. In-flight blood samples are being collected, and returned for analysis, including functional assays that require live cells. For all in-flight samples to date, sample viability has been acceptable. Preliminary data (n = 4/7; long/short duration, respectively) indicate that distribution of most peripheral leukocyte subsets is largely unaltered during flight. Exceptions include elevated T cells, reduced B/NK cells, increased memory T cells and increased central memory CD8+ T cells. General T cell function, early blastogenesis response to mitogenic stimulation, is markedly

  4. Report of the committee on a commercially developed space facility

    Science.gov (United States)

    Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III

    1989-01-01

    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.

  5. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    Science.gov (United States)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  6. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  7. Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction

    Science.gov (United States)

    McCluskey, R.

    2004-01-01

    Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a pcorrelations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.

  8. Psychological considerations in future space missions

    Science.gov (United States)

    Helmreich, R. L.; Wilhelm, J. A.; Runge, T. E.

    1980-01-01

    Issues affecting human psychological adjustments to long space missions are discussed. Noting that the Shuttle flight crewmembers will not have extensive flight qualification requirements, the effects of a more heterogeneous crew mixture than in early space flights is considered to create possibilities of social conflicts. Routine space flight will decrease the novelty of a formerly unique experience, and the necessity of providing personal space or other mechanisms for coping with crowded, permanently occupied space habitats is stressed. Women are noted to display more permeable personal space requirements. The desirability of planning leisure activities is reviewed, and psychological test results for female and male characteristics are cited to show that individuals with high scores in both traditionally male and female attributes are most capable of effective goal-oriented behavior and interpersonal relationships. Finally, it is shown that competitiveness is negatively correlated with the success of collaborative work and the social climate of an environment.

  9. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample☆

    Science.gov (United States)

    Grandner, Michael A.; Jackson, Nicholas; Gerstner, Jason R.; Knutson, Kristen L.

    2013-01-01

    Short sleep duration is associated with weight gain and obesity, diabetes, cardiovascular disease, psychiatric illness, and performance deficits. Likewise, long sleep duration is also associated with poor physical and mental health. The role of a healthy diet in habitual sleep duration represents a largely unexplored pathway linking sleep and health. This study evaluated associations between habitual sleep parameters and dietary/nutritional variables obtained via the National Health and Nutrition Examination Survey (NHANES), 2007–2008. We hypothesized that habitual very short (theobromine (long sleep RR = 0.910, p < 0.05), vitamin C (short sleep RR = 0.890, p < 0.05), tap water (short sleep RR = 0.952, p < 0.001; very short (<5 h) sleep RR = 0.941, p < 0.05), lutein + zeaxanthin (short sleep RR = 1.123, p < 0.05), dodecanoic acid (long sleep RR = 0.812, p < 0.05), choline (long sleep RR = 0.450, p = 0.001), lycopene (very short (<5 h) sleep RR = 0.950, p <0.05), total carbohydrate (very short (<5 h) sleep RR = 0.494, p <0.05; long sleep RR = 0.509, p <0.05), selenium (short sleep RR = 0.670, p <0.01) and alcohol (long sleep RR = 1.172, p < 0.01). Overall, many nutrient variables were associated with short and/or long sleep duration, which may be explained by differences in food variety. Future studies should assess whether these associations are due to appetite dysregulation, due to short/long sleep and/or whether these nutrients have physiologic effects on sleep regulation. In addition, these data may help us better understand the complex relationship between diet and sleep and the potential role of diet in the relationship between sleep and obesity and other cardiometabolic risks. PMID:23339991

  10. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  11. Spacecraft Cabin Air CO2 Recovery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced Environmental Control and Life Support System (ECLSS) for long duration manned space missions ?such as planetary flight missions or planetary bases-...

  12. Radioastron flight operations

    Science.gov (United States)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  13. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  14. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  15. Space Flight Operations Center local area network

    Science.gov (United States)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  16. Some comments on space flight and radiation limits

    International Nuclear Information System (INIS)

    Thornton, W.E.

    1997-01-01

    Setting limits on human exposure to space-related radiation involves two very different processes - the appropriate hard science, and certain emotional aspects and expectations of the groups involved. These groups include the general public and their elected politicians, the astronauts and flight crews, and NASA managers, each group with different expectations and concerns. Public and political views of human space flight and human radiation exposures are often poorly informed and are often based on emotional reactions to current events which may be distorted by 'experts' and the media. Career astronauts' and cosmonauts' views are much more realistic about the risks involved and there is a willingness on their part to accept increased necessary risks. However, there is a concern on their part about career-threatening dose limits, the potential for overexposures, and the health effects from all sources of radiation. There is special concern over radiation from medical studies. This last concern continues to raise the question of 'voluntary' participation in studies involving radiation exposure. There is greatly diversity in spaceflight crews and their expectations; and 'official' Astronaut Office positions will reflect strong management direction. NASA management has its own priorities and concerns and this fact will be reflected in their crucial influence on radiation limits. NASA, and especially spaceflight crews, might be best served by exposure limits which address all sources of spaceflight radiation and all potential effects from such exposure. radiation and all potential effects from such exposure

  17. Microgravity Flight: Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1995-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  18. New synchrotron powder diffraction facility for long-duration experiments.

    Science.gov (United States)

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  19. Resolution of psychosocial crises associated with flying in space

    Science.gov (United States)

    Suedfeld, Peter; Brcic, Jelena

    2011-07-01

    Erikson (1959) proposed a theoretical basis for healthy psychosocial development. His theory posits eight critical conflict situations throughout one's lifetime, each of which can result in a favorable or unfavorable resolution. Autobiographies, memoirs, interviews, personal diaries, and oral histories of 97 international astronauts were content analyzed to assess reported resolutions of Erikson's psychosocial crises, regardless of chronological sequence. We made comparisons across flight phases (before, during, and after), gender, nationality of home space agency, and flight duration. Astronauts reported more favorable than unfavorable outcomes across flight phases and demographic variables. Differences across demographic variables and flight phases, as well as the changes as a result of the flight are discussed.

  20. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  1. Astronaut Preflight Cardiovascular Variables Associated with Vascular Compliance are Highly Correlated with Post-Flight Eye Outcome Measures in the Visual Impairment Intracranial Pressure (VIIP) Syndrome Following Long Duration Spaceflight

    Science.gov (United States)

    Otto, Christian; Ploutz-Snyder, R.

    2015-01-01

    The detection of the first VIIP case occurred in 2005, and adequate eye outcome measures were available for 31 (67.4%) of the 46 long duration US crewmembers who had flown on the ISS since its first crewed mission in 2000. Therefore, this analysis is limited to a subgroup (22 males and 9 females). A "cardiovascular profile" for each astronaut was compiled by examining twelve individual parameters; eleven of these were preflight variables: systolic blood pressure, pulse pressure, body mass index, percentage body fat, LDL, HDL, triglycerides, use of anti-lipid medication, fasting serum glucose, and maximal oxygen uptake in ml/kg. Each of these variables was averaged across three preflight annual physical exams. Astronaut age prior to the long duration mission, and inflight salt intake was also included in the analysis. The group of cardiovascular variables for each crew member was compared with seven VIIP eye outcome variables collected during the immediate post-flight period: anterior-posterior axial length of the globe measured by ultrasound and optical biometry; optic nerve sheath diameter, optic nerve diameter, and optic nerve to sheath ratio- each measured by ultrasound and magnetic resonance imaging (MRI), intraocular pressure (IOP), change in manifest refraction, mean retinal nerve fiber layer (RNFL) on optical coherence tomography (OCT), and RNFL of the inferior and superior retinal quadrants. Since most of the VIIP eye outcome measures were added sequentially beginning in 2005, as knowledge of the syndrome improved, data were unavailable for 22.0% of the outcome measurements. To address the missing data, we employed multivariate multiple imputation techniques with predictive mean matching methods to accumulate 200 separate imputed datasets for analysis. We were able to impute data for the 22.0% of missing VIIP eye outcomes. We then applied Rubin's rules for collapsing the statistical results across our 200 multiply imputed data sets to assess the canonical

  2. Gregory Merkel Tours Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    1972-01-01

    Gregory A. Merkel (left), high school student from Springfield, Massachusetts, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  3. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    Science.gov (United States)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  4. In-Flight Observations of Long-Term Single Event Effect(SEE)Performance on Orbview-2 and Xray Timing Explorer(XTE)Solid State Recorders (SSR)

    Science.gov (United States)

    Poivey, Christian; Barth, Janet L.; LaBel, Ken A.; Gee, George; Safren, Harvey

    2003-01-01

    This paper presents Single Event Effect (SEE) in-flight data on Solid State Recorders (SSR) that have been collected over a long period of time for two NASA spacecraft: Orbview-2 and XTE. SEE flight data on solid-state memories give an opportunity to study the behavior in space of SEE sensitive commercial devices. The actual Single Event Upset (SEU) rates can be compared with the calculated rates based on environment models and ground test data. The SEE mitigation schemes can also be evaluated in actual implementation. A significant amount of data has already been published concerning observed SEE effects on memories in space. However, most of the data presented cover either a short period of time or a small number of devices. The data presented here has been collected on a large number of devices during several years. This allows statistically significant information about the effect of space weather fluctuations on SEU rates, and the effectiveness of SEE countermeasures used to be analyzed. Only Orbview-2 data is presented in this summary. XTE data will be included in the final paper.

  5. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    Science.gov (United States)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved

  6. Optical Ethylene Sensor for Plant Health, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future long-duration manned space flights will rely upon onboard production facilities to grow and produce food throughout the mission. Because the lives of the...

  7. Automated Behavior and Cohesion Assessment Tools, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An important consideration of long duration space flight operations is interpersonal dynamics. The crew will be working very closely for extended periods of time and...

  8. Space-charge effect in electron time-of-flight analyzer for high-energy photoemission spectroscopy

    International Nuclear Information System (INIS)

    Greco, G.; Verna, A.; Offi, F.; Stefani, G.

    2016-01-01

    Highlights: • Two methods for the simulation of space-charge effect in time-resolved PES. • Reliability and advantages in the use of the SIMION"® software. • Simulation of the space-charge effect in an electron TOF analyzer. • Feasibility of a TOF analyzer in time-resolved high-energy PES experiments at FEL. - Abstract: The space-charge effect, due to the instantaneous emission of many electrons after the absorption of a single photons pulse, causes distortion in the photoelectron energy spectrum. Two calculation methods have been applied to simulate the expansion during a free flight of clouds of mono- and bi-energetic electrons generated by a high energy pulse of light and their results have been compared. The accuracy of a widely used tool, such as SIMION"®, in predicting the energy distortion caused by the space-charge has been tested and the reliability of its results is verified. Finally we used SIMION"® to take into account the space-charge effects in the simulation of simple photoemission experiments with a time-of-flight analyzer.

  9. FAST20XX: Achievements On European Suborbital Space Flight

    Science.gov (United States)

    Mack, A.; Steelant, J.; Adirim, H.; Lentsch, A.; Marini, M.; Pilz, N.

    2011-05-01

    In Europe, the EC co-funded project FAST20XX aims at exploring the borderline between aviation and space by investigating suborbital vehicles. The main focus is the identification and mastering of critical technologies for such vehicles rather than the vehicle development itself. Besides the objectives and overall layout of the project, the paper addresses also the progress made during the first period of the project. Two vehicle concepts are considered. A first one is a space vehicle launched from an airplane providing a low-energy ballistic flight experience using hybrid propulsion. The second is a vertically starting two-stage rocket space vehicle system concept taken as a basis to identify the conditions and constraints experienced during high- energy suborbital ultra-fast transport. The paper mainly discusses the two actual reference vehicles and the technical aspects of prerequisites for commercial operation including safety, human spaceflight, business cases, environmental and legal issues.

  10. Production and utilization of high level and long duration shocks

    International Nuclear Information System (INIS)

    Labrot, R.

    1978-01-01

    In order to verify the behaviour of equipments under extreme environmental conditions (propulsion, falls, impacts...), it is necessary to create 'high level and long duration shocks'. For these shocks, the velocity variation ΔV, which is equal to the area under the accelerogram γ (t), can reach several hundred meters per second. These velocity variations cannot be performed via classical free fall shock machine (ΔV [fr

  11. A new population of ultra-long duration gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J.; Brown, G. C.; Tunnicliffe, R. L. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R.; Starling, R. L. C.; Wiersema, K.; Page, K. L.; Wynn, G. A.; O' Brien, P. T. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Schulze, S. [Pontificia Universidad Católica de Chile, Departamento de Astronomía y Astrofísica, Casilla 306, Santiago 22 (Chile); Chornock, R.; Malesani, D.; Watson, D.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hjorth, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Københaven Ø (Denmark); Cenko, S. B. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fruchter, A. S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD21218 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavk (Iceland); Bersier, D., E-mail: a.j.levan@warwick.ac.uk [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); and others

    2014-01-20

    We present comprehensive multiwavelength observations of three gamma-ray bursts (GRBs) with durations of several thousand seconds. We demonstrate that these events are extragalactic transients; in particular, we resolve the long-standing conundrum of the distance of GRB 101225A (the 'Christmas-day burst'), finding it to have a redshift z = 0.847 and showing that two apparently similar events (GRB 111209A and GRB 121027A) lie at z = 0.677 and z = 1.773, respectively. The systems show extremely unusual X-ray and optical light curves, very different from classical GRBs, with long-lasting, highly variable X-ray emission and optical light curves that exhibit little correlation with the behavior seen in the X-ray. Their host galaxies are faint, compact, and highly star-forming dwarf galaxies, typical of 'blue compact galaxies'. We propose that these bursts are the prototypes of a hitherto largely unrecognized population of ultra-long GRBs, which while observationally difficult to detect may be astrophysically relatively common. The long durations may naturally be explained by the engine-driven explosions of stars of much larger radii than normally considered for GRB progenitors, which are thought to have compact Wolf-Rayet progenitor stars. However, we cannot unambiguously identify supernova signatures within their light curves or spectra. We also consider the alternative possibility that they arise from the tidal disruption of stars by massive black holes and conclude that the associated timescales are only consistent with the disruption of compact stars (e.g., white dwarfs) by black holes of relatively low mass (<10{sup 5} M {sub ☉}).

  12. NASA's Space Launch System: Affordability for Sustainability

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  13. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload

    Science.gov (United States)

    Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Cahoy, Kerri L.; Chakrabarti, Supriya

    2018-01-01

    A NASA sounding rocket for high-contrast imaging with a visible nulling coronagraph, the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) payload, has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. The first flight in 2011 demonstrated a 5 mas fine pointing system in space. The reduced flight data from the second launch, on November 25, 2015, presented herein, demonstrate active sensing of wavefront phase in space. Despite several anomalies in flight, postfacto reduction phase stepping interferometer data provide insight into the wavefront sensing precision and the system stability for a portion of the pupil. These measurements show the actuation of a 32 × 32-actuator microelectromechanical system deformable mirror. The wavefront sensor reached a median precision of 1.4 nm per pixel, with 95% of samples between 0.8 and 12.0 nm per pixel. The median system stability, including telescope and coronagraph wavefront errors other than tip, tilt, and piston, was 3.6 nm per pixel, with 95% of samples between 1.2 and 23.7 nm per pixel.

  14. Lunar EVA Dosimetry: MIcroDosimeter iNstrument (MIDN) System Suitable for Space Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — MIDN PROTOTYPE FLIGHT INSTRUMENT 1. Based on our experience with the MIDN development, we designed and developed an advanced version of the instrument. 2. A...

  15. Genomic DNA sequence and cytosine methylation changes of adult rice leaves after seeds space flight

    Science.gov (United States)

    Shi, Jinming

    In this study, cytosine methylation on CCGG site and genomic DNA sequence changes of adult leaves of rice after seeds space flight were detected by methylation-sensitive amplification polymorphism (MSAP) and Amplified fragment length polymorphism (AFLP) technique respectively. Rice seeds were planted in the trial field after 4 days space flight on the shenzhou-6 Spaceship of China. Adult leaves of space-treated rice including 8 plants chosen randomly and 2 plants with phenotypic mutation were used for AFLP and MSAP analysis. Polymorphism of both DNA sequence and cytosine methylation were detected. For MSAP analysis, the average polymorphic frequency of the on-ground controls, space-treated plants and mutants are 1.3%, 3.1% and 11% respectively. For AFLP analysis, the average polymorphic frequencies are 1.4%, 2.9%and 8%respectively. Total 27 and 22 polymorphic fragments were cloned sequenced from MSAP and AFLP analysis respectively. Nine of the 27 fragments from MSAP analysis show homology to coding sequence. For the 22 polymorphic fragments from AFLP analysis, no one shows homology to mRNA sequence and eight fragments show homology to repeat region or retrotransposon sequence. These results suggest that although both genomic DNA sequence and cytosine methylation status can be effected by space flight, the genomic region homology to the fragments from genome DNA and cytosine methylation analysis were different.

  16. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions.

    Science.gov (United States)

    Ambroglini, Filippo; Battiston, Roberto; Burger, William J

    2016-01-01

    A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth's dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European's Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented.

  17. Dietary acid load and bone turnover during long-duration spaceflight and bed rest.

    Science.gov (United States)

    Zwart, Sara R; Rice, Barbara L; Dlouhy, Holly; Shackelford, Linda C; Heer, Martina; Koslovsky, Matthew D; Smith, Scott M

    2018-05-01

    Bed rest studies document that a lower dietary acid load is associated with lower bone resorption. We tested the effect of dietary acid load on bone metabolism during spaceflight. Controlled 4-d diets with a high or low animal protein-to-potassium (APro:K) ratio (High and Low diets, respectively) were given to 17 astronauts before and during spaceflight. Each astronaut had 1 High and 1 Low diet session before flight and 2 High and 2 Low sessions during flight, in addition to a 4-d session around flight day 30 (FD30), when crew members were to consume their typical in-flight intake. At the end of each session, blood and urine samples were collected. Calcium, total protein, energy, and sodium were maintained in each crew member's preflight and in-flight controlled diets. Relative to preflight values, N-telopeptide (NTX) and urinary calcium were higher during flight, and bone-specific alkaline phosphatase (BSAP) was higher toward the end of flight. The High and Low diets did not affect NTX, BSAP, or urinary calcium. Dietary sulfur and age were significantly associated with changes in NTX. Dietary sodium and flight day were significantly associated with urinary calcium during flight. The net endogenous acid production (NEAP) estimated from the typical dietary intake at FD30 was associated with loss of bone mineral content in the lumbar spine after the mission. The results were compared with data from a 70-d bed rest study, in which control (but not exercising) subjects' APro:K was associated with higher NTX during bed rest. Long-term lowering of NEAP by increasing vegetable and fruit intake may protect against changes in loss of bone mineral content during spaceflight when adequate calcium is consumed, particularly if resistive exercise is not being performed. This trial was registered at clinicaltrials.gov as NCT01713634.

  18. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Substantial progress has been made by NASA in integrating flight avionics and ISHM with well-defined caution and warning system, however, the scope of ACAW alerting...

  19. In-flight evaluation of aerodynamic predictions of an air-launched space booster

    Science.gov (United States)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1993-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent.

  20. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Science.gov (United States)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  1. Low Cost Balloon programme of Indian Centre for Space Physics

    Science.gov (United States)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.

  2. Ratioing methods for in-flight response calibration of space-based spectro-radiometers, operating in the solar spectral region

    Science.gov (United States)

    Lobb, Dan

    2017-11-01

    One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.

  3. Air crew exposure on board of long-haul flights of the Belgian airlines

    International Nuclear Information System (INIS)

    Verhaegen, F.; Poffijn, A.

    2000-01-01

    New European radiation protection recommendations state that measures need to be taken for flight crew members whose annual radiation exposure exceeds 1 mSv. This will be the case for flight crew members who accumulate most of their flying hours on long-haul flights. The Recommendations for the Implementation of the Basic Safety Standards Directive states that for annual exposure levels between 1 and 6 mSv individual dose estimates should be obtained, whereas for annual exposures exceeding 6 mSv, which might rarely occur, record keeping with appropriate medical surveillance is recommended. To establish the exposure level of Belgian air crews, radiation measurements were performed on board of a total of 44 long-haul flights of the Belgian airlines. The contribution of low linear energy transfer (LET) radiation (photons, electrons, protons) was assessed by using TLD-700H detectors. The exposure to high-LET radiation (mostly neutrons) was measured with bubble detectors. Results were compared to calculations with an adapted version of the computer code CARI. For the low-LET radiation the calculations were found to be in good agreement with the measurements. The measurements of the neutron dose were consistently lower than the calculations. With the current flight schedules used by the Belgian airlines, air crew members are unlikely to receive annual doses exceeding 4 mSv. (author)

  4. The Impact of Flight Hardware Scavenging on Space Logistics

    Science.gov (United States)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  5. Long-duration transcutaneous electric acupoint stimulation alters small-world brain functional networks.

    Science.gov (United States)

    Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing

    2013-09-01

    Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Architectural and Behavioral Systems Design Methodology and Analysis for Optimal Habitation in a Volume-Limited Spacecraft for Long Duration Flights

    Science.gov (United States)

    Kennedy, Kriss J.; Lewis, Ruthan; Toups, Larry; Howard, Robert; Whitmire, Alexandra; Smitherman, David; Howe, Scott

    2016-01-01

    As our human spaceflight missions change as we reach towards Mars, the risk of an adverse behavioral outcome increases, and requirements for crew health, safety, and performance, and the internal architecture, will need to change to accommodate unprecedented mission demands. Evidence shows that architectural arrangement and habitability elements impact behavior. Net habitable volume is the volume available to the crew after accounting for elements that decrease the functional volume of the spacecraft. Determination of minimum acceptable net habitable volume and associated architectural design elements, as mission duration and environment varies, is key to enabling, maintaining, andor enhancing human performance and psychological and behavioral health. Current NASA efforts to derive minimum acceptable net habitable volumes and study the interaction of covariates and stressors, such as sensory stimulation, communication, autonomy, and privacy, and application to internal architecture design layouts, attributes, and use of advanced accommodations will be presented. Furthermore, implications of crew adaptation to available volume as they transfer from Earth accommodations, to deep space travel, to planetary surface habitats, and return, will be discussed.

  7. Evidence Based Medicine in Space Flight: Evaluation of Inflight Vision Data for Operational Decision-Making

    Science.gov (United States)

    Van Baalen, Mary; Mason, Sara; Foy, Millennia; Wear, Mary; Taiym, Wafa; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2015-01-01

    Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad mission-related vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate in-flight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, on-orbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.

  8. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    Science.gov (United States)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  9. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing.

    Science.gov (United States)

    Tian, B; Schnitzler, H U

    1997-04-01

    Echolocation signals of horseshoe bats (Rhinolophidae) consist of a relatively long component of constant frequency (CF) which is preceded by an initial frequency-modulated (iFM) component and followed by a terminal frequency-modulated (tFM) component. To examine the role of these components in echolocation, four bats were trained to fly from a perch to a landing bar. A dual camera system allowed reconstruction of the flight paths in three dimensions. Echolocation signals were recorded, analyzed, and correlated with the flight behavior of the bats. It was confirmed that during flight the bats compensate the Doppler shifts which are produced by their own flight movement. In free flight they emit per wing beat one single signal of long duration, with little variation in the three signal components. In approach flight the bats reduce pulse duration and interval with decreasing target range. The iFM is not varied with respect to target range, suggesting that this component plays little role in the processing of echolocating a target of interest. The bandwidth of the tFM component is increased while its duration is shortened in proportion to decreasing target range, so that the signal-echo overlap of the FM component is avoided down to a target distance of 15 cm. These concurrent changes suggest that the tFM component is used for ranging. During the last 60 cm of the approach the bats compensated for the increase of echo SPL by lowering the emission level of the CF component by 6-9 dB and that of the tFM component by 9-11 dB per halving of range. The specific signal structure of horseshoe bats is discussed as an adaptation for the hunting of fluttering insects in highly cluttered environments.

  10. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    Science.gov (United States)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical

  11. In-Space Structural Assembly: Applications and Technology

    Science.gov (United States)

    Belvin, W. Keith; Doggett, Bill R.; Watson, Judith J.; Dorsey, John T.; Warren, Jay; Jones, Thomas C.; Komendera, Erik E.; Mann, Troy O.; Bowman, Lynn

    2016-01-01

    As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions.

  12. Biological and psychosocial effects of space travel: A case study

    Science.gov (United States)

    Hsia, Robert Edward Tien Ming

    This dissertation interviewed a single astronaut to explore psychosocial issues relevant to long-duration space travel and how these issues relate to the astronaut's training. It examined the psychological impact of isolation, crew interaction, and the experience of microgravity with the goal of increasing understanding of how to foster crew survivability and positive small group interactions in space (Santy, 1994). It also focused on how to develop possible treatments for crews when they transition back to Earth from the extreme environment of space missions. The astronaut's responses agreed with the literature and the predictions for long-duration space missions except the participant reported no temporary or permanent cognitive or memory deficits due to microgravity exposure. The dissertation identified five frequently endorsed themes including communication, environmental stressors, personal strengths, un-researched problems, and other. The agreement found between the literature and astronaut's responses offer a strong foundation of questions and data that needs to be further studied before conducting research in space or long-duration space missions.

  13. Designing for Virtual Windows in a Deep Space Habitat

    Science.gov (United States)

    Howe, A. Scott; Howard, Robert L.; Moore, Nathan; Amoroso, Michael

    2013-01-01

    This paper discusses configurations and test analogs toward the design of a virtual window capability in a Deep Space Habitat. Long-duration space missions will require crews to remain in the confines of a spacecraft for extended periods of time, with possible harmful effects if a crewmember cannot cope with the small habitable volume. Virtual windows expand perceived volume using a minimal amount of image projection equipment and computing resources, and allow a limited immersion in remote environments. Uses for the virtual window include: live or augmented reality views of the external environment; flight deck, piloting, observation, or other participation in remote missions through live transmission of cameras mounted to remote vehicles; pre-recorded background views of nature areas, seasonal occurrences, or cultural events; and pre-recorded events such as birthdays, anniversaries, and other meaningful events prepared by ground support and families of the crewmembers.

  14. Higher Plants in Space: Microgravity Perception, Response, and Adaptation

    Science.gov (United States)

    Zheng, Hui Qiong; Han, Fei; Le, Jie

    2015-11-01

    Microgravity is a major abiotic stress in space. Its effects on plants may depend on the duration of exposure. We focused on two different phases of microgravity responses in space. When higher plants are exposed to short-term (seconds to hours) microgravity, such as on board parabolic flights and sounding rockets, their cells usually exhibit abiotic stress responses. For example, Ca 2+-, lipid-, and pH-signaling are rapidly enhanced, then the production of reactive oxygen species and other radicals increase dramatically along with changes in metabolism and auxin signaling. Under long-term (days to months) microgravity exposure, plants acclimatize to the stress by changing their metabolism and oxidative response and by enhancing other tropic responses. We conclude by suggesting that a systematic analysis of regulatory networks at the molecular level of higher plants is needed to understand the molecular signals in the distinct phases of the microgravity response and adaptation.

  15. Internal Social Media at Marshall Space Flight Center - An Engineer's Snapshot

    Science.gov (United States)

    Scott, David W.

    2013-01-01

    In the brief span of about six years (2004-2010), social media radically enhanced people's ways of maintaining recreational friendships. Social media's impact on public affairs (PAO) and community engagement is equally striking: NASA has involved millions of non-NASA viewers in its activities via outward-facing social media, often in a very two-way street fashion. Use of social media as an internal working tool by NASA's tens of thousands of civil servants, onsite contractor employees, and external stakeholders is evolving more slowly. This paper examines, from an engineer's perspective, Marshall Space Flight Center s (MSFC) efforts to bring the power of social media to the daily working environment. Primary emphasis is on an internal Social Networking Service called Explornet that could be scaled Agency-wide. Other topics include MSFC use of other social media day-to-day for non-PAO purposes, some specialized uses of social techniques in space flight control operations, and how to help a community open up so it can discover and adopt what works well.

  16. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  17. Integrated Endurance and Resistance Exercise Countermeasures Using a Gravity Independent Training Device

    Data.gov (United States)

    National Aeronautics and Space Administration — This study is designed to investigate the effectiveness of a new exercise device, multi-mode exercise device or M-MED, for use during long-duration space flights for...

  18. Ultrasound Imaging of Spine: State of the Art and Utility for Space Flight

    Science.gov (United States)

    Sargsyan, Ashot E.; Bouffard, Antonio J.; Garcia, Kathleen; Hamilton, Douglas R.; Van Holsbeeck, Marnix; Ebert, Douglas J. W.; Dulchavsky, Scott A.

    2010-01-01

    Introduction: Ultrasound imaging (sonography) has been increasingly used for both primary diagnosis and monitoring of musculoskeletal injury, including fractures. In certain injuries, sonography has been shown to equal or surpass Magnetic Resonance Imaging in accuracy. Long-term exposure to reduced gravity may be expected to cause physiological and anatomical changes of the musculoskeletal system, which are not fully described or understood. In a limited-resource environment like space flight, sonography will likely remain the only imaging modality; therefore, further attention to its potential is warranted, including its ability to image anatomical deviations as well as irregularities of vertebrae and the spinal column. Methods: A thorough review of literature was conducted on the subject. A multipurpose ultrasound system was used to identify specific vertebrae, intervertebral disks, and other structures of the cervical spine in healthy volunteers, selected to represent various age, gender, and Body Mass Index (BMI) groups. Sonographic views were sought that would parallel radiographic views and signs used in the diagnosis of cervical spine injuries. Results: While using widely accepted radiographic signs of cervical spine injury, this sonographic protocol development effort resulted in successful identification of scanning planes and imaging protocols that could serve as alternatives for radiography. Some of these views are also applicable to diagnosing degenerative disk and bone disease, and other non-traumatic spine pathology. Strong, preliminary correlation has been demonstrated in a number of clinical cases between sonography and other imaging modalities. Conclusion: In the absence of radiography, sonography can be used to diagnose or rule out certain common types of cervical spine conditions including injury. Clinical validation of the findings appears to be realistic and would facilitate establishment of new sonographic protocols for special environments

  19. Boomerang project: structural calculations and verifications of mechanical support of space cryogenic system

    International Nuclear Information System (INIS)

    Zucchini, A.; Orsi, R.

    1995-12-01

    The Boomerang (Ballon Observations of Millimetric Extragalactic radiation ANd Geophysics) experiment is an international effort to measure the Cosmic Microwave Background anisotropy on angular scales of 20' to 4x, with unprecedent sensitivity, sky and spectral coverage. The telescope will be flown from Antarctica by NASA-NSBF with a long duration stratospheric balloon (1-3 weeks), and is scheduled for flight in 1996. Space cryogenic systems need adeguate mechanical support to survive the large accelerations and vibrations induced during launch and landing. Static and modal analyses were carried out in order to assist the design of the mechanical support of the space cryogenic system. This report describes the models and the results of the FEM analyses carried out for different design solutions (kevlar cords or fiber-glass cylinders) of the cryostat support structure

  20. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    Science.gov (United States)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.